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Optimal control for quantum detectors
Paraj Titum 1,2✉, Kevin Schultz1, Alireza Seif 2,3,4, Gregory Quiroz1 and B. D. Clader1

Quantum systems are promising candidates for sensing of weak signals as they can be highly sensitive to external perturbations,
thus providing excellent performance when estimating parameters of external fields. However, when trying to detect weak signals
that are hidden by background noise, the signal-to-noise ratio is a more relevant metric than raw sensitivity. We identify, under
modest assumptions about the statistical properties of the signal and noise, the optimal quantum control to detect an external
signal in the presence of background noise using a quantum sensor. Interestingly, for white background noise, the optimal solution
is the simple and well-known spin-locking control scheme. Using numerical techniques, we further generalize these results to the
case of background noise with a Lorentzian spectrum. We show that for increasing correlation time, pulse based sequences, such as
CPMG, are also close to the optimal control for detecting the signal, with the crossover dependent on the signal frequency. These
results show that an optimal detection scheme can be easily implemented in near-term quantum sensors without the need for
complicated pulse shaping.
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INTRODUCTION
Quantum systems are extremely sensitive to the environment
which makes them an ideal candidate as a sensor of weak
external fields. Many promising candidates have been put
forward as quantum sensors, such as defect centers in diamond
or silicon carbide, SQUID-based sensors, atomic sensors, along
with many others (see, e.g., ref. 1). A variety of sensing
techniques have been developed which can be used to detect
either the magnitude or the phase of the signal. In Ramsey
interferometry2, a qubit is prepared in the equal superposition
state and its oscillation frequency is sensitive to the splitting of
the qubit, which depends on the external field to be sensed.
This allows for the estimation of the magnetic field amplitude
with sensitivity limited by the free-evolution dephasing time of
the qubit, which can be enhanced through optimal control
methods3. Similarly, detecting AC signals is possible with
Ramsey and echo sequences, such as Carr–Purcell (CP)4 and
dynamical decoupling5,6 sequences. These sequences can also
be used for estimating frequencies of the signal7,8. For
amplitude sensing, the typical figure of merit one considers
when measuring the performance of a quantum sensor is the
sensitivity, which characterizes the smallest external field that
can be measured in a given amount of time1. This can be
formulated in terms of the quantum Cramér–Rao bound, and
has associated applications and limiting cases9–13.
While sensitivity is important for parameter estimation, it is

less relevant for the signal detection. In this manuscript, we
reformulate the quantum sensing problem in a manner
consistent with the following decision theoretic question: How
does one optimally detect the presence of a stochastic signal
with a known spectrum in the presence of background noise?
The detection of signals in the presence of noise has been
extensively studied in the field of classical decision theory14. A
highly relevant applied formulation determines how to optimally
choose whether a time-varying signal was signal plus noise or

noise only, which has broad applicability for detection systems,
such as radar receivers15,16. This field of study was extended to
the quantum domain by Helstrom17,18, who considered how to
optimally choose between one of two density operators as the
correct description of a receiver, and Holevo19, who considered
the question of the optimal measurement to distinguish
between one of two quantum states. Results following these
works have placed bounds on the limits of quantum state20,21

and channel discrimination22–26. We build upon this early work
but incorporate the filter function (FF) formalism originating from
quantum control theory27–30 to answer this question of how to
optimally detect signals, with a controllable quantum sensor.
Unlike earlier works on state and channel discrimination that aim
to identify the optimal measurements to distinguish two states/
channels, our work is focused on identifying the control scheme
that optimally separates the two cases.
Our model, as shown schematically in Fig. 1, considers a single

qubit (or an ensemble of noninteracting qubits) with external
fields that couple to the qubit through an energy splitting term
and single-axis control on the transverse axis. We seek control
protocols that minimize the average error rate of detecting the
presence of a signal over background noise. In particular, we
seek to detect band-limited signals that are of interest in signal
processing, such as pulse-compressed radar31 and phase/
frequency-modulated communications32 or radar33. We examine
arbitrary single-axis time-dependent controls for this discrimina-
tion problem and show that, under certain assumptions on the
background noise, the optimal control protocol is remarkably
just a constant control with Rabi frequency corresponding to the
maximum of the signal spectrum. This corresponds to what is
traditionally known as spin-locking (SL) in the nuclear magnetic
resonance literature34. The SL technique, along with its pulsed
analogue, has been widely used in quantum sensing and noise
spectroscopy applications8,35–39.
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RESULTS
Model
Let us consider a single qubit as a quantum sensor in the presence
of a dephasing signal and noise. Assuming uniaxial control (along
σ̂x ) and under the rotating wave approximation, the qubit
Hamiltonian in the rotating frame is given by

