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Abstract

The energy reach and anticipated data of the Large Hadron Collider (LHC) at CERN will allow
precision tests of the Standard Model and New Physics searches. In this thesis we contribute to
crucial theory predictions for these quests. We obtain the two-loop �ve-point Feynman integrals
with one massive external leg, and massless virtual particles. These play an important role for
the theory predictions of Z- and W -boson production in association with two jets in Quantum
Chromodynamics (QCD), as well as the production of a Higgs-boson in association with two jets
in the large top-mass approximation.
The main result of this thesis is the computation of the full set of planar �ve-point integrals as
well as three distinct non-planar hexa-box topologies.
The computation was done by setting up �rst-order di�erential equations for the Feynman
integrals, which are solved in a second step. We �nd the canonical basis of 'pure' Feynman
integrals, which simpli�es their dependence on the dimensional regulator and allows for e�-
cient solution of the di�erential equation. We identify the algebraic kinematic dependence of
the di�erential equation, given by the so-called symbol alphabet which determines the function's
analytic properties. Ansatz techniques, based on universal properties of Feynman integrals, are
applied to allow for the construction of the analytic di�erential equation from a small number
of numerical evaluations. This technique circumvents the main bottleneck in Feynman integral
computation originating in large linear systems in six parameters. Such systems appear in the
integration-by-parts identities relating generic Feynman integrals to the basis. We integrate the
canonical di�erential equation numerically using the generalized power-series approach and pro-
vide high-precision numerical values for all integrals in all kinematic regions. Moreover, for the
planar integrals we performed a dedicated study of the computation-time requirements and con-
�rmed the e�ciency of the numerical integration.



Zusammenfassung

Sehr hohe Schwerpunktsenergie sowie die riesige Menge an Daten, die am Groÿen Hadronenspe-
icherring am CERN bereits gesammelt sowie in Zukunft erwartet werden, ermöglichen sowohl
die Durchführung von Präzisionstests des Standardmodells der Teilchenphysik als auch die Suche
nach Neuer Physik. In dieser Arbeit liefern wir einen Beitrag zu wichtigen theoretischen Vorher-
sagen, die zur Bewältigung der genannten Herausforderungen notwendig sind. Wir berechnen die
Zwei-Schleifen Fünf-Punkt Feynman Integrale mit einem massiven externen Bein und masselosen
virtuellen Teilchen. Diese spielen eine wichtige Rolle für die theoretische Vorhersage sowohl für
die Produktion von W - und Z-Bosonen zusammen mit zwei Jets im Rahmen der Quantenchro-
modynamik (QCD) als auch für die Produktion von Higgs-Bosonen mit zwei Jets im Limes der
groÿen Top-Masse.
Das zentrale Ergebnis dieser Arbeit ist die Berechnung des vollständigen Satzes an planaren Fünf-
Punkt Integralen sowie drei unabhängiger nicht-planarer �Hexabox�-Topologien.
Wir konstruieren ein System gewöhnlicher linearer Di�erentialgleichungen, denen die Integrale
genügen müssen und lösen diese Gleichungen anschlieÿend. Für jede der berechneten Integral-
topologien fanden wir eine �kanonische� Basis, wodurch die funktionelle Abhängigkeit der Dif-
ferentialgleichung vom Regularisierungsparameter deutlich vereinfacht werden konnte. Wir bes-
timmten die kinematische Struktur der Di�erentialgleichungen, gegeben durch das sogenannte
�Symbolalphabet�. Ansatz-basierte Methoden wurden angewandt, um die analytische Form der
Di�erentialgleichung aus einer vergleichsweise kleinen Anzahl numerischer Auswertungen zu bes-
timmen. Dadurch vermieden wir, mit sehr groÿen analytischen linearen Gleichungssystemen in
sechs Variablen arbeiten zu müssen, was derzeit eine der gröÿten Hürden bei der Berechnung von
Feynman Integralen ist. Wir lösten die kanonischen Di�erentialgleichungen numerisch, indem
wir einen verallgemeinerten Potenzreihenansatz benutzten, und lieferten hoch-präzise numerische
Werte in jedem der kinematischen Phasenraumgebiete. Auÿerdem führten wir eine Untersuchung
der Berechnungsdauer für die planaren Integrale durch und bestätigten die E�zienz der nu-
merischen Integration.
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Chapter 1

Introduction

In the 20th century physics was revolutionized by two radically new theories which not only
greatly increased our understanding of Nature but also changed some of the most fundamental
concepts of reality we have had before. The Special (SR) and General (GR) theory of Relativity
demonstrated that both space and time are intrinsically combined to a dynamical space-time
unlike just being the static background of the physical processes. Furthermore, GR explained
Gravity as geometrical curvature of space-time caused by presence of the energy and momentum
of matter and �elds. For weak gravitational �elds and curvature, the theories gave us also a new
fundamental symmetry of Nature, the Lorentzian symmetry which replaced the previous concept
of Galilean symmetry. The second great achievement of the last century is Quantum Mechanics
(QM) developed in order to explain the structure of microscopic systems like molecules and atoms
and also e.g. the phenomenon of black-body radiation. Probably, the most signi�cant di�erence
of Quantum Mechanics compared to the classical physics is its non-deterministic description of
reality which states that we are not able to predict the exact outcome of a measurement but only
the possible outcomes and their probabilities to occur.
During the second half of the century SR and QM have been uni�ed into the Standard Model
(SM) of particle physics, aided by the development of high-energy experiments. While all known
elementary particles and forces, except Gravity, are incorporated into the SM it does not include
many important observable phenomena like e.g. Dark Matter, su�cient CP violation or neutrino
oscillations. Moreover, it contains 19 (including strong CP parameter θ) numerical constants
whose values have to be determined experimentally. On the other hand, all particles which had
been predicted by the SM have been experimentally observed by now. This was completed with
the discovery of the Higgs boson at the Large Hadron Collider (LHC) in 2012 [1, 2].
In the energy range of modern particle colliders the SM is a perturbative theory where predictions
are computed as formal series expansions in coupling constants of fundamental interactions. Due
to an enormous increase of the experimental precision over the last decades, achieving nowadays a
typical level of few percent, increasing accuracy of theoretical predictions is needed which requires
computing higher orders in the perturbation theory. The Feynman rules give a clear prescription
how to obtain precision predictions, from drawing diagrams, which, in a second step, imply quan-
titative mathematical expressions. Theoretical high-precision calculations include both dealing
with multiple loops (two and more) and also multiple �nal-state particles (two and more). The
evaluation of multi-loop and multi-leg Feynman amplitudes is a challenging task. A crucial ob-
stacle is the analytic complexity and the number of contributions which both grow very rapidly
with increasing number of loops and/or external legs. For instance, in terms of the traditional
Feynman diagram approach, the number of diagrams contributing to the tree level 2 → n gluon
amplitude grows approximately factorially with n [3]. On the other hand, the �nal result for any
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value of n, expressed in terms of appropriate variables, is given by a remarkably simple Parke-
Taylor formula, �rst conjectured in [4] and later rigorously proven by a recursive argument [5].
To bene�t from this hidden structure new methods were developed which explicitly make use of
gauge invariance of the amplitude and work with on-shell states only. At tree-level this approach
led to the Britto-Cachazo-Feng-Witten recursion (BCFW) [6].
At one-loop level the generalized unitarity [7] approach was developed [8�11] which makes an
e�cient computation of master integral coe�cients of one-loop amplitudes with generic number
of external particles possible by relating cuts of one-loop amplitudes to products of tree-level
amplitudes. Together with the fact that at one-loop the basis of master integrals for all processes
is �nite and known [12,13], this allowed for an e�cient automated calculation of one-loop ampli-
tudes [14, 15] which led to the �next-to-leading-order (NLO) revolution�.
However, for many important processes the amount of collected experimental data at the LHC
during Run 1 and 2 reduces the statistical uncertainty so far that next-to-next-to-leading order
(NNLO) calculations are needed to match the experimental precision (see e.g. [16, 17]). On the
other hand, for some processes NLO predictions di�er notably from experimental measurements.
A prominent example is here the cross section ofW -pair production [18] where signi�cantly better
agreement with experiment was achieved after NNLO QCD corrections had been added [19�21].
A further important application of NNLO corrections are standard background processes at the
LHC which have to be known to very high accuracy to enable complex experimental analyses.
A more theoretical reason for higher-order calculations is that they can be used to estimate the
quality of the perturbative convergence, for example, by analyzing the dependence on the renor-
malization scale.
Recently, �rst steps towards extension of the generalized unitarity approach to the two-loop level
were done [22�29]. In contrast to the one-loop case, at two loops no universal master integral
basis exists. That means a complete set of master integrals has to be computed separately for
each family of two-loop processes sharing the same kinematics. Feynman integral calculus has
developed signi�cantly in the recent years establishing new techniques for computing multi-loop
integrals. One of the most successful is the di�erential equation approach [30�34] augmented
by the notion of the canonical basis [35]. This progress in understanding both master integrals
and coe�cients enabled some great advances in computing amplitudes for two-loop �ve-point
processes with massless external and loop particles [23, 36�43,43�46]. The corresponding master
integrals were obtained by the canonical di�erential equation method [36,47�49] and the simpli�ed
di�erential equation approach [50]. Later, the massless �ve-point integrals have been expressed
in terms of special pentagon functions [51,52] which are more suited for multiple numerical eval-
uations.
In contrast to the massless case, only little was known about �ve-point amplitudes and integrals
with one o�-shell leg. Partial results were obtained in [50, 53]. Furthermore, the amplitude for
W -boson production associated with four partons was computed numerically [54].
In this thesis, we contribute to the understanding of NNLO corrections for production of a massive
boson associated with four massless particles by computing for the �rst time the complete set of
planar �ve-point master integrals [55] as well as three non-planar hexa-box integral topologies [56]
with one o�-shell leg. Two further non-planar double-pentagon topologies remain the only un-
known part of �ve-point integrals with one o�-shell leg. The planar integrals allow, for instance,
for the computation of leading color W -boson production associated with two jets. This process is
particularly important for both precise measurements of SM parameters and constraining models
beyond SM. So, for instance, pp→ Wbb̄ is an important background for Higgs boson production
associated with a vector boson. Many observables for the W + 2 jets production are, by now,
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known to 10% relative uncertainty [57, 58] and further progress is expected during Run 3 and
high-luminosity phase of the LHC. An important feature of this process is that all production
channels are already contributing at Born level with comparably small NLO QCD corrections
and small sensitivity to higher-order corrections [59�63]. An NNLO QCD calculation can help to
assess the quality of higher-order corrections [64�66].
Further important applications of the �ve-point integrals with one o�-shell leg are the Higgs- and
Z/γ∗-boson production associated with two jets. Here, some of the non-planar integral topologies
contribute even at the level of the leading-color result so that the complete set of integrals is
needed for the full calculation. The H + 2 jets production is interesting both on its own (for
example in the Hbb̄ channel) and as background for HH-production. Furthermore, �ve-point in-
tegrals with one o�-shell leg can be used for computing amplitudes in the Higgs E�ective Theory
(HEFT) where the loop-induced top-quark e�ects are approximated by an e�ective Higgs-gluon
coupling (see e.g. [67]). This allows, at least approximately, to include top-induced Higgs produc-
tion without computing master integrals with massive propagators.
Let us give a brief overview of the main steps of the integral calculation. One of the most crucial
obstacles by evaluating multi-loop multi-scale integrals is the tremendous algebraic complexity
of the integral reduction which is necessary for computing the di�erential equation. To avoid
this problem, we worked with numerical integration-by-parts (IBP) tables computed on rational
kinematic points and, consequently, with numerical di�erential equations [48]. An important in-
gredient is the construction of the canonical basis for each of the computed integral topologies.
We applied a combination of heuristic and (semi)-algorithmic approaches to solve this problem.
Construction of the pure bases was the author's main contribution to this project. In this work,
we also provide �rst partial results on the pure bases for the two remaining double-pentagon
topologies. Another important result is the symbol alphabet [68�70] for the planar and the hexa-
box integral topologies. Unlike in the traditional di�erential equation approach, the numerical
method requires the knowledge of the alphabet in advance. Finally, we integrated the canonical
di�erential equations numerically using the generalized power-series approach [71, 72] which has
already been used for computing NNLO QCD corrections for Higgs+jet production [73,74].
Our results have been used for computing a polylogarithmic [75] and, very recently, a pentagon-
function [76] representation of the planar �ve-point integrals with one o�-shell leg. The planar
integrals enabled the computation of several amplitudes [77�79] for a massive boson production
as well as a new two-loop form-factor in planar N = 4 Super-Yang-Mills (SYM) theory [80].
The thesis is organized as follows. In Chapter 2 we introduce the basic concepts and notions
needed for this work. In section 2.1 we give a brief overview of the SM while section 2.2 deals
with perturbative calculations and introduces the notion of scattering amplitudes. In section 2.3
Feynman integrals are de�ned and their basic properties are discussed while in section 2.4 we
present the di�erential equation approach together with the notion of the canonical basis and give
an overview over special functions used in Feynman integral calculations.
In Chapter 3 we discuss in detail the main steps of our calculation and present special techniques
which have been used in these steps. In section 3.1 we introduce our notation and discuss the �ve-
point phase space while section 3.2 deals with the computation of the pre-canonical di�erential
equation. The next section 3.3 contains an extended discussion of various strategies for obtaining
a pure basis. Finally, in sections 3.4 and 3.5 we present the numerical reconstruction procedure
of the analytic canonical di�erential equation and the generalized power-series approach of nu-
merical integration.
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In Chapter 4 we present our results: section 4.1 deals with the planar topologies while the
results for the non-planar hexa-box topologies are presented in section 4.2. The �rst insights on
the double-pentagon topologies are given in 4.3.
In Chapter 5 we summarize the main parts of this thesis and give an outlook on possible extensions
of the work.
Finally, in the appendices A, B and C we provide more detailed discussions on a selection of
special topics like momentum-twistor variables or functional reconstruction.
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Chapter 2

Theoretical Preliminaries

In the �rst chapter of the thesis we are going to give a brief introduction to the state-of-the-art
perturbative calculations in high-energy physics.
Currently, quantum-�eld theories (QFTs) are our best framework for understanding physical
processes at short distances with negligible e�ects of Gravity, such as e.g. scattering processes at
modern colliders. All known particles and the three fundamental interactions which are relevant at
the considered energy scale: the strong and the weak nuclear forces as well as the electromagnetic
force are described as either matter or gauge �elds. Modern theories of strong and electromagnetic
interactions are called quantum chromodynamics (QCD) and quantum electrodynamics (QED).
The weak interaction is best described together with the electromagnetic force in terms of a uni�ed
electroweak (EW) theory [81�85]. The mass spectrum of the electroweak theory is explained by
the Higgs mechanism [86�88] which also provides an explanation for the matter particles' masses.
Together, QCD and EW theory build the so-called Standard Model (SM) of Particle Physics. The
gauge group of the SM is

SU(3)C × SU(2)F × U(1)Y , (2.1)

where the �rst factor encodes the color gauge group of the QCD with eight color-charged gluons
and the second factor SU(2)F ×U(1)Y contains four vector bosons which are related to the three
experimentally observable massive vector bosonsW±, Z of the weak force and the massless photon
of the electromagnetic interaction via the Higgs mechanism. This part of the SM is usually called
the Weinberg-Glashow-Salam Theory. It is an open question whether the SM can be understood
as a part of a bigger uni�ed theory with a gauge group which would include the gauge group
of the SM as a subgoup. Candidates for such a theory are usually referred to as Great Uni�ed
Theories (GUTs) [89�91]
Measurable quantities such as cross sections, decay widths or anomalous magnetic moments can
be computed perturbatively within the QFT as formal power-series expansions in the coupling
constants of the corresponding forces which mediate the underlying interaction. Some of these
observables are among both the most accurately predicted and precisely measured physical quan-
tities [92�96].
This chapter is structured as follows: In the sections 2.1 and 2.2 we give a brief introduction to
both the general structure of QFT and its calculational framework which relates abstract objects
of the theory to measurable observables via scattering amplitudes. We will �nd that quantum
corrections require the knowledge of complicated multi-dimensional integrals taken over momen-
tum variables. These integrals are called Feynman or loop integrals. Since Feynman integrals are
the central objects of this work we will de�ne them and discuss their basic properties in 2.3.
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2.1 Structure of QFT

2.1.1 Standard-Model Lagrangian

The basic object of a QFT which encodes both the particle spectrum and the interaction structure
of the theory is the Lagrangian density (most simply called Lagrangian) L. The Lagrangian is
a function of underlying �elds and their derivatives and has to be a Lorentz scalar in order to
provide a valid relativistic theory. The Lagrangian of the SM is given by

LSM = LYM + LMatter + LHiggs + LY ukawa. (2.2)

Let us consider the four constituents of the SM Lagrangian in more detail:
The Yang-Mills Lagrangian LYM contains the gauge part

LYM = −1

4
Ga

µνG
a,µν − 1

4
W i

µνW
i,µν − 1

4
BµνB

µν , (2.3)

where Ga,µν ,W i,µν and Bµν are the �eld-strength tensors of the strong, the weak and the elec-
tromagnetic interactions. They can be written in terms of spin-1 massless gauge �elds Ga,µ,W i,µ

and Bµ as follows

Ga,µν = ∂µGa,ν − ∂νGa,µ − gSf
abcGb,µGc,ν , a, b, c = 1, . . . , 8 ,

W i,µν = ∂µW i,ν − ∂νW i,µ − gϵijkW j,µW k,ν , i, j, k = 1, 2, 3 ,

Bµν = ∂µBν − ∂νBµ,

(2.4)

with gS and g being the coupling constants, and fabc and ϵijk the structure constants of SU(3)C
and SU(2)F gauge groups. While the Ga,µ are associated to the physical gluon �elds, the three
SU(2)F -and the U(1)Y -gauge �elds are related to the physical W±, Z bosons and the physical
photon. The relation between them will be shown later in this section. We denote the here
absent U(1)Y coupling constant with g′. The structure constants f and ϵ are a manifestation of
the non-abelian nature of the both gauge groups and encode the self-interaction between gluons
and vector bosons of the weak force, respectively.
The term LMatter contains all matter particles of the SM which are given by spin-1

2
fermions

grouped into 6 types of color-charged quarks and 6 types of colorless leptons. All electrically
charged leptons are described by Dirac �elds which transform as

(
1
2
, 0
)
⊕
(
0, 1

2

)
representations

of the Lorentz group, minimally coupled to the gauge �elds. Note that for neutrinos it is still
unknown whether they are described by Dirac or Majorana states. In the latter case, neutrinos
would be their own antiparticles. There is an additional subtelty due to the chiral structure of
the weak interaction which distinguishes between the

(
1
2
, 0
)
and the

(
0, 1

2

)
representations. While

the left-handed
(
1
2
, 0
)
�elds transform as doublets under the SU(2)F the right-handed

(
0, 1

2

)
�elds

correspond to singlets. In physical terms this means that there are two types of fermions which
behave identically under the strong and the electromagnetic forces but only the �rst type is
a�ected by the weak force. Both quarks and leptons appear in three so-called generations which
di�er only by the particles' masses but have identical charges with respect to the gauge groups.
The mass range of the matter particles reaches from 511 keV for the electron up to ca. 173GeV
for the top-quark.1. The explicit form of the matter part Lagrangian is

LMatter = iΨ̄r
L,l
/DΨr

L,l+ iψ̄
r
R,l
/Dψr

R,l+ iΨ̄
r
L,q

/DΨr
L,q+ iψ̄

r
R,qd

/Dψr
R,qd

+ ψ̄r
R,qu

/Dψr
R,qu , r = 1, 2, 3, (2.5)

1Neutrinos are considered as exactly massless in the SM which is a very good approximation for all high-energy
applications. In fact, neutrino oscillation experiments [97�101] show that at least two neutrino generations have
very small but non-vanishing masses [102, 103]. This can be, in principle, incorporated into the SM via e.g. the
seesaw mechanism [104].
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with ψ̄ ≡ ψ†γ0. Here Ψr
L,l =

(
erL
νrL

)
and Ψr

L,q =
(
ur
L

drL

)
denote the left-handed lepton and quark

doublets while ψr
R,l = erR, ψ

r
R,qu

= urR and ψr
R,qd

= drR are the right-handed charged leptons and
the right-handed up- and down-type quarks which are singlets under the weak force, respectively.
The index r labels the three fermion generations. Right-handed neutrinos are not included in
the SM. If incorporated, they would be singlets under all three gauge groups and so completely
sterile with respect to all SM interactions. The gauge-matter interaction in the SM is encoded in
the LMatter through the covariant derivative /D ≡ Dµγ

µ, with

Dµ = ∂µ −
igS
2
λaGa

µ −
ig

2
τ iW i

µ −
ig′

2
Y Bµ. (2.6)

Here λa are the Gell-Mann matrices and τ i the Pauli-matrices which are the generators of the
su(3) and su(2) algebras, respectively. Y is called the hypercharge which is given in terms of the
weak isospin by

Q = T3 +
1

2
Y, (2.7)

where Q is the electric charge in units of the elementary charge e and T3 is the third component
of the weak isospin which takes the values ±1

2
for left-handed and 0 for right-handed fermions.

The strong interaction part of the covariant derivative does not contribute in the leptonic terms
in LMatter.
Beyond the matter and gauge �elds, the SM contains a further scalar �eld, the so-called Higgs-
�eld, through which both the matter fermions (excluding the neutrinos) and the three massive
gauge bosons acquire mass through the mechanism of spontaneous symmetry breaking. The Higgs-
�eld contributes to the SM Lagrangian with a kinetic term and a quartic potential given by

LHiggs = (DµΦ)
†(DµΦ)− V (Φ), (2.8)

with

V (Φ) = −µ2
(
Φ†Φ

)
+

1

2
λ
(
Φ†Φ

)2
, (2.9)

where µ2 > 0, λ > 0. The complex Higgs-�eld Φ is a SU(2)F -doublet and can be brought into
the following form

Φ =
1√
2

(
0

v + h

)
(2.10)

by a SU(2)F gauge transformation. Here v = µ√
λ
is the vacuum expectation value of the Higgs-

�eld and h is the real scalar Higgs-�eld which describes �uctuations around the minimum of the
Higgs-potential. The physical Higgs-particle is a manifestation of the h-�eld. By inserting the
Higgs-�eld (2.10) into the kinetic part of (2.8), expanding the result and performing a suitable
rotation in the space of the su(2)F × u(1)Y generators, we obtain the mass eigenbasis of the
physical W± and Z bosons. The obtained gauge-boson masses can be expressed in terms of the
Higgs-�eld vacuum expectation value v and the coupling constants g and g′ by

mW =
vg

2
, mZ =

v
√
g2 + g′2

2
. (2.11)

The massive gauge-boson �elds are given by

W±
µ =

1√
2

(
W 1

µ ∓W 2
µ

)
, Zµ =

1√
g2 + g′2

(
gW 3

µ − g′Bµ

)
. (2.12)
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The fourth �eld which is massless and orthogonal to Zµ represents the physical photon �eld Aµ

with

Aµ =
1√

g2 + g′2

(
g′W 3

µ + gBµ

)
. (2.13)

Finally, the SM Lagrangian contains the interaction terms between the Higgs-�eld and the matter
�elds. The Yukawa part [85] of the Lagrangian

LY ukawa = −λrsl Ψ̄r
L,l · Φψs

R,l − λrsqdΨ̄
r
L,q · Φψs

R,qd
− λrsquϵ

abΨ̄r,a
L,qΦ

bψs
R,qu + h.c. , r, s = 1, 2, 3, (2.14)

where λf with f = l, qu, qd are generic complex-valued matrices. The mass terms can be di-
agonalized by inserting the gauge-�xed form (2.10) into (2.14) and rotating the fermion �elds
via

urL → U rs
u u

s
L, drL → U rs

d d
s
L,

urR → W rs
u u

s
R, drR → W rs

d d
s
R,

erL → U rs
l e

s
L, νrL → U rs

l ν
s
L, erR → W rs

l e
s
R,

(2.15)

such that λfλ
†
f = UfD

2
fU

†
f and λ†fλf = WfD

2
fW

†
f for diagonal matrices D2

f with positive eigenva-
lues and unitary matrices Uf ,Wf . The new fermion �elds diagonalize the fermion-Higgs coupling
such that the Yukawa part becomes

LY ukawa = −
[
mr

eē
r
Le

r
R +mr

uū
r
Lu

r
R +mr

dd̄
r
Ld

r
R

](
1 +

h

v

)
, r = 1, 2, 3, (2.16)

with mr
f = v√

2
Drr

f . It can be shown that the transformation (2.15) does not a�ect any couplings
containing either leptons or the right-handed quarks but it changes the coupling of the left-handed
quarks to theW -boson such that mixing of the quark generations by the weak interaction becomes
possible. This mixing is provided by the o�-diagonal terms of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix V [105,106] given by

V = U †
uUd. (2.17)

2.2 Scattering amplitudes

2.2.1 The S-matrix and cross section

In the section 2.1.1, the SM Lagrangian was introduced which is the basic abstract object of the
modern theory of Particle Physics. Here, we are going to sketch the method which allows to
extract information about experimentally measurable observables from the Lagrangian. As will
be seen, the notion of scattering amplitudes will play a central role in this considerations.
The central observable in high-energy Particle Physics is the cross section σ. For a particle
collider the cross section of a particular process is de�ned as the number of times N this process
occurs divided by the collider's integrated luminosity

∫
dt L

σ =
N∫
dt L

. (2.18)

The luminosity L gives the total number of collisions per beam area and time unit. So the cross
section has the physical dimension of an area. The theoretical task is to relate the physically
measurable quantity σ to the microscopic description of the scattering process. The latter is
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encoded in the S-matrix which quanti�es the quantum mechanical overlap between the initial
and the �nal states. In this picture, particles in the initial and �nal states are considered to be
in the far past (t→ −∞), respectively the far future (t→ +∞) relative to the time range of the
interaction (t ∼ 0) such that they can be treated as free states. The free theory can be obtained
from the SM by setting all couplings to zero and solved exactly. So the initial and �nal states
are given by exact solutions of the free theory. In the following, we consider a generic 2 → n
scattering process which is the most suitable setup for physics at particle colliders. Here, the
S-matrix is de�ned as

out⟨p1p2 . . .pn|pApB⟩in ≡ ⟨p1p2 . . .pn|S|pApB⟩. (2.19)

The states at the right-hand-side of eq.(2.19) are de�ned at a common reference time. So, in-
formally, the scattering matrix S provides the time-evolution from the initial state to the �nal
state. Here, p1, . . . ,pn are the 3-momenta of the �nal-state particles while pA,pB denote the
3-momenta of the initial-state particles. The principle of probability conservation requires the
unitarity of the S-matrix, e.g. SS† = S†S = 1. To isolate the non-trivial part of the scattering
process we split up the unity operator from the S-matrix such that

S = 1+ iT, (2.20)

where the transition matrix T contains now the actual interaction part of the scattering. The
scattering amplitude M of the process is de�ned by

⟨p1p2 . . .pn|iT |pApB⟩ = (2π)4δ(4)

(
pA + pB −

n∑
i=1

pi

)
iM(pA, pB → p1, . . . , pn), (2.21)

where we factored out the overall 4-momentum conservation.
From non-relativistic quantum mechanics we know that the cross section is proportional to the
absolute square of the scattering amplitude. Simultaneously, it is proportional to the in�nitesimal
�nal-state phase-space element. The exact master formula for a 2 → n scattering process in the
relativistic case is (see e.g. [107])

dσ =
1

2EA2EB|vA − vB|

(
n∏

i=1

d3pi
(2π)3

1

2Ei

)
|M(pA, pB → p1, . . . , pn)|2 (2π)4δ(4)

(
pA + pB −

n∑
i=1

pi

)
.

(2.22)
Here |vA − vB| indicates the relative velocity of the colliding beams in the laboratory frame in
units of the speed of light. To obtain the full cross section we have to integrate over the complete
n-particle �nal-state phase space. For some special cases of low multiplicity n this integral can
be performed analytically for a generic amplitude but, in general, only numerical integration is
possible.

2.2.2 Amplitudes and Feynman diagrams

Eq. (2.22) allows to relate the observable cross section to the quantum-mechanical amplitude
which contains the microscopic information about the scattering process. So our task now is to
compute the scattering amplitude. In general, it is not feasible to calculate exact amplitudes.
Instead, we proceed perturbatively and expand the amplitude and, subsequently, the cross section
into a series in powers of the relevant coupling constants. In order for such an expansion to make
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sense, all expansion parameters have to be signi�cantly smaller than 12.
Since all three coupling constants of the SM are running, e.g. they depend on the energy scale
at which they are measured, we need to ensure that the couplings at the experiment's energy
scale are small such that the perturbation theory is still valid. At typical energy scales of particle
colliders (at least for su�ciently hard interactions) all (appropriately normalized) couplings have
values clearly lower than 1. This energy range is called the perturbative regime. Note that the
strong coupling grows at low energies so that the theory becomes non-perturbative at energies
around ΛQCD ∼ 200MeV. At these energies, strongly-coupled bound states such as hadrons and
mesons start to occur. At hadron colliders like the LHC, the non-perturbative physics has to be
taken into account in two di�erent ways. First, the initial-state particles at the LHC are protons
which are strongly-coupled bound states whose internal structure is governed by non-perturbative
e�ects parametrized by the parton distribution functions (PDF's). Second, the quarks and gluons
in the �nal state do not remain isolated particles till they are measured but form jets consisting
of collimated bundles of hadrons and mesons which then can be measured inside the detectors.
This process is called hadronization. In the following, we will completely focus on the hard part
of the scattering process which can be described in terms of the perturbative QFT.
In the 40s and 50s [109�116] an algorithmic procedure for computing scattering amplitudes order-
by-order in the expansion parameter was established. Feynman found a way to express the
scattering amplitude at each order in the perturbative expansion as a sum of objects which can
be written down in a purely combinatorial way for any physical process. Furthermore, these
objects can be systematically represented by special diagrams which are called Feynman graphs.

Figure 2.1: LO contribution to e+e− → µ+µ−.

2This is of course necessary but not su�cient to ensure convergence of the perturbative series. Indeed, it was
argued [108] that the coe�cients of the series grow too fast such that the convergence radius of the perturbative
series is 0! Nevertheless, for the �rst O( 1g ) orders, where g < 1 is the corresponding coupling constant, the series
is expected to behave like it would converge.
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Figure 2.2: Some of the diagrams contributing at NLO to e+e− → µ+µ−.

Figures 2.1 and 2.2 show examples for Feynman diagrams contributing to e+e− → µ+µ− at
the �rst two orders in the �ne-structure constant α. Feynman diagrams are drawn according to
Feynman rules which can be derived from the Lagrangian of the considered theory and contain
information about the �elds and the propagators of the free theory as well as couplings between
�elds. Feynman rules give an exact mathematical expression for each Feynman diagram. Ac-
cording to these rules, a power of the coupling constant is assigned to each vertex in the diagram
such that the number of vertices determines the order of the perturbative expansion this dia-
gram contributes to. Diagrams with the lowest possible number of vertices sum up to the leading
order (LO) contribution. Adding extra vertices leads to next-to-leading order (NLO), next-next-
to-leading order (NNLO) contributions and so on as shown in 2.1 and 2.2. The algorithmic
procedure of computing scattering amplitudes can be summarized as follows: Draw all Feynman
diagrams which contribute to the process up to a �xed perturbative order and replace external
lines, internal lines and vertices by the corresponding mathematical expressions accor-ding to
the Feynman rules. Then, we need to integrate over all momenta �owing through internal lines
of every diagram. Here, we have to distinguish between diagrams which do not contain closed
internal lines (see �g. 2.1) and ones which do (see �g. 2.2). The �rst type of Feynman graphs is
called tree-level -diagrams or simply trees while the second type is called loop-diagrams. Since we
have to impose momentum conservation at every vertex due to the Feynman rules, all internal
momenta of tree-level diagrams are �xed. For every loop, however, we have an undetermined
internal momentum which has to be integrated over. Second, each loop adds two vertices, and
so two powers of the coupling constant to the diagram which means that loop diagrams always
contribute at higher order compared to the corresponding tree-level diagrams. Symbolically, a
scattering amplitude can be written as follows

iM =
∑
k

∑
A

DA
k = i

∞∑
k=0

M(k), (2.23)

where DA
k denote Feynman diagrams at order k.

Let us now analyze which contributions need to be computed at the cross-section level in order
to obtain a �xed-order phenomenological prediction. Apart from loop corrections which were
discussed previously there is a second class of corrections due to production of additional gluons
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Figure 2.3: Two examples of real NLO corrections to e+e− → µ+µ−. External photons are either
soft or collinear.

or photons which contribute at the same order. These corrections are referred to as real radiation
while the loop-type corrections are called virtual since loop particles only exist as intermediate
states. Real corrections need to be added due to �nite energy sensitivity and spatial resolution of
any physical detector. Therefore, there is no possibility to distinguish between a 2 → n process
and a 2 → n + 1 process with an additional arbitrary soft or collinear massless gauge boson
radiated from one of the hard particles. Figure 2.3 shows two diagrams contributing to NLO real
corrections to e+e− → µ+µ−.
Let us now write down all terms which contribute to the cross-section at LO, NLO and NNLO
level for an arbitrary 2 → n process.

σLO =

∫
dΦn|M(0)

n |2,

σNLO =

∫
dΦn

(
M(0)†

n M(1)
n +M(0)

n M(1)†

n

)
+

∫
dΦn+1|M(0)

n+1|2 + σLO,

σNNLO =

∫
dΦn

(
M(0)†

n M(2)
n +M(0)

n M(2)†

n + |M(1)
n |2

)
+

∫
dΦn+1

(
M(0)†

n+1M
(1)
n+1 +M(0)

n+1M
(1)†

n+1

)
+

∫
dΦn+2|M(0)

n+2|2 + σNLO.

(2.24)

Since in this thesis we are interested in NNLO corrections for a selection of �ve-particle processes
we have to compute three types of contributions:

� Double-virtual : Five-point diagrams with one and two loops,

� Double-real : Seven-point tree-level diagrams with two additional, particles

� Mixed real-virtual : Six-point diagrams with one loop and one additional particle.

Some of the diagrams contribute in multiple places, e.g. trees appear in interference terms in
all contributions, similarly one-loop diagrams contribute to both double-virtual and mixed real-
virtual corrections. Figure 2.4 shows some generic diagrams contributing to each of three classes.
All three types of corrections are in general infrared (IR) divergent but the full cross-section
(including PDF's) can be shown to be always infrared �nite (Kinoshita-Lee-Nauenberg-theorem
(KLN) [117, 118]). In the following, we will focus on the double-virtual part since the other two
types of corrections can be, by now, computed by automated methods. Note, however, that the
numeric integration over the soft and collinear phase-space is, in practice, very challenging, in
particular for �nal states with many massless particles.
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Figure 2.4: Generic examples for double-virtual, mixed real-virtual and double-real corrections.
Red lines denote soft particles.

`

p p

`− p

Figure 2.5: One-loop bubble integral with massless propagators.

