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Abstract
Weconsider the solutions of a two-level atom (qubit) coupled to a discretized continuum in the case
when the system initially start out in a continuum state. By solving themodel we explain the origin of
two newpronounced features of awidely usedmodel which has been used for numerous recent
studies related to quantum information. In this workwe document two newphenomena related to the
dynamics which occurwhen the system is starting out in the continuum. First, dissipatively non-
periodic dynamics is replaced by near-periodic oscillatory dynamics when the initial state is switched
to be an initially populated continuum state, in combinationwith a qubit ground state. Second, when
the qubit is coupled to twowell separated points, the initial state exhibits an exact linear, stepwise
decaywhich is completely insensitive to the coupling parameters.

1. Introduction

One of themost widely usedmathematicalmodels in time-dependent non-relativistic quantummechanics is a
two-level atom interacting with a continuumor a quasi-continuum consisting of a dense band of discrete states.
In thismodel the continuum, bounded or unbounded, can in fact always be represented by a large or infinite set
of discrete states with constant energy separation.When the coupling between the two states of the atom and a
corresponding creation or annihilation of a continuumparticle with arbitrary energy are given by a
state-independent constant it was shown already in 1935 that themodel is solvable analytically [1]. This has
later been donemore generally based on Fourier or Laplace transform techniques [2, 3] and usingmatrix
algebra [4–6].

The realization of quantum computers and quantum information science has led to a revived interest in this
model [7]. The two-level atom then represent a qubit which interacts with other qubits via photonic or phononic
interaction channels [8–13], or via interactions with spins of surrounding nuclei [14–16]. In some realizations of
a qubit it is coined a giant atom. The coined name refers to the fact that the giant atomic extension can be
comparable ormuch larger than thewavelengths of the interacting photon field, in contrast to natural atomic
radi and interacting wavelengths pertaining to the electromagnetic field. The giant atom can interact with
phononmodes of a transmission line at well defined coupling points. In real setups the coupling points are
technological devices which couple the giant atom in question to the field. For example, the superconducting
device is coupled to the transmission line through interdigitated transducers. The small speed of sound and the
relatively large distance between coupling points leads to signifiant time delays which have been experimentally
observed [17].

The coremathematicalmodel is a single state |a〉, which couples with constant or variable strength to afinite
or infinite band of states |bn〉. In the context of a giant atom (or an interacting qubit), state |a〉 is the excited state
of the superconducting qubit and band states |bn〉 represent the ground state and possible excitations of the
photon/phonon field. In short, for an unbounded continuumwith constant coupling, the following features are
some of the known phenomena regarding the time development of the initially excited atomic state:
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(i) The survival probability of the excited state |a(t)|2 undergoes exponential decay up to a revival time, τ= 2π/Δ,
whereΔ is the energy separation between the band states. At the same time thepopulation of the continuum
obtaines afinitewidth andLorentzian shape.

(ii) A new type of exponential decay also takes place for harmonic energy dependent couplings between the
initial state and the continuum [18].

(iii) A sequence of revivals takes place at well defined integer n times τ, either due to the nature of the couplings
or the density of states.

(iv) The revival peak strengths follow a decay pattern as well, sometimes polynomial [18]. This implies that, at
large times, the population of the initial as well as a number of band states appears noisy.

The situation is only slightlymore complicatedwhen considering the coupling to two continua of band states,
corresponding to two-point couplings [6]. In this case, we have two characteristic revival times τ1 and τ2, and the
excited state revives on themultiple of each of these times, i.e. at nτ1 andmτ2 with În m, , but also on the
combination of both, e.g. at nτ1+mτ2. This dynamics can systematically be derived for higher-order couplings,
as well.

Few, if any, studies have considered the detailed solution of thismodel when the system starts out in the
continuum,which is the purpose of the present work. This corresponds to an initially excited phonon, or
photon,modewhich in turn can excite the two-level atoms it comes into contact with. Atfirst onemay think that
no newdynamical features will occur since the basic processes would be identical to the situation above after an
initial excitation of the atom.However, it turns out that the dynamical evolution in this case features some
striking differences.