HðtÞ ¼ 1
2
J

ffiffiffi
α

p
sðtÞ þ ηðtÞ

� �
σ̂z þ

1
2
ΩðtÞσ̂x; (1)

where Ω(t) is the Rabi frequency of an arbitrary time-dependent
control in the rotating frame with respect to the drive frequency,
the signal s(t) and background noise η(t) are both considered to
be classical wide-sense stationary Gaussian stochastic processes,
α denotes the ratio of the signal-to-noise power (SNR) and J2 is
the total noise power. These stochastic processes have mean
zero, sðtÞ ¼ ηðtÞ ¼ 0 and two-point time correlations given by
ηðtÞηðt0Þ ¼ gηðt � t0Þ, sðtÞsðt0Þ ¼ gsðt � t0Þ and ηðtÞsðt0Þ ¼ 0 with

the normalization gη(0)= gs(0)= 1 and ð� � � Þ denoting aver-
aging over noise realizations. Alternatively, the noise correla-
tions may also be represented in the frequency domain, using
the power spectrum, SηðωÞ ¼

R1
�1 dτgηðτÞe�iωτ , with the normal-

ization
R1
�1 dωSηðωÞ ¼ 2π, and similarly for Ss(ω). In this manu-

script, we consider two distinct types of noise for the
background noise spectrum: white noise and Lorentzian. For
white noise, we are able to derive the optimal control
analytically. For a Lorentzian spectrum, corresponding to
gηðtÞ ¼ e�jtj=σt , where σt denotes the correlation timescale, we
find the optimal control protocols through numerical simulation.
This noise spectrum is quite relevant to quantum sensing
platforms such as nitrogen-vacancy centers in diamond40,41.
For our numerical simulations, we model the qubit sensor by

time evolving the stochastic Liouville equation using a Trotter
decomposition; see “Methods” for details. The signal power-
spectrum Ss(ω) is chosen to be white cutoff, centered around a
frequency ω0 and width 2δ0; see, e.g., Fig. 2a (in orange). This
spectrum is chosen as an idealized band-limited stochastic signal
commonly considered in signal processing. Note that the
parameters considered in this manuscript are chosen to be in
the regime of low SNR (α≪ 1) and weak noise relative to the
control (J=maxfΩðtÞgt1). The weak noise limit allows us to utilize
the cumulant expansion to study the dynamics of the qubit.

Detection protocol
The aim of this protocol is to optimally detect the presence of a
stochastic signal with a known spectrum in the presence of
background noise. This is in contrast to the goal of estimating
some parameter of an AC or DC signal, as traditionally considered
in quantum sensing1. The detection protocol can be described in
three steps; schematically shown in Fig. 1. (i) Initialize: initialize the
qubit in the state þj i ¼ 1ffiffi

2
p ð 0j i þ 1j iÞ. (ii) Sense: let the qubit

evolve for sensing time ts in the presence of the Hamiltonian, H(t);
see Eq. (1). (iii) Measure: rotate the qubit using a Hadamard gate
(denoted as H) and measure in the σ̂z basis. Record outcome as 0j i
or 1j i. The measurement outcome probability depends on the
signal s(t), noise η(t), applied control Ω(t), and the sensing time ts.
Examining the dephasing dynamics of a single qubit, it is
straightforward to show P 0j iðtsÞ ¼ 1

2 ð1þ e�χðtsÞÞ. Clearly, the
dephasing exponent depends on the presence or absence of a
signal and is denoted χη+s or χη, with corresponding outcome
probabilities labeled as P 0j i;ηþs or P 0j i;η, respectively.

Optimizing the detection protocol
The optimal detection protocol {Ωopt, topt} that minimizes the
average error rate Perr is given by a control function Ω(t)=
Ωopt(t) and a corresponding optimal sensing time ts = topt. The
average error rate Perr is defined as the average probability of
false positive (FP) and false negative (FN) detections. In general,
this error rate is dependent on the number of shots/repetitions
Ns of the experiment in addition to the outcome probabilities
fP 0j i;ηþs; P 0j i;ηg. For single-shot (Ns = 1) detection experiments,
the scenario considered by Helstrom in the early works on
quantum state discrimination apply17,18. In this case, Perr is
minimized by maximizing the separation between the outcome
probabilities ΔP 0j i ¼ P 0j i;η � P 0j i;ηþs; see Supplementary Note I
for derivation. For Ns > 1 shots, the average error rate can be
rewritten in terms of cumulative distribution functions of the
binomial distribution with an appropriately chosen threshold
for detection. In general, this error rate is dependent on the
number of shots, Ns, and does not admit a differentiable
expression; see Supplementary Note I for details. Thus, for the
simplicity of having a differentiable objective function for
numerically optimizing the control function, as well as
analytical insight, we choose to minimize the error rate for
single-shot discrimination with the objective function chosen as
O � ΔP 0j i . We also identify the corresponding single-shot

Fig. 1 Schematic description of the single-qubit experiment for detection of a signal. a The detection protocol. The qubit is initialized in an
eigenstate of σ̂x , ψinj i ¼ 1ffiffi

2
p ð 0j i þ 1j iÞ and evolves in the presence of a signal, background noise, and control. The measurement is done in the

