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Abstract

In this thesis we discuss applications of quantum information theoretic concepts to
quantum gravity and the low-energy regime of quantum field theories.

The first part of this thesis is concerned with how quantum information spreads
in four-dimensional scattering experiments for theories coupled to quantum electro-
dynamics or perturbative quantum gravity. In these cases, every scattering process
is accompanied by the emission of an infinite number of soft photons or gravi-
tons, which cause infrared divergences in the calculation of scattering probabilities.
There are two methods to deal with IR divergences: the inclusive and dressed
formalisms. We demonstrate that in the late-time limit, independent of the method,
the hard outgoing particles are entangled with soft particles in such a way that the
reduced density matrix of the hard particles is essentially completely decohered.
Furthermore, we show that the inclusive formalism is ill-suited to describe scatter-
ing of wavepackets, requiring the use of the dressed formalism. We construct the
Hilbert space for QED in the dressed formalism as a representation of the canonical
commutation relations of the photon creation/annihilation algebra, and argue that it
splits into superselection sectors which correspond to eigenspaces of the generators
of large gauge transformations.

In the second part of this thesis, we turn to applications of quantum information
theoretic concepts in the AdS/CFT correspondence. In pure AdS, we find an
explicit formula for the Ryu-Takayanagi (RT) surface for special subregions in the
dual conformal field theory, whose entangling surface lie on a light cone. The
explicit form of the RT surface is used to give a holographic proof of Markovicity
of the CFT vacuum on a light cone. Relative entropy of a state on such special
subregions is dual to a novel measure of energy associated with a timelike vector
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flow between the causal and entanglement wedge. Positivity and monotonicity of
relative entropy imply positivity and monotonicity of this energy, which yields a
consistency conditions for solutions to quantum gravity.
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Lay Summary

Quantum information theory, the theory of how information is processed in quantum
systems, plays an important role in deepening our understanding of quantumgravity,
a theory which seeks to unify quantum and gravitational physics. In this thesis we
apply quantum information theoretic concepts in two contexts.

First, we investigate the quantum information carried away by radiation pro-
duced after particles interact gravitationally or through the electromagnetic inter-
action. In such interactions, an infinite number of very low-energy particles are
produced; these particles carry away a large amount of information about the parti-
cles undergoing the interaction. We formulate methods of calculation which allow
investigation of the information spread due to the production of these low-energy
particles.

Second, we translate quantum information theoretic inequalities into inequal-
ities in quantum gravity. This supplements the equations of gravitational physics
with additional constraints that must be obeyed in a consistent theory of quantum
gravity.

v



Preface

A large part of the body of this thesis has been published elsewhere and is included
verbatim. The ordering of author names is alphabetical.

Most of chapter 4 is an adapted version of D. Carney, L. Chaurette, D. Neuenfeld
and G. Semenoff, Infrared quantum information, Phys.Rev.Lett. 119 (2017) no.18,
180502 [1]. Like the two following papers, this publication is a result of many
discussions and close collaboration between all authors. My main contributions
were towards the identification of the currents and the the proof of their relation to
the decoherence condition. The manuscript was drafted by D. Carney and edited
by all authors. Chapter 4.5 is unpublished, original work. I thank L. Chaurette for
discussions at an early stage.

A version of chapter 5 has appeared as D. Carney, L. Chaurette, D. Neuenfeld
and G. Semenoff, Dressed infrared quantum information, Phys.Rev. D97 (2018)
no.2, 025007 [2]. The calculation which lead to equation (5.9) was carried out
by D. Carney and L. Chaurette. The generalization to multi-particle states and
the proof of the finiteness of the reduced density matrix was joint work between
all authors. Furthermore I contributed to chapters 5.4 and 5.5 which discuss the
physical interpretation of dressed states and the relation to black hole information.
A first draft of the manuscript was prepared by D. Carney and L. Chaurette and
edited by all authors.

Chapter 6 contains a version of D. Carney, L. Chaurette, D. Neuenfeld and
G. Semenoff, On the need for soft dressing, J. High Energ. Phys. (2018) 2018:121
[3]. Most of the preliminary calculations were work shared between L. Chaurette
and myself. I contributed the findings on the inconsistency of scattering of normal-
ized wave packets in the inclusive formalism, chapter 6.4, and a first draft of the
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manuscript, which was edited by all authors. Versions of chapters 4 - 6 have also
appeared in [4].

A version of chapter 7 was uploaded to the Arxiv as Infrared-safe scattering
without photon vacuum transitions and time-dependent decoherence [5]. I am
the sole author of this work, which has greatly benefited from discussions with
D. Carney, L. Chaurette and G. Semenoff.

Chapter 9 has been published as D. Neuenfeld, K. Saraswat andM. Van Raams-
donk, Positive gravitational subsystem energies from CFT cone relative entropies,
J. High Energ. Phys. (2018) 2018:50, [6]. The paper is a result of close collab-
oration between the authors. Calcuations were shared work between K. Saraswat
and myself, while drafting the manuscript was shared work between all authors.
Related material also appeared in [7].
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Chapter 1

Quantum information in
fundamental physics

1.1 Black hole entropy and the quest for quantum gravity
Based on the requirement that the second law of thermodynamics should hold even
in the presence of black holes, Bekenstein [8] conjectured that black holes should
possess entropy. If this were not the case, one could drop a system with non-zero
entropy into a black hole and thus – at least operationally – violate the second
law of thermodynamics. Bekenstein conjectured the entropy of a black hole to be
proportional to the area of its event horizon, ABH, divided by Newton’s constant
GN . Consequently, to save the second law of thermodynamics, the concept of
entropy should be replaced with a generalized entropy

Sgen =
ABH
4GN

+ Sout, (1.1)

which does not decrease; here, Sout denotes the entropy of matter outside the black
hole horizon. The conjecture that black holes have entropy and thus should be
seen as thermodynamical systems was subsequently supported by Hawking [9],
who demonstrated that black holes radiate at a temperature proportional to their
surface gravity. The results were in line with the predicted scaling of entropy with
horizon area, andmade black hole thermodynamics consistent. In thermodynamics,
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statistical physics, and information theory, entropy is a measure of the lack of
knowledge about the microstate of a system, assuming we know its macroscopic
properties. At least in string theory, this interpretation also applies to the entropy
of certain black holes, as can be shown by microstate counting.

The relation between area and entropy indicates that certain quantities in quan-
tum gravity can be understood in information theoretic terms. If, as is widely
believed, quantum gravity is a true quantum theory, it thus seems reasonable that
progress can be made by using concepts from quantum information theory in the
study of quantum gravity.

1.2 Quantum information theory in fundamental physics
In the past decades, the application of quantum information theory has been at
the center of various important discoveries in fundamental physics. One of the
most renowned discoveries is the black hole information paradox. The radiation
emitted by black holes, as calculated by Hawking, was found to be completely
random. If this were to remain true in the full quantum theory, the evaporation
of a black hole would erase all information about what has fallen into it, thereby
violating the basic premise of quantum theory that time-evolution is unitary, i.e.,
information conserving [9]. A version of the black hole information paradox [10]
can be explained in terms of quantum information theoretic quantities. Excited
modes close to the black hole horizon have to be strongly entangled with modes
behind the horizon in order to give a smooth geometry and thus allow for the
equivalence principle of general relativity to hold, which states that a freely falling
observer should not note anything out of the ordinary when they cross the horizon.
On the other hand, at least at late times, modes close to the horizon must also be
strongly entangled with early-time modes of the Hawking radiation if unitarity is to
be preserved [11]. A property referred to as monogamy of entanglement prohibits
strong entanglement with two disparate subsystems, thus posing a paradox: under
certain additional physically-motivated assumptions, either the geometry at the
horizon is not smooth and the equivalence principle fails, or black hole evaporation
is not unitary.

Concepts from quantum information theory have also played an important role
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in understanding how spacetime emerges in the AdS/CFT correspondence. In its
simplest form, the AdS/CFT correspondence [12]1 is a proposed duality between a
superconformal field theory in d dimensions and string theory in an asymptotically
anti-de Sitter spacetime in d + 1 dimensions. The conformal field theory can be
thought of as living at the conformal boundary of the anti-de Sitter spacetime.
The entanglement entropy of a subregion of the field theory can be computed in
the gravitational theory as the area of a special surface anchored on this boundary
[13, 14]. This suggests that in a holographic theory, spacetime in the gravitational
picture is intimately linked to entropy in the field theory [15, 16].

The use of quantum information theoretic quantities has lead to new conjectures
and proofs in semiclassical gravity and quantum field theory; see e.g., [17–19].
Moreover, concepts from quantum information theory have been used to obtain
a better understanding of the dynamics of black holes [20], and to find discrete
toy models [21] and explain properties of the AdS/CFT correspondence such as
subregion duality [22].

The success of quantum information theoretic ideas in black hole physics and
quantum gravitymotivates furthering those investigations, and applying thesemeth-
ods to other problems such as scattering theory [23, 24].

1.3 The roadmap
The first part of this thesis analyzes the impact of infrared (IR) divergences on
quantum information theoretic quantities. We will investigate how the presence
of IR divergences affects the information carried away by unobserved particles in
scattering. The surprising result is that QED and perturbative quantum gravity both
predict that unobservable radiation carries away an essentially maximal amount of
information and leaves the observed particles in a mixed state; this is independent of
which method is used to render IR divergences finite. However, closer investigation
shows that the typical prescription for removing IR divergences, while applicable
to the scattering of momentum eigenstates, cannot be used to study the scattering
of wavepackets. This hints at a rich structure of the Hilbert spaces of QED and
perturbative quantum gravity, which split into superselection sectors corresponding

1see also chapter 8
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to representations of the canonical commutation relations. The so-called dressed
formalism takes into account this structure, and can be used to define approximate
finite-time scattering amplitudes, which allow for the calculation of decoherence
rates.

There has also been a recent resurgence of interest in the infrared structure of
gauge theories and gravity coming from a seemingly different perspective.2 It has
been shown that certain theorems involving soft bosons can be understood as Ward
identities of asymptotic symmetries; they can be thought of as gauge transformations
that extend to infinity [27–29]. This has lead to speculations about how black holes
store information [30–33]. We will see below that in four dimensions, infrared
divergences, decoherence and large gauge transformations are intimately linked.
We will use this relation to comment on the role of the infrared in solutions to the
black hole information paradox.

In the second part of this thesis, we will briefly introduce the AdS/CFT cor-
respondence. There exists a large body of work which links information-theoretic
inequalities in the CFT to geometric constraints in gravitational theories, i.e., [34–
39]. Here, we extend results that posit an equivalence between the relative entropy
of ball-shaped subregions of a holographic CFT and a measure of energy defined on
a subregion of its holographic dual, broadening these results to a more general class
of subregions. We obtain explicit expressions for extremal surfaces in pure AdS
and use them to give straightforward holographic proofs of the Markov property
for the vacuum state of a ball-shaped region.

In the next chapter, we give a brief review of concepts fromquantum information
theory which are relevant for the rest of this thesis. Reviews of infrared divergences
and ways of dealing with them, as well as concepts relevant to the AdS/CFT
correspondence, can be found in the introductions to parts I and II of this thesis,
respectively.

2For a review, see [25]. For earlier work, see [26].
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Chapter 2

A very short introduction to
quantum information

This chapter will give a brief introduction to the quantum information theoretic
quantities which appear in this thesis. Sections 2.1 and 2.2 are relevant for both
parts of the thesis, whereas sections 2.3 to 2.5 are only relevant for the second part.
More detailed introductions can be found in [40, 41].

2.1 Quantum mechanics
In quantum mechanics, the state of a physical system is described by a unit nor-
malized vector in Hilbert space, up to a phase. Given two physical systems A and
B with Hilbert spaces HA and HB, any state of the joint system is described by a
vector in the product Hilbert space HA∪B = HA ⊗ HB. In particular, the system
can be in a superposition

|ψ〉 = cos(α) |0〉A ⊗ |0〉B + sin(α) |1〉A ⊗ |1〉B . (2.1)

Here, the states |0〉A/B and |1〉A/B are two orthogonal states of the Hilbert space
HA/B. For generic values of α, it is impossible to write the total state as the product
of the states of the systems A and B,

|ψ〉 , |φ〉A ⊗ |η〉B , (2.2)
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and thus the states of subsystems A and B are correlated.
Measurements on quantum systems are represented as Hermitean operators,

O† = O. The real eigenvalues of O give the allowed measurement outcomes, and
the average outcome of a measurement of O in the state |ψ〉 is given by the inner
product 〈ψ |O |ψ〉. We can equivalently describe the state |ψ〉 by a density matrix

ρ = |ψ〉 〈ψ | , (2.3)

such that the expectation value is given by

〈ψ |O |ψ〉 = tr(Oρ). (2.4)

If ρ is constructed from a state as shown in equation (2.3), it is called pure.
In the case of a multi-partite system HA∪B, we can imagine operations which

only act on one subsystem, say subsystem A. Such measurements are represented
by operators OA = ÕA ⊗ 1B. If the multipartite system is in a product state, for
example |ψ〉 = |1〉 ⊗ |0〉, the expectation value of OA (and all composite operators)
can be calculated by ignoring |0〉B,

(〈1| ⊗ 〈0|)(ÕA ⊗ 1B)(|1〉 ⊗ |0〉) = 〈1| ÕA |1〉 〈0|0〉B = 〈1| ÕA |1〉 . (2.5)

It can be shown that for operations which only act on subsystem A, |1〉A is a
complete description.

However, if the system is in an entangled state, such as equation (2.1), a
description of A in terms of a state in the Hilbert spaceHA is not available anymore.
Instead, a complete description of the quantum state for operators which only act
on the A subsystem is given by the reduced density matrix

ρA = trB(ρ), (2.6)

where ρ is the density matrix which describes the system and trB traces over all
states in HB. Unless the system was in a product state, the trace will turn a
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previously pure state into a mixed one with

ρmixed =

N∑
i

ci |ηi〉 〈ηi | . (2.7)

The quantum system described by this density matrix describes a classical ensemble
of pure states |ηi〉. The probability to find the system in the state |ηi〉 is ci.

2.2 Entanglement entropy
To quantify the lack of knowledge of how the reduced densitymatrix ρAwas purified
by subsystem B we can use the von Neumann entropy of the reduced density matrix
[42],

S(ρA) = −tr(ρA log ρA). (2.8)

The von Neumann entropy S(ρ) vanishes if ρ is a pure state and is maximal if ρ
is maximally mixed, i.e., proportional to the identity matrix. The von Neumann
entropy of a reduced density matrix is oftentimes called entanglement entropy,
which indicates that non-zero von Neumann entropy can result from entanglement
with another system. However, note that a non-zero von Neumann entropy also
measures classical uncertainty, for example if the whole system is described by a
thermal ensemble. The reason is that if ρ is not pure, S(ρ) also obtains a contribution
due to the ci in equation (2.7); this counts the statistical entropy of the ensemble of
pure states. In the following, we will use the terms entanglement entropy and von
Neumann entropy interchangeably.

2.3 Relative entropy
We can define a measure for the distinguishability of two states of our quantum
system, called relative entropy,

S(ρ‖σ) = tr(ρ log ρ) − tr(ρ logσ). (2.9)
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Relative entropy is positive definite, i.e., it is positive (or infinite) except when
ρ = σ, for which it vanishes. It is also monotonic, meaning

S(ρA‖σA) ≤ S(ρAB‖σAB). (2.10)

Furthermore, positivity of relative entropy can be used to show certain properties
of entanglement entropy, such as subadditivity, S(ρA) + S(ρB) ≥ S(ρAB).

We can get some intuition for relative entropy by considering the case where
ρ and σ are simultaneously diagonalizable, such that the trace in (2.9) reduces to
a sum over eigenvalues ρi and σi. If ρ and σ describe orthogonal pure states,
then tr(ρ logσ) =

∑
i ρi logσi contains a term where ρi is positive but σi vanishes.

Thus S(ρ‖σ) = ∞ and the two states are perfectly distinguishable. This is also true
if ρ is maximally mixed and σ is pure. On the other hand, if ρ is pure and σ is
maximally mixed, the relative entropy will be finite. Thus, relative entropy is not
symmetric. Roughly speaking, relative entropy measures how easy it is to disprove
the hypothesis that a system is described by σ, given that its actual state is given by
ρ.

2.4 Markovicity of quantum states
If three randomvariables X,Y, Z have conditional probabilities that satisfy p(X |Y, Z) =

p(X |Y ), they are said to form a Markov chain. Using the definition of conditional
probability, p(A|B) ≡ p(A,B)/p(B), one can show that this is equivalent to

S̃(XY Z) + S̃(Y ) = S̃(XY ) + S̃(Y Z), (2.11)

where S̃ = −
∑

i pi log pi is the Shannon entropy. A “quantum version” of this
equation is

S(A ∪ B) + S(A ∩ B) = S(A) + S(B), (2.12)

which uses the von Neumann entropy and where we have identified subsystem A

with the random variables X and Y and subsystem B with the variables Y and Z .
A state of the joint system A ∪ B which obeys equation (2.12) is called a Markov
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state. In fact, obeying the Markov condition is equivalent to saturating strong
subadditivity,

S(A ∪ B) + S(A ∩ B) ≤ S(A) + S(B), (2.13)

which generally holds for entanglement entropies.

2.5 Quantum information in quantum field theories
In this thesis, we see the above concepts applied to states in quantum field theories.
The subsystems under consideration will either be subsystems in momentum space
or position space. For a discussion in momentum space we want to define the trace
on Hilbert space. If the Hilbert space is non-separable, it is in general not clear how
such a definition would look like and we thus want to require that our Hilbert space
is separable. This is generally the case in free field theories with massive particles,
and we will see that this requirement has implications for the Hilbert space structure
of theories with IR divergences.

If we are interested in subsystems in position space, the situation is more
complicated, since the Hilbert space does not factorize into a product of Hilbert
spaces of subregions. Instead of considering the Hilbert space of a subregion, we
should consider the von Neumann algebra of operators associated with a subregion.
It is then possible to define relative entropy in terms of the von Neumann algebra.
Entanglement entropy of a subregion is an ill-defined concept since it is always
divergent due to an infinite amount of entanglement in high energy modes across
the boundary of that region. Nonetheless, if suitably regularized, the naive treatment
of entanglement entropy works for all practical purposes and thus in this thesis we
will be taking on this naive picture. Alternatively, oftentimes one can study UV
divergence-free quantum information theoretic quantities such as relative entropy.

For a more detailed review see, e.g., [43]. Defining the modular Hamiltonian
associated to a subregion as the negative logarithm of the reduced density matrix
on that subregion,

Hρ = − log ρ, (2.14)
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we can bring relative entropy into a form which will be useful in chapter 9,

S(ρ| |σ) = tr(ρ log ρ) − tr(ρ logσ)

= tr(ρ log ρ) − tr(σ logσ) + tr(σ logσ) − tr(ρ logσ)

= ∆S − ∆ 〈Hσ〉 ,

(2.15)

where ∆S is the difference in von Neumann entropies of the states ρ and σ, and
∆ 〈Hσ〉 is the difference of expectation values of Hσ in those states. The modular
Hamiltonian generally is a non-local operator. However, in some special cases, Hρ

can be written as an integral over local operators. For example, this is the case if
ρ is the reduced vacuum density matrix of a half-space in a local quantum field
theory, or if ρ is the reduced density matrix of the vacuum state on a ball-shaped
region in a conformal field theory.
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Part I

Quantum information in the
infrared
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Chapter 3

Infrared divergences in quantum
field theory

In chapter 1.1 we briefly reviewed how quantum information theory has lead to
important insights in fundamental physics. In the cases discussed, the applications
of concepts from quantum information theory to quantum gravity are mostly based
on an analysis in position space. For example, quantities of interest are relative
or entanglement entropies of subregions. A natural extension of these ideas is
to investigate whether quantum information theory in momentum space can yield
equally interesting insights. The question which motivate the research in this part
of the thesis is: How does quantum information spread in scattering?

In the following we will investigate quantum information theoretic aspects of
scattering in four dimensions in the presence of long range forces such as gravity
and electromagnetism. In such situations, scattering amplitudes are plagued by
infrared divergences (IR divergences), which occur beyond leading order in the
calculations of Feynman diagrams. Their appearance sets almost all scattering
amplitudes to zero. We will be concerned with how to define information theoretic
quantities in the presence of IR divergences and what IR divergences teach us about
the Hilbert space structure. This will lay the foundation of a framework in which
the spread of entanglement in scattering can be determined, even in the presence of
IR divergences.

There are many more motivations to better understand information theory and
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dynamics in the infrared. Apart from the importance of infrared physics for the un-
derstanding of confinement, long wavelength modes seem to play an important role
in the quest for a theory of quantum gravity. They are important for understanding
non-locality [44], soft hair is proposed to capture black hole microstates [33]3 and
several solutions of the black hole information paradox [10, 47] which are based on
low-energy physics have been proposed, e.g., [48–51]. Since black hole formation
and evaporation can be understood as a scattering problem, it seems worthwhile
investigating the fate of information in scattering. Lastly, if the lessons learned so
far from the AdS/CFT correspondence are correct, the bulk and the boundary theory
should share the same Hilbert space and a better understanding of the Hilbert space
of flat-space perturbative quantum gravity might yield hints towards the structure
of the correct dual theory.

More concretely, themethods developed here are useful for investigating various
questions related to quantum gravity. It has been argued [30–33] that information
about what has fallen into a black hole can be stored in and retrieved from low-
energy or soft field modes. A detailed understanding of the spread of information
in scattering would enable us to quantify how much information can be carried
by different parts of the spectrum. This question is also potentially relevant for
experiments testing quantum mechanics or quantum gravity in the laboratory. As
we will see below, almost all processes are accompanied by the emission of soft
radiation which potentially destroys quantum coherence. While the tools developed
in this thesis enable a thorough analysis of the above questions, answering them is
beyond the scope of this thesis and will be deferred to possible future work.

The present chapter gives a review of infrared divergences in quantum field
theory, before we give the main results in the subsequent chapters. Most parts of
chapters 4 to 6 are heavily based on work which previously appeared in [1–3], and
chapter 7 is a redacted version of a preprint [5]. Section 4.5 is original work which
has not been published before.

3See also the older proposals [30, 31] and criticism thereof [45, 46].
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3.1 Scattering and the asymptotic Hilbert space
To begin, let us briefly review the standard method of how scattering amplitudes are
calculated in quantum field theory (see, e.g., [52, 53]). Physical states of a quantum
field theory are represented as vectors in a Hilbert space H. Time evolution is
implemented by a unitary operator e−iHt which acts on states in the Hilbert space
(Schrödinger picture) or evolves operators in time (Heisenberg picture).

To motivate the definition of the S-matrix we imagine an idealized experiment.
An experimentalist sets up a set of well-separated particles at some early time and
is interested in the amplitude4 with which the system turns into some set of well-
separated particles at very late times. The S-matrix captures this information, and
if we express the states in the Heisenberg picture, it is defined as

Sβ,α = out,H〈β|α〉in,H, (3.1)

where |α〉in,H and |β〉out,H are Heisenberg states which correspond to well-separated
particles if measured at early or late times, respectively. In order to calculate
quantum information theoretic quantities before and after scattering, we need the
density matrices which describe incoming and outgoing states,

ρin(α) = |α〉in 〈α | , ρout(β) = |β〉out 〈β| . (3.2)

Since the particle content of |α〉in,H , |β〉out,H as measured at early and late times,
respectively, is well-separated, the particles can be described as approximately non-
interacting. This means that at early and late times we should be able to describe
the system by a free theory with a Hamiltonian H0 with the same spectrum as the
full Hamiltonian H. In other words, if we use Schrödinger picture state |α, ti〉in,S to
make the time-dependence explicit, there are states |α, ti〉in,0 which evolve with the
free Hamiltonian and approximate the Schrödinger picture states at early times ti,
ti − t < 0,

e−iH(t−ti ) |α, ti〉in,S ∼ e−iH0(t−ti ) |α, ti〉in,0 , (3.3)

4Technically, she is interested in the probability which can be obtained from the amplitude.
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and similarly for |β〉out at late times. These states are called asymptotic states.
Consequently, we can write the S-matrix in the Schrödinger picture as

Sβ,α = lim
t′/t′′→∓∞

out 〈β| eiH0(t
′′−t f )e−iH(t

′′−t′)e−iH0(t
′−ti ) |α〉in . (3.4)

In this expression, we have dropped the zero subscript and will do so for the
rest of this thesis. We have furthermore defined fixed times ti/ f at which the
states |α〉in /|β〉out in the Heisenberg and Schrödinger picture agree. H0 is the free
Hamiltonian inwhich themass parameter takes its physical value. At amathematical
level, the role of the terms including H0 is that they ensure convergence of the above
expression [54]. We could remove the dependence on ti/ f by redefining the S-matrix
S → eiH0(t f −ti )S.5

Going to the interaction picture in which operators evolve with the free Hamil-
tonian, while states evolve with the interaction Hamiltonian Hint allows us to rewrite
the S-matrix in the well-known form [53],

S = Te−i
∫ ∞
−∞

dt Hint(t). (3.5)

The time-dependence in the interaction Hamiltonian comes from the interaction
picture fields and possibly some explicit time dependence. The interaction Hamil-
tonian is controlled by a small coupling constant which typically allows us to expand
the S-matrix order by order in the coupling.

The Hilbert space of asymptotic states is usually constructed by expanding
the fields of the theory in terms of creation and annihilation operators a†(k), a(k)
and constructing the Fock representation of the canonical commutation relations
[a(k),a†(k′)] = (2π)32Ekδ

(3)(k−k′). The Fock representation are all normalizable
states which can be constructed by acting with creation operators which are convo-
lutedwith square-integrable functions on a vacuum state |0〉, which is annihilated by
all annihilation operators, i.e., a(k′) |0〉 = 0. We will see below that this choice of
representation for asymptotic scattering states is problematic, if long-range forces
are present. The reason is that in this case, even at very early or late times, the fields

5Oftentimes one chooses the convention that t f = ti = T , i.e., the incoming and outgoing particles
are defined on the same, arbitrary timeslice.
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Figure 3.1: (a) Tree-level diagram for a fermion scattering off of a potential
represented by the shaded blob. (b)The IR divergent one-loop correction
to the process (a).

cannot be treated as approximately free.

3.2 Infrared divergences in S-matrix scattering
Following the standard prescription for calculating scattering amplitudes in theories
with massless bosons in four dimensions between Fock space states, we encounter
infrared divergences. For example, consider a scattering process inQED inwhich an
electronwithmomentump scatters off of a potential while transferring amomentum
q = p − p′, figure 3.1. The correction to the tree-level diagram in Feynman gauge
is given by

(ie)3(−i)3
∫

d4k
(2π)4

[
γν(−/p′ − /k + m)γµ(−/p − /k + m)γν

]
((p′ + k)2 + m2 − iε)((p + k)2 + m2 − iε)(k2 − iε)

, (3.6)

where we have, like in the rest of this chapter, followed the notation of [55].
If the fermion propagators are almost on-shell, the integrand scales like 1

k . This
suggests a logarithmic divergence as |k|, k0 → 0. This expectation is indeed correct
and is a general feature of any non-trivial scattering process in four-dimensional
electrodynamics [56, 57].

For a treatment of the general case, let us consider a matrix element M of
an arbitrary scattering process, figure 3.2a. As argued above, IR divergences are
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pn. . .p1

p′m. . .p′2p′1

(a)

pn. . .p1

p′m. . .p′2p′1

(b)

pn. . .p1

p′m. . .p′2p′1

(c)

Figure 3.2: Construction of loops on the external legs. (a) An arbitrary
scattering process which involves n incoming and m outgoing particles.
(b) A vertex can be added to any external leg which emits a soft photon.
(c) Multiple vertices can be connected by photon propagators to yield
(soft) photon loops.

expected to appear as propagators go on-shell while emitting or absorbing a virtual
photon of long wavelength. This can happen if incoming or outgoing legs emit or
absorb virtual photons. The emission of a (virtual) soft photon from an outgoing
leg requires us to add a vertex to the amplitude, for example, figure 3.2b,

us(p)M(p) → us(p)(ieγµ)(−i)
(−/p − /k + m)

(p + k)2 + m2 − iε
×M(p + k). (3.7)

Performing a similar replacement on a different leg, connecting the vertices with a
photon propagator and integrating over the loopmomentum gives us an IR divergent
loop correction to the amplitude. To extract the divergence we split the loop integral
into an integral over soft (0 < λ ≤ |k| < Λ) and hard (Λ < |k|) momenta,∫

d4k
(2π)4

→

∫ Λ

λ

d4k
(2π)4

+

∫ ∞

Λ

d4k
(2π)4

. (3.8)

The integral with |k| > Λ is UV divergent and needs to be renormalized. We
will implicitly include contributions from hard momenta into M and write MΛ to
indicate that these contributions depend on Λ. The scale Λ should be much smaller
than the electron mass and other relevant energy scales. We have also introduced
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a cutoff λ to regulate the IR divergence. At the end of the calculation λ has to be
taken to zero.