For constant coupling to a single band of states wefind a near periodic oscillatory behavior of the initial state
probability, in sharp contrast to the decaying revival dynamics of an initially excited atom. A second new
phenomenon is the emergence of a pure stepwise linear decay of the initial state which is independent of the
coupling constant. In contrast, for the corresponding initially excited atomdynamics the decay and long time
dynamics is highly sensitive to the same coupling parameters. Themodel, and its general solution, will be
described in the section 2, followed by section 3wherewe explain themechanisms behind these two
phenomena.We conclude and give a brief outlook in section 4. Atomic units will be used throughout.

2.Model system

TheHilbert space is spanned by a set of orthonormal states |a〉, for the excited state, and {|b,ωn〉}, for the band
states. TheHamiltonian consists of two parts, the non-interacting partH0 and an interaction part,HI. For the
non-interaction part thematrix elements are 〈a|H0|a〉= ωab and ∣ ∣w w dá ñ = D¢ ¢b H b n, ,n n n n0 , , whereΔ is the
inverse density of states of the discrete band. The interaction between the excited state and the band states is
given by 〈a|HI|b,ωn〉= βn. Couplings between all other states are zero. The state vector |Ψ(t)〉, which obeys the
time-dependent Schrödinger equation, is then given by the superposition

∣ ( ) ( )∣ ( )∣ ( )å wY ñ = ñ + ñ
=¥

¥

t a t a b t b, 0 , . 1
n

n n

The set of coupled Schrödinger equations for the coefficients a(t) and bn(t) can be expressed as afirst order
coupled vectormatrix equation,

( ) ( ) ( )
†⎛
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=i
a a
b

C
C b

d

dt
, 2ab

where the vector b is a collection of all the expansion coefficients bn(t) and the elements of the vectorC† are the
coupling constants between the atomic states induced by the presence of the phononfield.Ω is a diagonal
matrix, dW = D¢ ¢nn n n n, , . A single contact point between the two-level atom and the band results in a constant
coupling (row) vectorC†= β(1, 1, 1....). For two-point contacts, positioned at x=± L/2, the n-th component
of the vector becomes ( ) ( )† b= Dn TC cos 2n , where the speed of wave-propagation in the band, vb, determines
the periodT= L/vb [18].

For discrete bands representing a continuum the atomic level separationωab plays no role for the dynamics
of single point contact as long as an integer number of band statesfill the energy intervalωab=MΔ for some
integerM. Alternatively, an extra time-independent phase, which seldomplays any important role,must be
added [3]. Therefore, andwithout losing important physics, we can setωab= 0 and obtain the solution of
equation (2) by diagonalizing thematrix. The energy eigenvalues, Em, are the solution of the implicit expression
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As a consequencewe can express each eigen-energy asEm=mΔ+ fmwhere the phasefm decays with
increasing |m| andf−m= fm [4]. Projecting onto the physical states of theHamiltonian, the amplitudes are

∣ [ ∣ ( )∣ ]b wº á Y ñ = + å - -a a E1m m n n m n
2 1 2 and 〈bn|Ψm〉= amβn/(Em− ωn). In the diagonal basis the

wave function takes the form,
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iE tm

where the initial condition is |Ψ(0)〉. In this paper wewill consider two possible initial conditions, namely
|Ψ(0)〉= |a, 0〉 or |Ψ(0)〉= |b,ω0〉.

For the single-point contact interaction, the characteristic time-scale of the problem is τ= 2π/Δ [3, 6],
whichwewill call the ‘revival time’. It turns out that the dynamics naturally can be separated into time-intervals
of increasing integer number of τ, i.e. t= ¢ +t t N withN= 1, 2,K and  t¢ <t0 .

In this work, wewill track the concurrent evolution of the excited state of the giant atom, via the amplitude
a(t), and its closest band state, bymeans of the amplitude b0(t). For the initial configuration of an excited atom,
a(0)= 1while bn(0)= 0 for all n� 0, we then obtain the following analytical expression for the initial state
amplitudes when |Ψ(0)〉= |a, 0〉,

( ) ˜ ( ) ( )( ) å= ¢ f t-a t a t e , 5a

m
m

iN m

( ) ˜ ( ) ( )( ) ( )å= ¢ f t-b t b t e , 6a

m
m

a iN
0 0, m

where the superscript ‘(a)’ refers to the initial condition. Alternatively, when starting in the atomic ground state
and the resonant band state which can drive the atomic excitation, |Ψ(0)〉= |b,ω0〉we obtain,

( ) ( ) ( )( ) ( )=a t b t , 7b a
0
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with a similar superscript convention as above. In the equations above, we introduced
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2 , and γ≡ τβ2 [4]. Note, that the absolute values of the individual
amplitudes ∣ ˜ ( )∣a tm are simply constants.