σ̂z basis after a Hadamard rotation. b Schematic picture for the detection setup. c The average probability of the occupation of state 0j i
(denoted by P 0j i) decays as a function of time, with the decay rate dependent on the presence/absence of a signal. The detection is optimally
performed at topt.
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optimal detection time for these protocols, ts ¼ tmaxΔP . We
show that for the detection scenarios considered in this work,
the optimal control schemes identified using this criteria (Ns=
1) also perform well for the case of multiple shots (Ns > 1), when
compared to detection schemes without any control.
In this paper, we make no assumptions on the shape of the

control function Ω(t), in order to obtain the optimal detection
protocol. We derive analytical expressions for the objective
function in the regime of weak signal, noise, and SNR, and use
it as a heuristic for identifying the optimal control function for
single-shot detection. Having identified these optimal control
functions [Ωopt(t)] for detecting the stochastic signal of interest,
we examine the performance of these detection schemes for the
case of Ns > 1 shots and identify the Ns-dependent optimal
sensing time for detection topt � topt;Ns that minimizes the
average error rate; see “Methods” for details on the numerical
procedure. The numerically optimized detection scheme is
compared with the performance of some well-known protocols
used in sensing (i) SL: ΩðtÞ ¼ constant; (ii) Carr, Purcell, Meiboom,
and Gill (CPMG) pulse sequence: Ω(t) is given by a series of
equidistant π-pulses separated by free-evolution periods of
duration τCPMG; and (iii) Ramsey interferometry: Ω(t)= 0.

Dephasing in second cumulant approximation
Let us consider the dephasing of a qubit just in the presence of
noise, setting s(t)= 0. The dynamics of the qubit in a weak noisy
environment is well understood using the cumulant expan-
sion30,42. The dephasing exponent, χη, can be obtained from the
dynamics of hσ̂xðtÞi ¼ Tr σxρðtÞ½ � � e�χðtÞhσ̂xi0; hσ̂xi0 denoting the
initial state. In the interaction frame of the control UcðtÞ ¼ e�i12σ̂xΛt ,
where Λt ¼

R t
0 d~tΩð~tÞ, the dynamics are straightforwardly

rewritten in terms of the cumulant expansion, hσ̂xðtÞi ¼
Tr½expð

P1
n¼1

ð�iÞn
n! CðnÞðtÞÞρð0Þσ̂x �; C(n) denoting the nth cumulant42.

In the regime where the noise is weak, it is sufficient to terminate
the series at the second cumulant (odd cumulants vanish trivially)
to obtain the following expression for the decay,

χηðtÞ �
J2

2

Z t

0
dt1

Z t

0
dt2 e

iΛt1 gη t1 � t2ð Þe�iΛt2 ; (2)

where χη(t) is always real. In the frequency domain, Eq. (2) can be
recast into an overlap between the noise spectrum and the FF,
χηðtÞ ¼ J2

2

R1
�1

dω
2π Sη ωð ÞjFt ωð Þj2. The FF is now given by the

following expression,

Ft ωð Þ ¼
Z t

0
d~t e�iω~tþiΛ~t ; (3)

where we use the symmetry of the noise spectrum, Sη(ω)=
Sη(−ω). Note that the FFs have a normalization,R1
�1

dω
2π jFtðωÞj

2 ¼ t. Additional details regarding the derivation
of the expressions for Ft(ω) and χη(t) are provided in “Methods”.
As an example, consider the limiting case when the background

noise is white. In this case, gηðt � t0Þ / δðt � t0Þ, which is the Dirac
δ-function. To be consistent with our normalization [g(0)= 1], we
define gðtÞ ¼ lim ϵ!0e�jtj=ϵ . However, to have a nonzero decay
rate, we must rescale the noise power J2 such that, 2J2ϵ= γ is a
constant. Now, χη is obtained straightforwardly from Eq. (2),
χηðtÞ ¼ 1

2 γt. This gives the standard T2 time for the qubit with T2=
2/γ. The dephasing rate under white noise is constant regardless
of the control Ω(t) applied. This is expected because the noise has
the same amplitude for all frequencies (i.e., infinite bandwidth)
and it is consistent with the well-known fact that it is impossible to
suppress dephasing under white noise using control43.

Fig. 2 Optimal signal detection for white background noise. a Background noise (blue) is considered to be nearly white (Jσt ¼ 0:01
ffiffiffiffiffiffiffiffiffiffi
30=π

p
),

and the signal spectrum (orange) is white-cutoff centered around ω0=J ¼ 10
ffiffiffiffiffiffiffiffiffiffi
π=30

p
and width 2δ0=J ¼ 3

ffiffiffiffiffiffiffiffiffiffi
π=30

p
, and SNR given by α= 0.05.

For clarity of presentation, we use a mixed linear and logarithmic scale on the y-axis. The scale is linear between 0 ≤ y ≤ 0.01 and logarithmic
for y > 0.01. b Dephasing under spin-locking, represented by outcome probability, P 0j i , in the presence (orange) and absence (blue) of signal.
The points and solid lines correspond to the outcome probabilities as calculated, using exact numerical simulation and SCA, respectively.
c Comparison between spin-lock (black) driving at frequency ω= ω0 to the numerically optimal control [see Eq. (9)] until their respective
detection time ts ¼ tΔPmax . d Maximum of the objective function, O ¼ ΔP 0j i [see Eq. (5)] at ts ¼ tΔPmax for different spin-lock driving frequencies,
Ω(t)=Ω, as obtained from exact numerics (points) and from second cumulant expansion (line). Red dashed line shows Oopt ¼ OðΩopt; tΔPmax Þ
for the SCA-optimal control (plotted in red in c).
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In order to compare with numerics, it is convenient to switch
to the discrete time picture, with time steps Δt= t/N, where N is
the total number of steps, in addition to a piecewise constant
control Ω= (Ω0,⋯ , ΩN). Here, Eq. (2) becomes a Riemann sum
and χη is a matrix expectation value. To this end, let us introduce
(i) an N-dimensional vector for the control, Θt ¼
1ffiffiffi
N

p e�iΛ0 ; e�iΛΔt ; � � � ; e�iΛNΔt½ �T with a normalization, Θy
t � Θt ¼ 1;

and (ii) an N × N-dimensional symmetric Toeplitz matrix for the
noise autocorrelation function, Gη

