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1. Introduction

The study of the confinement properties of the Yang-Mills theories is a notoriously
difficult subject, confinement being a completely nonperturbative phenomenon, and this
prevents a complete understanding of the physics of the Standard Model of particles in
the strongly coupled regime.
The lattice formulation of QCD introduced by Wilson [1] is an invaluable tool for

studying strong coupling gauge theories both analytically and by means of numeri-
cal simulations. During the years enormous numerical evidence has been collected to
support the idea that in non-abelian gauge theories the color degrees of freedom are
confined, i.e. that only color singlet states are present in the spectrum. Nevertheless a
satisfactory understanding of the physical mechanism responsible for color confinement
is still lacking. Topologically stable configurations are though to be involved in the color
confinement mechanism, however there is no consensus on the choice of the relevant
topological defects, the two main candidates being vortices and monopoles.
The ideas behind the two proposal of vortex- or monopole-related confinement are

very different in spirit although they are both aimed at explaining the presence of a
linearly rising potential between a quark-antiquark static pair or, equivalently, the area
law behaviour of the Wilson loops.
In the vortex-related theory the area scaling of the Wilson loops is explained by what

is usually called “center disorder”: if in the confined phase a large number of sufficiently
randomly distributed vortices are present, a given Wilson loop will be pierced by a large
number of independent vortices and, depending on the even or odd number of piercings,
the sign of the Wilson loop will strongly fluctuate, with large cancellations occurring
and a net exponential behaviour will result (for details see e.g. [2]). In the monopole-
related confinement scenario the assumption is that the monopole degrees of freedom are
condensed in the confined phase and the linearly rising potential is generated by the dual
analogue of the Abrikosov flux tubes, i.e. the vacuum behaves as a dual superconductor.
While in the vortex scenario confinement is related to the existence of a percolating

vortex cluster, in the monopole scenario confinement is connected to the realization of the
magnetic U(1) symmetry and the absence of colored asymptotic states in the spectrum
is enforced by the vacuum symmetry, thus avoiding naturalness problems. This is not
the only theoretically appealing feature of the dual superconductivity model, since it
leaves open the door to the possibility of a duality symmetry between the electric and
the magnetic degrees of freedom, i.e. to the possibility of describing the QCD strong
coupling regime by means of an effective weakly interacting theory of monopoles.
Effective weakly interacting theories which describe the strong coupling regime of a

physical systems by means of effective degrees of freedom are ubiquitous in condensed
matter physics (e.g. the Landau theory of Fermi liquids), however there are very few
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1. Introduction

examples of systems for which the duality transformation is explicitly known. These are
typically simple spin systems, like the 2d Ising model [3] or the 2d XY model [4]. A
notable exception is the solution by Seiberg and Witten of the N = 2 supersymmetric
Yang-Mills theory [5] in which the duality transformation can be explicitly performed
and confinement is described by monopole condensation.
The effective degrees of freedom are typically introduced by the topologically nontrivial

behaviour of the fields at spatial infinity. For example, for a Yang-Mills theory living
in D + 1 dimension, the effective degrees of freedom would be associated to the πD−1

homotopy group and in the ordinary 3+1 dimensional space-time monopoles thus appear
as the natural choice.
The prototype monopole configuration for gauge theories is the soliton solution of the

SU(2) Higgs model with the Higgs field in the adjoint representation [6,7]. The general
behaviour of this solution can easily be computed when the gauge symmetry is broken
to U(1) by the Higgs vacuum expectation value, the magnetic degree of freedom being
the massless unbroken component of the gauge field. Since we do not know the explicit
form of the duality transformation, when the gauge symmetry is unbroken it is not clear
how to select the U(1) magnetic subgroup of the gauge group.
In [8] the possibility was advocated that all the choices of the residual U(1) magnetic

gauge symmetry (abelian projections) are equivalent, motivated by the apparent absence
of a preferred direction in color space. In particular a convenient way to define monopoles
is to use a composite field in the adjoint representation of the gauge group: monopoles
can then be identified with the points in which two eigenvalues of the composite field
becomes degenerate.
After the seminal work by DeGrand and Toussaint [9], in which a method to detect

monopoles in numerically generated lattice configurations was proposed, it was noted
that the number and the position of the observed monopoles in a given configuration
strongly depend on the abelian projection adopted. Monopoles thus seem to be gauge
invariant objects. This is unacceptable from a physical point of view: for condensation
of monopoles to be at the origin of color confinement, monopoles have to be gauge
invariant object, independent of the projection used to define them.
While most of the numerical work related to monopoles in lattice gauge theories was

aimed to detect monopoles, in order to confirm or disprove the dual superconductivity
picture a better strategy is to compute the vacuum expectation value of a magnetically
charged operator. To define such an operator we have to choose an abelian projection,
so also this second strategy can give indications on the equivalence (or not) of the
various abelian projections. The numerical results indicate that, in contrast to monopole
detection, monopole condensation is a gauge invariant phenomenon. We thus have two
apparently conflicting results

• monopole detection depends on the abelian projection

• monopole condensation is abelian projection independent

In order to reconcile the two points of view and, more important, to gain a better un-
derstanding of the role played by the abelian projection in the definition of monopoles,
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1. Introduction

it is convenient to investigate if a gauge covariant quantity exists that is related to the
magnetic monopole. In the first chapter of this thesis we will show that such a quan-
tity is the violation of the non-abelian Bianchi identity and by using its relation to the
magnetic current we will show from a theoretical point of view that monopole conden-
sation is indeed abelian projection independent. In the following we will also analyze
the DeGrand-Toussaint recipe to detect monopoles on the lattice and we will show that
the gauge dependence of the number of observed monopole is not in contradiction with
the gauge independence of monopoles.
We mentioned above the possibility of constructing a magnetically charged operator

to be used to detect monopole condensation. The construction of such an operator in
abelian lattice gauge theory is well understood, however the generalization to the non-
abelian ones turn out to be far from trivial: the operator proposed in [10] seemed to
satisfy all the needed requirements, however a more accurate analysis revealed that it
is not well defined. This was interpreted as a signal of the failure of the dual super-
conductivity picture in [11] but we will show it is just a consequence of the nonlocal
nature of the operator, that requires some care in dealing with the O(a2) lattice arte-
facts. An improved version of the operator proposed in [10] will be presented, together
with numerical simulations that show that the problem of the original formulation does
not affect the improved version of the monopole operator.
When fermions are coupled to the gauge field the dual superconductivity picture of

the vacuum does not require any ad hoc modifications, however also the chiral degrees
of freedom can play a predominant role in the determination in the phase diagram, thus
making the theoretical analysis more difficult.
An accurate understanding of the QCD phase diagram at non zero temperature is

clearly of the utmost importance for its considerable phenomenological implications.
Nevertheless there are still some points that are not settled and deserve further inves-
tigations. Among these is the determination of the order of the chiral transition for
the case of two massless quark flavours. Theoretical arguments based on effective chiral
Lagrangians restrict the possibilities for the transition to be first order or second order
in the 3d O(4) universality class; which of these two possibilities is realized in QCD is a
non universal features that need to be investigated by means of numerical simulations.
We will present in the following the state of the art of this problem and the investigations
we are performing in order to give it a definite answer.
Simulations of QCD are however extremely computationally demanding and require

dedicated machines to be performed. Since both a precise verification of the theoreti-
cal expectation and the numerical evaluation of phenomenologically relevant quantities
depend on the precision of these simulations (which in turn depends on the acquired
statistics), in order to speed up the computations much attention is being devoted to
improve the algorithms and to find new architectures on which to perform simulations.
In the last few years it was shown that the modern graphics cards, also known as

graphic processing units (GPUs), can be used in the high performance computing field
with surprisingly good results. For QCD simulations they are typically used together
with more traditional architectures in order to speed up just some steps of the computa-
tions, mainly the analysis of the generated configuration. We showed that it is possible
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1. Introduction

to use GPUs to perform complete simulations without the need to rely on the traditional
expensive dedicated machines; in the last section we will analyze some of the problems
encountered in using GPUs for QCD simulations and the solution strategies adopted to
circumvent them.
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2. Monopoles and the ’t Hooft tensor

2.1. Monopoles in abelian gauge theories

Monopoles can be introduced in electrodynamics as classical configurations with vector
potential ( [12])

A =
g

r

r× n

r − r · n or A = g
(1− cos θ)

r sin θ
eφ if n = −ez (2.1.1)

where n2 = 1. This potential has a singularity along the n line, which generates a
singularity also in the magnetic field B (Dirac string). The magnetic field is given by
(see e.g. [13])

B = ∇×A = g
r

r3
+ 4πg θ(−z)δ(x)δ(y)n

and we see that the Dirac string is necessary to satisfy the Bianchi identity ∇ ·B = 0.
Indeed this has to be the only role played by the Dirac string, since its position is not
gauge invariant: for example the transformation A → A + i

e
(∇U)U−1 with U = e2iegφ

moves the string from n = −ez to n = ez. Since the position of the string is not gauge
invariant, it can not have any physical influence, that is the equation exp(ie

∮
γ
A·ds) = 1

must be satisfied for every curve γ; we thus obtain the Dirac quantization condition

2eg = n n ∈ Z (2.1.2)

In a compact formulation, like that on the lattice, the string is invisible and a violation
of the Bianchi identity is associated to the monopole.
A mathematically neater treatment of the abelian monopole is the one introduced

in [14]. We consider for the sake of simplicity just the case n = ez: it is possible to
introduce two different vector potentials, one for the northern hemisphere and one for
southern one 




AN = g
(1− cos θ)
r sin θ

eφ 0 ≤ θ < π/2 + ǫ

AS = −g (1 + cos θ)
r sin θ

eφ π/2− ǫ < θ ≤ π
(2.1.3)

For this description to be consistent it is necessary that AN and AS be gauge equivalent
on the overlapping region π/2 − ǫ < θ < π/2 + ǫ. It is simple to show that by using
the gauge transformation U(φ) = e−2iegφ we have AS → AS + i

e
(∇U)U−1 = AN . For

this gauge transformation to be single valued we also have to impose U(0) = U(2π)
obtaining again the Dirac quantization condition Eq. (2.1.2). In this formulation there
are no singularities but the vector potential is not defined globally.
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2. Monopoles and the ’t Hooft tensor

2.2. The ’t Hooft-Polyakov monopole

While in abelian gauge theories monopoles have to be introduced by hand, in the non-
abelian ones they are naturally present, as first shown in [6, 7] for the Georgi-Glashow
model ( [15]). In this model an SU(2) gauge field interacts with a Higgs field in the
adjoint representation through the lagrangian density

L = −1

2
TrGµνG

µν + Tr (Dµφ)
†(Dµφ)− λ

4
(2Trφ2 − v2)2

where the group generators are normalized according to Tr (T aT b) = 1
2
δab. For a static

configuration the energy is given by

E =

∫
d3x

[
1

4
F a
µνF

aµν +
1

2
(Dµφ

a)†(Dµφa) +
λ

4
(φaφa − v2)2

]

and a necessary condition for the total energy of a static configuration to be finite is

φaφa → v2 as |x| → ∞ (2.2.1)

For non zero v values the gauge symmetry is spontaneously broken to U(1) and from
the relation Eq. (2.2.1) it follows that to each field configuration is associated a map
from the sphere at infinity S2 to the manifold of possible vacua, which is also S2 since it
is determined by the equation φaφa = v2; configurations can thus be classified by their
winding number.
A convenient gauge to be used in order to reveal the existence of topologically stable

configuration is the “hedgehog” gauge:

φa(r) → v
ra

r
as r → ∞ (2.2.2)

This mapping has winding number n = 1 and thus a configuration with this asymptotic
is topologically stable against decay to trivial vacuum. To obtain a finite energy we
must impose that asymptotically Dµφ

a = 0; inserting in this equation the requirement
Eq. (2.2.2) we obtain the large distance behavior of the gauge field:

Aak(r) →
1

e
ǫank

rn
r2

Aa0(r) → 0 (2.2.3)

The two previous results Eq. (2.2.2), Eq. (2.2.3) justify the t’Hooft-Polyakov ansatz

ξ = evr φa =
ra

er2
H(ξ) Aan = ǫamn

rm

er2
(1−K(ξ)) Aa0 ≡ 0 (2.2.4)

The specific form of the functions H,K will not be used in the sequel.
To show that a field configuration with asymptotic behavior Eq. (2.2.2), Eq. (2.2.3)

has non vanishing magnetic charge it is first of all necessary to define an electromagnetic
field strength Fµν . The identification of the e.m. field is simple in the so called unitary
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2. Monopoles and the ’t Hooft tensor

gauge, defined by φa = const. and φaφa = v2: because of the symmetry breaking
two component of the gauge field become massive. It is then natural to identify the
electromagnetic field with the Aµ component associated to the residual unbroken U(1)
symmetry, thus

Aem
µ =

φa

v
Aaµ (2.2.5)

and the e.m. field strength is defined as usual by Fµν = ∂µA
em
ν − ∂νA

em
µ . In general

Fµν can be defined as the gauge invariant tensor which reduces to the abelian definition
in the unitary gauge and its explicit expression will be derived in full generality in the
following sections. For the moment we just quote the result for this specific model,
introduced in [6]: if we define for the sake of simplicity φ̂ as the normalized Higgs field
(φ/v) then we define

1

2
Fµν = Tr(φ̂ Gµν)−

i

e
Tr(φ̂ [Dµφ̂, Dνφ̂]) (2.2.6)

where the 1
2
in front of Fµν is a consequence of the normalization chosen for the genera-

tors. This expression is usually referred to as the ’t Hooft tensor and it is not difficult
to show that it can be rewritten as ( [16])

1

2
Fµν = Tr(∂µ(φ̂Aν)− ∂ν(φ̂Aµ))−

i

e
Tr(φ̂[∂µφ̂, ∂νφ̂]) (2.2.7)

This form, although not manifestly gauge invariant, is best suited to understand the
definition of Fµν : in the unitary gauge φ̂ is constant, so that the second term is identically
zero and Fµν is clearly the field strength of the residual U(1) gauge symmetry. If instead
we use the hedgehog gauge the fields are regular everywhere, so that only the second
term in Eq. (2.2.7) contributes to the magnetic charge.

Tr(φ̂[∂νφ̂, ∂ρφ̂]) =
1
8
φ̂a∂νφ̂∂ρφ̂Tr(σ

a[σb, σc]) = 1
2
iǫabcφ̂

a∂νφ̂
b∂ρφ̂

c

∂µh
µ = 1

2
ǫµνρ∂µFνρ =

1
2e
ǫµνρǫabc∂µφ̂

a∂νφ̂
b∂ρφ̂

c

Since the configuration is static we can define the dual by ǫµνρ instead of using ǫµνρσ.
The winding number is defined by

ν =
1

8π

∫
ǫµνρǫabc∂µn̂

a∂νn̂
b∂ρn̂

c dV

and

Qm =
1

4π

∫
∂µh

µ dV =
1

4π

∫
1

2
ǫµνρ∂µFνρ dV =

=
1

8πe

∫
ǫµνρǫabc∂µφ̂

a∂νφ̂
b∂ρφ̂

c dV

The magnetic charge obtained by the flux at infinity is thus equal to 1
e
times the winding

number. For the ’t Hooft-Polyakov monopole, defined by Eq. (2.2.4), the winding number
is equal to 1 by construction, so the magnetic charge of this configuration is Qm = 1

e
.
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2. Monopoles and the ’t Hooft tensor

Since the elementary electric charge is equal to Qe =
e
2
we have 2QmQe = 1, so that the

’t Hooft-Polyakov monopole has a charge of 1 Dirac units ( see Eq. (2.1.2)).
In the following we shell also need the expression of the ’t Hooft-Polyakov monopole

Eq. (2.2.4) in the unitary gauge. The gauge transformation that unwraps the hedgehog
is

U(φ, θ) = exp

(
−iφσ

3

2

)
exp

(
−iθσ

2

2

)
exp

(
iφ
σ3

2

)

Aun
µ = U †Ahedg

µ U − i

e
U †∂µU

(2.2.8)

This transformation is singular in the origin of the coordinate (where the monopole is
located) and along the negative z axis. To control this last singularity it is convenient
to use a regularized form of the θ polar angle [13]:

Θ = θ
1 + cos θ

1 + cos θ + ǫ2
(2.2.9)

in the transformation Eq. (2.2.8). By applying this gauge transformation to the gauge
field Eq. (2.2.4) we obtain (the temporal component trivially vanishes)

A = − 1

2er

{
eφ

(
cosΘ− 1

sin θ
+ (1−K) sin(Θ− θ)

)
σ3

+

[
eφ

(
(1−K)(cos(Θ− θ)− sinΘ

sin θ

)
σ1+

+ eθ(Θ
′ − 1 +K)σ2

]
(cos(φ) + iσ3 sin(φ))