Since the momenta of virtual particles in loops are not constrained by momentum conserva-
tion, they can take arbitrary values and we have to integrate over all loop momenta in order to
obtain the correct result. This type of integrals which remain after applying momentum con-
servation constraints is called loop or Feynman integrals. In terms of Feynman diagrams, the
double-virtual part of the amplitude can be seen as a sum of many two-loop integrals3 whose in-
tegrands can be written down by Feynman rules. However, it can be shown (see 2.3.3 for details)
that a very large set of linear relations among di�erent Feynman integrals exists such that only
a small subset of Feynman integrals (typically few dozens up to few hunderts) is independent
and has to be computed in the �rst place. In terms of these so-called master integrals Ii, the
double-virtual amplitude can be written as

M(2)
double-virtual =

∑
i

αiIi, (2.25)

where αi are functions of the kinematics.
The modern unitarity-based techniques [8,11,25,119�123] which were upgraded to the two-loop
level in the last decade [22�24] allow to compute the coe�cients αi without generating Feynman
diagrams by comparing the cuts (see section 2.3.4) of the amplitude which are given by products
of tree-level diagrams to the cuts of the master integrands and surface terms [22]. This reduces
the problem of computing the amplitude to a linear algebra computation if the master integrals
are known. A very important extension of this approach is the numerical unitary method which
combines the unitarity approach with e�cient numerical methods followed by a functional recon-
struction of the �nal result [39, 124,125].
Before we continue with a more formal discussion of Feynman integrals, let us brie�y review a
further very important ingredient of higher-order calculations, namely the concept of renormaliza-
tion. It is a well-known fact that many of the Feynman integrals are divergent in four space-time
dimensions. As a simple example, consider the so-called bubble integral 2.5 with massless internal
particles which contributes e.g. to the gluon propagator-type corrections. The analytic expression
is given by

Ibubble ∼
∫

d4ℓ
1

ℓ2(ℓ+ p)2
, (2.26)

3Products of two one-loop integrals can be considered as two-loop integrals as well.
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with the loop momentum ℓ and the external momentum p. In the hard region of the loop-
momentum space (ℓ2 → ∞), the leading part of the integral becomes

Ihardbubble ∼
∫ ∞

0

dR

R
, (2.27)

where we integrated out the angular variables. This integral is logarithmically divergent. This
type of divergencies is called UV-divergencies. To deal with this class of in�nitities, a regulariza-
tion procedure is used in order to formulate the divergent behaviour of the Feynman integrals in
an exact analytic way. Nowadays, the standard regularization method is the dimensional regu-
larization [126]. The idea is to use the space-time dimension as a dynamical parameter and work
with integrals which are de�ned in an arbitrary space-time dimension D instead of working in a
space with a �xed number of space-time dimensions. Typically, we parametrize D as D = 4− 2ϵ
for some arbitrary ϵ ∈ C and assume ϵ to be small so that we can expand the integrals around
ϵ = 0. In this framework, both UV and IR divergencies manifest themselves as poles in ϵ. In 2.3.1
we will provide a formal de�nition of dimensionally-regularized Feynman integrals. Here we just
want to mention that many of the modern techniques which deal with Feynman integrals rely on
dimensional regularization and are not applicable in other regularization schemes.
After we regularized all Feynman integrals, the basic ingredients of the �eld theory such as �elds,
masses and couplings are rede�ned in such a way that they absorb all UV-type in�nities. The
renormalized masses and couplings are then matched to the experimentally measured values.
Though this cannot be done for every possible QFT, the renormalizability of the SM is proven to
all orders in perturbation theory [127].

2.3 Feynman integrals

At the end of section 2.2.2, we saw that higher-order corrections in the perturbative QFT require
computation of integrals over the loop-momentum space. We have also shown that these integrals
are often divergent in D = 4 space-time dimensions and a regularization procedure is needed in
order to deal with these divergencies. In this thesis, we work in the framework of the dimensional
regularization and set D = 4− 2ϵ.
Although the focus of the present work clearly lies on practical computation of some particular
two-loop integral families, it needs to be said that Feynman integrals are highly interesting objects
by themselves and have been studied from a purely theoretical point of view for many years. A
short overview can be found in [128�134]. The underlying mathematical structure reaches from
the theory of special functions over multi-dimensional complex analysis up to modern methods of
algebraic and di�erential geometry. Since a detailed discussion of these very di�erent aspects is
far beyond the scope of this work we will mainly concentrate on computational aspects and only
brie�y touch on mathematical questions if they are of direct relevance for our goals.
In the present section, we will give a general de�nition of dimensionally-regularized multi-loop
Feynman integrals, introduce both parameter and Baikov representations as well as the notion of
the master integrals which we declare via integration-by-parts relations. After that, we de�ne the
cut Feynman integrals and discuss the di�erential equation method which is, nowadays, the most
powerfull tool for computing master integrals. In this section we keep our discussion general.
A detailed treatment of the massive �ve-point integrals and more special methods will follow in
Chapter 3.
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Figure 2.6: Generic two-loop planar integral. All external momenta are ingoing.

2.3.1 Formal de�nition of Feynman integrals

We begin with the de�nition of Feynman integrals in dimensional regularization. A L-loop integral
with E + 1 external legs is de�ned as

I
[
D⃗, s⃗, ν⃗, L, E,N

]
:= eLγEϵ

∫ L∏
k=1

(
dDℓk
iπD/2

)
N (ℓ)∏n
j=1D

νj
j

. (2.28)

Let us explain our notation. The internal or loop momenta are denoted with ℓk, k = 1, . . . , L.
They are elements of a D-dimensional vector space and can be parametrized as

ℓk = ℓ̂k + ℓ̃k, (2.29)

where ℓ̂k are the four-dimensional and ℓ̃k the extra-dimensional parts of the loop momenta. The
denominator factorsDj are called inverse propagators if their powers νj are positive and irreducible
scalar products (ISP's) if their powers are negative. The inverse propagators are derived from
the Feynman rules of the underlying theory and de�ne the kinematic dependence of a Feynman
diagram. In general, they are given by

Dj = q2j −m2
j + iε, j = 1, . . . n, (2.30)

with

qj =
L∑

k=1

ajkℓk +
E∑

r=1

bjrpr, (2.31)

where ajk, bjr ∈ {+1, 0,−1}, m2
j are the internal masses and iε arises from the Feynman's iε

prescription which encodes the causality condition. The explicit form of the propagators depends
on the way in which loop momenta are associated to the Feynman graph. At one loop one usually
works with a cyclic association such that qi = ℓ +

∑i−1
j=0 pj with p0 := 0. At multi-loop level no

canonical way to de�ne propagators exists. In diagram 2.6 we show a generic planar two-loop
graph where ℓ1 �ows in the left part of the diagram (left rung) and ℓ2 in the right part (right
rung). Only the central edge (central rung) contains both loop momenta. Since in this work
we are interested only in processes with massless internal particles we can set m2

j = 0 and we
will omit the Feynman's iε-prescription for the sake of simplicity for most of the time. A set
of Feynman integrals which share the same set of propagators is called an integral topology. A
particular member of a given topology is speci�ed by the list of indices ν⃗ ∈ Zn.
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A subset of integrals is called a subtopology if every integral of this subset also appears in the
bigger topology. At the level of indices, that means that an index of a sub-integral can only be
positive if the corresponding index of the parent topology is positive. Subtopologies correspond
to sub-graphs and setting an index to zero is equivalent to pinching an edge of the corresponding
diagram. Let us discuss the role of the ISP's. At one-loop level every scalar product of a loop
and an external momentum can be written as linear combination of the inverse propagators via

ℓ · pi =
1

2

[
Di+1 −Di − 2pi ·

i−1∑
j=0

pj − p2i

]
, i = 1, . . . , E. (2.32)

However, for L ≥ 2 inverse propagators might not be enough to span the vector space of loop-
dependent scalar products. So ISP's need to be added. In the present work, ISP's are chosen
to have the form of eq. (2.30) and can be treated just like inverse propagators. The dimension
n = n(L,E) of the ISP vector space is given by

n =
1

2
L(L+ 1) + LE. (2.33)

For L = 1 eq. (2.33) indeed produces n = E + 1 as already shown in (2.32) .
The vector s⃗ contains all external kinematic quantities I depends on. Since Feynman integrals
are Lorentz-invariant objects they can only be functions of scalar products of external momenta
p1, . . . , pE+1 which respect the total momentum conservation, expessed in the form

∑E+1
i=1 pi = 0.

External momenta are considered as strictly four-dimensional with pi · ℓ̃j := 0. The number
Nkin of independent kinematic quantities is given by the total number of momentum components
4(E+1) minus the number of on-shell constraints and the dimension of the space-time symmetry
group which is here the Poincare group of the four-dimensional Minkowski space. Let E ′ be the
number of massless external legs so

Nkin = 4(E + 1)− E ′ − 10, (2.34)

where 10 is the dimension of the Poincare group. External kinematics is usually parametrized in
form of the momentum squares of the external legs p2i and the so-called Mandelstam invariants
sij := (pi + pj)

2 with i ̸= j. In dimensional regularization all scaleless integrals (that means
Nkin ≤ 0) vanish [12]. If Nkin = 1, the integral is a homogenous function of a single kinematic
scale s and followingly takes the form

I = sa(ϵ)b(ϵ), (2.35)

where a is given by the half of the integral's mass dimension and b is an arbitrary constant.
Before we continue with the discussion of integrals, it has to be mentioned that for most of the
time we are not interested in the full dependence of the Feynman integral on the dimensional
regulator ϵ but only in its behaviour near four dimensions ϵ → 0. So, often, we will replace the
full integral by its Laurent expansion

I =
∞∑

n=−2L

I(n)ϵn (2.36)

and drop the O(ϵ) part. The degree of the highest pole can be derived from the analytic structure
of generic L-loop Feynman amplitude [135]. Finally, γE in the exponential prefactor of eq. (2.28)
denotes the Euler-Mascheroni constant and can be de�ned as γE = −Γ′(1). The normalisation
ensures that no factors of γE appear in the ϵ-expansion of I.
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2.3.2 Parameter and Baikov representations

For some applications the momentum-space representation of the Feynman integral eq. (2.28)
is not the most convenient one. In the following, we present two alternatives: the Feynman
parameter and the Baikov representation.
The Feynman parameter form is based on the observation [107] that the product of two inverse
factors can be replaced by one inverse factor at the cost of introducing an integration over an
auxiliary variable. Concretely,

1

A1A2

=

∫ 1

0

dx
1

[xA1 + (1− x)A2]
2 =

∫ 1

0

dx

∫ 1

0

dy
δ(1− x− y)

[xA1 + yA2]
2 . (2.37)

The second integration is introduced in order to make the integrand symmetric with respect to
A1 and A2. By induction, eq. (2.37) can be generalized to an arbitrary number of inverse factors
with arbitrary powers

1∏n
i=1A

νi
i

=
Γ(ν)∏n
i=1 Γ(νi)

∫ 1

0

∏n
i=1 dxi x

νi−1
i δ

(
1−

∑n
j=1 xj

)
[∑n

j=1 xjAj

]ν , (2.38)

where ν :=
∑n

i=1 νi. Obviously, eq. (2.38) can be used to put all propagators of a Feynman integral
to a single �propagator�-like factor whose power is given by the sum of all indices. By completing
the squares and linear shifts of the right-most loop momentum ℓL, the new denominator can be
brought into the form

n∑
i=1

xiDi = ℓ2L +∆(ℓ1, . . . , ℓL−1, p1, . . . , pE). (2.39)

The integral with respect to ℓL has now the form of a simple tadpole integral with no angular
dependence on ℓL and can be evaluated in terms of Γ-functions to∫

dDℓL
iπD/2

1

[ℓ2L +∆]
ν = (−1)ν

Γ(ν + ϵ− 2)

Γ(ν)

1

(−∆)ν+ϵ−2
. (2.40)

Now we can proceed by induction and perform all loop-momenta integrations. We trade the
momentum-space integration for a n-dimensional parameter integral where n is the number of
propagators. It has the form [136]

I[D⃗, ν⃗] = eLγEϵΓ(ν − LD/2)∏n
i=1 Γ(νi)

∫ 1

0

n∏
i=1

(
dxi x

νi−1
i

)
δ

(
1−

n∑
i=1

xi

)
Uν−(L+1)D/2

F ν−LD/2
. (2.41)

U and F are polynomials in the Feynman parameters which encode the kinematic structure of the
integral (see e.g. [137] for a review). In the literature, they are usually called the �rst and second
Symanzik polynomials. Both polynomials can be directly constructed from the denominator of
eq.(2.38) which can be written as

n∑
i=1

xiDi =
n∑

i=1

xiq
2
i =

L∑
r=1

L∑
s=1

Mrsℓr · ℓs − 2
L∑

r=1

ℓr ·Qr − J, (2.42)

with a L×L-dimensional matrix M , a L-dimensional set of four-vectors Q and a scalar quantity
J depending on Feynman parameters and external kinematics. The Symanzik polynomials are
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given by

U = detM,

F = detM
(
J +Q⊤M−1Q

)
.

(2.43)

Let us emphasize some properties of the Symanzik polynomials:

� U and F are homogenous polynomials in Feynman parameters of degree L and L + 1,
respectively.

� U is linear in each variable while F is also linear in case of massless propagators.

� Each monomial of U has coe�cient +1. So, at one loop U =
∑n

i=1 xi.

Alternatively, U and F can be computed directly from underlying Feynman graph using graph-
theoretical methods [137]. In this language,

U =
∑
T∈τ1

∏
ei /∈T

xi,

F =
∑

(T1,T2)∈τ2

∏
ei /∈(T1,T2)

xi(−s(T1,T2))
(2.44)

in case of massless internal propagators. Here τk denote the spanning k-forests of the Feynman
graph G and (T1, . . . , Tk) ∈ τk are connected components. Finally, {e1, . . . , en} are the edges of G.
The kinematic quantity s(T1,T2) denotes the square of the sum of the external momenta attached to
the connected components T1 and T2 which are equal by momentum conservation. The kinematic
region where all s(T1,T2) < 0 and so F > 0 is called Euclidean. According to eq. (2.41), a Feynman
integral is manifestly real inside the Euclidean region. If G is a planar graph then all s(T1,T2) are
given by cyclic Mandelstam invariants si(i+1) = (pi + pi+1)

2 and momentum squares p2i where the
index addition is understood to be modulo n. In this case, the Euclidean region is simply the
region of the phase space with all cyclic Mandelstam invariants and external momentum squares
being negative.
We close the discussion of the Feynman parameter representation with the Cheng-Wu theorem
[138] which states that the δ-function in eq. (2.41) can always be replaced by δ(1−H(x⃗)) where
H is an arbitrary hyperplane H(x⃗) =

∑n
i=1Hixi with Hi ≥ 0 [133].

Another very useful integral representation which will be used very often throughout this thesis is
the Baikov coordinate representation [139�142]. It is based on the idea of using inverse propagators
and ISP's as integration variables. This approach makes use of the speci�c structure of the
Feynman integrals and also makes the number of integral variables manifest which is given in eq.
(2.33). We perform the variable change

(ℓµ1 , . . . , ℓ
µ
L) → (ρ1, . . . , ρn) , (2.45)

with ρi = Di. After this variable change, the generic Feynman integral becomes [143]

I
[
D⃗, ν⃗,N ,

]
=CL

n (G(p1, . . . , pE))
(−D+E+1)/2

∫ ( n∏
i=1

dρi
ρνii

)
N (ρ⃗)

× (P (ℓ1, . . . , ℓL, p1, . . . , pE))
(D−L−E−1)/2,

(2.46)

where P = G(ℓ1, . . . , ℓL, p1, . . . , pE) is usually called the Baikov polynomial. G denotes the Gram
determinant de�ned by G(v1, . . . , vn) = det (vi · vj)ni,j=1 and N is an arbitrary numerator insertion
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polynomial in the ρ's. We refer to [141, 142] for a detailed derivation of this result. Note that P
is a quadratic polynomial in the ρi and

CL
n = eLγEϵ π

−L(L−1)/4−LE/2∏L
i=1 Γ(

D−L−E+i
2

)
detA−1 (2.47)

is a numerical constant with a n× n matrix A whose entries are given by

Da =
L∑
i=1

L∑
j=i

Aa,ijℓi · ℓj +
L∑
i=1

L+E∑
j=L+1

Aa,ijℓi · pj−L + fa, a = 1, . . . , n. (2.48)

We consider a = 1, . . . , n to be the row index and the n pairs (ij) with j ≥ i are the column
indices. The entries Aa,ij are integers from the set {−2,−1, 0, 1, 2}. The scalar quantities fa
contain the dependence on the external kinematics. Both the matrix A and the fa can be related
to the matrices (aak)

n,L
a=1,k=1 and (bar)

n,E
a=1,r=1 from eq. (2.31). The Baikov representation makes

the pole structure of the Feynman integrals manifest and is well-suited for residue computation,
as will be shown in 2.3.4. Another advantage of this representation is the manifest dependence
of P on the external kinematic quantities s⃗. This fact will allow us to use Baikov representation
for computing derivatives of the Feynman integrals with respect to s⃗, as will be shown in 3.2.

2.3.3 Integration-by-parts and Lorentz-invariance identities

Since the indices in eq. (2.28) can take any integer value there are formally in�nitely many inte-
grals in each topology. The number of loop integrals which appear in an amplitude computation
eq. (2.23) is �nite but can become large for a two-loop calculation. However, linear relations exist
among the integrals such that only a comparably small number of integrals O(100) in a family is
linear independent. These integrals provide a basis of the linear space of all Feynman integrals
in a given topology and are usually referred to as master integrals (MI). It was proven [144] that
the number of master integrals for a single topology is indeed always �nite.
The most important type of the linear relations satis�ed by Feynman integrals are integration-
by-parts (IBP) identities [145, 146]. They arise from the fact that integrals of total derivatives
vanish identically in dimensional regularization∫ ( L∏

j=1

dDℓj
iπD/2

)
∂

∂ℓµk

(
ξµ

N∏n
i=1D

νi
i

)
= 0, k = 1, . . . , L, (2.49)

where ξµ is an arbitrary four-vector depending on loop or external momenta. By expanding the
integrand in eq. (2.49) by the Leibnitz rule we obtain a vanishing linear combination of Feynman
integrals of the same topology. ∑

i

Ci(s⃗, D)Ii = 0, (2.50)

where Ci are rational functions of the kinematics and the space-time dimension. Using di�erent
ξµ and di�erent loop momenta in eq. (2.49) we can generate multiple independent IBP relations
for a single Feynman integral. We can repeat this for a su�ciently large number of di�erent inte-
grals of the same topology until we get no new IBP relations. Integrals which remain unreduced
at the end are by de�nition master integrals. Note that the number of MI's can be obtained
independently by di�erent methods [147,148].
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A widely used strategy of Feynman integral reduction is the Laporta algorithm [149] which is
by now implemented in several public codes like AIR [150], REDUZE [151,152], FIRE [153�155] and
KIRA [156, 157] as well as numerous private programs. Laporta's algorithm is based on a syste-
matic ordering of integrals inside an integral topology which allows to reduce more complicated
integrals to linear combinations of simpler ones. Roughly speaking, this ranking compares abso-
lute values of indices such that integrals with higher powers are ranked higher as integrals with
lower powers.4

First of all, we split a given topology into subtopologies and reduce all integrals inside a subtopo-
logy to integrals with propagator powers smaller than a previously chosen constant. Let N be the
number of propagators in the given topology and �x L ≤ n ≤ N . Then, we de�ne a n-propagator
subtopology τan via its set of inverse propagators and ISP's τan := {Di1 , . . . , Din} ⊂ {D1, . . . , DN},
with a = 1, . . . ,

(
N
n

)
. Here, we assume that the �rst rn ≤ n elements are inverse propagators and

the last sn = n− rn elements are ISP's. Once all subtopologies with n propagators are reduced,
the algorithm proceeds with the (n+ 1)-subtopologies. For L loops and N propagators there are

S =
N∑

n=L

(
N

n

)
< 2N (2.51)

di�erent subtopologies. For each subtopology we choose positive integers aan, b
a
n as upper bounda-

ries for powers of inverse propagators and ISP's in the subtopology. More precisely,

rn∑
j=1

νij ≤ an,

−
n∑

j=rn+1

νij ≤ bn.

(2.52)

Now we can start with generating IBP relations for the integrals with the lowest sum of absolute
values for both positive and negative indices. We generate all IBP identities for these integrals
and eliminate all integrals which are already reduced. Then, we solve the relations for the integral
with the highest rank and obtain

Ih.r. =
∑
i

CiIi, (2.53)

where all integrals on the right-hand-side have lower rank than the integral on the left-hand-side
and Ci are rational functions of D and the kinematics. We add eq. (2.53) to the list of known
identities and proceed with the next-to-lowest ranked integral until the boundaries an and bn are
reached. Integrals which remain unreduced at this point will be added to the list of MI's. After
that, the algorithm proceeds with the next subtopology. Note that we might get too many master
integrals if the boundaries are set too low. The complete reduction can also be performed at a
single phase-space point s⃗0 and for a single value of the space-time dimension D0 which is, in
general, much faster than the fully analytic computation and also requires far less memory. For
many two-loop problems only a numerical IBP reduction is possible in practice.
We close this section with a short discussion of a further type of linear relations among Feynman
integrals. As already emphasized, Feynman integrals are Lorentz-invariant objects. This means
in particular that

I(pµi + δpµi ) = I(pµi ) (2.54)

4See [149] for details.
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Figure 2.7: Two di�erent pinches of the double-box topology lead to the same sunrise topology.

for any in�nitesimal Lorentz transformation of any external momentum pµi . Let us parametrize
the transformation as

δpµi = ωµνpi,ν (2.55)

for an in�nitesimal totally anti-symmetric tensor ωµν . The general transformation behaviour of
I can then be expressed as

I(p+ δp) = I(p) + ωµν

E∑
i=1

pi,µ
∂I(p)

∂pνi
. (2.56)

Using the anti-symmetry of ω, the Lorentz invariance of I can be cast into the form

(pµnp
ν
m − pµmp

ν
n)

E∑
i=1

(
pi,µ

∂I

∂pνi
− pi,ν

∂I

∂pµi

)
= 0, n,m = 1, . . . , E. (2.57)

It is not di�cult to see that
(
E
2

)
independent identities can be built out of eq. (2.57). It can

be shown [158] that Lorentz identities are not independent from IBP identities and, therefore,
they do not provide additional information. So, in future, we will not distinguish between these
two types of relations and call them both IBP identities, independently of how exactly they were
generated.
Finally, we should mention that there can be symmetry relations between di�erent subtopologies
which are not captured by IBP identities. At the level of Feynman graphs that means that a
particular sub-graph can be obtained by more than one sequence of pinches (see �g. 2.7 where
red lines are pinched) and so it corresponds to two di�erent subtopologies. In practice, these
symmetries either have to be provided by hand or are detected automatically by some of the
IBP-reduction programs.

2.3.4 Cut Feynman integrals, multivariate residues and leading singu-

larities

Cut Feynman integrals have been studied since the early days of the perturbative QFT [139,159].
By the optical theorem they are naturally related to discontinuities and branch cuts of Feynman
integrals and are also the main ingredient of the unitarity-based approaches of the amplitude
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Figure 2.8: S-channel cut (left) and t-channel cut (right) of a massless box topology.

calculations. Typically, cut integrals are understood as ordinary Feynman integrals with a set of

propagators
{

1
Di1

, · · · , 1
Dim

}
replaced by corresponding δ-functions

1

Dij

→ δ(Dij), j = 1, · · · ,m ≤ n. (2.58)

A unitary cut [160] selects a particular kinematic channel and an iterated unitary cut [161, 162]
selects multiple channels. Fig. 2.8 represents s- and t-channel cuts of a box diagram. But also
non-unitary cuts can be important, e.g. in the context of generalized unitarity. In this thesis,
especially maximal cuts are of interest where all propagators of a topology are cut simultaneously.
Here a weakness of the informal de�nition of cut integrals (2.58) becomes problematic. It is, for
example, a well-known fact that there is no real solution for the maximal cut equations of the
massless box integral at one-loop [11, 163]. Therefore, it is useful to de�ne generalized cuts via
multivariate residue calculation [163�165]. The idea behind this is to deform the integral contour
of a Feynman integral to a closed contour that encircles all poles of the integrand and apply the
residue theorem. Let us brie�y review the multivariate residue calculus by Leray [166]. Here,
we closely follow [167]. Note that the close link between cuts and discontinuities will be not
important for the present discussion.
Let X be a �nite-dimensional vector space and S an irreducible algebraic variety de�ned by
s(z) = 0,∀z ∈ S for a polynomial s. Let ω be a di�erential form de�ned on X \ S. ω is said to
have a pole of degree n on S if there exist a regular form ψ and a form θ which has a pole of
degree maximally n− 1 on S such that

ω =
ds

sn
∧ ψ + θ. (2.59)

For n = 1, both ψ and θ have to be regular on entire X and we can directly de�ne the residue of
ω on S to be the restriction of ψ on S.

ResS[ω] ≡ ψ|S. (2.60)

This de�nition can be iteratively extended to poles of higher degree via the Leibnitz rule. If ωn

has a pole of degree n on S, then

ωn =
ds

sn
∧ ψ + θ = d

(
− ψ

(n− 1)sn−1

)
+

dψ

(n− 1)sn−1
+ θ. (2.61)

So, up to an exact form, ωn can be replaced by a new form ωn−1 with

ωn−1 ≡
dψ

(n− 1)sn−1
+ θ, (2.62)
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which has a pole of degree at most n− 1 on S. We conclude by induction that ωn can be related
to another di�erential form ω1 with at most a simple pole on S up to an exact form. So, we de�ne
the residue of ωn on S to be equal to the residue of ω1

ResS[ωn] ≡ ResS[ω1]. (2.63)

So, strictly speaking, the residue acts not on forms themselves but on the cohomology classes of
forms and de�nes a map on the De Rham cohomology group of X \S. It is easy to verify that for
X = C this residue de�nition agrees with the standard residue de�nition of the complex calculus.
After the multivariate residue is de�ned, we need a generalized version of the residue theorem.
First of all, a generalization of a contour is needed which encloses the singular surface S if S is
not a collection of isolated points. We assume that S is maximal in the sense that it has complex
codimension 1. Let σ ⊂ S be a k-cycle on S. For each point P ∈ S we can de�ne a small circle
in the plane which is transverse to S. This is possible since the real codimension of S is 2. The
collection of all such circles for all points in σ de�nes a (k+1)-cycle δσ which is called the tubular
neighborhood. The linear operator δ which assigns to a k-cycle its tubular neighborhood is called
Leray coboundary. We can now state the generalized residue theorem. Let ω be a (k + 1) form
on X \ S and σ a k-cycle in S, then [166]∫

δσ

ω = 2πi

∫
σ

ResS[ω]. (2.64)

If we apply the Leray calculus to the special case of Feynman integrals the right-hand-side of eq.
(2.64) can be considered as a de�nition for a cut Feynman integral. For one-loop integrals this
was strictly formulated in [167]. In particular, we will be interested in the special case of a cut
integral where no integration on the right-hand-side of eq. (2.64) is needed. Geometrically, this
corresponds to the situation where S consists of isolated points. The residues on such points are
often called leading singularities of the integral. While in the one-loop case the leading singularity
is unique up to a sign and equals the so-called global pole of the integral (see [164]), at the two-
loop level the situation is more di�cult and only partial results are known. Cutting propagators
leads to loop-momenta dependent Jacobian factors which might give rise to additional poles
which have to be cut as well in order to compute the leading singularities. For instance, the
leading singularities of the double-box integral with up to six external legs have been studied in
reference [168].
We close this section with a concrete example of computing the two-loop leading singularities
of the scalar massless double-box integral from eq. (2.102) and �g. 2.9. We change to Baikov
representation since it makes the zeros of the denominator manifest. According to eq. (2.46), the
double-box integral becomes

Idb ∼ G(p1, p2, p3)
(4−D)/2

∫
dρ1 . . . dρ9
ρ1 . . . ρ7

P (ℓ1, ℓ2, p1, p2, p3)
(D−6)/2, (2.65)

where G is the Gram determinant and P is the Baikov polynomial, as de�ned in 2.3.2. Since, in
general, we are only interested in the kinematic dependence of the leading singularities we omit
here all global constant prefactors from eq. (2.46). We use now eq. (2.64) to compute iteratively
the residue of the loop-integrand di�erential form which will be denoted by Idb in following. First,
we compute the residue at S = {ρ⃗ |ρ1 = . . . = ρ7 = 0} surface. We obtain

ResS[Idb] =
Gϵ dρ8 dρ9
(P |S)−1−ϵ

. (2.66)
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We take the ϵ→ 0 limit and obtain explicitly

ResS[I(D=4)
db ] =

16 dρ8 dρ9
sρ8ρ9(ρ8ρ9 + s(−t+ ρ8 + ρ9))

, (2.67)

with s = (p1 + p2)
2 and t = (p2 + p3)

2. While computing residues we will work in the ϵ → 0
limit. The residue computation often avoids UV and IR singularities, so that this procedure is
well de�ned.
We proceed with localizing the expression (2.67) until the zero surface S becomes a set of isolated
points. We �nd 7 solutions for the vanishing denominator. We summarize the corresponding
residues in table 2.1.

Singular point Leading singularity

(ρ08 = 0, ρ09 = 0) − 16
s2t

(ρ08 = 0, ρ09 = t) 16
s2t(

ρ08 = 0, ρ09 =
s(t−ρ8)
s+ρ8

)
0(

ρ08 =
s(t−ρ9)
s+ρ9

, ρ09 = 0
)

16
s2t(

ρ08 =
s(t−ρ9)
s+ρ9

, ρ09 = t
)

− 16
s2t

(ρ08 = t, ρ09 = 0) 0(
ρ08 = t, ρ09 =

s(t−ρ8)
s+ρ8

)
0

Table 2.1: Leading singularities of the scalar massless double-box integral.

We see that only four leading singularities are non-zero and they all are given by ± 16
s2t
. Note

that e.g. the second and the �fth rows of table 2.1 only di�er in the order of taking residues which
leads to di�erent signs of the corresponding leading singularities. If we normalize Idb by s

2t, we
get an integral with all leading singularities being constant. That explains the basis choice in eq.
(2.106).

2.4 Di�erential equation method

In the sections 2.3.1�2.3.4 we introduced Feynman integrals and discussed some of their important
properties like IBP identities and behaviour on cuts. We also showed that we can use di�erent
integral representations to investigate di�erent aspects of loop integrals. Here we concentrate
on actually solving integrals. By now, there exists a large toolkit of various approaches which
often use very di�erent mathematical frameworks. Since, in this thesis we exclusively use the
di�erential equation (DE) method, we want to summarize just brie�y some of the other methods
before we continue with DE. We also point to some of the existing public implementations of
these methods.
These approaches are:

� Direct integration in Feynman or Schwinger parameters. A modern extension of this idea
is implemented in HyperInt [169].

� Mellin-Barnes representation technique [170].

24



� Purely numerical approaches based on sector decomposition and Monte-Carlo integration
[171,172].

� Dimensional recurrence relations [173�175].

� Di�erential equation methood [136].

An extended pedagogical introduction to these methods can be found e.g. in [138].

2.4.1 Construction of DE and canonical basis

Let us now concentrate on the DE approach. The idea is to take derivatives of master integrals
with respect to the kinematic invariants and/or internal masses they depend on and to use then
IBP relations in order to reduce the right-hand-side back to a linear combination of MI's. Let I
be a set of m MI's, then

∂I

∂si
= Ai(s⃗, D)I, i = 1, . . . , Nkin, (2.68)

where Ai are m × m-matrices whose entries are at most algebraic functions of s⃗ and D and
Nkin is the number of independent kinematic variables. So now the problem of integrating I is
shifted to the problem of solving a system of linear �rst-order matrix-valued di�erential equations
(2.68). Historically, this idea was �rst introduced by A.V. Kotikov in 1991 [30, 31] and then
extended by T.Gehrmann and E.Remiddi [33, 34]. In the �rst publication, only derivatives with
respect to internal masses were considered. Later, the method was extended to external kinematic
quantities. Since we only deal with massless internal propagators in this thesis we will exclude
internal masses from our discussion.
To obtain Ai we, �rst of all, need to express the di�erential operator ∂

∂si
in terms of the partial

derivatives with respect to the external momenta. By the chain rule, we have

∂

∂pµi
=

Nkin∑
k=1

∂sk
∂pµk

∂

∂sk
, i = 1, . . . , E. (2.69)

By contracting eq. (2.69) with external momenta, we obtain E2 relations of the form

pµj
∂

∂pµi
= pµj

Nkin∑
k=1

∂sk
∂pµi

∂

∂sk
, i, j = 1, . . . , E. (2.70)

Since we only haveNkin independent kinematic invariants we need E2−Nkin additional constraints
to �nd a unique solution of eq. (2.70). These constraints are provided by Lorentz-invariance
identities and on-shell conditions for massless external momenta. In section 3.2 we will give an
alternative derivation of DE based on Baikov representation.
Note that the coe�cient matrices Ai in eq. (2.68) have to obey two further consistency conditions.
The �rst is the integrability condition [176]

∂iAj − ∂jAi + [Ai, Aj] = 0, (2.71)

where [A,B] := AB − BA. The second relation comes from the fact that Feynman integrals are
homogenous functions in s⃗, so they ful�ll the Euler relation

Nkin∑
k=1

sk
∂I

∂sk
= diag(a1(D), . . . , am(D))I, (2.72)
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where 2ai(D) is the mass dimension of the i-th master integral. Eq. (2.72) shows that only
Nkin−1 di�erential equations are independent. So we can always reduce the number of kinematic
invariants by setting one of them to 1 and restore the dependence on it at the end by dimensional
analysis. Therefore, DE's do not provide any non-trivial information for one-scale integrals beyond
their scaling behaviour.
From basic linear algebra we know that choosing a basis is never unique. On the other side, the
form of the coe�cient matrices Ai in eq. (2.68) strongly depends on the explicit choice of the
basis I. So we can ask whether a particular choice of basis exists such that eq. (2.68) takes a
simpler form. In 2013 J.Henn [35] introduced the so-called canonical basis G which ful�lls a set
of di�erential equations of the form

∂G

∂si
= ϵBi(s⃗)G, i = 1, · · · , Nkin, (2.73)

where the coe�cient matrices Bi do not depend on ϵ and can be derived from a potential M

dG = ϵ dMG, (2.74)

where

dM =

Nkin∑
k=1

Bkdsk. (2.75)

In the case of the canonical DE, the integrability conditions (2.71) simplify to

∂iBj − ∂jBi = 0, [Bi, Bj] = 0. (2.76)

If the new basis G can be obtained from the old basis I via I = TG for an invertible matrix
T = T (s⃗, D), then the new coe�cient matrices are related to the old ones by

Bi = T−1AiT − T−1∂iT, i = 1, . . . , Nkin. (2.77)

In the general case, constructing canonical basis may require loop-momenta dependent numerator
insertions such that it cannot be related to the old basis by kinematic terms alone. In any case,
every two integral bases can be transformed into each other by IBP identities.
Moreover, we assume that the connection dM is a logarithmic one-form [35] such that

dM =
N∑
i=1

Mi d log(Wi), (2.78)

where Mi are constant m × m matrices with rational entries and the set A = {W1, . . . ,WN} is
called the symbol alphabet of the integral topology. The letters W1, . . . ,WN are at most algebraic
functions of external kinematics. The logarithmic di�erential forms dlog(Wi) are given by

d log(Wi) =
Nsc∑
j=1

∂jWi

Wi

dsj. (2.79)

Forms of the type (2.79) are usually referred to as dlog-forms in the literature.
The canonical DE has the form

dG = ϵ

N∑
i=1

Mid log(Wi)G. (2.80)
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Once the DE is brought into the canonical form (2.80) it can be solved in terms of Chen's iterated
integrals [177]

G(s⃗, ϵ) = P exp

[
ϵ

∫
γ

dM

]
G(s⃗0, ϵ), (2.81)

where P denotes the path-ordering operator,G(s⃗0, ϵ) encodes the boundary conditions and γ is the
integration path from s⃗0 to s⃗. Since, for practical purposes, it is mostly su�cient to know a �nite
number of coe�cients in the ϵ-expansion of G we can consider eq. (2.80) as an order-by-order
equation. If

G =
∞∑

n=n0

G(n)ϵn, n0 ∈ Z, (2.82)

then

dG(n) =
N∑
i=1

Mid log(Wi)G
(n−1), (2.83)

with
G(n) ≡ 0 for n < n0. (2.84)

For each n only the derivatives of G(n) appear in eq. (2.83). So the canonical di�erential equation
reduces to a set of purely inhomogenous equations which can be solved by integrating order-
by-order in ϵ, beginning with the lowest order O(ϵn0) where G(n0) has to be constant and is,
therefore, fully determined by the lowest-order boundary conditions. The solution of eq. (2.83)
is automatically given by iterated integrals of a linear combination of dlog forms.

