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Fig. 1. Schematic of devices containing microwave cavity
(long grey cylinder) and two magnetic layers (brown and
blue disks): (a) The microwave is fed to the input port of
cavity and experiences reflection and transmission, the
transmitted wave gives rise to standing wave inside the ca
vity due to multiple reflections, and then exits the output
port of cavity. Two magnetic layers are placed at distinct
positions of cavity and excite two magnon modes under ex-
ternal magnetic field and microwave driving, an indirect
coupling of two magnon modes occurs (green dashed circle)
due to simultaneous coherent/dissipative coupling of two
magnon modes with the common cavity modes; (b) con-
trary to (a), two magnetic layers are placed together, the
interface exchange coupling in the magnetic bilayer results
in direct magnon-magnon coupling (yellow solid circle) be-
sides the aforementioned indirect coupling (green dashed
circle).
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Fig. 2. Microwave transmission spectra and imaginary parts of eigenfrequency for single magnon mode, microwave transmission
spectra of pure dissipative coupling (G = —iI") with (a) I'= 30 MHz, (b) I' = 60 MHz; pure coherent coupling (G = g ) with
(c) g =30 MHz, (d) g =60 MHz; (e)-(h) imaginary parts of eigenfrequency as function of detuning Apc for each coupling in (a)-(d).
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Fig. 3. Microwave transmission spectra and imaginary parts of eigenfrequency for two magnon modes with pure coupling: (a) Mi-
crowave transmission spectra of pure coherent coupling (G = g=g,= g, ) with g= 20 MHz, and pure dissipative coupling
(G =—iI' = —il, = —il} ) with (b) I'= 20 MHz and (c¢) I'= 45 MHz; red and blue dashed arrows denote the positions of two
zero damping conditions; (d)—(f) microwave transmission as function of detuning A¢ at zero damping conditions; (g)—(i) imaginary

parts of eigenfrequency as function of detuning Ay, for each coupling in (a)—(c).
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Fig. 4. Microwave transmission spectra and imaginary parts of eigenfrequency for two magnon mode with both coherent and dissi-
pative couplings present: (a) Coupling strength G = (30 — 20i) MHz and damping rate ka = K = kc = 15 MHz; (b) the same as
(a) but with ka = kp = 30 MHz; (c) coupling strength G = (30 — 30i) MHz and damping rate ko = x, = 30 MHz and ke = 15 MHz;

(d)—(f) microwave transmission as function of detuning Ac at zero damping conditions; (g)—(i) imaginary parts of eigenfrequency as

function of detuning Amc for each coupling in (a)—(c).
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Fig. 5. Microwave transmission spectra and imaginary parts of eigenfrequency for two magnon mode with interlay coupling present:

(a) Interlayer coupling strength g, = 100 MHz, (b) ga = 200 MHz, photon-magnon coupling strength is G = (30 — 30i) MHz;

(¢), (d) microwave transmission as function of detuning A at zero damping conditions; (e), (f) imaginary parts of eigenfrequency

as function of detuning Amc for each coupling in (a), (b), the green curves represent the results of g, = 0.
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Abstract

Experimental and theoretical studies have shown that a single magnon mode and cavity photon can be
coupled coherently and dissipatively, with the interference between two types of coupling creating zero damping
effect. In magnetic bilayers or multilayers, there exists more than one magnon mode which can be directly
coupled by interface exchange interaction. In this work, a single-magnon mode is extended to a two-magnon
mode and the effect of the two-magnon mode on zero damping condition is investigated. Using eigenfrequency
analysis and microwave transmission spectra, the analytical expressions of the zero damping condition and the
frequency detuning can be derived. By comparing analytical results with numerical results, the dependence of
zero damping condition on system parameters can be obtained. In the absence of direct interface exchange
magnon-magnon coupling, the zero damping condition occurs for dissipative coupling or hybrid coupling. As the
coupling strength increases, the distance between two zero damping points increases. For hybrid coupling, the
two zero damping points turn no longer symmetric, which is different from the case of pure coupling. Moreover,
the effect of interface exchange magnon-magnon interaction on zero damping condition is studied. The interface
exchange coupling results in the splitting of microwave transmission spectra, but the zero damping condition
occurs only in the low-frequency mode. As the interface exchange coupling strength increases, the frequency at
which the zero damping condition happens will shift toward lower frequency. Due to extremely narrow line-
width of microwave transmission dip under the zero damping condition, the result in this work is expected to be
useful for designing the magnon-based quantum sensing devices.

Keywords: magnon, microwave cavity, zero damping condition
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