}
(2.2.10)

where eφ and eθ are the versors of the two polar coordinates. In the naive limit ǫ → 0
the previous expression becomes the Dirac-like potential

A =
(1−K)

2er

1− cos θ

sin θ
eφσ

3

The gauge potential is singular along the negative z axes, however, contrary to what
happens in the abelian case, by using the complete expression Eq. (2.2.10) it is not
difficult to show (see e.g. [13], App. C) that the magnetic field is regular everywhere
except at the origin. Its only asymptotically (for large r) non-vanishing component is
the radial one, which is given by

Br =
1

r sin θ

∂

∂θ
(sin θAφ) =

1

2er2
σ3 (2.2.11)

In the unitary gauge, from Eq. (2.2.5) it follows that the abelian magnetic field hµ is
just the projection of the non-abelian one:

hr = 2Tr

(
σ3

2
Br

)
=

1

er2

(the 2 comes from the 1
2
multiplying Fµν in Eq. (2.2.6)) from which we have again that

Qm = 1
e
for the ’t Hooft-Polyakov monopole.
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2. Monopoles and the ’t Hooft tensor

2.3. Monopoles in pure gauge theories

We shall now discuss the so-called dynamical or GNO (Goddard, Nuyts, Olive) [17, 18]
classification of magnetic monopole configurations in gauge theories; in this framework
a magnetic monopole is defined as a static solution of the equations of motion with zero
non-abelian electric field whose asymptotic behaviour is ∼ 1

r
. The starting point of this

classification is a gauge configuration that satisfies

A0 = 0
∂A

∂t
= 0 (2.3.1)

in order to guarantee that the non-abelian electric field vanishes. Some of the residual
gauge freedom can be used to impose the conditions that Ar = 0: if we define the gauge
transformation U by

U = P exp

(
ie

∫ ∞

r

A(r, θ, φ)dr

)
(2.3.2)

then clearly ∂U
∂r

+ ieArU = 0 and

AUr = −iU †∂U

∂r
+ U †ArU = 0

The gauge transformation Eq. (2.3.2) can have a singularity in the point r = 0, however
this is not a problem since we are interested in the asymptotic region r → ∞.
In an analogous way we can impose the condition Aθ = 0 by using the parallel trans-

port along meridian (lines at fixed φ value) as the gauge transformation. Again it is
possible for this procedure to introduce spurious singularities, this time along the nega-
tive z axes (θ = π).
Having exploited the gauge symmetries of the problem we are left with a field whose

only non-vanishing component is the one directed along the φ axes. It is convenient to
introduce aφ by

A =
aφ(r, θ, φ)

r sin θ
eφ

As far as the leading order term is concerned we can now neglect the dependence of aφ
on the r variable. With this approximation the only non-vanishing component of the
field strength is Gθφ = ∂θaφ.
The equations of motion of pure Yang-Mills theory in general orthogonal coordinates

are
∂µ
(√−g Gµν

)
+ ie[Aµ,

√−g Gµν ] = 0 (2.3.3)

where g is the determinant of the metric. If we use spatial polar coordinates we have

gµν =




−1 0 0 0
0 1 0 0
0 0 r2 sin2 θ 0
0 0 0 r2




√−g = r2 sin θ Gφθ =
1

r4 sin2 θ
Gφθ

10



2. Monopoles and the ’t Hooft tensor

The equation with ν = θ is

∂θ
1

sin θ
∂θaφ = 0 (2.3.4)

and to have a field A regular at θ = 0 we have to impose the condition aφ(θ = 0, φ) = 0,
obtaining

aφ(θ, φ) = Q(φ)(1− cos θ)

The other equation of motion, the one with ν = φ in Eq. (2.3.3), is then ∂φQ(φ) = 0
and we conclude that the leading order of the asymptotic gauge field must be

A = Q
1− cos θ

r sin θ
eφ (2.3.5)

This is, up to the constant matrix Q, the field of an abelian Dirac monopole, Eq. (2.1.1).
In the solution of Eq. (2.3.4) we could have imposed the condition aφ(θ = π, φ) = 0,
which ensures the field A to be regular at the south pole instead of the north pole. With
this choice the final solution becomes

A = −Q1 + cos θ

r sin θ
eφ (2.3.6)

As noted in Sec. (2.1), the two forms Eq. (2.3.5) and Eq. (2.3.6) are transformed into
each other by the gauge transformation U = exp(i2eQφ). The condition for this trans-
formation to be well defined is the Dirac condition, which is

2eQ = n n ∈ N (2.3.7)

The matrix Q has to be an element of the group algebra, it can be diagonalized and
its eigenvalues are the charges of the residual U(1)r symmetry, where r is the rank of the
gauge group (the maximal number of commuting generators). A convenient basis for the
diagonal matrices to be used in the following is the one of the fundamental weights of the
gauge group algebra µ̂i (our notations are explained in Sec. (A)): to each fundamental
weight we can associate the abelian monopole field obtained by projecting on it the non
abelian gauge field Aµ. From Eq. (2.3.7) it follows that the charge of the monopole
expressed in Dirac units (i.e. n) is the winding number of the monopole in the residual
U(1) of the unitary representation.
This construction amounts to break the gauge group G to the little group of µ̂i, which

we will denote by H̃. The configurations can thus be classified according to the homotopy
group π2(G/H̃). The general form of the little group H̃ of the fundamental weight µ̂i

is [21]
H̃ = H × U(1) (2.3.8)

where H is the group whose Dynkin diagram is obtained by erasing from the diagram
of G the root ~α i and the links which connect it to others roots (Levi subgroup). Indeed
the operators associated with the roots ~α j, j 6= i, commute with µ̂i.
To calculate π2(G/H̃) it is useful to remember the relation (see e.g. [19, 20])

π2(G/H̃) = ker(π1(H̃) → π1(G)) (2.3.9)

11



2. Monopoles and the ’t Hooft tensor

in order to reduce the problem to the evaluation of π1(H̃). Let us consider as an example
the case of the special unitary group SU(N). The Levi subgroup of the fundamental
weight µ̂i, i = 1, . . . , N − 1 is Hi = SU(i) × SU(N − i), as can be seen also from
the explicit form of the µ̂i operator (see Sec. (A)). Since SU(N) is simply connected,
π1
(
SU(N)

)
= 0, from Eq. (2.3.9) we have

π2(SU(N)/H̃i) = π1(H̃i) = π1(SU(i)× SU(N − i)× U(1)) = Z

A list of the possible symmetry breakings that can happen in a simple group and their
homotopy groups is shown in Tab. (2.1).

2.4. The ’t Hooft tensor

The ’t Hooft tensor is defined as the gauge invariant tensor which coincides with the
residual abelian field strength in the unitary gauge. The explicit form Eq. (2.2.6) was
introduced for SU(2) gauge theories and then shown to be valid also for SU(N) theories,
however it is not the correct one for other gauge groups, like e.g. for the G2 group. The
reason is that for groups different from the SU(N) ones the quadratic terms present in
Eq. (2.2.6) do not cancel; in particular the identity Eq. (2.2.7) is not satisfied and Fµν
is gauge invariant but it is no more the abelian field strength in the unitary gauge.
We will discuss the definition of the magnetic field of the i−th monopole, related to the

U(1) subgroup associated to the i−th fundamental weight ~µi following [21]: by starting
from the expression in the unitary gauge and then performing a gauge transformation
we will obtain the form of the ’t Hooft tensor for the general group case.
In this general setting the unitary gauge is by definition the gauge in which the

operator associated to this weight, µ̂i, is diagonal. In we denote by A′
µ the field in the

unitary gauge, the natural generalization of Eq. (2.2.5) is

Aem
µ =

1

K
Tr
(
φi0A

′
µ

)
φi0 = µ̂i K = Tr(T a †T a) (2.4.1)

The fields in the unitary gauge, φi0, A
′
µ, are related to the general gauge ones by the

gauge transformation b: {
A′
µ = bAµb

† + i
e
(∂µb)b

†

φi0 = bφib†

If we introduce the notation

Ωµ =
i

e
b†(∂µb) (2.4.2)

it is simple to show that in a general gauge the e.m. field strength F i
µν = ∂µA

em
ν −∂νAem

µ

can be written as

K F i
µν = Tr(φiGµν)− ieTr

(
φi[Aµ + Ωµ, Aν + Ων ]

)
(2.4.3)

In order to simplify the notation we introduce Vµ = Aµ + Ωµ. From the simple identity

Tr
(
φi[Vµ, Vν ]

)
= Tr

(
Vν [φ

i, Vµ]
)

12



2. Monopoles and the ’t Hooft tensor

G H × U(1) λI π2(G/H̃)
SU(n) SU(n−m)× SU(m)× U(1) 1 Z

SO(2n+ 1) SO(2n− 1)× U(1) 1 Z

SO(2n+ 1) SO(2m+ 1)× SU(n−m)× U(1) 1,4 Z

SO(2n+ 1) SU(n)× U(1) 1,4 Z/Z2

SO(2n) SO(2n− 2)× U(1) 1 Z

SO(2n) SO(2m)× SU(n−m)× U(1) 1,4 Z

SO(2n) SU(n− 2)× SU(2)× SU(2)× U(1) 1,4 Z/Z2

SO(2n) SU(n)× U(1) 1 Z/Z2

Sp(2n) Sp(2m)× SU(n−m)× U(1) 1,4 Z

Sp(2n) SU(n− 1)× SU(2)× U(1) 1,4 Z

Sp(2n) SU(n)× U(1) 1 Z

G2 SU(2)× U(1) 1,4,9 Z

G2 SU(2)× U(1) 1,4 Z

F4 Sp(6)× U(1) 1,4 Z

F4 SU(3)× SU(2)× U(1) 1,4,9 Z

F4 SU(3)× SU(2)× U(1) 1,4,9,16 Z

F4 Spin(7)× U(1) 1,4 Z

E6 Spin(10)× U(1) 1 Z

E6 SU(5)× SU(2)× U(1) 1,4 Z

E6 SU(6)× U(1) 1,4 Z

E6 SU(3)× SU(3)× SU(2)× U(1) 1,4,9 Z

E7 Spin(12)× U(1) 1,4 Z

E7 SU(7)× U(1) 1,4 Z

E7 SU(6)× SU(2)× U(1) 1,4,9 Z

E7 SU(4)× SU(3)× SU(2)× U(1) 1,4,9,16 Z

E7 SU(5)× SU(3)× U(1) 1,4,9 Z

E7 Spin(10)× SU(2)× U(1) 1,4 Z

E7 E6 × U(1) 1 Z

E8 Spin(14)× U(1) 1,4 Z

E8 SU(8)× U(1) 1,4,9 Z

E8 SU(7)× SU(2)× U(1) 1,4,9,16 Z

E8 SU(5)× SU(3)× SU(2)× U(1) 1,4,9,16,25,36 Z

E8 SU(5)× SU(4)× U(1) 1,4,9,16,25 Z

E8 Spin(10)× SU(3)× U(1) 1,4,9,16 Z

E8 E6 × SU(2)× U(1) 1,4,9 Z

E8 E7 × U(1) 1,4 Z

Table 2.1.: Symmetry breaking of the generic simple compact group G to the residual
subgroup H̃, the corresponding value of λI (defined at page 14) and the
homotopy group Π2(G/H̃). (From Ref. [21]).
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2. Monopoles and the ’t Hooft tensor

it follows that only the component of Vµ that does not commute with φi contributes to
the second term of Eq. (2.4.3). By expanding Vµ in the form

Vµ =
∑

~α

V ~α
µ bE~αb

† +
r∑

j=1

V j
µ bHjb

†

and noting that
[φi, bHjb

†] = 0 [φi, bE~αb
†] = (~µ i · ~α)bE~αb

†

it is clear that the projection P iVµ of Vµ on its component that does not commute with
φi is given by

P iVµ =

{
1−

′∏

~α

(
1− [φi, [φi, · ]]

(~µ i · ~α)2
)}

Vµ (2.4.4)

where the product runs on the roots ~α such that ~µ i ·~α 6= 0 and only one representative is
taken of the set of the roots having the same value of (~µ i · ~α)2. For the sake of notation
simplicity we will denote by λiI the non-zero values that (~µ i · ~α)2 can assume.
With the new notations the expression in Eq. (2.4.3) can be rewritten as

K F i
µν = Tr(φiGµν)− ieTr(φi[P iVµ, Vν ]) (2.4.5)

To make this expression more transparent it is convenient to note that the covariant
derivative of φi can be written as

Dµφ
i = ie[Vµ, φ

i] (2.4.6)

and that the projector P iVµ has the expansion

P iVµ =
∑

I

1

λI
[φi, [φi, Vµ]]−

∑

I 6=J

1

λIλJ
[φi, [φi, [φi, [φi, Vµ]]]] + · · ·

The contribution of the first order of the projector in Eq. (2.4.5) is

− ie

λI
Tr
{
φi[[φi, [φi, Vµ]], Vµ]

}
= − ie

λI
Tr
{
[Vν , φ

i][φi, [φi, Vµ]]
}
=

= − ie

λI(−ie)(ie)
Tr
{
Dνφ

i[φi, Dµφ
i]
}
= − i

eλI
Tr
{
φi[Dµφ

i, Dνφ
i]
}

while from the n−th term of the projector expansion we get (apart from the multiplica-
tive coefficient (λI1 · · ·λIn)−1)

− ie(−1)n+1Tr
{
φi[

2n︷ ︸︸ ︷
[φi, · · · , [φi, Vµ] · · ·], Vν ]

}
=

= +ie(−1)nTr
{
[Vν , φ

i]

2n︷ ︸︸ ︷
[φi, · · · , [φi, Vµ] · · ·]

}
=

=
ie(−1)n

(−ie)(ie)Tr
{
Dνφ

i

2n−1︷ ︸︸ ︷
[φi, · · · , [φi, Dµφ

i] · · ·]
}
=

= +
i(−1)n

e
Tr
{
[Dνφ

i, φi]

2n−2︷ ︸︸ ︷
[φi, · · · , [φi, Dµφ

i] · · ·]
}

14



2. Monopoles and the ’t Hooft tensor

By iteration of the last step we obtain

i(−1)n

e
Tr
{
[· · · [Dνφ

i,

n−1︷ ︸︸ ︷
φ]i, · · · , φi]

n︷ ︸︸ ︷
[φi, · · · , [φi, Dµφ

i] · · ·]
}
=

=
i(−1)n

e
Tr
{
φi
[

n−1︷ ︸︸ ︷
[φi, · · · , [φi, Dµφ

i] · · ·], [· · · [Dνφ
i,

n−1︷ ︸︸ ︷
φi], · · · , φi]

]}
=

=
i(−1)n(−1)n−1

e
Tr
{
φi
[
[· · · [Dµφ

i,

n−1︷ ︸︸ ︷
φi], · · · , φi], [· · · [Dνφ

i,

n−1︷ ︸︸ ︷
φi], · · · , φi]

]}
=

= − i

e
Tr
{
φi
[
[· · · [Dµφ

i,

n−1︷ ︸︸ ︷
φi], · · · , φi], [· · · [Dνφ

i,

n−1︷ ︸︸ ︷
φi], · · · , φi]

]}

and the ’t Hooft tensor can finally be written in the form

K F i
µν = Tr

{
φiGµν

}
− i

e

∑

I

1

λI
Tr
{
φi[Dµφ

i, Dνφ
i]
}
−

− i

e

∑

I 6=J

1

λIλJ
Tr
{
φi
[
[Dµφ

i, φi], [Dνφ
i, φi]

]}
− · · · −

− i

e

∑

I1 6=I2 6=···6=In

1

λI1 · · ·λIn
Tr
{
φi
[
[· · · [Dµφ

i,

n−1︷ ︸︸ ︷
φi], · · · , φi],

[· · · [Dνφ
i,

n−1︷ ︸︸ ︷
φi], · · · , φi]

]}

(2.4.7)

In the particular case of the group SU(N) the only non-vanishing λI has value 1, so we
get the simpler expression Eq. (2.2.6), which is thus valid not only for SU(2) but for the
general SU(N) case, as first shown in Ref. [22].
We note that the magnetic charge expressed in Dirac units is independent of the

normalization of the generators: let us change the normalization by T a → cT a, then

Hi → cHi E~α → cE c~α ~α → c~α ~µ→ 1

c
~µ µ̂→ µ̂

The field Aµ has to remain unchanged since we want to check the dependence of the
charge of a given field configuration on the generators normalization. The only depen-
dence of F i

µν is thus through the coefficientK, which scales asK → c2K, so Qm → 1
c2
Qm.