2.4.2 Solving the canonical DE and pure functions

Section 2.4.1 shows how the task of computing MI's can be replaced by integrating a recursive
system of purely inhomogenous di�erential equations over dlog-forms. The non-trivial part of the
calculation is now shifted to the problem of constructing the canonical basis G. For all topologies
we discuss in this thesis canonical form can be achieved. However, this is a challenging task and,
by now, no algorithmic solution of this problem exists. We will discuss our approach in detail in
section 3.3.
Let us for now assume that we have a canonical basis and discuss some properties of the soluton
of eq. (2.83). As already mentioned, the solutions are iterated integrals of dlog-forms. In this
context, the notion of trancendental weight τ(f) [178,179] of a function f is helpful. Trancendental
weight is de�ned as the minimal number of integrations needed to obtain f from an algebraic
integration kernel. So e.g. τ(log(x)) = 1. Algebraic functions have by de�nition weight 0.
Analogously, trancendental weight can be assigned to real or complex numbers which can be
written as integrals over an algebraic function. Such numbers are called periods [180]. Simple
examples for periods are π and log(2) since

π = 2

∫ 1

−1

dx
√
1− x2, log(2) =

∫ 2

1

dx

x
. (2.85)

We have τ(π) = τ(log(2)) = 1. For the trancendental weight of a product holds τ(f1f2) =
τ(f1)+τ(f2). If a function f is given by a linear combination of terms of weight n with coe�cients
given by algebraic functions we say that f is a uniform function of weight n. If, moreover, all
coe�cients are constant such that τ(f ′) = n−1, f is called a pure function of weight n. Since the
integration kernel in (2.81) is manifestly algebraic the O(ϵn)-term in the power series expansion
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of the path-ordered exponential is by de�nition a pure function of weight n. If we set τ(ϵ) ≡ −1
the path-ordered exponential becomes a pure function of weight 0. If now the boundary vector
G(s⃗0, ϵ) is a pure function, then the full solution G is a pure function as well.
It has been conjectured [181] that di�erential forms with constant leading singularities (see section
2.3.4) can be expressed in terms of dlog-forms and so give rise to pure functions which ful�ll
canonical di�erential equations. Despite being an unproven conjecture, this observation has
been experimentally validated for many multi-loop examples [182�185]. It has led to a powerfull
strategy of constructing candidates for a pure basis: We try to �nd a set of numerator insertions
such that all MI's of the given topology have constant leading singularities. Then, we can verify
the purity of this basis by checking whether it ful�lls the canonical di�erential equation. Note
that no explicit construction of a dlog-form integrand is needed for this approach.

2.4.3 Fuchsian form and generalized polylogarithms

Let us consider a special case of iterated integrals where the integration kernel of (2.79) can be
brought into Fuchsian form [186,187]

dM =
Ñ∑
k=1

M̃k

x− xk
dx. (2.86)

For the sake of simplicity, we will only discuss the univariate DE depending on x.5 The special
feature of the Fuchsian form is the manifest linearity of the alphabet Ã = {x− x1, . . . , x− xÑ}. In
this case, the ϵ-expanded solution can trivially be expressed in terms of the so-called Goncharov
polylogarithms (GPL's) [178, 188]. They are de�ned recursively for a set of complex numbers
{a1, . . . , an} ⊂ C via

G(a1, . . . , an;x) :=

∫ x

0

dt

t− a1
G(a2, . . . , an; t), (2.87)

if ai ̸= 0 for one i and

G(⃗0n;x) :=
1

n!
logn(x), (2.88)

with
G(;x) := 1 (2.89)

as the starting point of the recursion.
For ai ∈ {−1, 0, 1} a sub-class of GPL's exists which is usually called harmonic polylogarithms
(HPL's) [189]. The classical polylogarithms which are known since the 19th century [190] build a
subset of GPL's as well and can be de�ned by the following recursion

Lin+1(z) :=

∫ z

0

dt
Lin(t)

t
∀z ∈ C \ (1,∞) (2.90)

and
Li1(z) := − log(1− z). (2.91)

There is an alternative representation via series expansion

Lin(z) =
∞∑
k=1

zk

kn
for |z| < 1. (2.92)

5In the multivariate case we can think of x as a path parameter along a univariate slice.
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For z = 1 and n ≥ 2 the series is still konvergent and we have

Lin(1) = ζ(n) =: ζn, (2.93)

where ζ denotes the Riemann's ζ-function

ζ(s) :=
∞∑
k=1

1

ks
for Res > 1. (2.94)

Both GPL's and classical polylogarithms have a well-de�ned trancendental weight

τ(G(a1, . . . , an;x)) = τ(Lin(x)) = n. (2.95)

According to eq. (2.93), we have also τ(ζn) = n. It should be mentioned that the functions log(x),
log2(x) and Li2(x) are su�cient in order to express all integral contributions which are needed
for one-loop amplitudes.
Despite the existence of the formal solution (2.81) in terms of iterated integrals, solving canon-
ical DE might still be very challenging in practice especially if the Fuchsian form (2.86) cannot
be achieved. For instance, this can happen in presence of non-rationalizable letters. Another
potentially very hard problem which can appear while integrating is the analytic continuation of
the multi-valued iterated integrals to all kinematic regions of the phase space. In such cases an
e�cient numerical approach might be the better choice. We implemented a numerical algorithm
which will be discussed in 3.5. In order to have still access to some analytic properties of the
integrals without having an analytic solution, the notion of the so-called symbol has been intro-
duced [68,69].
Roughly speaking, a symbol is a linear combination of tensor products of equal length built from
dlog-forms of letters [69]. More precisely, the symbol of a trancendental function Fw(x1, . . . , xn)
of weight w is de�ned from its total derivative expressed in terms of dlog-forms

dFw =
∑
i

Fi,w−1dlogWi, (2.96)

where Fi,w−1 are trancendental functions of weight w− 1 and Wi are rational functions of x⃗ [70].
Now, the symbol can be computed recursively via

S(Fw) =
∑
i

S(Fi,w−1)⊗Wi. (2.97)

From the de�nition (2.97) a close relation between symbols and di�erential equations can be
derived. If G ful�lls a canonical di�erential equation in the form

dG(n) =
∑
k

MkdlogWkG
(n−1) (2.98)

order-by-order in ϵ, then the symbol of G(n) is given by

S(G(n)) =
∑

i1,...,in

ci1,...,inWi1 ⊗ . . .⊗Win , (2.99)

where ci1,...,in are rational numbers which can be computed from n-fold products of the coe�cient
matrices Mk. The symbol of a Feynman integral has some very useful properties. The so-called
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�rst-entry condition controls which letters can appear in the leftmost factor of the tensor product
in eq. (2.99). It is well-known that branch points of Feynman integrals with massless propagators
can appear only if a Mandelstam invariant built from an adjacent pair of external momenta
(external masses can be considered as pairs of massless legs as well) is going to zero or in�nity. It
was shown in [191] that this constraint can be translated to the requirement ci1,...,in = 0, if Wi1 is
not an adjacent Mandelstam invariant. In the planar case, the only possible �rst-entry letters are
the cyclic Mandelstams and external masses. In terms of the coe�cient matrices, the �rst-entry
condition can be reformulated as a requirement on the constant weight-zero part of the MI's G(n0)

MkG
(n0) = 0, if Wk /∈ A�rst-entry. (2.100)

The �rst-entry condition can provide information about boundary values of Feynman integrals.
Moreover, the notion of the symbol can be used to derive identities between di�erent trancendental
functions [70]. For instance, multiple polylogarithms are known to ful�ll a large number of highly
non-trivial relations among themselves. A simple example which is known for a very long time
relates Li2(x) and Li2

(
1
x

)
via

Li2

(
1

x

)
= −Li2(x)− ζ2 −

1

2
log2(−x), for x ∈ C \ [1,∞) . (2.101)

All types of polylogarithms ful�ll relations of the type (2.101) which can be very helpful for
handling complicated expressions appearing in multi-loop calculations. However, for GPL's much
lesser identities are known explicitly than for classical polylogarithms. In practice, we still can
often circumvent these problems by considering the symbol of the expression instead of the full
polylogarithmic term.
It should be mentioned that the symbol de�nition (2.97) is blind to constant terms with positive
weight like π, ζn or log(2). By induction, also the symbol of products of functions and constants
with positive weight like π log(x) vanishes. So, the symbol alone is not su�cient to fully �x the
function-level solution of the canonical di�erential equation.
Finally, it should be mentioned that the notion of pure function has been at least partially
extended beyond Feynman integrals which evaluate to GPL's. So, it was shown [192] that the
notion of uniform weight can be assigned to a particular type of elliptic integrals called elliptic
multiple polylogarithms (eMPL's) [193]. Moreover, elliptic integrals of uniform trancendental
weight satisfy ϵ-factorized di�erential equation [192] (see also [194] for some very recent results).

2.4.4 A pedagogical example of DE approach

In this section, we want to illustrate the application of the DE method combined with the notion
of the canonical basis to a simple pedagogical example where the basic features of the approach
become clear.
We will consider one of the standard examples for two-loop Feynman integrals: the planar massless
four-point function. In the following, we will refer to this integral as the massless double-box.
According to the conventions of 2.3.1, it takes the form

Idb[ν⃗] = e2ϵγE
∫

dDℓ1
iπD/2

dDℓ2
iπD/2

1∏9
j=1 ρ

νj
j

. (2.102)
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Figure 2.9: Massless double-box topology. All external momenta are incoming. Propagators are
labeled by blue numbers.

The Feynman graph of the double-box topology is depicted in �g. 2.9. The inverse propaga-
tors are given by

ρ1 = ℓ21, ρ2 = (ℓ1 + p1)
2, ρ3 = (ℓ1 + p1 + p2)

2, ρ4 = (ℓ2 + p1 + p2)
2, ρ5 = (ℓ2 − p4)

2, ρ6 = ℓ22,

ρ7 = (ℓ1 − ℓ2)
2.

(2.103)

Additionally, we need to choose two ISP's to complete the basis of loop-momenta dependent scalar
products. We de�ne ρ8 = (ℓ2 + p1)

2, ρ9 = (ℓ1 − p4)
2. The integral depends on two Mandelstam

invariants s = (p1 + p2)
2 and t = (p2 + p3)

2. The third Mandelstam invariant u = (p2 + p4)
2 is

related to the �rst two by momentum conservation

s+ t+ u = 0. (2.104)

The double-box topology supports 8 master integrals. We pick a set of independent integrals

I = {I1111111−10, I111111100, I011011100, I111010200, I201102000, I010101200, I002001200, I020010200} . (2.105)

Following the procedure discussed in 2.4, we change to a canonical basis G which is given by

G1 = ϵ2(−s)2ϵtI020010200,
G2 = ϵ2(−s)2ϵsI002001200,
G3 = ϵ3(−s)2ϵsI010101200,
G4 = −ϵ2(−s)2ϵs2I201102000,
G5 = −ϵ3(−s)2ϵstI111010200,
G6 = ϵ4(−s)2ϵ(s+ t)I011011100,

G7 = ϵ4(−s)2ϵs2tI111111100,
G8 = −ϵ4(−s)2ϵs2I1111111−10.

(2.106)

Here, the basis is taken from [35]. The ideas used to construct the pure basis will be discussed in
details in 3.3. Let us for now just assume that the pure basis is known. However, two comments
on the basis are in order. First, note that the choice of lower sector integrals (like sunrises and
bubble-triangles) di�ers here from our choice in the �ve-point bases where we prefer integrals with
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lowest possible number of doubled propagators. Note that the particular choice which is made
here is more common in the literature. The second point is the overall normalization ϵ4(−s)2ϵ
making pure integrals dimensionless and �nite in the ϵ → 0 limit. Now, the Laurent expansion
of G has to start at O(ϵ0).
We proceed with taking derivatives of G with respect to s and t. We compute the derivatives
with our own tool which uses Baikov representation and is described in section 3.2 and perform
IBP reduction with KIRA [156]. Expressions for di�erential operators ∂

∂s
and ∂

∂t
in terms of the

derivatives with respect to external momenta, as introduced in 2.4, can be found e.g. in [136].
We obtain the DE in the form of a total derivative

dG = ϵ [Bsds+Btdt]G, (2.107)

with

Bs =



2
s

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

− 3
2(s+t)

0 − 3t
s(s+t)

0 2
s
− t

s(s+t)
0 0 0

1
2s

− 1
2s

0 0 0 2
s
− 2t

s(s+t)
0 0

3
s+t

3(s−t)
s(s+t)

− 6t
s(s+t)

− 2t
s(s+t)

− 4
s+t

− 12
s+t

2
s
− 2t

s(s+t)
− 2t

s(s+t)

− 9
2(s+t)

− 3
s+t

3
s+t

s+2t
s2+st

4
s+t

18
s+t

− 1
s+t

2
s
− 3s+2t

s2+st


(2.108)

and

Bt =



−2
t

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
3s

2t(s+t)
0 3

s+t
0 − 2s+t

st+t2
0 0 0

− 1
2t

1
2t

0 0 0 − 2s
t(s+t)

0 0

− 3s
t(s+t)

−3(s−t)
t(s+t)

6
s+t

2
s+t

4s
t(s+t)

12s
t(s+t)

− 2s
t(s+t)

2
s+t

9s
2t(s+t)

3s
t(s+t)

− 3s
t(s+t)

− s+2t
st+t2

− 4s
t(s+t)

− 18s
t(s+t)

s
t(s+t)

s
t(s+t)


. (2.109)

Since our master integrals are dimensionless the matrices Bs and Bt have to ful�ll

sBs + tBt = 0, (2.110)

which they indeed do. We also check the integrability constraints

[Bt, Bs] = 0,

∂sBt − ∂tBs = 0,
(2.111)

which are also ful�lled. Since the normalized integrals only depend on the ratio of kinematic scales
we introduce the new parameter x := t

s
and cast the di�erential equation into the manifestly

Fuchsian form

dG = ϵ

[
B0

1

x
+B1

1

1 + x

]
dxG, (2.112)
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with

B0 =



−2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
3
2

0 0 0 −2 0 0 0
−1

2
1
2

0 0 0 −2 0 0
−3 −3 0 0 4 12 −2 0
9
2

3 −3 −1 −4 −18 1 1


(2.113)

and

B1 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−3

2
0 3 0 1 0 0 0

0 0 0 0 0 2 0 0
3 6 6 2 −4 −12 2 2
−9

2
−3 3 −1 4 18 −1 −1


. (2.114)

The matrices B0 and B1 agree with [35]. The alphabet of the massless two-point function can be
read o� the di�erential equation

A = {x, 1 + x} . (2.115)

The alphabet encodes the positions of the two singular points x = 0 and x = −1. The latter
corresponds to the kinematic point s = −t or, equivalently, u = 0. Since the double-box topology
is planar the �rst-entry condition tells us that all integrals have to be regular at this point. A
second important condition is that all integrals have to be real in the Euclidean region which is
given by s < 0, t < 0 or x > 0.
We insert the Laurent expansion of the integral basis

G(x) =
∞∑
i=0

ϵiG(i)(x) (2.116)

into eq.(2.112) and obtain a purely inhomogenous set of equations

∂G(i)(x)

∂x
=

[
B0

x
+

B1

1 + x

]
G(i−1)(x), for i ≥ 0, (2.117)

with G(−1) ≡ 0 by de�nition. Note that here the summation index i directly labels the trancen-
dental weight of the i-th order solution. We can compute G(x) to any order in ϵ by iterative
integration of eq. (2.117) and inserting the boundary condition. The regularity condition at
x = −1 together with vanishing of all imaginary parts in the Euclidean region is indeed su�cient
in order to �x all integration constants at every weight up to two free parameters. The latter can
be determined from the two single-scale integrals G2 and G4 which do not depend on x and can
easily be computed in closed form via Feynman parametrization. They are given by

G2 =
e2γEϵΓ3(1− ϵ)Γ(2ϵ+ 1)

Γ(1− 3ϵ)
= 1− ζ2ϵ

2 − 32

3
ζ3ϵ

3 − 57

4
ζ4ϵ

4 +O(ϵ5),

G4 =−
[
eγEϵ(1− 2ϵ)ϵΓ2(1− ϵ)Γ(ϵ)

Γ(2− 2ϵ)

]2
= −1 + ζ2ϵ

2 +
14

3
ζ3ϵ

3 +
21

4
ζ4ϵ

4 +O(ϵ5).

(2.118)
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Chapter 3

Techniques used in the �ve-point

calculation

In the following, we discuss di�erent aspects of computing the two-loop �ve-point integral topolo-
gies with one external massive leg. We use the canonical DE approach introduced in 2.4. However,
due to the complexity of the present problem, many standard techniques cannot be applied di-
rectly which requires more case-tailored and sometimes heuristic treatment of many practical
problems. Although, the results for planar and non-planar topologies will be presented in two
separate sections 4.1 and 4.2 of Chapter 4 most of the points here are equally valid for both types
of integrals. One of the biggest obstacles which required many modi�cations to the standard DE
approach was the absence of analytic IBP tables which are normally needed at multiple steps
while constructing the di�erential equation. Computing these tables, especially for non-planar
topologies, is out of reach at the moment.
We divide the whole computational problem into four parts.
The �rst part is the construction of the canonical basis which is crucial for all following steps. We
obtained the canonical bases mainly in a heuristic way employing various ideas and approaches
based on both choosing integrands with constant leading singularities and making use of the
numerical structure of the pre-canonical di�erential equation. Construction of the pure basis is
discussed in detail in 3.3.
The second crucial step is the construction of the symbol alphabet. While in the traditional DE
approach the symbol alphabet is a by-product of the canonical DE, here it has to be found in
advance. We showed that the alphabet can be extracted from (semi-)analytic1 one-loop and cut
two-loop di�erential equations which require only a small fraction of the full analytic IBP tables.
Since the construction of the alphabet is case-dependent we will discuss it and present both the
planar alphabet and its non-planar extension in Chapter 4 in sections 4.1.3 and 4.2.3.
Part three is the computation of the analytic form of the canonical di�erential equation. Here,
we employ the idea of [48] where the canonical di�erential equation of the massless hexa-box
topology was reconstructed from a su�ciently large set of numerical samples. We present this
approach in 3.4.
Finally, section 3.5 deals with the integration of the canonical DE including determing boundary
conditions and analytic continuation. We decided not to aim for a formal solution in terms of
GPL's mainly because of the complicated structure of the symbol alphabet and related complex-
ity of the analytic continuation but chose a purely numerical approach based on a generalized
power-series expansion on a univariate slice [71, 72] which allows high-precision numerical evalu-

1Sometimes we worked with univariate on-shell DE.
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ations in arbitrary phase-space regions.
Additionally, in sections 3.1 and 3.2 we discuss the analytic structure of the �ve-point kinematic
space and introduce a method of computing di�erential equations based on the Baikov represen-
tation [143].

3.1 Scattering kinematics

We begin with introducing our notation and discussing the kinematics of �ve-point scattering
processes. We also introduce some quantities which will be used throughout this thesis. After
that, we brie�y describe the structure of the �ve-point massive phase space.
Each of the considered topologies has �ve external momenta which we denote by p1, . . . , p5, where
p1 is massive p21 = q2 and four others are massless, so p2i = 0, i = 2, 3, 4, 5. All momenta are
considered to be incoming so that the momentum conservation takes the form

∑5
i=1 pi = 0.

According to eq. (2.34) there are six linear independent kinematic invariants. We choose them
to be the cyclic Mandelstam variables and the o�-shell scale

s⃗ =
{
q2, s12, s23, s34, s45, s15

}
, (3.1)

with sij = (pi+ pj)
2. The remaining �ve non-cyclic Mandelstam variables are important both for

non-planar integrals and at the amplitude level so we give them also explicitly in terms of the
cyclic invariants

s13 = −s12 − s23 + s45 + q2, s14 = −s15 + s23 − s45 + q2, s24 = s15 − s23 − s34,

s25 = −s12 − s15 + s34 + q2, s35 = s12 − s34 − s45.
(3.2)

However, Mandelstam variables alone are not su�cient to fully characterize the scattering kine-
matics. We need an additional quantity which captures the information about the orientation of
the external momenta and has so to be odd under the parity operator

P : (p0, p⃗) 7→ (p0,−p⃗). (3.3)

This is realized by an odd Levi-Civita contraction

tr5 := 4iϵµνρσp
µpνpρpσ = 4i detV (p1, p2, p3, p4), (3.4)

where V (p1, . . . , pn) is a 4 × n matrix with columns given by p1, . . . , pn. This object is indeed
parity-odd since every term in the sum (eq. (3.4)) has exactly three spatial components. The
variable tr5 is closely related to the Gram determinant of the external momenta

∆5 := 16G(p1, p2, p3, p4) = det {2pi · pj}4i,j=1 (3.5)

by
∆5 = det

[
2V (p1, . . . , p4)

⊤gV (p1, . . . , p4)
]
= tr25, (3.6)

where g = diag(1,−1,−1,−1) is the space-time metric which we extend with further minus signs
when working with extra-dimensional quantities. Note that eq. (3.6) cannot be used to determine
the sign of tr5 but only its absolute value. The sign has to be derived from the momenta. For
completeness, we give an explicit expression of ∆5 in terms of the Mandelstam variables

∆5 = (s12s15 − s12s23 − q2s34 − s15s45 + s34s45 + s23s34)
2 − 4s23s34s45(q

2 − s12 − s15 + s34) .
(3.7)
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Figure 3.1: Five-point non-planar double-box with the massive leg at the central rung.

Apart from ∆5, there are two more types of kinematic quantities which give rise to irreducible
square-roots for the given kinematics. This is a three-point Gram determinant associated to a
triangle diagram with three external masses on the one hand and a new Gram determinant which
is associated to a particular �ve-point non-planar double-box diagram (see �g. 3.1) on the other
hand. Let us �rst look at the three-point Gram determinants. They appear in three permutations

∆
(1)
3 = −4G(p1, p2 + p3) = λ(q2, s23, s45),

∆
(2)
3 = −4G(p1, p2 + p4) = λ(q2, s24, s35),

∆
(3)
3 = −4G(p1, p3 + p4) = λ(q2, s25, s34),

(3.8)

where
λ(a, b, c) := a2 + b2 + c2 − 2ab− 2ac− 2bc (3.9)

is the so-called Källén function [195]. The second object is the square of the leading singularity
of the scalar integral depicted in 3.1 and is given by

Σ
(1)
5 = (s12s15 − s12s23 − s15s45 + s34s45 + s23s34)

2 − 4s23s34s45(s34 − s12 − s15). (3.10)

The origin and the derivation of Σ5 will be discussed in more detail in 3.3.6. Permutations of the
massless external momenta give �ve further versions of Σ

(1)
5 which we denote by

Σ
(k)
5 = Σ

(σk(1))
5 , σk ∈ S4/(S2[3, 4]× S2[2, 5]). (3.11)

Note that the σk denote here, strictly speaking, equivalence classes of permutations and not
the permutations themselves since permuting of p3, p4 and p2, p5 among each other lets Σ

(1)
5

invariant. So, two permutations can be distinguished by acting on Σ
(1)
5 only up to elements of

(S2[3, 4]× S2[2, 5]). We observe that

Σ
(k)
5 → ∆0

5, for q2 → 0, ∀k, (3.12)

where ∆0
5 is the Gram determinant of the massless �ve-point kinematics.

All together, we have 10 irreducible square-roots in the one-mass case which di�ers clearly from
the massless case where tr5 is the only algebraic quantity. Not all of the square-roots appear

simultaneously in every topology. tr5 and

√
∆

(1)
3 are already present at the one-loop level. For
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the planar two-loop topologies we have to add

√
∆

(3)
3 . The remaining 7 square-roots are genuinely

non-planar quantities. Four out of the six new square-roots

√
Σ

(k)
5 appear only at the amplitude

level where all permutations of independent topologies contribute and are so, in principle, irrele-
vant for the present work. So the number of relevant square-roots is 6.
Next, we want to discuss some properties of the loop-momentum space. Since we have four
independent external momenta the loop momenta can be written as

ℓi =
4∑

j=1

αijpj + ℓ̃i, αij ∈ C, i = 1, 2, (3.13)

where ℓ̃i denote the (D − 4)-dimensional part of the loop momenta. We de�ne the extra-
dimensional scalar products

µij := ℓ̃i · ℓ̃j, i, j = 1, 2. (3.14)

Eq. (eq. (3.13)) together with ℓ̃i · pj = 0 can be used to simplify the Baikov polynomials of both
one- and two-loop �ve-point topologies and write them in terms of the µij's. Let P (1) and P (2)

denote the one-loop and the two-loop Baikov polynomials, then the following identities hold

P (1) = G (ℓ, p1, p2, p3, p4) = G

(
4∑

j=1

αjpj + ℓ̃, p1, p2, p3, p4

)
= G(ℓ̃, p1, p2, p3, p4) =

1

16
µtr25,

P (2) = G(ℓ1, ℓ2, p1, p2, p3, p4) = G

(
4∑

j=1

α1jpj + ℓ̃1,
4∑

j=1

α2jpj + ℓ̃2, p1, p2, p3, p4

)

= G(ℓ̃1, ℓ̃2, p1, p2, p3, p4) =
1

16

(
µ11µ22 − µ2

12

)
tr25,

(3.15)

with µ := ℓ̃2. Eq. (3.15) can be used to express µ in terms of ISP's and Mandelstam invariants.
The analogous relations at two loop are

µ11 = 16
G11

tr25
, µ22 = 16

G22

tr25
, µ12 = 16

G12

tr25
i, j = 1, 2, (3.16)

where Gij are obtained from the Gram matrix by deleting the i-th row and the j-th column.
Finally, we discuss the analytic structure of the �ve-point phase space with one massive leg. The
phase space consists of multiple regions which are speci�ed by di�erent signs of the Mandelstam
variables. The boundaries of the regions are given by hypersurfaces on which some Mandelstam
invariants vanish. We expect the integrals to have physical branch cuts on surfaces where �rst-
entry letters (see 2.4.3) vanish. In the planar case, these are exactly the cyclic Mandelstam
variables and the o�-shell scale q2 while in the non-planar case some of the non-cyclic Mandelstam
invariants are �rst-entry letters, too. First of all, we should specify the Euclidean regions for
all topologies where all integrals are either manifestly real or manifestly imaginary.2 In the
planar case the Euclidean region is characterized by all cyclic Mandelstams being negative si <
0, i = 1, . . . , 6. For the three non-planar hexa-box topologies, the Euclidean regions have to
be determined case-by-case and are given in eq. (4.79). A further interesting kinematic region
which is particularly important for phenomenological studies corresponds to the production of

2Some of the pure integrals are normalized by square-roots like

√
∆

(1)
3 which might become imaginary in the

Euclidean region.
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Initial State > 0 < 0
2, 3 s23, s45, s15, q

2 s12, s34
2, 4 s15, q

2 s12, s23, s34, s45
2, 5 s34, q

2 s12, s23, s45, s15
3, 4 s12, s34, s15, q

2 s23, s45
3, 5 s12, q

2 s23, s34, s45, s15
4, 5 s12, s23, s45, q

2 s34, s15

Table 3.1: Signs of cyclic Mandelstam invariants in the physical phase-space.

a heavy particle in association with two massless jets. Without loss of generality, we assign p1
to the massive particle and assume that it decays into a pair of light particles (e.g. leptons)
which implies p21 > 0. The four remaining massless momenta can be assigned either to the two
initial-state particles or the two �nal-state jets. So, the process can be characterized by

pi + pj → p1 + pk + pl, (3.17)

with i ̸= j ̸= k ̸= l ∈ {2, 3, 4, 5}. There are six di�erent choices of i, j, k, l. Every particular
choice is speci�ed by the signs of the Mandelstams. Concretely, all s-channel variables have to
be chosen positive and all t-channel variables have to be negative. In table 3.1 we summarize the
signs of the Mandelstam invariants corresponding to all six combinations. In the following, we
will refer to these six phase-space regions as the physical regions. Eq. (3.6) implies that ∆5 < 0
for all physical regions since detg = −1 and all momenta are real inside the physically relevant
part of the phase space.

3.2 Construction of the pre-canonical di�erential equation

In this section, we discuss the computation of the pre-canonical di�erential equation for an arbi-
trary chosen integral basis. As shown in section 2.4, the di�erential equation is obtained �rst by
computing the derivatives of the master integrals and a subsequent IBP-reduction of the result
to a linear combination of MI's. This means that analytic IBP-tables are required for an analytic
di�erential equation. Computing analytic IBP-tables for �ve-point two-loop integrals with one
external mass is an extremely challenging task (this is already true for massless �ve-point inte-
grals), especially for non-planar topologies. The way we circumvent this obstacle is by focusing
on numerical di�erential equations on the one hand and using analytic and semi-analytic on-shell
di�erential equations on the other hand. The pre-canonical di�erential equation is the starting
point of our computation so we need to be able to extract the maximally possible amount of
information from it and also be able to evaluate it e�ciently multiple times.
We decided not to use the explicit di�erential operator which relates derivatives with respect to
kinematic invariants to derivatives with respect to external momenta, but to perform the calcula-
tion in the Baikov representation instead where derivatives with respect to the sij's can be taken
directly. This approach is based on [143]. According to eq. (2.46), the i-th master integral Ii in
the pre-canonical basis can be written as

Ii = I[ρ⃗, ν⃗i, s⃗, E, L,N ] = CL
N(G(p1, . . . , pE))

(−D+E+1)/2

∫
dρ1 . . . dρN N (ℓ1, . . . , ℓL, p1, . . . , pE)

ρν11 . . . ρνNN
(P (ℓ1, . . . , ℓL, p1, . . . , pE))

(D−L−E−1)/2.

(3.18)
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An explanation of the notation used in eq. (3.18) can be found in eq. (2.46).
N (ℓ1, . . . , ℓL, p1, . . . , pE) represents a generic numerator insertion which is a function of both loop
and external momenta. In the following, we will assume that νi ∈ {0, 1} , i = 1, . . . , N . Any
additional factors of ρi can be included in the numerator insertion. Since the Baikov representation
makes the s⃗-dependence of the loop integral manifest we can simply take the derivative with
respect to a kinematic variable

∂Ii
∂sj

= Ii

[
∂N
∂sj

+
−D + E + 1

2G

∂G

∂sj
+
D − L− E − 1

2P

∂P

∂sj

]
. (3.19)

The goal is now to rewrite the right-hand-side of eq. (3.19) such that it can be expressed as a
linear combination of standard Feynman integrals. This can be achieved by getting rid of the
Baikov polynomial in the denominator by dimension shifting. In the Baikov representation, the
dimension shift D − 2 → D can be implemented by multiplying the insertion with P

G
and some

numerical constant. Concretely, we have

I(D)[N ] =
CL

N(D)

CL
N(D − 2)

I(D−2)

[
N P

G

]
. (3.20)

Applying the dimension shift on both sides of eq.(3.19) we obtain

∂I
(D−2)
i

∂sj

[
N P

G

]
= I

(D−2)
i

[
P

G

∂N
∂sj

+ P
−D + E + 1

2G2

∂G

∂sj
+
D − L− E − 1

2G

∂P

∂sj

]
. (3.21)

Since eq. (3.21) is valid for any D, we can simply rede�ne D → D + 2 at the end. As already
mentioned above, we cannot perform the analytic IBP reduction for integrals considered in this
thesis. So, we replace the kinematic invariants s⃗ and the space-time dimension D in eq. (3.21)
by numerical values

s⃗→ s⃗0 ∈ Q6, D → D0 ∈ Q. (3.22)

We work with rational numbers to be able to use exact arithmetics. Alternatively, we could also
work within modular arithmetics. We discuss some possible strategies of choosing suitable phase-
space points in appendix A. Of course, we can also compute semi-analytic di�erential equation
where some of the external parameters are kept generic. Finally, we need to prepare eq. (3.21)
for an IBP reduction program. Since P is a polynomial in terms of inverse propagators and
ISP's both the master integrals and their derivatives can be expressed as linear combinations of
standard Feynman integrals I[ν⃗, s⃗]. Concretely,

∂I

∂si

∣∣∣∣
s⃗=s⃗0,D=D0

=
∑
j

cj(s⃗0, D0)I[ν⃗j], (3.23)

where the coe�cients cj are at most algebraic numbers and ν⃗j ∈ ZN . Now the right-hand-side of
eq. (3.23) can be reduced to master integrals. The output of the calculation is the total derivative
of the integral basis

dI(s⃗0, D0) =
6∑

i=1

Ai(s⃗0, D0)dsiI = A(s⃗0, D0)I, (3.24)

where A(s⃗0, D0) will be referred to the as numerical connection. In our implementation the one-
forms dsi are represented by placeholders and can at any time be replaced by an arbitrary chosen
numerical vector c⃗ which determines the direction of the derivative in the space of kinematic
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invariants. We de�ne A(s⃗0, D0) = A⃗ · c⃗.
As well-known in the literature (see e.g. [136]), the cut operation commutes wih taking derivatives
with respect to external kinematics. Since this is also true for the IBP reduction procedure we
can compute the di�erential equation for any cut integral in exactly the same manner as for uncut
integrals. In the following, di�erential equations for cut Feynman integrals will be referred to as
on-shell DE's. On-shell DE's can trivially be implemented in the Baikov representation by just
setting all relevant inverse propagators to zero at the integrand level on both sides of eq. (3.21).
On-shell IBP reduction is implemented in KIRA [156]. Working with on-shell DE's simpli�es
the pure basis construction signi�cantly since it allows to proceed topology-by-topology without
having to recompute the full di�erential equation each time the basis gets changed. Especially
for non-planar topologies this becomes really crucial since the o�-shell IBP reduction can easily
take many hours while the on-shell reduction typically requires only munites. Furthermore, pure-
integral construction strategies mostly require only the maximal and next-to-maximal cut DE's
such that results obtained from cut DE's are in most cases already pure o�-shell.
Finally, we want to discuss how numerical di�erential equations can be used for checking whether
a given integral basis is pure. For this purpose, we compute the di�erential equation at the
same numerical point s⃗0 and for the same direction c⃗ for two di�erent values of the dimensional
regulator ϵ1 and ϵ2 and check whether A(s⃗0, ϵ) is indeed linear in ϵ. Explicitly, we ask if

∆A(s⃗0) :=
1

ϵ1
A(s⃗0, ϵ1)−

1

ϵ2
A(s⃗0, ϵ2) = 0. (3.25)

It is clear that this is not a strict proof of purity but vanishing of ∆A at several points and for
several values of ϵ provides an arbitrary strong check. The actual proof of purity will be given
by the success of the reconstruction procedure of section 3.4. If ∆A(s⃗0) does not vanish both
the distribution of non-vanishing entries and their numerical complexity can be used as a kind
of a qualitative �measure� for the �quality� of a pure candidate. Furthermore, in some cases we
reconsructed ∆A as function of kinematic invariants and used it as a starting point for a semi-
algorithmic approach described in section 3.3.5. See appendix C for details on the functional
reconstruction.
We implemented the described algorithm of computing numerical di�erential equations in a
Mathematica program which includes interfaces to both FIRE6 and KIRA and veri�ed our imple-
mentation on several known two-loop examples including the planar massless �ve-point penta-box
topology.