� �
ij ¼ gη i � jð ÞΔtð Þ ¼ Gη

� �
ji .

Using these definitions, the expression for χ can now be written
in a compact form,

χηðtÞ ¼
1
2
J2tΔtΘy

t �Gη � Θt: (4)

The white-noise limit is recovered by setting Gη to be a
diagonal matrix, Gη

� �
ii ¼ 1, and J2Δt= γ. We also note that in

this discrete time notation, the FF [see Eq. (3)] is the Fourier
series of Θ.

Optimization for detection in the SCA
Let us now describe the procedure for optimizing the control for
detecting the signal. Both the signal and the noise cause the qubit
to dephase, and the dephasing exponent is straightforwardly
obtained in the second cumulant approximation (SCA), using
Eq. (4). Since the signal and noise are uncorrelated, the decay in
the presence of a signal is a sum, χη+ s= χη+ χs, where χs and χη
are the decay exponents obtained from having just the signal or
the noise present, respectively. Thus, the qubit decays at a faster
rate in the presence of both signal and noise compared to just the
background noise. In order to optimize for single-shot detection,
we maximize over the difference between the two outcome
probabilities, ΔP 0j i . We now have an effective heuristic for
designing optimal detection controls that becomes optimal when
the SCA applies. We define the following objective function,

Oðt; fΩgÞ ¼ ΔP 0j i ¼
1
2
e�χηðtÞ 1� e�χsðtÞ

� �
: (5)

We carry out the optimization as a two-step procedure: (i)
optimize over control trajectories to obtain Ωopt ¼
argmaxfΩg logOðts; fΩgÞ½ � for single-shot detection at a fixed
detection time ts. Recall that the detection time sets the
dimension of the control vector, dim Ω½ � ¼ ts=Δt. In the limit of
white background noise, we will obtain analytically the optimal
control that maximizes O. More generally, for arbitrary noise
spectrum, the optimization is implemented using stochastic
gradient descent (SGD) algorithms. We implement the SGD using
the Adam optimization algorithm implemented in TensorFlow44,45.
Note that it is also straightforward to add additional constraints on
the variables that could be motivated by experimental require-
ments; e.g., maximum available power, see Supplementary Note
III. (ii) Optimize over the time of detection, topt, which depends on
the total number of shots Ns, to obtain the optimal detection
protocol. For the case of single-shot detection, the optimal time is
obtained using a grid search over different detection times ts to
identify the optimal single-shot detection time, tΔPmax ¼
argmaxts ΔP 0j iðtsÞ

� �
. For Ns > 1 shots, we minimize the average

error rate to identify the optimal time of measurement, ts ¼ topt;Ns ;
see “Methods” for details on implementation. Therefore, we obtain
the optimal detector in the SCA, which we denote as “SCA
optimal”, with Oopt ¼ Oðtopt;ΩoptÞ. See “Methods” for more
details regarding the optimization procedure.

White background noise
Let us start by discussing the SCA-optimal protocol when the
background noise is close to white, σt � minf1=ω0; 1=δ0g. Here,
we assume that the signal spectrum Ss(ω) is characterized by a
peak at ω=ω0 and width ≈ 2δ0. This case allows us to compute

the optimal control analytically. Dephasing in the absence of any
signal, χη, is independent of the applied control, which simplifies
the optimization objective O [see Eq. (5)]. Therefore, O can be
maximized by maximizing χs given by a formula analogous to Eqs.
(2) and (4). Examining the expression of χs in terms of FFs, the
following bound is obtained,

χsðtsÞ �
J2αts
2

max SsðωÞ½ �; (6)

where we use the normalization
R1
�1

dω
2π jFtsðωÞj

2 ¼ ts. In the
following, we show that this upper bound on χs(ts) can be
achieved in the limit of long times (ts≫ 1/δ0), using a control that
is constant in time, ΩðtÞ ¼ argmaxω SðωÞ½ � ¼ ω0. This control
scheme is commonly referred to as “spin-locking”.
A SL control scheme Ω(t)=Ω has the FF FtðωÞ ¼

teiðΩ�ωÞt=2 sinc ðΩ� ωÞ t
2

� �
and decay exponent

χSLs ðtsÞ ¼
J2t2sα
2

Z 1

�1

dω
2π

SsðΩþ ωÞsinc2 ωts=2ð Þ (7)

