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Abstract. A multi-component CPY model’s scalar electrodynamics is investigated. The

model contains Q-balls/shells, which are non-topological compact solitons with time dependency
€. Because of the compacton nature of solutions, Q-shells with another compact @-ball or

Q@-shell inside their cavity can exist. Even if compactons do not overlap, they can interact with
one another via the electromagnetic field. They look similar to the capacitor in the standard
electromagnetism. We focus on the structure of such Q-capacitor with opposite charges.

1. Introduction
Q-balls [1, 2] are nontopological solitons of scalar field theory model, which circumvents the
Derrick’s argument with the time component e®*. The soliton carries the Noether charge @,
and the stability is formally expressed via a scaling relation for the energy E ~ |Q|%, a < 1.

Compactons have scalar field configurations with finite radius rout. For r > 7oy, the scalar
field disappears (takes its vacuum value). his feature is guaranteed by the shape of the field
potential, which is sharp at its minimum (so-called V-shaped potential). The simplest such
potential, seen in [3], has the form V ~ |¢|. Interestingly, when the field is coupled with the
electromagnetism, the inner radius emerges, i.e., the scalar field vanishes for r < rj,, which is
called @-shells [4]. Such shell solutions exhibit the harbor,i.e., they involve the composite of
the different constituents such as the black holes or the ()-ball in the interior. It served as a
merkmal for searching for more complex multi-shell )-ball solutions.

The CPY nonlinear sigma model [5, 6] can be defined in terms of of the N + 1 dimensional

complex vector Z = (21, 2y, , ZN41), satisfying the constraint ZT - Z = 1 is formally given
as
L=X\D'ZI.D,Z2, D,Z2=0,Z2—(21.0,2)2 (1)
where A\g is a dimensional constant. To satisfy the constraint, new fields u = %ﬁl,k =
1,2,--- , N are useful, where the entry becomes
. ZN+1 (u17u27”' 7UN71) (2)
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ng ih = 1.Models with a larger number of fields can
be parametrized by the principal variable which parametrizes the coset space SU(N+1)/U(N) ~
CPY, [7]. This parametrization was used successfully in [8, 9, 10, 11]. Sec.2 provides a brief
overview of the model defined in terms of such a variable.

In this paper, we concentrate on the composite @-balls of the U(1) gauged version of the
model. In particular, a novel configuration that combines oppositely charged ball-shell solutions
is extensively studied. We call it a Q)-capacitor because its geometric shape resembles to that of a
spherical capacitor with two concentric and oppositely charged plates. The outcomes described
in this work are for flat Minkowski spacetime. The extension to the case of curved spacatime is
straightforward.

Without loss of generality, we fix the phase

2. The model of the CP" compacton
The principal variable X is useful for parameterizing the target space CPYN ~ SU(N +1)/U(N).
The technical aspects of this parameterization were discussed especially in references [7, 8|, where

the parameterization of group element g € SU(N + 1) in terms of fields u = (uy,ug, - ,un).
It can be shown that X (g) = ¢g* and it reads
N Iyxny O 2 —u® ul
X_( 0 —1>+1+uT-u jut 1 (3)

where Iy is the identity N x N matrix. The CPY model potential is defined by the following
Lagrangian:

M? _
L=-— Tr(X 19, X)% — 1?V(X), (4)
where M, u are the coupling constants and the potential

V(X) = ST - X))} (5)

realizes the compact support. The Q-ball or the Q-shell CP*+1 solutions are obtained within
the subclass of solutions defined by the ansatz

4

um(t7r79?¢) = 2€+1

f(r)nm(97¢)eiwt7 m = _67 _£+17 7£_17€' (6)

The ansatz reduces a system of Euler Lagrange equations to a single radial equation of the form

1" 2f +1 2f(1— 2 2f 1
a2l 2t DL ) A (VT =0 @

We impose the boundary conditions f(R) = 0, f/(R) = 0 based on the results for the signum-
Gordon model (which is a low amplitude limit of this model). This condition permits the energy
density to vanish at the compacton border.

f(R)=0,f(R) =0, (8)

Next we solve the equation in the compact region D : 0 < r < R. In fact, we numerically solve
the equation (7), and the typical solution of the Q-compacton in the CP? model is shown in
Fig.1.
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Figure 1. The CP? compacton solution with w = 1.0. The profile smoothly connects to the
vacuum solution at r = 8.546.