In thefirst intervalN= 0 and = ¢t t , a(t)= e−γt for t ä (0, τ), and leads to a Lorentzian distribution of
∣ ( )∣( )b tm

a
0,

2 whenwe letβ→ 0 at fixed γ. The equality in equation (7), relating the amplitudes of states of the same
energyω0= 0 but at different initial conditions, is a direct consequence of detailed balance [19].

In themorewidely used solution techniques based on analytic transformations, thefinal expression of the
amplitudes above alternatively appear as a coherent summation of amplitudes from a sequence of delayed time
intervals, eg. ( ) ( ) ( )t t= å - Q -=

¥a t a t N t Nn n0 . The delayed time contributions for t> τ arises from
additive phasing effect of the evenly spaced states or coherent contributions fromwell separated contact points.
Such effects has inmany relatedworks been discussed in terms ofMarkovian versus non-Markovian dynamics,
referring to situations where the time-delay additions can be neglected (Markovian) or not (non-Markovian)
[20].When usingmatrixmechanics, the dynamics in the so-called ”non-Markovian regime” is completely
determined by the solution in the first time-interval. For each passage into a new interval tä [Nτ, (N+ 1)τ], the
amplitudes are simply augmented by an extra phase.

In the following, wewill pursue both techniques, i.e. thematrix-dynamics directly expressed through the
wave-function and the solutions in terms of delayed rate equations, to shed further light on these features.

3. Results: oscillatory and parameter-insensitive dynamics

The time development for single point contact when starting in the excited atomic state is shown in the upper
panels offigure 1. It includes thementioned known features a polynomial decay of the revival peaks occurring
after each passage of τ. In between the revival times the amplitudes bn(t) have the same pattern and phase.

When keeping themodel parameters fixed and starting in the resonant band state, visualized in the lower
panels offigure 1, the dynamic evolution becomes completely different and exhibits an almost periodic
behavior. Neighboring band states nowoscillate with opposite phases and the number of significantly
contributing amplitudes aremuch smaller, cf alsofigure 3.
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It is interesting to explore whether the periodicity indeed is a stable feature of the evolution equations and
lasts far into the time regionwhere the initially excited atomdynamics has become structureless. For that
purposewe show the two initial state probabilities at amuch later time interval infigure 2. The initially
populated band state is seen still to remain oscillatory (blue curve)with an equally large revival amplitude as in
figure 1. In comparison, the evolution of the initially populated excited state (red curve) at late times is polluted
by interference frommultiple peaks appearing at highermultiples of the revival times and becomes seemingly
random.

The periodicity turns out to follow directly from the suppression of each amplitude ( )bn m
b
, with the factor

[ ( )]w- ~- -E E Em m n m
1 2, cf equations (7)–(8). Large eigen-energies will damp the amplitudes ( )bn m

b
, to a non-

significantmagnitude. It follows thatmuch fewer terms takes part in the superposition. As an illustrative

example the absolute value of the amplitudes ∣ ˜ ∣( )
b m

b
0, and ∣ ˜ ∣am , see equation (5), are compared infigure 3.

For the initially populated excited state, we clearly see thatmanym 20 eigen-states of the energy are
actively participating in the evolution. In contrast, for the initially populated band state, in the summation over
m only a fewm� 3 termswill play a significant role. The dynamics is then approximately given by a small
number,m, of terms of the form,

( )
( )

( ) ( )( ) å b
b g

»
+ +

¢
=

b t
E E

E t
2

1
cos 10b

m

m

m m
m0

1

4

2 2 2 2
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Infigures 1 and 2 the broken black curve shows the solution obtainedwith three such cosine terms, =m 3max .
The approximation is seen to be excellent within both the considered time regions.We conclude that themodel
demonstrates strikingly different long-termdynamics depending on chosen resonant initial state: An excited
atomic state decays asymptotically into a broad distribution of all involved states.When the initial state is the
ground state accompanied by a phonon state exactlymatching the energy level of the excited state, the behavior
remains oscillatory over arbitrarily long time periods.