�
ts	 1

δ0 J2t2sα
2

Z π=ts

�π=ts

dω
2π

SsðΩþ ωÞ � J2αts
2

SsðΩÞ (8)

where, in the second step we approximate the sinc(ϵx) as a
rectangular function. Alternatively, one can also use the approxima-
tion, sinc2ðωts=2Þ � 2π

ts
δðωÞ in the limit ts→∞ to arrive at the same

conclusion as Eq. (8). Therefore, we see that the bound for χs(ts) [see
Eq. (6)] can be saturated using a simple control protocol Ω(t)=ω0.
While we have shown this result for a spectrum that has a maxima at
ω=ω0, it is straightforward to specialize to the case of a white-
cutoff signal spectrum (see Fig. 2a), in which case the optimal SL
frequency is consistent with any frequency in the signal band. We
emphasize the following subtlety in the derivation of
Eq. (8): the sensing time (ts) of the detector is large compared to
the inverse width of the signal spectrum, ts≫ 1/δ0.
The SCA-optimal detection protocol at any particular sensing

time ts with white background noise can also be calculated
numerically without using time-consuming SGD-based optimizers.
Since this control maximizes χs, it can be obtained from the
eigenstructure of the correlation matrixGs [see Eq. (4)]. In fact, it is
straightforward to show that χopts ðtsÞ � 1

2 J
2αtsΔtgmax, where gmax

(ϕmax
ts ) denotes the largest eigenvalue (eigenvector) of the correla-

tion matrix of the signal spectrum Gs. However, the eigenvector of
the correlation matrix is not necessarily an allowed control protocol.
Therefore, the SCA-optimal control protocol is obtained from
identifying a control vector Θopt

ts ¼ 1ffiffiffi
N

p e�iΛ0 ; ¼ ; e�iΛts½ � with the
largest overlap with ϕmax

ts . Noting that the eigenspectrum of Gs is
doubly degenerate (denote them by i= ±), we can construct two
possible SCA-optimal control vectors elementwise as

Θopt
ts;±

� �
p
¼ 1ffiffiffiffi

N
p

ϕmax
ts ;þ

h i
p
± i ϕmax

ts ;�

h i
p

ϕmax
ts ;þ

h i
p
± i ϕmax

ts ;�

h i
p

����
����
: (9)

where the two possible optimal controls correspond to driving
around ±ω0. Having constructed the SCA-optimal control for
arbitrary sensing time ts, the optimal time of measurement for
single-shot detection, tΔPmax is obtained by maximizing O from
Eq. (5). Now, we have the SCA-optimal control for detection Θopt

tΔPmax
,

an example of which is shown in Fig. 2c.
We numerically simulate the performance of the sensing protocol

for white background noise; the results are shown in Fig. 2. A nearly
white background noise spectrum is obtained by choosing the
correlation time to be small, Jσt ¼ 0:01

ffiffiffiffiffiffiffiffiffiffi
30=π

p
� J=δ0. Figure 2b

shows the observed outcome probability of state 0j i, P 0j i as a
function of sensing time ts. Both with and without the signal,
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P 0j i (shown in orange and blue) decays exponentially, with very
good agreement between the exact dynamics (points) and SCA
(solid line). We calculate the optimal time for detection tΔPmax by
maximizing the difference O, see Eq. (5). In Fig. 2c, d, we examine
the optimality of SL. Figure 2c compares SL to the numerically
obtained SCA-optimal protocol, Θopt

tΔPmax
[see Eq. (9)], up to their

respective optimal times of measurement. Comparing the two
control schemes, it is clear that SL is close to optimal. In fact, for
long times of measurement, ts→∞, Θopt

ts!1 converges to SL.
However, at the optimal measurement time, ts ¼ tΔPmax , Θopt

tΔPmax

remains distinct from SL, with oscillations around the spin-lock
frequency. Figure 2d compares the performance of SL as a function
of the Rabi frequency of the applied control Ω to the SCA-optimal
detector. Comparing the performance of SL as obtained from exact
numerics (blue dots) with that obtained for the SCA-optimal control
(red dashed line), it is clear that SL may perform marginally better in
practice, which we attribute to corrections to the dynamics beyond
the SCA.

Lorentzian background noise
We now compare the performance of SL (Ω(t)= ω0) as a function
of correlation time of the background noise. Specifically, we
compare it to CPMG with τCPMG= π/ω0 and Ramsey interfero-
metry, Ω(t)= 0. We also numerically obtain the SCA-optimal
control protocol using SGD-based optimizers, and compare its
shape with these protocols. The results are shown in Figs. 3 and 4.
One of the important takeaways from the numerical optimization
of the objective function O is that the SCA-optimal protocol
depends on the correlation time σt. The control obtained from the
SGD is close to SL for short correlation times; however, for
correlation times longer than a crossover scale, CPMG performs
better (see Fig. 3b). In Fig. 3a, we show the numerical optimized
control sequence for increasing correlation times Jσt= 0.03, 0.19,
and 1.17. Clearly, the SCA-optimal control has close resemblance
to CPMG for Jσt= 1.17. Interestingly, in some cases, the SGD-
based optimizer also finds control schemes that are neither CPMG
or SL; see “Discussion” in Supplementary Note III accompanying
Supplementary Figs. 2 and 3.