3.3 Strategies for constructing pure basis

3.3.1 Introduction

In section 2.4 we reviewed the general method for computing Feynman integrals by using the
di�erential equation approach and highlighted how crucial the knowledge of pure basis is.
A remarkable progress in developing strategies for constructing a canonical basis for a given in-
tegral topology was made in recent years [43, 47, 48, 182, 196�202], including both case-by-case
constructions and algorithmic approaches. Especially the univariate case is quite well understood
by now [196�199,203]. However, in the multivariate case, the construction of a pure basis remains
an open problem. In 2.4.2 we also brie�y reviewed the de�nition of d-log forms, UT integrals
and sketched the close relation of these objects to the concept of the pure basis. It is a widely
accepted conjecture (see e.g. [181]) that only if all leading singularities of a given di�erential form
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are constant (kinematicly independent), it can be written as a dlog form and gives rise to an
integral of uniform trancendental weight. This connection was �rst observed in planar N = 4
SYM [181,204,205]. This observation can be used in practice as a guiding principle for construct-
ing pure integral candidates. We investigate the leading singularities of a given topology and
construct integrals with all leading singularities being simultaneously constant. In this thesis, we
work with the de�nition of the leading singularity given in 2.3.4. Note that we typically only
check some of the leading singularities. Since the connection between the ϵ-factorized DE and
integrals with constant leading singularities is a conjecture anyway we have to check explicitly for
any candidate whether it ful�lls the canonical DE. So working with only few leading singularities
is not a real problem in practice.
In the remaining part of this section we will see how these mathematical concepts and ideas can be
applied in the special case of the �ve-point integrals with one massive external leg. We will focus
on the planar and the hexa-box topologies. The more challenging case of both double-pentagon
topologies will be discussed separately in section 4.3.2 at the end of chapter 4. The pure basis
for one of the double-pentagon topologies still needs to be completed. An interesting observation
which �rst arose for �ve-point topologies is that a four-dimensional analysis of leading singular-
ities is not su�cient to obtain all pure integrals [43, 47, 48]. In some cases, we will need to deal
with higher-dimensional objects which vanish in exactly four dimensions.
The structure of the discussion is following: In sections 3.3.2 and 3.3.3 we discuss the computation
of multivariate residues of �ve-point two-loop integrals based on combining residues of one-loop
sub-graphs. Section 3.3.4 deals with the extra-dimensional extensions of the approach and shows
how many pure �ve-point integrals can be constructed without an explicit calculation of the cor-
responding residues. In section 3.3.5 we sketch a semi-algorithmic procedure for completing a
near-to-pure insertion based on functional reconstruction of the di�erential equation and inte-
grating out the O(ϵ0) part. In section 3.3.6 we complete the general discussion with a detailed
analysis of two special integral topologies which required some case-tailored strategies.

3.3.2 Loop-by-loop residue computation

We begin our discussion of the pure-basis construction with a loop-by-loop approach of computing
maximal cuts of two-loop integrals by using known one-loop results. In the �rst part we will
consider the simplest situation where the two-loop leading singularity is given by the product of
two one-loop constituents. At �rst, we are going to deal with integrals with box- and triangle-
subloops and set D = 4 exactly.
We begin with collecting some well-known results (see e.g. [206]) for maximal cuts of some scalar
one-loop integrals in table 3.2 which will be relevant in the following. Here we set s = (p1 + p2)

2

and t = (p2 + p3)
2. Double lines denote massive external momenta, λ is the Källén function and

all maximal cuts are understood to be strictly four-dimensional. Box integrals with two massive
lines on the same side of the box will be referred to as hard-boxes while integrals with two massive
lines opposite to each other are called easy-boxes.
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Topology Leading singularity

1

2 3

4

1
st

1

2 3

4

1
st

2

1 4

3

1
st−p21p

2
3

1

2 3

4

1
st−p21p

2
3

1

2

3

1√
λ(p21,p

2
2,p

2
3)

1

2

3

1
p21−p

2
3

1

2

3

1
p21

Table 3.2: Maximal cuts of one-loop box and triangle integrals with massless propagators.

Let us now consider a series of planar two-loop topologies with N + 2 external legs which are
built up of a box subloop with two massless external legs and a N -gon subloop with N external
legs (see �g. 3.2) which can be either massive or massless. Note that for some integral topologies
p1 and/or pN have to be set to 0. In the following, we will refer to topologies with both p1 ̸= 0
and pN ̸= 0 as generic while topologies with either p1 = 0 or pN = 0 are called semi-generic and
topologies with p1 = 0 and pN = 0 will be referred to as simple.
The loop-momentum representation of the series is given by

IN,pl = e2γEϵ

∫
dDℓ1
iπD/2

dDℓ2
iπD/2

1

ℓ22(ℓ2 − pN+2)2(ℓ2 − pN+1 − pN+2)2(ℓ1 − ℓ2)2
1∏N−1

i=1 (ℓ1 + qi)2
, (3.26)

where qi =
∑i

j=1 pj and we assume p2N+1 = p2N+2 = 0.

42



For integrals in this thesis we can assume N ∈ {3, 4, 5}. 3

1

2

3

N − 1

N

N + 1

N + 2
`2

`1 + p1

Figure 3.2: The planar N -gon-box diagram with N + 2 external momenta.
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(a) Cutting the left-side box (in red) gives a one-loop N -point integral.
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N
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N + 2
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N − 1

Cut
(`1 − pN+2)

2

1
N + 2

N + 1
N

(b) The numerator factor (ℓ1− pN+2)
2 cancels the Jacobian factor coming from cutting the left-side box.

Figure 3.3: Application of loop-by-loop approach to the planar N -gon-box integral family.

We want to calculate a maximal cut of IN,pl by using the loop-by-loop approach. First, we com-
pute the residue of the left-side box which is equivalent to cutting the following four propagators{

1
ℓ22
, 1

(ℓ2−pN+2)2
1

(ℓ2−pN+2−pN+1)2
, 1

(ℓ1−ℓ2)2

}
. This subloop can be viewed as a two-mass hard-box in-

tegral over ℓ2 with external momenta {pN+2, pN+1,−ℓ1, (ℓ1 − pN+2 − pN+1)}. Note that ℓ1 has to
be considered as an o�-shell momentum since it can take any value before integration. According
to the table 3.2, the leading singularity of this subbox is given by

Rbox =
1

s(N+1)(N+2)(ℓ1 − pN+2)2
. (3.27)

So, up to a rational prefactor, we obtain an additional propagator which can be combined with
the N−1 propagators from the right subloop to a one-loop N -point integral IN,1−loop. Followingly,

3The case N = 2 will be considered separately.
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Figure 3.4: Planar �ve-point double-box integral. The thick line denotes the massive leg.

the maximal cut of IN,pl is obtained in the loop-by-loop approach by

RN,pl =
1

s(N+1)(N+2)

RN,1L, (3.28)

where the second factor denotes the maximal cut of the corresponding one-loop N -point integral.
This computation can be represented graphically by replacing the left sub-loop box in 3.2 by a
single edge connecting the p1-vertex with the pN -vertex (see �g. 3.3a). This computation shows
that the problem of constructing a pure insertion for IN,pl can be traded for the problem of �nding
a pure insertion for the one-loop integral IN,1L which is a much simpler task. For N = 3, 4 the
required one-loop insertion is given by a kinematic prefactor which can be read o� table 3.2. In
this case

N (1)
N,pl =

s(N+1)(N+2)

RN,1L

(3.29)

is a valid candidate for a pure numerator insertion. In this analysis, we are not con�ned to
scalar integrals. We can assume having a numerator factor N (ℓ1) such that IN,1L [N (ℓ1)] is a
pure integral. Then, we can expect that also s(N+1)(N+2)N (ℓ1) is a pure candidate insertion. We
will exploit this idea in more detail in section 3.3.4 where we discuss the more subtle case of a
pentagon subloop with N = 5.
For N = 4, 5 the presented approach can be used to construct a further pure tensor insertion
independent of the previously obtained pure scalar one. Since cutting the left-side box generates a
new propagator it is a natural idea to cancel this additional factor by inserting it in the numerator.
Then, after computing the box-side cut, we are left with a scalar one-loop (N − 1)-gon integral.
The corresponding leading singularity RN−1,1L can be again read o� table 3.2. We conclude that

N (2)
N,pl =

s(N+1)(N+2)(ℓ1 − pN+2)
2

RN−1,1L

(3.30)

is a valid candidate for a pure insertion. This calculation can be represented in a pictorial way
by shrinking the left-side box to a single point (see �g. 3.3b).
In order to illustrate the loop-by-loop procedure, we will explicitly construct two independent
pure integrals for the planar �ve-point double-box topology with a massive external leg attached
to one of the two subboxes. The propagator structure of this topology can be extracted from
�gure 3.4. Since the topology has a sub-box part with two massless external momenta attached
to it we can apply the previously discussed algorithm. According to our analysis, the cutting of
the ℓ2-subbox generates the Jacobian factor 1

s34(ℓ1−p4−p5)2
leaving a two-mass hard-box integral

with external momenta {p1, p4 + p5, p3, p4}. Its leading singularity is given by 1
s12s23

. So, our �rst
pure candidate is given by

N (1)
pl,db = s34s12s23. (3.31)
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(a) Non-planar N -gon-box diagram with N + 1 external momenta.
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numerator insertion de�ned in eq. (3.34).

Figure 3.5: Application of loop-by-loop approach to the non-planar N -gon-box integral family.
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Figure 3.6: Hexa-box diagram with the massive leg on the box sub-loop.

The second pure integrand is obtained by inserting (ℓ1 − p4 − p5)
2 in the numerator which leads

to a two-mass triangle integral spanned by {p1, p3 + p4 + p5, p2} after cutting the ℓ2-subloop. The
leading singularity of this triangle is given by 1

s12−q2
= 1

2p1·p2 . So, the second candidate insertion
reads

N (2)
pl,db = (ℓ1 − p4 − p5)

2s34(s12 − q2). (3.32)

A second integral family relevant for �ve-point scattering where the loop-by-loop approach
can be applied directly is the non-planar N -gon-box family (�g. 3.5a) consisting of an internal
box-subloop and an external N -gon part. The integral family is de�ned by

I
(np)
N = e2γEϵ

∫
dDℓ1
iπD/2

dDℓ2
iπD/2

1

ℓ22(ℓ2 + pN)2(ℓ1 + ℓ2 − pN−1 − pN+1)2(ℓ1 + ℓ2 − pN+1)2

× 1∏N−3
i=0 (ℓ1 + qi)2

,
(3.33)

with qi =
∑i

j=1 pj, q0 = 0, p2N−1 = 0 and generic pN . As before, pN−2 and pN+1 will be set to 0
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Figure 3.7: Non-planar penta-box diagram with the massive leg on the box sub-loop.

for simple and semi-simple momentum con�gurations. Let us compute the maximal cut of the ℓ2-
subloop with external momenta {−(ℓ1 − pN+1), pN−1, (ℓ1 − pN−1 − pN − pN+1), pN}. Depending
on, whether pN is massive, the subloop corresponds to either a two-mass-easy box or a three-mass
box integral. According to the table 3.2, they both have the same maximal cut given by

Rbox,np =
1

(ℓ1 − pN+1 − pN−1)2(ℓ1 − pN+1 − pN )2 − (ℓ1 − pN+1)2(ℓ1 − pN−1 − pN − pN+1)2
. (3.34)

We insert the inverse of Rbox,np into the numerator. After cutting the box subloop and cancelling
the corresponding leading singularity we are left with a one-loop (N−2)-point integral with exter-
nal momenta {p1, · · · , pN−3, (pN−2 + pN−1 + pN + pN+1)}. Graphically, this can be represented
by shrinking the ℓ2-subloop to a single point (see �g. 3.5b). Consequently, we obtain

Nnp =
(ℓ1 − pN+1 − pN−1)

2(ℓ1 − pN+1 − pN)
2 − (ℓ1 − pN+1)

2(ℓ1 − pN−1 − pN − pN+1)
2

RN−2,1L

(3.35)

as pure candidate insertion where RN−2,1L is the leading singularity of the residual one-loop
integral of �gure 3.5b.
Let us consider a concrete example of a simple hexa-box integral with N = 6 with the massive
leg sitting on the ℓ2-sub-box (�g. 3.6). The leading singularity of this sub-loop is gven by

Rbox,np =
1

(ℓ1 − p4)2(ℓ1 − p5)2 − ℓ21(ℓ1 + p1 + p2 + p3)2
. (3.36)

Following the loop-by-loop algorithm, we obtain a pure candidate insertion

Nnp,hb = s12s23
[
(ℓ1 − p4)

2(ℓ1 − p5)
2 − ℓ21(ℓ1 + p1 + p2 + p3)

2
]
. (3.37)

The kinematic prefactor cancels the leading singularity left over after cutting the ℓ2 sub-loop.
For the special cases of simple and semi-simple topologies in the I

(np)
N family, we can extract even

more information from the loop-by-loop approach. Let us again investigate the maximal cut of
the ℓ2 sub-loop given by eq. (3.34). For pN+1 = 0, the second term in the denominator becomes

proportional to an inverse propagator and, consequently, vanishes on the maximal cut of I
(np)
N .

So, the sub-loop leading singularity factorizes into a product of two quadratic expressions in ℓ1.
We can cancel one of these factors by inserting it in the numerator and calculate the maximal cut
of the residual one-loop integral with N − 1 external legs. However, it is important to remember
that an integral constructed in such a way is expected to be pure only on the maximal cut since
we explicitly replaced the ℓ2-leading singularity by its maximal-cut expression. So we might
need additional terms proportional to the corresponding inverse propagator to complete the pure
integrand. We will discuss a semi-algorithmic procedure of computing such corrections in section
3.3.5. Let us illustrate this concept on a concrete example. We consider a semi-simple non-planar
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Figure 3.8: N -gon integral with a bubble-like sub-loop.

penta-box integral with N = 5, p6 = 0 and p25 ̸= 0 (�g. 3.7). The ℓ2 leading singularity is given
by

Rbox,np =
1

(ℓ1 − p4)2(ℓ1 − p5)2 − ℓ21(ℓ1 − p4 − p5)2
cut−→ 1

(ℓ1 − p4)2(ℓ1 − p5)2
. (3.38)

The box leading singularity factorizes on the maximal cut. According to our strategy, we start
with

N (1)
np,pb ∼ (ℓ1 − p4)

2, N (2)
np,pb ∼ (ℓ1 − p5)

2. (3.39)

After cutting the ℓ2 sub-box and cancelling the numerators, we are left with one-loop four-point
integrands spanned by {p1, p2, (p3 + p4), p5} and {p1, p2, (p3 + p5), p4}, respectively. The on-shell
pure candidates are now given by the insertions

N (1)
np,pb = s12s15(ℓ1 − p4)

2, N (2)
np,pb = s12s14(ℓ1 − p5)

2. (3.40)

As we will see in section 3.3.5, these integrals indeed require an o�-shell correction term.
There is a third relevant family of integral topologies for which a pure insertion can be constructed
in an algorithmic way. These are N -point planar integrals containing a bubble-like subloop,
generally de�ned via

I
(bubble)
N = e2γEϵ

∫
dDℓ1
iπD/2

dDℓ2
iπD/2

1

ℓ22(ℓ1 − ℓ2 − pN)2
1∏N−2

i=0 (ℓ1 + qi)2
, (3.41)

with qi =
∑i

j=1 pj, q0 = 0. The momentum routing can be extracted from �g. 3.8. Let us recall
the well-known result [138] for the massless one-loop bubble integral with generic propagator
powers and full ϵ-dependence.

Ibubble(p2, {n1, n2}) = eϵγE
∫

dDℓ

iπD/2

1

[ℓ2]n1 [(ℓ+ p)2]n2

= (−1)n1+n2eϵγE
Γ(2− ϵ− n1)Γ(2− ϵ− n2)Γ(n1 + n2 + ϵ− 2)

Γ(n1)Γ(n2)Γ(4− 2ϵ− n1 − n2)(−p2)n1+n2+ϵ−2
.

(3.42)

Let us concentrate on two important special cases where the result can be easily transformed into
a function of uniform trancendental weight:

� n1 = n2 = 1

Ibubble(p2, {1, 1}) = f(p2, ϵ)

(1− 2ϵ)ϵ
, (3.43)
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Figure 3.9: Massless slashed-box integral.

� n1 = 1, n2 = 2 or vice versa

Ibubble(p2, {1, 2}) = −f(p
2, ϵ)

p2ϵ
, (3.44)

where f(p2, ϵ) is a pure function of weight zero. This observation together with the propagator-
like p2-dependence of the bubble integral provide a general strategy for integrals from the IbubbleN

family. We start with either a dotted bubble sub-loop IbubbleN

[
1
ϵℓ22

]
or a normalized undotted

integral I
(bubble)
N

[
(1−2ϵ)

ϵ

]
and integrate out the bubble part. In the �rst case, we are left with a

N -point one-loop integral over ℓ1 with external legs {p1, · · · , pN−1, pN} and, in the second case,
we obtain a (N − 1)-point one-loop integral with {p1, · · · , pN−2, (pN−1 + pN)}.4 To obtain a pure
integral we only need to compensate for the maximal cut of the residual one-loop integral. It
should be noticed that, although at one-loop level the dotted and the undotted bubble integrals
are dependent, this is, in general, not true for the corresponding two-loop integrals since the
external momenta of the sub-loop depend on the second loop momentum. Later, we will see
examples where we indeed can construct two independent pure integrals with this approach.

3.3.3 Extended loop-by-loop approach

All pure integrals we discussed so far could be constructed by combining two one-loop maximal
cuts. In principle, we just glued together two one-loop results to obtain a pure two-loop insertion.
However, this is not possible in general. In the following, we want to discuss two concrete examples
where the loop-by-loop approach requires a more delicate treatment of the intermediate residue
which arises after cutting one of the sub-loops. First, we discuss a pedagogical example of the
scalar massless slashed-box diagram (�g. 3.9). The corresponding integral is de�ned by

Isb = e2ϵγE
∫

dDℓ1
iπD/2

dDℓ2
iπD/2

1

ℓ21(ℓ1 − p1)2(ℓ2 − p1 − p2)2(ℓ2 − p1 − p2 − p3)2(ℓ1 − ℓ2)2
. (3.45)

The kinematics is parametrized by s = (p1 + p2)
2 and t = (p2 + p3)

2. Let us brie�y discuss
the di�erence of this example to the previous cases. Since the diagram consists of two triangles,
there are not enough propagators in both sub-loops to localize all internal degrees of freedom in
four dimensions. However, this problem appears already for one-loop triangle integrals and was

4After computing the ℓ2 integral we take the ϵ → 0 limit.
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analyzed there. It was shown that an additional propagator can be cut. This statement becomes
more precise if we consider a generalized de�nition of loop-integrals in a projective extension
of loop-momentum space. One possible realization of this idea is the so-called embedding space
formalism (ESF) (see e.g. [207, 208]). We point to [167] for a more detailed introduction to ESF
and give an overview in appendix B. The embedding space extension of the slashed-box integral
in (D = 4)-dimensions is given by

I
(D=4)
sb ∼

∫
dY1 dY2

(X0Y1)(X1Y1)(Y1Y2)(IY1)(X2Y2)(X3Y2)(IY2)
, (3.46)

with the in�nitity point I and the initial point X0 as de�ned in appendix B.5 Note that the
two in�nitity propagators (IY1) and (IY2) provide exactly the both missing factors which can be
cut now. In the �rst step, we impose the maximal cut conditions (X0Y1) = (X1Y1) = (Y1Y2) =
(IY1) = 0 on the Y1 sub-box. Since the inverse propagators are now linear in the embedding space
variables Y1, Y2 the Jacobian associated with these cut conditions is given by

J =
1√

G(X0, X1, Y2, I)
, (3.47)

with G(V1, · · · , Vn) := det {(ViVj)}ni,j=1. The Gram determinant is a perfect square and reads
explicitly

G(X0, X1, Y2, I) = ((X0Y2)− (X1Y2))
2. (3.48)

Inserting this into (3.46), gives

I
(D=4)
sb Y1−cut

∼
∫

dY2
((X0Y2)− (X1Y2))(X2Y2)(X3Y2)(IY2)

. (3.49)

Using the bilinearity of the embedding space scalar product we can interprete eq. (3.49) as a box
integral with an auxiliary propagator (X̃Y2), where X̃ := X0 −X1 and apply eq. (3.47) again to
take the second residue. The maximal cut is given by

Rsb ∼
1√

G(X̃,X2, X3, I)
=

1

s+ t
. (3.50)

This calculation explains the prefactor (s + t) in eq. (2.106). Now we want to apply the ESF
approach to a �ve-point massive integral which cannot be treated by the loop-by-loop method in
momentum space. Our example is the scalar triangle-box diagram with the massive leg attached
to the box-side (�g. 3.10). The integral is de�ned via

Itb = e2ϵγE
∫

dDℓ1
iπD/2

dDℓ2
iπD/2

1

ℓ21(ℓ1 − p1)2(ℓ1 − p1 − p2)2(ℓ2 + p4 + p5)2(ℓ2 + p5)2(ℓ1 − ℓ2)2
. (3.51)

In the embedding space representation the integral becomes

I
(D=4)
tb ∼

∫
dY1 dY2

(X0Y1)(X1Y1)(X2Y1)(X3Y2)(X4Y2)(Y1Y2)(IY2)
. (3.52)

5The delta functions δ((Y1Y1)) and δ((Y2Y2)) which ensure the lightcone constraint are included in the integra-
tion measure.
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Figure 3.10: Five-point triangle-box integral with the massive leg at the box-side.

We cut the four box-side propagators {(X0Y1), (X1Y1), (X2Y1), (Y1Y2)} and obtain the following
Jacobian factor

J =
1√

G(X0, X1, X2, Y2)
=

1

(q2(X2Y2)− s12(X1Y2))
2 . (3.53)

By introducing the auxiliary vector X̃ := q2X2−s12X1, we can write the Y2 sub-loop as a triangle
integral

I
(D=4)
tb Y1−cut

∼
∫

dY2

(X̃Y2)(X3Y2)(X4Y2)(IY2)
. (3.54)

The maximal cut is given by

Rtb ∼
1√

G(X̃,X3, X4, I)
=

1

s12(s15 − s23)− q2s34
, (3.55)

where we used (X̃X3) = −s12s23 and (X̃X4) = q2s34 − s12s15. Due to the linear structure of the
propagators in the ESF approach, we were able to express the residue of the Y1-cut in terms of
propagators and treat it as an ordinary one-loop integral.

3.3.4 Extra-dimensional insertions

While in section 3.3.2 and section 3.3.3 we discussed methods for constructing integrals with
constant leading singularities based on residue calculations, here we want to employ a more
indirect idea which is inspired by the fact that analytic properties of Feynman integrals can
depend on their space-time dimension. In particular, it can happen that an integral is pure when
calculated for a special value of the space-time dimension and is not in any other dimension.
E.g. one-loop bubble diagrams are naturally UT-functions in 2 − 2ϵ dimensions. From the
explicit formula (3.42) for the massless bubble integral with full ϵ-dependence we can see that the
dimension change 4 − 2ϵ → 2 − 2ϵ can be implemented by dotting one of the two propagators.
For a generalization see [209].
Since we are interested in �ve-point processes let us �rst discuss the one-loop pentagon integral
with on-shell external momenta p2i = 0, i = 1, · · · , 5. The integral is de�ned by

Ipt = eϵγE
∫

dDℓ

iπD/2

1∏4
i=0(ℓ+ qi)2

, (3.56)

where qi =
∑i

j=1 pj and q0 = 0. In four dimensions there are more propagators than cuts can
be taken. So any maximal cut of the pentagon will explicitly depend on the corresponding cut
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choices. For example, if we cut the �rst four propagators the maximal cut will be 1
J(l∗)(ℓ∗−p5)2

,

where ℓ∗ is a solution to the cut conditions (ℓ∗ + qi)
2 = 0, i = 0, · · · , 3 and J is the Jacobian. It

is easy to see that we cannot generate a pentagon integral with all constant leading singularities
being constant by starting with a scalar pentagon and using only loop-momentum independent
numerators [136]. One possible solution to this problem are chiral numerators which explicitly
encode the cut conditions. This approach is widely used e.g. in the framework of the generalized
unitarity [210�212]. Here, we want to explore a di�erent approach which is based on shifting
the space-time dimension to D = 6 − 2ϵ. This idea was applied for some of the massless two-
loop �ve-point integrals in [48]. The reason for this can most easily be seen in terms of the
Baikov representation (see section 2.3.2) which makes the dimensional dependence of loop integrals
manifest. In the Baikov variables ρi the pentagon integral is

Ipt ∼ [G(p1, · · · , p4)](−D+5)/2

∫ 5∏
i=1

dρi
ρi

[G(ℓ, p1, · · · , p4)](D−6)/2 , (3.57)

where G is the Gram determinant. We omit all constant factors from eq. (2.46) since they are
irrelevant for the residue calculation. Since the number of integrations now coincide with the
number of propagators the maximal cut can be read o� to be

Rpt ∼
[G(ℓ, p1, · · · , p4)](D−6)/2

[G(p1, · · · , p4)](D−5)/2

∣∣∣∣∣
ρi=0

. (3.58)

For D = 6 the maximal cut is given by the inverse square-root of the �ve-point Gram determinant
depending only on external kinematics

R(D=6)
pt ∼ 1√

G(p1, · · · , p4)
. (3.59)

This calculation shows that the natural starting point for a pure pentagon integral is

I
(D=6)
pt

[√
G(p1, · · · , p4)

]
. We can use eq. (3.57) in order to relate the six-dimensional pentagon

to the four-dimensional one.

I
(D=6)
pt ∼ I

(D=4)
pt

[
G(ℓ, p1, · · · , p4)
G(p1, · · · , p4)

]
. (3.60)

Consequently, the pure insertion for the four-dimensional one-loop pentagon integral is given by

Npt,1L =
G(ℓ, p1, · · · , p4)√
G(p1, · · · , p4)

∼ tr5µ, (3.61)

where we used eq. (3.15) and eq. (3.6) in order to write the pure insertion in terms of µ and tr5.
Let us proceed with two-loop �ve-point integrals. First of all, we can use our insight about

the one-loop pentagon to extend the loop-by-loop approach to pentagon-like residues. Let us,
for instance, consider one of the three two-loop penta-box topologies with one external mass (�g.
3.11). After cutting the ℓ2 sub-box we are left with a one-loop pentagon integral over ℓ1. Due to
our discussion in the previous part, we should attach tr5µ11 to the numerator in order to make
this pentagon pure. Combining all parts, we conclude that

N (1)
pb = s45tr5µ11 (3.62)
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Figure 3.11: Massive penta-box diagram.
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Figure 3.12: Non-planar penta-box integral with mass on the box side.

is a good candidate for a pure insertion.
Next, we try to cut the pentagon sub-loop �rst. The independent external momenta of the
pentagon sub-loop are {ℓ2, p1, p2, p3}. So both the Baikov and the Gram determinants of the
pentagon sub-loop will depend on ℓ2. Therefore, it seems natural to start with

N (2)
pb ∼ tr5µ12. (3.63)

Let us explicitly compute at least two of the leading singularities of Ipb [tr5µ12] to show that it is
indeed a good choice. We perform the cut computation in the Baikov representation but instead
of using genuine two-loop Baikov coordinates we employ a loop-by-loop approach [49,143].
The result is

R(2)
pb = ± 4

s45
(3.64)

This calculation shows explicitly that

N (2)
pb = s45tr5µ12 (3.65)

is indeed a good candidate. Since we have not checked all leading singularities we still need to
verify the ϵ-factorization of the numerical di�erential equation. It is worth mentioning that in the
concrete case of the planar penta-box the integrals Ipb [s45tr5µ12] and Ipb [s45tr5µ11] are not linearly
independent, so they can not be both used simultaneously as master integrals. However, we will
see later examples where both µ11- and µ12-insertions indeed lead to independent integrals.
Let us now extend this approach to a non-planar example. We consider the non-planar penta-box
topology (�g. 3.12) with 6 master integrals. We denote this topology by I

(np)
pb . After cutting the

ℓ2-subbox we are left with three propagators
{

1
ℓ21
, 1
(ℓ1+p2)2

, 1
(ℓ1+p2+p3)2

}
depending only on ℓ1 and

the box Jacobian given by

Rnp,subbox
1

(ℓ1 − p1)2(ℓ1 − p5)2 − ℓ21(ℓ1 + p2 + p3 + p4)2
. (3.66)
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Figure 3.13: The soft limit of two propagators separated by an external leg. The dot denotes the
double propagator.

On the maximal cut this Jacobian factorizes to 1
(ℓ1−p1)2(ℓ1−p5)2

. Together with the three ℓ1-
dependent propagators we obtain a one-loop pentagon integral. So we expect

N (1)
np,pb = tr5µ11 (3.67)

to be a pure insertion. In analogy to the planar penta-box, we can ask whether

N (2)
np,pb = tr5µ12 (3.68)

would also give rise to a pure integral. An explicit calculation shows that this is indeed the case.
Furthermore, in the non-planar case both N (1)

np,pb and N (2)
np,pb give rise to independent Feynman

integrals. There is an important subtlety in this calculation. Since the ℓ2-subloop leading sin-
gularity only factorizes on-shell an o�-shell correction may, in principle, be required. However,
such a correction was not needed for a µ-like insertion in practice. It would be interesting, to
understand better why this is the case.
By analyzing the loop-by-loop maximal cut of the scalar integral of the non-planar penta-box
topology (�g. 3.12) we found a third parity-odd insertion that gives rise to an on-shell pure
integral. Based on this observation, we searched for a third µ insertion. It was indeed found by
combining a µ numerator insertion with doubling one of the central rung propagators. Concretely,
the insertion is given by

N (3)
np,db =

q2

ϵ(ℓ2 + p1)2
tr5 [µ12 + µ11] . (3.69)

Heuristically, a double propagator can be compared to a pair of propagators separated by a soft
external particle

1

[(ℓ+ q)2]2
∼ 1

(ℓ+ q)2
1

(ℓ+ q + αp)2
, (3.70)

with α → 0 (see �g. 3.13). By doubling one of the central rung propagators we turned the
sub-box part of the diagram into a pentagon-like subdiagram.

A short summary of this discussion: try to �nd a suitable µ-insertion whenever

you are faced with a pentagon sub-loop. If there is no such sub-loop, look for a

suitable double propagator to �create� one.
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3.3.5 Construction of o�-shell correction terms

In section 3.3.2 it was already mentioned that the loop-by-loop approach sometimes requires
construction of correction terms which vanish on-shell and, therefore, cannot be obtained by a
maximal-cut computation. Here, we discuss how the remaining o�-shell terms can be found. In
the following, we will assume that the di�erential equation for the intermediate basis Ĩ takes the
form

dĨ = [A0(s) + ϵA1(s)] Ĩ ds, (3.71)

where the matrices A0 and A1 are ϵ-independent. For the integrals considered in this thesis it
was su�cient to focus on di�erential equations consisting of constant and linear terms in ϵ. Since,
in this section, we are only interested in o�-shell corrections we can further assume that A0 is a
lower-triangular matrix with vanishing diagonal elements and so nilpotent.
Before dealing with the general multivariate problem, we should recall the univariate case

dĨ = [A0(x) + ϵA1(x)] Ĩ dx. (3.72)

We perform the basis change

Ĩ → G = exp

[
−
∫ x

0

A0(x
′) dx′

]
Ĩ. (3.73)

By inserting (3.73) into (3.72), one can prove that the new integral basis ful�lls the canonical
di�erential equation6

dG = ϵ exp

[
−
∫ x

0

A0(x
′) dx′

]
A1(x) exp

[∫ x

0

A0(x
′) dx′

]
dxG. (3.74)

This trick is usually referred to as integrating out A0(x). Since A0 is nilpotent the matrix expo-
nential exp

[
−
∫ x

0
A0(x

′) dx′
]
can be computed in a closed form. For all cases we were faced with

in practice, we could even assume A2
0 = 0. Then, the new integral basis is given by

Ĩ →
[
1−

∫ x

0

A0(x
′) dx′

]
Ĩ. (3.75)

Let us return back to the multivariate problem. First, we apply the integrability conditions of
eq. (2.71) to eq. (3.71) and obtain

∂iA0,j − ∂jA0,i + [A0,i, Aj,0] = 0, i, j = 1, . . . , 6. (3.76)

Due to the particular simple form of the A0,i, we can assume that [A0,i, A0,j] = 0. So, there exists
a matrix-valued potential Φ(s) with ∂iΦ = A0,i, i = 1, · · · , n which can be constructed from the
partial derivatives A0,i by methods of standard vector calculus. The explicit formula of the basis
change is then

Ĩ → [1− Φ(s)] Ĩ. (3.77)

Since in the case of �ve-point integrals with one external mass the pre-canonical di�erential
equation is only known in numerical form, due to the absence of analytic IBP's, we cannot
directly apply the method described above. However, in all relevant cases, we managed to obtain
the analytic form of A0 by a functional reconstruction procedure. Due to a rather simple form

6Here, we assume that A0(x) commutes with its integral
∫ x

0
dx′ A0(x

′). Otherwise, the matrix exponential in
eq. (3.73) has to be replaced by the generic Magnus series (see e.g. [203,213]).

54



3

4

2

5

1

`2

`1

8
2

3

5

7

(a) Hard triangle-box topology.

2

51

4

3

3

2
67

8
5

ℓ1 + p2

ℓ2

(b) Hard non-planar double-box topology.

Figure 3.14: Two topologies with most complicated pure bases. Blue numbers label the propaga-
tors.

of A0, we, in all cases, managed to reconstruct it with O(30) numerical evaluations. Note that
in all but one cases we only needed to compute the di�erential equations with six or more cut
propagators. In all these cases we were able to compute the univariate di�erential equation which
was used as a starting point of the reconstruction procedure. Furthermore, we employed the
PSLQ algorithm [214] (implemented in the Mathematica function FindIntegerNullVector[])
to �guess� the analytic form of the dependence on the last two variables. So, the reconstruction
task was e�ectively reduced to a two-variable problem which allowed us to keep the number
of numerical evaluations rather small. We had to modify the standard rational reconstruction
procedure due to presence of square-roots in the canonical basis. Since all these roots were known
analytically before the reconstruction, only a minor change of the standard method was needed.
Technical details of our reconstruction approach are discussed in appendix C.

3.3.6 The two most challenging topologies

After we discussed several general ideas we used to construct the pure bases for both planar
and non-planar topologies we want to show how we combined these approaches for two most
challenging topologies in the present integral families. These are the planar triangle-box topology
with the massive leg attached to the triangle side (�g. 3.14a) denoted by Ihtb with 6 master
integrals and the non-planar double-box integral topology (Inp,hdb) with the mass attached to
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the central rung with 4 master integrals (�g. 3.14b). Both topologies have in common that
they have more master integrals than their massless counterparts, the massles triangle-box has 2
master integrals and the massless non-planar double-box only 1. By experience, these additional
insertions are often hard to construct. This property is also shared by the non-planar penta-box
integral of �g. 3.12 with 6 master integrals, whereas the corresponding massless integral has only
3 masters.
Let us begin with the planar triangle-box topology. The �rst pure integrand can be derived by
the loop-by-loop approach of section 3.3.2. We obtain

N (1)
htb = s34

√
λ(s23, s45, q2). (3.78)

For the next two integrals we construct modi�ed µ-like insertions given by

N (2)
htb =

1

ϵ
tr5
µ11

ρ8
,

N (3)
htb =

1

ϵ
tr5
µ12

ρ8
.