On the other hand Qe → c2Qe, so the product QeQm is invariant.
We will now show that the general form of the ’t Hooft tensor, Eq. (2.4.7), is linear in

the gauge field following [23] (where the argument of [22] was generalized to the case of
general groups). Let us denote by X2(A, φ) the terms of F i

µν which depend quadratically
on the gauge field Aµ: by using the expression for the covariant derivative in the adjoint
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2. Monopoles and the ’t Hooft tensor

representation we get

KX2(A, φ) = ieTr
{
φi[Aµ, Aν ]

}
− i

e
(+ie)2

∑

I

1

λI
Tr
{
φi
[
[Aµ, φ

i], [Aν , φ
i]
]}

+

− i

e
(+ie)2

∑

I 6=J

1

λIλJ
Tr
{
φi
[
[[Aµ, φ

i], φi], [[Aν , φ
i], φi]

]}
+ · · · =

= +ie

(
Tr
{
φi[Aµ, Aν ]

}
+
∑

I

1

λI
Tr
{
φi
[
[Aµ, φ

i], [Aν , φ
i]
]}

+

+
∑

I 6=J

1

λIλJ
Tr
{
φi
[
[[Aµ, φ

i], φi], [[Aν , φ
i], φi]

]}
+ · · ·

)

(2.4.8)

Since X2 is gauge invariant it can be calculated in the gauge in which φi is diagonal
(φi = φi0). By developing the gauge field in the Cartan base

Aµ =
∑

i

aiµHi +
∑

~α

a~αµE~α (2.4.9)

we get for the first term of X2

Tr
{
φi0[Aµ, Aν ]

}
=
∑

~α~β

a~αµa
~β
νTr
{
φi0[E~α, E~β]

}
=
∑

~α

a~αµa
−~α
ν Tr

{
φi0[E~α, E−~α]

}

and for the n−th term

Tr
{
φi0
[
[· · · [Aµ,

n︷ ︸︸ ︷
φi], · · · , φi], [· · · [Aν ,

n︷ ︸︸ ︷
φi], · · · , φi]

]}
=

=
∑

~α~β

a~αµa
~β
ν Tr

{
φi0[
(
− (~µ i · ~α)

)n
Eα,

(
− (~µ i · ~β)

)n
Eβ]
}
=

= (−1)n
∑

~α

a~αµa
−~α
ν (~µ i · ~α)4nTr

{
φi0[E~α, E−~α]

}

We can thus rewrite X2(A, φ
i) as

KX2(A, φ
i) = +ie

∑

~α

a~αµa
−~α
ν Tr

{
φi0[E~α, E−~α]

}
×

×
[
1−

∑

I

1

λI
(~µ i · ~α)2 +

∑

I 6=J

1

λIλJ
(~µ i · ~α)4 − · · ·

]

and, remembering that the λiI are just the non zero values of (~µ i · ~α)2 each taken only
once (see pag. 14), it is simple to show by induction that the second line vanishes, which
means that the ’t Hooft tensor is linear in the gauge field.
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2. Monopoles and the ’t Hooft tensor

By using this result we can now proceed to show that in the general expression for
the ’t Hooft tensor the covariant derivatives can be avoided, as in Eq. (2.2.7). Let us
introduce the notation ∆µν by

KF i
µν = Tr

{
φiGµν

}
+∆µν (2.4.10)

that is

∆µν = − i

e

∑

I

1

λI
Tr
{
φi[Dµφ

i, Dνφ
i]
}
−

− i

e

∑

I 6=J

1

λIλJ
Tr
{
φi
[
[Dµφ

i, φi], [Dνφ
i, φi]

]}
− . . .

From Eq. (2.4.6) and Eq. (2.4.8) we get

X2(A+ Ω, φ) = +ieTr
{
φi[Aµ + Ωµ, Aν + Ων ]

}
+

+ie
∑

I

1

λI
Tr
{
φi
[
[Aµ + Ωµ, φ

i], [Aν + Ων , φ
i]
]}

+ . . . =

= +ieTr
{
φi[Aµ + Ωµ, Aν + Ων ]

}
+

+ie

(
− i

e

)2∑

I

1

λI
Tr
{
φi
[
Dµφ

i, Dνφ
i
]}

+ . . . =

= +ieTr
{
φi[Aµ + Ωµ, Aν + Ων ]

}
+∆µν

where Ωµ is defined in Eq. (2.4.2). Since we have just shown that X2 ≡ 0 we thus get

∆µν = −ieTr
{
φi[Aµ + Ωµ, Aν + Ων ]

}

By inserting this expression in Eq. (2.4.10) and using ∂µφ
i = ie[Ωµ, φ

i] (which is just
Eq. (2.4.6) with Aµ ≡ 0) we finally get

KF i
µν = Tr

{
∂µ(φ

iAν)− ∂ν(φ
iAµ)

}
− ieTr

{
φi[Ωµ,Ων ]

}
(2.4.11)

which is the generalization of Eq. (2.2.7). For the special case of groups with only a single
value for λI , namely 1, we can replace Ωµ by [Ωµ, φ

i] (up to a sign) since the commutator
of φi with the elements of the algebra corresponding to positive roots reproduces the
element, the commutator with the elements corresponding to negative roots reproduces
them up to a sign; the trace then selects the products of elements corresponding to a
root and to its negative. For this class of groups (which include the SU(N) groups) we
can thus rewrite Eq. (2.4.11) as

KF i
µν = Tr

{
∂µ(φ

iAν)− ∂ν(φ
iAµ)

}
− i

e
Tr
{
φi[∂µφ

i, ∂µφ
i]
}

We will now give some examples to elucidate the relation between the ’t Hooft tensor
just defined and the topological classification of the monopoles discussed in the previous
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2. Monopoles and the ’t Hooft tensor

section (in particular Tab. (2.1)). Let us consider again the gauge field of the ’t Hooft-
Polyakv monopole in the unitary gauge: the asymptotic non-abelian gauge field was
shown to be

Br =
1

er2
σ3

2

By using Eq. (2.4.1) we get for the charges

Qm =
1

e
Qe =

1

2
e 2QmQe = 1 (2.4.12)

If we use instead the SO(3) group, the proper generalization of the ’t Hooft-Polyakov
field is

Br =
1

er2
H1

2

where we used the notation introduced in Sec. (A) for the SO(2N + 1) generators. We
thus gets

Qm =
1

2e
Qe = 2e 2QmQe = 2 (2.4.13)

These result are consistent with the topological classification: for SU(N) the winding
number can be any integer while for the breaking of SO(2N + 1) related to the N−th
root only even winding numbers are allowed.

2.5. Relation with NABIs and consequences

In the previous section we deduced the generalized expression for the ’t Hooft tensor,
Eq. (2.4.7), starting from the one in the unitary gauge and then explicitly performing
a gauge transformation. Nevertheless Eq. (2.4.7) defines a conserved magnetic current
jν = ∂µF̃µν for any choice of the operator φi in the adjoint representation, which is
usually referred to as abelian projection. Since for a general gauge configuration there
seems to be no preferred direction in color space, in [8] the possibility was advocated
that all abelian projection are equivalent.
To study the dependence on the abelian projection it is useful to relate the ’t Hooft

tensor to other gauge covariant quantities; in this section we will show its connection
with the violations of the non-abelian Bianchi identity following [23].
If we denote by G̃µν the tensor dual to the field strength, i.e. G̃µν = 1

2
ǫµνρσG

ρσ, we
can define the current

Jν = DµG̃µν (2.5.1)

This equation is gauge covariant and therefore the vanishing (or not vanishing) of Jµ is
a gauge invariant property. A non zero value of Jµ is by definition a violation of the
non abelian Bianchi identities (NABIs). While the current defined by the violation of
the abelian Bianchi identities, jµ = ∂νF̃ i

µν , is conserved, it is simple to show that the
current defined by Eq. (2.5.1) is only covariantly conserved:

DνJν =
1

2
[Dν , Dµ]G̃µν ∝ [Gµν , G̃µν ] =

1

2
ǫµνρσ[G

µν , Gρσ] = 0

18



2. Monopoles and the ’t Hooft tensor

where the last equality follows from the fact that ǫµνρσ is even under the exchange
(µν) ⇄ (ρσ) while the commutator is odd.
We will now show that the ’t Hooft tensor Eq. (2.4.7) is related to Eq. (2.5.1) by

K ∂µF̃ i
µν = Tr

(
φiJν

)
(2.5.2)

The starting point is the identity

∂µTr(φiG̃µν) = Tr(φiDµG̃µν) + Tr(DµφiG̃µν)

that can be rewritten, by using Eq. (2.5.1), in the form

∂µTr(φiG̃µν) = Tr(φiJν) + Tr(Dµφi G̃µν) (2.5.3)

In order to prove Eq. (2.5.2) we sum the divergence of the dual of the tensor ∆µν (defined
in Eq. (2.4.10)) to both sides of the previous equality, thus obtaining

K ∂µF̃ i
µν = Tr(φiJν) +Rν (2.5.4)

where

Rν = Tr(Dµφi G̃µν) +
1

2
ǫµνρσ∂µ∆

ρσ (2.5.5)

We thus need to show that Rν vanishes. It convenient to write the second term of the
right-hand side of the previous equation as the sum of two terms Bν and Cν ,

1

2
ǫµνρσ∂µ∆

ρσ = Bν + Cν

where Bν collects all the terms with a double covariant derivative of φi while Cν is the
sum of the terms with just one covariant derivative. Explicitly we have

Bν =− i

e

∑

I

1

λI
ǫµνρσTr

{
φi[DµDρφi, Dσφi]

}
−

− i

e

∑

I 6=J

1

λIλJ
ǫµνρσTr

{
φ
[
[DµDρφi, φi], [Dσφi, φi]

]}
− . . .

(2.5.6)

and

Cν =− i

2e

∑

I

1

λI
ǫµνρσTr

{
Dµφi[Dρφi, Dσφi]

}
−

− i

2e

∑

I 6=J

1

λIλJ
ǫµνρσTr

{
Dµφi

[
[Dρφi, φi], [Dσφi, φi]

]}
−

− i

e

∑

I 6=J

1

λIλJ
ǫµνρσTr

{
φi
[
[Dρφi, Dµφi], [Dσφi, φi]

]}
− . . .

(2.5.7)

Let us now analyze the first term of Eq. (2.5.5): since it gets nonzero contribution only
from the components of the field strength Gρσ that do not commute with φi we can
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2. Monopoles and the ’t Hooft tensor

use again the projector introduced in Eq. (2.4.4) and replace Gρσ by P iGρσ. From the
identity

ǫµνρσ[φ
i, Gρσ] = +

i

e
ǫµνρσ[[D

ρ, Dσ], φi] = +
2i

e
ǫµνρσD

ρDσφi

it follows that

1

2
ǫµνρσP

iGρσ =− i

e
ǫµνρσ

{
−
∑

I

1

λI
[φi, DρDσφ]+

+
∑

I 6=J

1

λIλJ
[φi, [φi, [φi, DρDσφi]]]− . . .

}

By using the simple identities

Tr
(
Dµφi[φi, DρDσφi]

)
= Tr

(
φi[DρDσφi, Dµφi]

)

Tr
(
Dµφi[φi, [φi, [φi, DρDσφi]]]

)
= −Tr

(
φi[[DρDσφi, φi], [Dµφi, φi]]

)

and their generalizations we then arrive to

Tr
(
Dµφi P̃ iGµν

)
=+

i

e
ǫµνρσ

∑

I

1

λI
Tr
(
φi[DµDρφi, Dσφi]

)
+

+
i

e
ǫµνρσ

∑

I 6=J

1

λIλJ
Tr
(
φi[[DµDρφi, φi], [Dσφi, φi]]

)
+ . . . = −Bν

and thus Rν = Cν .
The last step of the proof of Eq. (2.5.2) consists in showing that Cν = 0. This has to

be checked by direct computation. For the case of just one λI from Eq. (2.5.7) we have

Cν = − i

2e
ǫµνρσTr

(
Dµφi[Dρφi, Dσφi]

)

and by using again the expansion in the Cartan base of the gauge field Eq. (2.4.9) it is
simple to arrive in the unitary gauge to the expression

Cν = −e
2

2
ǫµνρσ

∑

ℓ,j,k

a~αℓ
µ a

~αj
ρ a

~αk
σ (~µ i · ~αℓ)(~µ i · ~αj)(~µ i · ~αk)Tr

(
E~αℓ

[E~αj
, E~αk

]
)

where µ̂i is the fundamental weight which coincides with φi in the unitary representation.
A necessary condition for this expression to be non-vanishing is the existence of a triple
of roots such that

~αℓ + ~αj + ~αk = 0 (2.5.8)

Moreover, each root must contain the simple root corresponding to the fundamental
weight ~µ i with coefficients plus or minus one, otherwise ~µ i · ~α would vanish. Since the
simple roots are linearly independent the sum ~αℓ+ ~αj+ ~αk must then contain the simple
root ~αi one or three times and cannot be zero. As a consequence Cν = 0 when only one
λI is present.
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2. Monopoles and the ’t Hooft tensor

If there are two different values of λ, namely λ = 1, 4, we gets

Cν = −e
2

2

∑

ℓjk

ǫµνρσa~αℓ
µ a

~αj
ρ a

~αk
σ c

i
~αℓ
ci~αj
ci~αk

Tr
(
E~αℓ

[E~αj
, E~αk

]
)
× Π2 (2.5.9)

where we introduced the short-hand notation ci~αj
≡ ~µ i · ~αj and

Π2 =
∑

I

1

λI
+
∑

I 6=J

1

λIλJ

(
ci~αj
ci~αk

− 2(ci~αℓ
)2
)

(2.5.10)

The only possibility for Eq. (2.5.9) to be non-vanishing is when the simple root ~αi appears
once and with the same sign in each of two roots, say ~αj , ~αk and twice with opposite
sign in the third one ~αℓ, in order to satisfy Eq. (2.5.8). Since Eq. (2.5.9) is invariant
under permutations of ℓ, j, k, we can take the mean over the permutations; moreover it
follows from Eq. (2.5.8) that ci~αj

ci~αk
= 1

2
(λℓ − λj − λk). The coefficient Π2 is thus equal

to

Π2 =
5

4
− 1

4
× 5

2
〈λ〉

and by using 〈λ〉 = 2 we get Cν = 0.
We have shown that Eq. (2.5.2) is satisfied for the groups with no more than two

different λI values, i.e. the classical groups (see Tab. (2.1)). The proof for the exceptional
groups is obtained in the same way but it is computationally more involved; a sketch is
presented in Sec. (B).
An immediate consequence of the relation Eq. (2.5.2) is that the existence of a

monopole in a given abelian projection is related to the violation of non-abelian Bianchi
identities and thus the existence of the monopole is a gauge invariant property.
We can use Eq. (2.5.2) to study the dependence of the magnetic charge on the abelian

projection. Once again we use as a test case the ’t Hooft-Polyakov monopole: in the
unitary gauge the “natural” abelian projection is the fundamental weight 1

2
σ3, directed

along the Higgs field v.e.v., the gauge field is given by Eq. (2.2.10) and the non abelian
magnetic field by Eq. (2.2.11), so that

∇ · h =
4π

e
δ3(x) D ·B =

2π

e
δ3(x)σ3

The monopole has charge Qm = 1
e
and Eq. (2.5.2) trivially states that

1

2
∇ · h = Tr

(
σ3

2
D ·B

)

Let us now use the abelian projection φ = U(x)σ3
2
U †(x), where U(x) is an unitary

transformation. By using Eq. (2.2.10) we simply have

∇ · h =
2π

e
δ3(x)Tr

(
σ3U †(x)σ3U(x)

)
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2. Monopoles and the ’t Hooft tensor

and if we parametrize the U transformation as

U(x) = exp

(
iα(x)

σ3

2

)
exp

(
iβ(x)

σ2

2

)
exp

(
iγ(x)

σ3

2

)

we obtain

∇ · h =
4π

e
cos
(
β(0)

)
δ3(x) Qm =

cos
(
β(0)

)

e

from which it is clear that for general U(x) the Dirac quantization condition cannot be
satisfied. We thus have to conclude that the abelian projections are not all equivalent
to define the dual abelian magnetic charge, i.e. there exits a natural choice of the gauge
fixing. This preferred gauge is the unitary gauge, that can be characterized by the
property of having all the components of the NABI’s violation Jν diagonal in color space
(the existence of such a gauge is guaranteed by the Coleman Mandula theorem [24]).
For general monopole configurations we can use the theorem of Sec. (2.3) to extend the

conclusion reached for the ’t Hooft-Polyakov monopole: we have seen that a gauge exists
in which the asymptotic field of the monopole assumes the form of Eq. (2.3.5), which we
will denote by A(un). We can now add and subtract to it a field A(′tHP) proportional to
the ’t Hooft Polyakov solution Eq. (2.2.10) in such a way that the field A(un) − A(′tHP)

has zero magnetic charge (for this we need the linearity of the ’t Hooft tensor in the
gauge field) and we get

Aµ = A(0)
µ + A(un)

µ − A(′tHP)
µ︸ ︷︷ ︸

A
(sub)
µ

+A(′tHP)
µ (2.5.11)

Since the subleading field A
(sub)
µ has zero magnetic charge, it does not produce violations

in the NABI and the dominant contribution at large distance of the NABI violation for

the general field Aµ is just the one of the ’t Hooft-Polyakov like term A
(′tHP)
µ . The

previous considerations on the abelian projection dependence of the magnetic field can
thus be extended to general monopole configurations without changes.
We have just seen that the definition of the abelian magnetic charge is abelian pro-

jection dependent; we will now show that nevertheless the spontaneous breaking of the
dual magnetic symmetry is instead independent of the specific projection used. Let Q̂ be
the magnetic charge operator associated to the i−th fundamental weight in the unitary
gauge; by Eq. (2.5.2) it can be written in the form

Q̂ =

∫
1

K
Tr
(
µ̂iJ

(un)
0 (x)

)
d3x (2.5.12)

where J
(un)
0 (x) is the temporal component of the NABI violation in the unitary gauge.