Only the divergent parts of the integral with |k| ≤ Λ are relevant to the discus-
sion of IR effects, which is what we will be focussing on. Using the explicit form
of the spinors [55] equation (3.7) can be written as

M = us(p)M̃(p) →
(

epµ

p · k − iε

)
× us(p)M̃(p) + (non-divergent). (3.9)

In the general case, a similar argument shows that leading order in the inverse boson
momentum, a vertex that emits a (virtual) photon of momentum kµ is added by
multiplying the matrix element with

ηnenpµn
pn · k − iηnε

+ O(1). (3.10)

The factors pn and en are the momentum and charge carried along the n-th leg.
ηn takes values +1 or −1 if the n-th leg is outgoing or incoming, respectively. To
leading order the matrix elementM is independent of k and the contributions from
soft photon loops factorize. The one-loop contribution coming from a soft loop
between the n-th and m-th leg is enemηnηmJmn with

Jmn ≡ (−i)
∫ Λ

λ

d4k
(2π)4

pn · pm
(k2 − iε)(pn · k − iηnε)(−pm · k − iηmε)

. (3.11)

The k0 and |k| integrals can be performed and evaluate to

Jmn = −
1

2(2π)3

∫
dΩ

vn · vm

(1 − k̂ · vn)(1 − k̂ · vm)
log

(
Λ

λ

)
−

i
4πβnm

(1 + ηnηm)
2

log
(
Λ

λ

)
,

(3.12)

with vµ = pµ/p0. The remaining integral over the unit vector k̂ yields

Jmn =
1

8π2
1
βnm

log
(
1 + βnm
1 − βnm

)
log

(
Λ

λ

)
−

i
4πβnm

(1 + ηnηm)
2

log
(
Λ

λ

)
. (3.13)

We will postpone the physical interpretation of these terms to section 3.3. The
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imaginary part of Jmn, called Coulomb phase, only contributes to loops which
connect two outgoing or two incoming legs. The factor of βnm is the relative
velocity of particles n and m in either rest frame and is given by

βnm ≡

√
1 −

m2
nm2

m

(pn · pm)2
. (3.14)

As we take the IR cutoff λ to zero we see that equation (3.13) – and thus the
one loop correction which is proportional to Jmn – diverges. This indicates that
for small enough IR cutoff perturbation theory breaks down and we need to resum
the result to all orders. Luckily, the structure of IR divergent contributions in the
infrared is simple enough to do this.

If we resum the contribution from soft loops to all orders, we need an expression
which takes multiple photon emissions per leg into account. At leading order,
adding a second vertex which emits momentum k1 to the n-th leg, which already
emits momentum k2, yields a factor of(

ηnenpµn
pn · k1 − iηnε

) (
ηnenpνn

p · (k1 + k2) − iηnε

)
(3.15)

in front of the matrix element, which corresponds to the case where k2 is emitted
before k1. In addition, there will be a term which is obtained by swapping k1 and
k2 corresponding to the case where k1 is emitted before k2,(

ηnenpµn
pn · k2 − iηnε

) (
ηnenpνn

p · (k1 + k2) − iηnε

)
. (3.16)

Summing both terms, we obtain(
ηnenpµn

p · k1 − iηnε

) (
ηnenpνn

p · k2 − iηnε

)
. (3.17)

Note that one would, in principle, expect a contribution of O(k−1) that could also
be IR divergent. However, it turns out that all the divergences factorize [58]. This
suggests the following rule, which can be proved by induction: To leading order in
low momenta, we can account for the emission of M (virtual) soft bosons from the
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n-th leg of a Feynman diagram by multiplying the amplitude with

M→

(
M∏
i

ηnenpµin
pn · ki − iηnε

)
×M. (3.18)

These can be connected by photon propagators as before.
Since the soft contributions to loop integrals factorize, the leading part of the

N-th order correction is proportional to the N-th power of equation (3.11). More
precisely, for the scattering between states |α〉 and |β〉 it is

MΛ ×
∑
N

1
2N N!

( ∑
n,m∈α,β

ηnηmenemJmn

)N
=MΛ ×

(
λ

Λ

)Aβ,α/2
, (3.19)

with

Aβ,α = −
∑

n,m∈α,β

enemηnηm
8π2 β−1

nm log
(
1 + βnm
1 − βnm

)
+ (phase factor). (3.20)

The phase factor is given in (3.13). The factor of 2−N in equation (3.19) makes
sure we do not count twice diagrams which only differ by the orientation of the
photon line, while the factor of N! corrects for overcounting different permutations
of the photon lines. The function Aβ,α is positive. Trivial terms in the S-matrix
have Aα,α = 0 and thus can also be multiplied be the prefactor

(
λ
Λ

)Aβ,α/2. Thus,
the factor which multiplies the whole S-matrix is the same as that for the matrix
element. The scattering probability is

p(α→ β) =

(
λ

Λ

)Aβ,α ���SΛβ,α���2 , (3.21)

where the superscript on the S-matrix reminds us that loop diagrams are calculated
with a cutoff Λ.

The prefactor damps the amplitude such that it vanishes in the limit λ→ 0. As
wewill see in the remainder of this thesis, this is not merely some technical problem.
Quantum electrodynamics and perturbative quantumgravity in fact correctly predict
that transition amplitudes between Fock space states vanish.
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As can be seen from equation (3.11), the occurrence of IR divergences is tied
to the number of spacetime dimensions and the structure of the propagators of the
involved particles, most notably the absence of a regulating mass term in the boson
propagator. It is thus not surprising that analogous divergences appear in four
dimensions whenever massless bosons are exchanged. One example of particular
importance is gravity. A similar argument to the discussion above shows that soft
graviton loops contribute an infrared divergence of the form [56]

M =MΛ ×

(
λ

Λ

)Bβ,α/2
, (3.22)

with the positive coefficient

Bβ,α =
∑

n,m∈α,β

mnmmηnηm

16π2M2
p

1 + β2
nm

βnm
√

1 − β2
nm

log
(
1 + βnm
1 − βnm

)
. (3.23)

Another large class of theories with IR divergences are four-dimensional Yang-
Mills theories. While in a non-perturbative treatment confinement might make sure
that no IR divergences appear, in perturbative calculations they do appear in the
fashion outlined above as soft divergences and need to be treated as well.

It turns out that the preceding discussion does not cover all possibilities for
how IR divergences can appear in quantum field theory. Another source of IR
divergences are collinear emissions which appear when massless particles emit
other massless particles along their direction of propagation. Apart from Yang-
Mills theory, this effect also appears in massless QED and gravity at high energies.
In this thesis, we will not be interested in effects of collinear divergences, and only
refer the reader to the existing literature [59, 60].

3.3 A semiclassical analysis
In order to make predictions that can be compared to experiment, one needs to
eliminate infrared divergences. Approaches which accomplish this are based on
the observation that, during a scattering process, Bremsstrahlung is produced. The
produced radiation carries a finite amount of energy at arbitrarily long wavelengths,
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such that the number of photons of arbitrarily long wavelengths must diverge, since

lim
ω→0

N(ω) = lim
ω→0

E(ω)
~ω

→∞. (3.24)

The Fock space representation does not allow for infinite occupation numbers,
which explains why generically, Fock space states cannot be used as scattering
out-states, and consequently why the S-matrix elements between those states must
vanish. In this section, we will use a semiclassical argument to derive the form of
the expected photon out-state.

Assume we have a charged particle with momentum pµ, which is scattered at
the origin. After scattering, it has momentum p′µ. The current for this particle is
given by

jµ(x) = e
∫ ∞

0
dτ

p′µ

m
δ(4)

(
xµ −

p′µ

m
τ

)
+ e

∫ 0

−∞

dτ
pµ

m
δ(4)

(
xµ −

pµ

m
τ

)
. (3.25)

We now want to investigate the corresponding classical radiation field. To this end,
we Fourier transform the above expression after introducing convergence factors iε ,

jµ(k) =
∫

d4xe−ikx jµt0(x) = −ie
(

p′µ

p′ · k − iε
−

pµ

p · k + iε

)
. (3.26)

In Lorenz gauge, the solution to Maxwell’s equations can be written as

Aµ(x) = −ie
∫

d4k
(2π)4

eikx
1
k2

(
p′µ

p′ · k − iε
−

pµ

p · k + iε

)
. (3.27)

The term 1
k2 is the Green’s function for the vector potential in Lorenz gauge.

To obtain the radiation produced in the scattering, we need to choose the Green’s
function to be the difference between the retarded and advanced Green’s function.6
The outgoing radiation can then be obtained by closing the k0 contour in the lower

6In order to describe the full outgoing vector potential wewould consider only the retardedGreen’s
function. However, the conclusion we will be drawing is the same in both cases.
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half-plane and is given by

Aµcl,out(x) = e
∫

d3k
2|k|(2π)3

(
p′µ

k · p′
−

pµ

k · p

) (
eik ·x + e−ik ·x

) ���
k0= |k |

. (3.28)

The quantum field theoretical description of a classical field is given in terms
of a coherent state. We can formally write the coherent state which corresponds to
equation (3.28) as a state in the photon Fock space,

|Aµcl,out〉 = N exp
(∫

d3k
(2π)32|k|

f µ(p,p′,k)a†µ(k)
)
|0〉 , (3.29)

with

f µ(p,p′,k) = e
(

p′µ

p′ · k
−

pµ

p · k

)
, (3.30)

and the normalization

N = exp
(
−

1
2

∫
d3k

(2π)32|k|
| f (p,p′,k)|2

)
. (3.31)

The expectation value of the number operator in a thin shell in momentum space
around momentum k, Nk = a†µ(k)aµ(k)d3k, is

〈Aµcl,out |Nk |A
µ
cl,out〉 ∼

d3k
2|k|

(
v′µ

k · v′
−

vµ

k · v

)2
∼

d |k|
|k|

. (3.32)

This clearly shows that in the quantummechanical description the infrared contains
an infinite number of photons. The logarithm of the normalizationN of the coherent
state |Aµcl,out〉 is also proportional to equation (3.32) and thus divergent, and we see
that the state which represents the classical Bremsstrahlung is not part of the Fock
space represention.

The above argument explains why all S-matrix elements vanish. Quantum
electrodynamics should reproduce classical physics at long distances. However, as
we have seen, the expected out-state has a vanishing norm. Moreover, the overlap of
Fock states with coherent states of the above form vanishes, which implies that the
S-matrix maps Fock space states into a vector space orthogonal to Fock space. In
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conclusion, the IR divergences coming from loop corrections should be understood
as a physical prediction. It sets all scattering probabilities between different Fock
states to zero, simply because an infinite number of soft modes will be created.

The terms which appear in the normalization are reminiscent of the real part
of equations (3.11) and (3.13). However, as noted around equation (3.13), there
is also a divergent phase factor. It appears if more than one particle is present in
the in- or out-state. Physically, it comes from the potential energy of a charged
particle in the field created by a second particle, which can be seen by considering
the non-relativistic case. The energy of a non-relativistic outgoing particle in the
field of a different outgoing particle is given by

E(t) = m +
m
2
v2

1 +
q1q2

4π(r0 + v1t)
. (3.33)

Thus, at very late times, the phase of the corresponding state goes like

−i
∫ t

dt ′E(t ′) ∼ −iE0t − i
q1q2
4πv1

log(t). (3.34)

The treatment of outgoing particles as free Fock states only accounts for the first
term, −iE0t, and the mismatch between the time evolution as a free state and
equation (3.33) gives rise to the divergent phase factor in equation (3.13).

3.4 Dealing with infrared divergences
The prescriptions used to cancel the IR divergences can be classified into inclusive
and dressed formalisms. The philosophy behind the inclusive formalisms is that
one should not ask questions one cannot experimentally answer. We cannot build a
detector that measures photons of arbitrarily low energies and therefore we should
not ask how likely it is to scatter from a certain in-state to an out-state without
any additional photons that might have escaped detection. Instead, we should ask
for inclusive probabilities, i.e., the probability to scatter from |α〉 to |β〉 plus any
possible configuration of photons which escape detection. This implies a treatment
in which amplitudes are regulator-dependent and cannot be assigned a physical
interpretation. In light of more fundamental questions, however, this approach is
unsatisfactory. For example, in the AdS/CFT correspondence, gravity is a quantum
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theory whose states live in a Hilbert space. If anything like this should be true in flat
or de Sitter space, there must be a way of assigning regulator-independent quantum
states to the out-state of a scattering experiment. Moreover, questions about the
unitarity of time evolution can only be answered at the level of amplitudes.

A different approach is followed by dressed formalisms. These formalisms
are built on the assumption that asymptotic states are not correctly modeled by
Fock space states. Instead, physical states, such as electrons or generally massive
particles, are accompanied by a certain photon/graviton field configuration called
dressing. These dressings resemble the coherent states of the previous subsection.
Amplitudes between dressed fields are finite, since the excitations contained within
the dressing cancel IR divergences order by order.7 In the following we will briefly
summarize the inclusive and dressed formalisms.

3.4.1 The inclusive formalism

The objects of interest in scattering calculations are typically not scattering am-
plitudes, but scattering probabilities or scattering cross-sections, since these are
physical and can be determined in experiment. As we have seen above, non-
trivial scattering processes produce asymptotic states with an infinite number of
soft bosons. Due to the limited volume of any apparatus and the limited duration
of any experiment, it is clear that some of these bosons will escape undetected.
To predict a detector response, we need to sum over all possible outcomes of our
experiment which are consistent with our measurement, i.e., we need to sum over
all possible soft boson emissions, where the energy of the boson is below some
detection threshold. Consequently, the probability to scatter a state |α〉 to a final
state |β〉 should be calculated as

pincl(α→ β) =
∑

unobs.b
| 〈β, b|α〉 |2, (3.35)

where the sum indicates that we consider the addition of unobservable soft bosons
b in the final state. The so-obtained probability pincl(α→ β) is called the inclusive

7Sometimes dressing is used to describe the process of adding photon/graviton field excitations to
a state in order to make it gauge invariant, an idea pioneered in [61]. The IR part of such a dressing
can in principle also be chosen to cancel IR divergences, but a priori both concepts are independent.
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transition probability between states |α〉 and |β〉.
Calculating inclusive probabilities as opposed to the naive probabilities p =

| 〈β |α〉 |2 is the textbook way of dealing with IR divergences [53, 57, 58], first
established for QED [58, 62] and subsequently expanded to include the case of soft
gravitons [56].

In section 3.2 we already discussed that the emission of soft (virtual) photons
from incoming or outgoing legs requires multiplying the matrix element by a soft
factor, equation (3.10). If a real photon is emitted, the same soft factor appears,
the momentum k has to be put on-shell and the free index of the vertex needs to
be contracted with a polarization vector, ε`(k) for outgoing and ε∗`(k) for incoming
photons. For on-shell photons, the notion of soft is controlled by an additional
threshold energy scale ET which is smaller than all relevant energy scales of the
experiment. This includes scales associated with the experiment’s dimensions.

The addition of on-shell soft factors directly leads to Weinberg’s soft theorems.
To leading order in the inverse photon momentum, the S-matrix element for scat-
tering between two asymptotic states |α,a〉in, out 〈β, b|, with hard particles α, β and
soft bosons a, b can be written as

Sβb,αa =
∏
i∈a,b

( ∑
n∈α,β

ηnenε
`i
µ (ki)pnµ

pn · ki

)
× Sβ,α, (3.36)

where ki and `i are the momentum and helicity of the i-th photon and k0 = |k|.
The momentum ki is taken to be outgoing from the vertex. This formula and the
equivalent formula for soft gravitons

Sβb,αa =
∏
i∈a,b

( ∑
n∈α,β

1
Mp

ηnε
`i
µν(ki)p

µ
npνn

pn · ki

)
× Sβ,α (3.37)

are known asWeinberg’s soft theorems. Here the index n runs over all the incoming
and outgoing hard particles, i runs over the outgoing soft bosons; ηn = −1 for an
incoming and +1 for an outgoing hard particle. The en are electric charges and
Mp = (8πGN )

−1/2 is the Planck mass, and the ε’s are polarization vectors or tensors
for outgoing soft photons and gravitons, respectively. Recently, it was shown
that these soft theorems can be understood as the Ward identities of asymptotic
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symmetries [25, 29, 63]. We will briefly discuss this in section 3.5.
We can use the soft theorems to show that inclusive transition probabilities are

finite. Consider equation (3.35). The sum over soft bosons is implemented by
integrating the momenta of all possible soft photon emissions up to some scale
Ei and summing over all photon helicities. The sum of all photon energies is
constrained to be less that ET . For the leading order contribution, the emission of
a single soft photon with unknown helicity we obtain

pincl,(1)(α→ β) =
∑̀
=±

∫ ET

λ

d3k
2|k|(2π)3

Sβk,αS∗βk,α = C × Sβ,αS∗β,α, (3.38)

where again the boson’s momentum is on-shell and

C = −
∑

n,m∈α,β

∑̀
=±

∫ ET

λ

d3k
(2π)32|k|

(
ηnenε`µ(k)p

µ
n

pn · k

) (
ηmemε`ν(k)pνm

pm · k

)
. (3.39)

We can simplify this expression by using that∑̀
=±

ε`∗µ (k)ε`ν(k) = gµν − kµcν − cµkν,

kµ = |k|

(
1
k̂

)µ
, cµ =

1
2|k|

(
−1
k̂

)µ
.

(3.40)

The terms proportional to kµ vanish upon contraction in equation (3.39). The
integral over angles is precisely the same integral we have already encountered in
equation (3.13) and we are left with( ∑

n,m∈α,β

ηnηmenem

∫ E

λ

d |k|
(2π)32|k|

∫
dΩ

(
vn · vm

(1 − vn · k̂)(1 − vm · k̂)

))
= Aα,β

∫ E

λ

d |k|
|k|

,

(3.41)

where Aα,β was given in equation (3.20). For the emission of N bosons with total
energy below the threshold, we consider N factors of the form (3.39) whose total
energy is constrained to be less than ET . Summing over all possible emissions
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yields

∞∑
N=0

AN

N!

N∏
i=1

(∫ Ei

λ

d3ki

|ki |

)
θ(ET −

∑
i

Ei). (3.42)

Here, we havemade sure not to overcount identical photon emissions by introducing
a factor of 1

N ! . The Heaviside theta function can be rewritten as

θ(ET −
∑
i

Ei) =
1
π

∫ ∞

−∞

sin(ETu)
u

exp

(
iu

∑
i

Ei

)
. (3.43)

In the following we will assume that all Ei = E . With this, the inclusive probability
becomes

pincl(α→ β) = F(E/ET , Aα,β)
(

E
λ

)Aα,β
p(α→ β), (3.44)

where F comes from evaluating the integral in equation (3.43) and p(α→ β) is the
hard scattering probability. The function F is given by

F(x, A) =
1
π

∫ ∞

−∞

du
sin(u)

u
exp

(
A
∫ x

0

dω
ω
(eiωu − 1)

)
. (3.45)

The parameters E and ET can be chosen such that if A� 1, F is close to one, e.g.,
F(1, A) ≈ 1 − 1

12π
2 A2. Note that, due to the positivity of Aα,β , the prefactor in

equation (3.44) diverges in the limit λ → ∞. The dependence on λ is just right to
cancel against the λ dependence which makes the loop-corrected amplitude vanish,
equation (3.21). Thus, the inclusive scattering probability is free of λ dependences
and IR finite,

pincl(α→ β) =

(
E
Λ

)Aα,β ���SΛβ,α���2 F(E/ET , Aα,β). (3.46)

For gravity, the situation seems more complicated. Since gravitons are them-
selves a source of stress-energy, they can set off a cascade of softer gravitons which
might spoil the simple form of the expression for soft photon emission. However,
we are fortunate as the coupling to gravitons is proportional to the energy of a par-
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ticle. Consequently, such terms are subleading in momentum and do not contribute
to divergences. Similarly, this also explains why loop-corrected graviton loops do
not play any role: the above argument goes through and we end up with the same
expression, equation (3.46) with Aα,β replaced by Bα,β .

For Yang-Mills theories this argument does not work, since the coupling is not
proportional to the momenta of the involved particles. Furthermore, apart from
the soft divergences discussed, the appearance of collinear divergences causes ad-
ditional problems. However, in these cases the KLN theorem [59, 60] guarantees
that a modified prescription also produces scattering probabilities free of IR di-
vergences. The modification consists of also including a sum over incoming soft
particles.

3.4.2 Dressed formalisms

The inclusive formalism outlined above gives up the notion of scattering amplitudes.
Dressed formalisms are an alternative approach with which finite amplitudes can
be calculated. The underlying idea is to add additional soft radiation to incoming
and outgoing states whose emission and absorption cancels IR divergences. The
added radiation takes the form of the coherent states of section 3.3. In this section
we will give a rough outline of the idea, following early work by Chung [64], which
is sufficient until chapter 7. There, we will take a closer look at the more elaborate
dressed formalisms of Faddeev and Kulish [65] and investigate the Hilbert space
structure.

Dressed formalisms propose to replacemomentumeigenstates by dressed states,

|p1, . . . ,pn〉 → ‖p1, . . . ,pn〉〉. (3.47)

In the case of a one-particle momentum eigenstate, the corresponding dressed state
is defined as

‖p〉〉 = Wλ[ f`(p,k)] |p〉 , (3.48)
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where Wλ[ f`(p,k)] is an operator that creates a coherent state

Wλ[ f`] ≡ exp

(∫ E

λ

d3k
(2π)32|k|

∑̀
=±

(
f`(p,k)a†`(k) − h.c.

))
(3.49)

and

f`(p,k) = −e
p · ε`
p · k

φ(p,k). (3.50)

Here, p, k are on-shell four-vectors, and φ(p,k) can be any function that goes to 0
as |k| → 0. The dressed state depends on an IR cutoff λ through the coherent state
operator. This IR cutoff ensures that the normalization of the state created byW[ f`]

is finite, compare to the discussion around equation (3.31). The extension to the
multi-particle case is straight forward and will be discussed in section 5.3. These
states can be used to calculate scattering amplitudes,

Sβ,α ≡ 〈〈β‖S‖α〉〉 = 〈β|W
†

βSWα |α〉 , (3.51)

which are finite as λ→ 0. We call S the dressed S-matrix.
To see how the dressing removes IR divergences, consider the scattering of a

dressed electron with momentum p to a dressed electron with momentum p′. The
cancellation of IR divergences takes place order by order, and we will show the
first non-trivial order, O(e2). We need to replace |p〉 by ‖p〉〉 which at leading order
reads

‖p〉〉 =

(
1 −

1
2

∑̀
=±

∫ E

λ

d3k
(2π)32|k|

| f`(p,k)|2
)

×

(
1 +

∑̀
=±

∫ E

λ

d3k
(2π)32|k|

f`(p,k)a†`(k)

)
|p〉 ,

(3.52)

where f ∼ O(e). Note that the dressing only needs to be expanded to order e, since
the absorption or emission of a photon from the dressing is also of order e, yielding
a term of order e2. Dressed S-matrix elements Sp′,p equal bare S-matrix elements,
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Sp′,p, multiplied by a correction,(
1 +

∫ E

λ

d3k
(2π)32|k|

∑̀
=±

(
f ∗` (p

′,k) f`(p,k) −
1
2
| f`(p,k)|2 −

1
2
| f`(p′,k)|2

))
Sp′,p

+

∫ E

λ

d3k
(2π)32|k|

∑̀
=±

(
f`(p,k)Sp′,pk + f ∗` (p

′,k)Sp′k,p
)
.

(3.53)

The first line comes from the process where the photon does not interact with the
scattered particles at all and the change in normalization of the in- and out-going
state. The second line consists of terms which appear since the dressing of the
incoming and outgoing state interacts with the scattering process.

The second line can be rewritten using the soft theorem (3.36) as∫ E

λ

d3k
(2π)32|k|

∑̀
=±

©­« f`(p,k)
∑

n∈{p,p′ }
ηn f ∗` (pn,k) − f ∗` (p

′,k)
∑

n∈{p,p′ }
ηn f`(pn,k)

ª®¬ Sp′,p.

(3.54)

In summary, the total correction is

Sp′,p =Sp′,p

(
1 +

∫ E

λ

d3k
(2π)32|k|

∑̀
=±

(
− f ∗` (p

′,k) f`(p,k) +
1
2
| f`(p,k)|2 +

1
2
| f`(p′,k)|2

))
.

(3.55)

Now recall from equations (3.12) and (3.19) that we can split off the IR divergence
coming from loops in the calculation of the S-matrix as

Sp′,p = SΛp′,p

(
1 −

1
2

∑̀
=±

∑
n,m

∫ Λ

λ

d3k
(2π)32|k|

(ηnηm f`(pn,k) f`(pn,k))

)
. (3.56)

Using equation (3.40) it is easy to show that the corrections coming from the
dressing, equation (3.55), and soft loops, equation (3.56), exactly cancel to order
O(e2). This argument can be extended to all orders [64].

The reason this procedure works can be understood from the semi-classical
analysis in section 3.3. We can see from equation (3.28) that the IR radiation
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produced in a scattering process consists of two terms, one which depends on the
incoming and one which depends on the outgoing momenta. The dressed states
discussed here correspond to a case where we send fine-tuned radiation into the
scattering region which only depends on the incoming hard particles and cancels
the part of the outgoing radiation which depends on the incoming hard momenta.
We will see in chapter 6 how this can be generalized.

The proposal reviewed here has several shortcomings. First, although we have
well-defined amplitudes, we have to introduce an IR regulator into the states. As we
send it to zero, the states become non-normalizable. As a consequence of this, the
structure of the Hilbert space is unclear in the limit of vanishing regulator. Second,
in the form presented here, it is not clear whether the divergence associated with
the Coulomb phase, equation (3.34), still persists.

Steps to ameliorate these problems were taken in a series of papers by Kibble,
who modified the procedure to take into account the divergent Coulomb phase and
proposed to use a von Neumann space as the Hilbert space of dressed states without
IR cutoff [66–69]. The proposed Hilbert space is non-separable, i.e., it does not
have a countable basis, and the S-matrix maps states between different separable
subspaces. This proposal was developed further by Faddeev and Kulish [65] who
gave a derivation of the dressing from first principles and identified a subspace
of Kibble’s Hilbert space which is separable and stable under the action of the
S-matrix. Their derivation of the dressing from first principles will be reviewed in
chapter 7.

Another slightly different dressed formalism was proposed by Bagan, Lavelle
and McMullan [70, 71]. However, the only difference between their approach and
that of Faddeev-Kulish is that instead of dressing asymptotic states, they dress
operators. For example the dressed operator Aµ creates modes on top of a clas-
sical radiation background, equation (3.28). Thus, with slight modifications, all
statements made in this thesis also apply to their dressed formalism.

In [72] a dressed formalism for gravity was proposed. In this case, the dressing
is again given by (3.49). This time, however, a and a† are the graviton annihilation
and creation operators and the functions f (k,p) depend on the polarization of the
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graviton εµν,

f gr
`
(k,p) =

pµε
µν
`

pν
k · p

φ(k,p). (3.57)

3.5 An infinity of conserved charges
Recently, interest in the IR behavior of gauge theories and gravity was revived
from a different perspective. The work initiated in [28, 63, 73] demonstrated
that soft theorems and asymptotic symmetries can be understood in a unified way.
Moreover, these findingswere used to suggest newways of how black holes can store
information [30, 31]. Dressed states also arise naturally in the recent discussions
of asymptotic gauge symmetries [25, 28–30, 74, 75], which imply the existence of
selection sectors [76–79]. See also [80, 81] for work on soft charges and dressing in
holography. Throughout this thesis we will comment on the relation of our findings
to asymptotic symmetries: large gauge transformations [73] in the case of QED and
BMS transformations [82] in the case of gravity. The next subsections reviews the
relevant aspects of the connection between asymptotic symmetries and Weinberg’s
soft theorems in the case of QED. A more complete review, also covering the case
of non-abelian gauge theories and gravity can be found in [25].