The crossover correlation timescale for CPMG to perform
better than SL approximately scales as a power law with the
signal frequency, σcross

t 
 1=ω0 (see Fig. 3c). The better
performance of CPMG compared to SL for longer correlation
times can be understood qualitatively from the shape of their
corresponding FFs (Supplementary Figs. 2 and 3). While the FF
for SL has all of its weight close to ω0, CPMG has some weight
also at the odd harmonics of ω0 (refs. 46,47). In addition, the
amplitude of the FF for CPMG at frequencies ω < ω0 is lower
compared to SL; see, e.g., Supplementary Fig. 1. Since the
background spectrum is Lorentzian and Sη(ω) decays at higher
frequencies, this leads to χCPMG

η < χSLη ; unlike when the back-
ground is white where the χη is independent of the control. The
optimization objective depends on χs/η in a nonlinear fashion
[see Eq. (5)] which increases with either decreasing χη or
increasing χs. Even though for the signal spectrum χCPMG

s < χSLs ,
the smaller value of χCPMG

η leads to a larger O. It is interesting to
note that in the presence of experimentally motivated
constraints, such as maximum available power, the optimal
protocol interpolates between CPMG (instantaneous π-pulses)
and SL (Supplementary Fig. 4).
Let us now discuss the performance of the different control

schemes as obtained from exact numerical simulation taking
into account Ns > 1 measurement shots, see Fig. 4. We compare
the performance of SL, CPMG, SCA-optimal, and Ramsey
schemes at their respective optimal detection times; the
controls are shown in Fig. 4a, with corresponding FFs shown
in Supplementary Fig. 1. The optimal detection times are
obtained for each control scheme by minimizing the average
error rate for a given Ns; see “Methods” for details. Choosing the
threshold such that the average of probability of FP (type I error)
and FN (type II error) is minimum, we plot the error rate as a
function of the number of measurements in Fig. 4b; a better
detector is characterized by lower error rates. Rather surpris-
ingly, even when the correlation time is large Jσt= 1.17, the
performance of CPMG and SL remains fairly close to each other,
with SL still performing marginally better. The optimal control
scheme obtained in the SCA (see Fig. 3a) also performs equally
well (although not better) in comparison to the standard
protocols. This is likely due to the fact that the SGD-based

Fig. 3 Optimizing for detection for correlated background noise (Lorentzian spectrum) in the SCA. a Different SCA-optimal control
schemes from the SGD-based optimizer for increasing correlation times Jσt= 0.03, 0.19, and 1.17. The signal is at ω0=J ¼ 10

ffiffiffiffiffiffiffiffiffiffi
π=30

p
.

b Comparison of the maximum of the objective function O [see Eq. (5)] as a function of background noise correlation, σt, in comparison to SL
and CPMG sequences with their corresponding detection times set to ts ¼ tΔPmax . The signal is the same as in a. The SCA-optimal control
(shown as red circles) exhibits a crossover at σt ¼ σcrosst (pink plus). It is close to SL (solid black line) when σt < σcrosst , and crossing over to CPMG
(solid blue line) when σt > σcrosst . c The inverse of the crossover correlation time, 1=σcrosst as a function of the center of the signal frequency ω0

keeping the SNR α fixed. The dashed line is a linear fit to the points.
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optimization is done under the assumption that the SCA holds.
However, non-negligible contributions from higher cumulants
to the dephasing rate leads to deviations from the SCA, which
may lead to better performance of SL. This also reveals some
general robustness in the optimality of SL as a detection
protocol for the signal.

DISCUSSION
In this work, we discuss the performance of different control
schemes for detecting a known signal in the presence of
certain background noise environments and show that a SL
drive is close to optimal in all cases we considered. This work
opens up a potentially exciting use case for currently available
quantum sensor hardware. These detectors can be used to
identify signals in electromagnetic fields, where the detection
bandwidth is only limited by the frequency range of the
control drive.
These results suggest several directions for future work. We

only considered the dynamics in the SCA, where we are able to
show the near optimality of SL. We did not take into account
the role of the higher cumulants, as they do not play a
significant role at optimal detection time. However for qubits
with higher T2 times and larger signal power, it will be essential
to consider its role for determining optimal controls for
detection. Another possibility is to consider the performance
of detection protocols when the signal or noise is non-gaussian
and/or nonstationary. Furthermore, we have considered the
control drive to be on resonance. Any detuning will result in a
two-dimensional control in the rotating frame, with controls
along both σ̂x and σ̂y . The optimal detection protocol in the
presence of detuning will be a topic of future work, and will
point to more robust protocols for detection. In addition, we
have not considered any errors in the implementation of the
control unitaries. Unlike the scenarios described in this work,
the optimized control sequences may possibly significantly
outperform SL and CPMG in the presence of control noise.
Finally, we have considered only a single qubit or a
noninteracting ensemble of qubits as the sensor and do not
consider the role of entanglement, which may provide an
enhancement in sensing beyond that available classically.

METHODS
Dynamical simulation of a noisy qubit
The dynamics of the qubit is modeled numerically by an exact noisy
quantum simulation and control library—“Mezze”48, which uses a
stochastic Liouville equation formalism with a Trotter decomposition49.
For our simulations, we fix the noise power J2= 30/π ≈ 9.549 and rescale all
frequencies and timescales in units of J. We also keep fixed the SNR
α= 0.05 and Trotter time-step Δt= 10−3.