An operator Ô(x) is magnetically charged if it satisfies

[Q̂, Ô(x)] = mÔ(x) m 6= 0

and the magnetic symmetry is spontaneously broken is a charged operator exists with
non vanishing vacuum expectation value: 〈Ô(x)〉 6= 0.
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2. Monopoles and the ’t Hooft tensor

The magnetic charge in the generic projection, Q̂(U), is related to Q̂ by the substi-
tution µ̂i → U(x)µ̂iU †(x) in Eq. (2.5.12) and, since the integrand is gauge invariant,

we can compute the trace in the gauge in which µ̂i and J
(un)
0 (x) are diagonal. Since

U(x)µ̂iU †(x) is an element of the group algebra it can be expanded as

U(x)µ̂iU †(x) =
∑

i

Ci(x)µ̂
i +
∑

~α

D~α(x)E~α

By using this expansion in the charge definition we get

[Q̂(U), Ô(x)] = mCi(x) Ô(x)

and since Ci(x) is generically non-vanishing the operator Ô(x) is charged also in the
generic abelian projection.
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3. Lattice gauge theories

3.1. The pure gauge theory

In this first section we will introduce the lattice discretization of pure gauge theories,
without coupling to fermions. To justify the fundamental definitions it will be neverthe-
less convenient to introduce a matter field φ transforming in a given representation of
the gauge group.
To construct a lattice action invariant under local gauge transformation it is possible

to follow the same line of thought as in the continuum: we start from an action for the
matter fields invariant under global gauge transformations and we introduce the gauge
fields in order to make it also local gauge invariant. The construction of lattice action
for the matter field is a non-trivial task and it will be analyzed in the following section.
It is however clear that such an action will be the sum of terms of the forms φ(x)†φ(x)
and φ(x)†φ(x+ µ̂), where x is a lattice point (we will always use a hyper-cubical lattice
of step a in the four dimensional euclidean space) and µ̂ is the versor of the µ-th axis.
If we let the gauge group act on the matter field through φ(x) → R(x)φ(x) it is

clear that the term φ(x)†φ(x+ µ̂) it is invariant under global gauge transformations but
not under local ones. The most natural way to make it also local gauge invariant is to
associate the gauge field Uµ(x) to the lattice link (x,x+ µ̂) and to make it transform as
Uµ(x) → R(x)Uµ(x)R(x + µ̂)†, in order to replace φ(x)†φ(x + µ̂) with the local gauge
invariant expression φ(x)†Uµ(x)φ(x + µ̂). The lattice gauge field is thus a mapping of
the (oriented) links into the gauge group, while the continuum field is a mapping of
the points into the group algebra. For convenience the adjoint of the lattice field is
associated to links with the opposite orientation.
We now need to introduce an action for the gauge field, which has to be a gauge

invariant expression in Uµ(x), and to relate the lattice gauge field Uµ(x) to the continuum
field Aµ(x). Since the lattice gauge field is associated to the links, it can be seen as an
elementary parallel transport and it is then reasonable to define

Uµ(x) = exp
{
− iaeAµ(x)

}
(3.1.1)

where a is the lattice spacing and e will be identified with the continuum coupling.
Gauge invariant quantities are naturally associated to closed path on the lattice, since
the trace of the product of the gauge field along a closed path is gauge invariant. The
simplest of these quantities is the one associated to the edges of the face of an elementary
cube of the lattice:

Pµν(x) = Tr
{
Uµ(x)Uν(x+ µ̂)Uµ(x+ ν̂)†Uν(x)

†
}

(3.1.2)
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3. Lattice gauge theories

These elementary faces are usually called plaquettes and, by extension, also the associ-
ated invariants are denoted with the same name.
An action for the gauge field can be introduced in the form (Wilson action [1])

S =
∑

�

β

[
1− 1

N
RePµν(x)

]
(3.1.3)

where β is the lattice coupling, N is the dimension of the gauge group representation used
and the sum is extended on the plaquettes of the lattice. It is simple to show, by using the
Hausdorff-Campbell-Baker formula exp(M1) exp(M2) = exp(M1+M2+

1
2
[M1,M2]+ · · · )

and Eq. (3.1.1), that

S =
∑

�

β

(
1− 1

N
ReTr exp

{
ie2a2Gµν +O(a4)

})

where Gµν is the usual continuum field strength. If we normalize the group generators
according to Tr(T aT b) = 1

2
δab we finally get

S =
∑

x

βe2

8N
a4Ga

µν(x)G
a
µν(x) +O(a6)

The action Eq. (3.1.3), with the identification Eq. (3.1.1), thus reduces in the formal
continuum limit to the Yang-Mills action if β = 2N

e2
.

The vacuum vacuum expectation values of functionals of the lattice gauge fields can
be calculated as functional integral: if f(U) is a function of the gauge fields then

〈f(U)〉 =
∫
f(U)e−S(U)DU∫
e−S(U)DU

where
DU =

∏

x,µ

dUµ(x)

and dUµ(x) is the Haar measure. It is possible to show that if f(U) is a function with
compact support, which transforms according to a non trivial representation of the gauge
group then 〈f(U)〉 = 0 (for a proof see e.g. [25]); this statement is usually referred to as
Elitzur theorem.
The potential between a quark anti-quark static pair can be extracted from the vacuum

expectation value of the Wilson loop W (R, T ), which is the path-ordered product of the
gauge field Uµ(x) along a rectangular loop of size R × T , as follows (for the details see
e.g. [26, 27])

V (R) = − lim
T→∞

1

T
log〈W (R, T )〉

It can be shown (see [28,29]) that two constants c1, c2 exist such that for asymptotically
large R the bounds c1R ≤ V (R) ≤ c2/R are satisfied. For non-abelian gauge theories
the typical asymptotic behaviour is V (r) ∼ σR and the parameter σ is known as the
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3. Lattice gauge theories

string tension. This linear behaviour is interpreted as a signal of quark confinement.
The potential is however not always asymptotically linear with the distance: the gauge
theory based on the G2 group has vanishing string tension [30].
While for the typical models of statistical physics the coupling is a fixed parameter

and the lattice has a physical meaning (e.g. a crystal lattice), for gauge theories the
lattice is just an ultraviolet regulator that has to be introduced to allow the computations
to be performed (analytically or numerically). For this reason the physically sensible
results are those obtained in the limit a → 0 or, more physically, ξ ≫ 1, where ξ is the
correlation length in lattice units, and the coupling β has to be tuned in order to satisfy
this requirement.
By fixing the value of some observable to its physical value (i.e. fixing the physical

correlation length) and using renormalization group arguments it can be shown (see
e.g. [26, 27, 31]) that for SU(N) gauge theories the lattice spacing a depends on the
coupling constant through the expression

a = Λ−1
0

(
2Nγ0
β

)−γ1/(2γ20)

exp

[
− β

4Nγ0

]
(1 +O(1/β)) (3.1.4)

where

γ0 =
1

16π2

11N

3
; γ1 =

1

(16π2)2
34N2

3

and Λ0 is an integration constant; from Eq. (3.1.4) it is clear that the continuum limit is
reached for β → ∞. On the other hand numerical simulations can handle only lattices
of finite extent and to obtain reliable results the typical dimension of the lattice must
be much larger that the correlation length. If we suppose to use a lattice of Nt × N3

s

sites, the coupling constant β has to be tuned in order to satisfy the inequalities

1 ≪ ξ ≪ Ns

and Nt is related to the physical temperature T by aNt = 1/T . While periodic spatial
boundary conditions are typically used just to minimize the finite size effects, periodic
conditions along the temporal direction are needed in order to guarantee the interpreta-
tion of the vacuum expectation values as mean values at finite temperature of physical
observables.

3.2. The deconfinement transition

While at low temperature color is confined, soon after the discovery of the asymptotic
freedom it was conjectured [32] that at high enough temperature colored stated could
appear in the spectrum of QCD.
At finite temperature confinement is related to the behaviour of the free energy of a

static quark anti-quark couple at large distance. If we introduce the Polyakov loop as

L(x) = Tr
Nt−1∏

i=0

U0(x+ i0̂) 0 = time direction (3.2.1)
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3. Lattice gauge theories

it can be shown that the free energy of a static quark and anti-quark, positioned at x
and y respectively, is given by (see e.g. [33])

e−
1
T
F (|x−y|) = 〈L(x)L(y)∗〉 (3.2.2)

and free color charges can exist if limr→∞〈L(x)L(x+ r)∗〉 6= 0. If we suppose the cluster
property to be valid and use translation invariance we get

lim
r→∞

e−
1
T
F (r) = |〈L〉|2

The mean value of the Polyakov loop is thus an order parameter for the deconfinement
transition.
If the gauge group has a nontrivial center the deconfinement transition can be associ-

ated to the breaking of a global symmetry. Let us denote by z an element of the group
center Z(G); if we multiply by z all the temporal component of the gauge fields of a
fixed time slice, it is simple to show that the Wilson action is invariant but the Polyakov
loop transforms as L(x) → zL(x). A non-vanishing value for the mean Polyakov loop
thus signals the breaking of this center symmetry.
This observation naturally led to the following conjecture [34]: the universality class

of the deconfinement transition for a lattice gauge theory in D dimensions with gauge
group G coincides with that of the transition of a spin system in D− 1 dimensions with
global Z(G) symmetry. As an example the deconfinement transition of the 4D SU(2)
lattice gauge theory is expected to be in 3D Ising universality class, which is indeed the
behaviour observed in numerical simulations.
This guess is obviously reliable only for second order phase transitions, to which

universality arguments apply, and does not take into account the possibility of first order
phase transitions. Nevertheless it can be used also to predict first order transitions: if
the deconfinement transition of the 4D SU(3) lattice gauge theory was second order it
would be in the 3D Z3 universality class, however no infrared fixed points are known for
the 3D Z3 systems, so this transition is expected to be (and is) a first order transition.
This Svetitsky-Yaffe conjecture clearly does not account for the groups with trivial

center, like the exceptional group G2, for which the mean Polyakov loop is nonzero
also in the low temperature phase. The possibility was advocated that the low and
the high temperature regions of the G2 lattice gauge theory are not separated by a
phase transition, but are instead analytically connected. This proposal was refuted by
numerical simulations and it is by now known that the two phases are separated by a
first order transition [35,36].

3.3. Fermions on the lattice

We will use for the euclidean gamma matrices the conventions

{γµ, γν} = 2δµν ; (γµ)† = γµ
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3. Lattice gauge theories

so the continuum free fermion action takes the form

SF =

∫
ψ̄(x)(γµ∂µ +M)ψ(x)d4x

The simplest discretization of this action is the “naive” fermion action

SF =
1

2

∑

n,µ̂

[ψ̄nγ
µψn+µ̂ − ψ̄n+µ̂γ

µψn] + M̂
∑

n

ψ̄nψn (3.3.1)

where ψn is the fermion field on the n-th site of the lattice (rescaled by a3/2) and
M̂ = aM . This action, however, does not describe a single fermion field, as can be seen
by looking at the limit a→ 0 of its Green function:

〈ψ(x)ψ̄(y)〉 = lim
a→0

∫ π/a

−π/a

d4k

(2π)4
M − i

∑
µ γ

µk̄µ∑
µ k̄

2
µ +M2

eik(x−y); k̄µ =
1

a
sin(kµa)

Since the expression
∑

µ k̄
2
µ has 24 zeroes in the Brillouin zone

(
−π
a
, π
a

]4
, the continuum

limit of the “naive” action Eq. (3.3.1) describes 24 fermion species, a phenomenon know
as “fermion doubling”.
This behaviour of the “naive” fermion action can be simply explained by the existence

of a symmetry of the action Eq. (3.3.1) that in momentum space connects the states
with momentum k̂ and k̂ + πµ̂ (k̂ is the adimensional lattice momentum defined in
(−π, π]4), thus producing the noted degeneration in the spectrum (see e.g. [27]). The
deep origin of this phenomenon is however much more physical, not just related to an
accidental symmetry of the action, and it can be traced back to the axial anomaly: the
action Eq. (3.3.1) is, for M = 0, chiral invariant and, without doubling, it would be a
regularization of the fermion field with no axial anomaly. Indeed it can be explicitly
checked that the doublers cancel the axial anomaly (see e.g. [27, 37]).
A number of no-go theorems [38–41] prevent from the possibility of constructing a

discretized fermion action with chiral invariance. It is indeed simple to show that a
lattice Dirac operator DL can not satisfy all of the following requirements:

1. in the limit a→ 0 a zero mass fermion is present in the spectrum

2. it has no doublers

3. it is local (i.e. its matrix elements decay fast enough with the distance)

4. it is chiral invariant

The general form ofDL is the momentum representation isDL(p) = γµF
µ(p)+G(p); from

the requirement (4) it follows that G(p) ≡ 0, from (1) it follows that Fµ(p) = pµ+O(ap
2)

and because of (3) the function Fµ(p) is continuous. Since the momenta on the lattice
are defined only modulo 2π/a it follows that Fµ also has zeroes at non-vanishing values of
the momentum, i.e. DL has doublers. In order to circumvent this result the assumption
of chiral invariance has been relaxed in several ways during the years.
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3. Lattice gauge theories

The first solution was proposed by Wilson and it amounts to add to the “naive” action
a term irrelevant in the continuum limit but capable to lift the degeneracy between the
doublers, which acquire a great mass and decouple. An example of such an action is

SW = SF − r

2

∑
ψ̄n

(
∑

µ̂

ψn+µ̂ + ψn−µ̂ − 2ψn

)

which gives rise to the correlation functions

〈ψ(x)ψ̄(y)〉 = lim
a→0

∫ π/a

−π/a

d4k

(2π)4
M(k)− i

∑
µ γ

µk̄µ∑
µ k̄

2
µ +M(k)2

eik(x−y)

k̄µ =
1

a
sin(kµa); M(k) =M +

2r

a

∑

µ

sin2(kµa/2)

In the limit a → 0 only region of integration near the origin gives a non-vanishing
contribution to the correlation function, since M → ∞ for k 6= 0.
In the Wilson approach the chiral symmetry is completely lost and it has to be re-

covered only in the continuum limit. A different approach is the so called “staggered
fermion” method: the action is written in term of an auxiliary spinless field, and the
physical fermion can be reconstructed by using the values of this field at 2d different
points. Although less intuitive than the Wilson method, this approach has the advan-
tage to preserve part of the chiral symmetry and to be computationally less demanding.
We will illustrate the idea of the method in two dimension for the sake of the simplic-
ity, but the generalization to higher dimension is just a simple technical problem. The
starting point is the action

S =
∑

i,µ̂

χ̄i(−1)φ(i,µ)[χi+µ̂ − χi−µ̂] (3.3.2)

where χi are Grassmann variables without spinor structure and the phases (−1)φ(i,µ) are
defined by

(−1)φ(i,0) = +1 (−1)φ(i,1) = (−1)|n0|

where n0 is the temporal coordinate of i-th lattice site. Let us now group together blocks
of 2× 2 sites, which will be denoted by the indexes

2 1′

1 2′

and introduce a fermion doublet (ψa, ψb) by

ψa =

(
χ1

χ2

)
; ψ̄a = ( χ̄1 χ̄2 )

ψb = i

(
χ1′

χ2′

)
; ψ̄b = −i( χ̄1′ χ̄2′ )
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3. Lattice gauge theories

By using the notation ∇µχi ≡ χi+µ̂ − χi−µ̂ the action Eq. (3.3.2) can be rewritten as

S =
∑

blocks

{
ψ̄a1(∇0ψ

a
2 − i∇1ψ

b
2) + ψ̄a2(∇0ψ

a
1 + i∇1ψ

b
1)+

+ ψ̄b1(∇0ψ
b
2 − i∇1ψ

a
2) + ψ̄2

b
(∇0ψ

b
1 + i∇1ψ

a
1)
}

This action involves both coupling between different blocks and inside the same block; to
disentangle these two class of couplings it is convenient to introduce the block derivatives
of first and second order:

∇̂µ fi =
1

2
(fi+3µ̂ − fi−µ̂); ∇̂2

µ fi = fi+3µ̂ + fi−µ̂ − 2fi+µ̂

by which the derivative ∇µ can be rewritten as ∇µ = ∇̂µ − 1
2
∇̂2
µ. By introducing the

doublet Ψ =
(
u
d

)
by

ψa = (u+ γ1d)/
√
2; ψ̄a = (ū+ d̄γ1)/

√
2; ψb = (u− γ1d)/

√
2; ψ̄b = (ū− d̄γ1)/

√
2

the staggered action Eq. (3.3.2) can finally be rewritten in the form

S =
∑

blocks

{
Ψ̄(γ0∇̂0 + γ1∇̂1)Ψ +

1

2
Ψ̄γ5Tµ∇̂2

µΨ

}
(3.3.3)

where

T0 =

(
0 −1
1 0

)
; T1 =

(
0 −i
−i 0

)

In Eq. (3.3.3) it is possible to identify the second term as a Wilson-like term, which
ensure that the variable Ψ correctly displaies the physical content of the action. In this
way the original 4-degeneration of the “naive” action in two dimension, is reduced to a
degeneration 2. In the four dimensional case we end up with 4 species (usually called
tastes) of fermion instead of the 16 species of the “naive” action.
We will now show how the action Eq. (3.3.2) retains part of the chiral symmetry

invariance: this action is clearly invariant under the U(1)× U(1) transformation χn →
Ueχn for even n and χn → Uoχn for odd n and it is simple to show that the action of
this transformation on the fermion doublet Ψ is

Ψ → U(+)Ψ+ U(−)γ5T3Ψ; T3 =

(
1 0
0 −1

)
U(±) =

Uo ± Ue
2

which is a remnant of the chiral symmetry and forbids a mass term for the u and d
fermions.
The residual 4-degeneration of the staggered formulation is usually removed by using

the 4-root of the fermion determinant in the action; this introduces non-localities and it
is still disputed whether it is possible to theoretically justify this procedure. The final
form of the partition function used in staggered fermion simulation is thus

Z(T ) ≡
∫
e−SW [U ]

(
detM [U ]

)Nf/4

DU (3.3.4)
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where SW is the Wilson action, Nf is the number of (degenerate) flavours and the fermion
matrix Mi,j (i, j being lattice sites) is the fermion matrix, defined by

Mi,j = amδi,j +
1

2

∑

µ

ηi,µ

(
Ui,µδi,j−µ̂ − U †

i−µ̂,µδi,j+µ̂

)
(3.3.5)

the ηi,µ being phase factors that generalize the (−1)φ(i,µ) of Eq. (3.3.2).
The Wilson and staggered fermions are the two historically standard methods to re-

move the doubling problem; more recently a new class of fermion discretization was
developed: the overlap fermions [42]. The most appealing property of this new formu-
lation is the presence at finite lattice spacing of an exact global symmetry, which in
the continuum limit reduces to the usual chiral symmetry [43]. This discretization is
however much more computationally demanding that the two previous ones and its use
is by now limited to studies of QCD at zero temperature. A feasibility analysis for a
project on finite temperature QCD with overlap fermions is reported in [44].
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4. Monopoles and confinement on the
lattice

4.1. Detection of monopoles on the lattice

The standard method to detect monopoles on the lattice was developed by DeGrand
and Toussaint in [9] for the U(1) lattice gauge theory and it is based on the Gauss’s
law. The U(1) gauge field is given by Uµ(x) = eiΘµ(x) and if Θµ is sufficiently small the
magnetic flux1 through the (µ, ν) plaquette with vertex x is well approximated by

Θµν(x) ≡ Θµ(x) + Θν(x+ µ̂)−Θµ(x+ ν̂)−Θν(x) (4.1.1)

Clearly, if we use the previous expression to estimate the flux through a closed surface
we will always get zero total flux, since each link would be included in the sum twice, one
with each sign. In order to obtain a non trivial result it is necessary to identify the Dirac
strings, which can be done as follows. We assume that the plaquette angle Θµν consists
of two terms: physical fluctuations which lie in the range −π to π and Dirac strings
which carry 2π units of flux. Defining Θ̄µν = Θµν mod 2π the magnetic flux through a
closed surface Σ is given by

Φ =
∑

plaq∈Σ

Θ̄µν = 2πM (4.1.2)

where M is the number of monopoles inside the surface. By computing the magnetic
flux through the boundary of the elementary cubes of the lattice we can then locate the
monopoles.
In the case of non-abelian gauge theories one has first to fix a gauge and then to apply

the above procedure to the abelian subgroup spanned by some diagonal component of the
Lie algebra. However, while for the U(1) gauge theory the DeGrand-Toussaint recipe is
gauge invariant, this is not the case for non-abelian theories: the result strongly depends
on the choice of the gauge and, as consequence, the existence of a monopole in a location
of a given lattice configuration seems to be a gauge-dependent property.
Indeed for many years people have been speaking of monopoles in a given abelian

projection as different from those in the other projections and gauge transformation
were thought to be capable of creating and destroying monopoles: a common statement
was, for example, that in the Landau gauge there are no monopoles.
This physically unacceptable behaviour can be understood by using the results of [23],

presented in Sec. (2.5): we have shown that monopoles are gauge invariant but the

1For the sake of the simplicity we will call just “flux” in this section what really is e times the magnetic
flux, where e is the gauge coupling.
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4. Monopoles and confinement on the lattice

charge calculated from the magnetic flux is not and that for a general projection the
Dirac quantization condition is not satisfied. On the other hand the Dirac quantization
condition is a fundamental ingredient of the DeGrand-Toussaint recipe, since the flux of
a Dirac string is a multiple of 2π only if Dirac condition is satisfied. In a general gauge
the flux carried by a Dirac string is less than 2π and some monopoles escape detection
by means of the DeGrand-Toussaint recipe.
It is thus clear that a gauge dependence exists in the detection of monopoles; we will

now show that it is also possible to predict the dependence of the number of monopoles
observed à la DeGrand-Toussaint on the gauge fixing used.
It is first of all necessary to identify the correct abelian projection in order to define

monopoles in a given configuration, i.e. how to perform a gauge fixing to the unitary
gauge in a numerical simulation. A possible strategy is to look for a differential equation
which is satisfied by the field in the unitary gauge Eq. (2.2.10) and then use it to fix the
gauge. It is simple to check that the field Eq. (2.2.10) obeys the condition [23]

∂µA
±
µ + ie

[
A3
µ, A

±
µ

]
= 0 (4.1.3)

which is just the continuum form of the Maximal Abelian Gauge (MAG [45]). The MAG
is thus the correct gauge choice for monopole detection.
Let us now suppose to have a gauge field configuration in the MAG with a monopole

located in the origin and the Dirac string directed along the ẑ direction, i.e. the lattice
analogue of the field Eq. (2.2.10). We can now apply to this configuration a known gauge
transformation and check by the DeGrand-Toussaint recipe if the monopole is still there
or not after the gauge change. We will do that with a class of gauge transformation
depending on a parameter α

U(α) = exp
(
−iγ(θ, φ, α)σ3

2

)
exp

(
−iβ(θ, φ, α)σ2

2

)
exp

(
iγ(θ, φ, α)

σ3
2

)
(4.1.4)

with
γ(θ, φ, α) = φ β(θ, φ, α) = αΘ (4.1.5)

where Θ is the regularized θ angle defined by Eq. (2.2.9). For α = 0 this transformation
is the identity, while for α = π it is the gauge transformation that maps the unitary
gauge into the hedgehog gauge (see Eq. (2.2.8)). Applying this gauge transformation to
the field Eq. (2.2.10) at large distance and projecting on the third axis gives the abelian
gauge field

A3(α) ≡ 2Tr
[σ3
2
A(α)

]
=

1− cos θ cos(αθ)

er sin θ
eφ

whose magnetic field is

b(α) = er
1

r sin θ
∂θ

[
sin θ eφ ·A3(α)

]

The magnetic flux at infinity is

Φ(α) = r2
∫

dΩ r̂ ·~b(α) = 2π

e

[
1 + cos(απ)

]
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Figure 4.1.: Results and theoretical prediction (black line) for the ratio defined in (4.1.6).

and we finally obtain for the “effective” monopole charge Qm(α) calculated by using the
flux at infinity after the gauge transformation the following expression:

Qm(α)

Qm(0)
=

1 + cos(πα)

2
(4.1.6)

The DeGrand-Toussaint recipe reveals only integer monopole charges, so for a given
configuration the charge measured after a gauge transformation of parameter α will be
equal to the one measured in the MAG for sufficiently small values of the α parameter,
while for larger values it will be zero. The relation Eq. (4.1.6) is then expected to be
satisfied only by the mean values, where the average is to be calculated on an ensamble
of gauge configurations.
A numerical check of Eq. (4.1.6) has been performed in [46]. The lattice formulation

introduces however several sources of systematic error:

1. the monopole location in the initial MAG gauge fixed configuration is determined
with the precision of a lattice spacing. We assume the monopole to be in the center
of the elementary cube having non-vanishing magnetic flux through its boundary;

2. the direction of the string, i.e. the direction of the ẑ axes in the previous discussion,
is known with an angular precision of π/4, since it is determined by the face of the
cube pierced by the Dirac string. We assume the Dirac string to be parallel to the
coordinate axes;

3. Eq. (4.1.6) was deduced in the continuum, on the lattice discretization errors are
to be expected.
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4. Monopoles and confinement on the lattice

It is also to be noted that in order to satisfy Eq. (4.1.6) we have to calculate the
magnetic flux by using a surface sufficiently far away from the monopole, otherwise
a residual dependence on the function K of Eq. (2.2.10) would be observed. In the
DeGrand-Toussaint recipe it is tacitly assumed that the boundary of an elementary
cube is “far enough” for the flux to give a reliable estimate of the monopole charge. A
test to verify if this assumption is correct was performed in [47] by using a modified
DeGrand-Toussaint recipe, in which, instead of elementary cells, cubes of size n3 with
increasing values of n were used. The result of this analysis was that for the plaquette
and Polyakov gauges the number of observed monopoles strongly decreases by increasing
the n value, indicating strong UV noise, while for the MAG it is almost independent of
n. In testing Eq. (4.1.6) we thus use just the elementary cubes.
The configurations used to test Eq. (4.1.6) were numerically generated by means of a

standard combination of heathbath [48, 49] and overrelaxation algorithms [50] and the
MAG gauge fixing was achieved by an iterative combination of local maximization and
overrelaxation steps (see e.g. appendix of [51]).
Since in the entire procedure we have to operate only on the elementary cubes contain-

ing the monopoles, we can use a small lattice, of size 4×83 (the results were nevertheless
checked for consistency also on a 4×163 lattice). To compute mean values about 3×104

independent gauge configurations were generated at three different β values: one below
(β = 2.2) and two above the deconfinement transition (β = 2.5 and β = 2.9), which for
lattices with temporal extent Nt = 4 is located at βc = 2.2986(6).
The results of the simulations are shown in Fig. (4.1) together with the theoretical pre-

diction, Eq. (4.1.6). Data are in good qualitative agreement with the theoretical expecta-
tion, the previously noted sources of systematic errors preventing a complete quantitative
agreement. In particular for all the non-vanishing α values the ratio Qm(α)/Qm(0) is
strictly lower than one, consistent with the expectation that in the MAG the number of
observed monopoles is the largest.
As a last comment we note that from Eq. (4.1.6) it follows that for α = 1 no monopoles

should be observed, as indeed happens in simulations. The transformation Eq. (4.1.4)-
(4.1.4) for α = 1 is the gauge transformation from the unitary gauge, equivalently MAG,
to the hedgehog gauge and it is simple to show that the gauge field in the hedgehog
gauge, Eq. (2.2.4), satisfies the equation ∇ ·A = 0, which defines the Landau gauge for
a static configuration. As a byproduct of the previous argument we thus arrive at the
conclusion that in the Landau gauge no monopoles can be detected by the DeGrand-
Toussaint recipe.
It is a well known fact that in the Landau gauge no monopoles are detected, however no

explanation of this phenomenon was given before [46]. This fact was usually interpreted
as the absence of monopoles in the Landau gauge (see e.g. [52]), this being motivated by
the idea that monopoles are gauge dependent object. We gave strong evidence that the
origin of this behaviour is completely different: monopoles are gauge invariant quantities
related to the gauge covariant violation of NABI. It is their detection by the DeGrand-
Toussaint method that is gauge dependent, since it relies on the Dirac quantization
condition that we have shown not to hold, for a given configuration, in all gauges. In
particular in the Landau gauge all monopoles escapes detection.
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4. Monopoles and confinement on the lattice

4.2. The monopole operator

We have analyzed in the previous section the detection of monopoles in numerically
generated gauge configurations, however the numerical density of monopoles in not a
suitable observable for revealing monopole condensation. In order to detect monopole
condensation the vev of a magnetically charged operator µ has to be computed: 〈µ〉 is
zero in the normal phase and can be different from zero in the condensed phase.
The simplest way to construct a magnetically charged operator is to define it as the

operator that adds a monopole to the state to which it is applied [53] by a dual version of
the Dirac gauge invariant charged operator [54]. We will start from the abelian theory,
where the results are better established and we will then discuss the generalization to
the non-abelian case.
An operator that adds a monopole to a configuration is easily constructed in the

Schrödinger representation: if we denote by Π(x) the canonical momenta conjugate to
the physical transverse gauge field A⊥(x), the operator µ defined by

µ(y) = exp

(
i

∫
bi⊥(x,y)Πi(x)d

3x

)
(4.2.1)

is the translation operator of the gauge field by b⊥(x,y):

µ(y)|A⊥(x)〉 = |A⊥(x) + b⊥(x,y)〉
which is equivalent to the commutation relation

[Ai(x), µ(y)] = bi(x,y)µ(y)

[Πi(x), µ(y)] = 0
(4.2.2)

Because of the linearity with respect to Aµ of the ’t Hooft tensor, it follows from the
previous relations that

[Q, µ(y)] = m µ(y) (4.2.3)

where Q is the magnetic charge operator and m is the charge of the field b⊥(x,y). The
operator µ is thus charged if b⊥(x,y) is the transverse component of the field in x of a
monopole located in y.
A discretization of the operator Eq. (4.2.1) to be used in lattice simulations was

introduced in [55] and later improved in [56]: on the lattice the canonical momenta
correspond (with the Wilson action) to the mixed spatial-temporal plaquettes and the
operator in Eq. (4.2.1) can be rewritten (up to O(a2) lattice artefacts) as

µ = exp(−β∆S) ∆S =
∑

n

Tr{Πi0(n, t)− Π′
i0(n, t)} (4.2.4)

where

Πi0(n, t) = Ui(n, t)U0(n+ ı̂, t)Ui(n, t+ 1)†U0(n, t)
†

Π′
i0(n, t) = Ui(n, t)U0(n+ ı̂, t)Mi(n+ ı̂, t)Ui(n, t+ 1)†U0(n, t)

†

Mj(n, t) =

{
exp (i a bj(n,y)) if t = 0
0 if t 6= 0

(4.2.5)
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Figure 4.2.: (upper) Numerical calculation of ρ for U(1) gauge theory on a 4×N3
s lattice

by using a Wu-Yang monopole of charge 4, for small β values and (lower)
in the neighbourhood of the transition.
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4. Monopoles and confinement on the lattice

The fact that the operator Eq. (4.2.4) adds a monopole to the configuration, i.e.
that the commutation relations Eq. (4.2.2) are preserved by the discretization, can be
explicitly checked by performing the gauge transformation

Uj(n, 1) → Uj(n, 1) exp
(
i a bj(n+ ̂,y)

)
0 ≤ j ≤ 3 (4.2.6)

After this transformation the plaquettes of the 0-th temporal slice come back to its orig-
inal Wilson form, while the spatial plaquette angles of the 1-th temporal slice Θij(n, 1)
defined in Eq. (4.1.1), change as

Θij(n, 1) → Θij(n, 1) + ∆ibj(n,y)−∆jbi(n,y) (4.2.7)

so that the field of a monopole located in y is added to the gauge field in the temporal
slice t = 1. As a consequence of the transformation Eq. (4.2.6), the expressions in
Eq. (4.2.5) become

Π′
i0(n, t) = Ui(n, t)U0(n+ ı̂, t)Ui(n, t+ 1)†Mi(n+ ı̂, t)U0(n, t)

†

Mj(n, t) =

{
exp (i a bj(n,y)) if t = 1
0 if t 6= 1

(4.2.8)