3.5.1 Anti-podal matching and conserved charges

At leading order, solutions to Maxwell’s equations obey an anti-podal matching
condition at light-like infinity I±, c.f. figure 3.3. This is easy to see for the Liénard-
Wiechert field of a point particle with charge e moving at constant velocity v,

Frt (x, t) =
e

4π
γv(r − tx̂ · v)

|γ2
v(t − r x̂ · v)2 − t2 + r2 |3/2

. (3.58)

Here, x̂ · r is the three vector at which the field is evaluated at time t and γv is the
relativistic gamma factor. We are interested in the electric field at light-like infinity
I±. To obtain an expression on I+ we change coordinates to (u = t − r,r, x̂) and take
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i+

i0

i−

i0

I+I+

I−I−

u

v

Figure 3.3: This figure shows the Penrose diagram of Minkowski space. In-
finity is conformally mapped to a finite distance, thus distances are not
faithfully represented, however, the causal structure is. Light runs at
45◦ angles. Lightlike future and past infinity, I±, are a good Cauchy
slices for massless particles, while massive particles start and end at i±.
Spacelike infinity is denoted by i0.

the limit of r →∞. while keeping u and x̂ constant. The result is

Frt (x, t)
���
I+
=

e
4πr2

1
γ2

v(1 − x̂ · v)2
. (3.59)

Using coordinates (v = t + r,r, x̂) we can take the limit of Frt to I− and find

Frt (x, t)
���
I−
=

e
4πr2

1
γ2

v(1 + x̂ · v)2
. (3.60)

Equations (3.59) and (3.60) are related to each other by x̂→ −x̂.
Light-like infinity has the topology of a cylinderR×S2, whereR is parametrized

by u or v and x̂ parametrizes the S2. To make the resulting equations simpler, one
conventionally changes coordinates on the S2 to complex coordinates (z, z) such that
the coordinates on the sphere of future infinity I+ are related to those on the sphere
of past light-like infinity I− by (z, z) → (−z,−z). This way, a light ray which enters
on I− through the point (z, z) exits at I+ at an angle given by the same coordinates.

With these conventions, the field strength tensor Fµν obeys the matching con-
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dition

F(2)ru (z, z)
���
I+−

= F(2)rv (z, z)
���
I−+

, (3.61)

where F(n)µν denotes the coefficient of the r−n term in a large-r expansion of Fµν.
Since equations (3.59) and (3.60) are u and v independent, we have decided to
evaluate F on I+− and I−+. The two-sphere I+− is located on I+ at u → −∞ and
similarly I−+ is located on I− at v → ∞. Thanks to the matching condition, there
exists an infinite number of trivially conserved charges

Q+ε ≡

∫
I+−

ε(z, z)? F =
∫
I−+

ε(z, z)? F ≡ Q−ε, (3.62)

where ? is the Hodge star operator. This expression is true for any function ε(z, z)
defined such that ε(z, z)|I+− = ε(z, z)|I−+ . For constant ε the conserved charge is
simply the electric charge.

These charges are the generators of large gauge transformations, i.e., gauge
transformations which do no vanish at infinity but reduce to transformations which
are only functions of the coordinates z and z at infinity.

3.5.2 Hard and soft charges

Using Maxwell’s equations

d ? F = ?j, (3.63)

the charges can be rewritten as

Q+ε =

∫
I+−

ε ? F =
∫
I+

d(ε ? F) +
∫
I++

ε ? F

=

∫
I+

dε ∧?F︸         ︷︷         ︸
Q+
ε,S

+

∫
I++

ε ? F︸     ︷︷     ︸
Q+ε,H

, (3.64)

where we have used that
∫
I+
ε ? j = 0, since in QED there are no charges leaving

Minkowski space through light-like infinity. The first term in equation (3.64) only
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depends on the behavior of the transverse electric field at future light-like infinity
and is called the soft charge, Q+ε,S . The second term depends on the longitudinal
part of the electric field, weighted by ε, and is called the hard charge, Q+ε,H . The
soft charge is a measure of soft radiation, while the hard charge is a measure of
the long-wavelength part of the longitudinal fields of charged matter particles. The
same argument can be used to show that Q−ε also splits into a soft and hard part.

It can be shown [29, 74] that, independent of their photon content, out-states of
definite momentum are eigenstates ofQ±ε,H . Similarly, dressed states are eigenstates
of Q±ε,S . Their eigenvalue is proportional to an integral, whose integrand depends
on the residue of the dressing function fh(p,k) as |k| goes to zero.

3.5.3 Weinberg’s soft theorems

Conservation of Q±ε implies that the operator commutes with the Hamiltonian and
thus in particular with the S-matrix,

0 = 〈β | [Qε,S] |α〉 = 〈β| (Q+εS − SQ−ε ) |α〉 . (3.65)

The presence of IR divergences can be related to the conservation of the charges
Qε [29]. Calling the eigenvalues with respect to the soft charges Q±ε,S , Nout and Nin,
respectively, we find

(Nout − Nin) 〈β| S |α〉 =
∑

n∈α,β

√
2

1 + zz
enηnε+ · pn

pn · k
〈β| S |α〉 . (3.66)

For the states in the Fock space representation one can check explicitly that the
eigenvalue of the soft charge operator is zero, i.e., the left hand side of equation
(3.66) vanishes. Hence, the only way equation (3.66) can hold is if the factor that
multiplies the amplitude on the right-hand side vanishes or the amplitude itself
is zero. For any non-trival scattering process, the prefactor is non-zero, so the
amplitude must vanish. Moreover, it can be shown that equation (3.66) is simply a
coordinate-transformed version of Weinberg’s soft theorem [25].

The case of gravity is completely analogous, with the electric field in equation
(3.62) replaced by the gravitational field.
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Chapter 4

Infrared quantum information

This chapter is a redacted version of [1].

4.1 Introduction
We have seen in the previous chapter that in the standard treatment of scattering the
S-matrix becomes ill-defined due to divergences coming from low-energy virtual
bosons. The usual solution to this problem is to use the inclusive formalism, i.e.,
to argue that an infinite number of low-energy bosons are radiated away during a
scattering event; this leads to divergences which cancels the divergences from the
virtual states, and physical predictions in terms of infrared-finite inclusive transition
probabilities.

In this chapter, we study quantum information-theoretic aspects of this proposal.
Since each photon and graviton has two polarization states and three momentum
degrees of freedom, one might suspect that the low-energy radiation produced
during scattering could carry a huge amount of information. Here we demonstrate
that, according to the methodology of [56, 58, 62], which was summarized in
section 3.4.1, if the initial state is an incoming n-particle momentum eigenstate,
the soft bosonic divergences can lead to complete decoherence of the outgoing
hard particles, with the momentum eigenstates as the pointer basis [83]. This
decoherence is avoided only for superpositions of pairs of outgoing states for
which an infinite set of angle-dependent currents match, see equation (4.9). In
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simple examples like QED, this will be enough to get complete decoherence of all
momentum superpositions. In less simple cases, one is still left with an extremely
sparse density matrix dominated by its diagonal elements. See [84–86] for related
work.

Having traced the radiation in this fashion, we obtain an infrared-finite, mixed
reduced density matrix for the hard particles. In the simple cases when we get a
completely diagonal matrix, we compute the entanglement entropy carried by the
soft gauge bosons. The answer is finite and scales like the logarithm of the energy
resolution E of a hypothetical soft boson detector.

While the tracing out of the soft radiation can be viewed as a physical statement
about the energy resolution of a real detector, in this formalism, the trace is also
forced on us by mathematical consistency: it is the only way to get well-defined
transition probabilities from the infrared-divergent S-matrix.

Recently, the infrared structure of gauge theories has become a topic of much
interest due to the proposal that soft radiation may encode information about the
history of formation of a black hole [30, 31, 45]. We also hope that this work
can make the discussion more quantitatively grounded; we comment on black
holes at the end of this chapter. More generally, it is of interest to understand the
information-theoretic nature of the infrared sector of quantum field theories, and
this work is intended to make some first steps in this direction.

4.2 Decoherence of the hard particles
Fix a single-particle energy resolution E . We define soft bosons as those with
energy less than E , and hard particles as anything else. Consider an incoming state
|α〉in consisting of hard particles, charged or otherwise, of definite momenta.8 The
S-matrix evolves this into a coherent superposition of states with hard particles β
and soft bosons b = γ, h (photons γ and gravitons h),

|α〉in =
∑
βb

Sβb,α |βb〉out . (4.1)

8Labels like α, β, b mean a list of free-particle quantum numbers, e.g., |α〉in = |p1`1, . . .〉in listing
momenta and spin of the incoming particles.
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Hereafter we drop the subscript on kets, which will always be out-states. Tracing
out the bosons |b〉, the reduced density matrix for the outgoing hard particles is

ρ =
∑
ββ′b

Sβb,αS∗β′b,α |β〉 〈β
′ | . (4.2)

Using the usual soft factorization theorems, equations (3.36) and (3.37), we can
write the amplitudes in terms of the amplitudes for α → β multiplied by soft
factors, one for each boson. By an argument identical to the one employed in the
last chapter, and assuming we can neglect the total lost energy ET compared to the
energy of the hard particles, we can use this factorization to perform the sum over
soft bosons in (4.2), and we find that

∑
b

Sβb,αS∗β′b,α = Sβ,αS∗β′,α

(
E
λ

) Ãββ′ ,α (
E
λ

) B̃ββ′ ,α
× F

(
E
ET

, Ãββ′,α

)
F

(
E
ET

, B̃ββ′,α

)
.

(4.3)

Here λ � E is an infrared regulator used to cut off momentum integrals which we
will send to zero later; one can think of λ as a mass for the photon and graviton.
The exponents are

Ãββ′,α = −
∑

n∈α,β
n′∈α,β′

enen′ηnηn′
8π2 β−1

nn′ log
[
1 + βnn′
1 − βnn′

]

B̃ββ′,α =
∑

n∈α,β
n′∈α,β′

mnmn′ηnηn′

16π2M2
p

1 + β2
nn′

βnn′
√

1 − β2
nn′

log
[
1 + βnn′
1 − βnn′

]
,

(4.4)

and F is given in equation (3.45). In these formulas, βnn′ is the relative velocity
between particles n and n′, given in (3.14). For future use, we note that 0 ≤ β ≤ 1,
and both of the dimensionless functions of β appearing in (4.4) run over [2,∞) as
β runs from 0 to 1. We have βnm = 0 if and only if pn = pm.

The divergences as λ→ 0 in (4.3) come from summing over an infinite number
of radiated, on-shell bosons. There are also infrared divergences inherent to the
transition amplitude Sβ,α itself coming from virtual bosons. We can add these
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divergences up, and we have that

Sβ,α = SΛβ,α

(
λ

Λ

)Aβ,α/2 (
λ

Λ

)Bβ,α/2
, (4.5)

where now SΛβ,α means the amplitude computed using only virtual bosons of energy
above Λ, and Aβ,α and Bβ,α were given in equations (3.20) and (3.23) and are
repeated here for convenience,

Aβ,α = −
∑

n,m∈α,β

enemηnηm
8π2 β−1

nm log
[
1 + βnm
1 − βnm

]
Bβ,α =

∑
n,m∈α,β

mnmmηnηm

16π2M2
p

1 + β2
nm

βnm
√

1 − β2
nm

log
[
1 + βnm
1 − βnm

]
.

(4.6)

The infrared-divergent Coulomb phase from equation (3.20) is suppressed in (4.5).
We will see shortly that this phase cancels out of all the relevant density matrix
elements.

Putting the above results together, we find that the reduced density matrix
coefficient for |β〉 〈β′ | is given by

ρββ′ = SΛβ,αSΛ∗β′,α

(
E
λ

) Ãα,ββ′ ( λ
Λ

)Aβ,α/2+Aβ′ ,α/2
×

(
E
λ

) B̃α,ββ′ ( λ
Λ

)Bβ,α/2+Bβ′ ,α/2
F(Ãββ′,α)F(B̃ββ′,α).

(4.7)

The question is how this behaves in the limit of vanishing infrared regulator, λ→ 0.
The coefficient scales as λ∆A+∆B, where

∆Aββ′,α =
Aβ,α

2
+

Aβ′,α
2
− Ãββ′,α

∆Bββ′,α =
Bβ,α

2
+

Bβ′,α
2
− B̃ββ′,α.

(4.8)

In appendixA,weprove that both of these exponents are positive-definite,∆Aββ′,α ≥

0 and ∆Bββ′,α ≥ 0. The density matrix components (4.7) which survive as the reg-
ulator λ → 0 are those for which ∆A = ∆B = 0; all other density matrix elements
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will vanish.
To give necessary and sufficient conditions for ∆A = ∆B = 0, we define two

currents for each spatial velocity vector v. We assume for simplicity that only mas-
sive particles carry electric charge. For massive particles, there are electromagnetic
and gravitational currents defined as

jemv =
∑
i

eiai†(pi(v))ai(pi(v)),

jgrv =
∑
i

Ei(v)ai†(pi(v))ai(pi(v)).
(4.9)

Here i labels particle species, ei their charges and mi their masses; the kinematic
quantities pi(v) = miv/

√
1 − v2 and Ei(v) = mi/

√
1 − v2 are the momentum and

energy of species i when it has velocity v. For lightlike particles we have to
separately define the gravitational current, since a velocity and species does not
uniquely determine a momentum:

jgr,m=0
v =

∑
i

∫ ∞

0
dωωai†(ωv)ai(ωv). (4.10)

Momentum eigenstates of any number of particles are obviously eigenstates of these
currents and we denote their eigenvalues jv |α〉 = jv(α) |α〉.

The photonic exponent ∆Aββ′,α is zero if and only if the charged currents in
β are the same as those in β′; the gravitational exponent ∆Bββ′,α is zero if and
only if all the hard gravitational currents in β are the same as those in β′. This is
demonstrated in detail in appendix A. For any such pair of outgoing states |β〉 , |β′〉,
(4.7) becomes independent of the IR regulator λ and is thus finite as λ→ 0,

ρββ′ = SΛ∗β′,αSΛβ,αGβα (E,ET ,Λ) , (4.11)

where

Gβα = F

(
E
ET

, Aβ,α

)
F

(
E
ET

,Bβ,α

) (
E
Λ

)Aβα+Bβα
. (4.12)

This is the case in particular for diagonal density matrix elements β = β′, for which
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we obtain the standard transition probabilities

ρββ =
���SΛβ,α���2 Gβα (E,ET ,Λ) . (4.13)

On the other hand, if there is even a single v for which one of the currents (4.9)
or (4.10) does not have the same eigenvalue in |β〉 and |β′〉, then the density
matrix coefficient decays as λ∆A+∆B → 0 as the regulator λ → 0. We see that the
unobserved soft bosons have almost completely decohered the momentum state of
the hard particles. Only a very sparse subset of superpositions survive, in which
the currents agree for all velocities v,

jv(β) = jv(β′). (4.14)

4.3 Examples
To get a feel for the results presented in the previous section, we consider a few
examples. First, consider any scattering with a single incoming and outgoing
charged particle, like potential or single particle Compton scattering. Let the
incoming momentum be α = p and the outgoing momenta of the two branches
β = q, β′ = q′. We have either directly from the definition (4.8) or the theorem
(A.1) that

∆Aqq′,p = −
e2

8π2

[
2 − γqq′

]
, (4.15)

where γqq′ = β−1
qq′ log(1 + βqq′)/(1 − βqq′). This ∆A is easily seen to equal zero

if and only if q = q′. Thus other than the spin degree of freedom, the resulting
density matrix for the charge is exactly diagonal in momentum space.

To see an example where the current-matching condition is non-trivially ful-
filled, consider a theory with two charged particle species of charge e and e/2 and
the same mass. Then we can get an outgoing superposition of a state β = (e,q) and
one with two half-charges β′ = (e/2,q′1) + (e/2, iq

′
2). The differential exponent for

such a superposition is

∆Aββ′,p = −
e2

8π2

[
3 +

1
2
γq1q2 − γqq1 − γqq2

]
, (4.16)

42



which is zero if q = q1 = q2. In other words, the currents (4.9) cannot distinguish
between a full charge of momentum q and two half-charges of the samemomentum.

4.4 Entropy of the soft bosons
We have seen that the reduced density matrix for the outgoing hard particles is
very nearly diagonal in the momentum basis. In a simple example like a theory
with various scalar fields φi of different, non-zero masses mi, the soft graviton
emission causes complete decoherence into a diagonal momentum-space reduced
density matrix for the hard particles. More generally, we may have a sparse set
of superpositions, and in any case spin and other internal degrees of freedom are
unaffected by the soft emission.

In a simple example with a purely diagonal reduced density matrix, it is straight-
forward to compute the entanglement entropy of the soft emitted bosons. The total
hard + soft system is in a bipartite pure state, with the partition being between the
hard particles and soft bosons, so the entanglement entropy of the bosons is the
same as that of the hard particles. Following the calculation in [23, 24, 87], we can
simply write down the entropy:

S =
∑
β

���SΛβ,α���2 Gβα log
[���SΛβ,α���2 Gβα] . (4.17)

This sum is infrared-finite; again, G is given in (4.12), and the superscript Λ means
the naive S-matrix computed with virtual bosons only of energies greater than Λ.
Given the explicit form of G, we see that the entropy scales like the log of the
infrared detector resolution E .

4.5 Relation to large gauge symmetries
The decoherence condition (4.14) can be rephrased in the language of large gauge
transformations. The condition that given two momentum eigenstates |β〉 and |β′〉,
the density matrix element ρββ′ vanishes unless the same amount of charge is
carried with the same velocity vector in both states, is equivalent to the condition
that the hard charges Q+ε,H agree on |β〉 and |β′〉 for all ε(z, z).
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To prove this, we start by showing that if condition (4.14) holds for momentum
eigenstates |β〉 and |β′〉, it follows that the eigenvalues of Q+ε,H also agree. Let
|β〉, |β′〉 be two momentum eigenstates which contain a finite number of charged
particles which carry electric charge Q(v) (and Q′(v), respectively) with velocity v,
alongside with a number of uncharged particles which we will ignore. For example,
if two different particles carry charge e along v = v0, then Q(v0) = 2e. If equation
(4.14) holds,then

Q(v) = Q′(v) (4.18)

for every v. The eigenvalues of the out-states with respect to the hard charges are
given by

Q+ε,H |β〉 =
∫
I++

d2z
√
γε(z, z)F(2),βrt (z, z) |β〉 (4.19)

where

F(2),βrt (z, z) =
∑
i

1
4πγ2

i

Q(vi)
(1 − x̂ · vi)2

(4.20)

for |β〉 and the sum runs over the (finite) number of velocity vectors along which
charge is carried. For |β′〉 we get the same expression where we have to replace
Q → Q′. However, since Q(v) = Q′(v), the same amount of charge is carried
with the same velocity and F(2)rt (z, z) is the same on |β〉 and |β′〉. Therefore the
eigenvalues of the hard charges agree.

Conversely, we will now show that equal eigenvalues with respect to Q+ε,H for
twomomentum eigenstates |β〉, |β′〉 imply that the same amount of charge is carried
along the same velocity in both states. That is for either state we can construct
functions Q(v) and Q′(v), respectively, which represents the charge carried along
velocity vectors v, with Q(v) = Q′(v). Since we know that these functions are in
one-to-one correspondence with eigenvalues of the operators jv we can conclude
that also the eigenvalues jv(β) and jv(β′) agree. Consider two states |β〉, |β′〉 with
Q+ε,H eigenvalues qεβ and qεβ′. We assume that the eigenvalues agree for any choice
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of ε and in particular we can choose

ε ∝ δ(2)(z − w). (4.21)

Then the condition qεβ = qεβ′ translates to a pointwise equality for the functions
F(2),βrt and F(2),β

′

rt ,∑
n∈β

1
4πγ2

n

en
(1 − x̂ · vn)2

=
∑
m∈β′

1
4πγ′2m

em
(1 − x̂ · v′m)2

. (4.22)

It is clear that by combining terms this can be rewritten as∑
i∈V

1
4πγ2

i

Q(vi)
(1 − x̂ · vi)2

=
∑
i∈V

1
4πγ2

i

Q′(vi)
(1 − x̂ · vi)2

. (4.23)

The set V contains all velocities along which charge is carried in either β or β′. We
now assume that equation (4.23) holds but Q(vi) disagrees with Q′(vi) and show
that this leads to a contradiction. We solve for one of the terms in disagreement,
whose associated velocity we denote by v0. This leaves us with

Q(v0) −Q′(v0)

γ2
0(1 − x̂ · v0)2

=
∑

i∈V\{0}

Q′(vi) −Q(vi)
γ2
n(1 − x̂ · vi)2

. (4.24)

The sum on the right hand side runs over all velocities except v0. Multiplying by
all denominators and defining ∆Q(vi) = Q(vi) −Q′(vi) we find

∏
i∈V\{0}

(1 − x̂ · vi)2 = −
γ2

0(1 − x̂ · v0)
2

∆Q(v0)

©­«
∑

i∈V\{0}

∆Q(vi)
γ2
i

∏
j∈V\{0,i }

(1 − x̂ · vj)
2ª®¬ .
(4.25)

Treated as functions of x̂, both sides are polynomials on S2. Since the ring of
polynomials with real coefficients on the sphere is a unique factorization domain,
the factorization of both sides in factors of the form (1+ v1x + v2y + v3z) is unique
with two factors being identical if and only if all vi agree. Since the right hand side
contains a factor of (1− x̂ · v0)

2 it follows that such a factor must also appear on the
left hand side of the equation, but we have assumed that a term containing v0 is not
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included in the product. This contradicts our initial assumption and hence we have
shown that Q(vi) = Q′(vi). It then also follows that the eigenvalues of the currents
jv acting on |β〉 and |β′〉 must agree.

4.6 Discussion
According to the solution of the infrared catastrophe advocated in [56, 58, 62],
an infinite number of very low-energy photons and gravitons are produced during
scattering events. We have shown that if taken seriously, considering this radiation
as lost to the environment completely decoheres almost any momentum state of
the outgoing hard particles. The basic idea is simple: the radiation is essentially
classical, so any two scattering events are easy to distinguish by their radiation.

The physical content of this result is somewhat unclear. A conservative view
is that the methodology of [56, 58, 62] is ill-suited to finding outgoing density
matrices. As remarked earlier, in this formalism, one must trace the radiation to get
well-defined transition probabilities. An alternative would be to use the infrared-
finite S-matrix program [64–69, 72], in which no trace over radiation is needed
at all. But then we need to understand where the physical low-energy radiation
is within that formalism–since after all, a photon that is lost to the environment
certainly does decohere the system. We will turn to this in the next chapters.

The decoherence found here is for the momentum states of the particles: at
lowest order in their momenta, soft bosons do not lead to decoherence of spin
degrees of freedom. However, the sub-leading soft theorems [27, 88, 89] do involve
the spin of the hard particles, so going to the next order in the soft particles would be
interesting.9 We would also like to understand to what extent our answers depend
on the infinite-time approximation used in the S-matrix approach.

To end, we comment on potential applications to the black hole information
paradox. The idea advocated in [30, 31] is that correlations between the hard and
soft particles mean that information about the black hole state can be encoded into
soft radiation. In [45, 46, 76], the dressed-state formalism and soft factorization
has been used to argue that the soft particles simply factor out of the S-matrix and
thus contain no such information. In the approach used here, it is manifest that

9We understand that Strominger has confirmed this. (Private communication)
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the outgoing hard state and outgoing soft state are highly correlated, leading to the
decoherence of the hard state. The outgoing density matrix for the hard particles,
while not completely thermal, has been mixed in momentum as much as possible
while retaining consistency with standard QED/perturbative gravity predictions.
It is tempting to conjecture that this generalizes to all asymptotically measurable
quantum numbers.
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Chapter 5

Dressed infrared quantum
information

This chapter is a redacted version of [2].

5.1 Introduction
In the inclusive formalism, one is forced to trace out soft photons to get finite an-
swers. In the previous chapter, we have seen that this leads to an almost completely
decohered densitymatrix for the outgoing state after a scattering event. This chapter
analyses the situation in dressed state formalisms, in which no trace over IR photons
is needed to obtain a finite outgoing state. However, consider the measurement of
an observable sensitive only to electronic and high-energy photonic degrees of free-
dom. We show that for such observables, there will be a loss of coherence identical
to that obtained in the inclusive probability method. Quantum information is lost
to the low-energy bremsstrahlung photons created in the scattering process.

The primary goal of this chapter is to give concrete calculations exhibiting the
dressed formalism and how it leads to decoherence. To this end, we work with the
formulas from the papers of Chung [64] and Faddeev-Kulish [65]. The result of
this calculation should carry over identically to any of the existing refinements of
Chung’s formalism. In section 5.4, we make a number of remarks on possible re-
finements to the basic dressing formalism, give an expanded physical interpretation
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of our results, and relate our work to literature in mathematical physics on QED
superselection rules. In section 5.5 we make remarks on how this work fits into
the recent literature on the black hole information paradox; in brief, we believe that
our results are consistent with the recent proposal of Strominger [32], but not the
original proposal of Hawking, Perry and Strominger [30, 31].

5.2 IR-safe S-matrix formalism
Following Chung, we study an electron with incoming momentum p scattering off a
weak external potential. This 1→ 1 process is simple and sufficient to understand
the basic point; at the end of the next section, we show how to generalize our
results to n-particle scattering. The electron spin will be unimportant for us and we
supress it in what follows. The standard free-field Fock state |p〉 for the electron is
promoted to a dressed state ‖p〉〉 as discussed in section 3.4.2,

‖p〉〉 = Wp |p〉 ≡ Wλ[ f`(k,p)]. (5.1)

This consists of the electron and a coherent state of on-shell, transversely-polarized
photons.

We introduce an IR regulator (“photon mass”) λ and an upper infrared cutoff
E > λ, which can be thought of as the energy resolution of a single-photon detector
in our experiment. Here and in the following all momentum-space integrals are
evaluated in the shell λ < |k| < E .

Consider now an incoming dressed electron scattering into a superposition
of outgoing dressed electron states. The outgoing state is, to lowest order in
perturbation theory in the electric charge,

|ψ〉 =

∫
d3qSqp‖q〉〉. (5.2)

At higher orders there will be additional photons in the outgoing state; as explained
in the next section, these will not affect the infrared behavior studied here, so we
ignore them for now. Here the S-matrix is just the standard Feynman-Dyson time
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evolution operator, evaluated between dressed states. That is,

Sqp = 〈〈q‖S‖p〉〉, (5.3)

with S = ‘T exp
(
−i

∫ ∞
−∞

V(t)dt
)
as usual. As calculated by Chung, the dressed

1 → 1 elements of this matrix are independent of the IR regulator λ and thus
infrared-finite as we send λ→ 0. We can write the matrix element

Sqp =

(
E
Λ

)A
SΛqp (5.4)

where

A = −
e2

8π2 β
−1 log

[
1 + β
1 − β

]
, β =

√
1 −

m4

(p · q)2
. (5.5)

As discussed in section 3.4, the undressed S-matrix element on the right side means
the amplitude computed by Feynman diagrams with photon loops evaluated only
with photon energies aboveΛ and evaluated between undressed electron states, that
is, with no external soft photons. By definition, this quantity is infrared-finite and
the dependence on the scale Λ cancels between the prefactor and SΛ.