Filter function in the second cumulant approximation
We derive the expression for the decay exponent χ(t) and FF, Ft(ω) defined
in Eqs. (2) and (3) in the main text. For the purposes of this section, we set s
(t)= 0, and follow the steps outlined in refs. 30,42. Taking the definition of
the Hamiltonian in Eq. (1) from the main text and transforming to an
interaction picture with respect to the control, UcðtÞ ¼ e�i12σ̂xΛt we have,

HIðtÞ ¼ Uy
cðtÞHUcðtÞ � Uy

cðtÞi∂tUcðtÞ (10)

¼ 1
2
JηðtÞ cos Λt½ �σ̂z þ sin Λt½ �σ̂y

� 	
(11)

where Λt ¼
R t
0 dsΩðsÞ. We define an alternate Hamiltonian, ~HðsÞ30,42,

~H sð Þ ¼
�σxHIðt � sÞσx 0 � s<t

HI t þ sð Þ �t < s < 0;



(12)

and now, we are ready to write down the time evolution of a particular
observable. Of interest to us is the evolution of σx(t) with a particular initial
state ρ(0). Noting that the observable σx and the initial state ρð0Þ ¼ þj i þh j
are unchanged in the interaction picture given by Uc(t), we have under

time evolution with UIðtÞ ¼ T exp �i
R t
0 ds HIðsÞ

� �h i
,

hσ̂xðtÞi ¼ Tr ρðtÞσ̂x½ � ¼ Tr UIρð0ÞUy
I σ̂x

h i
(13)

¼ Tr σ̂xU
y
I σ̂xUIρð0Þσ̂x

h i
(14)

¼ Tr T e�i
R t

�t
~HðsÞds

� �
ρð0Þσ̂x

" #
; (15)

where we have averaged over noise realizations. Now, we can expand the
exponential in the cumulant expansion,

T e�i
R t

�t
~HðsÞds

� �
¼ exp

X1
n¼1

�ið Þn

n!
CðnÞðtÞ

 !
: (16)

The odd cumulants in the sum vanish since HI∝ η(t), and we assume that
the noise is gaussian with vanishing mean.

Fig. 4 Comparison of the performance of different control schemes for detection in a Lorentzian background spectrum using a full
dynamical simulation of the qubit sensor for Ns > 1 shots. Signal is chosen centered at ω0=J ¼ 10

ffiffiffiffiffiffiffiffiffiffi
π=30

p
and the background noise has the

correlation time Jσt= 1.17. a The different protocols shown here are chosen for the detection time ts ¼ topt;Ns that minimizes the average error
rate for Ns= 100. b Average error rates for classification of the presence or absence of the signal given by the average probability of false
positive and false negative outcomes, as a function of the number of shots of the protocol (see Fig. 1). For a given number of shots, the
threshold for the detector is chosen to minimize the total probability of FP and FN outcomes.
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Second cumulant approximation. When the noise is weak, it is sufficient to
approximate the time-ordered exponential up to the second cumulant. We
have the expression for the second cumulant,

Cð2ÞðtÞ ¼ 2
Z t

�t
dt1

Z t1

�t
dt2~Hðt1Þ~Hðt2Þ (17)

¼ 2
R 0
�t

R t1
�tdt1dt2HI t þ t1ð ÞHI t þ t2ð Þ

� 2
R t
0

R 0
�tdt1dt2σ̂xHIðt � t1Þσ̂xHI t þ t2ð Þ

þ 2
R t
0

R t1
0 dt1dt2σ̂xHIðt � t1ÞHIðt � t2Þσ̂x

(18)

¼ 2
R t
0

R t1
0 dt1dt2HI t1ð ÞHI t2ð Þ

� 2
R t
0

R t
0dt1dt2σ̂xHIðt1Þσ̂xHI t2ð Þ

þ 2
R t
0

R t
t1
dt1dt2σ̂xHIðt1ÞHIðt2Þσ̂x ;

(19)

) Cð2ÞðtÞ ¼ 4
Z t

0

Z t

0
dt1dt2HI t1ð ÞHI t2ð Þ (20)

where, to simplify Eq. (17) to Eq. (18), we use the definitions of ~HðtÞ from
Eq. (12) and splitting the integrals around t= 0. In addition, to go from Eq.
(19) to Eq. (20), we use the fact that σxHI(t)σx=−HI(t). The integrand can be
further simplified using,

HIðt1ÞHI t2ð Þ ¼ J2
4 ηðt1Þηðt2Þ cos Λt1 � Λt2½ �If
þi sin Λt1 � Λt2½ �σ̂xg

(21)

Averaging over noise realizations, and noting that ηðt1Þηðt2Þ ¼ gηðt1 � t2Þ,
with g(t) being an even function, the second cumulant can be expressed as
a convolution between the correlation function and control-dependent
terms. Noting that the term∝ σ̂x in C(2)(t) vanishes because the noise
correlation is an even function [gη(− t)= gη(t)], the second cumulant can
be simplified to