Because of the commutativity of the U(1) gauge theory, the previous expressions are
the same of Eq. (4.2.5), just translated on the slice t = 1 instead of the original t = 0.
By iterating the application of transformation Eq. (4.2.6) on the temporal slices with
t > 1 we thus see that the effect of the operator µ is to add a monopole to the whole
configuration.
In [56] it was shown that the previous construction is gauge equivalent to the one

introduced in [57, 58] for the U(1) gauge theory by means of the explicit duality trans-
formation. In the same references it was proven that 〈µ†(x)µ(y)〉 approaches a finite
value in the confining phase of 4d U(1) lattice gauge theory while it vanishes in the
deconfined phase as |x− y| → ∞, i.e. 〈µ〉 is an order parameter for the deconfinement
transition in the U(1) gauge theory.
Since µ is the exponential of an extensive quantity, it is computationally extremely

difficult to directly measure 〈µ〉 in numerical simulations. It is convenient to compute
instead its logarithmic derivative

ρ =
d

dβ
log〈µ〉 = 〈S〉S − 〈S +∆S〉S+∆S (4.2.9)

Since 〈µ〉 = 1 at β = 0, the vev of the µ operator can then be reconstructed as

〈µ〉 = exp

(∫ β

0

ρ(x)dx

)
(4.2.10)

If monopole condensation is responsible for the confinement of color and we denote
by βc the deconfinement coupling, 〈µ〉 should be different from zero for β < βc and
vanish for β ≥ βc. In terms of the ρ observable this amounts to say that ρ is regular for
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Figure 4.3.: (upper) Behaviour of ρ in SU(2) gauge theory at low β, the inset shows the
scaling with Ns for β = 1.2 and the line is a linear fit, and (lower) near the
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4. Monopoles and confinement on the lattice

β < βc, it develops a negative peak for β ≈ βc and for β > βc it diverges negatively in
thermodynamical limit, limNs→∞ ρ = −∞.
For computation purposes it is convenient to look at the finite size scaling (FSS)

properties of ρ. Since µ is well defined everywhere we have

µ = µ

(
ξ

L
,
a

ξ

)
(4.2.11)

where a is the lattice spacing, L the lattice size and ξ the correlation length. Near a
second order the correlation length diverges as (see e.g. [59])

ξ ∝
(
β − βc

)−ν

and, as a consequence, Eq. (4.2.11) is well approximated by

µ = µ
(
L1/ν(β − βc)

)

from which it follows that
ρ = L1/νf

(
L1/ν(β − βc)

)
(4.2.12)

This behaviour can be used to determine the order and the position of the deconfinement
transition in numerical simulations.
The generalization of Eq. (4.2.4)-(4.2.5) for non abelian gauge theory introduced in

[10,60,61] uses

Mj(n, t) =

{
exp

(
i a bj(n,y) Φ̂

)
if t = 0

0 if t 6= 0
(4.2.13)

where Φ̂ is the generator of the gauge group which identifies the magnetic U(1). By
applying again the gauge transformation Eq. (4.2.6) it is not difficult to show that
Eq. (4.2.7) is again satisfied, although only to leading order in the lattice spacing. Also
Eq. (4.2.8) is equal to Eq. (4.2.5) only up to lattice corrections. In order to avoid the
problems related to the possible difference between the direction (in color space) of
a monopole located in the configuration to which µ is applied and the direction of the
monopole created by µ, it is convenient to use periodic boundary conditions, that ensure
the absence of (a net numbers) of monopoles in the initial configuration.
For abelian lattice gauge theories, in numerical simulations ρ behaves as theoretically

expected: in the low β region ρ is well defined and it reaches its thermodynamical limit
quite fast (see Fig. (4.2)); near the deconfinement transition it develops a negative peak
and for β > βc it is no more defined.
In early works the behaviour of ρ in non abelian gauge theories seemed analogous to

that in the U(1) theory, however more systematic studies [11, 62] have shown that the
generalization of the µ operator is not as straightforward as it could seem: in Fig. (4.3)
the behaviour of ρ is shown for small β values. The values of ρ do not appear to reach
the thermodynamical limit even for β ≪ βc and numerically they are observed to scale
linearly with the size of the lattice (see the inset in Fig. (4.3)). At the deconfinement
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transition a bump develops, however, due to the low β behaviour, it is superimposed on
a still growing background. As a consequence, if the expectation value of the monopole
operator is reconstructed by Eq. (4.2.10) we get in thermodynamical limit 〈µ〉 = 0 for
every β > 0.
This behaviour of ρ was initially ascribed to lattice artefacts and, in order to reduce

their effect, the Wu-Yang form for the b(x,y) field was preferred to the previously
adopted Dirac one. This because in the Dirac expression the field gets large near the
string also far away from the monopole, while in the Wu-Yang formulation the only
singularity is at the monopole location . In this way the background is reduced typically
by about a factor of 3. However general behaviour does not change significantly.
The strong coupling expansion (see e.g. [27]) is a convenient tool in order to point out

the origin of this behaviour for small β values. By using
∫
UijU

†
kl dU ∝ δilδjk

it is simple to see that the leading order of the ρ strong coupling expansion for SU(N)
is given by

ρ ∝ β5
∑

n

(
Txy + Tyz + Txz − 3N3

)
(4.2.14)

where we introduced the notation

Tij(n) = Re
{
Tr
[
Mi(n+ ı̂)

]
Tr
[
Mj(n+ ̂)†

]
Tr
[
Mi(n+ ı̂+ ̂)†Mj(n+ ı̂+ ̂)

]}
(4.2.15)

For the Wu-Yang monopole asymptotically A(r) ≈ gr/|r|2 and for SU(2) theory we get

∑

n

1

8
Txy =

∑

n

cos
(
aAx(n+ x̂)

)
cos
(
aAy(n+ ŷ)

)
cos
(
aAy(n+ x̂+ ŷ)−

−aAx(n+ x̂+ ŷ)
)
≈
∑

n

[
1− g2a2

1

|n|2 +O
( 1

|n|4
)] (4.2.16)

and ρ is thus expected to scale as

ρ ∼ β5

∫

r<Ns

a2

r2
d3x ∼ β5a2Ns (4.2.17)

which is indeed the behaviour seen in Fig. (4.3). For the U(1) gauge theory it is instead
simple to show that ∑

n

Txy ≈
∑

n

[
1 +O

( 1

|n|4
)]

and as a consequence ρ has a finite thermodynamical limit.
We thus have to conclude that the µ operator as defined above satisfies the following

two properties

1. it is the correct monopole operator up to O(a2) lattice corrections (as seen by using
the transformation Eq. (4.2.6));
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2. it is not well defined in the thermodynamical limit for fixed non-vanishing lattice
spacing (as seen by Eq. (4.2.17)).

The point (1) is well known in the literature and it is related to the presence of
charged field: in a given abelian projection the gauge field can be decomposed in abelian-
like components (the diagonal components) and components charged with respect to
the residual U(1). These component are responsible for the O(a2) differences between
Eq. (4.2.5) and the transformed Eq. (4.2.8).
A different point of view on this particular aspect was put forward in [63], where it was

noted that the definition in Eq. (4.2.4)-(4.2.13) does not satisfy the Dirac quantization
condition at small scales, because of the continuum nature of the field b(x,y). The
proposed way to overcome this difficulty is to use as an intermediate step integer valued
string fields instead of b and to weight the resulting µ operator with a measure defined in
order to reproduce the asymptotic monopole behaviour of b. This procedure is however
numerically very expensive since the “string measure” is defined by means of an auxiliary
Higgs model and its implementation thus requires two nested Monte Carlo simulations.
The ultraviolet problem of point (1) was commonly thought to be irrelevant on large

(≫ a) scales, however it was not considered that, due to the non-local character of the µ
operator, the O(a2) terms can conspire to produce nontrivial results also on large scales,
such as the observed spurious divergence of ρ. These O(a2) terms are indeed the origin
of the contractions that determine the structure of the traces in Eq. (4.2.15) and the
infrared divergence of ρ in Eq. (4.2.17).
We will now show a possible method to overcome this problem [64]: in order to better

understand the physical significance of the previous difficulties it is convenient to study
the behaviour of the vev 〈µ(x)†µ(x)〉. The lattice form of this operator is constructed
by using Eq. (4.2.4) and

Π′
i0(n, t) = Ui(n, t)Mi(n+ ı̂, t)†U0(n+ ı̂, t)Mi(n+ ı̂, t)Ui(n, t+ 1)†U0(n, t)

† (4.2.18)

Indeed by using gauge transformations of the form Eq. (4.2.6) it simple to show that
this operator introduces (up to O(a2) corrections) a monopole in the positive time slices
and an anti-monopole in the negative ones. To study the strong coupling expansion of
〈µ†µ〉 it is useful to introduce a quantity analogous to ρ, which we will denote by ρ2 and
is defined by

ρ2 =
d

dβ
log〈µ†µ〉

Its strong coupling expansion is given at the lowest nontrivial order by

ρ2 ∝ β5
∑

n

(
T (2)
xy + T (2)

yz + T (2)
xz − 3N3

)
(4.2.19)

where

T
(2)
ij (n) =

∣∣∣Tr
[
Mi(n+ ı̂)

]∣∣∣
2∣∣∣Tr

[
Mj(n+ ̂)†

]∣∣∣
2

×

×
∣∣∣Tr
[
Mi(n+ ı̂+ ̂)†Mj(n+ ı̂+ ̂)

]∣∣∣
2

(4.2.20)
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Figure 4.4.: (upper) Behaviour of ρ̃ in SU(2) gauge theory at low β, the inset shows
that for β = 1.2 the value of ρ̃ is independent of Ns (the dashed line is a
constant), and (lower) near the deconfinement transition.
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For SU(2) theories we thus have the result that ρ2, like ρ, is infrared divergent

ρ2 ∼ β5

∫

r<Ns

a2

r2
d3x ∼ β5a2Ns (4.2.21)

since for the Wu-Yang monopole we have

∑

n

1

8
T (2)
xy ≈

∑

n

[
1− 2g2a2

1

|n|2 +O
( 1

|n|4
)]

(4.2.22)

while in the abelian case trivially 〈µ†µ〉 ≡ 1.
If we denote by |0〉 a state of zero magnetic charge and by |1〉 the one-monopole state,

a properly defined monopole operator m should be an interpolating operator between
these two states, in such a way that 〈0|1〉 ∝ 〈0|m|0〉 and the value of 〈m〉 can then be
used to test if the magnetic symmetry is broken (i.e. both the states |0〉 and |1〉 has
non zero overlap with the vacuum) or not. The µ operator previously introduced does
not completely fulfill this requirement, since it adds a monopole to a given configuration
(i.e. 〈1|µ|0〉 6= 0) but 〈µ†µ〉 ≡ 〈0|µ†µ|0〉 → 0 in the thermodynamical limit, i.e. µ|0〉 =
C(L)|1〉 with limL→∞C(L) = 0, where L is the size of the system. A simple improvement
on µ is achieved by using

µ̃ =
µ√
〈µ†µ〉

(4.2.23)

in such a way that |1〉 = µ̃|0〉 and 〈0|1〉 = 〈0|µ̃|0〉 = 〈µ̃〉.
The quantity analogous to ρ that can be introduced for µ̃ is defined by

ρ̃ =
d

dβ
log〈µ̃〉 = ρ− 1

2
ρ2 =

1

2
〈S〉S +

1

2
〈S + ∆̃S〉S+∆̃S − 〈S +∆S〉S+∆S (4.2.24)

where ∆S and ∆̃S are defined by

∆S =
∑

n

Tr{Πi0(n, t)− Π′
i0(n, t)} ∆̃S =

∑

n

Tr{Πi0(n, t)− Π̃′
i0(n, t)}

Πi0(n, t) = Ui(n, t)U0(n+ ı̂, t)Ui(n, t+ 1)†U0(n, t)
†

Π′
i0(n, t) = Ui(n, t)U0(n+ ı̂, t)Mi(n+ ı̂, t)Ui(n, t+ 1)†U0(n, t)

†

Π̃′
i0(n, t) = Ui(n, t)Mi(n+ ı̂, t)†U0(n+ ı̂, t)Mi(n+ ı̂, t)Ui(n, t+ 1)†U0(n, t)

†

Mj(n, t) =

{
exp (i a bj(n,y)) if t = 0
0 if t 6= 0

(4.2.25)

The mean value 〈µ̃〉 can be reconstructed by using the generalization of Eq. (4.2.10):

〈µ̃〉 = exp

(∫ β

0

ρ̃(x)dx

)
(4.2.26)

By using the developments Eq. (4.2.16) and Eq. (4.2.22) it is simple to show that in the
strong coupling expansion of Eq. (4.2.24) the infrared divergences present at the order
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Figure 4.5.: (upper) Behaviour of ρ̃ in SU(2) gauge theory at high β, the lines are linear
fits and the inset shows the dependence of ρ̃ on Ns at fixed β = 3.2 together
with a linear fit. (lower) Scaling of ρ̃ near the deconfinement transition:
βc = 2.2986(6) is the critical coupling, ρ̃b ≈ −7.39 is an estimate of the
analytical background and 1/ν ≈ 1.587 for the 3d Ising universality class.
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4. Monopoles and confinement on the lattice

β5 in ρ and ρ2 cancel and the result is, to this order, well defined in the thermodynamical
limit. There are some hints that this cancellation of divergences is true at all order of
the ρ̃ strong coupling expansion, however a complete proof is still laking.
Numerical results for the new observable ρ̃ on lattices of temporal extent Ns = 4

are shown in Fig. (4.4) and Fig. (4.5): in the low β regime the values saturate, at
the deconfinement transition a negative peak develops and for larger β values ρ̃ is no
more well defined. The scaling in the neighbourhood of the deconfinement transition is
consistent with the known value of the critical coupling, βc = 2.2986(6), and with the
critical exponent ν = 0.6301(4) of the 3d Ising universality class.
In Fig. (4.6) the behaviour of ρ̃ on a lattice of temporal extent Nt = 6 is shown. This

is clearly a preliminary result, however two observations are in order: a negative peak
in ρ̃ develops in correspondence of the deconfinement transition at βc = 2.4265(30) and
the analytical background is approximately ρ̃b ≈ −7, as in the Nt = 4 case.
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Figure 4.6.: Behaviour of ρ̃ on a 6× 303 lattice.

The rescaled definition Eq. (4.2.24) thus appears to be theoretically well motivated
and numerically accurate. Further studies are being carried out in order to check the
dependence on the lattice temporal extent (i.e. the continuum limit) and to extend the
previous analysis to SU(3) and G2 lattice gauge theories.
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4. Monopoles and confinement on the lattice

4.3. The QCD phase diagram

In SU(N) gauge theory without quarks the confined low temperature and deconfined
high temperature phases are separated by a phase transition, as ensured by their different
symmetries: the center symmetry is realized à la Wigner in the low temperature confined
phase while it is spontaneously broken in the deconfined phase.
One of the principal aims of the studies of QCD at finite temperature is to analyze

how the introduction of the fermions modifies the order or the universality class of the
deconfinement transition. A major difficulty is that when quarks are coupled to the
gauge field the center symmetry is explicitly broken and the Polyakov loop cannot be
used as an order parameter.
Explicit symmetries of the QCD Lagrangian are known only when quarks have infinite

or vanishing masses. In the limit of infinite mass, the so-called quenched approximation,
quarks decouple and the QCD Lagrangian reduces to the Lagrangian of pure gauge
theory, the invariance being again related to the center symmetry. In the opposite limit
of vanishing masses the invariance of the Lagrangian is associated to the chiral symmetry.
The classical invariance group of QCD Lagrangian in presence of Nf massless fermions

is given by
Gc = SUV (Nf )× SUA(Nf )× U(1)× UA(1) (4.3.1)

which, due to the chiral anomaly, is reduced in the quantum theory to

Gq = SUV (Nf )× SUA(Nf )× U(1)× ZNf
(4.3.2)

At zero temperature the SUA(Nf ) component is spontaneously broken while at high
temperature it can be shown [65] that it has to be realized à la Wigner. Also the
symmetry UA(1) is expected to be effectively restored at sufficiently high temperature.
An order parameter for the SUA(Nf ) symmetry is the Nf ×Nf matrix

Φij = 〈ψ̄i(1 + γ5)ψj〉 (4.3.3)

where ψi is the field of the i-th fermion and ψ̄i(1 + γ5)ψj is a color singlet. The matrix
Φij transforms under Gc as

Φ → e−2iαU+ΦU−

where U± are independent SU(Nf ) matrices and α is the parameter of the UA(1) trans-
formation. The more general effective Lagrangian for Φ with symmetry group Gc is [66]

Lφ =
1

2
Tr[(∂µΦ

†)(∂µΦ)] +
1

2
m2

ΦTr(Φ
†Φ) + g1[Tr(Φ

†Φ)]2 + g2Tr(Φ
†Φ)2 (4.3.4)

while if we use the invariance group Gq a term of the form

c(detΦ + detΦ†) (4.3.5)

has to be added to Eq. (4.3.4).
The use of Gc or Gq as symmetry group of the effective Lagrangian corresponds to

the two physical possibilities
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1. the phase transition happens at a sufficiently high temperature, such that the
classical symmetry UA(1) can be considered as effectively restored,

2. at transition the classical symmetry UA(1) is still broken to ZNf
by the chiral

anomaly.