5.3 Soft radiation and decoherence
The state (5.2) is a coherent superposition of states, each containing a bare electron
and its corresponding photonic dressing. The presence of hard photons in the
outgoing state will not change our conclusions below, so for simplicity we ignore
them. In particular, the density matrix formed from this state has off-diagonal
elements of the form

S∗q′pSqp‖q〉〉〈〈q′‖. (5.6)

These states have highly non-trivial photon content. However, if one is doing a
measurement involving only the electron degree of freedom, then these photons
are unobserved, and we can make predictions with the reduced density matrix of
the electron, obtained by tracing the photons out. The resulting electron density
matrix has coefficients damped by a factor involving the overlap of the photon states,
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namely

ρelectron =

∫
d3qd3q′S∗q′pSqpDqq′ |q〉 〈q′ | (5.7)

where the dampening factor is given by the photon-vacuum expectation value

Dqq′ = 〈0|W†q′Wq |0〉 . (5.8)

Straightforward computation gives this factor as

Dqq′ = exp

{
−

e2

2

∑̀
=±

∫
d3k

(2π)32|k|
�� f`(q) − f ∗` (q

′)
��2}

= exp
{
−e2

∫
d3k

(2π)32|k|
(q − q′)2

(q · k)(q′ · k)

}
.

(5.9)

In this integrand, since q and q′ are two timelike vectors with the same temporal
component, we have that the numerator is positive definite and the denominator is
positive. It is therefore manifest that we have D = 1 if q = q′ and D = 0 otherwise,
since the integral over d3k diverges in its lower limit. Thus, tracing the photons
leads to an electron density matrix that is completely diagonalized in momentum
space.

It is noteworthy that the factor (5.9) depends only on properties of the outgoing
superposition; it has no dependence on the initial state. This may seem surprising
since we are tracing over outgoing radiation, the production of which depends
on both the initial and final electron state. The point is that the damping factor
measures the distinguishability of the radiation fields given the processes p → q
and p→ q′. The radiation field for a scattering process consists of two pieces added
together: a term Aµ ∼ pµ/p · k peaked in the direction of the incoming electron
and a term Aµ ∼ qµ/q · k peaked in the direction of the outgoing electron. The
outgoing radiation fields with outgoing electrons q,q′ are then only distinguishable
by the second terms here, since both radiation fields will have the same pole in the
incoming direction.

The damping factor (5.9) is precisely what was found in the previous chap-
ter, reduced to the problem of 1 → 1 scattering. The mechanism is the same:
physical, low-energy photon bremsstrahlung is emitted in the scattering. These
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photons are highly correlated with the electron state and thus, if one does not ob-
serve them jointly with the electron, one will measure a highly-decohered electron
density matrix. The only difference is bookkeeping: in the dressed formalism,
the bremsstrahlung photons are folded into the dressed electron states (the in-
coming/outgoing parts of the bremsstrahlung in the incoming/outgoing dressing,
respectively). However, referring to “an electron” as a state including these soft pho-
tons is an abuse of semantics. In an actual measurement of the electron momentum,
one does not measure these soft photons.

The dressed states are not energy eigenstates, and in fact contain states of arbi-
trarily high total energy. This should be contrasted with the inclusive-probability
treatment used byWeinberg, which has a cutoff on both the single-photon energy E

and the total outgoing energy contained by all the photons ET ≥ E in the outgoing
state [56]. This additional parameter, however, appears only in the ratio ET/E in
Weinberg’s probability formulas, and one finds that the dependence on ET van-
ishes as ET → ∞. This can be understood because what is important is the very
low-energy behavior of the photons, so moving an upper cutoff has limited impact.

We note that (5.2) does not include effects from the bremsstrahlung of additional
soft photons beyond those in the dressing. There is no kinematic reason to exclude
such photons, so the outgoing state should properly be written as

|ψ〉 =

∞∑
n=0

∑
{` }

∫
d3qd3nkSq{k` };p‖q〉〉. (5.10)

Here {k`} = {k1`1, . . . ,kn`n} is a list of n photon momenta and polarizations. By
the dressed version of the soft photon factorization theorem (see appendix B), we
have that

Sqk`;p = Sqp × eO
(
|k|0

)
, (5.11)

or in other words lim |k |→0 |k|Sqk`;p = 0. Thus, when we take a trace over n-photon
dressed states in (5.10), we obtain a sum of additional decoherence factors of the
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form

Dnm
qq′ = en+mO

(
|k|0

)
×

∑
`1,...,`n

∑
`′1,...,`

′
m

∫
d3nkd3mk′

〈0|a`′m (k
′
m) · · · a`′1(k

′
1)W

†

q′Wqa†
`1
(k1) · · · a

†

`n
(kn)|0〉 .

(5.12)

Evaluating the inner product one finds

Dnm
qq′ ∼

[∑̀
=±

∫
d3k Re ( f`(q) − f`(q′))

]n+m
, (5.13)

which is infrared-finite. Summing these contributions, which exponentiate, will not
change the conclusion that (5.9) leads to vanishing off-diagonal electron density
matrix elements.

Finally, we explain the generalization to n-electron states. We will find that the
same decoherence is found in the dressed formalism as in the inclusive formalism.
Following Faddeev-Kulish [65], we define the multi-particle dressing operator by
replacing

f`(p,k) →
∫

d3p
(2π)3

f`(p,k)ρ(p), (5.14)

in the definition of Wλ[ f`]. Here, we have introduced an operator which counts
charged particles with momentum p.

ρ(p) =
∑
s

(
b†p,sbp,s − d†p,sdp,s

)
, (5.15)

and the b and d are electron and positron operators, respectively.10 As in the
one-particle case, additional photons do not affect the IR behaviour of scattering
amplitudes. Hence, we will ignore them and only consider the case where the
out-state is a linear superposition of dressed electron states. In that case we have
to replace the outgoing momentum by list of momenta, q→ β = {q1,q2, . . .} and

10Note that in the multi-particle case there is an infinite phase factor which needs to be included in
the definition of the S-matrix. Since this phase factor does not affect our discussion, we ignore it in
the following.
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similarly q′→ β′ = {q′1,q
′
2, . . .}. This results in a replacement in (5.9) of

f`(q) →
∑
n∈β

f`(qn)

f ∗` (q
′) →

∑
m∈β′

f ∗` (q
′
m).

(5.16)

Using the explicit form of F in the limit k→ 0, the damping factor (5.9) then then
becomes

Dββ′ = exp

[
−e2

∫
d3k

(2π)32|k|

∑
m,n∈β,β′

ηmηnpm · qn
(qm · k)(qn · k)

]
. (5.17)

In this equation the labels m,n both run over the full set β ∪ β′, and ηn = +1 if
n ∈ β while ηn = −1 if n ∈ β′. This is precisely the quantity ∆Aββ′,α defined in
the previous section, so we see that the results carry over to the dressed formalisms
used here.

5.4 Physical interpretation
Dressed-state formalisms are engineered to provide infrared-finite transition ampli-
tudes, as opposed to inclusive probabilities constructed in the traditional approach
studied in the previous section. In the dressed formalism, the outgoing state (5.2) is
a coherent superposition of states ‖p〉〉 consisting of electrons plus dressing photons.
However, if one does a measurement of an observable sensitive only to the electron
state, the measurement will exhibit decoherence because the unobserved dressing
photons are highly correlated with the electron state. We have given a concrete
calculation showing that the damping factor (5.17) is identical in either the dressed
or undressed formalism.

The physical relevance of this calculation rests on the idea that the basic observ-
able is a simple electron operator in Fock space. What would be much better would
be to use a dressed LSZ reduction formula to understand the asymptotic limits of
electron correlation functions [90, 91]. Nevertheless, the basic physical picture
seems clear: in a scattering experiment, one does not measure an electron plus a
finely-tuned shockwave of outgoing bremsstrahlung photons, just the electron on
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its own. This is responsible for well-measured phenomena like radiation damping.
QED has a complicated asymptotic Hilbert space structure which is still some-

what poorly understood. For example, although Faddeev-Kulish try to define a
single, separable Hilbert space Has [65, 91] other authors have argued that one
needs an uncountable set of separable Hilbert spaces [66, 90]. Formally, this is
related to the fact that the dressing operator does not converge on the usual Fock
space. We will discuss this in chapter 7. A related idea is that one can argue that
QED has an infinite set of superselection rules based on the asymptotic charges

Q(Ω) = lim
r→∞

r2Er (r,Ω) (5.18)

defined by the radial electric field at infinity [92, 93]. Webelieve that the calculations
presented here and in chapter 4 demonstrate the physical mechanism for enforcing
such a superselection rule. The charges (5.18), the currents defined in the previous
chapter, and the large-U(1) charges defined in [29, 74] are presumably closely
related, and working out the precise relations is an interesting line of inquiry.

5.5 Black hole information
Let us again comment on the proposal of Hawking, Perry and Strominger sug-
gesting that information apparently lost in the process of black hole formation and
evolution could be encoded in soft radiation [30, 31]. The original proposal was
that there are symmetries which relate hard scattering (like the black hole forma-
tion or evaporation process) to soft scattering and thus led to constraints on the
S-matrix. As emphasized by a number of authors, this is not true in the dressed
state approach [45, 46, 76, 94]. As we review in appendix B, soft modes de-
couple from the dressed hard scattering event at lowest order, in the sense that
limω→0[aω,Sdressed] = 0. Dropping a soft boson into the black hole will not yield
any information about the black hole formation and evaporation process.

However, a more recent proposal due to Strominger is to simply posit that
outgoing soft radiation purifies the outgoing Hawking radiation [32]. That is, the
state after the black hole has evaporated is of the form |ψ〉 =

∑
a ca |a〉Hawking |a〉soft,

such that the Hawking radiation is described by a thermal density matrix, i.e.,
ρHawking = trsoft |ψ〉 〈ψ | ≈ ρthermal. We believe that both the results presented
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here and those in our previous work are consistent with this proposal. In either the
inclusive or dressed formalism, the final state of any scattering process contains soft
radiation which is highly correlated with the hard particles because the radiation is
created due to accelerations in the hard process. The open issue is to explain why
the hard density matrix coefficients behave thermally, which likely relies on details
of the black hole S-matrix.

5.6 Conclusions
When charged particles scatter, they experience acceleration, causing them to ra-
diate low-energy photons. If one waits an infinitely long time (as mandated by
an S-matrix description), these photons cause severe decoherence of the charged
particle momentum state. This was demonstrated in the preceding chapter in the
standard formulation of QED involving IR-finite inclusive cross section, and here
we have shown the same conclusion holds in IR-safe, dressed formalisms of QED;
they should carry over in a simple way to perturbative quantum gravity. These
results constitute a sharp and robust connection between the infrared catastrophe
and quantum information theory, and should provide guidance in problems related
to the infrared structure of gauge theories.
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Chapter 6

On the need for soft dressing

This chapter is a redacted version of [3].

6.1 Introduction
Both, the dressed and inclusive formalisms, are designed to give the same predic-
tions for the probability of scattering from an incoming set of momenta p1, . . . ,pn

into an outgoing set of momenta p′1, . . . ,p
′
m. The measurement of observables

which only depend on the hard particles should be predictable from the reduced
density matrix obtained by tracing over soft bosons, which are invisible to a finite
size detector. Given an incoming momentum eigenstate, we have argued in the
previous two chapters that the two formalisms agree. Thus, one might naively think
for calculating cross-sections it does not matter which formalism one chooses. We
show in this chapter that this is not the case: the two approaches differ in their
treatment of incoming superpositions.

Consider a simple superposition of two momentum eigenstates for a single
charged particle

|ψ〉 =
1
√

2
(|p〉 + |q〉), (6.1)

scattering off of a classical potential. We expect the out-state to be described by a
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density matrix of the form

ρ =
1
2

S (|p〉 〈p| + |p〉 〈q| + |q〉 〈p| + |q〉 〈q|) S†. (6.2)

Here S is the scattering operator and we have performed a trace over the soft
radiation, hence ρ is the density matrix for the hard particles. If |p〉 , |q〉 are dressed
states, this expectation is indeed correct. In the inclusive formalism, however, where
|p〉, |q〉 are Fock space momentum eigenstates, there is no interference between
the different momenta as opposed to the diagonal terms of (6.2). We find that the
diagonal entries of the density matrix which encode the cross-sections are of the
form

σψ→out ∝ 〈out| ρincl |out〉 =
1
2
〈out| S (|p〉 〈p| + |q〉 〈q|) S† |out〉 . (6.3)

In other words, the cross-section behaves as if we had started with a classical
ensemble of states withmomenta p and q. The entire scattering history is decohered
by the loss of the soft radiation. This appears to contrast starkly with any realistic
experiment.

Moreover, as we will show, repeating the analysis for wavepackets, e.g., |ψ〉 =∫
dp f (p) |p〉, leads to the nonsensical conclusion that a wave-packet is not observed

to scatter at all. However, in the dressed state formalism of Faddeev-Kulish the
interference appears as in equation (6.2). This strongly suggests that scattering
theory in quantum electrodynamics and perturbative quantum gravity should really
not be formulated in terms of standard Fock states of charged particles. Formulating
the theories using dressed states seems to be a good alternative.

Our findings have a nice interpretation in the language of asymptotic symme-
tries: only superpositions of states within the same selection sector, defined using
the charges that generate the symmetries, can interfere. This explains the failure
of the undressed approach. In the inclusive formalism, essentially any pair of mo-
mentum eigenstates live in different charge sectors. In contrast, the Faddeev-Kulish
formalism is designed so that all of the dressed states live within the same charge
sector.

Our results can also be viewed in the context of the black hole information prob-
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lem [10, 47]. In particular, Hawking, Perry, and Strominger [30] and Strominger
[32] have recently suggested that black hole information may be encoded in soft
radiation. In black hole thought experiments, one typically imagines preparing an
initial state of wavepackets organized to scatter with high probability to form an
intermediate black hole. Our results suggest then that one needs to use dressed
initial states to study this problem. See also [45, 46] for some remarks on the use
of dressed or inclusive formalisms for studying black hole information.

The rest of the chapter is organized as follows. We start by presenting the
calculations showing that the dressed and undressed formalisms disagree in section
6.2 for discrete superpositions and in section 6.3 for wavepackets. The discussion
and interpretation of the results takes place in section 6.4. There, we will argue
why our findings imply that dressed states are better suited to describe scattering
than the inclusive Fock-space formalism. We will give a new very short argument
for the known result of [78] that the dressing operators and the S-matrix weakly
commute and argue for a more general form of dressing beyond Faddeev-Kulish.
We will then interpret our results in terms of asymptotic symmetries and selection
sectors before concluding in section 6.5. Appendix C contains proofs of certain
statements in sections 6.2 and 6.3.

6.2 Scattering of discrete superpositions
In this and the next section we generalize the results of chapters 4 and 5 to the case
of incoming superpositions of momentum eigenstates. We begin in this section
by studying discrete superpositions |ψ〉 = |α1〉 + · · · + |αN 〉 of states with various
momenta α = p1,p2, . . .. We will see that the dressed and inclusive formalisms give
vastly different predictions for the probability distribution of the outgoingmomenta:
dressed states will exhibit interference between the αi whereas undressed states do
not.

59



6.2.1 Inclusive formalism

Consider scattering of an incoming superposition of chargedmomentum eigenstates

|in〉 =
N∑
i

fi |αi〉 , (6.4)

with
∑

i | fi |2 = 1. The outgoing density matrix vanishes due to IR divergences in
virtual photon loops. However, as before, we can obtain a finite result if we trace
over outgoing radiation [1, 56, 58, 62]. The resulting reduced density matrix of the
hard particles takes the form

ρ =
∑
b

N∑
i, j

∬
dβ dβ′ fi f ∗j Sβb,αi S

∗
β′b,αj

|β〉 〈β′ | , (6.5)

where β and β′ are lists of the momenta of hard particles in the outgoing state, and
the sum over b denotes the trace over soft bosons. We will be interested in the effect
of infrared divergences on this expression.

The sum over external soft boson states b produces IR divergences which
cancel those coming from virtual boson loops. We can regulate these divergences
by introducing an IR cutoff (e.g., a soft boson mass λ). Following the standard
soft photon resummation techniques [56], one finds that the total effect of these
divergences yields reduced density matrix elements of the form

ρββ′ =

N∑
i, j

fi f ∗j SΛβ,αi
SΛ∗β′,αj

λ
∆Aββ′ ,αiα j

+∆Bββ′ ,αiα j Gββ′,αiαj (E,ET ,Λ). (6.6)

Here we have introduced “UV” cutoffs Λ,E on the virtual and real soft boson
energies, so SΛ are S-matrix elements with the soft boson loops cut off belowΛ and
we only trace over outgoing bosonswith individual energies up to E and total energy
ET . The explicit form of the Sudakov rescaling function G defined analogously to
(4.12). What concerns us here is the behavior of this expression in the limit where
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we remove the IR regulator λ→ 0, which is controlled by the exponents

∆Aββ′,αα′ = −
1
2

∑
n,n′∈α,ᾱ′,β,β̄′

enen′ηnηn′
8π2 β−1

nn′ log
[
1 + βnn′
1 − βnn′

]
,

∆Bββ′,αα′ = −
1
2

∑
n,n′∈α,ᾱ′,β,β̄′

mnmn′ηnηn′

16π2M2
p

β−1
nn′

1 + β2
nn′√

1 − β2
nn′

log
[
1 + βnn′
1 − βnn′

]
.

(6.7)

The factor ηn is defined as +1 (−1) if particle n is incoming (outgoing). The
quantities βnn′ are the relative velocities between pairs of particles given in equation
(3.14) and a bar interchanges incoming states for outgoing and vice versa. The
expressions for ∆A and ∆B come from contributions of soft photons and gravitons,
respectively. The question now is which terms survive.

The special case of no superposition, αi = αj = α, was discussed in chapter
4. There it was shown that ∆Aββ′,αα ≥ 0 and ∆Bββ′,αα ≥ 0, so that in the limit
λ → 0, all of the terms in the sum except those with ∆A = ∆B = 0 will vanish.
The equality holds if and only if the out states β and β′ contain particles such that
the amount of electrical charge and mass carried with any choice of velocity agrees
for β and β′. This can be phrased in terms of an infinite set of operators which
measure charges flowing along a velocity v, defined in equations (4.9) and (4.10).
Momentum eigenstates are eigenstates of these operators. Using them, the equality
of currents reads

jv |β〉 ∼ jv |β′〉 , (6.8)

where the tildemeans that the eigenvalues of the states are the same on both sides for
all velocities. In appendix C.1, we show that the more general exponents ∆Aββ′,αα′

and ∆Bββ′,αα′ are positive. Similarly to the argument in the previous chapters, one
can show that ∆A and ∆B are non-zero if and only if

jv |αi〉 + jv |β′〉 ∼ jv |αj〉 + jv |β〉 , (6.9)

that is if the list of hard currents in states |α〉 and |β′〉 is the same as the list of hard
currents in states |α′〉 and |β〉. An easy way to understand the form of equation
(6.9) is by looking at equation (6.7). There, the bar over α′ (which corresponds to
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αj) indicates that it should be treated as an outgoing particle, i.e., similarly to β.
On the other hand β̄′ should be treated similarly to α. Hence, we obtain equation
(6.9) from (6.8) by replacing β′→ αi + β

′ and β→ αj + β. On the other hand it is
clear that in the case of |αi〉 = |αj〉 = |α〉 equation (6.9) reduces to equation (6.8).

Armedwith these results, we can calculate the cross-sections given an incoming
superposition. These are proportional to the diagonal elements β = β′ of the density
matrix; for simplicity we ignore forward scattering terms. The diagonal terms of
the density matrix (6.6) are proportional to λ∆A+∆B. This factor reduces to unity if
jv |αi〉 ∼ jv |αj〉 for all of the currents (4.9) and (4.10) and is zero otherwise. For
a generic superposition, this implies that only terms with i = j contribute and we
find

σin→β ∝ ρββ =

N∑
i, j

fi f ∗j Gββ,αiαj S
Λ
βαi

SΛ∗βαj
δαiαj =

N∑
i

| fi |2 |SΛβ,αi
|2Gββ,αiαi .

(6.10)

As we see, no interference terms between incoming states are present. Instead, the
total cross-section is calculated as if the incoming states were part of a classical
ensemble with probabilities | fi |2. The reason is that in the inclusive approach the
information about the interference is carried away by unobservable soft radiation. To
define the scattering cross-section, however, we need to trace out the soft radiation
and we obtain the above prediction, which is at odds with the naive expectation,
equation (6.2).

6.2.2 Dressed formalism

The calculation above was done using the usual, undressed Fock states of hard
charges, which required to calculate inclusive cross-sections. The alternative ap-
proach we will now turn to is to consider transitions between dressed states. For
concreteness, we will follow the dressing approach of Chung and Faddeev-Kulish11,
which contains charged particles accompanied by a cloud of real bosons which radi-
ate out to lightlike infinity [64, 65, 72]. For a given set of momenta α = p1,p2, . . .,

11Recently, a generalization of Faddeev-Kulish states was suggested [77]. We will extend our
discussion to those states in section 6.4.
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we write the dressed state as

‖α〉〉 ≡ Wα |α〉 ≡ Wλ[ f`(k, α)], (6.11)

where multi-particle dressed states are introduced as discussed in the previous
chapter,

f`(k, α) =
∑
p∈α

ε` · p
k · p

φ(k,p) (6.12)

The operator Wα equips the state |α〉 with a cloud of photons/gravitons. For QED,
Wα with a finite cutoff λ is a unitary operator Letting Wα act on Fock space states
for λ = 0 gives states with vanishing normalization, hence in the strict λ→ 0 limit
Wα is no good operator on Fock space. Thus, as before, we will do calculations
with finite λ and only at the end will we take λ→ 0.12

Consider now an incoming state consisting of a discrete superposition of such
dressed states,

‖in〉〉 =
∑
i

fi ‖αi〉〉. (6.13)

The outgoing density matrix is then

ρ =
∑
i, j

∬
dβdβ′ fi f ∗j SβαiS

∗
β′αj
‖β〉〉〈〈β′‖. (6.14)

However, every experiment should be able to ignore soft radiation. Following
chapter 5, we treat the soft modes as unobservable and trace them out. This yields
the reduced density matrix for the outgoing hard particles,

ρhardββ′ =
∑
i, j

fi f ∗j SβαiS
∗
β′αj
〈0|W†βWβ′ |0〉 . (6.15)

The last term is the photon vacuum expectation value of the out-state dressing
operators. This factor reduces to one or zero as shown in chapter 4 and 5; one

12Note that as argued in [65], a proper definition of W in the limit λ → 0 should be possible on a
von Neumann space.
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if j(β) ∼ j(β′) and zero otherwise. This is responsible for the decay of most
off-diagonal elements in (6.15). However, if we are interested in the cross-section
for a particular outgoing state β, this is again given by a diagonal density matrix
element,

σin→β ∝ ρββ =
∑
i, j

fi f ∗j Sβ,αiS
∗
β,αj

. (6.16)

In stark contrast to the result obtained in the inclusive formalism, equation (6.10),
this cross-section exhibits the usual interference between the various incoming
states, like expected in equation (6.2). The reason for this is that in the dressed
formalism, the outgoing radiation is described by the dressing which only depends
on the out-state and not on the in-state. We will discuss this in more detail in section
6.4. This establishes that the inclusive and dressed formalism are not equivalent
but yield different predictions for cross-sections of finite superpositions.

6.3 Wavepackets
We will now proceed to look at scattering of wavepackets and find that the result
is even more disturbing. After tracing out infrared radiation in the undressed
formalism, no indication of scattering is left in the hard system. On the contrary,
once again we will see that with dressed states, one gets the expected scattering
out-state.

6.3.1 Inclusive formalism

We consider incoming wavepackets of the form

|in〉 =
∫

dα f (α) |α〉 , (6.17)

normalized such that
∫

dα | f (α)|2 = 1. The full analysis of the preceding section
still applies, provided we replace

∑
αi
→

∫
dα, αi → α, fi → f (α) and similarly

for aj → α′. The only notable exception is the calculation of single matrix elements
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as in equation (6.10), which now reads

ρββ =

∬
dαdα′ f (α) f ∗(α′)SΛβ,αSΛ∗β,α′δαα′Gββ,αα′(E,ET ,Λ). (6.18)

Note that here, by the same argument as before, the λ-dependent factor is turned
into a Kronecker delta, which now reduces the integrand to a measure zero subset
on the domain of integration. The only term that survives the integration is the
initial state, which is acted on with the usual Dirac delta δ(α − β), i.e., the “1” term
in S = 1 − 2πiM. The detailed argument can be found in appendix C.2. Thus we
conclude that

ρoutββ′ = f (β) f ∗(β′) = ρinββ′ . (6.19)

The hard particles show no sign of a scattering event.

6.3.2 Dressed wavepackets

The dressed formalism has perfectly reasonable scattering behavior. Consider
wavepackets built from dressed states

‖in〉〉 =
∫

dα f (α)‖α〉〉, (6.20)

with ‖α〉〉 a dressed state in the same notation as in equation (6.11). The S-matrix
applied on dressed states is infrared-finite and the outgoing density matrix can be
expressed as

ρ =

∬
dβdβ′

∬
dαdα′ f (α) f ∗(α′)Sβ,αS∗β′,α′ ‖β〉〉〈〈β

′‖. (6.21)

Tracing over soft modes, we find

ρββ′ =

∬
dαdα′ f (α) f ∗(α′)Sβ,αS∗β′,α′ 〈W

†

βWβ′〉 . (6.22)

Again the expectation value is taken in the photon vacuum. The crucial point here
is that this factor is independent of the initial states α. Upon sending the IR cutoff
λ to zero, the expectation value for W†W takes only the values 1 or 0, leading to
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decoherence in the outgoing state, but the cross-sections still exhibit all the usual
interference between components of the incoming wavefunction,

ρββ =

∬
dαdα′ f (α) f ∗(α′)Sβ,αS∗β,α′, (6.23)

unlike in the inclusive formalism.

6.4 Implications
In this section we will discuss the implications of our results and generalize and
re-interpret our findings in particular in view of asymptotic gauge symmetries in
QED and perturbative quantum gravity.

6.4.1 Physical interpretation

The reason for the different predictions of the inclusive and dressed formalism is
the IR radiation produced in the scattering process. The key idea is that accelerated
charges produce radiation fields made from soft bosons. In the far infrared, the
radiation spectrum has poles as the photon frequency k0 → 0 of the form pi/pi · k,
where pi are the hard momenta. These poles reflect the fact that the radiation
states are essentially classical and are completely distinguishable for different sets
of asymptotic currents jv.

In the inclusive formalism, we imagine incoming states with no radiation, and
so the outgoing radiation state has poles from both the incoming hard particles α
and the outgoing hard particles β. In the dressed formalism, the incoming part of the
radiation is instead folded into the dressed state ‖α〉〉, which is designed precisely
so that the outgoing radiation field only includes the poles from the outgoing
hard particles. Thus if we scatter undressed Fock space states, a measurement
of the radiation field at late times would determine the dynamical history at long
wavelengths of the process α → β, leading to the classical answer (6.10). If we
instead scatter dressed states, the outgoing radiation has incomplete information
about the incoming charged state, which is why the various incoming states still
interfere in (6.16). Given that this type of interference is observed all the time in
nature, this seems to strongly suggest that the dressed formalism is correct for any
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problem involving incoming superpositions of momenta.
Based on the result of section 6.2, one might argue that equation (6.10) perhaps

is the correct answer and one would have to test experimentally whether or not
interference terms appear if we give a scattering process enough time so that the
decoherence becomes sizable. After all, the inclusive and dressed approach to
calculating cross-sections are at least in principle distinguishable, although maybe
not in practice due to very long decoherence times. However, we have demonstrated
in section 6.3 that the inclusive formalism predicts an even more problematic result
for continuous superpositions, namely that no scattering is observed at all. We thus
propose that using the dressed formalism is the most conservative and physically
sensible solution to the problem of vanishing interference presented in this chapter.