Cð2ÞðtÞ ¼ J2
Z t

0

Z t

0
dt1dt2gηðt1 � t2Þ cos Λt1 � Λt2½ �I (22)

We utilize the second cumulant to express the expectation value given in
Eq. (15) as

hσxðtÞi ¼ e�χðtÞhσ̂xi0; (23)

The decay function χ(t)= C(2)(t)/2 characterizes the decoherence rate of the
system and is explicitly given by

χðtÞ ¼ J2

2

Z t

0

Z t

0
dt1dt2gηðt1 � t2Þ cos Λt1 � Λt2½ � (24)

¼ J2

2

Z 1

�1

dω
2π

SηðωÞ
2

jFt;þðωÞj2 þ jFt;�ðωÞj2
h i

(25)

Ft;± ðωÞ ¼
Z t

0
d~t eiω~t ± iΛ~t (26)

where we have used SηðωÞ ¼
R1
�1 dτgηðτÞe�iωτ and gðτÞ ¼

1
2π

R1
�1 dωSηðωÞeiωτ . Note that Ft;þðωÞ ¼ ½Ft;�ð�ωÞ�� , which means that if

S(ω)= S(−ω), the expression for χ can be further simplified by introducing
Ft(ω) introduced in Eq. (2). This completes the derivation for expressions of
χ(t) and F(ω), as defined in Eq. (2) in the main text.

Optimization of the objective function
We use a two-step numerical optimization to find the Ωopt that maximizes
ΔP 0j i ¼ 1

2 e
�χη ð1� e�χs Þ. Specifically, we do a grid search over different

sensing times, ts, and for each choice of ts, we find the control schedule
that optimizes the objective function. Since the cost function is
differentiable, we use the Adam44 optimizer with default parameters in
TensorFlow to optimize the object function taking advantage of graphical
processing units to accelerate the optimization procedure. Moreover, we
constrain [Ω]i to be positive for all values of i. We either run the
optimization for 10,000 iterations, or stop if the magnitude of the
difference of the objective function values separated by 1000 iterations is
<10−6. In all the optimizations performed in this work, we discretize the
control to JΔt ¼ ð

ffiffiffiffiffiffiffiffiffiffi
30=π

p
Þ0:01. We repeat this procedure for different

choices of ts from 300Δt to 1300Δt in increments of 10Δt. We then choose
a ts that has the optimal objective value.

After finishing this two-step optimization, we evaluate ΔP 0j i at the
optimal time with the optimal control by interpolating the results to a finer
discretization of JΔt ¼ ð

ffiffiffiffiffiffiffiffiffiffi
30=π

p
Þ0:001, and compare it to the value of ΔP 0j i

with CPMG and spin-lock control schemes. For single-shot detection, we
obtain the best time for CPMG and spin-lock control schemes by
numerically evaluating the ΔP 0j i , using discretized control with Δt ¼
ð
ffiffiffiffiffiffiffiffiffiffi
30=π

p
Þ0:001 and varying the sensing times, ts, from 3000Δt to 13,000Δt

in increments of 100Δt. See Supplementary Note III for a discussion on
imposing additional constraints on Ω.

Calculating topt;Ns by minimizing the average error rate
For a given number of measurements Ns, the optimal detection time topt;Ns

for a particular control scheme is obtained by minimizing the average error
rate Perr, which is used to obtain Fig. 4. A particular control scheme is
characterized by outcome probabilities as a function of the sensing time ts,
in the presence P 0j i;ηþsðtsÞ

� �
or absence P 0j i;ηðtsÞ

� �
of a signal.

Given Ns measurement shots, the number of 0j i measurement
outcomes (N0) is drawn from the corresponding binomial distribution:
BðN0;Ns; P 0j i;ηþsÞ or BðN0;Ns; P 0j i;ηÞ depending on whether the signal is
present or absent, respectively. Given a threshold for detection ~N (i.e.,
N0 < ~N to detect the signal), the average error rate of the detection is a
function of the outcome probabilities fP 0j i;ηðtsÞ; P 0j i;ηþsðtsÞg and is defined
as,

Perrðts; ~NÞ ¼
1
2

X
N0�~N

B N0;Ns; P 0j i;ηþsðtsÞ
� 	

þ
X
N0<~N

B N0;Ns; P 0j i;ηðtsÞ
� 	2

4
3
5;

(27)

where, BðN0;Ns; PÞ ¼
Ns

N0


 �
PN0 ð1� PÞðNs�N0Þ denotes the binomial dis-

tribution. Clearly, the average error rate is a function of the detection time
ts and the threshold ~N. To identify the optimal time of detection that
minimizes Perr, we follow a two-step procedure,

(i) Given ts, the threshold is identified to minimize Perrðts; ~NÞ,
NthðtsÞ ¼ argmin

~N

Perrðts; ~NÞ
� �

(28)

(ii) Having identified the threshold Nth as a function of ts, the optimal
time of detection can be identified through a simple grid search,

topt;Ns ¼ argmin
ts

Perr ts;NthðtsÞð Þ½ � (29)

Therefore, we have identified the optimal detection time topt;Ns for a
particular control scheme, given the number of shots Ns.
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