

Theoretical investigation of double α -emission

Deepika Pathak^{1,*}, Pardeep Singh¹, Hiteshwar Parshad¹,
Saniya Monga¹, Sukhdeep Kaur¹, and Harjeet Kaur¹

¹Department of Physics, Guru Nanak Dev University, Amritsar-143005

Poenaru and Ivașcu proposed the possible existence of double α radioactivity in 1980s [1]. Recently, Tretyak investigated the decay process in almost eighty nuclides to explore the possible decays and the experimental limit on the half-life is set to be greater than 10^{20} years as obtained from the study of ^{209}Bi nucleus[2]. We consider the quantum tunneling of already formed two α -particles through the interaction potential barrier $V(r, \theta)$ consisting of the Coulomb potential $V_C(r, \theta)$ [3],

$$V_C(r, \theta) = \frac{2Z_d e^2}{r} (1 - e^{-S}) \quad (1)$$

with S is a function as described below:

$$S = \phi(\theta)r + 0.5(\phi(\theta)r)^2 + 0.35(\phi(\theta)r)^3 \quad (2)$$

and, the proximity potential $V_P(r, \theta)$ [4],

$$\begin{aligned} V_P(r, \theta) = & 4\pi\gamma \frac{C_{2\alpha}C_d}{C_{2\alpha} + C_d} \times \\ & \left(\frac{-0.0527}{0.025e^{0.12g} + 0.0085e^{1.52g}} \right. \\ & \left. + \frac{1.956}{r^2} - \frac{0.142}{r} \right) \end{aligned} \quad (3)$$

$$\text{where } \gamma = 0.9517 \sqrt{1 - 2.6 \left(\frac{A_d - 2Z_d}{A_d} \right)^2},$$

and $g' = r - C_{2\alpha} - C_d$.

“ θ ” is the orientation angle of the emitted α -particles w.r.t. symmetric axis of deformed daughter nucleus and, the nuclear radius R_i with $i = \alpha, d, p$ can be found as:

$$R_i = \{1.28A_i^{1/3} - 0.76 + 0.8A_i^{-1/3}\} \times (1 + \beta_2 Y_{20}(\theta) + \beta_4 Y_{40}(\theta)). \quad (4)$$

β_2 and β_4 are the quadrupole and hexadecapole deformations of nuclear ground states. Also, $C_i = R_i - \frac{b^2}{2R_i}$ with b as surface width

chosen to be 1 fm. Now, the half-life of the nucleus can be found as,

$$T_{1/2}^{2\alpha, th}(s) = \frac{\ln 2}{K v_0 P_0}. \quad (5)$$

Here, $v_0 = \frac{2E_v}{\hbar}$ is the assault frequency while E_v is the vibrational energy such that [5]:

$$E_v = Q_{2\alpha} \left(0.056 + 0.039 \exp \left(\frac{4 - A_{2\alpha}}{2.5} \right) \right) \quad (6)$$

The tunneling probability K through the potential barrier can be evaluated as [6]:

$$K = \int_0^{\pi/2} \sin \theta \, T(\theta) \, d\theta \quad (7)$$

where $T(\theta)$ is the transmission coefficient [7]:

$$T(\theta) = \frac{1}{1 + \exp(q(\theta))} \quad (8)$$

and

$$q(\theta) = \left[\frac{2}{\hbar} \int_{a'(\theta)}^{b'(\theta)} \sqrt{2\mu m_n(V(r, \theta) - Q_{2\alpha})} dr \right] \quad (9)$$

where m_n is mass of nucleon. The turning point $b'(\theta)$ is fixed such that $V(b'(\theta)) = Q_{2\alpha}$ while the turning point $a'(\theta)$ is taken as $R_{2\alpha} + R_d$. The preformation probability P_0 is [8],

$$\log_{10} P_0 = h' + f' Q_{2\alpha} + g Q_{2\alpha}^2 \quad (10)$$

where $f' = -0.25736$, $g = 6.37291 \times 10^{-4}$ and $h' = 3.35106$. The disintegration energies $Q_{2\alpha}$ are calculated using binding energies as reported in [9]. We have calculated the logarithm of half-lives of medium and heavy mass nuclei which can decay with the emission of two α -particles and the obtained results are plotted with respect to $\frac{Z_d}{\sqrt{Q_{2\alpha}}}$ in the Figure 1.