Here, it is worth to discuss how the compacton condition depends on the behavior of the
potential in vicinity of its minimum.s Without the potential, it is easy to see that the equation
has a trivial vacuum solution f(r) = 0. The shooting method allows for the solution to be
obtained. When we integrated the field equation from infinity to the center, however, we only
got a simple vacuum solution. Therefore, to get the nontrivial answer, we must incorporate any
kind of potential in the equation. For the equation with the compact support (7), we assume
the solution with the series expansion at the compacton radius

fr~R7) =) Fi(R-1)", 9)
k=0
which is substituted into the equation. Eventually we obtain the explicit form
flr~ R = 2o (R =1 (R = 1)+ O((R = ) (10)
16 24R '

The results support the existence of a nontrivial solution that satisfies the compactness
criteria (8).

3. The U(1) gauged, multi-component model

For N > 2, compact (J-balls become shells, with a spherical vacuum area that, unlike other scalar
Q-shells, does not require an electromagnetic field. Coupling many CP" models is a very lovely
idea that, when combined with the presence of V-shaped potentials, allows for the generation
of shell field configurations that surround another shell or ball field compact structure. This
enables us to find the harbor type solution. There are several approaches to broaden and thin
the shell. The first is to extend the model into multi-component fields of which each fields are
(CPéV components, a = 1,2, --- ,n. The Lagrangian of each component is labeled as follows:

M2
Lo(Xay 0 Xa; My, p1g) = — 2“ Tr(X, 10, Xa)? — 12V(Xa), a=1,2,---,n (11)

in which M,, u, are coupling constants. The model is defined as follows

Lopy =Y La+ Lpot (12)

n=1
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where the non analytical potential is now

Loo = —A@Tr(]l _ Xa)>a(ler(]I _ Xb)>6, @B 21 (13)

and where A is the coupling constant.

The model is then coupled to the electromagnetic field. Compactons’ size and radial form are
altered by their electrostatic repulsive/attractive properties. The interaction is manifested by
electric fields that significantly expands the matter fields. We assume that the model is invariant
under the local transformation

ig(a) .
ug»a) — e A(x)u§~a), Jj=12,--- N, (14)

where A(x) is an arbitrary function of spacetime coordinates and ¢\@) are constant parameters.
It is enough to introduce the covariant derivative of the form

Duu(a) = 8Hu§-a) - ieq(a)Auug.a) (15)
where A, is the connection transforming according to
1

Ay(x) = Ay(z) + EOHA(:E). (16)

The model’s action is divided into three sections: the CP™ part with minimal coupling achieved

by covariant derivatives, the action for the connection field, and the action including coupling
between scalar fields.

ECPN - /d4$\/jg(z ﬁ(a) + EEM - Z A W(u(a)a u(b))>7 (17)
a=1

a#b
where
L@ = 4M2 D@ . A@2. pry(@ _ 2y (@)Y (18)
a2 (Ll @)y — (19)
i = (L4 1@ - (@)? ’
|
Lon =~ FwF", Fu = 0,4, — 0,4, (20)
W@ u®) = Va@2ey @2 p@) - [ 21
(), ) = V)2V @), V) = (| (1)

Variation of the action (17) with respect to uf(@* fields yields equations of motion. In turn, the
variation with regard to the four potential A, leads to Maxwell’s equations

a a (a)
1 (@) (u( )T Duu( )) Dtu;
= —a D _
=D (v=opt?) 2 |+ u@f g@ Tt
N,
1 a o)) (@) (a)\ | B2 6V, A oW
+1<1+U( )TU( ))Z{<5ﬂ~l—u] ul ) M25 (a)*+ﬁm :0, (22)
=1 a ul a 5ul
1 - 4ieq(@ M2
- oMY — _ a (@t . pv,(a) _ prv, (@i ., (a)
?ga” (\/ gF ) Z:l T a@T - g@)? [u D¥u D"u U } . (23)
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In the following, we consider the two-component model, i.e., a = 1,2 for simplifying the
discussion. The ansatz (6) of the model has the following form