In the first case the group Gc is the correct choice, otherwise Gq has to be used. The
analysis performed in [66] led to the following results regarding the universality class of
the chiral transition:

Gc – if Nf = 1 second order in the 3d O(2) universality class or first order

– if Nf > 1 first order2

Gq – if Nf = 1 no transition,

– if Nf = 2 second order in the 3d O(4) universality class or first order,

– if Nf > 2 first order.

For non zero quark masses no exact symmetry of the QCD Lagrangian is known
that can be used in order to build an order parameter for the deconfinement or chiral
transition. In particular there is no known symmetry reason to force the existence of
a phase transition. If the dual superconductivity of the vacuum picture is correct, a
dual symmetry could however exist, in which the degrees of freedom associated to the
boundary conditions plays a prominent role.
The above general considerations give some constraints on the QCD phase diagram

but are not capable to predict its complete form, which depends on the non universal
features of the model.
For QCD with 2 + 1 flavours (i.e. 2 degenerate quark flavours with masses mu and a

third flavour with a possibly different mass ms) the phase diagram is usually assumed
to be of the form sketched in Fig. (4.7): the tick lines represent second order phase
transitions, which are expected to be in the 3d O(4) and 3d Ising (Z2) universality
classes, while the dot denoted by T represent a tricritical point. In the connected
regions that include the mu = ms = 0 or the ms = mu = ∞ points the transition is first
order while for intermediate masses no phase transition is present, just and analytical
crossover. The upper line describes the Nf = 2 case since for ms = ∞ the third flavour
decouple; analogously the right of the figure corresponds to Nf = 1.
The phase diagram depicted in Fig. (4.7) satisfies all of the constraints imposed by the

universality arguments exposed above and it is often presented as completely established,
the point corresponding to the physical quark masses being positioned in the crossover
region. Nevertheless there are some points which deserves a more careful analysis:

• the position of the physical quark masses in the diagram,

2The more detailed analysis performed in [67] revealed the existence of an infrared stable fixed point
also for the Nf = 2 case, with critical indices almost identical to those of the 3d O(4) universality
class.
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Figure 4.7.: The QCD phase diagram as it is usually presented (the so-called “Columbia
plot”).

• the order of the chiral transition for Nf = 2.

The precise location of the physical point in Fig. (4.7) is clearly of great phenomeno-
logical importance: the presence of a phase transition and its order could have observable
consequences in heavy ions collisions and cosmology. Simulations at the physical mass
values are however computationally extremely demanding and the conclusion that at
the physical point no phase transition is present is based only on the observation that
the susceptibilities of the observables do not grow, within the statistical errors, by in-
creasing the lattice size. This is clearly a necessary condition for the absence of a phase
transition, but the presence of the statistical errors prevents it from being also a suffi-
cient condition: the transition can be weak enough that much larger volumes than the
available ones are needed in order to observe a significant increase in the susceptibilities.
A theoretically safer procedure would be to map the position of the line of Z2 transi-

tions. This procedure was followed in [68], with the additional aim to detect the influence
of the tricritical point, but did not lead to conclusive results because of the limited lattice
sizes used.
The second point, the order of the chiral transition for Nf = 2, is at first sight less

physically significant, however it can help to shed new light on the previous point, not
to mention that, in order to understand the phase diagram at finite density and physical
quark masses, it is convenient to have a complete understanding of the phase diagram
at zero temperature also for non physical values of the quark masses. In particular the
tricritical point shown in Fig. (4.7) exists only if the Nf = 2 transition if of second
order and the presence of the tricritical point near the physical point is expected to have
observable consequences [69].
In the studies previous to [70] the O(4) scaling was never observed for all the measured

quantities, only the dependence of the critical coupling βc on the quark mass used seemed
to favour the O(4) scenario. In [70] it was shown that also this βc scaling, when properly
analyzed, does not provide statistically significant support to the claim that the Nf = 2
is in the 3d O(4) universality class.
Taking advantage of the knowledge of the scaling field at the chiral transition, in [70] a

novel simulation strategy was proposed in order to have a clear-cut distinction between
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the two theoretically possible scenarios, i.e. a first order transition or a second order
transition in the 3d O(4) universality class. The idea of the method is quite simple: if
the transition is second order in the O(4) universality class, two relevant scaling variables
have to be present, a thermal-like variable τ and a magnetic-like variable h. Because of
the chiral symmetry the magnetic variable is to lowest order proportional to the quark
mass m; the free energy can then be written in the scaling form (see e.g. [59])

F = L−4φ(τLyt , amLyh) (4.3.6)

where yt, yh are the thermal and magnetic renormalization group eigenvalues (yt = 1/ν,
where ν is the correlation length critical index) and L is the system size. The idea is
then to vary L and m but keeping the scaling variable amLyh fixed, in order to reduce
the double scaling of Eq. (4.3.6) to a single scaling problem.
This analysis was performed in [70] by using for yh the known value of the 3d O(4)

model and lattice temporal extension Nt = 4: the results did not scale as expected
from Eq. (4.3.6), moreover some indications were presented that favoured the first order
scaling. The same study was repeated in [71] by using yh = 3, i.e. the value expected
for a first order transition, and a nice scaling was reported. These results raised the
following objections

1. no clear signal of bistability was observed, at least to the spatial sizes studied

2. the lattice used (standard staggered fermions with Nt = 4) is rather coarse

As to the first point this is not really an objection, since bistability can show up at
larger volumes. Clearly a well defined bistability is the most evident signal of a first
order transition but the explicit observation of the discontinuity is not the only way to
check for the existence a first order transition. In particular statistical systems exist (like
the 2d Potts model) which are theoretically known to display a first order transition but
for which it is not possible to clearly observe a bistability in simulations, the only way
to numerically check the theoretical results being the scaling with the first order critical
indices (see e.g. [72]). In any case there is no way a priori to discriminate, at finite
volume, between an analytical cross-over and a weak first order transiton.
The observation that the used lattice spacing are quite coarse is clearly true, but it

would be surprising if the scaling of local observables at a second order phase transition,
i.e. a typically IR effect, were influenced by the UV lattice artefacts. This point,
however, deserves further investigation and the analysis of [70, 71] is being repeated by
using lattices with temporal extension Nt = 6, thus reducing by 3/2 the lattice spacing.
A complementary analysis is being performed in the high mass region of the Nf = 2

theory: the existence of an endpoint for the large mass first order transition is clearly a
necessary condition for the existence of the second order chiral phase transition, however
its existence has never been verified in a convincing way (some hints were presented
in [73]). Simulations are being carried on in the large mass regime in order to get clear
evidence of the existence (or not) of this endpoint.
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4.4. The computational challenge

Simulations of lattice gauge theory coupled to fermions are much more numerically
demanding than pure gauge theory ones since fermions have to be represented in the
functional integration by anticommuting variables. The best available method to deal
with this problem is to explicitly integrate out the fermions and substitute them with
dummy bosonic field φ (know as pseudo-fermions) in the following way [74]:

Z =

∫
DUDψ̄Dψe−Sg [U ]−ψ̄M [U ]ψ ∝

∫
DU det(M [U ])e−Sg [U ] ∝

∝
∫

DUDφ exp
(
− Sg[U ]− φ∗

(
M [U ]†M [U ]

)−1
φ
) (4.4.1)

To use Monte Carlo methods it obviously needed that detM [U ] ≥ 0, which is the case
in the zero quark density simulations we are considering.
A convenient algorithm to simulate the action in Eq. (4.4.1) is the Hybrid Monte

Carlo [75] HMC). The idea is very simple and it is conveniently exposed by using as
an example the case of a single boson with action S = V (ϕ): as a first step a dummy
conjugate momentum p is associate to ϕ and the action becomes S = 1

2
p2 + V (ϕ); it

is trivial that this change leaves invariant the mean values of ϕ observables. The HMC
then proceeds as follow

1. a random initial momentum is generated with probability ∝ e−
1
2
p2 ,

2. starting from the state (ϕ, p), a new trial state (ϕ′, p′) is generated by numerically
solving the equations of motion derived from the action S,

3. the new state (ϕ′, p′) is accepted with probability min(1, e−δS) where δS = S(ϕ′, p′)−
S(ϕ, p) (Metropolis step).

It can be shown (see e.g. [27,75,76]) that the sequence of the ϕ configurations obtained
in this way is distributed with the correct e−V (ϕ) probability provided the solution of
the equation of motion satisfies the requirements

• the evolution is reversible, i.e. (ϕ, p) → (ϕ′, p′) if and only if (ϕ′,−π′) → (ϕ, p),

• the evolution preserves the measure of the phase space, i.e. det ∂(ϕ
′,p′)

∂(ϕ,p)
= 1.

A large class of integrators that satisfy these two constraints are the so-called symmetric
symplectic integrators, the simplest member of this class being the leap-frog or PQP
scheme (for improved schemes see e.g. [77–79]).
In the particular case of the action in Eq. (4.4.1) a convenient implementation of this

picture is given by the Φ algorithm of [80]:

1. a vector R of complex Gaussian random numbers is generated,

2. the pseudofermion field is initialized by φ = M [U ]†R, in such a way that the
probability distribution for φ is proportional to exp(φ∗(M †M)−1φ),
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Figure 4.8.: Peack performance of Intel CPU and NVIDIA GPU.

3. the dummy momenta associated to gauge fields are initialized by Gaussian random
matrices,

4. the gauge field and momenta are updated by using the equations of motion,

5. the final value of the action is computed and the Metropolis step performed.

The point (4) is the more time consuming, since the calculation of the force requires at
each step the solving of the sparse linear system

(
M [U ]†M [U ]

)
X = φ (4.4.2)

which is usually performed by means of Krylov methods (see e.g. [81]). In order to speed
up the algorithm a number of methods have been proposed, whose aim is typically to
reduce the number of inversions needed in the update [82–85].
For staggered fermions a complication is the presence of the 4−th root of the deter-

minant in the action: Eq. (4.4.2) becomes

(
M [U ]†M [U ]

)n/4
X = φ (4.4.3)

where n ∈ Z is related to the number of flavours. In order to overcome this problem
the Rational Hybrid Monte Carlo (RHMC) was introduced in [86], in which the root
of the fermion matrix is approximated by a rational function, which is then efficiently
computed by means of the shifted versions of the Krylov solvers (see e.g. [87]).
The matrixM [U ] is in a typical case a ∼ 106×106 sparse matrix, whose details depend

on the discretization used for the fermions, and the system Eq. (4.4.2) has to be solved
∼ 20 times in order to get a gauge configuration. In finite temperature simulations
near phase transitions the situation is worsened by the increasing of the autocorrelation
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Figure 4.9.: Architecture of a modern NVIDIA graphics card.

time of the Markov chain, so that in order to obtain two statistically independent gauge
configuration an increasing number of updates is necessary. In usual simulation a total
amount of ∼ 105 updates is a reasonable estimate. The CPU core time needed for of an
update strongly depends on the physical parameters but it practically amounts to & 2
hours.
From these rough estimates it clearly emerges the need for dedicated machines per-

form QCD simulations. The standard architectures used are CPU clusters with fast
interconnections between the nodes, like the APE and the Blue Gene machines, however
the increasing need for low cost computing resources led in recent years to explore less
traditional architectures.
The video game market developments compelled graphic cards (Graphic Processing

Units, GPUs) manufacturers to increase the floating point calculation performance of
their products, by far exceeding the performance of standard CPUs (see Fig. (4.8)). The
GPU architecture evolved toward programmable many-core chips that are designed to
process in parallel massive amounts of data. These developments suggested the possi-
bility of using GPUs in the field of high-performance computing as low-cost substitutes
of more traditional CPU-based architectures.
The seminal work that introduced the use of GPUs in lattice QCD simulation was [88]

in which the native graphics APIs were used, but the real explosion of interest in the field

GPU Cores Bandwidth Gflops (peak) Gflops (peak) Device Memory
GB/s single double GB

Tesla C1060 240 102 933 78 4
Tesla C2050/2070 448 144 1030 515 3/6

Table 4.1.: Specifications of the NVIDIA cards designed for high performance
computing.
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followed the introduction of NVIDIAs CUDA (Compute Unified Device Architecture)
platform, that effectively disclosed the field of GPGPU (General Purpose GPU) by
allowing the possibility of programming GPUs by a C-like language.
The typical architecture of a modern NVIDIA graphic card is shown in Fig. (4.9).

Primary storage is provided by the device memory, which is accessible by all multipro-
cessors but has a relatively high latency. Within the same multiprocessor, cores have
access to local registers and to shared memory, which is shared between the threads of
the multiprocessor and it is orders of magnitude faster than device memory, being very
close to the computing units. While the total amount of device memory is of order of
GBs, the local storage is only 16KB both for the registers and for the shared memory3,
so that it is typically impossible to use just these local fast memories. The latency time
of the device memory can be hidden by having a large number of threads in concurrent
execution, so when data are needed from device memory for some threads, the ones
ready to execute are immediately sent to computation. The highest bandwidth from
device memory is achieved when a group of 16 threads accesses a contiguous memory re-
gion (coalesced memory access), because its execution requires just one instruction call,
saving a lot of clock-cycles. Because of the presence of these three storage levels with
different latencies, in GPU application much care has to be used in the memory man-
agement, especially in QCD simulations, where the efficiency turns out to be strongly
limited by bandwidth.
The specifications of the NVIDIA cards used are reported in Tab. (4.1), where the

reported bandwidth is the internal bandwidth of the GPUs. This has to be compared
with the typical bandwidth of 5GB/s of the communications between the GPU and the
CPU host, which are settled by a PCI express bus. This is the main bottleneck in most
GPU applications.
Application of GPUs in lattice QCD simulations have been mainly limited to the

inversion of the Dirac matrix (see e.g. [89]) to be performed in order to analyze stored
gauge configurations previously obtained by using more standard architectures. Our
aim [90] was instead to use GPUs to efficiently perform a complete simulation, without
the need to rely on more traditional architectures.
In order to avoid the bottleneck of the communication between CPU and GPU we

decided to copy the starting gauge configuration (and momenta) on the device memory
at the beginning of the simulation and to perform the complete update on the GPU,
instead of using it just to speed up some functions and transferring gauge field back and
forth between host and device memories. In our implementation of the Dirac kernel a
different thread is associated to every (even) site in the fermion update and to every link
in the gauge update, so that different treads do not cooperate: shared memory is used
just as a local fast memory (the cache memory is not present on GPU). This setup is
forced by the high ratio between data and floating point operations per kernel.
Double precision capability was introduced with NVIDIAs GT200 generation, the first

one specifically designed having in mind HPC market. While at first the performance in
double precision was about an order of magnitude smaller than the one in single precision,

3For NVIDIA Tesla cards 10 series. The 20 series has 64KB of on-chip memory.
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Lattice Bandwidth GB/s Gflops
4× 163 56.84± 0.03 49.31± 0.02
4× 323 64.091± 0.002 55.597± 0.002
4× 483 69.94± 0.02 60.67± 0.02

Table 4.2.: Staggered Dirac operator kernel performance figures on a C1060 card (single
precision).

in the Fermi generation (2010) there is only a factor 2 between the peak performance in
single and double precision. Nevertheless, when there are not strong precision issues that
force the use of the double precision, single precision is to be preferred, since it halves
the size of the memory transfers, effectively increasing the efficiency of the program.
An example of the performance obtained for the Dirac operator is shown in Tab. (4.2),

from which it is clear that the main bottleneck is the bandwidth: while using 60−70% of
the bandwidth, only the 5− 6% of the peak performance is reached. For more technical
details on the implementation see [90].
The time needed for a complete update on different architectures is shown in Fig. (4.10)

and the time gains of the GPUs over the CPUs are reported in Tab. (4.3) and Tab. (4.4),
from which it appears clearly that GPUs can be efficiently used as substitutes of the
traditional architectures. In particular a single GPU, whose cost is ≈ 103e, typically
outperform an APENext crate, whose cost is of order of 105e.

high mass low mass
spatial size 32 48 64 16 32 48

Opteron (single core) 65 75 75 40 50 85
Xeon (single core) 50 50 50 15 25 30
apeNEXT crate ∼3 ∼1

Table 4.3.: NVIDIA C1060 time gains over CPU and apeNEXT.