6.4.2 Allowed dressings

Dressing operators weakly commute with the S-matrix

It was conjectured in [77] and proven in [78] that the far IR part of the dressing
weakly commutes with the S-matrix to leading order in the energy of the bosons
contained in the dressing. In particular, this means that the amplitudes

〈β |W†βSWα |α〉 ∼ 〈β|W
†

βWαS |α〉 ∼ 〈β | SW†βWα |α〉 (6.24)

are all IR finite, while they might differ by a finite amount. A short proof of this
in QED, complementary to [78], can be given as follows (the gravitational case
follows analogously). Recall that Weinberg’s soft theorem for QED states that to
lowest order in the soft photon momentum q of outgoing soft photons

〈ε`1 a`1
q1 . . . ε`N a`NqN

S〉 ∼
N∏
i=1

(
M∑
j

ηjej
ε`i · pj

qi · pj

)
〈S〉 . (6.25)
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A similar argument holds for incoming photons. For incoming photons with mo-
mentum q we find that

〈Sε∗`1
a`1†

q1 . . . ε∗`N a`N †qN
〉 ∼

N∏
i=1

(
−

M∑
j

ηjej
ε∗`i · pj

qi · pj

)
〈S〉 . (6.26)

The reason for the relative minus sign is that incoming photons add energy-
momentum to lines in the diagram instead of removing it. That means that the
momentum in the denominator of the propagator changes (p−q)2+m2 → (p+q)+m2

and vice versa. For small momentum, the denominator becomes −2pq → 2pq.
From this it directly follows that for general dressings at leading order in the IR
divergences,

〈SW〉 = 〈Se
∫
d3k( f̀ (k)a`†k − f

∗
` (k)a

`
k )〉 ∼ N 〈Se

∫
d3k f̀ (k)a`†k 〉

∼ N 〈e−
∫
d3k f ∗` (k)a

`
k S〉

∼ 〈e
∫
d3k( f̀ (k)a`†k − f

∗
` (k)a

`
k )S〉 = 〈WS〉 .

(6.27)

Here, we have suppressed a factor of ((2π)32|k|)−1 and the sum over polarizations
in the integrals. In the first and third step we have split the exponential using the
Baker-Campbell-Hausdorff formula (N is the normalization which is finite for finite
λ) and in the second equality we have used Weinberg’s soft theorem for outgoing
and incoming particles.

Dressings cannot be arbitrarily moved between in- and out-states

This opens up the question about the most general structure of a consistent Faddeev-
Kulish-like dressing. For example, one could ask whether one can consistently
define S-matrix elements with the dressing only acting on the out-state. To answer
this question, we assume that the dressing of the out-state has the same IR structure
as equation (3.49), but is more general in that it may also include the momenta of
(some) particles of the in-state, i.e., Wβ → WβWα̃ or any other momenta which
might not even appear in the process, WβWα̃ → WβWα̃Wζ . The IR structure of
the in-dressing is then fixed by the requirement that the S-matrix element is finite.
In addition to the requirement of IR-finiteness we ask that the so-defined S-matrix
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elements give rise to the correct rules for superposition and the correct scattering
for wavepackets, even after tracing out soft radiation.

Applying the logic of the previous sections and 5, one finds that tracing over
the soft bosons yields for a diagonal matrix element ρββ

ρhardββ =
∑
i, j

fi f ∗j SβαiS
∗
β′α′j
〈0|W†α̃′Wα̃ |0〉 (6.28)

and

ρhardββ =

∬
dαdα′ f (α) f ∗(α′)SβαS∗β′α′ 〈0|W

†

α̃′Wα̃ |0〉 (6.29)

for finite and continuous superpositions, respectively. Here, we have used that

〈W†α̃′W
†

β′WβWα̃〉

���
β=β′
= 〈W†α̃′Wα̃〉 . (6.30)

The expectation value is taken in the soft boson Fock space. The expression in the
case of α̃ = α and α̃′ = α′ was already encountered in sections 6.2 and 6.3 in the
context of inclusive calculations, where it was responsible for the unphysical form
of the cross-sections. By the same logic it follows that even in the case where α̃ is a
proper subset of α, we will obtain a Kronecker delta which sets α̃ = α̃′ and we again
do not obtain the expected form of the cross-section. Instead, particles from the
subset α̃ will cease to interfere. We thus conclude that the dressing of the out-states
must be independent of the in-states and it is not consistent to build superposition of
states which are dressed differently. This means that building superpositions from
hard and charged Fock space states is not meaningful. In particular, we cannot use
undressed states to span the in-state space by simply moving all dressings to the
out-state.

Generalized Faddeev-Kulish states

However, it would be consistent to define dressed states by acting with a constant
dressing operator Wζ for fixed ζ on states ‖α〉〉,

‖α〉〉ζ ≡ W†ζWα |α〉 . (6.31)
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(a)

Σ

(b) (c)

Figure 6.1: (a) A plane wave goes through a single slit and emerges as a
localizedwavepacket. The scattering of the incomingwavepacket results
in the production of Bremsstrahlung. (b) We can also define some
Cauchy slice Σ and create the state by an appropriate initial condition.
(c) Evolving this state backwards in time while forgetting about the slit
results in an incoming localized particle which is accompanied by a
radiation shockwave.

Physically this corresponds to defining all asymptotic states on a fixed, coherent
soft boson background, defined by some momenta ζ . This state does not affect the
physics since soft modes decouple from Faddeev-Kulish amplitudes [45] and thus
this additional cloud of soft photons will just pass through the scattering process.
The difference between the Faddeev-Kulish dressed state ‖α〉〉 and the generalized
states of the form ‖α〉〉ζ is that the state ‖ζ〉〉ζ = W†ζWζ |ζ〉 = |ζ〉 does not contain
additional photons. This also explains why QED calculations using momentum
eigenstates without any additional dressing give the correct cross-sections once we
trace over soft radiation. Such a calculation can be interpreted as happening in a
set of dressed states defined by

‖α〉〉in = W†inWα |α〉 , (6.32)

such that the in-state ‖in〉〉in does not contain photons and looks like a standard
Fock-space state.

Localized particles are accompanied by radiation

We also conclude from the previous sections that there are no charged, normalizable
states which do not contain radiation. The reason is that within each selection sector
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there is at most one delta-function normalizable state which does not contain radi-
ation. Thus building a superposition to obtain a normalizable state will necessarily
include dressed states which by definition contain soft bosons. A nice argument
which makes this behavior plausible was given by Gervais and Zwanziger [92], see
figure 6.1.

6.4.3 Selection sectors

Everything said so far has a nice interpretation in terms of the charges Q±ε of
large gauge transformations (LGT) for QED and supertranslations for perturbative
quantum gravity.

It turns out that also our generalized version of Faddeev-Kulish states ‖α〉〉ζ ,
equation (6.31), are eigenstates of the generatorsQ±ε with eigenvalues which depend
on ζ . To see this note that [76]

[Q±ε,W
†

ζ ] = [Q
±
ε,S,W

†

ζ ] ∝

∫
S2

d2z
√
γ

ζ2

ζ · q̂
ε(z, z), (6.33)

and similarly for gravity [78]. Thus the generalized Faddeev-Kulish states span a
space of states which splits into selection sectors parametrized by ζ . The statement
that we can build physically reasonable superpositions using generalized Faddeev-
Kulish states translates into the statement that superpositions can be taken within a
selection sector of the LGT and supertranslation charges Q±ε .

6.5 Conclusions
Calculating cross-sections in standardQEDand perturbative quantumgravity forces
us to deal with IR divergences. Tracing out unobservable soft modes seems to be
a physically well-motivated approach which has successfully been employed for
plane-wave scattering. However, as we have shown this approach fails in more
generic examples. For finite superpositions it does not reproduce interference
terms which are expected; for wavepackets it predicts that no scattering is observed.
We have demonstrated in this chapter that dressed states à la Faddeev-Kulish (and
certain generalizations) resolve this issue, although it is not clear if the inclusive and
dressed formalism are the only possible resolutions. Importantly, we have shown
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that predictions of different resolutions can disagree, making them distinguishable.
Superpositions must be taken within a set of states with most of the states

dressed by soft bosons. The corresponding dressing operators are only well-defined
on Fock space if we use an IR-regulator which we only remove at the end of
the day. In the strict λ → 0 limit, the states are not in Fock space but rather
in the much larger von Neumann space which allows for any photon content,
including uncountable sets of photons [66, 90]. This suggests an interesting picture
which seems worth investigating. The Hilbert space of QED is non-separable but
has separable subspaces which are stable under action of the S-matrix and form
selection sectors. These subspaces are not the usual Fock spaces but look like
the state spaces defined by Faddeev and Kulish [65], in which almost all charged
states are accompanied by soft radiation. In the next chapter, we will make these
statements more precise.

Our results also raise doubt on whether physical observables exist which can
take a state from one selection sector into another. If they did we could use them to
create a superpositions of states from different sectors. But as we have seen above,
in this case interference would not happen, which is in conflict with basic postulates
of quantum mechanics.

Our results may have implications for the black hole information loss problem.
Virtually all discussions of information loss in the black hole context rely on the
possibility of localizing particles – from throwing a particle into a black hole
to keeping information localized. We argued above that normalizable (and in
particular localized) states are necessarily accompanied by soft radiation. It is well
known that the absorption cross-section of radiation with frequency ω vanishes as
ω→ 0 and therefore it seems plausible that, whenever a localized particle is thrown
into a black hole, the soft part of its state which is strongly correlated with the hard
part remains outside the black hole. If this is true a black hole geometry is always
in a mixed state which is purified by radiation outside the horizon.
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Chapter 7

An infrared-safe Hilbert space for
QED

This chapter is a redacted version of [5].

7.1 Introduction
The dressed formalisms discussed previously remove the IR divergences by includ-
ing the radiation as coherent states in incoming and/or outgoing states. However,
due to the infinite number of soft-modes, the dressed states are not Fock space states.
Instead, as we will discuss in section 7.2, they live in representations of the photon
canonical commutation relations (CCR) which are different from the standard Fock
representation. Physically speaking, one could either say that states in different
CCR representations differ by an infinite number of low-energy excitations, or that
they represent states which are expanded around classical backgrounds which differ
at arbitrarily long wavelengths. Since the radiation produced in scattering depends
on the momenta of incoming and outgoing charges, a state which contains a charged
particle with momentum p will generally be in a different CCR representation than
a state containing a charged particle with momentum q , p.

In this chapter we will restrict our attention to the case of QED. The infrared
structure of perturbative quantum gravity shares many qualitative features with the
structure of QED at low energies. Thus, a first step towards a detailed analysis of
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IR physics of gravity can be taken by investigating the IR dynamics and kinematics
of QED.

The fact that generic out-states consist of superpositions of states in differ-
ent CCR representations becomes an issue if one wants to ask questions about the
information content or the dynamics of low energy modes, since a meaningful com-
parison of the photon content between different states in different representations
is impossible. A related problem recently mentioned in [95] is that the entirety of
dressed states is non-separable [65], i.e., they do not have a countable basis, and
thus existing dressed formalisms do not allow for the definition of a trace. And
in fact, when using an IR cutoff to make the trace over IR modes well-defined,
the reduced density matrix of the hard modes again essentially complete decoheres
once the cutoff is removed, see chapter 5.

The soft photon production which is responsible for the IR divergences is
well approximated by a classical process, but a classical analysis suggests the
number of zero-modes should stay constant: although the radiation fields which are
classically produced during scattering modify the vector potential at arbitrarily long
wavelengths, this change is compensated by the change of the Liénard-Wiechert
potentials sourced by the charges. Hence, taking the off-shell modes of the classical
field into account, the dynamics of the zero-modes become completely trivial and
in the deep IR, the field remains constant in all physical processes.

In this chapter we will see that this picture is accurate even at the quantum level.
We develop a new dressed formalism for QED in which the asymptotic Hilbert
spaces carry only a single representation of the canonical commutation relations.
In other words, all relevant photon states only differ by a finite amount of excited
modes. Moreover, the representations for in- and out-states are unitarily equivalent.
This implies that the S-matrix is a manifestly unitary operator. Our proposal is a
modification of the dressed state formalism of [65]. In addition to coherent states
describing radiation, we also incorporate off-shell modes into the definition of states
and approximate the time-evolution at late times. The outgoing density matrix of
any scattering is IR finite and tracing-out IR modes of the field is well-defined
and does not completely decohere the density matrix at finite times. This allows
for an IR safe investigation of scattering at late but finite times and enables us to
discuss information theoretic properties of quantum states, e.g., time evolution of
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Hin Hout

ti t f

Te−i
∫ −∞
ti

dtHas (t)

S = Te−i
∫ ∞
−∞

dtH

Te−i
∫ t f
∞

dtHas (t)

scattering regionasymptotic in-region asymptotic out-region

Figure 7.1: The asymptotic Hilbert spaces Hin/out are defined at finite times
ti and t f . We assume the particles to be well-separated before and
after ti and t f , respectively (shaded regions). The time evolution of
theories with long range forces is not given by the free Hamiltonian
H0, but approximated by the asymptotic Hamiltonian Has which takes
the coupling to very long wavelength modes of the gauge field into
account. Charged eigenstates of the free Hamiltonian are replaced by
states dressed with transverse off-shell photons which reproduce the
correct Liénard-Wiechert potential at long wavelengths. The dressed
S-matrix S evolves a state from t = ti to t = −∞ with the asymptotic
Hamiltonian, which removes the off-shell modes. It is then evolved
by the standard S-matrix S to t = ∞ and mapped onto Hout by another
asymptotic time-evolution, dressing it with the correct Liénard-Wiechert
modes. The statesHin/out are related by a unitary transformation.

entanglement.

7.1.1 Summary of results

At times earlier than some initial time ti or later than some final time t f , well
separated states of the full theory are well approximated by states in an asymptotic
Hilbert space. The dynamics relevant at long wavelengths are captured by time-
evolution with an asymptotic Hamiltonian, which differs from the free Hamiltonian.
This is summarized in figure 7.1. The asymptotic Hilbert spaces of QED are of the
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form

Hin/out = Hm ⊗H⊗( f`), (7.1)

whereHm is the free fermion Fock space andH⊗( f`) is an incomplete direct product
space (IDPS) (which despite the name is a Hilbert space and in particular complete)
with a single representation of the photon canonical commutation relations. The
precise definition is discussed in section 7.4. The choice of representation depends
on a function f` , which generally is different for different incoming particles.
H⊗( f`) can be understood as the image of Fock space under a coherent state
operator and the function f` as specifying the low energy modes of the classical
background. States in this Hilbert space are dressed and take the form

‖p,k〉〉 { f̃̀ } = |p〉 ⊗W[ f̃`(p, . . . )] |k〉 , (7.2)

where W[ f̃`] are operator valued functionals which create coherent states of trans-
verse modes whose wavefunction is given by f̃` with polarization `. The constraint
on f̃` is that for small photon momenta it agrees with f` appearing in equation
(7.1).13 This guarantees that it is a state in H⊗( f`). The coherent state generally
contains transverse off-shell excitations which ensure that at low energies, the ex-
pectation value of the photon field agrees with the classical expectation value. It
contains additional on-shell radiation which makes sure that the bosonic part of the
dressed state lives in H⊗( f`). The dressed S-matrix is defined as

S =
(
Te−i

∫ t f
∞

dtHas (t)
)

S
(
Te−i

∫ ti
−∞

dtHas (t)
)†

(7.3)

and is a unitary operator on H⊗( f`) for any f` . The first and last terms in the
definition of the S-matrix remove off-shell modes from the states. This leaves states
dressed with on-shell photons which are scattered by the standard S-matrix, similar
to the proposal of [65].

This framework can be used to investigate the correlation between charged
particles and IR modes. EachH⊗( f`) inherits the trace operation from Fock space.

13Note that, unlike in [65], the IR profile of soft modes in the state ‖p,k〉〉α does not depend on p
but only on α.
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Tracing the density matrix of a superposition of dressed states over soft modes
with wavelengths above some scale Λ yields time-dependent decoherence in the
momentum eigenbasis. At late times, off-diagonal density matrix elements are
proportional to

ρreducedoff-diagonal ∝ (tΛ)
−A1 eA2(t ,Λ). (7.4)

The precise form of the exponents is discussed around equation (7.87). The ex-
ponents are proportional to a dimensionless coupling and depend on the relative
velocities of the charged matter. The factor A1 is the same one found in [56] and
whose role for decoherence was discussed in chapter 4. The dependence on time
and energy scale has been found in [95] through a heuristic argument. The new
factor A2 suppresses decoherence relative to (tΛ)−A1 . The only information stored
in the zero-momentum modes is the information about the CCR representation and
decoherence is caused by modes with non-zero momentum. As time passes, these
modes become strongly entangled with the hard charges.

In the following, we assume that QED is quantized in Coulomb gauge, since
this makes the physical interpretation of our construction more obvious. Section
7.2 reviews the construction of different representations of the CCR which are
important for our purposes. Section 7.3 derives the asymptotic Hamiltonian and
the dressed S-matrix in Coulomb gauge. The construction of the asymptotic Hilbert
space is explained in section 7.4. Section 7.5 contains a proof of the unitarity of
the S-matrix. In section 7.6 we explicitly calculate the S-matrix in the presence of
a classical current and investigate the correlation between IR modes and charged
particles. The density matrix of superpositions of the fields of classical currents,
reduced over IR modes, decoheres with time. The conclusions comment on further
directions.
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7.2 Representations of the canonical commutation
relations

7.2.1 Inequivalent CCR representations

Theories with massless particles allow for different representations of the CCR
algebra which are not unitarily equivalent. This can easily be seen in a toy model
[96]. Consider the Hamiltonian

H =
∫

d3k
(2π)32|k|

|k|a†(k)a(k) −
∫

d3k
(2π)32|k|

j(k, t)(a†(k) + a(−k)), (7.5)

where j(x) is a real source. The Hamiltonian can be diagonalized using a canonical
transformation

a(k) → b(k) = a(k) +
j(k)
|k|

a†(k) → b†(k) = a†(k) +
j∗(k)
|k|

, (7.6)

so that the commutation relations agree for b(k), b†(k) and a(k),a†(k). The diago-
nalized Hamiltonian is given by

H̃ =
∫

d3k
(2π)32|k|

|k|b†(k)b(k) +
1
2

∫
d3k
(2π)3

| j(k)|2

|k|2
. (7.7)

We will assume that lim |k |→0 j(k) = O(1). In this case and with appropriate
falloff conditions at large momenta, H̃ is bounded from below. We will assume
this in the following. The formally unitary transformation which implements the
transformation in equation (7.6) takes the form

W ≡ eF = exp
(∫

d3k
(2π)32|k|

(
j(−k)
|k|

a†(k) − h.c.
))
. (7.8)

However, W is not a good operator on the representation of the a(k),a†(k) CCR,
since for example

‖F |0〉 ‖2 =
∫

d3k
(2π)32|k|3

| j(k)|2 = ∞. (7.9)
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This argument shows that generally, representations of the CCR of a massless field
in 3+1 dimensions coupled to different currentswill be unitarily inequivalent, which
is exactly the problem discussed in the introduction. The choice of representation of
the commutation relations of the photon field will generally depend on the presence
of charged particles. Before we discuss how to deal with this in the case of QED,
we first need to develop some formalism.

7.2.2 Von Neumann space

Formally unitary operators like the one in (7.8) can be given a meaning as operators
on a complete direct product space [97], henceforth von Neumann space H⊗.
The non-separable von Neumann space splits into an infinite number of separable
incomplete direct product spaces (IDPS) on each of which one can define an
irreducible representation of the canonical commutation relations [98]. Let us
review this construction in this and the next subsection.

Given a countably infinite set of separable Hilbert spaces Hn, we define the
infinite tensor product space H′⊗ as

H′⊗ ≡
⊗
n

Hn. (7.10)

Vectors |ψ〉 ∈ H′⊗ of this space are product vectors built from sequences |ψn〉 of
normalized vectors in Hn,

|φ〉 =
⊗
n

|ψn〉 . (7.11)

Two such vectors are called equivalent, |ψ〉 ∼ |φ〉, if and only if∑
n

|1 − 〈ψn |φn〉 | < ∞. (7.12)

If the vectors are equivalent their inner product is defined via

〈ψ |φ〉 =
∏
n

〈ψn |φn〉 . (7.13)

If two vectors are inequivalent, their inner product is set to zero by definition. The
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von Neumann space H⊗ is then defined as the space obtained by extending the
definition to all finite linear combinations of the vectors in H′⊗ and subsequent
completion of the resulting space. In order to make the inner product definite,
we also require that two states are equal if their difference has zero inner product
with any state in H⊗. The so-obtained space is non-separable, but splits into
separable Hilbert spaces H⊗(ψ) called incomplete direct product spaces (IDPS).
H⊗(ψ) consists of all vectors equivalent to some |ψ〉.

Given a unitary operator Un on each Hn we can define a unitary operator U⊗
on H⊗ through

U⊗

⊗
n

|ψn〉 ≡
⊗
n

Un |ψn〉 (7.14)

and extend its definition to all states in H⊗ by linearity. Clearly, this is not the
set of all possible unitary operators on H⊗. Multiplication and inverse of such
operators is defined through multiplication and inverse of the Un. It can then
be shown that these unitary operators map different IDPS onto each other, i.e.,
U⊗H⊗(ψ) ∼ H⊗(ψ

′) with U⊗ |ψ〉 = |ψ ′〉. An operator U⊗ is a unitary operator on
H⊗(ψ) if U⊗ |ψ〉 ∼ |ψ〉.

In a quantum mechanical Hilbert space physical states are only identified with
vectors up to a phase. In order to make this precise in a von Neumann space
we define a generalized phase. Given a set of real numbers λ = {λ1, λ2, . . . } we
define the generalized phase operator V⊗(λ) as a unitary operator with Vn = eiλn .
If

∑
n λn converges absolutely, V⊗(λ) = ei

∑
n λn . Two vectors which differ by

a generalized phase represent the same physical state. States are called weakly
equivalent |ψ〉 ∼w |φ〉, if and only if there exists a V⊗(λ) such that

V⊗(λ) |ψ〉 ∼ |φ〉 . (7.15)

7.2.3 Unitarily inequivalent representations on IDPS

Given the notion of a unitary operator on a von Neumann space, we can find
representations of the photon CCR [66]. Let us define the Hilbert space Hγ of
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photon wavefunctions f`(k) which obey∑̀
=±

∫
d3k

(2π)32|k|
| f`(k)|2 < ∞. (7.16)

The inner product is given by

〈g | f 〉 =
∑̀
=±

∫
d3k

(2π)32|k|
g∗`(k) f`(k). (7.17)

We are only interested in a special class of CCR representations discussed in [66].
We define the coherent state operator14

W[ f`] ≡ exp

(∫
d3k

(2π)32|k|

[∑̀
=±

f`(. . . ,k, t)a†`(k) − h.c.

])
(7.18)

which formally obeys

W[ f`]W[g`] = exp

(∑̀
=±

∫
d3k

(2π)32|k|
(
g∗` f` − f ∗` g`

))
W[g`]W[ f`]. (7.19)

Note that this is the same definition as equation (3.49), but with vanishing IR cutoff,
λ → 0. By functionally differentiating this equation with respect to f` and g∗` at
f` = g∗` = 0 we see that the operators a†

`
(k) and a`(k) obey the standard CCR. If

f`,g` are elements of Hγ the integrals in equation (7.19) converge and we obtain
a representation on H⊗(0) which consists of all states equivalent to the photon
vacuum |0〉 =

⊗
n |0n〉. This is the standard Fock representation. It is clear that

any operator of the form W[h`] with h` ∈ Hγ is a unitary operator on Fock space.
To obtain other representations we need to find operators which obey equation

(7.19) on an IDPSH⊗(ψ) which is not weakly equivalent to Fock spaceH⊗(0). (It
was shown in [98] that commutation relation representations on weakly equivalent

14To make contact with the previous definition in terms of modes n, we need to expand f` in a basis
en of the space of wavefunctions and define an ∼

∫
d3ken(k)a`(k) to be the annihilation operator on

Hn.
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IDPS are unitarily equivalent.) Consider the space of functions Aγ defined by∑̀∫
d3k

(2π)32|k|
|k| + 1
|k|
| f`(k)|2 < ∞. (7.20)

Functions which obey this inequality are still dense in Hγ. The dual vector space
A∗γ, taken with respect to the inner product, equation (7.17), consists of functions
for which ∑̀∫

d3k
(2π)32|k|

|k|
|k| + 1

| f`(k)|2 < ∞ (7.21)

and 〈g | f 〉 is well defined for all g ∈ A∗γ and f ∈ Aγ. Let us define the state
|h〉 = W[h`] |0〉, where h` lies inA∗γ, but not inAγ. SinceW[h`] formally diverges,
the state |h〉 is inequivalent to the photon vacuum |0〉 (even weakly). This time,
operators W[ f`] with f` ∈ Hγ do not yield a representation of the CCR on H⊗(h),
since

〈h|W[ f`] |h〉 = exp
(
−

1
2

∫
d3k

(2π)32|k|
| f` |2

)
exp

(∫
d3k

(2π)32|k|
(
h∗` f` − f ∗` h`

) )
(7.22)

and the integral in the argument of the second exponential will generally diverge.
Here, we left the sum over ` implicit. However, if we choose f` ∈ Aγ, the phase
converges and we obtain a representation, this time on the separable space H⊗(h)
which can be obtained from Fock space by the formally unitary operator W[h].
These are the representations we will need in the following.
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7.3 Asymptotic time-evolution and definition of the
S-matrix

7.3.1 The naive S-matrix

In the standard treatment of scattering in quantum field theory, one defines the
S-matrix as

Sβ,α ' lim
t′/t′′→∓∞

〈β | e−iH(t
′′−t′) |α〉 . (7.23)

However, already in free theory it is clear that the limits t ′ → −∞ and t ′′ → ∞

do not exist due to the oscillating phase at large times. More carefully we take the
states |α〉in /|β〉out at some fixed times ti/ f and define the S-matrix as

Sβ,α = lim
t′/t′′→∓∞

out 〈β| eiH0(t
′′−t f )e−iH(t

′′−t′)e−iH0(t
′−ti ) |α〉in . (7.24)

H0 is the free Hamiltonian in which the mass parameter takes its physical value. At
times later (earlier) than t f (ti) we assume that all particles are well separated such
that their time-evolution can approximately be described by the free Hamiltonian.
The contribution to phase factors coming from the renormalized Hamiltonian H =

H0 + Hint cancels the one coming from the free evolution as t ′, t ′′→ ∓∞.
However, it is well known that the free-field approximation is not valid for QED

even at late times, since the interaction falls off too slowly. Mathematically, the
problem is that the expression for the S-matrix, equation (7.24), does not converge
[54]. Physically, the issue is that massless bosons given rise to a conserved charge
(e.g., electric charge in QED or ADM mass in gravity) which can be measured at
infinity as an integral over the long range fields. Turning off the coupling completely
at early and late times, no field is created. In this chapter we use canonically
quantized QED in Coulomb gauge. One might argue that the conserved charge is
already taken into account by the solution to the constraint equation, which creates
a Coulomb field around the source. However, for all but stationary particles, this
is not the correct field configuration. Well-separated particles with non-vanishing
velocity should be accompanied by the correct Liénard-Wiechert field which differs
from the Coulomb field by transverse off-shell modes. Again, these modes can only
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be excited if the coupling is not turned off completely.

7.3.2 The asymptotic Hamiltonian

In order to understand which terms of the full Hamiltonian remain important at
early and late times, let us approximate how the states evolve if they do not in-
teract strongly for a long time. We ignore all UV issues, which are dealt with by
using renormalization, and consider the normal ordered version of the interaction
Hamiltonian,

Hint ∼ −e
∫

d3x : ψ̄γiψ : (x) · Ai(x) +
∬

d3xd3y
: ψ†ψ(x)ψ†ψ(y) :

4π |x − y|
. (7.25)

In the asymptotic regions it is then assumed that the fields, masses and couplings
take their physical values instead of the bare ones. In [65] it was shown that at
late times coupling to long-wavelength photon modes still remain important. Here
we will take a slightly different route to arrive at the exact same expression for the
asymptotic Hamiltonian, i.e., the Hamiltonian which approximates time evolution
at very early and late times.

The normal ordered current in the interaction picture in momentum space is
given by

: jµ(x) :∼ e
∑
s,t

∬
d3pd3q
(2π)64EpEq

(
b†s(p)bt (q)us(p)γµut (q)e−i(p−q)x

−d†t (q)ds(p)vs(p)γ
µvt (q)ei(p−q)x + . . .