Interestingly, the complex dynamics invoked by exciting a band state can also give access to regimes that are
insensitive to themodel parameters. In order to gain analytical insight, instead of formulating the problem in
terms ofmatrix dynamics we shall here treat the problem as a coupled set of evolution equations for the state a(t)

Figure 1. Upper panels: The leftfigure shows the initial state (|a, 0〉)probability, |a(t)|2 as function of reduced time (red thin curve) as
well as the probability of populating the resonant state (|b,ω0 = 0〉), |b0(t)|

2, of a timespan up to 4 revivals with constant coupling and
density of states. The rightfigure shows the distribution of the states |bn(t)|, where the index of the band state n ä (0, 20) is listed on the
vertical axis while the color represents the value of the square of the probability (to enhance the visual pattern).Lower panels: Both
figures show the same time evolution as above, except that the initial state is the resonant band state |b0〉. The broken black curve
display the approximate solution based on the pair of the three lowest eigenstates as discussed in the text, see equation (10). Parameters
are chosen such thatΔ = β = 0.035.
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coupled to a quasi-continuum bn(t) [2, 3]. For a single-point interaction (constant band coupling), we arrive at a
delay differential equation for the excited state [3],

( ) ( ) ( ) ( ) ( ) ( ) å åb
g

g t t= - - - - Q -w

=-¥

¥
-

=

¥

a t i b a t a t n t ne 0
2

. 11
n

i t
n

n 1

n

We immediately note from the last term in equation (11) thatmemory effects, leading to non-Markovian time
evolution, start to play a role at times t� τ (of course a(t)= 0 at t< 0). Solutions to these evolution equations
can straightforwardly be found in Laplace space, and the evolution of the band states are found via

( ) ( ) ( )( )òb= - ¢ ¢w w- - - ¢b t b ie 0 dt e a tn
i t

n n
t i t t

0
n n . In fact, in Laplace space, the solution is found to be

˜( ) ( )
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( ) ( )
( )[ ( )]
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w

=
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+
-

+ + P
a s

a

s s

i b

s i s s

0 0
12

n

n n

n

where in this case ( )( )P = g ts scoth
2 2

. The location of the poles is easily found, but the structure is complicated

by the presence of higher-order poles [3].
In contrast, for a cosine-modulated coupling ( )b b w= Tcos 2n n , the dynamics ismore complicated and

get the following delay equation,

Figure 2. Initial state probabilities for the two initial state andparameters displayed infigure 1 at a similar time interval starting at
t = 500τ (red curve relates to the red curve in the upper panel, andblue andblack-dashed curves relate to the curves in the lower panel).

Figure 3.Numericalmagnitude of the amplitudes of individual eigenstate coefficients of the initial state in two cases: whenwe
initialize the system in the excited state, ∣ ˜ ∣am in equation (5) (upper panel), andwhenwe initialize the system in the resonant band state

∣ ˜ ∣( )
b m

b
0, in equation (8) (lower panel), for increasing |m| infigure 1. Parameters as infigure 1.
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where ⌈K⌉ denotes the ceiling function. In this case,memory effects are associated bothwith the intrinsic
revival period τ as for the previous case but alsowith the time-scaleT related to the phonon propagation. Let us
concretely consider a scenariowhereT= τ, and look at early times, i.e. t< τ.We end upwith
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In Laplace space, the solution of ˜( )a s is again given by equation (12), but nowwith ( ) ( )P = +g -s e 1sT
4

.

Such differential equations are known to possess step-like behavior and can be solved considering
independent intervals. An interesting phenomenon occurs for the cosine-modulated couplingwhenwe
consider the strong coupling limit γ? 1while keeping τ? T constant. Starting the systemdynamics from the
excited state (i.e. a(0)= 1while bn(0)= 0 for all n), leads to the following evolution of the excited state
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valid for t= τ. For γT? 1 this results in a ‘spiky’ pattern for |a(t)|2, where thefirstmaximum is at t= 0with
value 1. The next spike occurs atT+ 2/γwith value e−2 which is independent of the coupling [6], et cetera. For
the lowest band state b0(t) in the same limit, this results in a cyclical ‘on-and-off’ behavior, i.e.