high mass low mass
spatial size 32 48 64 16 32 48

Opteron (single core) 115 130 140 65 75 140
Xeon (single core) 85 85 100 30 40 50
apeNEXT crate ∼6 ∼2

Table 4.4.: NVIDIA C2050 time gains over CPU and apeNEXT (same code as for C1060,
no specific C2050 improvement implemented).
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The identification of the physical mechanism responsible for color confinement is still
matter of controversy in the physical community. The dual superconductivity of the
vacuum picture is probably the most interesting possibility from the theoretical point of
view, since it is possibly related to a dual symmetry of QCD.
The main theoretical problem in this framework is the definition of the monopole

degrees of freedom, which appear to explicitly depend on the specific abelian projection
used. We pointed out that the abelian magnetic current is the component in the direction
of the abelian projection of the violation of the non-abelian Bianchi identities, thus
providing a gauge invariant characterization of the monopoles. A direct consequence
of this result is that dual superconductivity through monopole condensation is a well
defined gauge invariant mechanism for color confinement.
By using the connection between the magnetic current and the gauge covariant NABIs

violations, it is possible to give an explanation of the gauge dependence of the monopole
detection à la DeGrand-Toussaint and to provide quantitative predictions for the de-
pendence of the number of monopoles detected on the gauge fixing adopted. These
predictions were checked numerically and the agreement is satisfactory. In particular in
this way we explained the impossibility to detect monopole by the DeGrant-Toussaint
recipe in the Landau gauge.
Io order to study monopole condensation and its relation with color confinement by

numerical simulations it is necessary to compute the vacuum expectation value of a
magnetically charged operator. The introduction of such an operator on the lattice
presents non-trivial problems for the non-abelian gauge theories. We provided strong
indications that these problems can be overcome by properly modifying the previously
introduced monopole operator µ and we presented numerical results for the pure gauge
SU(2) theory that, although not yet conclusive, support the theoretical analysis.
The introduction of the fermions does not require any modification of the picture of

color confinement through dual superconductivity, since monopole degrees of freedom
are only related to the topology of the gauge configuration. Monopole condensation
can thus provide valuable information in the study of the QCD phase diagram at finite
temperature. Simulations are being performed in order to clarify some controversial
points of the QCD phase diagram, in particular the order of the chiral transition with
two massless quark flavours. Theoretically there are two available possibilities, first order
or second order in the 3d O(4) universality class, and which of these two possibilities
is realized is a peculiar property of the QCD phase diagram that can be settled by
numerical simulations.
Numerical simulations of QCD are however extremely computationally demanding and

require the use of dedicated machines. In order to made these simulations more feasible
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5. Conclusions

(both from the computational and the economical point of view) new computational
architectures are being currently tested by various research groups. We showed that the
graphics processing units are a valid and relatively cheap substitute of the traditional
dedicated machines and, after an initial stage of software development, we are currently
using them to study the QCD phase diagram.
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A. Conventions

A.1. Gauge coupling

The fundamental electric charge will be indicated by e, while g will be the magnetic
charge. The covariant derivative, the covariant derivative in the adjoint representation
and the field strength are defined by the relations

Dµ = ∂µ + ieAµ

Dagg
µ = ∂µ + ie[Aµ, · ]

Gµν =
1

ie
[Dµ, Dν ] = ∂µAν − ∂νAµ + ie[Aµ, Aν ]

The gauge transformation acts on fermions and gauge field as

ψ′ = Uψ A′
µ = UAµU

† +
i

e
(∂µU)U

†

It is simple to check by direct computation that if φ is a field in the adjoint representation
then

[Dagg
µ , Dagg

ν ]φ = ie[Gµν , φ]

A.2. Roots and weights

Our notation is the standard one (see e.g. [91,92]): the generator of the Cartan subgroup
are denoted by Hi, i = 1, . . . , r (r is the rank of the group). The eigenvalues of the Hi

operators in a given representation are called the weights of the representation. A
distinguished role is played by the adjoint representation and its weights are called
roots; the generators of the algebra not in the Cartan subalgebra are associated to
non-vanishing root values and occur in pairs with opposite root values:

[Hi, Hj] = 0 [Hi, E±~α] = ±αiE±~α

[E~α, E~β] = N~α,~β E~α+~β [E~α, E−~α] = ~α · ~H

where ~α = (α1, . . . , αr) and N~α,~β 6= 0 only if ~α + ~β is a root. A root ~α is conventionally
called positive if its first non zero component is positive and a positive root is said to be
simple if it cannot be written as the sum of two other positive root. Also

H†
i = Hi E†

−~α = E~α Tr(HiHj) = λδij Tr(E†
~αE~β) = λδ~α,~β λ > 0
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The fundamental weights ~µ i are defined in terms of the simple roots ~αj by means of the
duality

~αi · ~µj = δij

In the literature the usual definition is 2 ~α
i·~µj

(~αi)2
= δij; we changed the normalization just

to simplify the notation. The operators associated to fundamental weights, which will
be called µ̂i, are defined by µ̂i = ~µ i · ~H, are a base of the Cartan algebra and they satisfy
the commutation rules

[µ̂i, Hj ] = 0 [µ̂i, E~α j ] = δijE~α j

A.3. SU(N)

The group SU(N) is an N2 − 1 dimensional group, whose Lie algebra su(N) is the
algebra of hermitian traceless matrices. Its rank is N − 1 and a convenient base for the
Cartan algebra are the generalized Gell-Mann matrices Hm defined by

(
Hm

)
ij
=

1√
2m(m+ 1)

(
m∑

k=1

δikδjk −mδi,m+1δj,m+1

)
1 ≤ m ≤ N − 1 1 ≤ i, j ≤ N

which satisfy the normalization condition Tr(HiHj) =
1
2
δij. For example

H1 =
1

2




1 0 · · ·
0 −1 · · ·
...

...
. . .


 H2 =

1√
12




1 0 0 · · ·
0 1 0 · · ·
0 0 −2 · · ·
...

...
...

. . .




H3 =
1√
24




1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 −3 · · ·
...

...
...

...
. . .




The N weights of the fundamental representation are the (N − 1)−vectors given by

(
~ν j
)
m
=
(
Hm

)
jj
=

1√
2m(m+ 1)

(
m∑

k=1

δjk −mδj,m+1

)

and it is straightforward to check that they satisfies the relations

~ν i · ~ν j = 1

2
δij −

1

2N

The Es operators get from one weight to another, so the roots are given by the differences
of the weights; the positive root are ~ν i − ~ν j for i < j, while the simple roots are

~α i = ~ν i − ~ν i+1 1 ≤ i ≤ N − 1
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and they satisfy the relation

~α i · ~α j = δij −
1

2
δi,j±1

so that all simple roots have length 1 and the angle between two consecutive simple
roots is 2

3
π. The Dynkin diagram for SU(N) is shown in Fig. (A.1). It is simple to show

that the fundamental weights are

~µ j = 2

j∑

k=1

~ν k

where the factor 2 is due to our normalizations. Explicitly the simple roots and the
associated operators are given by

(
~α i
)
m
= −

√
i− 1

2i
δi−1,m +

√
i+ 1

2i
δim 1 ≤ i,m ≤ N − 1

(
~α i · ~H

)
jk

=
1

2

(
δij − δi+1,j

)
δjk

The operators associated to fundamental weights are

µ̂i =
1

N
diag

( i︷ ︸︸ ︷
N − i, . . . , N − i,

N−i︷ ︸︸ ︷
−i, . . . ,−i

)

which is easily shown by noting that Tr
[
µ̂i (~αj · ~H)

]
= 1

2
δij for every simple root.

1 2 3 N − 2 N − 1

Figure A.1.: Dynkin diagram of SU(N).

A.4. SO(2N + 1)

The group SO(2N + 1) is an N(2N + 1) dimensional group, its Lie algebra so(2N + 1)
is the algebra of the imaginary antisymmetric matrices and it has rank N . A convenient
base for the algebra is the one whose elements are the matrices Mab defined by

(
Mab

)
xy

= −i(δaxδby − δbxδay)

which satisfy the condition Tr(MabMcd) = 2δacδbd. As generators of the Cartan algebra
we can choose the matrices

Hj =M2j−1,2j 1 ≤ j ≤ N
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while the operators associated to the roots are (η, η′ = ±1)

Eη~νj =
1√
2

(
M2j−1,2N+1 + iηM2j,2N+1

)

Eη~νj+η′~νk =
1

2

(
M2j−1,2k−1 + iηM2j,2k−1+

+ iη′M2j−1,2k − ηη′M2j,2k

)

where 1 ≤ j, k ≤ N and
(
~νj
)
x
= δjx. The simple roots are

~αj = ~νj − ~νj+1 1 ≤ j ≤ N − 1

~αN = ~ν N

The first N − 1 simple roots have lengths
√
2 and relative angles 2

3
π; the N−th root has

length 1 and the angle with the N − 1−th root is 3
4
π. These properties are summarized

in the Dynkin diagram Fig. (A.2). The fundamental weights are given by the expression

~µ i =
i∑

j=1

~ν j

1 2 N − 2 N − 1 N

Figure A.2.: Dynkin diagram of SO(2N + 1).

A.5. G2

The group G2 is most conveniently described by using the Cayley octonions. These can
be defined by means of the Cayley-Dickson process applied to quaternion, similarly to
the construction of quaternion from complex numbers and complex numbers from real
ones (see e.g. [93]). Octonions are non-commutative and non-associative, although they
satisfy a weak form of associativity, namely alternativity, i.e. [x, y, z] = (xy)z − x(yz)
is completely antisymmetric.
The group G2 is defined as the automorphism group of the octonions: G2 = GL(O).

It can be shown (see e.g. [93]) that G2 ⊂ SO(7) and that G2 is exactly the 14− dimen-
sional subgroup of SO(7) that fixes the completely antisymmetric 3−tensor T whose
independent non-vanishing components are

T127 = T154 = T163 = T235 = T264 = T374 = T576 = 1

As a consequence G2 can be described as the group of the real 7×7 matrices that satisfy
the relations

ΩabΩac = δbc detΩ = 1 Tabc = TdefΩdaΩebΩfc
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A convenient base for the algebra of the G2 group was introduced in [94] and it is
given by the following Ci matrices, i = 1, . . . , 14 (Tr(CiCj) = δij)

C1 =
i

2




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −1
0 0 0 0 0 −1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0




C2 =
i

2




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 −1
0 0 0 −1 0 0 0
0 0 0 0 1 0 0




C3 =
i

2




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 −1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 −1
0 0 0 0 0 1 0




C4 =
i

2




0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 −1 0 0 0 0
0 −1 0 0 0 0 0




C5 =
i

2




0 0 0 0 0 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 −1 0 0 0 0




C6 =
i

2




0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 −1 0 0 0
0 0 1 0 0 0 0
0 −1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




C7 =
i

2




0 0 0 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 −1 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




C8 =
i

2
√
3




0 0 0 0 0 0 0
0 0 −2 0 0 0 0
0 2 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 −1 0 0 0
0 0 0 0 0 0 −1
0 0 0 0 0 1 0




C9 =
i

2
√
3




0 −2 0 0 0 0 0
2 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 −1 0
0 0 0 0 1 0 0
0 0 0 −1 0 0 0




C10 =
i

2
√
3




0 0 −2 0 0 0 0
0 0 0 0 0 0 0
2 0 0 0 0 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 −1
0 0 0 1 0 0 0
0 0 0 0 1 0 0



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C11 =
i

2
√
3




0 0 0 −2 0 0 0
0 0 0 0 0 0 −1
0 0 0 0 0 1 0
2 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 −1 0 0 0 0
0 1 0 0 0 0 0




C12 =
i

2
√
3




0 0 0 0 −2 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
2 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 −1 0 0 0 0




C13 =
i

2
√
3




0 0 0 0 0 −2 0
0 0 0 0 −1 0 0
0 0 0 −1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
2 0 0 0 0 0 0
0 0 0 0 0 0 0




C14 =
i

2
√
3




0 0 0 0 0 0 −2
0 0 0 1 0 0 0
0 0 0 0 −1 0 0
0 −1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
2 0 0 0 0 0 0




The group G2 has rank 2 and the Cartan subgroup is generated by C5 and C11. By
simultaneous diagonalization of C5 and C11 it is trivial to obtain the weights of the
fundamental 7−dimensional representation of G2, which are depicted in Fig. (A.3).

0

1/2
√
3

−1/2
√
3

1/
√
3

−1/
√
3

−1/2 0 1/2

Figure A.3.: Weights diagram of the G2 fundamental representation.

Root vectors are obtained as differences of the weights of the fundamental represen-
tations and are shown in Fig. (A.4).
The simple roots are

~α1 =

(
0,

1√
3

)
~α2 =

(
1

2
,−

√
3

2

)
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0

1/2
√
3

−1/2
√
3

1/
√
3

−1/
√
3

−
√
3/2

√
3/2

−1/2 0 1/2 1−1

Figure A.4.: Weights diagram of the G2 adjoint representation.

Figure A.5.: Dynkin diagram of G2.

and the angle between them is 5
6
π, so the Dynkin diagram of the group G2 is the one

shown in Fig. (A.5) and the fundamental weights are

~µ1 =
(
3,
√
3
)

~µ2 = (2, 0)
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B. Proof of Eq. (2.5.2) for the
exceptional groups

We will sketch how the proof of Eq. (2.5.2) given in the text can be extended to the
exceptional groups. By using the definition Eq. (2.5.7) we arrive also for the exceptional
groups to the equation

Cν = −e
2

2

∑

ℓjk

ǫµνρσa~αℓ
µ a

~αj
ρ a

~αk
σ c

i
~αℓ
ci~αj
ci~αk

× Tr(E~αℓ
[E~αj

, E~αk
])× Πn=3,4,5,6

and the esplicit form of the Πn terms is

Π3 =
49

36
− 14

36
× 5

2
〈λ〉+ 1

36

(
3〈λ2〉+ 〈λiλj〉

)

Π4 =
205

144
− 91

192
× 5

2
〈λ〉+ 5

96

(
3〈λ2〉+ 〈λiλj〉

)
+

+
1

576

(
−3〈λ3〉 − 3〈λ2iλj〉+

1

2
〈λiλjλk〉

)

Π5 =
5269

3600
− 1529

2880
× 5

2
〈λ〉+ 341

4800

(
3〈λ2〉+ 〈λjλi〉

)
+

+
11

2880

(
−3〈λ3〉 − 3〈λ2iλj〉+

1

2
〈λiλjλk〉

)
+

+
1

14400

(
3〈λ4〉+ 2〈λ2iλ2j〉+ 3〈λ3iλj〉 − 〈λiλ2jλk〉

)

Π6 =
5369

3600
− 37037

64800
× 5

2
〈λ〉+ 44473

518400

(
3〈λ2〉+ 〈λjλi〉

)
+

+
1001

172800

(
−3〈λ3〉 − 3〈λ2iλj〉+

1

2
〈λiλjλk〉

)
+

+
91

518400

(
3〈λ4〉+ 2〈λ2iλ2j〉+ 3〈λ3iλj〉 − 〈λiλ2jλk〉

)
+

+
1

518400

(
− 3〈λ5〉 − 3〈λiλ4j〉 − 4〈λ3iλ2j〉+ 〈λiλ3jλk〉+

1

2
〈λ2iλ2jλk〉

)

The combinations of the roots that satisfy the constraint ~αℓ+~αj+~αk = 0 are, together
with generic permutations of ℓ, j, k

ciℓ = 1, cij = 1, cik = −2 ciℓ = 1, cij = 2, cik = −3

if λ takes three different values,

66



B. Proof of Eq. (2.5.2) for the exceptional groups

ciℓ = 1, cij = 1, cik = −2 ciℓ = 1, cij = 2, cik = −3
ciℓ = 1, cij = 3, cik = −4 ciℓ = 2, cij = 2, cik = −4

if λ takes four different values,

ciℓ = 1, cij = 1, cik = −2 ciℓ = 1, cij = 2, cik = −3
ciℓ = 1, cij = 3, cik = −4 ciℓ = 2, cij = 2, cik = −4
ciℓ = 1, cij = 4, cik = −5 ciℓ = 2, cij = 3, cik = −5

if λ takes five different values and

ciℓ = 1, cij = 1, cik = −2 ciℓ = 1, cij = 2, cik = −3
ciℓ = 1, cij = 3, cik = −4 ciℓ = 2, cij = 2, cik = −4
ciℓ = 1, cij = 4, cik = −5 ciℓ = 2, cij = 3, cik = −5
ciℓ = 1, cij = 5, cik = −6 ciℓ = 2, cij = 4, cik = −6
ciℓ = 3, cij = 3, cik = −6

if λ takes six different values.
By using any of these combinations we get Πn = 0 thus proving that Cν = 0 also for

the exceptional groups.
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