(3.79)

These insertions can be understood as soft limit of pure non-planar penta-box integrals, as dis-
cussed at the end of 3.3.4. Note that this type of insertions was already used in the case of the
massless �ve-point hexa-box topology in [48].
Further insertions can be found by analyzing the following one-loop IBP relation

(q2s45) p1
p23

p45
+
D − 4

2
(q2 − s23 + s45) p1

p23

p45

= (D−3)
(
p23 − p45 − p1

)
,

(3.80)

where pij = pi + pj. This relation shows that a particular combination of a dotted three-mass
triangle integral with the corresponding scalar integral can be written as a sum of three pure
bubble integrals. We combine this observation with the loop-by-loop approach and construct the
following pure insertions

N (4)
htb = s34

(
q2s45
ρ2

+
D − 4

2
(q2 − s23 + s45)

)
,

N (5)
htb = s34

(
q2s23
ρ3

+
D − 4

2
(q2 + s23 − s45)

)
,

(3.81)

where the second insertion is related to the �rst by p23 ↔ p45. Note that these insertions give rise
to independent two-loop integrals while the corresponding dotted one-loop triangles are linearly
dependent. The reason is that the IBP relation (3.80) applied at the sub-loop level becomes
loop-momentum dependent which leads to two independent two-loop integrals.
Finally, we obtained the last insertion

N (6)
htb = s34

(
D − 4

2
(q2 + s23 − s45)− q2

(ℓ1 − p4)
2

ρ2
− s15

ρ7
ρ5

)
(3.82)

by combining the loop-by-loop approach with the method of section 3.3.5. We started with

s34q
2 (ℓ1−p4)2

ρ2
which is dictated by the loop-by-loop approach and obtained the two additional

terms by integrating out the analytically reconsructed A0-part of the di�erential equation.
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Let us continue with the non-planar double-box integral topology (�g. 3.14b) which we refer
to as hard-double-box in following. We begin with computing the maximal cut of the scalar
integral. The crucial di�erence of this topology to the cases discussed in section 3.3.2 is the
generic con�guration of the external momenta. Since we have external momenta p2 and p4
attached to both triple vertices, the leading singularities of both the left and the right sub-boxes
do not factorize in terms of propagator-like objects as in the simple and the semi-simple cases.7

However, for the leading singularity of the easy-box integral (�g. 3.15) a factorization in terms
of helicity spinors exists and can be found for instance in [215].8

2

1 4

3

Figure 3.15: Easy-box integral.

The leading singularity of the easy-box integral can be factorized as follows

(p1 + p2)
2(p2 + p3)

2 − p21p
2
3 = [p1 · q] [p1 · q̄] , (3.83)

with qµ = ⟨2|γµ|4], q̄µ = ⟨4|γµ|2]. The notation we use here is explained in A. Since both the
left and the right sub-boxes have three massive external legs the factorization formula (3.83) is
not applicable to them. Instead, we cut the external sub-box, spanned by {−(ℓ2 − p2), p3,
(ℓ2 + p1 + p4), p5}, which has two massless external legs, with inverse propagators
C1 = {(ℓ1 + p2)

2, (ℓ1 + p2 + p3)
2, (ℓ1 + ℓ2 − p5)

2, (ℓ1 + ℓ2)
2} and write the remaining four-dimen-

sional integral as

Ihdb,C1 ∼
∫

d4ℓ2
iπ2

1

[(ℓ2 − p2) ·Q]
[
(ℓ2 − p2) · Q̄

]
ℓ22(ℓ2 + p1)2

, (3.84)

with Qµ = ⟨3|γµ|5], Q̄µ = ⟨5|γµ|3]. We parametrize ℓ2 by

ℓµ2 = pµ2 + α1p
µ
3 + α2p

µ
5 + β1⟨3|γµ|5] + β2⟨5|γµ|3], αi, βi ∈ C, (3.85)

so that
(ℓ2 − p2) ·Q = β2p3 · p5, (ℓ2 − p2) · Q̄ = β1p3 · p5, (3.86)

and change the integration variables to αi, βi. The Jacobian associated to this change of variables
becomes

J = ϵµνρσp3,µp5,νQρQ̄σ ∼ (p3 · p5)2 (3.87)

up to a numerical prefactor. So, the integral in eq. (3.84) becomes

Ihdb,C1 ∼
∫

dα1 dα2 dβ1 dβ2
iπ2

1

β1β2ℓ22(αi, βi)(ℓ2(αi, βi) + p1)2
. (3.88)

7Here, the on-shell factorization is understood.
8We are deeply grateful to Michael Ruf for pointing to this paper and discussing the computation of the leading

singularity.
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The residue at β1 = 0, β2 = 0 can now be trivially taken. The result is

Ihdb,C1,βi
∼
∫

dα1 dα2

iπ2

1

p1(s, α1, α2)p2(s, α1, α2)
, (3.89)

where

p1 =
1

2

(
α2

(
q2 + (α1 − 1) s12 − α1s34 − α1s45 − s15 + s34

)
+ α1s23

)
,

p2 = α1s45 + (α1 − 1) (α2 − 1) s12 + α2 (−α1s34 − α1s45 + s34) .
(3.90)

The zeros of the two factors fully �x the two remaining degrees of freedom and so the maximal
cut is given by

Rhdb =
1√
Σ

(2)
5

, (3.91)

with

Σ
(2)
5 =

(
q2 (s45 − s12) + s12 (s15 + s23)− s23s34 − s15s45 + s34s45

)
2

+ 4s12s23 (s12 − s34 − s45)
(
q2 − s15

)
.

(3.92)

An alternative derivation of this result, which uses ESF approach, is given in [56]. The obvious
choice for the �rst insertion is

N (1)
hdb =

√
Σ

(2)
5 . (3.93)

The second pure insertion was constructed such that it cancels one of the chiral products (ℓ2−p2)·Q
and (ℓ2− p2) · Q̄. We used a combination of (ℓ2− p2) ·Q and (ℓ2− p2) · Q̄ and their Z2 transforms
(ℓ2 + p1 + p4) ·Q and (ℓ2 + p1 + p4) · Q̄ such that the full insertion transforms as a singlet under
the Z2 × Z2-symmetry of the diagram. Using Dirac-trace algebra the result can be cast into the
form

N (3)
hdb =

1

8

{
tr
[
(/ℓ2 − /p2)/p3/p1/p5

]
+ tr

[
(/ℓ2+/p1+/p4)/p3/p1/p5

]
+ 8

[
(ℓ2 + p1)

2 − ℓ22
]
(s12 − s34 − s45)

}
.

(3.94)
The third integrand is constructed using µ-insertions and doubled propagators. Doubling the
central rung propagators creates an arti�cial pentagon-like structure. Applying the symmetries
of the diagram we obtain the following pure candidate

N (3)
hdb =

1

ϵ
tr5µ12

(
1

ρ7
+

1

ρ8

)
. (3.95)

The last pure candidate comes from a loop-by-loop argument. We cancel the leading singularity
of the outer box and then double one of the two central rung propagators to make the remaining
bubble sub-integral pure. However, this only gives an integral which is pure on-shell. The full
insertion requires an o�-shell completion which can be constructed by using the approach of
section 3.3.5. The result reads

N (4)
hdb =

1

ϵ

q2

ρ7

[
(ℓ2 − p2 − p3)

2(ℓ2 + p1 + p3 + p4)
2 − (ℓ2 − p2)

2(ℓ2 + p1 + p4)
2
]
+R

(4)
hdb. (3.96)

The explicit form of the o�-shell part R
(4)
hdb can be found in eq. (4.62).
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3.4 Numerical di�erential equations

In this section, we describe the numerical approach to constructing the analytic form of canonical
di�erential equations based on [48]. In the following, we will assume that we already have a pure
integral basis

dG = ϵ dMG, (3.97)

with

dM =
N∑
a=1

Mad log(Wa), (3.98)

where A = {W1, · · · ,WN} is the alphabet of the integral topology and {M1, · · · ,MN} is a collec-
tion of constant matrices with rational entries.
Let us now assume that we not only have the pure basis G but also know the alphabet A in
advance. In this case, the only unknown quantities in eq. (3.97) are the constant matrices Ma

which can be determined by comparing the functional form of eq. (3.98) to a su�ciently large
number of numerical samples for the connection dM . Since we can not deal with a numerical
di�erential form we instead work with derivatives taken along a random direction in the kine-
matic space. Let c⃗ be a randomly chosen vector in the kinematic space (or more precisely, in its
dual space). We de�ne the directional derivative operator by c⃗ · ∇s⃗G. With this de�nition the
canonical di�erential equation takes the form

c⃗ · ∇s⃗G = ϵ
∑
a

Mac⃗ · ∇s⃗ log(Wa)G ≡ CG, (3.99)

where C is the matrix-valued directional connection. Now, the DE is expressed in terms of
ordinary matrices instead of di�erential forms. We use FIRE6 [154] to compute the connection C
on a set of rational points {s⃗1, · · · , s⃗N} for a rational value of the dimensional regulator ϵ = ϵ0.
Note that we can easily obtain any partial derivative back from the connection by simply setting
c⃗ = e⃗i, with e⃗i being the i-th unit vector. We �atten the connections C(s⃗i) into a n

2 ×N matrix

C̃ =


C11(s⃗1) C11(s⃗2) · · · C11(s⃗N)
C12(s⃗1) C12(s⃗2) · · · C12(s⃗N)

· · · · · · · · · · · ·
Cnn(s⃗1) Cnn(s⃗2) · · · Cnn(s⃗N)

 , (3.100)

where n is the dimension ofG. Next, we write the left-hand-side of eq. (3.99) in a similar manner.
We de�ne the matrix L by

Lij ≡ c⃗ · 1

Wj

∂Wj

∂s⃗

∣∣∣∣∣
s⃗=s⃗i

, i, j = 1, · · · , N. (3.101)

Using these de�nitions, we get

C̃ = ϵ0


∑N

j=1 L1jM11,j

∑N
j=1 L2jM11,j · · ·

∑N
j=1 LNjM11,j∑N

j=1 L1jM12,j

∑N
j=1 L2jM12,j · · ·

∑N
j=1 LNjM12,j

· · · · · · · · · · · ·∑N
j=1 L1jMnn,j

∑N
j=1 L2jMnn,j · · ·

∑N
j=1 LNjMnn,j

 (3.102)

By comparing eq. (3.100) with (3.102), we obtain

M⃗ij =
1

ϵ0
L−1C̃ij, (3.103)

59



where C̃ij is the (i, j)-th row vector of C̃ and M⃗ij contains the (i, j)-th entries of the connection
matrices Ma. We implemented the described procedure in a Mathematica program and tested it
for several known integral topologies including the massless �ve-point penta-box topology and the
one-loop pentagon integral with one o�-shell leg. In case of purely rational di�erential equations,
all computations could be performed using exact arithmetics. The presence of non-rationalized
square-roots, in the case of �ve-point integrals with an o�-shell leg, requires a di�erent approach
due to high complexity of the involved algebraic expressions. We used high-precision (150− 200
digits) �oating point numbers in all intermediate steps and reconstructed the manifestly rational
entries of Ma afterwards using the built-in Mathematica routine Rationalize[]. Crucial steps
here are computing determinants and matrix inversions. Since the result has to be rational the
success of this procedure provides a non-trivial check on the result. An alternative idea is to work
in a �nite �eld to parametrize the phase-space kinematics. Here, all �nite �eld values have to be
chosen in such a way that all relevant Gram determinants are perfect squares in the particular
�nite �eld. Since approximately half of all numbers in a given �nite �eld are perfect squares this
is a requirement that can be satis�ed easily. A detailed discussion of this approach can be found
in [55].
In the following, we want to discuss one further application of the numerical connection C̃. As
stated above, the task of reconstructing the analytic di�erential equation requires knowledge of
both the pure basis and the symbol alphabet. However, for the computation of C̃ the alphabet is
not needed. Moreover, the connection itself can be used to extract some important information
about the alphabet. First of all, the size N of the alphabet can be determined in this way. For
that purpose, we compute C̃m for a �xed but arbitrary number of points m < n2. Let us consider
the rank of this matrix which is given by the number of independent columns. Since the entries
of the matrix are linear combinations of the alphabet letters it is clear that the rank can be
maximally as high as the size of the alphabet. In practice, we increase m up to some number
mmax such that the rank of C̃m stabilizes. Also, here, the rank calculation is performed over
high-precision �oating point numbers with several choices of the direction vector c⃗.
The reconstruction procedure can be applied to the complete integral basis as well as to arbitrary
parts of it separately. This allows to start at lower sectors of the basis where the alphabet is
already known and add higher sectors until the reconstruction fails at some point. In this way,
we can identify exactly at which places in the di�erential equation new alphabet letters appear.
Concretely, we can extract the index pair (i, j) such that the unknown letter has to appear in the
j-th coe�cient of the i-th master integral. This information simpli�es the search for new letters
signi�cantly.

3.5 Numerical integration of pure DE

3.5.1 Generalized power-series approach

After the di�erential equation is brought into the canonical form

dG = ϵ dMG, (3.104)

it can be, at least in principle, integrated order-by-order in ϵ in terms of Chen's iterated integrals
(see section 2.4.1). However, it was discussed in section 2.4.3 that an explicit representation of
iterated integrals in terms of well-known functions like harmonic or Goncharov polylogarithms can
in general not always be achieved. We need to bring the di�erential equation to the Fuchsian form
(2.86) such that it has only linear singularities. This requires i.a. a simultaneous rationalization
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of all square-roots appearing in the symbol alphabet which is not possible in general. Even if one
manages to remove this obstacle the number of special functions in the �nal result may grow very
fast which could make the numerical evaluation slow. So, e.g. for the �ve-point massless integrals,
some of the pentagon functions are represented by cleverly chosen one-fold integrals which can be
evaluated via e�cient numerical algorithms [51,52]. A further di�culty with analytic expressions
for multi-loop multi-scale integrals is that the general problem of analytic continuation to an
arbitrary region of the phase space still remains a very challenging task. Introducing new and
often complicated variables which are needed for rationalizing the alphabet may cause an even
more complicated behaviour of the analytic solution near both physical and spurious singularities.
For these reasons, we decided to follow a fully numerical approach outlined in references [71, 72]
in this work. The idea of this approach is to pull back the connection down on a univariate path
through the phase space and then to expand this univariate connection in a series around some
set of points along the path. The di�erent expansions will then be connected to each other by
continuity conditions on the boundaries of the expansion segments. The following presentation
of this approach closely follows section 6 of ref. [55].
We consider a straight line

s⃗(t) = s⃗b + (s⃗e − s⃗b)t, t ∈ [0, 1] , (3.105)

where s⃗b and s⃗e are arbitrary beginning and end points. In the following, we will assume that
G(s⃗b) is known from the boundary conditions. The goal is now to compute G(s⃗e). Combining
the univariate di�erential equation

d

dt
G = ϵA(t)G(t),

A =
dM(s⃗(t))

dt

(3.106)

and the Laurent expansion of G

G =
∞∑
j=0

ϵjG(j), (3.107)

we obtain a recursive relation for the integrals G(i)

G(i) =

∫
A(t)G(i−1)(t)dt+ c(i), (3.108)

with c(i) being the i-th order integration constants. In this discussion, we assume that the integral
basis G is normalized in such a way that the expansion starts at weight 0 and, consequently, the
G(i) have weight i. The lowest-weight solution G(0) = c(0) is constant and fully determined by
the boundary condition of the di�erential equation.
Since we are going to solve eq. (3.108) by expanding the connection A(t) into a power-series we
have to de�ne a segmentation of the path (3.105) �rst because a series around a given point has in
general a �nite radius of convergence. We have to make sure that we use a series expansion only
inside its range of convergence. A segmentation S = {Sk = [tk − rk, tk + rk)|k = 0, · · · , Ne − 1}
of a path is a set of intervalls with empty intersection covering the [0, 1] intervall

[0, 1] ⊂
Ne−1⋃
k=0

Sk, (3.109)

where Ne is the number of segments. Here tk ∈ R are the expansion points and rk ∈ (0, Rk) are
the segments' radii which are bounded by the convergence radii Rk of the expansion around tk.
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Let us for now assume that the set of pairs {(tk, rk)} is �xed and discuss the construction of local

solutions G
(i)
k (t) which are valid on a single Sk. The local solution is de�ned in the following way

G(i)(t) =
Ne−1∑
k=0

χk(t)G
(i)
k (t) , t ∈ [0, 1] , (3.110)

with

χk(t) =

{
1, t ∈ [tk − rk, tk + rk)
0, otherwise

. (3.111)

Consider now the expansion of the univariate connection around a �xed tk

A(t) =
∞∑

i=−2

Ai,k(t− tk)
i
2 , (3.112)

where the Ai,k are constant matrices. Since G is pure the connection can, at most, have logarith-
mic singularities such that the sum (3.112) starts at −2 and we have to account for half-integer
powers because the connection can, in general, have square-root terms. Series of that form are
called generalized power-series. Recursively inserting the series expansion into the relation (3.108)
and performing the integration, gives

G
(i)
k (t) = c

(i)
k +

∞∑
j=−2

Aj,k

∫
(t− tk)

j
2G

(i−1)
k (t)dt

=
∞∑

j1=0

Ni,k∑
j2=0

c
(i,j1,j2)
k (t− tk)

j1
2 log (t− tk)

j2 ,

(3.113)

where the integration has been carried out fully algorithmic in terms of standard functions (t−tk)
j1
2

and log(t−tk)j2 . We make use of following notation: c
(i)
k = c

(i,0,0)
k are the integration constants and

c
(i,j1,j2)
k are constant vectors determined iteratively from the matrices Aj,k. Ni,k is the maximal
power of the logarithm in the local solution at weight i. The series solution (3.113) contains
full information about the branch cut structure of G encoded in logarithmic and half-integer
contributions. For a regular tk we have Ni,k = 0 and c

(i,j1,0)
k = 0 for odd j1. We will discuss our

treatment of branch cuts in eq. (3.113) more closely in section 3.5.2. The boundary conditions

c
(i,0,0)
k can be related to the known initial boundary conditions G(i)(0) by the continuity of the
full solution at the boundaries of each two neighbouring segments. We require

G
(i)
0 (0) = G(i)(0) (3.114)

and
G

(i)
k (tk − rk) = G

(i)
k−1(tk−1 + rk−1) , k = 1, . . . , Ne − 1 , (3.115)

where the right-hand-side of eq. (3.115) is understood to be the left-sided limit of the (k − 1)-th
segment solution which exists by construction. The outlined procedure allows to compute our
target values G(i)(s⃗e) = G

(i)
Ne−1(1) if the integral values at the starting point G(i)(s⃗b) = G

(i)
0 (0)

are known. The computation of the starting point G(i)(0) will be discussed in section 3.5.3.
Let us now discuss the strategy of choosing the pairs {(tk, rk)}. It is a well-known fact that
the convergence of a series on the complex plane is mainly governed by the singularities of the
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expanded function. So, the singularities will clearly a�ect our choice of {(tk, rk)}. The conver-
gence radius of a series around an arbitrary point is always given by the distance to the nearest
singularity. However, one would in general not want to go too close to the radius of convergence
since the rate of convergence would likely become worser near to the boundary. In practice, we
decided to set rk = Rk

2
. Note that a singularity can still a�ect the expansion inside the unit

intervall even if it is itself placed outside the unit intervall but, in some sense, close enough to
it. In particular, we also have to take care of complex singularities even though all our expansion
points are real. Since the connection is an at most algebraic function of the kinematic invariants
it can have only a �nite number of singularities which we split here in a real R = {σk}k=1,··· ,Ns

and
a complex C = {λk}k=1,··· ,Nc

set. In order to avoid complex arithmetic, we can use the following
set of real regular points Cr = {Re(λk)− Im(λk),Re(λk),Re(λk) + Im(λk)}k=1,··· ,Nc

instead of C.
Given our constraint of using half of the radius of convergence, we need to use all tk ∈ R ∪ Cr

with tk ∈ (−2, 3) as expansion points since a singularity has to be placed maximally twice as far
as the intervall length from the intervall boundaries in order to a�ect the expansion, and we set
the corresponding rk to be half the distance to the nearest point in R ∪Cr ∪ {−2, 3}. In general,
the singular points alone might not be enough to cover the complete unit intervall. In this case,
we add regular points tk placed in the middle of uncovered regions of (−2, 3) with a non-empty
overlap with [0, 1] and set rk to be the minimum of the following two quantities,

� half of the distance to the nearest element of R ∪ Cr ∪ {−2, 3},

� the distance to the closest already determined segment.

3.5.2 Analytic continuation

The master equation eq. (3.113) contains logarithmic and square-root branch cuts associated to
singularities and square-root branch points of A(t) which arise from either zeros or poles of some
alphabet letters. In this section, we discuss how to analyticly continue eq. (3.113) across these
branch cuts. First of all, we need to classify di�erent types of singularities. On the one hand
we have physical singularities corresponding to vanishing �rst-entry letters. In the planar case,
these are exactly the cyclic Mandelstams and the external masses and, in the non-planar case,
also non-cyclic kinematic invariants can appear. Values of tk at which only non-�rst-entry letters
have thresholds are referred to as non-physical singularities. However, it might happen that for
some point tk a �rst-entry and a non-�rst-entry letter vanish together. This is for example the

case for W1 = q2 and W33 =
q2+s45−s23+

√
∆

(1)
3

q2+s45−s23−
√

∆
(1)
3

since

W33 =
q2 + s45 − s23 +

√
∆

(1)
3

q2 + s45 − s23 −
√

∆
(1)
3

= q2 Ŵ33 , with Ŵ33 =
4s45(

q2 + s45 − s23 −
√

∆
(1)
3

)2 , (3.116)

and so, we have W33 → 0 for q2 → 0 and s45 < s23. The important observation here is that Ŵ33

does not go to 0 in the limit q2 → 0 and so, the simultaneous vanishing of the two letters is just an
artifact of having a factorizable letter. Geometrically that means that we have only one irreducible
vanishing surface, namely that of q2 = 0, although two di�erent letters vanish. The situation
would be di�erent if also Ŵ33 would vanish for q2 → 0. In this case, we would indeed �nd a so-
called overlapping singularity where two independent irreducible vanishing surfaces intersect. A
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practical way of checking which irreducible surfaces are attached to a given letter, is to investigate
the poles of the letter's dlog form. E.g.

d log(W33) =


√
∆

(1)
3

(
s13 + s12 +

√
∆

(1)
3

)2

2s45∆
(1)
3 q2


[
s13 + s12

2

(
dq2

q2
− ds45

s45

)
− ds23

]
. (3.117)

The independent vanishing surfaces are q2 = 0, s45 = 0 and ∆
(1)
3 = 0. Let us now sharpen our

classi�cation of singularities. Given a singular point tk we can �rst check whether one of the
�rst-entries vanishes there. If so, we should check whether any other letter vanishes or diverges
at tk. If this either does not happen at all or only because of vanishing of the �rst-entry letter,
like in the example of W33, then tk is a physical threshhold. If any non-�rst-entry letter vanishes
independently we have found an overlapping singularity. If tk �nally does not belong to a �rst-
entry letter, then it is a non-physical threshhold.
Let us now state how to analyticly continue through each of the singularity types and the square-
root branch points:

Physical thresholds: Here we use the iε prescription inherited from the Feynman rules

si(t) → si(t) + iε = sb,i + (se,i − sb,i)t+ iε, ε > 0 . (3.118)

We mimic this behaviour by shifting t

t→ t+ i sign(se,i − sb,i) ε, ε > 0. (3.119)

Using this prescription, we can de�ne the analytic continuation of the logarithm to be

log(t− tk) =

{
log(t− tk) for t > tk ,

log(tk − t) + i sign(se,i − sb,i)π for t < tk .
(3.120)

Non-physical thresholds: It is a well-known fact that non-physical thresholds cannot appear
inside the Euclidean region. We only need to take care of them outside the Euclidean region.
Since there is no established way to analyticly continue through a non-physical singularity we
simply choose another starting point in order to avoid the singularity in case the path crosses
such a point.

Square-root branch points: Square-root branch points are inherited from pure normalisations
of some integrals. Therefore, we can choose an arbitrary prescription which will not a�ect the
original Feynman integral. We de�ne

(t− tk)
j1
2 =

{
(t− tk)

j1
2 for t > tk ,

i(tk − t)
j1
2 for t < tk .

(3.121)

Overlapping singularities: The last type of singularities we have to discuss are the over-
lapping singularities. Our procedure here is just the same as in the case of the non-physical
thresholds: We choose another path and avoid such a singularity. It should be mentioned that
we were never faced an overlapping singularity both for planar and hexa-box topologies.
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3.5.3 Boundary conditions

After we discussed how to obtain numerical values for the integrals at any target point both in
the Euclidean and physical regions starting at the known boundary conditions the only missing
ingredient are the boundary conditions themselves. Their computation will be the topic of this
section. As in section 3.5.1, we proceed order-by-order in ϵ. For a �xed i we assume thatG(i−1)(0)
is already known. Let us �rst establish the general idea. Boundary conditions for a di�erential
equation are a piece of external information about the master integrals which �xes the linear space
of solutions to a single vector. The classical way of thinking about boundary conditions is as a
known value of the solution at a single point or in a single limit. However, both computing such
a limit and also a correct matching of the general solution to a particular limit might be highly
non-trivial tasks. On the other hand we can use the known analyticity conditions on the Feynman
integrals as a source for boundary values. A simple example of this approach was discussed in
section 2.4.4 where we used that planar integrals can not have singularities on u = 0. Here we
have a more general type of such constraints. As already mentioned in the previous section,
Feynman integrals do not have non-physical singularities in the Euclidean region. This translates
into a set of constraints that the right-hand-side of eq. (3.106) has to have vanishing residues at
all spurious singularities. Spurious means here simply that none of the �rst-entry letters vanish
at this point. To make this condition manifest we expand the univariate connection A(t) around
a spurious singularity tk up to the leading order

A(t) =
1

t− tk
A−2,k +O[(t− tk)

0] (3.122)

and require

A−2,k

[
G

(i)
k (tk)

]
= 0 , ∀i, (3.123)

to prevent the order (i + 1) solution from having a spurious logarithmic singularity. By the
continuity of the solution eq. (3.115) and the regularity of eq. (3.113) at tk, we can relate G(i)(tk)

to the starting point G(i)(0) by a known shift vector v
(i)
k

G
(i)
k (tk) = G(i)(0) + v

(i)
k . (3.124)

The shift vectors can be computed as di�erences of two segment solutions

v
(i)
k = G

(i)
k (tk)−G

(i)
0 (0), (3.125)

since the di�erences do not depend on the boundary constants.
Applying A−2,k to both sides of eq. (3.124) gives an explicit constraint for G(i)(0)

A−2,k

[
G(i)(0)

]
= −A−2,k

[
v
(i)
k

]
. (3.126)

For i = 0 we have v
(0)
k = 0 since the weight 0 integral solution is constant and eq. (3.126)

simpli�es to
A−2,k

[
G(0)(0)

]
= 0. (3.127)

This result was already obtained in 2.4.3 (see eq.(2.100)) where we discussed the symbol-level
solution of the di�erential equation. There is, however, a subtle di�erence between the two
statements: The argument of 2.4.3 was developed at the level of the full DE while here we work
with a univariate slice which is, in general, blind to some of the non-physical singularities. Despite
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that for all topologies we computed in this thesis the common kernel K :=
⋂

k ker(A−2,k) of all
A−2,k, with tk being a non-physical singularity, is indeed one-dimensional which we will prove in
4.1.4 and 4.2.4 this might be in general not true for the univariate-slice version of the DE. Let us
for now assume that we can collect enough singular points such that G(0)(0) can be determined
from eq. (3.127) up to an overall constant which can easily be �xed from the weight 0 part of
a simple single-scaled integral. Since we assumed that dimK = 1 any element of K has to be
proportional to the weight 0 solution. So, then the weight i constraint eq. (3.126) leads to

G(i)(0) = f (i)G(0)(0) +G(i)
p (0), (3.128)

where G
(i)
p (0) is a particular solution of eq. (3.126) and the weight i constant f (i) can again be

�xed from a single-scale integral. G
(i)
p (0) can be obtained by numerical solving eq. (3.126).

Let us brie�y discuss the practical implementation of this strategy both for planar and hexa-
box integrals. We start with a point s⃗0 in the Euclidean region and follow an arbitrary chosen
sequence of straight paths until we have crossed enough singular points to constrain G(i)(s⃗0) up
to an overall constant. Once we have the boundary conditions at one point, we can transport the
solution to any kinematic region by the analytic continuation procedure from 3.5.2 and compute
new boundary points in each region. Let us make clear that we do not always need to go the
complete path from our starting point s⃗0 for which the boundary conditions are known to the
point s⃗ at which we want to compute G(i)(s⃗). We can take any point s⃗1 at which the solution
G(s⃗1) is already known and use it as the new starting point. Once the number of points at which
the integrals are already known becomes big enough, we can always expect to have a known value
at a point in the neighborhood of the point where we need to compute the integrals. In section
4.1.5 we study this behaviour for the planar topologies.
Finally, it should be mentioned that for some of the hexa-box topologies we used additional
information besides the �rst-entry condition, like explicit results for multiple single-scale integrals
and symmetries which connect integrals from di�erent topologies, to obtain some of the boundary
conditions. We explain this in more detail in 4.2.5.

3.5.4 Numerical precision

After we explained our approach of numerical integration of the canonical DE, let us discuss how
to control the numerical precision of this calculation which we quantify as the number p of valid
digits after the decimal point. The reason for a �nite numerical precision is, in the �rst place,
that our algorithm is only applicable if we truncate the series expansion (3.113) at some �nite
order nk. Let us emphasize that we assume all calculational operations to be done with a much
higher precision than p so that we can ignore the purely calculational e�ects and concentrate on
the precision of the series truncation. In general, both the integration procedure and also the
boundary conditions are a�ected by truncation errors. Let us for now assume that the latter are
known with a much higher precision than p and discuss the transporting precision �rst. In the
�rst step, we �x the truncation order nk for the expansion around tk by comparing the truncated
expansion of the connection A[k](t) de�ned via

A[k](t) =

nk∑
i=−2

Ai,k(t− tk)
i
2 (3.129)

with the full connection A(t). We require nk to be high enough to ensure

max
i,j

∣∣A[k],ij(t)− Aij(t)
∣∣ < 10−(p+δ), t ∈ [tk − rk, tk + rk) , (3.130)
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where δ is a positive integer chosen such that the �nal precision of the integrals is still bigger
than p. So, loosely speaking, δ is a security o�set which compensates possible loosing of precision
during the calculation. We decided to choose δ to be

δ = ⌈log10(ns)⌉+ 1, (3.131)

where ns is the number of segments if we start at the initial point s⃗0 and

δ = ⌈log10(n̄snps)⌉+ 1, (3.132)

where n̄s is the average number of segments per point and nps is the number of points in the
considered chain if we use a previously computed point s⃗1 as boundary conditions instead of s⃗0.
To motivate this particular choice of δ we use the Cauchy convergence criterion to estimate the
real upper bound on the truncation error and computed

∆k = max
i,a

∣∣∣∣∣∣
nk∑

j1=nk−m

Ni,k∑
j2=0

c
(i,j1,j2)
k,a (rk)

j1
2 (log rk)

j2

∣∣∣∣∣∣ , (3.133)

where a labels the master integrals and m ≪ nk is some integer value (in practice, we use
m =

⌈
nk

50

⌉
). We can numerically verify that the theoretical expectation ∆k ∼ 10−(p+δ) is indeed

ful�lled for all k and so the full error along the path can be approximately estimated with
ns10

−(p+δ).
We �nish this section with an estimation of the precision of the boundary conditions G(i)(s⃗0).
On the one hand we have here the same truncation error coming from transporting the solution
along the chosen set of paths, as described in 3.5.3. This error can be estimated in the same way
as explained before for the integration step. On the other hand we might have a signi�cant error
from numerical solving eq. (3.126). To have a qualitative estimation for this kind of error we use
the fact that Feynman integrals in the Euclidean region are either purely real or purely imaginary
functions depending on their prefactors in the canonical basis. However, this condition is broken
by the �nite precision of eq. (3.126). We decided to use the magnitudes of the spurious real or
imaginary parts as an estimation for the numerical error of the boundary conditions.
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Chapter 4

Discussion of results

In this chapter we present the main results of the thesis: section 4.1 discusses the planar integral
topologies, the hexa-box topologies are presented in 4.2 while the last section 4.3 contains �rst
results on double-pentagon topologies.

4.1 Planar topologies

4.1.1 De�nition of planar topologies

In this section we de�ne the planar �ve-point integrals with one o�-shell leg. There are four
independent integral families which we denote with I [f ] with f ∈

{
mzz, zmz, zzz, one-loop2

}
where

the �rst three correspond to genuine two-loop integrals of penta-box type and the last one is the
product of a one-loop pentagon integral with a one-loop bubble integral. The letters m and z
indicate, respectively, massive and massless legs on the pentagon side of the penta-box topologies.
The topologies are depicted in �g. 4.13. Note that all external momenta are incoming. Let
us de�ne the propagator structure associated to the four topologies. For the genuine two-loop
integrals we have

I [f ][ν⃗] = e2ϵγE
∫

dDℓ1
iπD/2

dDℓ2
iπD/2

ρ−ν9
9,f ρ−ν10

10,f ρ−ν11
11,f

ρν11,f ρ
ν2
2,f ρ

ν3
3,f ρ

ν4
4,f ρ

ν5
5,f ρ

ν6
6,f ρ

ν7
7,f ρ

ν8
8,f

, (4.1)

where D = 4 − 2ϵ and ν⃗ ∈ Z11 denotes the list of indices. We have νi ≤ 0 for i = 9, 10, 11. The
inverse propagators and ISP's are given explicitly by

ρ⃗mzz =
{
ℓ21, (ℓ1 + p1)

2, (ℓ1 + p1 + p2)
2, (ℓ1 + p1 + p2 + p3)

2, (ℓ2 − p4 − p5)
2, ℓ22, (ℓ2 − p5)

2,

(ℓ1 − ℓ2)
2, (ℓ1 − p5)

2, (ℓ2 + p1)
2, (ℓ2 + p1 + p2)

2
}
,

ρ⃗zmz =
{
ℓ21, (ℓ1 + p5)

2, (ℓ1 + p5 + p1)
2, (ℓ1 + p5 + p1 + p2)

2, (ℓ2 − p3 − p4)
2, ℓ22, (ℓ2 − p4)

2,

(ℓ1 − ℓ2)
2, (ℓ2 + p5)

2, (ℓ2 + p1 + p5)
2, (ℓ1 − p4)

2
}
,

ρ⃗zzz =
{
ℓ21, (ℓ1 + p2)

2, (ℓ1 + p2 + p3)
2, (ℓ1 + p2 + p3 + p4)

2, (ℓ2 − p1 − p5)
2, ℓ22, (ℓ2 − p1)

2,

(ℓ1 − ℓ2)
2, (ℓ1 − p1)

2, (ℓ2 + p2)
2, (ℓ2 + p2 + p3)

2
}
.

(4.2)

The last three entries of each list are ISP's which we choose in such a way that the propagator
set becomes maximally symmetric under the exchange of ℓ1 and ℓ2.
Since all integrals in I [one-loop

2] are products of two one-loop integrals it is su�cient to consider the
one-loop pentagon topology I [one-loop] with one o�-shell leg. In following, we will restrict ourselves
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Figure 4.1: Two-loop �ve-point one-mass topologies. The thick external line with label 1 denotes
the massive external leg.

to non-factorizable two-loop topologies and the one-loop pentagon topology.
The latter is de�ned via

I [one-loop][ν⃗] = eϵγE
∫

dDℓ

iπD/2

1

ρν11 ρν22 ρν33 ρν44 ρν55
. (4.3)

The inverse propagators are given explicitly by

ρ⃗one-loop =
{
ℓ2, (ℓ+ p1)

2, (ℓ+ p1 + p2)
2, (ℓ+ p1 + p2 + p3)

2,

(ℓ+ p1 + p2 + p3 + p4)
2
}
.