( ) [ ( ) ( ) ] ( ) b
g

- + + ¼b t i H T t H T t
4

, , , 150 0 2

where ( ) (( ) ) ( )= Q + - Q -H T t n T t t nT, 1n is a ‘step’ functionwhich is 1 at intervals nT< t< (n+ 1)T
and 0 otherwise. The state is filledwith a constant density only in the odd intervals of time, i.e. for
2n T< t< (2n+ 1)T. This behavior is clearly seen infigure 4 (upper, left panel). In the upper, right panel of
figure 4we have visualized the probability density of band states up to n= 36 (in symmetric combinations, i.e.
|bn(t)|

2+ |b−n(t)|
2). The fact that high-n band states are activated for any t/T is very different from the behavior

for constant coupling infigure 1.Note also completely empty (dark) band states, which correspond to values of n
that leads to vanishing couplingβn≈ 0. The resulting dynamics is continuously dependent on the strength of the
coupling: the ‘spikes’ in a(t) get sharper and sharper, while the plateaus in b0(t) aremore andmore suppressed.

This is in stark contrast to a parameter-insensitive and stable behavior when starting the systemdynamics
from the band (i.e. a(0)= 0, bn≠0(0)= δn,0). In this case, the dominant terms are only the ones wherewe pick up
the poles at the origin in Laplace space. Again this results in a cyclical evolution of the excited state, i.e.

( ) [ ( ) ( ) ( ) ( ) ] b- Q - Q + Q - Q - + ¼
g

a t i T t t T t t T3 24
. This behavior is identical to that of b0(t) in the

previous case due to detailed balance. Surprisingly, this results in a ‘step-wise’ descent of the occupancy of the
band-state, i.e.
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4

, 1
4

, 1
4

, , 160 0 1 2

which is independent on the coupling constant γ and drivenmerely by the delay timeT of the two-point
coupling. This evolution is plotted infigure 4 (lower panels). Note, that this behavior is of coursemodifiedwhen
we approach t≈ τ, where the additional termswill play a role. Perhaps surprisingly, for a constant coupling
scenario, where τ plays the role of the recurrence time, this behavior does not occur.2 In the lower, right panel of
figure 4we again have visualized the probability density of band states up to n= 11 (as above). This
demonstrates, as infigure 1, the dominance of the first few band states n 4 driving the dynamics of thewhole
system.

It is imperative to emphasize, that the pattern of evolving probabilities described above is independent of the
coupling, γ, provided that it is large enough. In the first scenario the ‘spikes’ observed in a(t) occur at t≈ Twith

2
Instead, in terms of the expansion ( ) ( ) ( )( ) ( )= + å =

¥a t a t a tk
k0

1 , we get ( )( ) b= -
g

a t i0 2 and ( ) ( ) ( )( ) b t= - Q -
g

+a t i t k1k k 1 4 for
k � 1. Themismatch of numerical pre-factors ruins the prefect cancellation between different τ-periods.
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heights that are just pure numbers. In the second scenario, it is the ratioT/τ that governs the height of the ‘steps’
in the even intervals of b0(t)with a linear decay in the odd intervals.

4. Summary

The characteristic dynamics of a two-level atom interacting with a discretized bath is extremely sensitive to its
initial state.When starting in the excited atomic state the decay is initially exponential followed by a pattern of
decaying revivals towards a noisy behavior. The dynamics is always sensitive to the two parameters of themodel,
the energy separationΔ and the coupling strengthsβn. In this paper we have shown, based on solution of the
Schrödinger equation usingmatrix algebra or solutions of delayed-time equations, that the initial band state are
populatedwith a cosine like near oscillatory behavior over all time intervals. Furthermore, when introducing a
harmonic (two-point) coupling, we have shown that the decay becomes stepwise linear and insensitive to the
model parameters. This novel behavior could be realized in experiment when allowing the ground state atom
(qubit) interact with an excited cavity of photons or phonons, i.e. tuned to the excited level [21].
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