Umy (t, T, 67 ¢) = f( ) fl,ml(a ¢)€iW1t7

4 )
Uy (17,6, 6) = mgwmmw,@ew,

Au(t,r,0,0) = (Ai(r),0,0,0). (24)

The model has global continuous symmetry. It enables us to get the Noether charges (17).
The action is invariant with respect to continuous symmetry U (1)t @ U(1)2

ul) = uMees s =12 Ni; v - uPe@ s=1,2... Ny. (25)

The conserved Noether current have the form
Ny

PCVEY 5 H e O ) R R AR
k=1
N2

T = —amzi 3 @ A D - DT ATPU@ | p =1 N (20
=1

The ansatz (24) allows us to obtain conserved charges exclusively in terms of the radial profile
function f(r). They have the form

) _ [ g3 Sma,(1) _ 32 /O" » bif? )
/da:\/ gJ, ~ %, 11, drr s /2 (28)

ngz) is obtained by replacing ¢1 — ¢, f — g. Note that they have exactly the same form for
each value of mq, ms.
The electric charges are defined in terms of the Noether charges. Applying the ansatz (24)
to the Euler equation of the gauge field (23), we get the equation
2 b1 f? ba f?
Al + = A] =0 = 8( Myeqg) —L_— 4 Myeq®® —22__
t + r t+p(T) ) p(r) 1€q (1+f2)2 + 2€q (]-+f2)2
ba(r) = wa — eq W A(r) . (30)

(29)

We directly integrate (29) and then, we define the electric charge @ through the radial
compoment of the electrostatic field E,(r) as

—At(r)’—rl / dr'r?p(r') = E.(r) =

Therefore, one can relate the electric charges to the corresponding Noether charge as the
following. We consider the harbor-type case. For the ball-shell solution, i.e., the ball defined by
f(r) is located at 0 < r < Ry and the shell by g(r) is at Rém) <r< Réout), the electric charges
read

Q

Amr?

(31)

Q= Q1+ Q2

Q1 := 327TM12€C_[(1)/0 dr’ ’QW = (20, + 1)M12€q(1)Q1,

A 2_(2) Ry )2 ba(r)g(r')? 2 (1)

Q2 = 327 Mseq /RS“) W = (202 + 1)Mieq" " Q2. (32)
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Figure 2. The CP? — CP7 solutions with the total net charge Q = +10. The left plot shows
the profile functions and the right is gauge field.
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Figure 3. The CP3 — CP7 solutions with the total net charge Q = —10. The left plot shows
the profile functions and the right is gauge field.

From (32), we define the prescription for the sign of the electric charge. We define

Qu>0: ¢“ >0 Q,>0 or ¢ <0, Q, <0,
Qa<0: ¢>0 Q,<0 or ¢ <0, Qu>0, a=12. (33)

The negative charged @)-ball is well expressed using the definition.

Fig.2 show the CP? — CP" solutions with net charge Q1 + Q2 = 10. Though all solutions
have the same net charge, the structures are quite different.

On the other hand, Fig.3 is the CP? — CP” solutions with net charge Q1 + Q2 = —10. In
terms of the attractive force between the constituents, they are slightly become compact than
the cases of Fig.2.

4. Summary

In this paper, we discussed novel Q-ball configurations in the two coupled the CPY models
with non analytic potentials. The presence of a vacuum hole inside compact ()-shells enables
the construction of harbor-type solutions, such as compactonas surrounded by compactons.
The capacitor formulation is particularly interesting among them since the net charge of such
solutions can take on any value between a negative and a positive number. The solutions we
presented in this paper have a finite net charge. The construction of the zero net-charged
@)-capacitor solution is the most crucial problem. We shall report it in our future article.
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