(4.4)

As mentioned in 2.3.3, all Feynman integrals corresponding to a speci�c topology span a linear
space. Let us denote these spaces by V [f ]. The dimension of V [f ] is given by the number of
master integrals which can be, for example, determined by a numerical reduction of the integral
space using one of the standard IBP reduction tools (e. g. FIRE [154] or KIRA [156]. We get the
following results

dim(V [mzz]) = 74, dim(V [zmz]) = 75, dim(V [zzz]) = 86,

dim(V [one-loop]) = 13.
(4.5)

Some master integrals are shared among several topologies so the actual number of independent
master integrals is smaller than the sum of the individual dimensions. Fig. 4.2 gives an overview
of independent �ve-point (sub)-topologies together with the corresponding numbers of master
integrals per topology. In total, there are 35 new integrals in the two-loop sectors and 1 new
integral in the one-loop sector to determine. Note that the one-loop pentagon is needed up to
O(ϵ4) so that standard one-loop results are not su�cient.
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Figure 4.2: Propagator structures of two-loop �ve-point master integrals.

4.1.2 Pure basis

In this section we present the pure basis for planar �ve-point master integrals with one o�-shell
leg. In the following, pure master integrals will be denoted by G[f ] in contrast to the initial basis
I[f ] with f ∈ {mzz, zmz, zzz, one-loop}. The construction of pure basis was discussed in detail
in 3.3 with application to both planar and non-planar integrals so here we will not repeat this
but just give the explicit form of the pure integrands for the genuine �ve-point topologies. The
pure integrals with four and fewer external legs have already been known and could be taken
from the literature [48, 216, 217]. Some of the pure integrals in the lower sectors (with 3 and
4 propagators) can di�er from the integrals in the literature since we favoured integrands with
the smallest possible number of doubled propagators. The full integral basis can be found in the
ancillary �les attached to our publication [55].
Let us brie�y introduce our notation: Each �ve-point topology is represented by a diagram and
a set of pure numerator insertions N (i)

top,f where the upper index labels the master integrands of
the given topology and the lower indices decode the name of the topology and the name of the
integral family (top-level topology) this topology belongs to. So, for example, N (2)

pb,zmz represents
the second pure numerator insertion of the penta-box topology in the zmz integral family. The
routing of the loop momenta and the ordering of external legs can be read o� the diagrams.
Graph edges corresponding to propagators which appear explicitly in the insertions are labeled
with the propagator's numbers. Note that we normalized the integral bases with ϵ2 for the one-
loop pentagon topology and ϵ4 for the two-loop topologies such that all Laurent-series expansions
start at O(ϵ0).
Here is our choice for �ve-point planar integrals:
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Penta-boxes

1

2

3

4

5
`2

`1

N (1)
pb,mzz = ϵ4s45tr5µ12,

N (2)
pb,mzz = ϵ4

1− 2ϵ

1 + 2ϵ
tr5(µ11µ22 − µ2

12),

N (3)
pb,mzz = ϵ4s45s12s23(ℓ1 − p5)

2 .

(4.6)

1

2

3

4

5

`1
`2

N (1)
pb,zmz = ϵ4s34tr5µ12,

N (2)
pb,zmz = ϵ4

1− 2ϵ

1 + 2ϵ
tr5(µ11µ22 − µ2

12), (4.7)

N (3)
pb,zmz = ϵ4s34(s15s12 − q2s34)(ℓ1 − p4)

2 .

1

3

4

5

2

`1
`2

4
N (1)

pb,zzz = ϵ4s15tr5µ12,

N (2)
pb,zzz = ϵ4

1− 2ϵ

1 + 2ϵ
tr5 (µ11µ22 − µ2

12),

N (3)
pb,zzz = ϵ4s23s34(s15(ℓ1 − p1)

2 − q2ρ4).

(4.8)

Penta-triangle

1

2

3

4
5

`2

`1

N (1)
pt,zzz = ϵ4 tr5 µ11 . (4.9)

Double-boxes

2

3

4

1

5

`2 `1

N (1)
db,zzz = ϵ4s23(s12s15 − s34q

2),

N (2)
db,zzz = ϵ4s23(s15 − q2)(ℓ2 + p2)

2,

N (3)
db,zzz = ϵ4 tr5 µ12 .

(4.10)
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32

`1 `2 N (1)
db,zmz = ϵ4s34s23s12,

N (2)
db,zmz = ϵ4s34(s12 − q2)(ℓ1 − p4)

2,

N (3)
db,zmz = ϵ4 tr5 µ12 .

(4.11)

1

2

34

5
`2 `1

N (1)
db,mzz = ϵ4s23s45s34,

N (2)
db,mzz = ϵ4s23s45(ℓ2 + p2)

2,

N (3)
db,mzz = ϵ4 tr5 µ12 .

(4.12)

Triangle-boxes

1

2

3

4

5
`2

`1

8
N (1)

tb,mzz = ϵ4s45(s34 − s15),

N (2)
tb,mzz = ϵ3 tr5 µ22

1

ρ8
.

(4.13)

1

2

3

5

4

`2

`1

8
N (1)

tb,zzz = ϵ4s15(s12 − s45)− q2s34,

N (2)
tb,zzz = ϵ3 tr5 µ22

1

ρ8
.

(4.14)
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3

4
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5

1

`2

`1

8
2

3

5

7

N (1)
tb,zmz = ϵ4s34

√
∆3,

N (2)
tb,zmz = ϵ3 tr5 µ22

1

ρ8
,

N (3)
tb,zmz = ϵ4

(
s34(q

2 − s23 + s45)−
1

ϵ

q2s34s45
ρ2

)
,

N (4)
tb,zmz = ϵ4

(
s34(q

2 + s23 − s45)−
1

ϵ

q2s23s34
ρ3

)
,

N (5)
tb,zmz = ϵ4

(
s34(q

2 + s23 − s45) +
1

ϵ
s15s34

ρ7
ρ5

+
1

ϵ
q2s34

(ℓ1 − p4)
2

ρ2

)
,

N (6)
tb,zmz = ϵ3 tr5 µ12

1

ρ8
. (4.15)
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2`2
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8

N (1)
bp,mzz = ϵ3(1− 2ϵ)s12s23,

N (2)
bp,mzz = ϵ3 tr5 µ11

1

ρ8
.

(4.16)

5
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4 `1

`2 8

N (1)
bp,zmz = ϵ3(1− 2ϵ)(s12s15 − s34q

2),

N (2)
bp,zmz = ϵ3 tr5 µ11

1

ρ8
.

(4.17)
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`1

8

N (1)
bp,zzz = ϵ3(1− 2ϵ)s23s34,

N (2)
bp,zzz = ϵ3 tr5 µ11

1

ρ8
.

(4.18)
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One-loop pentagon

1
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3

4

5

N (1)
pt,one-loop = ϵ2tr5µ. (4.19)

4.1.3 Planar alphabet

As explained in section 3.4, we need both the pure basis and the symbol alphabet in order to
apply the procedure of numerical reconstruction of the di�erential equation. In 4.1.2 we declared
our choice of pure basis so now we have to deal with the alphabet. The �rst information we need
is the size of the alphabet for each of the topologies. In 3.4 we explained how to obtain this
information by computing the rank of C̃[f ]. We obtain the following results

dim (Amzz) = 38, dim (Azmz) = 48, dim (Azzz) = 49,

dim
(
A1-loop

)
= 30.

(4.20)

The four alphabets may have common elements so we should also compute the total number of
letters which we can get by putting all numerical connections together. The resulting matrix has
rank 55.

p1

p2

p34

p5

`1`2

Figure 4.3: Slashed box integral with two opposite massive legs.

Let us discuss the explicit construction of the letters. From eq.(4.20) we see that 30 out of
55 letters are already present in the one-loop pentagon topology. These letters can be read o�
the one-loop canonical di�erential equation which can be computed analytically. The second
natural source of letters are the kinematic prefactors of pure insertions which cancel the corre-

sponding leading singularities. For example, the square-root expression

√
∆

(3)
3 appears as the

leading singularity of the scalar slashed-box integral with two opposite massive legs (see �g. 4.3).
Let us focus on the remaining letters. While the alphabet is still not complete we can use the
reconstruction algorithm of 3.4 to determine in which part of the di�erential equation we have
to search for missing letters. Let (i, j) be a �xed index pair such that the list of entries Mij

can not be reconstructed yet. Then, the coe�cient of Gj in the right-hand-side of the equation
for dGi has to contain a new letter. We found out that all remaining letters appear in integral
sectors with 7 and 6 propagators. This fact allows us to extract all letters from on-shell and
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next-to-on-shell di�erential equations which at least in the planar case can still be computed by
KIRA with full kinematic dependence with comparably small e�ort, in contrast to the o�-shell
reduction problem. We, indeed, checked that all 55 letters could in principle be computed in this
way.
Although we are now ready to compute the analytic di�erential equation we want to take one
step back and look more closely at the alphabet letters. There is no unique representation of the
alphabet so one might ask whether a speci�c letter choice is more suited than others. In this
work we followed the strategy of choosing letters in a way that makes algebraic properties of the
alphabet manifest, as far as this was possible. Before we move on with discussing our criteria for
choosing a particular letter representation let us brie�y clarify what we exactly mean by inde-
pendent letters. Although letters themselves are in general algebraic functions of the kinematics,
the way they appear in the connection is through their logarithms. So, in principle, the actual
set of functions we should consider to be independent is {log(|W1|, · · · , log(|W55|)} rather than
{W1, · · · ,W55}. Note that we take the absolute value of the letters in order to get rid o� any
global phase information. Since the log-function maps multiplicative structures to additive ones

we have to look for multiplicatively independent objects. So for example

√
∆

(1)
3 and ∆

(1)
3 are not

independent and cannot be both used as letters. For a given algebraic function of Mandelstam
invariants Ω(s) we can easily decide whether its logarithm log(|Ω|) belongs to the linear space
spanned by the letters. For that purpose, we can evaluate {log(|Ω|), log(|W1|), · · · , log(|W55|)} on
56 di�erent phase-space points and compute the rank of the corresponding matrix. If the rank
is still 55 then Ω is part of the functional space spanned by the planar alphabet and can be in
principle used instead of one of the previous letters.
An obvious criterion for choosing a simpler letter representation is the minimizing of the letter's
mass dimension. We managed to �nd an alphabet representation with the maximal mass dimen-

sion being equal to four. Since we have with

{
tr5,

√
∆

(1)
3 ,

√
∆

(3)
3

}
three square-roots in the planar

alphabet we have to deal with a quite large set of genuinely algebraic letters. In general, there are
three types of such letters: the square-roots themselves, letters involving one square-root and a
polynomial part and letters involving two di�erent square-roots and a polynomial part. Inspired
by the fact that tr5 is odd under parity transformation we decided to construct an alphabet rep-
resentation where for each letter W we have a de�nite behaviour of log(|W |) under mapping each
of the three square-roots to its negative

tr5 → −tr5,

√
∆

(1)
3 → −

√
∆

(1)
3 ,

√
∆

(3)
3 → −

√
∆

(3)
3 . (4.21)

The reason for looking at transformations (4.21) is that the pure integrals G have a de�nite
behaviour under these transformations which is inherited from pure prefactors containing the
square-roots since the initial Feynman integrals are invariant under these sign �ips. It is easy to see
that both polynomial letters and the square-roots themselves are even under all transformations 1.
For the mixed letters with both a square-root and a polynomial part we have chosen the following

representationWmixed =
a+

√
b

a−
√
b
, where a and b are some polynomials in the Mandelstam invariants.

Let us compute the action of sign-�ipping in front of the square-root a+
√
b

a−
√
b
→ a−

√
b

a+
√
b
=
(

a+
√
b

a−
√
b

)−1

.

So, followingly, log(|Wmixed|) is odd under �ipping the square-root sign.
Finally, we close the alphabet under the (2 ↔ 5, 3 ↔ 4) permutations of the external legs to
upgrade the alphabet to the planar amplitude level. This increases the number of letters by

1Note that we are looking at the behaviour of log(|W |).
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3 such that the full alphabet has now 58 letters. The alphabet given in terms of Mandelstam
invariants can be found in anc/alphabet.m in the ancillary �les atttached to [55].
Let us discuss di�erent parts of the alphabet in more detail. First, the alphabet contains the six
�rst-entry Mandelstam invariants

{W1, . . . ,W6} = {q2, s34, s12, s15, s23, s45} . (4.22)

The next two sets contain scalar products of two external momenta or di�erences of two Mandel-
stam invariants written in terms of scalar products

{W7, . . . ,W13} = {2 p2 · p5, 2 p1 · p2, 2 p1 · p5, 2 p1 · p3, 2 p1 · p4,
2 p2 · p4, 2 p3 · p5} ,

{W14, . . . ,W21} = {2 p2 · (p3 + p4), 2 p5 · (p3 + p4), 2 p2 · (p4 + p5), 2 p5 · (p2 + p3),

2 p3 · (p1 + p2), 2 p4 · (p1 + p5), 2 p3 · (p1 + p5), 2 p4 · (p1 + p2)}.

(4.23)

Next, we list polynomial expressions with mass dimension four. The �rst set contains letters with
four-point kinematics and the second consists of genuine �ve-point letters

{W22, . . . ,W30} = {tr+(1 2 1 5), tr+(1 2 1 3), tr+(1 5 1 4), tr+(1 2 1 4), tr+(1 5 1 3),
tr+(1 2 1 [4 + 5]), tr+(1 5 1 [2 + 3]),

tr+([2 + 3] 4 [2 + 3] 1), tr+([4 + 5] 3 [4 + 5] 1)} ,
{W31,W32} = {tr+(1 2 3 4)− tr+(1 2 4 5), tr+(1 5 4 3)− tr+(1 5 3 2)} .

(4.24)

We used the chiral Dirac trace

tr±(i j k l) = 2
(
(pi · pj)(pk · pl)− (pi · pk)(pj · pl) + (pi · pl)(pj · pk)± iεµνρσpµi p

ν
jp

ρ
kp

σ
l

)
. (4.25)

We remind that the Levi-Civita symbol can be trivially traded for tr5 since we have tr5 =
4iϵµνρσp

µ
1p

ν
2p

ρ
3p

σ
4 . Furthermore, note that despite including the chiral trace all letters in these

two sets are manifestly parity-invariant since they either contain two equal indices or the chiral
parts cancel out in the di�erences. Let us move on to the odd letters. The three following sets

contain odd letters involving

√
∆

(1)
3 and

√
∆

(3)
3

{W33, . . . ,W36} =

{
s12 + s13 +

√
∆

(1)
3

s12 + s13 −
√

∆
(1)
3

,
s14 + s15 +

√
∆

(1)
3

s14 + s15 −
√

∆
(1)
3

,

s12 + s15 +

√
∆

(3)
3

s12 + s15 −
√

∆
(3)
3

,
s14 + s13 +

√
∆

(3)
3

s14 + s13 −
√

∆
(3)
3

}
,

{W37,W38,W39} =

{
s12 − s13 +

√
∆

(1)
3

s12 − s13 −
√

∆
(1)
3

,
s15 − s14 +

√
∆

(1)
3

s15 − s14 −
√

∆
(1)
3

,
s12 − s15 +

√
∆

(3)
3

s12 − s15 −
√

∆
(3)
3

}
(4.26)

and tr5

{W40, . . . ,W46} =

{
tr+(2 3 4 5)

tr−(2 3 4 5)
,
tr+(1 2 3 4)

tr−(1 2 3 4)
,
tr+(1 5 4 3)

tr−(1 5 4 3)
,
tr+(4 5 1 2)

tr−(4 5 1 2)
,

tr+(3 2 1 5)

tr−(3 2 1 5)
,
tr+(1 2 4 3)

tr−(1 2 4 3)
,
tr+(1 5 3 4)

tr−(1 5 3 4)

}
.

(4.27)
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Finally, we have the three square-roots themselves

{W48,W49,W50} = {
√
∆

(1)
3 , tr5,

√
∆

(3)
3 } (4.28)

and two letters involving two di�erent square-roots simultaneously

W47 =
Ω−− Ω++

Ω+−Ω−+
, where Ω±± = s12s15 − s12s23 − s15s45 ± s34

√
∆

(1)
3 ± tr5,

W58 =
Ω̃−− Ω̃++

Ω̃+− Ω̃−+
, where Ω̃±± = s12s13 − s12s25 − s13s34 ± s45

√
∆

(3)
3 ± tr5.

(4.29)

Note that the last two letters are invariant under the sign �ip operators.
Let us �nally make some comments on the letters. First of all, not all letters appear in all
topologies. This information is summarized in table 4.1 in section 4.1.4 where the analytic DE
for the planar topologies is discussed more closely. Next, the letters {W30,W53,W55} are obtained
by permuting the external legs and appear only at the amplitude level. Third observation is that
the following 9 letters {W50, . . . ,W58} do not appear in the symbols up to weight four and are
so irrelevant for any physical application on the two-loop level. Finally, we note that all relevant
letters could, in principle, be determined from maximal-cut di�erential equations of appropriate
sub-topologies.
The planar alphabet we presented in this section will be the starting point for constructing the
non-planar alphabet extension which will be needed in section 4.2.3.

4.1.4 Construction of canonical DE's and symbol-level soltions

In this section we discuss the computation of the analytical canonical DE

dG[f ] = ϵ
N∑
a=1

Ma,f dlog(Wa)G
[f ], (4.30)

where Ma,f are constant matrices with rational entries, Wa are alphabet letters and N denotes
the number of letters in the planar alphabet. Since we now have both the pure bases G[f ] and
the planar alphabet we can apply the reconstruction procedure from 3.4. First of all, we need a
su�ciently large number of numerical samples for the canonical DE for each of the topologies.
For the three genuinely non-planar integral families mzz, zmz and zzz we computed the pure
connection on 105 rational phase-space points. Since the kinematic invariants are constructed from
momenta with randomly chosen but rational entries also tr5 becomes automatically rationalized
on each of these points (see appendix A for details). The computation was done in parallel on 105
working nodes on the NEMO cluster using FIRE6 [154] public code for performing the numerical
IBP reduction. The IBP reduction took on average about 3− 4 h per phase-space point.
In the following table 4.1 we show which alphabet letters are relevant for each of the topologies.
Relevant means here simply that the corresponding Ma,f from eq.(4.30) is non-zero.
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topology relevant letters # of relevant letters

mzz
W1, · · · ,W9,W11, · · · ,W19,W17, · · · ,W19,W21, · · · ,W25,W27,
W31,W33,W34,W37,W38,W40,W41,W43, · · · ,W49

38

zmz W1, · · · ,W15,W18, · · · ,W26,W31, · · · ,W51,W54,W57,W58 48

zzz
W1, · · · ,W15,W17, · · · ,W20,W22, · · · ,W24,W26,W28,W29,
W32, · · · ,W40,W42, · · · ,W52,W54,W56, · · · ,W58

49

one-loop
W1, · · · ,W9,W12, · · · ,W15,W18,W19,W22, · · · ,W24,W33,W34,
W37,W38,W40,W43, · · · ,W49

30

Table 4.1: Appearance of symbol letters in di�erent planar topologies.

With these data we are able to compute the connection matrices Ma,f for all four topologies.

Due to presence of two di�erent non-rationalized square-roots

(√
∆

(1)
3 and

√
∆

(3)
3

)
we have to

apply the �oating point version of the reconstruction approach as discussed in 3.4. The explicit
connections are given in the ancillary �les anc/f/diffEq-f.m attached to [55].
Before we move on with integrating the DE we want to look more closely at some analytic
properties of the DE. A suitable framework for this discussion is provided by the notion of symbols
which was introduced in 2.4.3. Once we obtained the canonical di�erential equation we can easily
compute the symbol level solution of the Feynman integrals for any weight n using the de�ning
equation (2.99)

S(G(n)) =
∑

i1,...,in

ci1,...,inWi1 ⊗ . . .⊗Win , (4.31)

with the rational multi-coe�cients ci1,··· ,in . The constant weight zero solution which we need as
starting point for both computing the symbols and integrating the DE can also be extracted from
the di�erential equation by applying the �rst-entry condition (see 3.5.2 for more details). The
only letters which can appear on �rst-entry level in planar topologies are the cyclic Mandelstam
invariants s12, s23, s34, s45, s15 and the external momentum squared q2. That means that the weight
0 solution G

(0)
f has to be in the kernel of all connection matrices except from the �rst six ones.

So we have
Ma,fG

(0)
f = 0, a = 7, · · · , 58. (4.32)

This provides enough conditions to determine all but one entries of G(0) for all four topologies.
The last condition is just an overall normalization which can be �xed from a single one-scale
integral. We use the factorized double-bubble integrals G

(mzz)
73 , G

(zmz)
75 , G

(zzz)
86 and the one-loop

bubble G
(1-loop)
13 in order to �x the normalization. The pure bubble integral normalized accordingly

to eq.(2.28) is explicitly given by

G
(1-loop)
13 =

eγϵ(1− 2ϵ)ϵ(−s15 − iε)−ϵΓ(1− ϵ)2Γ(ϵ)

Γ(2− 2ϵ)
. (4.33)
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The results are

G(0)
mzz =

{
0, 0,

3

2
, 0, 0, 0,

9

4
,
3

2
, 0, 1, 0,

1

4
, 0,

1

2
, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1

2
, 0,−1

2
, 0,

−1

2
, 0, 0,−1, 0, 0, 0, 1, 1, 0, 0,−1

4
, 1, 1, 0, 0,

1

2
,
1

2
,
1

2
,
1

2
,
1

2
, 1, 0, 1, 0, 1, 0,

1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,

−1

2
, 1, 1, 1, 1, 1, 0

}
,

G(0)
zmz =

{
0, 0, 0,

3

4
, 0, 0,

3

4
, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

3

2
,
3

2
,−3

2
, 0, 0, 0, 0, 0, 0, 0,

−1

2
, 0,−1

2
, 0, 0, 0,−1, 0,−1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1,

1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,−1

2
,−1

2
,−1

2
,

−1

2
,−1

2
, 0, 1, 1, 1, 1

}
,

G(0)
zzz =

{
0, 0,

1

2
, 0, 2, 0, 0, 0, 0,

3

4
, 0, 0, 0, 0,

1

4
, 0, 0, 0, 0, 0, 0, 0,

3

2
,
3

2
,−3

2
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0,−1, 0, 0,−1

2
, 0,−1

2
, 0,−1

2
, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0,

1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,

1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
,−1

2
, 2, 2, 1, 1, 1, 1, 1, 1

}
,

G
(0)
one-loop = {0, 2, 2, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1}.

(4.34)

We computed the symbols up to weight four and provided an automated code for this computation
in the ancillary �le anc/usageExample.m of reference [55].
Let us highlight some features of the integrals which can already be read o� the di�erential
equation. The �rst noticable observation is that at weight two all symbols which are required
for the planar �ve-point amplitude with one o�-shell leg correspond only to one-loop box and
triangle integrals. This was already known in the massless case [51]. Note that this is not
trivial and goes beyond simply imposing the integrability constraints on the symbol [68]. Letters
{W20,W21,W35,W39} are not forbidden by the integrability condition but still do not appear at
weight two.
We also checked that the Steinmann relations [218�222] are ful�lled that means in our case that
the letters W3 = s12 and W4 = s15 never appear together in the �rst two entries of any symbol
and therefore there is no double discontinuity associated with two overlapping channels (see �g.
4.4). Indeed, even the stronger extended Steinmann relation [223] holds. That means that W3

and W4 do not appear as the n-th and the (n+ 1)-th symbol entries at any weight n. We proved
this statement by explicitly checking that

M3,fM4,f =M4,fM3,f = 0 (4.35)

for all four topologies. Finally, we searched for more similar relations like

MiMj =MjMi = 0 (4.36)

and found several of them. If we restrict ourselves to cases where one of the letters is a �rst-entry
letter and demand that the relation is closed under permuting of the external legs (2 ↔ 5, 3 ↔ 4)

79



Figure 4.4: Illustration of Steinmann relations: the cuts in the s12 and s15 channels overlap and
are therefore incompatible.

so that the relation becomes an amplitude level statement there are four further pairs besides
(W3,W4). These are

(W3,W19) =
(
s12, 2 p4 · (p1 + p5)

)
, (W4,W18) =

(
s15, 2 p3 · (p1 + p2)

)
,

(W3,W34) =

(
s12,

s14 + s15 +
√
∆3

s14 + s15 −
√
∆3

)
, (W4,W33) =

(
s15,

s13 + s12 +
√
∆3

s13 + s12 −
√
∆3

)
.

(4.37)

It would be interesting to investigate this in future.

4.1.5 Numerical integration, validation and discussion of results

In this section we discuss the details of the numerical integration using the methods of section
3.5. We give high-precision sample values for seven phase-space points and also present over
20k lower-precision evaluations over the physical region. All integrals have been computed up to
weight four. Finally, we discuss the validation of the results.

High-precision evaluations

First of all, we obtained high-precision boundary conditions in the Euclidean region. Following
the strategy described in 3.5.3 we computed the solution along the path s⃗eu-1 → s⃗eu-2 → s⃗eu-3 →
s⃗eu-4 → s⃗eu-5, with

s⃗eu-1 =

(
− 11, −1, −5

2
, −7

2
, −3, −153

14

)
,

s⃗eu-2 =
(
− 11, −10, −5

2
, −7

2
, −4, −12

)
,

s⃗eu-3 =
(
− 11, −10, −5

2
, −7

2
, −30, −12

)
,

s⃗eu-4 =
(
− 11, −12, −5

2
, −32, −50, −12

)
,

s⃗eu-5 =
(
− 11, −12, −80, −32, −50, −42

)
,

(4.38)

where s⃗ = (q2, s12, s23, s34, s45, s15). This path crosses enough singularities to fully constrain
G(i)(s⃗eu-1).
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G
(4)
3 zzz

Re +11.908529680841593329567378444341231494621544817813763
Im −143.83838235097336513553728991658286648264414416047763

G
(4)
3 zmz

Re +44.162165744735300867233118554182853322209473851043647
Im −46.218746133850339969944403077556678434364686840750803

G
(4)
3 mzz

Re +29.802763651793108812023893217593351307350121722845006
Im +273.86627846266515113913295225572416419016316389639992

G
(4)
1 1-loop

Re −12.997557921493867410660219778141561158754063252253784
Im −34.691238289230523215562386582080833547255858602481034

Table 4.2: Sample numerical values of four integrals at weight four evaluated at the physical point
s⃗ph-1 de�ned in eq. (4.39). For f ∈ {mzz, zmz, zzz}, G3 denotes the penta-box integral with the

insertions N (3)
pb,f given in eqs. (4.6), (4.7) and (4.8), respectively (the other two insertions for each

penta-box are only non-zero starting at weight �ve). For the one-loop topology, we quote the
result for the one-loop pentagon with the insertion given in eq. (4.19). The results are truncated
to �t the con�nes of the table. Results with at least 128 digits of precision can be found in the
ancillary �les anc/f/numIntegrals-f.m. This table is adapted from the publication [55].

In the next step we evaluated the integrals at one point in each of the six physical regions (see
table 3.1 for the de�nition of the phase-space regions) with at least 128 digits precision.
The six physical points are

s⃗ph-1 =

(
137

50
, −22

5
,

241

25
, −377

100
,

13

50
,

249

50

)
,

s⃗ph-2 =

(
137

50
, −22

5
, − 91

100
, −377

100
, − 9

10
,

249

50

)
,

s⃗ph-3 =

(
137

50
, −22

5
, − 91

100
,

13

50
, − 9

10
, −9

4

)
,

s⃗ph-4 =

(
137

50
,

357

50
, − 91

100
,

241

25
, − 9

10
,

249

50

)
,

s⃗ph-5 =

(
137

50
,

357

50
, − 91

100
, −161

100
, − 9

10
, −9

4

)
,

s⃗ph-6 =

(
137

50
,

357

50
,

13

50
, −161

100
,

241

25
, −9

4

)
.

(4.39)

The numerical results for these six physical points and the Euclidean boundary point are attached
to our publication [55] and can be used as both benchmarks and boundaries in future studies. In
table 4.2, we present the numerical result for the weight four part of three penta-box integrals and
the one-loop pentagon integral, with the �rst 51 digits after the decimal point explicitly shown,
evaluated at s⃗ph-1. To illustrate the integration procedure we plotted both real and imaginary
parts of the four integrals in table 4.2 as function of t ∈ [0, 1] (�g. 4.5 and �g. 4.6 ) on the
path between s⃗eu-1 and s⃗ph-1. As one can see, all functions have non-smooth behaviour (either
divergencies or kinks) on four points (approximately at t ∼ 0.21, t ∼ 0.69, t ∼ 0.82 and t ∼ 0.92)
where the four Mandelstam invariants s23, s45, q

2 and s45 change sign.
Before we proceed with a further investigation of the integrals in the physical region let us shortly
discuss two technical subtleties. First, note that all genuine two-loop �ve-point integrals with
a purely six-dimensional insertion (µ-like insertions without doubled propagators) vanish at all
computed orders up to 128 digits. This is expected since the µ-insertions vanish identically in
exactly four dimensions. This means that the lowest non-zero contribution in the Laurent series of
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such integrals has to be of weight �ve and is so beyond the scope of our calculation. For the same
reason the pure one-loop pentagon starts at weight three. Integrals which have both a doubled
propagator and a µ-like factor in the pure insertion start already at weight three. They do not
vanish in four dimensions since doubling one of the propagators a�ects the numerator insertion
via IBP relations.
The second item regards the one-loop topology. In order to restore the two-loop factorizable penta-
bubble integral (�g. 4.1d) from the one-loop level result we have to multiply the pentagon integral
with the q2-bubble integral and expand the result to the required order. All other factorizable
integrals appear explicitly in one of the three penta-box topologies and do not have to be computed
separately.

Integral evaluation over the physical space

Here we want to show the applicability of the univariate series-expansion approach to phenomeno-
logical applications where evaluations at a very large number of points across the physical phase
space are required.
Let us �rst describe our setup for a many-point calculation where we tried to decrease the average
computation time per point. As already said in 3.5.3, in practice, we choose some of previously
computed points as boundary conditions and transport the solution to the new point. Since the
computation time depends linearly on the number of segments per path we want to select the
starting point such that the number of segments is kept minimal. Since the whole set of points
can be very large we only want to check a small subset of k nearest points and choose the point
with the minimal number of segments. Note that simply taking the nearest point might not be
optimal since the distribution of singular points is in general not uniform. We found that k = 10
is a good choice. In particular, the average computation time per point for this choice is circa
40% better than for the case where we simply take the nearest point.
In order to study the features of a phenomenological application we evaluated the four integral
families on 20000 sample phase-space points corresponding to vector-boson production at the LHC
with the phase-space cuts of reference [224] with p2 and p3 being the initial-state momenta. We
used the Sherpa Monte-Carlo program [225] to generate the physical points. The high-precision
evaluations of section 4.1.5 were taken as the initial points for our study. Figure 4.7 shows the
average evaluation time per point and integral as function of the number of evaluation points for
every of the four integral topologies. The computation was performed on a single CPU thread
with 32 digits precision. As we expected the time decreases with increasing number of points and
stabilizes at around 2 s per integral after around 10000 points. More precise analysis of asymptotic
evaluation time for each topology is given in table 4.3. To investigate the e�ect of the numerical
precision on the computation time we repeated the timing study with 16 digits precision. The
result is also summarized in table 4.3. Doubling the precision nearly doubles both the computa-
tion time per integral and the truncation order, as expected. It might look surprisingly that the
one-loop integral topology requires the highest time-per-integral value but this is easy explained
by the very small number of master integrals (13) compared to the two-loop topologies. zmz
seems to be the most time-intensive case among the three two-loop topologies, concerning the
computation per integral. During the timing study we also observed that the average number of
segments per point (denoted by n̄s from 3.5.4) stabilizes at around two.
Finally, we point the reader to reference [75] for a time comparison against evaluating analytic
expressions in terms of GPL's.
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Figure 4.5: Integrals evaluated at weight four over a path from s⃗eu-1 to s⃗ph-1. Real and imaginary
parts of the integrals are displayed separately. The visible singularities and discontinuities are
associated to the physical thresholds for which analytic continuation is required. Figure adapted
from [55].
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Figure 4.6: One-loop pentagon at weight four, evaluated over a path from s⃗eu-1 to s⃗ph-1. Real
and imaginary parts of the integrals are displayed individually. The visible kinks, singularities
and discontinuities are associated with the physical thresholds for which analytic continuation is
required. Figure adapted from [55].
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Figure 4.7: Timing study over a set of 20000 Monte-Carlo phase-space points in a physical
scattering region. The average evaluation time per master integral is given by the total evaluation
time divided by the number of master integrals of each topology (see also table 4.3). Each point
of the plot is obtained by averaging the timing of 25 phase-space points. Plot adapted from [55].

Plots over physical phase space

In this paragraph we present plots for highest non-vanishing integrals for all families (i.e. integrals
in table 4.2) over a two-dimensional sub-region of the phase-space part corresponding to W + 2-
jets production at the LHC with initial-state momenta being p2 and p3. We �x four out of the
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Family MI's time per MI (s) total time (s) truncation order

32 digits

zzz 86 2.08 179

70 < nk < 140
zmz 75 2.24 168
mzz 74 1.69 125
1-loop 13 2.38 31

16 digits

zzz 86 1.10 94

40 < nk < 80
zmz 75 1.15 86
mzz 74 0.88 65
1-loop 13 1.69 22

Table 4.3: Characteristics of master-integral evaluation over 20000 phase-space points on a sin-
gle CPU thread. The timing (in seconds) is given for 32-digit precision and 16-digit precision
evaluations. The evaluation times in the fourth column correspond to the asymptotic timings,
computed by averaging over the last 2000 phase-space points. We also give the truncation order
of the series expansions (see section 3.5.4). Table adapted from [55].

six Mandelstam variables to be 2

q2 = 1 , s12 = −154120668029

42334495831
= −3.64055 . . . ,

s15 =
1619721713191

211672479155
= 7.65202 , s45 =

761855318631

42334495831
= 17.9961 . . . .

(4.40)

and require s23 > 0 and s34 < 0. As shown in reference [226], we also need to ensure that the
Gram matrix G(p1, p2, p3, p4) has exactly three negative eigenvalues in this region. Obviously,
this implies detG(p1, p2, p3, p4) < 0. These constraints together with the requirement that all
boundaries of the considered phase-space region have to be real fully specify the region to be

R =
{
(s23, s34) | s(2)23 < s23 <∞, s

(−)
34 < s34 < s

(+)
34

}
, (4.41)

where

s
(±)
34 =

N ±
√
∆

D
, (4.42)

with

∆ = s23s45
(
s15s45 + s12 (s12 + s23 − s45)− q2 (s12 − s45)

) (
(s15 − s23)

(
s15 − q2

))
, (4.43)

N = 2
(
s15s

2
45 − s45

(
s15
(
q2 + s12

)
+ s23

(
s12 + s15 − 2q2

))
+ s12 (s15 − s23)

(
q2 − s23

))
,

D = 2
(
q4 + (s23 − s45)

2 − 2q2 (s23 + s45)
)
, (4.44)

and

s
(2)
23 =

s15 (s15 + s45 − q2)

s15 − q2
. (4.45)

The phase-space region R corresponds to the Region 1 of �g. 4.8.

2These values correspond to a rationalization of one of the physical points obtained from Sherpa that were
used in the previous paragraph. Mandelstam variables are normalized such that q2, the vector-boson mass, is set
to 1.
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Figure 4.8: Regions where det G(p1, p2, p3, p4) < 0 in the s23 > 0 and s34 < 0 quadrant and under
the assumption of eq. (4.40). Region 1 is unbounded as s23 → ∞, and Region 2 as s34 → −∞.
Figure adapted from [55].