)
,

(7.26)

where we have omitted terms proportional to b†s(p)d†t (q) and bt (q)ds(p). They
correspond to pair creation or annihilation with the emission or absorption of a high
energetic photons. In the asymptotic regions it should be a reasonable assumption
to ignore these effects. Generally, we do not want external momenta to strongly
couple to the current. Thus we restrict the integral over q to a small shell around
p and set p = q everywhere except in the phases. After a Fourier transform and
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keeping only leading order terms in |k| we obtain the asymptotic current,

: jµas(k, t) : ∼ e
∑
s

∫
d3p

(2π)32Ep

pµ

Ep

(
b†s(p)bs(p) − d†s (p)ds(p)

)
e−ivpkt

∼ e
∫

d3p
(2π)32Ep

pµ

Ep
ρ(p)e−ivpkt,

(7.27)

where we have defined ρ(p) =
∑

s

(
b†s(p)bs(p) − d†s (p)ds(p)

)
and vp = p/Ep. At

late and early times, the free Hamiltonian in equation (7.24) should thus be replaced
by the time-dependent asymptotic Hamiltonian,

Has(t) = H0 + Vas(t), (7.28)

which is obtained by replacing the current with the asymptotic current. The inter-
action potential Vas(t) which replaces the interaction Hamiltonian is given in the
interaction picture by

Vas(t) = −
∫
IR

d3k
(2π)3

(
: ji(−k, t) : Ai(k, t) −

1
2|k|2

: j0(k, t) j0(−k, t) :
)
. (7.29)

The domain of integration is restricted to soft momenta. The first term describes
the coupling of transverse photon degrees of freedom to the transverse current,

V (1)as (t) = −
∫
IR

d3k
(2π)32|k|

ji(k, t)
[
ε∗i` (−k)a`(−k)e−i |k |t + εi`(k)a

†

`
(k)ei |k |t

]
,

(7.30)

with a sum over the spatial directions i implied. The second term,

V (2)as (t) =
e2

2

∫
d3p

(2π)32Ep

∫
IR

d3k
(2π)3

1
|k|2

: ρ(p) j0(q, t) : e−ivpkt, (7.31)

gives the energy of a charge in a Coulomb field created by a second charge.
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7.3.3 The dressed S-matrix

In the spirit of equation (7.24) we define the dressed S-matrix as an operator which
maps the asymptotic Hilbert space of incoming statesHin to the asymptotic Hilbert
space of outgoing states Hout,

S = lim
t′/t′′→∓∞

Te−i
∫ t f

t′′
dtHas(t)e−iH(t

′′−t′)Te−i
∫ t′

ti
dtHas(t), (7.32)

where T denotes time-ordering. It seems plausible that in the case of QED this
expression has improved convergence over equation (7.23), since Has takes into
account the asymptotic behavior of H.15 In order to simplify the expression
for the S-matrix and relate it to the standard expression, we insert the identity,
1 = e−iH0(t

′′−t f )eiH0(t
′′−t f ) and 1 = e−iH0(t

′−ti )eiH0(t
′−ti ), between the time ordered

exponentials and the full time evolution. We then obtain

S = lim
t′/t′′→∓∞

U(t f , t ′′) S U(t ′, ti), (7.33)

where S = eiH0(t
′′−t f )e−iH(t

′′−t′)e−iH0(t
′−ti ) reduces to the usual S-matrix in non-

dressed formalisms once the limits are taken. The unitaries U(t1, t0) obey the
differental equation

i
∂

∂t1
U(t1, t0) = Vas(t1)U(t1, t0), (7.34)

where Vas is in the interaction picture and given by equation (7.29). The solution to
this is standard16

U(t1, t0) = Te
−i

∫ t1
t0

dtVas(t)
. (7.35)

15It has been conjectured in [91] that a similar expression in the context of the Nelson model
converges. However, other work [99] indicates that there might be subleading divergences coming
from current-current interactions.

16See, e.g., chapter 4.2 of [53].
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We can bring this into an even more convenient form [65] by splitting U(t1, t0) in
the following way,

U(ti, t0) = Te
−i

(∫ ti
ti−ε
+· · ·+

∫ t0+ε
t0

)
dtVas(t)

= Te−i
∫ ti
ti−ε

dtVas(t) . . . e
−i

∫ t0+ε
t0

dtVas(t)

= Te−i
∫ ti
ti−ε

dtVas(t) . . . Te
−i

∫ t0+ε
t0

dtVas(t)
.

(7.36)

In the limit ε → 0 we can remove the time-ordering symbols. Since [Vas(t),Vas(t ′)]

only depends on ρ(p) which commutes with all operators we can use the Baker-
Campbell-Hausdorff formula eAeB = eA+Be1/2[A,B] to combine the exponentals
into

U(ti, t0) = e
−i

∫ ti
t0

dtVas(t)e
− 1

2
∫ ti
t0

dt
∫ t

t0
dt′[Vas(t),Vas(t

′)]
. (7.37)

The first factor couples currents to the transverse electromagnetic potential and also
contains the charge-charge interaction given in equation (7.31). The second factor
makes sure that U(t2, t1)U(t1, t0) = U(t2, t0). We are interested in the limit where
t0 → −∞. In this case the second factor can be calculated as follows. Since the
density ρ(p) commutes with all operators present in the asymptotic potential, the
only relevant contributions to the commutator come from the photon annihilation
and creation operators. The unequal-time commutator of the asymptotic potential
with itself is given by

[Vas(t),Vas(t ′)] =
∫
IR

d3k
(2π)32|k|

j⊥as(−k, t)j⊥as(k, t ′)
(
ei |k |(t

′−t) − e−i |k |(t−t
′)
)
, (7.38)

with the transverse current j⊥,i(k, t) =
∑
` ε

i∗
`
(k)ε j

`
(k)jj(k, t). We can now perform

the integral over t ′ and drop the boundary conditions as t = −∞ knowing that in
any final calculation they will be canceled by the corresponding term coming from
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the full Hamiltonian. The result is

H⊥c (t) = −
1
2

∫ t

−∞

dt ′[V(t),V(t ′)]

=
i
2

∫
IR

d3k
(2π)32|k|

∫
d3p

(2π)32Ep

vp −
k(k·vp)

|k |2

|k| − k · vp

×

[
: ρ(p)jas(−k, t) : e−ikvpt + h.c.

]
,

(7.39)

where we have used that ρ(p) : jas(−k, t) :=: ρ(p) jas(−k, t) : up to terms that
are renormalized away [65]. This corrects the phase due to the Coulomb energy,
equation (7.31), to

eiΦ(t) ≡ ei
∫ t

−∞
dt′(Hc (t

′)+H⊥c (t
′)), (7.40)

which gives the phase due to the energy of a charge in the Liénard-Wiechert field
of another charge. The total asymptotic time evolution takes the form

U(−∞, ti) = eiΦ(t)ei
∫ t

−∞
dt′V

(1)
as (t

′). (7.41)

An analogous expression follows for U(t f ,∞), where we have to drop the boundary
terms at t = ∞.

7.4 Construction of the asymptotic Hilbert space

7.4.1 The asymptotic Hilbert space

We can finally discuss the asymptotic Hilbert space. For now, we will ignore
free photons and moreover focus on a single particle. The generalization to many
particles and the inclusion of free photons is straight forward and will be done
later. We require that our asymptotic states evolve with the asymptotic Hamiltonian
instead of the free one. Naively, we might be tempted to think that our asymptotic
particle agrees with a free field excitation at some time t. However, as discussed in
the previous section, if our field couples to a massless boson this will generally not
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be correct. Given a charged excitation of momentum p we define

‖p〉〉inp ≡ U(ti,−∞)(|p〉in ⊗ |0〉)

≡ |p〉in ⊗W[ f in` (p,k, t)] |0〉 .
(7.42)

The state |p〉in is a free field fermion Fock space state defined at time ti and |0〉 is
the photon Fock space vacuum. U(ti,−∞) was given in equation (7.41) and does
not change the matter component of the state. We can therefore write its action
as an operator on the photon Hilbert space, W[ f in` ], with W[ · ] given in equation
(7.18). In (7.41), we have dropped the boundary term at −∞. This is analogous
to the standard procedure one uses to get the electric field of a current at a time
t from the retarded correlator. The subscript in equation (7.42) indicates that the
asymptotic Hilbert space containing the state ‖p〉〉inp is

Has = Hm ⊗H⊗( f in` (p,k, ti)), (7.43)

whereHm is the standard free fermion Fock space and H⊗( f in` (p,k, ti)) is an incom-
plete direct product space which carries a representation of the canonical commu-
tation relations for the photon as explained in the previous subsection. Performing
the integral in U(ti,−∞), we can determine f in` (p,k, ti) to be

f in` (p,k, t) = −e
p · ε`(k)

p · k
θ(kmax − |k|)e−iv ·kti . (7.44)

Here, pµ and kµ are on-shell and vµ = pµ/Ep. The Heaviside function makes sure
that only modes with wave number smaller than kmax are contained in the dressing.
Analogously, we can construct out-states as

‖p〉〉outp ≡ U(t f ,∞)(|p〉out ⊗ |0〉)

≡ |p〉out ⊗W[ f out` (p,k, t)] |0〉 ,
(7.45)

and

f out` (p,k, t f ) = −e
p · ε`(k)

p · k
θ(kmax − |k|)e−iv ·kt f = f in` (p,k, t f ). (7.46)
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In the following, we will leave the sum over ` and the dependence of f`(p,k, t) on
k and t implicit. It can be checked by power counting that the exponent of

〈0|W[ f in` (p)] |0〉 = exp

(
−

1
2

∑̀∫
d3k

(2π)32|k|
| f in` (p)|

2

)
(7.47)

is IR divergent, so W[ f in` (p)] is not a unitary operator on Fock space. It can also
be checked that W[ f in` (p)] obeys equation (7.21) so that the commutation relation
representation is inequivalent to the Fock space representation. On the other hand
W[ f out` (p) − f in` (p)] is a unitary operator on any representation since its argument
is inAγ, defined through equation (7.20). This operator maps in-states to out-states
and it follows thatH⊗( f (p)out` ) = H⊗( f (p)in` ). Since the Hilbert spaces are related
by unitary time-evolution using the asymptotic Hamiltonian, in the following we
will oftentimes drop the in and out labels on the states. Equivalently we can set
ti = t f = T without affecting any argument in the following.

The coherent state of transverse modes in equation (7.42) which accompanies
the matter field |p〉in is not a cloud of on-shell photons. The reason is that the
time-dependence of f in` (p) modifies the dispersion relation of the modes created
by this coherent state from Ek = |k| to Ek = kv. To understand the role of these
modes consider the expectation values of the four-potential in such a dressed state,

〈〈p‖A0‖p〉〉 =
∫

d3k
(2π)3

1
|k|2
〈〈p‖ j0(k, t)‖p〉〉eikx, (7.48)

〈〈p‖A‖p〉〉 = e
∫ kmax

0

d3k
(2π)32|k|

vp −
k(k·vp)

|k |2

|k| − k · vp

[
eik(x−vpt) + h.c.

]
〈〈p‖p〉〉. (7.49)

The expectation value of A agrees with the classical 3-vector potential of a point
charge moving in a straight line with velocity vp at long wavelength which passes
through x = 0 at t = 0,

jµ(k, t) = evµe−ivpkt . (7.50)

In otherwords, the dressed state constructed above obeysEhrenfest’s theoremat long
wavelengths. If we had not dressed the state, we would have found 〈〈p‖A‖p〉〉 = 0
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and the corresponding electric field would have been only the Coulomb field of a
static charge.17

Given two momenta p , q, the Hilbert spacesH⊗( f in` (p)) andH⊗( f
out
` (q)) are

inequivalent. To see this, note that W̃ ≡ W[ f out` (q)]W
†[ f in` (p)]mapsH⊗( f in` (p)) to

H⊗( f in` (q)) and up to a phase equals W̃ = W[ f in` (q) − f in` (p)]. If the Hilbert spaces
were equivalent, W̃ would have to be a unitary operator on H⊗( f in` (p)). However,
it is easy to see that f in` (q) − f in` (p) does not obey (7.20) and thus the two Hilbert
spaces cannot be equivalent.

Since we have started with the claim, that we want all in- and out-states to be
elements of the Hilbert space (7.43), it seems our program has failed. However,
this is too naive. Assume we scatter an initial state ‖p〉〉p off of a classical potential.
Our outgoing state will be a superposition of different momentum eigenstates.
However, the state ‖q〉〉q will not be part of this superposition. A scattering process
produces an infinite number of long-wavelength photons as bremsstrahlung, but
‖q〉〉q contains no such radiation. The IR part of the classical radiation field
produced during scattering from momentum p to q is created by a coherent state
operator

R(p, q̄) ≡ W[ f rad` (p,k, t) − f rad` (q,k, t)]

= W[ f rad` (p,k, t)]W
†[ f rad` (q,k, t)]

(7.51)

with

f rad` (p,k) =
ep · ε`(k)

p · k
g(|k|) ≈ − f in` (p,k,0). (7.52)

The bar in the definition of R(p, q̄) denotes that the terms containing q come with
a relative minus sign. Here, g(|k|) is a function which goes to 1 as |k| → 0 and
can be chosen at will otherwise. Thus the state which is obtained by scattering an
excitation with momentum p into an excitation with momentum q plus the long
wavelength part of the corresponding bremsstrahlung is given by

‖q〉〉p ≡ |q〉 ⊗W[ f in` (q)]R(q, p̄) |0〉 (7.53)

17In the case of a plane wave the charge distribution is smeared over all of space.
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up to a finite number of photons. This state contains the field of the state ‖q〉〉q as
well as the radiation produced by scattering the state ‖p〉〉p to momentum q at long
wavelengths.

The operator W[ f in(q)]R(p, q̄) again is not a unitary operator on any CCR
representation. However, the combination

W[ f out` (q)]R(q, p̄)W
†[ f in` (p)] (7.54)

converges on Fock space. The convergence up to phase is easy to see since up to
a phase, equation (7.54) equals W[ f out` (q) + f rad` (q) − f in` (p) − f rad` (p)] and since
the function in the argument vanishes as |k| → 0 it clearly satisfies equation (7.20).
It is an easy exercise to prove that the phase is also convergent. We will give an
example below. This shows that the states ‖p〉〉p and ‖q〉〉p live in the same subspace
H⊗( f in` (p)). Moreover, all states which are physically accessible from ‖p〉〉p must
contain radiation. States of the form ‖q〉〉p are constructed to precisely contain the IR
tail of the classical radiation. Hence, all single fermion states which are physically
accessible take the form of equation (7.53) up to a finite number of photons and thus
live in the same separable IDPS. With the appropriate dressing, also multi-fermion
states and thus all physically accessible states live in this subspace. Note that this
structure is different to existing constructions [65, 66, 95], where an out-state is
generally a superposition of vectors from inequivalent subspaces ofH⊗.

7.4.2 Multiple particles and classical radiation backgrounds

The generalization to multiple particles is straight forward. Given a state which
contains multiple charges with momenta p1,p2, . . . , the operator U†(ti,−∞) acts on
the photon state as18

W

[∑
i

f in` (pi)

]
(7.55)

and maps the Fock space vacuum into a a different separable Hilbert space,
H⊗(

∑
i f in` (pi)), which acts as our asymptotic photon Hilbert space. Similarly,

18In the case of multiple particle species with different charges, we should replace e → ei in the
definition of f in

`
(p).
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we can define a coherent state operator

R(p1,p2, . . . ; q1,q2, . . . ) (7.56)

which lets us define states

‖q1,q2, . . .〉〉 {p1,p2,... } ∈ H⊗

(∑
i

f in` (pi)

)
, (7.57)

which contain particles with momenta q1,q2, . . . and the appropriate bremsstrah-
lung produced by scattering charged particles of momenta {p1,p2, . . . } to charged
particles of momenta {q1,q2, . . . }. Up to a finite number of additional photons all
out states will be of this form.

We can also incorporate classical background radiation described by

A0 = 0 (7.58)

A =
∫

d3k
(2π)32|k|

[
h`(k)eikx + h.c.

]
(7.59)

with lim |k |→0 |k|h`(k) = O(1), i.e., backgrounds which contain an infinite number
of additional infrared photons. In the presence of charged particles with momenta
p1,p2, . . . the corresponding asymptotic Hilbert space is H⊗(h` +

∑
i f in` (pi)).

7.4.3 Comments on the Hilbert space

The construction presented in this chapter has a number of properties which are
known to be realized in theories with long range forces in 3 + 1 dimensions.

Existence of selection sectors

The existence of selection sectors in four-dimensional QED and gravity is well
established [26, 100] and has recently been rediscovered [29]. In the present
construction, the choice of selection sector corresponds to a choice of representation
of the canonical commutation relations on a separable Hilbert spaceH⊗(ψ) ⊂ H⊗.
That these are indeed selection sectors will be shown in the next section where we
prove that S is unitary.
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Charged particles as infraparticles

It was shown in [96, 100, 101] that there are no states in QED (or more generally in
theories with long range forces), which sit exactly on the mass-shell p2 = −m2. Our
construction reproduces this behavior. Although P · P‖p〉〉p = −m2‖p〉〉p, the state
is not non-normalizable.19 A normalizable state must be built from a superposition
of different states ‖q〉〉p. However, any other state in H⊗( f in` (p)) contains extra
photons and thus cannot be on the mass-shell p2 = −m2. Also note that in [3] it
was argued that consistent scattering of wavepackets in theories with long range
forces in four dimensions requires to take superpositions of particle states including
photons.

Spontaneous breaking of Lorentz invariance

The spontaneous breaking of Lorentz invariance in QED has already been noted
in [100, 102] (see also [103]). In our construction, there is an infinite number of
possible H⊗(ψ) one can choose from. This choice spontaneously breaks Lorentz
invariance. The states ‖p〉〉p and ‖q〉〉q describe boosted versions of the same config-
uration, namely a charged particle in the absence of radiation. However, as shown
above they live in inequivalent representations. Thus, a Lorentz transformation can-
not be implemented as a unitary operator on H⊗( f in` (p)). An analogous argument
applies for any configuration of charged particles p1,p2, . . . .

7.5 Unitarity of the S-matrix
The form of the S-matrix follows from equation (7.32),

S = U(t f ,∞) S U†(ti,−∞), (7.60)

with U(t1, t0) given in equation (7.37). The operator S is the textbook S-matrix.
Comparing to equation (7.42) we see that the role of the operators U(t f ,∞),
U†(ti,−∞) is to remove the part of the dressing which corresponds to the clas-
sical field. Thus, the off-shell dressing U(ti,−∞) in the definition of the asymptotic
states, equation (7.53), can be ignored whenever we are calculating S-matrix ele-

19P is the 4-momentum operator.
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ments.
Consider the action of the dressed S-matrix on ‖p1,p2, . . .〉〉 { f̀ } ∈ H⊗( f`). We

establish unitarity on H⊗( f`) by showing that dressed S-matrix elements between
states with given f` are finite, as well as that dressed S-matrix elements between
states of different separable subspaces, i.e., various f`, f̃` with different IR asymp-
totics vanish. Unitarity then follows from unitarity of U in the von Neumann space
sense and unitarity of S.

For the sake of clarity we will neglect the possibility of a classical background
radiation field in the following. Taking this possibility into account corresponds to
acting with some coherent state operator R̃ on the Fock space vacuum and does not
affect the proof. We take an otherwise arbitrary, dressed in-state

‖in〉〉 = |p1, . . .〉 ⊗W[ f in` (p1) + . . . ]R(p1, . . . ; q1, . . . ) |k1, . . .〉 (7.61)

and similarly define a general out-state

‖out〉〉 = |p′1, . . .〉 ⊗W[ f out` (p
′
1) + . . . ]R(p

′
1, . . . ; q1, . . . ) |k′1, . . .〉 . (7.62)

Both states are elements of H⊗(
∑

i f`(qi)). For ease of notation, we will omit the
ellipses . . . and indices in the following. The S-matrix elements take the form

Sout,in = 〈〈out‖U(t f ,∞)SU†(ti,−∞)‖in〉〉

=
(
〈p′ | ⊗ 〈k′ | R†(p; q)

)
S

(
|p〉 ⊗ R(p; q) |k1〉

)
.

(7.63)

It was conjectured in [77] and shown in [78] (see also [3]) that we can move
dressings through the S-matrix without jeopardizing the IR-finiteness. We can
therefore move all qi dependent terms on one side and obtain

〈〈out‖R†(p′; q)SR(p; q)‖in〉〉 = 〈〈out‖R(q; p′)SR(p; q)‖in〉〉

= 〈〈out‖R(0; p′)SR(p; 0)‖in〉〉 + (finite).
(7.64)
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Hence, the divergence structure of the matrix element is the same as the one of

Sout,in ∼
(
〈p′1, . . .| ⊗ 〈k

′
1, . . .| R

†(p′1, . . . ; 0)
)

S
(
|p1, . . .〉 ⊗ R(p1, . . . ; 0) |k1, . . .〉

)
.

(7.65)

However, these are just Faddeev-Kulish amplitudes which are known to be IR finite
[65].

Let us now show that if ‖p1, . . .〉〉q1,... and ‖p
′
1, . . .〉〉q′1,...

live in inequivalent
representations, the matrix element vanishes. We again omit the ellipses and
indices. Consider

Sout′,in = 〈〈out‖U(t f ,∞)SU†(ti,−∞)‖in〉〉 (7.66)

=
(
〈p′ | ⊗ 〈k′ | R†(p′; q′)

)
S

(
|p〉 ⊗ R(p; q) |k〉

)
. (7.67)

Moving the dressing through the S-matrix, we find that up to finite terms

Sout′,in ∼ 〈out′ | R(q′,q)R†(p′; 0)SR(p; 0) |in〉 . (7.68)

The previous proof showed that R†(p′; 0)SR(p; 0) is a unitary operator on Fock
space. Further, it can be shown that R(q′,q) vanishes on Fock space if q1, · · · ,

q′1, . . . [1]. Therefore we can conclude that the S-matrix element vanishes and have
shown that the S-matrix is a stabilizer of the asymptotic Hilbert spaces defined in
section 7.4.

7.6 Example: Classical current

7.6.1 Calculation of the dressed S-matrix

The formalism devised in the preceding sections can be used to investigate the time
dependence of decoherence in scattering processes. A simple example can be given
by considering QED coupled to a classical current jµ(x). The current enters with
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momentum p and at xµ = xµ0 is deflected to a momentum p′,

jµ(x) = e
∫ ∞

0
dτ

p′µ

m
δ(4)

(
xµ − xµ0 −

p′µ

m
τ

)
+ e

∫ 0

−∞

dτ
pµ

m
δ(4)

(
xµ − xµ0 −

pµ

m
τ

)
.

(7.69)

We assume that initially no radiation is present and the current is carried by an
infinitely heavy particle. The initial state of the transverse field excitations is not
the Fock vacuum but ‖in〉〉 = W[ f in` (p)] |0〉, which is the vacuum of the CCR
representation H⊗( f in` (p)). This state represents a situation in which the classical
field of the current jµ is present at wavelengths longer than the inverse mass. Since
we deal with an infinitely massiv source, the integrals are taken over all of values
of k. The IR divergent Fock space S-matrix in the presence of a current can be
calculated explicitly, see e.g., [52], and is given by

S = R(q,p) = W[ f rad` (q,k) − f rad` (p,k)]. (7.70)

According to our prescription, the dressed S-matrix is given by

S = W[ f out` (q,k, t f )] S W†[ f in` (p,k, ti)]. (7.71)

The out state is given by ‖out〉〉 = S ‖in〉〉 and contains the radiation field produced
by the acceleration as well as a correction to the Coulomb field which depends on
the outgoing current. Combining everything, the dressed S-matrix becomes

S = W[ f S` (p,q,k, ti, t f )] exp
(
ie2

∫
d3k

(2π)32|k|
Φ(k,q,p)

)
(7.72)
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with

f S` (p,q,k, t) =e
(

q · ε`(k)
q · k

(1 − eivq ·kt f ) −
p · ε`(k)

p · k
(1 − eivp ·kti )

)
,

Φ(k,q,p) =
(

q⊥

q · k
−

p⊥

p · k

) (
q⊥

q · k
sin(vq · kt f ) +

p⊥

p · k
sin(vp · kti)

)
+

q⊥

q · k
p⊥

p · k
sin

(
(t f vq − tivp) · k

) (7.73)

The superscripts on the momentum vectors p⊥ ≡ P⊥(k̂)p denote the part of p
which is perpendicular to k. The projection operator P⊥(k̂) arises from the sum
over polarizations, P⊥(k̂) =

∑
`=± ε

∗
`(k)ε`(k). From here it is easy to see that as

|k| → 0, f S
`
has no poles and Φ only goes like |k|−1. Therefore, S is a well defined

unitary operator.

7.6.2 Tracing out long-wavelength modes

A big advantage of formulating scattering in terms of the dressed states introduced
above is that it allows an IR divergence free definition of the trace operation the on
asymptotic Hilbert space. The trace operation is inherited from Fock space. For
example, a basis for the Hilbert space of photon excitations in H⊗( f in` (p)) is given
by

W[− f rad` (p)] |0〉 ,W[− f rad` (p)]a
†

`′
(k) |0〉 ,

. . . ,W[− f rad` (p)]
1
√

n!

(
a†
`′
(k)

)n
|0〉

(7.74)

Wecould have chosen any other f̃`(p,k, t) in place of f rad` as long as limk→0 |k| f in` (p,k, ti) =
limk→0 |k| f̃`(p,k, t). For example we could have chosen f̃`(p,k, t) = f out` (p,k, t f ),
since the trace is invariant under a change of basis.

As an example, let us consider a superposition of fields created by classical
currents, i.e., the outgoing state is

‖out〉〉 =
1
√

2N

(
Wq1 +Wq2

)
|0〉 , (7.75)
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where

Wqi ≡ W[ f out` (qi,k, t)] W[ f rad` (qi,k) − f rad` (p,k)] (7.76)

and N is given by

N = 1 + Re
(
〈0|W†q1Wq2 |0〉

)
. (7.77)

In order to calculate the reduced density matrix we split the dressing Wqi = W IR
qi
+

WUV
qi

into a part we will trace over (IR) and the complement (UV). The “IR” part
contains all modes with wavelength longer than some cutoff Λ, which is smaller
than kmax. The reduced density matrix obtained by tracing over “IR” then becomes

ρUV =
1
N

(
WUV

q1 |0〉 〈0|W
UV†
q1 + 〈0|W IR†

q2 W IR
q1 |0〉 WUV

q1 |0〉 〈0|W
UV†
q2 (7.78)

+ (q1 ↔ q2)
)
. (7.79)

We see that the off-diagonal elements are multiplied by a factor of 〈0|W IR†
q2 W IR

q1 |0〉
which is responsible for decoherence. A similar dampening factor already appeared
in chapter 5. There, the calculation was done for Faddeev-Kulish dressed states and
it was shown that the dampening factor has an IR divergence in its exponent which
makes it vanish, unless q1 = q2. As we will see, using the dressing devised in this
chapter, the dampening factor is IR finite for finite times.

The magnitude of the dampening factor is simply the normal-ordering constant
of W IR†

q2 W IR
q1 which is given by

exp

(
−

1
2

∫
d3k

(2π)32|k|

∑̀
=±

| f 1
` − f 2

` |
2

)
(7.80)

with

f i` (qi,k, t) = e
qi · ε`(k)

qi · k
(1 − e−iv ·kt ). (7.81)

We can rearrange the terms proportional to | f i |2. We go to spherical polar coordi-
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nates and separate the |k| integral to find∫
d3k
2|k|

∑̀
=±

| f i` |
2 = e2

∫
d2
Ω

q⊥i q⊥i
(qi · k)2

∫ Λ

0

d |k|
|k|

sin2
(
|k|
(−vi · k̂)

2
t
)

(7.82)

The |k| integral can be performed and the result can be expressed in terms of
logarithms and cosine integral functions Ci(x).∫ Λ

0

d |k|
|k|

sin2
(
|k|
(−vi · k̂)

2
t
)

=
1
2

(
log(Λt) + γ + log(|vi · k̂ |) − Ci(Λt |vi · k̂ |)

)
.