*Electronic address: deepika.pathak4911@gmail.com

Parent Nucleus	Daughter Nucleus	$Q_{2\alpha}$	$\log_{10}[T_{1/2}^{2\alpha}(\text{yr})]$				
			Theor.	CPPM	MGLDM	Q	Ref. [2]
(MeV)							
^{148}Sm	^{140}Ce	3.933	52.848	59.40	57.77	55.41	58.11
^{152}Gd	^{144}Nd	4.238	51.424	57.77	56.28	54.00	56.61
^{156}Dy	^{148}Sm	4.006	57.183	62.75	60.77	58.43	64.28
^{174}Hf	^{166}Er	4.288	61.919	68.63	65.84	63.57	69.91
^{180}W	^{172}Yb	4.828	56.668	64.04	60.68	58.55	64.15
^{184}Os	^{176}Hf	5.535	50.331	57.96	54.29	52.33	57.15
^{186}Os	^{178}Hf	4.646	63.279	77.58	73.41	71.15	75.90
^{190}Pt	^{182}W	6.153	46.31	54.33	50.33	48.53	52.43
^{192}Pt	^{184}W	4.630	67.338	77.30	72.71	70.52	74.15
^{196}Hg	^{188}Os	4.527	72.867	83.69	78.46	76.25	79.53
^{232}Th	^{224}Rn	8.230	40.398	45.62	42.59	41.30	46.80
^{234}U	^{226}Ra	9.709	31.231	35.72	32.86	31.92	37.80
^{238}U	^{230}Ra	8.022	43.292	48.73	45.53	44.19	50.97

TABLE I: Results for the logarithmic values of half-lives of medium and heavy nuclei obtained using eq. (5) and other theoretical methods.

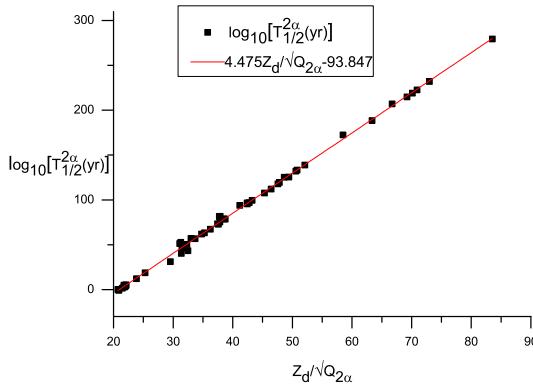


FIG. 1: Plot of the logarithmic values of half-lives w.r.t. $\frac{Z_d}{\sqrt{Q_{2\alpha}}}$ for medium and heavy nuclei.

A very good linear fit is obtained as well. We have also compared our results for few cases with those predicted using other theoretical methods [10] viz. CPPM, MGLDM, the model using disintegration dependent form of

preformation probability (Q) and the results are reported in [2] (see Table I).

References

- [1] D. Poenaru and M. Ivașcu, Journal de Physique Lettres **46**, 591, (1985).
- [2] V. I. Tretyak, Nucl. Phys. At. Energy **22**, 121 (2021).
- [3] D. Brink and N. Takigawa, Nucl. Phys. A **279**, 159 (1977).
- [4] G. Royer, Nucl. Phys. A **848**, 279 (2010).
- [5] D. N. Poenaru *et al.* Phys. Rev. C **32**, 572 (1985).
- [6] Y. Qian *et al.* Phys. Rev. C **83**, 044317 (2011).
- [7] L. D. Landau and E. Lifshitz, Quantum Mechanics, (Pergamon Press, 1977).
- [8] K. P. Santhosh *et al.* Phys. Rev. C **97**, 064616 (2018).
- [9] <https://www.nndc.bnl.gov/nudat2/>.
- [10] K. P. Santhosh and T. A. Jose, Phys. Rev. C **104**, 064604 (2021).