Region 2 satis�es the weaker constraint of detG(p1, p2, p3, p4) < 0 but not the stronger con-
straint of the Gram matrix having three negative eigenvalues and is therefore excluded. For a
more detailed discussion on determing the phase-space region R see [55]. Region 1 contains two
physical branch points which are s34 → 0 and s23 → ∞. These limits correspond to (projective)
points

P1 =

{
s23 =

s15(s12 − s45)

s12
, s34 = 0

}
and P2 = {s23 = ∞ , s34 = s12} . (4.46)

Since we are interested in phenomenological applications at the LHC we introduce a cut-o� for
the maximally available center-of-mass energy at s23 = (13 TeV/80 GeV)2, which corresponds to
the LHC center-of-mass energy divided by the mass scale similar to the W -boson mass.
To have better control over the s23 → ∞ limit we map R to a �nite region R̄ via the following
coordinate map

s23(x) =
s
(2)
23

(1− x)
, s34(x, y) = y s

(+)
34 (x) + (1− y) s

(−)
34 (x) , 0 < x < 1, 0 < y < 1 , (4.47)

where we highlight that s
(±)
34 are functions of x, following from their dependence on s23. Both

singular points eq. (4.46) are now mapped to

P1 = {x = 0.376542 . . . , y = 1} and P2 = {x = 1, 0 ≤ y ≤ 1} (4.48)

and the s23 cut-o� becomes x = 0.998926 . . .. In the new x, y coordinates the restricted region R̄
is given by

R̄ = {(x, y) | 0 < x < 0.998926 . . . , 0 < y < 1} . (4.49)
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Note that although the x = 1 threshhold is beyond the LHC cut-o� we still come very close to it
and might so expect interesting behaviour of the integrals near to this boundary.
For the rest of this paragraph we discuss the plots in �gs. 4.9-4.11. The plots were generated by
evaluating the four selected integrals at 2 ·105 points with 0 < y < 0.9 and further 2 ·105 points in
the intervall 0.9 ≤ y < 1 where a larger variation was observed. Figure 4.9 presents both the real
and imaginary parts of the three non-vanishing penta-box integrals at weight four with insertions
N (3)

pb,f, given in eq. (4.6) , eq. (4.7) and eq. (4.8) for f ∈ {mzz, zmz, zzz} (here we remind that
two other penta-boxes �rst arise at weight �ve). The plots indeed show expected non-trivial
behaviour near the both branch points. So �g. 4.9a and 4.9b show logarithmic divergencies for
both threshhold points P1 and P2 where both real and imaginary parts go to +∞. The zmz
integral (�g. 4.9c and 4.9d) has a divergency to −∞ at P2. At P1 the imaginary part also goes to
−∞. The real part does this as well but the dip is localized on a much smaller area. The smaller
region around this dip is shown in �gure 4.10. The behaviour of the zzz integral is very similar
(see �g. 4.9e and �g. 4.9f) with the di�erence that the real part goes to +∞ at P1. Finally,
we discuss the behaviour of the weight four contribution to the one-loop pentagon integral in �g.
4.11 (Note that at one loop the highest pole is −2 and so µ-like insertions can already appear
at weight three). In contrast to the two-loop integrals, the pure pentagon is parity-odd and,
therefore, it has to vanish at three of the four boundaries of R̄ since we have tr5 = 0 there which
we indeed observe in �g. 4.11. Fig. 4.12 shows more closely the small peak of the imaginary part
around P1 and con�rms the vanishing of the integral at the region boundary.

Validation of the result

The results of our computation were validated in several ways. The three main checks are:

� Both reconstruction of the di�erential equation and its numerical integration were performed
with two independent implementations.

� The high-precision evaluations were compared to values obtained by pySecDec [172]. Here,
two-loop integrals were checked at the Euclidean point and one-loop integrals both in Eu-
clidean and physical regions. We found agreement within the statistical error estimate of
pySecDec.

� Integrals in the mzz topology were validated against the results of [50]. We tested at least one
integral per sector in all six physical regions. We found agreement within 128 digits. Later,
D. Canko, C. Papadopoulos and N. Syrrakos found agreement within 32 digits between the
analytic result [75] and our numerical results for all integrals and all physical points.
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(a) Re(G
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3 ) of mzz topology. (b) Im(G

(4)
3 ) of mzz topology.

(c) Re(G
(4)
3 ) of zmz topology. (d) Im(G

(4)
3 ) of zmz topology.

(e) Re(G
(4)
3 ) of zzz topology. (f) Im(G
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Figure 4.9: Integrals plotted over R̄, a two-dimensional sub-region of the physical region de�ned
in eq. (4.49). The integrals are singular at the point P1 of eq. (4.48) on the top edge (y = 1) of
the unit square, and on the right edge (x→ 1) of the unit square, corresponding to the threshold
at the point P2 of eq. (4.48). Figures adapted from [55].
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(a) Re(G
(4)
3 ) of zmz topology. (b) Re(G

(4)
3 ) of zzz topology.

Figure 4.10: Enlarged view of the integrals in �gs. 4.9c and 4.9e near the threshold s34 = 0.

(a) Re(G
(4)
1 ) of one-loop topology. (b) Im(G

(4)
1 ) of one-loop topology.

Figure 4.11: Weight-four contribution to the pure one-loop pentagon plotted over the region R̄
de�ned in eq. (4.49). Due to its normalization, the function should vanish at det G(p1, p2, p3, p4) =
0, corresponding to the edges of the unit square. Because of the cut-o� at x = 0.998926 . . ., the
function does not vanish on the x = 1 edge. Figures adapted from [55].

Im(G
(4)
1 ) of one-loop topology.

Figure 4.12: Enlarged view of the integral in 4.11b near the threshold s34 = 0.
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Figure 4.13: Two-loop �ve-point non-planar hexa-box topologies with one o�-shell leg. The thick
external line with label 1 denotes the massive leg.

4.2 Hexa-box topologies

4.2.1 De�nition of the hexa-box topologies

In this section we de�ne hexa-box topologies with one external massive leg which are shown in �g.
4.13. There are three independent top-level integral topologies which are, similar to the planar
case, denoted by I

[f ]
hb , with f ∈ {mzz, zmz, zzz}, where the letters label the external legs at the

hexagon side. The zzz topology is part of the leading color contribution to the Higgs-and Z-boson
production associated with two jets while the other two topologies �rst appear in sub-leading
color contributions to the production of a massive boson associated with two massless jets. The
three hexa-box integral families are de�ned by

I
[f ]
hb [ν⃗] = e2ϵγE

∫
dDℓ1
iπD/2

dDℓ2
iπD/2

ρ−ν9
9,f ρ−ν10

10,f ρ−ν11
11,f

ρν11,f ρ
ν2
2,f ρ

ν3
3,f ρ

ν4
4,f ρ

ν5
5,f ρ

ν6
6,f ρ

ν7
7,f ρ

ν8
8,f

, (4.50)

where D = 4− 2ϵ and ν⃗ denotes the list of indices. Here, we have νi ≤ 0, for i ≥ 9. The inverse
propagators and ISP's are given explicitly by

ρ⃗mzz =
{
ℓ21, (ℓ1 + p1)

2, (ℓ1 + p1 + p2)
2, (ℓ1 + p1 + p2 + p3)

2, (ℓ1 + ℓ2 − p5)
2, (ℓ1 + ℓ2)

2, ℓ22, (ℓ2 + p4)
2,

(ℓ2 + p1)
2, (ℓ1 + p4)

2, (ℓ2 + p1 + p2)
2
}
,

ρ⃗zmz =
{
ℓ21, (ℓ1 + p5)

2, (ℓ1 + p5 + p1)
2, (ℓ1 + p5 + p1 + p2)

2, (ℓ1 + ℓ2 − p4)
2, (ℓ1 + ℓ2)

2, ℓ22, (ℓ2 + p3)
2,

(ℓ2 + p5)
2, (ℓ1 + p3)

2, (ℓ2 + p5 + p1)
2
}
,

ρ⃗zzz =
{
ℓ21, (ℓ1 + p2)

2, (ℓ1 + p2 + p3)
2, (ℓ1 + p2 + p3 + p4)

2, (ℓ1 + ℓ2 − p5)
2, (ℓ1 + ℓ2)

2, ℓ22, (ℓ2 + p1)
2,

(ℓ2 + p2)
2, (ℓ1 + p1)

2, (ℓ2 + p2 + p3)
2
}
.

(4.51)

The �rst eight entries in every list are inverse propagators while the last three are ISP's chosen
such that the list becomes maximally symmetric under the exchange of ℓ1 and ℓ2. The routing
of the loop momenta can be read o� �g. 4.13 and all external momenta are considered to be
incoming. The master integral count for the three topologies is

dim(V
[mzz]
hb ) = 86, dim(V

[zmz]
hb ) = 86, dim(V

[zzz]
hb ) = 135. (4.52)
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In �g. 4.14 we show all �ve-point non-planar integral topologies together with the corresponding
number of master integrals per topology which have to be computed. In total, we have 9 topologies
with 29 integrals.

3 masters 3 masters 3 masters

3 masters 3 masters 3 masters 6 masters

1 master 4 masters

Figure 4.14: Propagator structures of two-loop �ve-point non-planar master integrals in the hexa-
box topologies.

4.2.2 Pure basis

Here, we present our choice of pure insertions for non-planar �ve-point topologies with one o�-
shell leg which are shown in �g. 4.14. All other topologies that appear in the three hexa-box
integral families are either planar �ve-point integrals (see 4.1.2) or have less than �ve external
legs and so are available in the literature [48, 216, 227]. We multiply the pure bases with ϵ4 such
that the integral expansion starts at O(ϵ0). For a detailed discussion of constructing the pure
non-planar �ve-point integrals we refer to section 3.3.
Here is our list of pure hexa-box integrals:

Hexa-boxes

1

54

3

2

ℓ1

ℓ2

1

6

5

7

8

4

3

2

N (1)
hb,mzz =ϵ

4(ℓ1 − p4)
2tr5 µ11,

N (2)
hb,mzz =ϵ

4(ℓ1 − p5)
2tr5 µ11,

N (3)
hb,mzz =ϵ

4s12s23
[
(ℓ1 − 1p4)

2(ℓ1 − p5)
2 − ρ1ρ4

]
.

(4.53)
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5

43

2

1

ℓ1

ℓ2

1

6

5

7

8

4

3

2

N (1)
hb,zmz =ϵ

4(ℓ1 − p3)
2tr5 µ11,

N (2)
hb,zmz =ϵ

4(ℓ1 − p4)
2tr5 µ11,

N (3)
hb,zmz =ϵ

4
[
s12s15 − q2s34

] [
(ℓ1 − p3)

2(ℓ1 − p4)
2 − ρ1ρ4

]
.

(4.54)

2

51

4

3

ℓ1

ℓ2

1

6

5

7

8

4

3

2

N (1)
hb,zzz =ϵ

4(ℓ1 − p1)
2tr5 µ11,

N (2)
hb,zzz =ϵ

4(ℓ1 − p5)
2tr5 µ11,

N (3)
hb,zzz =ϵ

4s23s34
[
(ℓ1 − p1)

2(ℓ1 − p5)
2 − ρ1ρ4

]
.

(4.55)

non-planar Penta-boxes

2

5

43

ℓ1

ℓ2
1

6

5

7

8

3

2 1

N (1)
npb,zzz =ϵ

4
[
s23(s34 − s12 − s15 + q2)(ℓ1 − p1)

2 + C
(1)
npb,zzzρ1

]
,

N (2)
npb,zzz =ϵ

4
[
s23s12(ℓ1 − p5)

2 + C
(2)
npb,zzzρ1

]
,

N (3)
npb,zzz =ϵ

4s23
[
(ℓ1 − p1)

2(ℓ1 − p5)
2 − ρ1(ℓ1 + p2 + p3 + p4)

2
]
,

N (4)
npb,zzz =ϵ

3q2tr5
µ12 + µ11

ρ8
,

N (5)
npb,zzz =ϵ

4tr5µ12,

N (6)
npb,zzz =ϵ

4tr5µ11.

(4.56)

3

5

12
ℓ1 + p1

ℓ2

4

5

6

8

7

2

3 4

N (1)
npb,mzz−2 =ϵ

4
[
s23s34(ℓ1 − p4)

2 + C
(1)
npb,mzz−2ρ4

]
,

N (2)
npb,mzz−2 =ϵ

4tr5µ11,

N (3)
npb,mzz−2 =ϵ

4s23
[
(ℓ1 − p4)

2(ℓ1 − p5)
2 − ℓ21ρ4

]
.

(4.57)
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1

5

32

ℓ1

ℓ2
1

6

5

7

8

3

2 4

N (1)
npb,mzz−1 =ϵ

4
[
(s12s15 − s34q

2)(ℓ1 − p4)
2 + C

(1)
npb,mzz−1ρ1

]
,

N (2)
npb,mzz−1 =ϵ

4tr5µ11,

N (3)
npb,mzz−1 =ϵ

4(s12 − q2)
[
(ℓ1 − p4)

2(ℓ1 + p5)
2

−ρ1(ℓ1 + p1 + p2 + p3)
2
]
.

(4.58)

5

4

21

ℓ1

ℓ2
1

6

5

7

8

3

2 3

N (1)
npb,zmz =ϵ

4
[
s12s45(ℓ1 − p3)

2 + C
(1)
npb,zmzρ1

]
,

N (2)
npb,zmz =ϵ

4tr5µ11,

N (3)
npb,zmz =ϵ

4(s15 − q2)
[
(ℓ1 − p3)

2(ℓ1 − p4)
2

−ρ1(ℓ1 − p3 − p4)
2
]
.

(4.59)

non-planar Double-boxes

1

54

3

2

3

2
67

8
5

ℓ1 + p1

ℓ2

N (1)
ndb,mzz = ϵ4tr5. (4.60)

2

51

4

3

3

2
67

8
5

ℓ1 + p2

ℓ2

N (1)
ndb,zzz =ϵ

4

√
Σ

(2)
5 ,

N (2)
ndb,zzz =ϵ

41

8

(
tr
[
(/ℓ2 − /p2)/p3/p1/p5

]
+ tr

[
(/ℓ2+/p1+/p4)/p3/p1/p5

]
+8
[
(ℓ2 + p1)

2 − ℓ22
]
(s12 − s34 − s45)

)
,

N (3)
ndb,zzz =ϵ

3tr5µ12

[
1

ρ7
+

1

ρ8

]
,

N (4)
ndb,zzz =ϵ

3

[
q2

ρ7

[
(ℓ2 − p2 − p3)

2(ℓ2 + p1 + p3 + p4)
2

−(ℓ2 − p2)
2(ℓ2 + p1 + p4)

2
]
+ C

(4)
ndb,zzz

]
.

(4.61)
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Here, we give explicit expressions for o�-shell corrections terms in eqs. (4.53)-(4.61).

C
(1)
npb,zzz =

1

2

(
s12(s23 − s15)− s23s34 + q2(s12 − s45) + s15s45 − s34s45

)
,

C
(2)
npb,zzz = −s23 − s34 − C

(1)
npb,zzz,

C
(1)
npb,mzz−2 =

1

2

(
−q2s34 + s12 (s15 − s23)− s23s34 − s15s45 + s34s45

)
,

C
(1)
npb,mzz−1 =

1

2

(
q2s34 − s12 (s15 + s23) + s23s34 + s15s45 − s34s45

)
,

C
(1)
npb,zmz =

1

2
(s12 (s23 − s15)− s23s34 + (s34 − s15) s45) ,

C
(4)
db,zzz = (s23 − s45 − q2)

ρ2ρ5
ρ3

− (s12 + s15)
ρ3ρ6
ρ2

+
1

ϵ
(1− 2ϵ)(1− 3ϵ)

q2

s12 − q2
ρ3ρ5

+
1

ϵ2
(1− 2ϵ)(2− 3ϵ)(1− 3ϵ)

q2

(s12 − q2)s12
ρ3ρ5ρ7.

(4.62)

4.2.3 Symbol alphabet

Let us now discuss the extension of the planar alphabet needed for the hexa-box topologies. By
computing the rank of the numerical matrix C̃[f ] (see section 3.4), we obtain

dim (Amzz) = 39, dim (Azmz) = 56, dim (Azzz) = 63. (4.63)

Most of the letters could be obtained directly from the planar alphabet by permuting all external
massless legs and then removing dependent letters. Applying this procedure to the 58 letters of
the planar alphabet from section 4.1.3 gives 156 independent letters. This is already su�cient
for the mzz topology but not for the two others. Up to permutations, there are four new letters
which can not be obtained from the planar alphabet. One of them appears in the diagonal
entry of a particular scalar integral in a non-planar four-point subtopology in the zzz-DE and is
therefore given by the pure prefactor (inverse leading singularity) of this integral. Since this letter
corresponds to a four-point integral it can also be taken from the literature [227]. The letter is
polynomial in the Mandelstam invariants. The three remaining letter types appear only in the
both permutations of the non-planar �ve-point double-box subtopology with the mass attached
to the central rung (hard non-planar double-box, discussed in section 3.3.6) (�g. 4.2.3). This was
expected since a new type of square-root

√
Σ5 appears in this subtopology. Indeed, one of the

three new letters can be identi�ed as the square-root itself. In analogy to other algebraic letters,
we assume that one the two remaining letters has the form

p(s⃗) +

√
Σ

(1)
5

p(s⃗)−
√
Σ

(1)
5

, (4.64)

where p is a multi-variate polynomial of mass dimension four. Since the new square-root appears
in solutions of a particular quadratic equation (see 3.3.6) it can be written in the form

Σ
(1)
5 = b2 − 4ac (4.65)
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Figure 4.15: Hard non-planar double-box topology with 4 master integrals.

for some polynomials a, b, c. Assuming that p is also related to the polynomials a, b, c we could
construct an independent letter which is given by

b− 2a+

√
Σ

(1)
5

b− 2a−
√

Σ
(1)
5

, (4.66)

with

b = −s12s15 + s12s23 + 2s15s34 − s23s34 + s15s45 + s34s45,

a = s34(s15 − s23 + s45),

c = s15(−s12 + s34 + s45).

(4.67)

From the position of the last letter in the DE we concluded that it has to depend on both

√
Σ

(1)
5

and tr5. We made the ansatz
Ω̃−−Ω̃++

Ω̃−+Ω̃+−
, (4.68)

with Ω̃±± = p̃(s⃗)±
√

Σ
(1)
5 ± tr5. The polynomial p̃ was obtained by investigating a univariate cut

DE of the corresponding subtopology which could be computed analytically. We found p̃ = q2s34.
Finally, we completed the alphabet by all permutations of these four new letters and obtained
the full planar- and hexa-box alphabet with 204 letters.
We organize the symbol alphabet in the following form. The letters are grouped into permu-
tation orbits generated by a single element. Since letters may be invariant under some of the
permutations of the massless momenta operators σ̃ which generate these orbits are actually not
permutations themselves but equivalence classes of permutations modulo some sub-group G of
S4, so we have σ̃ ∈ S4/G. The sub-group G is the permutation group of a subset of the massless
external legs. So e.g. S3[3, 4, 5] contains all permutations of p3, p4 and p5 among each other. A
second organizing principle is the behaviour of a letter under �ipping the sign of each of the three
square-root types

√
Σ5,

√
∆3 or tr5 which we refer to as the action of the Galois group. In total,

there are 127 Galois-invariant letters and 77 letters which transform in a nontrivial way under
the Galois group.
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In the following, we present the complete set of permutation orbits organized �rst by the Galois
property and then by the mass dimension. To achieve a compact representation we again use the
tr+ symbol as de�ned in eq. (4.25).
We start with the Galois invariant letters

W1 = q2,

{W2, . . . ,W5} = {σ (s12) : σ ∈ S4/S3[3, 4, 5]} ,

{W6, . . . ,W11} = {σ (s23) : σ ∈ S4/(S2[2, 3]× S2[4, 5])} ,

{W12, . . . ,W15} = {σ (2 p1 · p2) : σ ∈ S4/S3[3, 4, 5]} ,

{W16, . . . ,W27} = {σ
(
2 p2 · (p3 + p4)

)
: σ ∈ S4/S2[3, 4]},

{W28, . . . ,W33} = {σ
(
tr+(1 2 1 5)

)
: σ ∈ S4/(S2[2, 5]× S2[3, 4])},

{W34, . . . ,W45} = {σ
(
tr+(1 2 1 [4 + 5])

)
: σ ∈ S4/S2[4, 5]},

{W46, . . . ,W57} = {σ
(
tr+(1 [2 + 3] 4 [2 + 3])

)
: σ ∈ S4/S2[2, 3]},

{W58, . . . ,W69} = {σ
(
tr+(1 2 [4 + 5] [2 + 3])

)
: σ ∈ S4/S2[4, 5]},

{W70, . . . ,W93} = {σ
(
tr+(1 2 3 4)− tr+(1 2 4 5)

)
: σ ∈ S4},

{W94, . . . ,W117} = {σ
(
tr+(1 2 1 [1 + 5] 4 [1 + 5])

)
: σ ∈ S4}.

(4.69)

Note that although a particular letter can be written in terms of tr+ it still can be Galois-invariant.
The non-trivial letters under the Galois group are

{W118, . . . ,W123} =

σ
s12 + s13 +

√
∆

(1)
3

s12 + s13 −
√

∆
(1)
3

 : σ ∈ S4/(S2[2, 3]× S2[4, 5])

 ,

{W124, . . . ,W129} =

σ
s12 − s13 +

√
∆

(1)
3

s12 − s13 −
√
∆

(1)
3

 : σ ∈ S4/(S2[2, 3]× S2[4, 5])

 ,

{W130, . . . ,W137} =

{
σ

(
tr+(1 2 3 4)

tr−(1 2 3 4)

)
: σ ∈ S

}
,

{W138, . . . ,W161} =

{
σ

(
tr+(1 5 3 [1 + 2])

tr−(1 5 3 [1 + 2])

)
: σ ∈ S4

}
,

{W162, . . . ,W185} =

σ
s12s23 + s23s34 − s34s45 + s45s15 − s12s15 +

√
Σ

(1)
5

s12s23 + s23s34 − s34s45 + s45s15 − s12s15 −
√
Σ

(1)
5

 : σ ∈ S4

 ,

{W186, . . . ,W188} =

{
σ

(
Ω−−Ω++

Ω−+Ω+−

)
: σ ∈ S4/(S2[2, 3]× S2[4, 5]× S2[s23, s45])

}
,

{W189, . . . ,W194} =

{
σ

(
Ω̃−−Ω̃++

Ω̃−+Ω̃+−

)
: σ ∈ S4/(S2[3, 4]× S2[2, 5])

}
,

(4.70)
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where

Ω±± = s12s15 − s12s23 − s15s45 ± s34

√
∆

(1)
3 ±

√
∆5,

Ω̃±± = q2s34 ± tr5 ±
√

Σ
(1)
5 ,

(4.71)

and the set of permutations S is given by

S =
{
{1, 2, 3, 4, 5}, {1, 2, 3, 5, 4}, {1, 2, 4, 3, 5}, {1, 2, 4, 5, 3},
{1, 2, 5, 3, 4}, {1, 3, 2, 4, 5}, {1, 3, 2, 5, 4}, {1, 4, 2, 5, 3}

}
.

(4.72)

Finally, the square-roots are letters themselves

{W195, . . . ,W197} =

{
σ

(√
∆

(1)
3

)
: σ ∈ S4/(S2[2, 3]× S2[4, 5]× S2[s23, s45])

}
,

W198 = tr5,

{W199, . . . ,W204} =

{
σ

(√
Σ

(1)
5

)
: σ ∈ S4/(S2[3, 4]× S2[2, 5])

}
.

(4.73)

The letters in the orbits of W58, W162, W189 and W199 cannot be obtained from the closure of the
planar alphabet. The complete alphabet expressed in terms of Mandelstam invariants is given in
the ancillary �le anc/alphabet.m attached to [56].

4.2.4 Construction of the canonical DE

With the pure basis and the extended alphabet we can proceed with reconstruction of the canon-
ical di�erential equation

dG[f ] = ϵ
N∑
a=1

Ma,f dlog(Wa)G
[f ], (4.74)

whereN is the size of the alphabet. Similar to the planar case, the number of actually contributing
letters with nonzero Ma,f is much smaller than the total number of letters. Contributing letters
are given in table 4.4.

topology relevant letters # of relevant letters

mzz
W1,W2,W4, · · · ,W12,W14, · · · ,W17,W21,W22,W24,W25,
W27, · · · ,W30,W33,W70,W71,W118,W123,W124,W129, · · · ,W134,
W137,W186,W195,W198

39

zmz
W1,W2,W5, · · · ,W16,W19,W21,W22,W24,W27, · · · ,W33,W70,
W72,W91,W93,W118,W119,W122, · · · ,W125,W128, · · · ,W137,
W162,W164,W183,W185, · · · ,W187,W189,W195,W196,W198,W199

56

zzz

W1,W2,W4, · · · ,W16,W20, · · · ,W22,W25,W27,W28,W30, · · · ,W33,
W46,W52,W67,W69,W94,W108,W112,W117,W118,W120,W121,W123,
W124,W126,W127,W129,W131, · · · ,W138,W152,W156,W161,W163,
W166,W177,W179,W186,W188,W190,W195,W197,W198,W200

63

Table 4.4: Relevant letters for the hexa-box topologies.
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The input data for the reconstruction are numerical di�erential equations computed at 105
points for both mzz and zmz topologies and at 125 points for the zzz topology. The numer-
ical IBP reduction was performed using FIRE6 [154] reduction code on the NEMO cluster. All
kinematic invariants were computed from randomly chosen rational external momenta and are
so not only rational by themselves but also automatically rationalize tr5 (see appendix A for
details on constructing external momenta). The IBP reduction took 8 − 11h per point. We
chose ϵ0 := 4−D0

2
= 13

8
for all three topologies. Due to presence of multiple square-roots inside

the numerical connections, the computation of the Ma matrices was performed using 150 dig-
its �oating point numbers followed by reconstructing the rational entries via the Mathematica

Rationalize[] routine.
Like in the planar case, the �rst-entry condition is su�cient to compute the weight zero part of
the integrals. Note that for non-planar integrals adjacent legs do not have to be cyclicly ordered.
So is e.g. s14 = −s15 + s23 − s45 + q2 a �rst-entry letter for the mzz topology. The �rst-entry
letters per topology are summarized in table 4.5.

topology �rst-entry letters

mzz W1,W2,W4, · · · ,W6,W9, · · · ,W11

zmz W1,W2,W5 · · · ,W7,W9, · · · ,W11

zzz W1,W2,W4 · · · ,W6,W8,W9,W11

Table 4.5: First-entry letters of the hexa-box topologies.

The weight zero solution has to be a constant vector ful�lling

Ma,fG
(0)
f = 0, a ∈ {1, · · · , N} \ I [f ]

1-entry, (4.75)

where I [f ]
1-entry denotes the set of indices corresponding to �rst-entry letters. In all three cases, this

gives enough constraints to determine the weight zero solution up to an overall constant which
can be extracted from a single-scale integral. The results are

G(0)
mzz =

{
0, 0, 8,−1

2
, 1,−2,−2, 0,

9

2
, 0, 8, 0, 0, 0, 0, 4, 2, 0, 2, 0, 2, 0, 0, 0, 0, 0,−4, 0,−4, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 2, 0, 2, 0, 4, 0, 4, 0, 0, 0, 1, 0, 1,−4,−4,−4, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4,

0, 4, 4, 4, 4, 4, 4, 4, 4, 4
}
,

G(0)
zmz = {0, 0, 0,−1,−1,−1,−1, 2, 0, 0, 2, 0, 0, 0, 0, 0, 8, 4, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4, 0, 4,

4, 4, 4, 4, 4, 4, 4} ,
G(0)

zzz = {0, 0, 4, 6, 4, 4, 0, 0, 0, 6, 4, 4, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0,−4, 0,

−4, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 0, 0, 0, 6, 6, 6, 0, 0, 0, 0, 0, 0, 0,−4, 0, 0, 0, 0, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4,

0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−4,−4,−4,−4,−4,−4, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4,

0, 4, 0, 4, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4} .
(4.76)

Beginning with the weight zero solution, the integral symbols can be computed straight-forwardly.
We provided a Mathematica code for automated symbol computation in the ancillary �les of [56].
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As in the planar case, we checked that the Steinmann relations for the hexa-box topologies are
ful�lled. The number of forbidden pairs di�ers here from topology to topology. So, the overlapping
channels of mzz and zzz are {s12, s14, s15}, corresponding to the letters {W2,W4,W5}. The only
forbidden pair of zmz is {s12, s15}, corresponding to the letters {W2,W5}. In the planar case,
also so-called extended Steinmann relations (see 4.1.4) hold while here the situation ia again
topology-dependent. We found

� mzz: The extended Steinmann relations are satis�ed. Indeed, we found that

M2M4 =M4M2 =M2M5 =M5M2 =M4M5 =M5M4 = 0 . (4.77)

� zmz: The extended Steinmann relations are not satis�ed. Through weight six, the master
integrals whose symbols involve the sequence [. . . ,W2,W5, . . . ] are at positions {1, 2, 3, 8, 9, 10}
and the integrals whose symbols involve the sequence [. . . ,W5,W2, . . . ] are at positions
{1, 2, 3, 11, 12, 13}.

� zzz: The extended Steinmann relations are satis�ed for some pairs of channels, but not all.
We found that

M2M5 =M5M2 =M4M5 =M5M4 = 0 , (4.78)

which implies that lettersW2 andW4 never appear next toW5. On the other hand, through
weight six, the master integrals whose symbols involve the sequence [. . . ,W2,W4, . . . ] are at
positions {1, 2, 3, 10, 11, 12, 13, 14, 15} and the integrals whose symbols involve the sequence
W4,W2 are at positions {1, 2, 3, 4, 5, 6, 7, 8, 9}.

It would be interesting to investigate further which integrals satisfy the extended Steinmann
relations and which not.

4.2.5 Numerical integration and validation

The topic of this section is the numerical integration of the canonical DE obtained in 4.2.4 which
is performed by methods of section 3.5. We discuss the computation of boundary conditions and
present high-precision target values in all physical regions. Finally, we discuss the validation of
our result.

Numerical results

First, we computed the initial values for the three topologies in their speci�c Euclidean regions.
In contrast to the planar case where a common Euclidean region for all topologies exists and is
given by sij < 0, q2 < 0 for all cyclic Mandelstam invariants, here each topology has its own
Euclidean region since additional constraints on non-cyclic invariants are needed. The three
Euclidean regions are

Emzz = {s⃗ ∈ R6 | q2 < 0, s12 < 0, s23 < 0, s34 < 0, s45 < 0, s15 < 0, s35 < 0, s14 < 0} ,
Ezmz = {s⃗ ∈ R6 | q2 < 0, s12 < 0, s23 < 0, s34 < 0, s45 < 0, s15 < 0, s35 < 0, s24 < 0} ,
Ezzz = {s⃗ ∈ R6 | q2 < 0, s12 < 0, s23 < 0, s34 < 0, s45 < 0, s15 < 0, s25 < 0, s14 < 0} .

(4.79)

Note that all three hexa-box Euclidean regions are subsets of the planar Euclidean region. Next,
we give the initial points s⃗Ef ,0 and the paths we used to collect enough constraints in order to
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determine G[f ](s⃗Ef ,0) for each of the three topologies (see 3.5.3 for details).
For mzz we choose

s⃗Emzz,0 = (−13,−7,−21,−2,−4,−10) . (4.80)

Then, we transport the solution from this point to the three points

s⃗Emzz,1 =

(
−6829

10
,−14777

20
,−903

10
,−14677

20
,−27

20
,−3389

5

)
,

s⃗Emzz,2 =

(
−4874

5
,−3913

4
,−2079

20
,−9407

10
,−65

4
,−19426957

18640

)
,

s⃗Emzz,3 =

(
−193817

20
,−192017

20
,−147

2
,−191917

20
,−11

20
,−38743

4

)
,

(4.81)

and obtain 82 independent conditions. The four still undetermined initial conditions all corre-
spond to known single-scale integrals.
For the zzz topology, we choose

s⃗Ezzz,0 = (−13,−7,−31,−22,−4,−17) (4.82)

as the initial point.
If we consider the paths from s⃗Ezzz,0 to the three points

s⃗Ezzz,1 =

(
−117

55
,− 8

21
,− 68

139
,− 6

127
,− 83

173
,−61

82

)
,

s⃗Ezzz,2 =

(
−446

137
,− 31

119
,−40

53
,− 15

137
,−32

27
,−149

96

)
,

s⃗Ezzz,3 =

(
−104

61
,−39

55
,− 59

115
,− 21

184
,−1

2
,− 88

145

)
,

(4.83)

we obtain 134 independent conditions. This is the maximal number we could have expected given
that there are 135 master integrals in this topology, and we can �x the remaining normalisation
by the explicit computation of the pure q2-sunrise integral which, in our conventions, is given by

G
[zzz]
135 = 4(−q2)−2ϵΓ(1− ϵ)3Γ(1 + 2ϵ)

Γ(1− 3ϵ)
. (4.84)

Finally, for the zmz topology we determined the initial condition at

s⃗Ezmz,0 = (−13,−7,−21,−2,−4,−30) . (4.85)

We consider the paths to

s⃗Ezmz,1 =

(
−155

128
,−103

83
,− 51

109
,−17

82
,− 69

197
,−101

85

)
,

s⃗Ezmz,2 =

(
−69

43
,−148

137
,−12

77
,−57

89
,−23

97
,−77

73

)
,

s⃗Ezmz,3 =

(
−181

105
,−79

88
,−21

74
,−38

67
,− 33

103
,−89

93

)
,

(4.86)

and collect 62 constraints along the way. The undetermined integrals are either simple integrals
that can be computed to arbitrary order in ϵ, or integrals that appear in the mzz or zzz hexa-box
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topologies (sometimes with di�erent order of the massless momenta) and can thus be computed
using di�erential equations and boundary conditions determined for these two topologies.
These computations were done independently using the public code DiffExp [72] and an own
implementation. With the latter we get results with 100 digits precision. We validated this result
by the code of [72] up to 25 digits. Unfortunately, we were not able to obtain higher precision
from the latter.
Using these boundary points we computed all integrals in all six physical regions (see table 3.1) at
the same set of points we used in the planar case (eq.(4.87)) with the publicly available code [72].
The physical points are

s⃗ph-1 =

(
137

50
, −22

5
,

241

25
, −377

100
,

13

50
,

249

50

)
,

s⃗ph-2 =

(
137

50
, −22

5
, − 91

100
, −377

100
, − 9

10
,

249

50

)
,

s⃗ph-3 =

(
137

50
, −22

5
, − 91

100
,

13

50
, − 9

10
, −9

4

)
,

s⃗ph-4 =

(
137

50
,

357

50
, − 91

100
,

241

25
, − 9

10
,

249

50

)
,

s⃗ph-5 =

(
137

50
,

357

50
, − 91

100
, −161

100
, − 9

10
, −9

4

)
,

s⃗ph-6 =

(
137

50
,

357

50
,

13

50
, −161

100
,

241

25
, −9

4

)
.

(4.87)

The computation was done with a precision of 100 digits. Note that for some of the physical
points we took an indirect path consisting of two straight line segments in order to avoid crossing
of a non-physical singularity.

Validation of results

In order to validate our results we performed several checks:

� Boundary value computations were done with two independent in-house implementations of
the algorithm described in 3.5 and additionally with the public code DiffExp [72] at lower
precision.

� Boundary values for the integrals in the mzz topology and some selected integrals in two
other topologies were reproduced by the authors of reference [53].

� We veri�ed the absence of non-physical branch cuts in the Euclidean region at weight �ve
which gives a non-trivial check of the weight four result.

� As consistency check of the evaluations in the physical regions, we checked that we get the
same results at each point independently of which point we took as boundary point.

� We compared results in the physical regions obtained with code [53] with one of our two
in-house implementations at lower precision.
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Figure 4.16: Two-loop �ve-point non-planar double-pentagon topologies with one o�-shell leg.
The double external line with label 1 denotes the massive leg.