(7.83)

Here, γ is the Euler-Mascheroni constant. Using Ci(x) ∼ γ + log(x) + O(x2) for
small x, we see that at Λ, t = 0 the exponent vanishes. The |k| integral for the
cross-term involving f 1

` and f 2
` is only slightly more complicated and can also be

performed. One finds∫
d3k
2|k|

∑̀
=±

Re( f 1∗
` f 2

` )

= 2e2
∫

d2
Ω

q⊥1 q⊥2
(q1 · k̂)(q2 · k̂)

∫ Λ

0

d |k|
|k|

sin
(
|k|
(−v1 · k̂)

2
t
)
×

sin
(
|k|
(−v2 · k̂)

2
t
)

cos
(
|k|
(−(v1 − v2) · k̂)

2
t
) (7.84)

The integral evaluates to

1
4

(
2 log(Λt) + γ + log(|v1 · k̂ |) + log(|v2 · k̂ |) − log(Λt |(v1 − v2) · k̂ |)

−Ci(Λt |v1 · k̂ |) − Ci(Λt |v2 · k̂ |) + Ci(Λt |(v1 − v2) · k̂ |)
)
.

(7.85)

Clearly, as t → 0 the dampening factor becomes zero and no decoherence takes
place. This is sensible is the example at hand, where we have assumed that the
current changes direction at t = 0. Different to the situation in [1], the density
matrix is well defined even without an IR cutoff. In any real experiment we
measure the field at very late times after the scattering process has happened and
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all wavelengths shorter than those that will be traced out had enough time to be
produced, i.e., Λt � 1. In this limit, the integrals are dominated by the logarithms.
Furthermore, we need to keep the term which contains Ci(Λt |(v1 − v2) · k̂ |) − γ,
since the cosine integral diverges as v1 → v2 and k̂ ⊥ v1,v2.

Similarly, the phases of the off-diagonal terms in the density matrix can be
calculated. Since we only have a single charge present, the Coulomb interactions
Hc + H⊥c does not contribute anything to the phase. The only contributions come
from the normal ordering of the coherent state operators. After some cancellations
and performing the integration over |k| we obtain

exp
(
i

e2

2(2π)3

∫
d2
Ω

q⊥1 q⊥2
(q1 · k̂)(q2 · k̂)

Si(Λt(v1 − v2)k̂)
)
. (7.86)

Thus, at late times, the dampening factor becomes

〈0|W IR†
q2 W IR

q1 |0〉 = (Λt)−A1 eA2(Λ,t) (7.87)

with

A1 =
e2

2(2π)3

∫
d2
Ω

( q⊥1
q1 · k̂

−
q⊥2

q2 · k̂

) ( q⊥1
q1 · k̂

−
q⊥2

q2 · k̂

)
(7.88)

A2(t,Λ) = −
e2

2(2π)3

∫
d2
Ω

q⊥1 q⊥2
(q1 · k̂)(q2 · k̂)

(
Ci(Λt |(v1 − v2) · k̂ |)

− iSi(Λt(v1 − v2) · k̂) − γ − log(Λt |(v1 − v2) · k̂ |)
)
.

(7.89)

This is consistent with earlier results obtained in [85, 95]. The appearance of
the factor A2 makes the decoherence rate for particles milder than suggested by the
term which only depends on A1. The qualitative behavior at infinite times, however,
reproduces exactly what has been found before based on calculations which only
take the emitted radiation into account, namely that any reduced density matrix
decoheres in the infinite time limit.
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7.7 Conclusions
In this chapter we presented a construction of an infinite class of asymptotic Hilbert
spaces which are stable under S-matrix scattering with a unitary, dressed S-matrix.
The major improvement over existing work is that all asymptotic states live in the
same separable Hilbert space with a single representation of the photon canonical
commutation relations. Our construction relied on the fact that transverse IR
modes of the Liénard-Wiechert field are included in the definition of the asymptotic
states. This should be a good approximation if the included wavelengths are smaller
than any other scale in the problem. The construction enables an analysis of the
information content of IR modes in the late-time density matrix. As an example, we
studied a density matrix which describes a superposition of the field of two classical
currents. The reduced density matrix decoheres as a power law with time. The
increase of decoherence with time shows that the entanglement of charged particles
with infrared modes increases over time. The physical reason for the decoherence is
that at times t ∼ 1

Λ
we can tell apart on- and off-shell modes with wavelengths larger

than λ ∼ 1
Λ
. Since charged matter is accompanied by a cloud of off-shell modes

creating the correct momentum dependend electric field, this allows to identify
the momenta of the involved particles. One might argue that this is incompatible
with the picture of conserved charges from large gauge transformations (LGT)
(for a recent review see [25]). There it is argued that a photon vacuum transition
must happen since the soft charge generally changes during a scattering process.
However, in our approachwe take into account off-shell excitationswhich contribute
to the hard charge. The increase of decoherence with time can be understood as
learning to tell apart soft and hard charges as time goes on. Hence, in flat space
scattering, no information is stored in the LGT charges, but in the way the charge
splits between the hard and soft part.

This work leaves open some interesting questions. We have seen that near-zero
energymodes decohere the outgoing density matrix in the momentum basis. Unlike
in chapter 4, this decoherence happens although the scattering is fundamentally IR
finite. Furthermore, the decoherence cannot be avoided by chosing an appropriate
dressing, since we can only add radiation, i.e., on-shell modes, as additional dress-
ing. At zero energy there is no difference between on and off-shell modes, however,
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at finite times those can be distinguished which leads to decoherence. This opens
up the possibility that a similar mechanism at subleading order in the asymptotic
current could also decohere additional quantum numbers like spin. Moreover, al-
though we have constructed dressed states, we have not discussed how they can be
obtained by an LSZ-like formalism from operators. Due to the presence of long
wavelength modes of classical fields and radiation, the correct operators must be
non-local. Presumably there should be an infinite family of operators, similar to
the situation in [70, 71], for each Hilbert space which must contain radiative modes
in their definition. Filling in the details is left for future work.

Lastly, as motivated in the introduction, an extension of the presented ideas to
gravity would be desirable for a variety of reasons. While one might expect that a
generalization to linearized gravity should be fairly straight forward, an extension
beyond linear order will presumably more difficult. The discussion in the context
of gravity could be interesting in the context of the black hole information paradox:
We have seen that in our construction no information is stored in the zero-energy
excitations. This agrees with statements made in [45, 46]. However, bywaiting long
enough, charged matter can be arbitrarily strong correlated with near zero-energy
modes and those modes might store information. Tracing out the matter thus leaves
one with a completely mixed density matrix of soft modes, which might be related
to the ideas presented in [33]. The fact that “softness” is an observer-dependent
notion might aid arguments in favor of complementarity. Clearly, more work is
required to make these arguments more precise.

103



Part II

Quantum information in
quantum gravity
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Chapter 8

The AdS/CFT correspondence

8.1 Holography in string theory
While a complete understanding of quantum gravity in a four-dimensional de Sitter
universe, such as the one we live in, does not seem to be in reach, considerable
progress has been made in quantum gravity in anti-de Sitter spacetime. Based
on the early developments outlined in section 1.1, it was proposed that gravity is
holographic [104, 105], i.e., that the true degrees of freedom within a volume of
spacetime can be thought of as being encoded on a hypersurface of one dimension
less. The AdS/CFT correspondence is a duality between a gravitational theory in an
anti-de Sitter (AdS) spacetime and a conformal field theory (CFT) in one dimension
less, and therefore a concrete realization of the holographic principle.

8.1.1 AdS/CFT

In its generic form, the AdS/CFT duality relates a d-dimensional conformal field
theory CFTd to a gravitational theory on AdSd+1.20 One of the most prominent
examples of this duality is the conjecture that N = 4 Super Yang-Mills (SYM)
theory on four-dimensionalMinkowski space is dual to String theory on anAdS5×S5

background. This can be motivated by the following argument first posited in [12].

20The stringy origin of the gravitational side enables one to rewrite the gravitational theory as a
theory on AdSd+1× X where X is some compact internal space. The dimensions of X and the anti-de
Sitter space add up to 10 or 11.
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Ten dimensional type IIB string theory contains non-perturbative, 3+ 1 dimen-
sional hypersurfaces called D-branes. At weak coupling, the dynamics of these
objects can be described by open strings, whose ends are restricted to lie on the
branes. Consider a stack of N such D-branes. At low energies, the dynamics of this
system are described by two sectors: supergravity in ten-dimensional flat space and
four-dimensional N = 4 SYM theory with gauge group SU(N), which describes
the brane dynamics. At very low energies, these two sectors decouple.

At strong coupling, the branes backreact on the geometry and their low energy
description is a p-brane solution of ten-dimensional supergravity. In the low energy
limit, the dynamics of string theory on that background split into a sector away from
the branes which effectively lives in flat space and string theory close to the horizon
of the backreacted solution. Again, these sectors decouple.

The AdS/CFT conjecture identifies the theories at strong and weak coupling.
Both theories contain a decoupled sector of low energy supergravity in flat space.
The non-trivial statement is that the other sectors, namely N = 4 SYM theory and
string theory in the near-horizon region of the p-branes, should also be identified.
They are different descriptions of the same theory at different couplings.

The regime of validity of either description can be extracted from the above
argument. The Yang-Mills coupling constant in the gauge theory is given in terms
of the string coupling by g2

YM = 2πgs, while Newton’s constant on the AdS side is
given by GN = α

′4g2
s . The constant α′ is related to the string length via α′ = l2

s .
Lastly, the tension of the brane stack is given by N

gsα′2
. The characteristic length

scale we can build from these quantities is R4 = Ngsα
′2, which is proportional to

the curvature scale of the p-brane background, R4
AdS = 4πNgsα

′2.
The gravity description should be a good approximation at low curvature, i.e.,

if the radius of curvature is much bigger than the string length, 4πNgsα
′2 � α′2.

Moreover, the description of the gravitational theory as stringsmoving onAdS space
requires that the string scale is bigger than the Planck scale, i.e., l2

p ≡ gsl2
s < l2

s .
This tells us that the gravitational description should be valid if

N > Ngs � 1. (8.1)

The gauge theory description is valid in the opposite regime, Ngs < 1.
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8.1.2 The dictionary

More precisely, the duality states that the partition function of string theory on a
negatively curved space equals the partition function of a conformal theory in lower
dimensions which can be thought of as being located on the conformal boundary
of the AdS space [106, 107]. The partition functions of both theories agree,

〈exp
(∫

φ0O

)
〉CFT = ZGrav(φ0). (8.2)

Here, φ0 schematically denote the asymptotic value of fields φ in the gravity theory
with partition function ZGrav(φ0). The left-hand side is the partition function of
the dual conformal theory in which the φ0 play the role of sources for operators
O. The operator O which multiplies φ0 is called the dual operator to the field φ.
The equivalence of the partition functions allows one to translate quantities in the
conformal field theory to quantities in the dual gravitational theory. By taking
functional derivaties with respect to the sources we can express CFT correlation
functions in terms of derivatives of the gravity partition function.21 Alternatively,
we can choose the following prescription, known as the extrapolate dictionary.
Close to the boundary of AdS, a scalar field can be expanded as

φ = azd−∆ + . . . + bz∆ + . . . , (8.3)

where the boundary sits at z = 0. The value of φ0 is given by the coefficient
a, which defines a non-normalizable solution to the Klein-Gordon equation. The
normalizable solution with highest power z∆ has a leading coefficient b which is
related to the expectation value of the CFT operator dual to φ.

Similar arguments can be made for fields of higher spin. For example, the CFT
stress-energy tensor is the operator dual to the metric. One can choose coordinates
close to the boundary such that the metric takes the Fefferman-Graham form,

ds2 =
1
z2

(
−dt2 + dz2 + dxµdxµ + zdΓ(d)µν (x, z)dxµdxν

)
. (8.4)

21In order to obtain well-defined expressions free of divergences, holographic renormalization
[108] needs to be employed.
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A

Ã

Σ

Figure 8.1: The relation between extremal surface and boundary region. This
image shows a time-slice of AdS3. The dual conformal field theory can
be thought of as living on the boundary (the black circle). The orange
part of the boundary is the subregion A of the CFT. Its entanglement
entropy is dual to the length of an extremal codimension two surface
Ã (blue line) in the gravitational theory. The region Σ between the
boundary and the extremal surface (shaded orange) is a slice of the
entanglement wedge.

In this gauge, the extrapolate dictionary gives the expectation value of the stress-
energy tensor as

〈Tµν〉 =
d

16πGN
Γ
(d)
µν (x,0). (8.5)

8.1.3 Holographic entanglement entropy

The entanglement entropy of a subsystem A, equation (2.8), equals the area of an
extremal bulk Ã surface which is homologous to the subsystem A [13, 14, 109–111].
Roughly speaking, this means that it can be smoothly deformed onto A. More
precisely, the Ryu-Takayanagi formula or its covariant formulation, the Hubeny-
Rangamani-Takayanagi prescription, states that the von Neumann entropy of the
reduced density matrix on A is proportional to, at leading order in N , the area of
the extremal surface Ã,

S =
Area(Ã)

4GN
, (8.6)
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A

A

EA = CA

EA = CA

(a)

A

A

CA ⊂ EA

CA ⊂ EA

EA

(b)

Figure 8.2: a) A disconnected region on the boundary of a timeslice of AdS3
(orange) is dual to a a disconnected region in the bulk bounded by two
separate RT surfaces (blue). b) If the boundary region is bigger than
half of the total boundary, the dual region becomes connected. It is still
bounded by the corresponding RT surface; however, not all points in the
bulk region can causally communicate with DA. The boundary of the
causal wedge is indicated by dashed lines. For a detailed discussion,
refer to the main text.

see figure 8.1. In the rest of this theses we will use the acronym HRRT for this
expression. If there are many extremal surfaces Ã, the one with smallest area must
be chosen.

As mentioned in section 2.5, entanglement entropy of subregions is an ill-
defined concept in the quantum field theory because of UV divergences close to
the boundary of that region. The divergences can be regulated using a UV cutoff.
Similarly, the extremal surface defined above has divergent area. The divergence
arises from the fact that the boundary of AdS is infinitely far away from every
point in the interior. This is an example of the UV/IR connection of AdS/CFT: UV
divergences in the CFT are related to divergences which appear as a consequence
of the infinite size of the AdS spacetime [112].

109



8.1.4 Causal wedge vs entanglement wedge

There are two natural subregions in the bulk one can construct given a boundary
subregion. On the conformal boundary, a spatial subregion A has an associated
causal diamond or domain of dependence, DA. A point to the future of A lies
within DA if all past-directed timelike curves through p intersect A. Similarly, a
point to the past of A lies withinDA if all future-directed curves through that point
intersect A. In other words, DA is the spacetime region whose time evolution is
uniquely determined by specifying initial conditions on A.

The causal wedge CA is the intersection of the causal future and past of DA in
the bulk, i.e., all points which can send and receive lightlike signals from and to
DA. The information contained in the reduced density matrix ρA associated with
subregion A captures the physics at least in the causal diamond CA. If this was
not the case, we could e.g., place a small mirror inside the causal wedge without
changing the density matrix and thus change the boundary conditions of fields in
the bulk. Via the AdS/CFT dictionary, this would affect expectation values in the
CFT, which leads to a contradiction [113].

The entanglement wedge EA is the domain of dependence of a bulk Cauchy slice
bounded by the boundary and the bulk extremal surface. Figure 8.2a shows a t = 0
slice of pure AdS3 with two boundary regions and their associated RT surfaces.
Both the causal and the entanglement wedge agree and are bounded by the HRRT
surface.

However, the entanglement wedge and the causal wedge are generally not the
same. Figure 8.2b shows slightly bigger regions and their RT surfaces, which have
undergone a phase transition. The boundary of the causal wedge are given by
the dashed lines, while the entanglement wedge corresponds to the shaded region.
Thus we see that in this case the causal and entanglement wedge are different. That
the causal and entanglement wedge are different is the generic situation away from
AdS vacuum, even if the boundary region is connected.

While it seems natural that the boundary subregion contains information about
the associated causal wedge, the HRRT formula shows that in fact it must contain
information about the entanglement wedge. Since the area of the HRRT surface
can be computed from the reduced density matrix, the density matrix must contain
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information about the geometry close to the HRRT surface. An in fact, the density
matrix of a subregion of a holographic CFT can be used to reconstruct bulk physics
in the associated entanglement wedge [22].
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Chapter 9

Positive gravitational subsystem
energies from CFT cone relative
entropies

This chapter is a redacted version of [6].

9.1 Introduction
Via the AdS/CFT correspondence, it is believed that any consistent quantum theory
of gravity defined for asymptotically AdS spacetimes with some fixed boundary
geometry B corresponds to a dual conformal field theory defined on B. Recently,
it has been understood that many natural quantum information theoretic quantities
in the CFT correspond to natural gravitational observables (see, for example [13],
or [114, 115] for a review). Through this correspondence, properties which hold
true for the quantum information theoretic quantities can be translated to statements
about gravitational physics. In this way, we can obtain an alternative/deeper under-
standing of some known properties of gravitational systems, but also discover novel
properties that must hold in consistent theories of gravity. A particularly interesting
quantum information theoretic quantity to consider is relative entropy [116]. As
we have seen in chapter 2, for a general state |Ψ〉 of the CFT, we can associate a re-
duced density matrix ρA to a spatial region A by tracing out the degrees of freedom
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outside of A and relative entropy S(ρA| |ρ0
A
) quantifies how different this state is

from the vacuum density matrix ρ0
A
reduced on the same region. Relative entropy

is typically UV-finite, always positive, and has the property that it increases as we
increase the size of the region A (known as the monotonicity property). According
to the AdS/CFT correspondence, this should correspond to some quantity in the
gravitational theory which also obeys these positivity and monotonicity properties.

As we review in section 9.2, by making use of the holographic formula re-
lating CFT entanglement entropies to bulk extremal surface areas (the “HRRT
formula” [13, 14]), it is possible to explicitly write down the gravitational quan-
tity corresponding to relative entropy as long as the vacuum modular Hamiltonian
(H0

A
= − log ρ0

A
) for the region A is local, that is, it can be written as a linear

combination of local operators in the CFT. Until recently, such a local form was
only known for the modular Hamiltonian of ball-shaped regions [110]. For these
regions, relative entropy has been shown to correspond to an energy that can be
associated with the bulk entanglement wedge corresponding to this ball [37, 117].
The positivity of relative entropy then implies an infinite family of positive energy
constraints (reviewed below) [39].

Ball-shaped regions (ofMinkowski space) have the property that their boundary
lies on the past lightcone of a point p and the future lightcone of some other point q.
In the recent work [118], it has been shown that the vacuum modular Hamiltonian
for a region A has a local expression so long as the boundary ∂A of A lies on the
past lightcone of a point p or the future lightcone of a point q.22 Thus, we have a
much more general class of regions for which the relative entropy and its properties
can be interpreted gravitationally. The main goal of the present chapter is to explain
this interpretation.

In the general case, we denote by Â the region of the lightcone bounded by ∂A,
as shown in figure 9.1. The modular Hamiltonian can then be written as

H0
A =

∫
Â

ζ
µ
A
(x)Tµν(x)εν , (9.1)

where Tµν is the CFT stress-energy tensor, εµ is a volume form defined in section

22The existence of such a region depends on the relativistic nature of the theory under consideration,
which guarantees the existence of a codimension-0 domain of dependence.
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p

A

∂A

Â

Figure 9.1: Subregion A of the CFT whose boundary ∂A is on the past light-
cone of the point p. Â denotes the surface of the cone bounded by
∂A.

9.2, and ζ
µ
A
(x) is a vector field on Â directed towards the tip of the cone and

vanishing at the tip of the cone and on ∂A.
To describe the gravitational interpretation of the relative entropy for region A,

we consider any codimension one spacelike surface Σ in the dual geometry such
that Σ intersects the AdS boundary at Â and is bounded in the bulk by the HRRT
surface Ã (the minimal area extremal surface homologous to A). This is illustrated
in figure 9.2. Next, we define a timelike vector field ξ in a neighborhood of Σ
with the properties that ξ approaches ζA at the AdS boundary and behaves near the
extremal surface Ã like a Killing vector associated with the local Rindler horizon at
Ã. The timelike vector field ξ represents a particular choice of time on the surface
Σ and we can define an energy Hξ associated with this. While generally there are
many choices for the surface Σ and the vector field ξ, we can show that all of them
lead to the same value for the energy Hξ . It is this quantity that corresponds to the
CFT relative entropy S(ρA| |ρ0

A
).23

The independence of Hξ on the surface Σ used to define it can be understood
as a bulk conservation law for this notion of energy. In the case of a ball-shaped

23In this work, we focus on the leading contribution to the CFT relative entropy at large N and
make use of the classical HRRT formula. More generally, we expect that the bulk quantity will be
corrected by a term −∆SΣ measuring the vacuum-subtracted bulk entanglement of the region Σ.
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A

ÃΣ

Â

Figure 9.2: CFT relative entropy associated with boundary region A corre-
sponds to a certain energy associated with a gravitational subsystem
defined by the domain of dependence of any spatial region Σ bounded
by cone region Â with ∂ Â = ∂A and extremal surface Ã with ∂ Ã = ∂A.

region [39], the energy Hξ is conserved in a stronger sense (or a bigger volume),
since there we are also free to vary the boundary surface Â to be any spatial surface
A′ homologous to A in the domain of dependenceDA of A. In that case, the vector
field ζA can be defined everywhere in DA such that the expression (9.1) for the
modular Hamiltonian gives the same result for any surface A′. The bulk vector
field ξ can be defined on the full entanglement wedge for A, i.e., the union of
spacelike surfaces ending on Ã and on any A′ inDA, so we can think of the energy
Hξ as being associated with the entire entanglement wedge. In the more general
case considered here, the collection of allowed surfaces Σ generally still define a
codimension zero region WA of the bulk spacetime (equivalent to the bulk domain
of dependence of any particular Σ), but this region intersects the boundary only on
the lightlike surface Â rather than the whole domain of dependence region DA.

In section 9.4, we consider the limit where the geometry is a small deformation
away from pure AdS. For pure AdS, we show that the extremal surface Ã associated
with a region A whose boundary lies on the lightcone of p always lies on the bulk
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lightcone of p. Thus, in a limit where perturbations to AdS become small, the
wedge WA collapses to the portion Âbulk of this lightcone between p and Ã. We
present an analytic expression for the extremal surface Ã and a canonical choice for
the vector field ξ on Âbulk. In terms of these, we can write an explicit expression
for the leading perturbative contribution to the energy Hξ , which takes the form of
an integral over Âbulk quadratic in the bulk field perturbations.

In section 9.5, we point out that the explicit form of the extremal surface Ã in
the pure AdS case (in particular, the fact that it lies on the bulk lightcone) leads
immediately to a holographic proof of the Markov property for subregions of a CFT
in its vacuum state, namely that for two regions A and B the strong subadditivity
inequality

S(A) + S(B) − S(A ∩ B) − S(A ∪ B) ≥ 0, (9.2)

is saturated if their boundaries lie on the past or future lightcone of the same point
p. This was shown for general CFTs in [118], so it had to hold in this holographic
case. The holographic proof extends easily to cases where the field theory is
Lorentz-invariant but non-conformal, for example a CFT deformed by a relevant
perturbation. In this case, the statement holds for subregions A, B whose boundaries
lie on a null-plane.

We conclude in section 9.6 with a discussion of some possible future directions.

9.2 Background

9.2.1 Relative entropy in conformal field theories

Recall from section 2.3 that we can rewrite the expression for relative entropy as
[116]

S(ρ‖σ) = ∆〈Hσ〉 − ∆S (9.3)

where ∆ indicates a quantity calculated in the state ρ minus the same quantity
calculated in the reference state σ.

For a conformal field theory in the vacuum state, the modular Hamiltonian of
a ball-shaped region takes a simple form [110]. For a ball B of radius R centered
at x0 in the spatial slice perpendicular to the unit timelike vector uµ, the modular
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Hamiltonian is
HB =

∫
B′
ζ
µ
BTµνεν, (9.4)

where εν = 1
(d−1)!ενµ1 · · ·µd−1 dxµ1 ∧ · · · ∧ dxµd−1 is a volume form and ζB is the

conformal Killing vector

ζ
µ
B =

π

R
{
[R2 − (x − x0)

2]uµ + [2uν(x − x0)
ν](x − x0)

µ
}
, (9.5)

with some four-velocity uµ. The modular Hamiltonian is the same for any surface
B′ with the same domain of dependence as B.

Using the expression (9.4) in (9.3), the relative entropy for a state ρ compared
with the vacuum state may be expressed entirely in terms of the entanglement en-
tropy and the stress tensor expectation value. For a holographic theory in a state
with a classical gravity dual, these quantities can be translated into gravitational
language using the HRRT formula (which also implies the usual holographic re-
lation between the CFT stress-energy tensor expectation value and the asymptotic
bulk metric [119]). Thus, the CFT relative entropy for a ball-shaped region corre-
sponds to some geometrical quantity in the gravitational theory with positivity and
monotonicity properties. In [117] and [39], this quantity was shown to have the
interpretation of an energy associated with the gravitational subsystem associated
with the interior of the entanglement wedge associated with the ball.

Recently, Casini, Testé, and Torroba have provided an explicit expression for
the vacuum modular Hamiltonian of any spatial region A whose boundary lies on
the lightcone of a point [118]. To describe this, consider the case where ∂A lies on
the past lightcone of a point p and let Â be the region on the lightcone that forms the
future boundary of the domain of dependence of A. For x ∈ Â, define a function
f (x) that represents what fraction of the way x is along the lightlike geodesic from
p through x to ∂A (so that f (p) = 0 and f (x) = 1 for x ∈ ∂A). Now, define a
lightlike vector field on Â by

ζ
µ
A
(x) ≡ 2π( f (x) − 1)(pµ − xµ) . (9.6)
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Then the modular Hamiltonian can be expressed as

HA =

∫
Â

ζ
µ
A

Tµνεν . (9.7)

In general, we cannot extend the vector field away from the surface Â such that the
expression (9.7) remains valid when integrated over an arbitrary surface A′ with
∂A′ = ∂A. In equation (9.38) we give an explicit expression for HA in a convenient
coordinate frame.

Using this expression in (9.3), we can express the relative entropy for the region
A in a form that can be translated to a geometrical quantity using the HRRT formula.
We would again like to understand the gravitational interpretation for this positive
quantity.

9.2.2 Gravity background

We now focus on states in a holographic CFT dual to some asymptotically AdS
spacetime with a good classical description. For any spatial subsystem A of the
CFT, there is a corresponding region on the boundary of the dual spacetime (which
we will also call A). The HRRT formula asserts that the CFT entanglement entropy
for the spatial subsystem A in a state |Ψ〉, at leading order in the 1/N expansion, is
equal to 1/(4GN ) times the area of the minimal area extremal surface Ã in the dual
spacetime which is homologous to the region A on the boundary.

For pure AdS, when the CFT region is a ball B, the spatial region Σ between
B and B̃ forms a natural subsystem of the gravitational system, in that there exists
a timelike Killing vector ξB defined on the domain of dependence DΣ of Σ and
vanishing on B̃. At the boundary of AdS, this reduces to the vector ζB appearing
in the modular Hamiltonian (9.4) for B. The vector ξB gives a notion of time
evolution which is confined toDΣ. From the CFT point of view, this time evolution
corresponds to evolution by the modular Hamiltonian (9.4) within the domain of
dependence of B, which by a conformal transformation can bemapped to hyperbolic
space times time.

For states which are small perturbations to the CFT vacuum state, it was shown
in [117] that the relative entropy for a ball B at second order in perturbations to
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the vacuum state corresponds to the perturbative bulk energy associated with the
timelike Killing vector ξB in DΣ (known as the canonical energy associated with
this vector).