4.3 First look at the double-pentagon sector

In this section, we give �rst results on the pure bases for the both double-pentagon topologies
which complete the set of the two-loop �ve-point integral topologies with one massive leg. The
current status of the work we want to present here is the complete pure basis for the topology
4.16a in 4.16 and an on-shell pure basis for the more complicated topology 4.16b in 4.16 where
the o�-shell completion of the numerator insertion for one top-level integral is still missing.

4.3.1 De�nition of topologies

Let us �rst de�ne the double-pentagon integral topologies depicted in 4.16. In analogy to the
cases already considered, they are denoted by I

[f ]
dp with f ∈ {zm, zz} where the letters label the

legs attached to the left rung of the graphs. We de�ne the integral families as

I
[f ]
dp [ν⃗] = e2ϵγE

∫
dDℓ1
iπD/2

dDℓ2
iπD/2

ρ−ν9
9,f ρ−ν10

10,f ρ−ν11
11,f

ρν11,f ρ
ν2
2,f ρ

ν3
3,f ρ

ν4
4,f ρ

ν5
5,f ρ

ν6
6,f ρ

ν7
7,f ρ

ν8
8,f

, (4.88)

where D = 4− 2ϵ as usual. The lists of inverse propagators and ISP's are given by

ρ⃗zm =
{
ℓ21, (ℓ1 + p1)

2, (ℓ1 + p1 + p2)
2, (ℓ2 + p3 + p4)

2, (ℓ2 + p4)
2, ℓ22, (ℓ1 + ℓ2)

2, (ℓ1 + ℓ2 − p5)
2

(ℓ1 + p4)
2, (ℓ2 + p1)

2, (ℓ2 + p1 + p2)
2
}
,

ρ⃗zz =
{
ℓ21, (ℓ1 + p2)

2, (ℓ1 + p2 + p3)
2, (ℓ2 + p4 + p5)

2, (ℓ2 + p5)
2, ℓ22, (ℓ1 + ℓ2)

2, (ℓ1 + ℓ2 − p1)
2,

(ℓ1 + p5)
2, (ℓ2 + p3)

2, (ℓ2 + p2 + p3)
2
}
.

(4.89)
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We have νi ≤ 0 for i ≥ 9 and the loop-momentum routing can be read o� the diagram 4.16.
All external momenta are considered to be incoming. The master integral count for the both
topologies is

dim(V
[zm]
dp ) = 142, dim(V

[zz]
dp ) = 179. (4.90)

Except for the double-pentagons themselves with 9 master integrals each, there are no new �ve-
point subtopologies. All integrals which appear only in the double-pentagon topologies belong to
known three- and four-point topologies.

4.3.2 Pure basis

We discuss the pure basis construction for the double-pentagon topologies here separately since
it has some new aspects compared to the treatment of 3.3. The master integrals are divided
into the parity-even and the parity-odd groups with 3 and 6 integrals respectively for each of the
both topologies. The numerators for the parity-odd integrals are constructed out of two types
of insertions. There are µ-insertions on one hand and derivatives of the Baikov polynomial with
respect to inverse propagators on the other hand. Both types of insertions have already been
used for the massless double-pentagon integral [47, 49]. Let us begin with the zz-topology. Since
we have two pentagon-type sub-loops one natural insertion to start with is

N (1)
dp,zz ∼ tr5µ12. (4.91)

From dimensional analysis we conclude that we still need a kinematic prefactor of mass-dimension
two. We �xed it by a functional reconstruction of the O(ϵ0)-part of the connection using the
momentum-twistor parametrization of appendix appendix: Parameter and integrating it out,
similar to the procedure of section 3.3.5 . The result reads

N (1)
dp,zz =

√
∆

(1)
3 tr5µ12. (4.92)

Following a similar argument, we construct

N (2)
dp,zz = tr5

[
−s23µ22 +

1

2
(q2 − s23 − s45)µ12

]
,

N (3)
dp,zz = tr5

[
−s45µ11 +

1

2
(q2 − s23 − s45)µ12

]
.

(4.93)

For the three remaining parity-odd insertions we use the observation from [49] that the six-
dimensional massless double-pentagon with a doubled propagator is pure up to a kinematic pre-
factor. In the massive case, adding a single double propagator was not always su�cient but we
managed to �nd a pure linear combination of insertions with double propagators. Let us make a
technical remark. Using IBP relations in the Baikov space, we can trade a double propagator for
a derivative of the numerator insertion with respect to the corresponding inverse propagator. So
we can replace a six-dimensional double-pentagon integral with the i-th propagator being doubled
by a four-dimensional double-pentagon integral with a nontrivial numerator insertion

I
(D=6−2ϵ)
dp

[
1

ρi

]
∼ I

(D=4−2ϵ)
dp

[
1

G

∂P

∂ρi

]
. (4.94)

We use the right-hand-side representation of the integrand since it is more suitable for working
with cut di�erential equations. In the following, we use the short notation Pi :=

∂P
∂ρi

. We used the
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same approach for both topologies. For one of the purity-odd zm integrals an additional o�-shell
correction was needed (see eq.(4.95)).
Finally, we have to �nd the parity-even insertions. Two of the three insertions per topology can be
taken from reference [212] where a prescriptive integrand basis for non-planar massless six-particle
scattering was given. These integrands are constructed to have support on a single maximal cut
and normalized in order to have unit leading singularities. So they naturally give rise to pure
integrals. The insertions are given in the literature in terms of chiral traces tr+[...]. In order
to extract the parity-even part, we simply replaced tr+[...] by the standard Dirac trace tr[...].
For practical use, all traces were expressed in terms of inverse propagators, ISP's and kinematic
invariants using FeynCalc [228,229]. To obtain the last integrand we took one of the parity-even
insertions of the massless double-pentagon of reference [49] which is also given in terms of Dirac
traces and replaced the massless leg by the massive one. In case of the zm-topology, this was
already su�cient to obtain a pure integral while for the zz-topology we had to add contributions
proportional to the two other parity-even integrands and to �x the overall kinematic prefactor.
However, for this integral we still need to determine the o�-shell correction.

zm topology

N (1)
dp,zm =ϵ4tr5 (s12 − s34)µ12,

N (2)
dp,zm =ϵ4tr5s12(µ22 + µ12),

N (3)
dp,zm =ϵ4tr5(s34µ11 + s12µ12),

N (4)
dp,zm =ϵ4

1

tr5

[
(s12 − q2)P3 −

q2s34
s12

P4 −
1

2

q2

s12
(s12 − s34)tr

2
5µ12 +

3

4
q2tr25(µ22 + µ12)

+
1

4

q2

s12
(s34µ11 + s12µ12)tr

2
5 +R

(5)
dp,zm

]
,

N (5)
dp,zm =ϵ4

s34
tr5

P4,

N (6)
dp,zm =ϵ4

s12 − s34
tr5

P8,

N (7)
dp,zm =ϵ4Tr

[
/p2(
/ℓ1 + /p1)

/ℓ1(/ℓ1 + /ℓ2)(/ℓ1 + /ℓ2 − /p5)(
/ℓ2 + /p3 + /p4)(

/ℓ2 + /p4)/p4

]
,

N (8)
dp,zm =ϵ4

1

2

(
Tr
[
/p2(
/ℓ1 + /ℓ2)/ℓ1/ℓ2(/ℓ2 + /p4)/p3(

/ℓ1 + /ℓ2 − /p5)(
/ℓ1 + /ℓ2)

]
−Tr

[
/p3(
/ℓ2 + /p4)

/ℓ2/ℓ1(/ℓ1 + /p1)/p2(
/ℓ1 + /ℓ2 − /p5)(

/ℓ1 + /ℓ2)
])
,

N (9)
dp,zm =ϵ4

(
Tr
[
/p5/p1/p2/p3(

/ℓ2 + /p4)(
/ℓ1 + /ℓ2)/ℓ1(/p3 + /p4)

]
− ρ1ρ4Tr

[
/p5/p1/p2/p3

])
.

(4.95)

The o�-shell correction term R
(4)
dp,zm is given by

R
(4)
dp,zm =

1

4

q2

s12
tr25

[
(µ11ρ6 + µ12(ρ8 − ρ7) +

(
−2µ12 − 2µ22 +

q2

2ϵ

µ12 + µ22

ρ2

)
ρ3

− 1

4ϵ

(
−µ22

ρ1ρ8
ρ7

+ µ22
ρ1ρ3
ρ2

+ µ11
ρ6ρ8
ρ7

+ µ11
ρ4ρ7
ρ8

− µ11
ρ4ρ6
ρ5

+ 2µ12
ρ3ρ6
ρ8

)]
.

(4.96)
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zz topology

N (1)
dp,zz =ϵ

4tr5

√
∆

(1)
3 µ12,

N (2)
dp,zz =ϵ

4tr5

[
−s23µ22 +

1

2
(q2 − s23 − s45)µ12

]
,

N (3)
dp,zz =ϵ

4tr5

[
−s45µ11 +

1

2
(q2 − s23 − s45)µ12

]
,

N (4)
dp,zz =ϵ

4 1

tr5

[
(s23P3 −

1

2
(q2 + s23 − s45)P7 −

1

2
(q2 + s23 − s45)tr

2
5µ12

]
,

N (5)
dp,zz =ϵ

4 1

tr5

[
(s45P4 −

1

2
(q2 − s23 + s45)P7 −

1

2
(q2 − s23 + s45)tr

2
5µ12

]
,

N (6)
dp,zz =ϵ

4

√
∆

(1)
3

tr5
P8,

N (7)
dp,zz =ϵ

4Tr
[
/p2(
/ℓ1 + /p2)(

/ℓ1 + /p2 + /p3)(
/ℓ1 + /ℓ2 − /p1)(

/ℓ1 + /ℓ2)/ℓ2(/ℓ2 + /p5)/p4

]
,

N (8)
dp,zz =ϵ

4Tr
[
/p3(
/ℓ1 + /p2)

/ℓ1(/ℓ1 + /ℓ2)(/ℓ1 + /ℓ2 − /p1)(
/ℓ2 + /p4 + /p5)(

/ℓ2 + /p5)/p5

]
,

N (9)
dp,zz =ϵ

4

√
∆

(1)
3

q2 − s23 + s45

(
Tr
[
/p1/p2/p3/p4(

/ℓ2 + /p5)(
/ℓ1 + /ℓ2)/ℓ1(/p4 + /p5)

]
−ρ1ρ4Tr

[
/p1/p2/p3/p4

]
− 1

2ϵ4
N (7)

dp,zz +
3

2ϵ4
N (8)

dp,zz

)
.

(4.97)

The last insertion N (9)
dp,zz in eq. (4.97) is only pure on-shell.
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Chapter 5

Conclusion and outlook

In the last decade we have witnessed remarkable progress with NNLO predictions for multi-particle
processes (two and more �nal states) in QCD. This progress is due to the development of new
methods for computing both amplitudes and master integrals. By now, a large number of NNLO
calculations for 2 → 2 processes are available and �rst results for 2 → 3 scattering of massless
particles start to appear. With the public code Caravel [230] �rst steps towards an automated
calculation of multi-leg amplitudes at two-loop were done. Recently, NNLO cross sections for
pp → γγγ, pp → γγj and pp → jjj were obtained [231�234] as �rst two-loop phenomenological
results in �ve-point scattering.
In this work, we contributed to the exploration of the two-loop �ve-point frontier by computing
�ve-point integrals with one o�-shell leg in all planar families and three non-planar hexa-box
integral families. We constructed canonical di�erential equations for all integral topologies and
integrated them numerically with the generalized power-series approach. To avoid dealing with
highly complex analytic IBP reduction we performed multiple numerical reductions and recon-
structed the canonical di�erential equation following the procedure of reference [48].
A crucial ingredient of this approach is the pure integral basis which gives rise to the canonical
di�erential equation. We found such bases for all mentioned topologies as well as for one of the
two double-pentagon topologies, and constructed an on-shell pure basis for the second double-
pentagon. We used a combination of heuristic and (semi)-algorithmic ideas based on several
principles like loop-by-loop residue computations, dimension shifts and integrating out the O(ϵ)-
part of the pre-canonical DE. The strategy of working with numerical DE's caused an additional
di�culty for constructing pure bases since we could, at least mostly, work only at the integrand
level but were not able to directly manipulate the DE. We could, at least partially, circumvent
this obstacle by working with cut DE's and using functional reconstruction methods. However,
the most crucial results have been obtained by a purely integrand-based case-by-case analysis.
Although we could not provide an algorithmic way to construct pure bases for generic integral
topologies, we still gained useful insights about the structure of �ve-point pure integrals. Explicit
use of extra-dimensional µ-type objects allowed to express many pure integrands in remarkably
compact form which can be found by �educated guessing�. A deeper understanding of leading
singularities beyond the four-dimensional limit would surely provide a better explanation of extra-
dimensional pure integrands found in the present work.
A further notable result is the symbol alphabet of the planar and the hexa-box topologies which
had to be constructed independently in order to use the reconstruction procedure of reference [48].
The planar alphabet has been found by combining known one-loop and four-point contributions
with computing analytic cut di�erential equations in canonical form. In the non-planar case, four
additional types of letters have been found by analyzing the structure of non-planar leading sin-
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gularities. The full alphabet contains of 204 letters which can be generated by permuting 21 basic
letter types including three di�erent classes of square-root expressions and is signi�cantly more
complicated than the �ve-point massless alphabet which has 31 letters and only one square-root.
Notably, a new type of intrinsically non-planar �ve-point square root appeared for the �rst time
in two hexa-box topologies.
A further interesting observation concerns the extended Steinmann conjecture on double discon-
tinuities of Feynman integrals. In the planar case, we con�rmed it to all orders in ϵ while for two
of the three hexa-box topologies the extended Steinmann relations are not satis�ed.
Furthermore, we showed that numerical integration method based on expanding the di�eren-
tial equation into a generalized power series is highly competative with the traditional analytic
integration in both precision and computation time and can be therefore used not only for pro-
viding benchmarks but also for actual phenomenological studies. We also demonstrated how this
approach can be used for computing boundary conditions for the di�erential equation and ex-
tending the result to an arbitrary kinematic region. Of course, obtaining analytic expressions for
the integrals is still a very important task which was, in the case of the planar integrals, already
successfully solved in terms of polylogarithms [75] and special pentagon functions [76].
Integrals computed in this thesis have already enabled a couple of amplitude calculations [77�79].
Here, the result [79] is particularly impressive since it provides the full analytic leading-color
amplitude for processes including four partons and a W -boson in QCD.
In summary, it can be said that the numerically-based di�erential equation approach has proven
itself to be a useful tool in computing Feynman integrals at the current two-loop �ve-point frontier
and will, probably, �nd further applications.
Finally, let us give a brief overview of the possible extensions of this work. The most obvious next
step is the completion of �ve-point master integrals with one o�-shell leg by computing the both
double-pentagon topologies. We are optimistic that this goal can be achieved with comparably
small improvements of the approach presented in this thesis, mainly concerning better handling
of intermediate expressions which, even numerically, become very large for these topologies. A
possible way to improve this could be a more systematic usage of �nite �eld techniques and
functional-reconstruction methods which are already well established in amplitude calculations.
A further goal could be the planar massless six-point master integrals since all their sub-topologies
are included in the planar �ve-point master integrals with one o�-shell leg. Important results on
six-point integrands were obtained in reference [212]. Other possible directions could be �ve-point
integrals with two or more massive external legs or massive internal propagators or three-loop
four-point integrals with one or more massive external legs.
We are convinced that the newly obtained methodology and results will lead to a broad availability
of �ve-point NNLO QCD predictions for the LHC in the near future.
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Appendix A

Useful parametrizations of the �ve-point

phase space

For most of the time the �ve-point one-mass phase space is parametrized by the cyclic Mandelstam
invariants s⃗ de�ned in eq. (3.1). Eq. (3.2) gives the �ve remaining non-cyclic variables in terms
of the cyclic ones. However, sometimes alternative representations might be more convenient.
In our implementation of the numerical DE described in section 3.2 we have the possibility to
switch between either directly choosing numerical values for the Mandelstam invariants or for the
external momentum components pµi . Due to the special form of tr5

tr5 = 4iϵµνρσp
µ
1p

ν
2p

ρ
3p

σ
4 (A.1)

∆5 becomes automatically a perfect square if all momentum components are rational.
In this section, we want to discuss some special parametrizations of the �ve-point massive kine-
matics. In section A.1 we brie�y review the spinor-helicity formalism(see e.g. [236, 237]). Then,
in section A.2 we introduce momentum twistors [238] and discuss their application in the presence
of a massive external leg. Finally, we give a concrete set of momentum-twistor variables which

rationalizes tr5 and

√
∆

(1)
3 simultaneously.

A.1 Helicity spinors

Here, our presentation closely follows [237]. Each four-vector pµ can uniquely be mapped onto a
complex 2× 2-matrix P ȧb via

P ȧb = pµσ̄ȧb
µ , (A.2)

where
σ̄ȧb
µ = (1ȧb, σ⃗ȧb), (A.3)

with σ⃗ = (σ1, σ2, σ3) being the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.4)

Explicitly, the matrix P ȧb can be written as

P ȧb =

(
p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)
. (A.5)
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The mass square p2 is now encoded in the determinant of P ȧb

det(P ȧb) = p2. (A.6)

If pµ is massless then P ȧb can be expressed as a product of two Weyl spinors λ, λ̃

P ȧb = λ̃ȧλb, (A.7)

which transform with the (0, 1/2)- and (1/2, 0)-representations of the Lorentz group, respectively.
The spinor indices a, ȧ are raised and lowered by a two-dimensional totally antisymmetric tensor

λa = ϵabλ
b, λ̃ȧ = ϵȧ,ḃλ̃

ḃ, (A.8)

where

ϵab = ϵab = ϵȧḃ = ϵȧḃ =

(
0 1
−1 0

)
, ϵba = −ϵab. (A.9)

Often a bracket notation is used

⟨λ| ≡ λa, |λ⟩ ≡ λa,

[λ̃| ≡ λ̃ȧ, |λ̃] ≡ λ̃ȧ.
(A.10)

We de�ne two bilinear antisymmetric products ⟨·, ·⟩ and [·, ·] via

⟨λµ⟩ ≡ λaµa = ϵabλ
aµb = −⟨µλ⟩,

[λ̃µ̃] ≡ λ̃ȧµ̃
ȧ = ϵȧḃλ̃

ḃµ̃ȧ = −ϵȧḃλ̃
ȧµ̃ḃ = −[µ̃λ̃].

(A.11)

A massless four-momentum pµi can be obtained from the corresponding spinors λi, λ̃i via

pµi =
1

2
λai σ

µ

aḃ
λ̃i

ḃ
=

1

2
⟨i|σµ|i], (A.12)

where we used the short notation ⟨i| ≡ ⟨λi| and |i] ≡ |λ̃i]. Alternatively, we can use Dirac-algebra
and cast eq. (A.12) into the form

pµ =
1

2
⟨p|γµ|p], (A.13)

where
[p| ≡ ū+(p) = v̄−(p), ⟨p| ≡ ū−(p) = v̄+(p). (A.14)

Mandelstam invariants for massless momenta can be expressed in terms of spinor products

sij = (pi + pj)
2 = ⟨ij⟩[ji]. (A.15)

We can use eq. (A.12) to generate a set of four independent massless four-momenta pµi with
rational entries by choosing randomly four pairs of rational spinors λi, λ̃i. The massive momentum
pµ1 can be as well included in this scheme by introducing two auxiliary massless momenta qµ1 , q

µ
2 ,

with pµ1 = qµ1 + qµ2 and q21 = q22 = 0. However, the �ve momenta we have to generate are not
independent but ful�ll the momentum conservation

∑5
i=1 p

µ
i = 0. This constraint is implemented

by using momentum-twistor variables which are introduced in section A.2 where we follow the
presentation of reference [239].
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A.2 Momentum-twistor variables

To catch up momentum conservation we switch to so-called dual variables yi, i = 1, . . . , n, de�ned
by

pi = yi − yi−1, (A.16)

with y0 = 0. The indices are cyclic modulo n. The inverse map is

yi =
i∑

j=1

pj, y0 = 0. (A.17)

It is easy to see that now momentum conservation is guaranteed since

n∑
i=1

pi =
n∑

i=1

(yi − yi−1) = yn − y0 = 0. (A.18)

We de�ne a new set of spinors [µ̃i| via

[µ̃i| = ⟨pi|/yi = ⟨pi|(/yi−1
+ /pi) = ⟨pi|/yi−1

, (A.19)

where we used the Dirac equation ⟨pi|/pi = 0. With a bit of algebra (see [239] for details) we can

express [λ̃i| in terms of ⟨λj|'s and [µ̃j|'s

[λ̃i| = −⟨i, i+ 1⟩[µ̃i−1|+ ⟨i+ 1, i− 1⟩[µ̃i|+ ⟨i− 1, i⟩[µ̃i+1|
⟨i, i+ 1⟩⟨i− 1, i⟩

. (A.20)

We choose randomly the λi's and µ̃i's and derive from them the external momenta using eq. A.20
and eq. (A.12). Four-momenta constructed in this way sum to zero automatically.
Often one combines the λi's and µ̃i's to a four-component twistor Zi de�ned as

Zi ≡
(

|λi⟩
|µ̃i]

)
. (A.21)

Geometrically, a dual point yi is associated to a line in the twistor space connecting Zi−1 and Zi.
See [239] for details on the geometric structure of momentum-twistor space. The set of spinors
Z1, . . . , Zn is usually combined to a 4× n twistor matrix

Zn = (Z1, . . . , Zn) . (A.22)

Due to the U(1) rescaling symmetry of each of the Zi's and the global Poincare-group symmetry
Zn can be parametrized by 3n− 10 independent variables.
As already mentioned, every rational choice of the helicity spinors automatically rationalizes
tr5. However, for some applications it might be helpful to have a phase-space parametrization

in which one further square-root becomes rational. We decided to rationalize

√
∆

(1)
3 since it

appears already at the one-loop level as well as in the top-level on-shell di�erential equation for
the zz-double-pentagon topology, due to our basis choice (see section 4.3.2). A manifestly rational

parametrization of both tr5 and

√
∆

(1)
3 would speed up the numerical computation of the on-shell

di�erential equation signi�cantly. Since the massive leg is implemented as a sum of two massless
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momenta it is convenient to begin with a generic six-point con�guration which is parametrized
by eight free parameters. Inspired by reference [240], we chose the 6× 4 twistor matrix Z6 to be

Z6 =


1
x1

1
x2

+ 1
x1

1 0 −x6x7−x5x8

x3
+ 1

x1
+ 1

x1x2
+ 1

x1x2x3

1
x2x1

+ 1
x2x3x1

+ 1
x1

1 1 0 1 1 1
1 0 0 0 x7 x5
0 1 0 0 x8 x6

 . (A.23)

Using eq. (A.20) and eq. (A.15) we compute the cyclic six-point Mandelstam invariants

s̃12 =
x1x2x3 (x5 + x6 − 1)

x3 + 1
, s̃23 = x2, s̃34 =

x1x2x3x7
x2x3 + x3 − x1x2x6x7 + x1x2x5x8 + 1

,

s̃45 = x3,

s̃56 = −x1x2x3 (x1x2x7x
2
6 + (x3 (x2 (x7 − 1)− 1)− x1x2x5x8 − 1)x6 + x3 (−x5x2 + x2 + 1)x8 + x8)

(x3 + 1) (x2x3 + x3 − x1x2x6x7 + x1x2x5x8 + 1)
,

s̃16 = −−x1x2x8x25 − (−x1x8x3 + x3 − x1x2 (x6x7 − x6x8 + x8) + 1) x5
x1 (x6x7 − x5x8)

− x1x2x
2
6x7 + x3x7 + x7 − x6 (x1 (x7 − 1)x3 + x3 + x1x2x7 + 1)− x1x3x8 + x3x8 + x8

x1 (x6x7 − x5x8)
,

(A.24)

which we denote here with s̃ij in order to distinguish them from the true �ve-point Mandelstam
variables sij. We complete the set of independent six-point invariants by

s̃123 =
x1x2x3x6
x3 + 1

, s̃234 = −x2 (x1x2 (x6x7 − x5x8) + x3 (x1x8 + x2 (x7 + x8 − 1)− 1)− 1)

x2x3 + x3 − x1x2x6x7 + x1x2x5x8 + 1
.

(A.25)

We de�ne
˜⃗s = {s̃12, s̃23, s̃34, s̃45, s̃56, s̃16, s̃123, s̃234} . (A.26)

The advantage of this parametrization is that two invariants s̃23 and s̃45 are given by single twistor
variables. We rescale ˜⃗s by 1

s̃16
and de�ne new variables

x̃2 :=
x2
s̃16

, x̃3 :=
x3
s̃16

. (A.27)

Up to this point, we worked with a generic six-point momentum con�guration. In order to extract
the special case of the �ve-point massive kinematics we have to �x two degrees of freedom. We
choose

x1 = 0, x5 = 1 (A.28)

in order to simplify the functional form of the Mandelstam invariants.
Now we can identify the six remaining variables with the standard �ve-point Mandelstam invari-
ants via

q2 = s̃23, s12 = s̃234, s23 = s̃45, s34 = s̃56, s45 = s̃16, s15 = s̃123. (A.29)

The rescaled three-point Gram determinant ∆̃
(1)
3 in terms of momentum-twistor variables becomes

∆̃
(1)
3 (x̃2, x̃3) = x̃22 + x̃23 + 1− 2x̃2x̃3 − 2x̃2 − 2x̃3. (A.30)
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Since ∆
(1)
3 is form-invariant under the variable transformation (A.24) it can be turned into a

perfect square independently from tr5. A particular change of variables which turns the Källén
function into a pefect square is well-known in the literature. The variable transformation

x̃2 = ω1ω2, x̃3 = (ω1 − 1)(ω2 − 1) (A.31)

provides a possible solution. Now we have

∆̃
(1)
3 (ω1, ω2) = (ω1 − ω2)

2. (A.32)

The backward transformation is given by

ω1,2(x̃2, x̃3) =
x̃2 − x̃3 + 1±

√
∆

(1)
3

2
. (A.33)

Finally, we restore the mass dimension of the kinematic variables by multiplying each of them by
a common scale S. We obtain

q2 = Sw1w2, s12 = −Sw1w2 (x7 + x8 − 1) , s23 = S (w1 − 1) (w2 − 1) ,

s34 = − S (w1 − 1)w1 (w2 − 1)w2x6 (x7 − 1) (x6 − x7 − x8 + 1)

w1w2x7x26 − x6 (w1 (−x7) + w2w1 (x7 + x8 − 1)− w2x7 + w1 + w2 − 1)− x8
,

s45 = S, s15 =
S (w1 − 1)w1 (w2 − 1)w2x6 (x6 − x7 − x8 + 1)

(w1 − 1) (w2 − 1) (x6 − x6x7) + (x6x7 − x8) (w1w2x6 + 1)
.

(A.34)

The three-point Gram becomes

∆
(1)
3 (S, ω1, ω2) = S2(ω1 − ω2)

2. (A.35)

To provide a concrete example of a phase-space point with both tr5 and

√
∆

(1)
3 being rational we

choose randomly a point in the twistor-parameter space to be

{S = 2, ω1 = 2, ω2 = 3, x7 = 7, x6 = 5, x8 = 11} , (A.36)

which corresponds to

s⃗ =

{
12,−204, 4,

240

19
, 2,−40

19

}
. (A.37)
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Appendix B

Embedding-space formalism

In this section, we give a brief overview of the embedding-space formalism (ESF). Here, we adopt
the notation from [56]. For a more detailed discussion see e.g. [167]. The basic idea is to embed
the D-dimensional kinematic space into a higher dimensional projective space such that possible
singularities at in�nity become manifest. This enables us to take residues at these singularities.
In section 3.3.3 we show explicitly how to use ESF to compute leading singularities of some two-
loop integrals. In [56] we give a further interesting example.
In the following, we embed the kinematic space into the complex projective space CPD+1 with
elements V parametrized by tuples of homogenous coordinates

V =
(
vµ, V +, V −) , (B.1)

equipped with the equivalence relation V ∼ αV for any α ∈ C with α ̸= 0. We de�ne a bilinear
form on CPD+1 by

(VW ) := −2vµw
µ − V +W− − V −W+. (B.2)

Next, we de�ne the projective version of a planar one-loop n-point Feynman integral. In the
following, we focus on the special cases of n = 3 and n = 4. Let p1, . . . , pn denote the external
momenta and ℓ the loop-momentum. The n propagators are given by

Di =

(
ℓ+

i∑
j=0

pj

)2

, 0 ≤ i ≤ n− 1. (B.3)

We map the external momenta on a set of projective points X0, . . . , Xn−1 via

pi 7→ Xi =

− i∑
j=1

pj,−

[
i∑

j=1

pj

]2
, 1

 , 1 ≤ i ≤ n− 1. (B.4)

The reference point X0 is given by X0 := [0, 0, 1]. With this de�nition we have

(XiXj) = (pi−j+1 + · · ·+ pi)
2, for i > j and (XiXi) = 0. (B.5)

Up to numerical prefactors, the projective one-loop integral is now given by [167]

IDn ∼
∫

dD+2Y δ((Y Y ))

vol(GL(1))

[(IY )]n−D∏n−1
i=0 (Y Xi)

. (B.6)
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Here, I is the in�nitity point which we set to

I := [0,−1, 0], (B.7)

such that (XiI) = 1 for all i. The integration domain in eq. (B.6) is restricted by δ((Y Y )) to
a real D-dimensional quadric de�ned by (Y Y ) = 0. In practice, we implement this condition by
parametrizing Y as

Y =
(
ℓ,−ℓ2, 1

)
. (B.8)

With this choice we have

(XiY ) =
1

Di

, (B.9)

which reproduces the standard Feynman propagators. The numerator factor [(IY )]n−D which
ensures the homogeneity of the integrand is called the in�nitity propagator. For n = 3 and ϵ→ 0
it appears explicitly in the denominator. To compute the leading singularity we need to cut it
together with other propagators. In this way, singularities at in�nitity become manifest in this
representation. A triangle integral, for instance, is represented by four propagators in the ESF,
namely three actual propagators and the in�nitity propagator. In that sense, a triangle integral
can be treated as a box integral with one edge put to in�nitity.
Moreover, computing cuts in the embedding space has the advantage of working with propagators
which are linear in the loop-momentum Y instead of the usual quadratic dependence. The
Jacobian factor J which needs to be added in order to compute the quartic cut in four dimensions,
de�ned by

(X0Y ) = (X1Y ) = (X2Y ) = (X3Y ) = 0, for n = 4,

(X0Y ) = (X1Y ) = (X2Y ) = (IY ) = 0, for n = 3,
(B.10)

is, therefore, given by

J =


1√

G(X0,X1,X2,X3)
, n = 4,

1√
G(X0,X1,X2,I)

, n = 3.
(B.11)

The embedding space Gram determinant G is de�ned by

G(X1, . . . , Xn) = det {(XiXj)}ni,j=1 . (B.12)

For planar two-loop integrals eq. (B.6) can be applied loop-by-loop. We demonstrate this on two
examples in 3.3.3.
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Appendix C

Functional reconstruction

In the section 3.3.5 we showed how to integrate out O(ϵ0)-part of the connection matrix. We did
a similar computation in 4.3.2 to compute the kinematic prefactors of the parity-odd insertions.
However, the analytic form of the A(0) matrix is not known in the �rst place since we work with
purely numerical di�erential equations. In this section, we want to discuss our reconstruction
procedure for O(ϵ0) part of the matrix. Let us assume that we managed to bring the di�erential
equation into the form

∂I

∂si
=
[
A

(0)
i (s⃗) + ϵA

(1)
i (s⃗)

]
I. (C.1)

For simplicity, we work here with a single component of the di�erential equation. Then, we simply
repeat the calculation for the next variable. Since solving IBP relations generates only rational
expressions, the only non-rational terms in the connection can come from square-roots in the
de�nition of the pre-canonical basis I which are known analytically. Let us �rst assume that the
constant part of the connection A

(0)
i (s⃗) is rational and so standard functional reconstruction can

be applied. To extract the constant part from the pre-canonical connection we use eq. (3.25) and
obtain

A
(0)
i (s⃗j) =

ϵ1ϵ2
ϵ2 − ϵ1

∆Ai(s⃗j), j = 1, . . . , Nr, (C.2)

where Nr is the number of sample points.
Let us brie�y review the functional reconstruction process in the univariate case. A generic
rational function f ∈ K(R) is given by the ratio of two polynomials. In the univariate case we
have

f(x) =

∑Rn

i=0 aix
i∑Rd

j=0 βjx
j
, (C.3)

where α0, . . . , αRn , β0, . . . , βRd
∈ R, Rd, Rn ∈ N. We use the Thiele's continued-fraction formula

[241] to represent f as a continued-fraction

f(x) = a0 +
x− y0

a1 +
x− y1

a2 +
x− y2

. . .+
x− yR−1

aR

. (C.4)

Here, y0, . . . , yR−1 are the interpolation points and a0, . . . , aR are the unknown coe�cients. The
advantage of the Thiele's representation is that f(yi) does not depend on aj's with j > i. This
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allows for a recursive computation of the coe�cients. The algorithm stops when the reconstructed
function starts to reproduce the black-box evaluations. Finally, the reconstructed function can
easily be brought into the standard form (C.3).
The most general multivariate case is more complicated. We refer to Peraro's paper [125] for a
generic reconstruction algorithm for multivariate dense rational functions. Since all functions we
needed to reconstruct in our work are rather simple and have maximally degree four in any of
the variables both in the numerator and the denominator it was su�cient to apply the univariate
algorithm recursively variable by variable. To reduce the number of numerical evaluations we
reconstructed the analytical dependence in only three or maximally four out of six kinematic
variables. To determine the remaining analytic structure we applied the PSLQ-algorithm [214].
Let us explain this on a simple example. Assume that we have a rational function in three
variables

f(x1, x2, x3) =
x21x2 + x1x2x3 + x23x2

x1 − x2 + x3
, (C.5)

which has to be reconstructed. We set x2 = 7, x3 = 11 and apply the Thiele's formula with
respect to x1. The result is

f̃(x1) =
7x21 + 77x1 + 847

x1 + 4
. (C.6)

By dimensional analysis we conclude that the coe�cient of the quadratic term in the numerator
has to be a linear polynomial in x2 and x3 while the second coe�cient is a quadratic polynomial
and the constant part has to be given by a cubic polynomial. Now we can make an ansatz and
apply the PSLQ-algorithm to determine the coe�cients of this ansatz. So, for instance, we have

847 = α17
3 + α211

3 + α311
2 · 7 + α47

2 · 11. (C.7)

This equation is ful�lled for α1 = 0, α2 = 0, α3 = 1, α4 = 0. The same procedure can be applied
to all coe�cients. By using PSLQ we could keep the number of needed numerical IBP evaluations
at O(30) per topology.

Finally, we brie�y discuss the treatment of square roots which can appear in A
(0)
i (s⃗). In this case,

we can assume that the potential Φ1 (see 3.3.5 for the de�nition of Φ) has the general form

Φ(s⃗) =
f(s⃗)√
Q(s⃗)

, (C.8)

where f is a rational function and Q is one of the Gram determinants which appear in the symbol
alphabet. At this stage we can assume that all Gram determinants are known analytically. By a
simple calculation we show that

A
(0)
i (s⃗) =

∂Φ(s⃗)

∂si
=

(∂if)Q− 1
2
(∂iQ)f

Q3/2
≡ F

Q3/2
, (C.9)

where F is again a rational function. Using eq. (C.9) we can extract the purely rational part F
of A

(0)
i (s⃗) and reconsruct it �rst. Then, we simply divide the result by Q3/2.

1For simplicity, we work here with a scalar potential Φ which should in general be understood as an entry of
the matrix-valued potential.
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