This result was extended to general states in [39]. While there are no Killing
vectors for general asymptotically AdS geometries, it is always possible to define a
vector field ξB that behaves near the AdS boundary and near the extremal surface
in a similar way to the behavior of the Killing vector ξB in pure AdS. Specifically,
we impose conditions

ξa |B = ζaB, (9.8)

∇[aξb] |B̃ = 2πnab, (9.9)

ξ |B̃ = 0 , (9.10)

where nab is the binormal to the codimension two extremal surface B̃. Given any
such vector field, we can define a diffeomorphism

g → g + Lξg . (9.11)

This represents a symmetry of the gravitational theory, so we can define a corre-
sponding conserved current and Noether charge. The resulting charge Hξ turns
out to be the same for any vector field satisfying the conditions (9.8) – (9.10). It
can be interpreted as an energy associated to the vector field ξB or alternatively
as the Hamiltonian that generates the flow (9.11) in the phase space formulation
of gravity. The main result of [39] is that the CFT relative entropy for a state |Ψ〉
comparing the reduced density matrix ρB to its vacuum counterpart ρ(vac)B is equal
to the difference of this gravitational energy between the spacetime Mψ dual to |Ψ〉
and pure AdS,

S(ρB | |ρ
(vac)
B ) = Hξ (Mψ) − Hξ (AdS) . (9.12)

We will review the derivation of this identity in the next section when we generalize
it to our case.

To write Hξ explicitly, we start with the Noether current (expressed as a d-form)

Jξ = θ(Lξg) − ξ · L , (9.13)
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where L is the Lagrangian density and θ is defined by

δL(g) = dθ(δg) + E(g)δg . (9.14)

Here, E(g) are the equations of motion obtained in the usual way by varying the
action. The Noether current is conserved off-shell for Killing vector fields and
on-shell for any vector field ξ,

dJξ = E(g) · Lξg. (9.15)

Then, up to a boundary term, the energy Hξ is defined in the usual way as the
integral of the Noether charge over a spatial surface:

Hξ =

∫
Σ

Jξ −
∫
∂Σ
ξ · K . (9.16)

Here, Σ is any spacelike surface bounded by the HRRT surface B̃ and by a spacelike
surface Σ∂M on the AdS boundary with the same domain of dependence as B. For a
ball-shaped region B, the quantity Hξ is independent of both the bulk surface Σ (as
a consequence of diffeomorphism invariance) and also the spacelike surface Σ∂M
at the boundary of AdS (as a consequence of the fact that ζB defines an asymptotic
symmetry).

The quantity K in the boundary term is defined so that

δ(ξ · K) = ξ · θ(δg) on ∂Σ . (9.17)

As explained in [39], this ensures that the difference (9.12) does not depend on the
regularization procedure used to calculated the energies and perform the subtraction.

We can rewrite Hξ completely as a boundary term using the fact that on-shell,
Jξ can be expressed as an exact form [39]

Jξ = dQξ . (9.18)
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Thus, for a background satisfying the gravitational equations, we have

Hξ =

∫
∂Σ

Qξ −

∫
∂Σ
ξ · K . (9.19)

This shows that the definition of Hξ is independent of the details of the vector field
ξ in the interior of Σ. In our derivations below, it will be useful to have a differential
version of this expression that gives the change in Hξ under on-shell variation of
the metric. By combining (9.19) with (9.17), we obtain

δHξ =

∫
∂Σ
(δQξ − ξ · θ) (9.20)

The interpretation of Hξ as a Hamiltonian for the phase space transformation
associated with (9.11) can be understood by recalling that the symplectic form on
this phase space is defined by

Ω(δg1, δg2) =

∫
Σ

ω(g, δg1, δg2) (9.21)

where the d-form ω is defined in terms of θ as

ω(g, δ1g, δ2g) = δ1θ(g, δ2g) − δ2θ(g, δ1g) . (9.22)

In terms of ω we have that for an arbitrary on-shell metric perturbation

δHξ = Ω(δg,Lξg) =

∫
Σ

ω(g, δg,Lξg). (9.23)

This amounts to the usual relation dH = vH ·Ω between a Hamiltonian (in this case
Hξ ) and its corresponding vector field (in this case Lξg) via the symplectic form
Ω.

9.3 Bulk interpretation of relative entropy for general
regions bounded on a lightcone

Consider now a more general spacelike CFT subsystem A whose boundary lies on
some lightcone. In this case – unless the boundary is a sphere – there is no longer
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a conformal Killing vector defined on the domain of dependence region DA and
we cannot write the boundary modular Hamiltonian as in (9.4) where the result is
independent of the surface B̂. Nevertheless, we have a similar expression (9.7) for
the modular Hamiltonian as a weighted integral of the CFT stress tensor over the
lightcone region Â (shown in figure 9.1). Thus, making use of the formula (9.3) for
relative entropy, together with the holographic entanglement entropy formula and
the holographic dictionary for the stress-energy tensor, we can translate the CFT
relative entropy to a gravitational quantity. In this section, we show that this can
again be interpreted as an energy difference,

S(ρA| |ρvacA ) = Hξ (Mψ) − Hξ (AdS) (9.24)

for an energy Hξ associated with a bulk spatial region Σ bounded by Â and the bulk
extremal surface Ã.

To begin, we choose a bulk vector field ξ satisfying

ξa |Â = ζaA, (9.25)

∇[aξb] |Ã = 2πnab, (9.26)

ξ |Ã = 0. (9.27)

The argument that the latter two conditions can be satisfied is the same as in [39],
making use of the fact that we can define Gaussian null coordinates near the surface
Ã. To enforce the first condition, we will make use of Fefferman-Graham (FG)
coordinates for which the near-boundary metric takes the form

ds2 =
1
z2 (dz2 + dxµdxµ + zdΓ(d)µν dxµdxν + O(zd+1)) (9.28)

and choose a vector field expressed in these coordinates as

ξµ = ζ
µ
A
+ zξµ1 + z2ξ

µ
2 + . . .

ξz = zξz1 + z2ξz2 + . . . . (9.29)

We will now evaluate δHξ for this vector field starting from (9.20) and find that
it matches with a holographic expression for the change in relative entropy. First,
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we evaluate the part at the AdS boundary. Explicit calculations in the FG gauge,
which are done in appendix D.1, show that

δQξ − ξ · θ |z→0 =
d

16πGN
ξaδΓ

(d)
ab
ε̂b |z→0 =

d
16πGN

ζ
µ

Â
δΓ
(d)
µν ε

µ , (9.30)

where ε was defined in the previous section and

ε̂a1...ak
=

√
−g

(d + 1 − k)!
εa1...akb1 · · ·bd+1−k dxb1 ∧ · · · ∧ dxbd+1−k . (9.31)

Using the standard holographic relation between the asymptotic metric and the CFT
stress tensor expectation value, we obtain∫

Â

(δQξ − ξ · θ) =
d

16πGN

∫
Â

ζ
µ

Â
δΓ
(d)
µν ε

µ =

∫
Â

ζ
µ

Â
δ
〈
Tµν

〉
εµ = δ

〈
HÂ

〉
. (9.32)

Here, HÂ is the boundary modular Hamiltonian for the region A, so this term
represents the variation in the modular Hamiltonian term in the expression (9.3) for
relative entropy.

Next, we look at the part of (9.20) coming from the other boundary of Σ, at the
extremal surface. By condition (9.27) we have that ξ vanishes on Ã and we are left
with the integral over δQξ . Qξ can be brought into the form 1

16π∇
aξb ε̂ab [120] and

by virtue of (9.26) we obtain the entanglement entropy using the HRRT conjecture,∫
Ã

δQξ =
1

4GN

∫
Ã

= δS. (9.33)

Combining both contributions to (9.20), we have that

δHξ = δ
〈
HÂ

〉
− δS, (9.34)

where the variation corresponds to an infinitesimal variation of the CFT state.
Integrating this from the CFT vacuum state up to the state |ψ〉, we have that

S(ρA| |ρvacA ) = ∆
〈
HÂ

〉
− ∆S = ∆Hξ . (9.35)

Thus, we have established that for a boundary region A with ∂A on a lightcone, the
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CFT relative entropy is interpreted in the dual gravity theory as an energy associated
with the timelike vector field ξ.

The energy Hξ is naturally associated with a certain spacetime region of the
bulk, foliated by spatial surfaces bounded by the boundary lightcone region Â and
the bulk extremal surface Ã. That such spatial surfaces exist is a consequence of
the fact that the extremal surface Ã always lies outside the causal wedge of the
region A (the intersection of the causal past and the causal future of the domain of
dependence of A) [121].

9.4 Perturbative expansion of the holographic dual to
relative entropy

In this section, we consider the expression for Hξ in the case where the CFT state
is a small perturbation of the vacuum state so that the density matrix can be written
perturbatively as ρA = ρvacA

+ λρ1 + λ
2ρ2 + . . . . In this case, the CFT state will be

dual to a spacetime with metric gµν(λ) = g
(0)
µν + λg

(1)
µν + λ

2g
(2)
µν + . . . .

We recall that relative entropy vanishes up to second order in perturbations;
making use of the expression (9.23), we will check that the gravitational expression
for relative entropy also vanishes up to second order for general regions A bounded
on a light cone. We then further make use of (9.23) to derive a gravitational
expression dual to the first non-vanishing contribution to relative entropy, expressing
it as a quadratic form in the first order metric perturbation.

9.4.1 Light cone coordinates for AdS

It will be convenient to introduce coordinates for AdSd+1 tailored to the light cone
on which the boundary of A lies. Starting from standard Poincaré coordinates with
metric

ds2 =
1
z2

(
dz2 − dt2 + d ®x2

)
, (9.36)

we assume that the point p whose light cone contains ∂A is at ®x = z = 0 and t = ρ+0 ,
where ρ+0 is an arbitrary constant. On the AdS boundary, we introduce polar
coordinates (t, ρ,Ω) = (t, ρ, φ1, . . . , φd−2) centered at ®x = 0 and define ρ± = t ± ρ.

The surface ∂A is then described by ρ+ = ρ+0 and some function ρ− = Λ(φi).
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With these coordinates, the vector field (9.6) defining the boundary modular flow
takes the form

ξ |Â =
2π(ρ+0 − ρ

−)(ρ− − Λ(φi))

ρ+0 − Λ(φ
i)

∂−. (9.37)

and the modular Hamiltonian (9.7) may be written explicitly as

HA = 4π
∬ ρ+0

Λ(φi )

dρ−dΩ
(
ρ+0 − ρ

−

2

)d−1 [
ρ− − Λ(φi)

ρ+0 − Λ(φ
i)

]
T−−. (9.38)

For the choiceΛ(φi) = −ρ+0 the region A is a ball of radius ρ+0 centered at the origin
on the t = 0 slice and the expression reduces to the usual expression for a modular
Hamiltonian of such a ball-shaped region.

In the bulk, we similarly define polar coordinates (t,r, θ, φ1, . . . , φd−2) where
(ρ, z) = r(cos θ, sin θ) and define r± ≡ t ± r so that the bulk light cone of the point
p is r+ = ρ+0 . We will see below that for pure AdS, the extremal surface Ã lies on
this bulk light cone on a surface that we will parameterize as r− = Λ(θ, φi), where
Λ(θ = 0, φi) is the function that parameterized the surface ∂A.

The AdSd+1 line element in these coordinates reads

ds2 =
1

sin2 θ

(
−

4dr+dr−

(r+ − r−)2
+ dθ2 + cos2 θgΩi jdφ

idφ j

)
, (9.39)

where gΩi j is the metric on the unit d − 2 sphere and only depends on φi.

9.4.2 HRRT surface in pure AdS

In this section, we derive an analytic expression for the extremal surface Ã in
pure AdS whose boundary is the region ∂A on the lightcone of p. This will be
useful in giving more explicit expressions for the relative entropy at leading order
in perturbations.

We choose static gauge, parameterizing the surface using the spacetime coor-
dinates θ and φi and describing its profile in the other directions by ρ±(θ, φi). The
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equations which determine its location are

γab
∂γab
∂r±

= −
1
√
γ
∂a

(
8√γγab

sin2 θ(r+ − r−)2
∂br∓

)
. (9.40)

Let us make the ansatz that even away from the boundary the extremal surface
lives on the lightcone r+ = ρ+0 and r− = Λ(θ, φi). The induced metric of this
codimension two surface is

γab =
1

sin2 θ

(
δθaδ

θ
b + cos2 θgΩi jδ

i
aδ

i
b

)
, (9.41)

where a, b ∈ {θ, φ1, ..., φd−2} and i, j ∈ {φ1, ..., φd−2}. This metric is independent
of r±; we will see in section 9.5 that this is related to the Markov property of CFT
subregions with boundary on a lightcone.

Since the inducedmetric is independent of r±, the left hand side of the equations
of motion (9.40) vanishes and we can see from the right hand side that the ansatz
r+ = ρ+0 solves the equations. The remaining equation for f (θ, φi) ≡ ρ+0 − Λ(θ, φ

i)

reads

0 = ∂a

(√
γγab

sin2 θ
∂b

1
f (θ, φi)

)
. (9.42)

The solution which corresponds to ball-shaped entangling surfaces is well known
to be located at ρ2 + z2 = const. In order to obtain the solution for entangling
surfaces of arbitrary shape (but still on a lightcone) we substitute the expression for
the induced metric and separate the equation for r− into

cos3 θ tand−1 θ∂θ

(
1

cos θ tand−1 θ
∂θ

1
f (θ, φi)

)
= −

1√
gΩ

∂i

(√
gΩ(gΩ)i j∂j

1
f (θ, φi)

)
.

(9.43)

Here, we followed our conventions and used indices i, j for the angular coordinates
φi. If we write 1

f = h(θ)Φ(φi) we find that the left hand side can be solved if Φ(φi)
is a spherical harmonic. In d − 2 dimensions, the eigenvalues of the Laplacian
on Sd−2 are given by n(3 − d − n) for the n-th harmonic. Every level n has a
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corresponding set of degenerate eigenfunctions Φl
n with l = 1, . . . , 2n+d−3

n

(n+d−4
n−1

)
[122]. The left hand side reads

cos2 θh′′(θ) − cot θ(cos2 θ + (d − 2))h′(θ) + n(3 − d − n)h(θ) = 0. (9.44)

This differential equation can be solved in terms of hypergeometric functions,

h(θ) =c1 cos3−d−n θ 2F1

(
2 − d − n

2
,
3 − d − n

2
;

5 − d − 2n
2

; cos2 θ

)
+ c2 cosn θ 2F1

(
n − 1

2
,
n
2

;
d − 1 + 2n

2
; cos2 θ

)
.

(9.45)

To fix the constants in (9.45) it helps to use intuition from the solutions in the case
where the boundary of a subregion is located on a null-plane instead of a lightcone
(see appendix B). In that case it is clear that effects from perturbations away from
a constant entangling surface on the extremal surface die off as z → ∞. Under a
transformation which maps the Rindler result to a ball-shaped region, the distant
part of the extremal surface corresponds to θ = π/2. Consequently, we require
that hn(π/2) → 0 for n ≥ 1 and hn(π/2) = 1 for n = 0. At the same time, for
θ → 0 we need that hn(θ) is constant and different from zero. These constraints
are easily solved with c1 = 0, c2 = 1. Introducing a normalization factor to ensure
that hn(0) = 1, we are left with

hn(θ) = cosn θ
Γ( d+n2 )Γ(

d−1+n
2 )

Γ( d−1
2 + n)Γ( d2 )

2F1

(
n − 1

2
,
n
2

;
d − 1 + 2n

2
; cos2 θ

)
. (9.46)

In conclusion this shows that extremal surfaces in the bulk are located at r+ = ρ+0
and r− = Λ(θ, φi) with

Λ(θ, φi) = ρ+0 −
1

C0 +
∑∞

n=1
∑

l Cn,lhn(θ)Φl
n(φi)

. (9.47)

Here, n runs over spherical harmonics in d−2 dimensions and l over their respective
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degeneracy. They intersect the boundary at

Λ(φi) = ρ+0 −
1

C0 +
∑∞

n=1
∑

l Cn,lΦ
l
n(φi)

. (9.48)

Thus, the constants Cn,l are determined in terms of the function parameterizing the
boundary surface by performing the spherical harmonic expansion

1
ρ+0 − Λ(φ

i)
= C0 +

∞∑
n=1

∑
l

Cn,lΦ
l
n(φ

i) . (9.49)

As a simple example, one choice of surface involving only the n = 1 harmonics
for the AdS4 case takes the form

ρ+(φ) = ρ+0 , ρ−(φ) = ρ+0 −
2ρ+0

√
1 − β2

1 + β cos φ
, (9.50)

and correspond to ball-shaped regions in a reference frame boosted relative to the
original one by velocity β in the x-direction.

9.4.3 The bulk vector field

Our next step is to provide an explicit expression for the vector field on the extremal
surface which obeys equations (9.25) – (9.27), such that the quantity Hξ is dual to
relative entropy.

Using (9.37), the explicit form of equation (9.25) is

ξ |Â =
2π(ρ+0 − ρ

−)(ρ− − Λ(0, φi))
ρ+0 − Λ(0, φi)

∂−. (9.51)

Equation (9.26) requires knowledge of the unit binormal

nµν = nµ2 nν1 − nµ1 nν2, (9.52)

but thanks to the knowledge about the expression for the extremal surface which
we found in the preceding section it is possible to calculate it explicitly. Here,
n1,2 denote two orthogonal normal vectors to the RT surface. The calculation is
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delegated to appendix D.3. The non-zero components of the unit binormal read

n+− = g+−, na− = −∂aΛ(θ, φi), (9.53)

where a again runs over coordinates (θ, φi). One possible choice of a vector field
satisfying the boundary conditions given by equations (9.26) is:24

ξ =
2π(ρ+0 − r+)(r+ − Λ(θ, φi))

ρ+0 − Λ(θ, φ
i)

∂+ +
2π(ρ+0 − r−)(r− − Λ(θ, φi))

ρ+0 − Λ(θ, φ
i)

∂−

+
4π(ρ+0 − r+)

sin2 θ
∂a

(
1

ρ+0 − Λ(θ, φ
i)

)
∂a .

(9.54)

Here, the ∂− and ∂+ components are chosen to match with the expression for the
Killing vector ξ in the case when Λ is constant. On the light cone, only the
∂− component (along the lightcone) is nonzero, and this has the same qualitative
behavior as the vector ζ on the boundary lightcone. It is immediately clear that
conditions (9.25) and (9.27) are satisfied. It is also straightforward to verify the
condition involving the unit binormal using the fact that for a torsion free connection
we have ∇µξν − ∇νξµ = ∂µξν − ∂νξµ.

Calculating the Lie derivative of the metric with respect to this vector field gives
zero on the light cone r+ = ρ+0 but not away from the light cone. This is in contrast
to the case of a ball-shaped region, where the Lie derivative vanished everywhere
inside the entanglement wedge.

9.4.4 Perturbative formulae for ∆Hξ

To write an explicit perturbative expression for ∆Hξ , we begin with the on-shell
result

δHξ =

∫
Σ

ω

(
g(λ),

d
dλ

g,Lξg(λ)

)
. (9.55)

24Upon expanding the sums in equation (9.54) it looks like the φi components of the vector field
diverge as θ → π

2 and for d > 3 as φi → 0, π due to the metric on the Sd−2 sphere. However,
these divergences can be shown to be mere coordinate singularities: From equation (9.46) we see
that ∂iΛ ∼ cos θ. Hence the φi components of the vector field go only as cos−1 θ. This happens as
a consequence of the coordinate singularity at θ = π/2 in polar coordinates which can be removed
by going into Poincaré coordinates (t, z, ®x). Similar arguments also hold for singularities due to the
Sd−2 metric. Coordinate independent quantities like the norm of the spatial part of the vector field
remain finite as can be seen from inspecting the metric.
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Here, the symplectic d-form ω is explicitly given by

ω

(
g(λ),

d
dλ

g,Lξg(λ)

)
=

1
16πGN

ε̂µPµναβσρ
(
Lξgνα∇β

d
dλ

gσρ −
d
dλ

gνα∇βLξgσρ

)
,

(9.56)

where

Pµναβσρ = gµσgνρgαβ −
1
2
gµβgνσgρα −

1
2
gµνgαβgσρ −

1
2
gναgµσgβρ +

1
2
gναgµβgσρ.

(9.57)

Since both Pµναβσρ and ε̂µ depend on the metric they will have a series expansions
in λ when we express the metric as a series. Also in this case we will use sub-
or superscripts in parenthesis to indicate the order of the term in λ. Here and
in the following we will use ∇µ to denote covariant derivatives with respect to
gµν(0) = g

(0)
µν .

It will be convenient for us to choose a gauge for the metric perturbations such
that the extremal surface stays at the same coordinate location for any variation of
the metric. It was shown in [120] that this is always possible. In this case, we have
at first order

∆H(1)ξ =
∫
Σ

ω

(
g(λ),

d
dλ

g,Lξg(λ)

)
. (9.58)

Wewill see in the next section that this vanishes, in accordwith the general vanishing
of relative entropy at first order (also known as the first law of entanglement).

At second order, we have

d2

dλ2 S(g(λ)| |g0)|λ=0 =

∫
Σ

d
dλ
ω

(
g(λ),

d
dλ

g,Lξg(λ)

)����
λ=0

. (9.59)

We will calculate this more explicitly in section (9.4.4).

Vanishing of the first order expression

In this section, we demonstrate that our gravitational expression for the relative
entropy vanishes for first order perturbations as required. Expanding the first order
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expression (9.58) for ω yields∫
Σ

ω

(
g(λ),

d
dλ

g,Lξg(λ)

)����
λ=0
= −

1
32πGN

∫
Σ

ε
(0)
+

(
g+−
(0)

)2
g(1)−−g

ab
(0) ∂+Lξg

(0)
ab
,

(9.60)
where repeated lower case letters a, b imply summation over angular coordinates
(θ, φi). Using the definition of the Lie derivative

gab
(0) ∂+Lξg

(0)
ab
= 2gab

(0) ∂+∇aξb, (9.61)

and the fact that since gab is independent of r± all Christoffel symbols of the form
Γ±
ab

vanish at leading order, the problem reduces to a problem of only the angular
coordinates. We obtain

gab
(0) ∂+Lξg

(0)
ab
= 2∇a∂+ξa =

2
√
γ
∂a

(√
γ∂+ξ

a) . (9.62)

Substituting the general form of ξa from equation (9.54) and using that g(0)
ab
= γ
(0)
ab

we end up with

γab
(0) ∂+Lξγ

(0)
ab
= −8π

1
√
γ
∂a

(√
γγab
(0)

sin2 θ
∂b

1
ρ+0 − Λ

)
. (9.63)

g
(0)
µν and g

(1)
µν are the bulk metric and its perturbation and γ(0)

ab
, γ(1)

ab
are the induced

metric and the induced metric perturbation, respectively. This expression is pro-
portional to the equation for an extremal surface, equation (9.42), and therefore
vanishes.

If we drop the assumption that the Einstein equations are satisfied, one can
show that the first law of entanglement entropy implies that the Einstein equations
hold at first order around pure AdS. This was done in [119] where only ball-shaped
CFT subregions were considered. Utilizing more general subregions bounded by a
lightcone does not yield new (in-)equalities at first order.
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Relative entropy at second order

We will now provide a more explicit expression for the leading perturbative con-
tribution to relative entropy, which appears at second order in the perturbations.
Starting from (9.59) and using our explicit expression for ω, we obtain four poten-
tially contributing terms,

d2

dλ2 S(g(λ)| |g0)|λ=0 =
1

16πGN

∫
Σ

ε
(1)
+ P+ναβσρ

(0)

(
Lξg

(0)
να∇βg

(1)
σρ − g

(1)
να∇βLξg

(0)
σρ

)
+

1
16πGN

∫
Σ

ε (0)P+ναβσρ
(1)

(
Lξg

(0)
να∇βg

(1)
σρ − g

(1)
να∇βLξg

(0)
σρ

)
+

1
16πGN

∫
Σ

ε (0)P+ναβσρ
(0)

(
Lξg

(0)
να∇βg

(2)
σρ − g

(2)
να∇βLξg

(0)
σρ

)
+

1
16πGN

∫
Σ

ε (0)P+ναβσρ
(0)

(
Lξg

(1)
να∇βg

(1)
σρ − g

(1)
να∇βLξg

(1)
σρ

)
.

(9.64)

The first and third terms vanish because of our first order results of section 9.4.4.
The last term is reminiscent of the standard canonical energy associated with the
interior of the entanglement wedge, except that ξ is no longer a Killing vector. The
non-zero contributions take the form

δ(2)Hξ =

∫
Σ

ω

(
g(λ),

d
dλ

g,Lξ
d
dλ

g

)����
λ=0

−
1

16πGN

∫
Σ

ε
(0)
+

(
g+−
(0)

)2 [
g
(1)
−cg

ca
(0)g

db
(0) g

(1)
−d
− g(1)−−g

ab
(1)

]
∂+Lξg

(0)
ab
.

(9.65)

Here, a, b, c, d run over angular coordinates, µ, ν run over all coordinates. Note that
although we are calculating relative entropy at second order, the expression only
depends on first order metric perturbations. Due to the fact that ξ is no longer a
Killing vector field, we appear to have a contribution in addition to the first term
which appears for the case of ball-shaped regions.

However, we have not yet imposed the Hollands-Wald gauge condition on the
first order metric perturbations, for which the coordinate location of the extremal
surface is the same as in the case of pure AdS. We have additional gauge freedom
on top of this, and it may be that for a suitable gauge choice, the final term in the
expression above can be eliminated. We have checked that this is the case for a
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planar black hole in AdS4. We discuss this, as well as the procedure of choosing
the Hollands-Wald gauge condition in more detail in appendix D.4.

9.5 Holographic proof of the Markov property of the
vacuum state

In [118] it was pointed out that the vacuum states of subregions of a CFT bounded
by curves ρ− = ΛA and ρ− = ΛB on the lightcone ρ+ = ρ+0 saturate strong
subadditivity, i.e.,

SA + SB − SA∩B − SA∪B = 0. (9.66)

This is also known as the Markov property. Moreover, even for CFTs deformed by
relevant perturbations, the reduced density matrices for regions A and B describe
Markov states if A and B have their boundary on a null-plane. In its most general
form the proof used that the modular Hamiltonians for such regions obey

HA + HB − HA∩B − HA∪B = 0, (9.67)

which can be proved using methods of algebraic QFT. In this section we will
give a holographic proof of the Markov property which uses the Ryu-Takayanagi
proposal for entanglement entropy. We will start with the proof for a subregion of a
deformed CFT with boundary on a null-plane and after that also show the property
for subregions of CFTs with boundary on a lightcone.

9.5.1 The Markov property for states on the null-plane

The vacuum state of a deformed CFT is dual to a geometry of the form

ds2 = f (z)dz2 + g(z)(−2dx+dx− + dxµ⊥dx⊥µ). (9.68)

An undeformed CFT corresponds to the special case f (z) = g(z) = 1
z2 . The entan-

glement entropy of a subregion A can then be calculated using the RT prescription,
following the same steps as in section D.2. We assume that the boundary ∂A is
described by x− = const and x+ = x+(®x⊥). To describe the corresponding extremal
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surface we go to static gauge, where z and x⊥ are our coordinates and x±(z, x⊥) is
the embedding. The ansatz x− = const and x+ = x+(®x⊥, z) simplifies the equation
to

0 = ∂a(
√
γγab∂bx+g+−). (9.69)

The relevant solution to this equation in the case of pure AdS is discussed in
appendix D.2 and is given by

x+(z, xi⊥) =
2 2−d

2 kd/2

Γ(d/2)

∫
dd−2kak i z

d/2Kd/2(zk)eik
i xi . (9.70)

Here, Kd/2 is the modified Bessel function of the second kind and the coefficients
ak i are given in terms of the entangling surface x+(0, xi⊥) as

ak =
∫

dd−2x⊥
(2π)d−2 e−ik ·x⊥ x+(0, xi⊥). (9.71)

More generally, the induced metric on the extremal surface in the bulk is

ds2 = f (z)dz2 + g(z)(dxµ⊥dx⊥µ) (9.72)

and independent of the embedding x+(®x⊥, z). Thus, it is clear that the areas of
all extremal surfaces ending on x− = const are the same, potentially up to terms
which depend on how the area of the extremal surface is regularized as we approach
the boundary. The standard prescription given by cutting off z at some distance ε
away from the boundary gives a universal cutoff term for all such extremal surfaces
and therefore the entanglement entropies for all regions with boundary on x− are
identical and strong subadditivity is saturated. Our argument is an explicit version
of very similar arguments which have been used to show the saturation of the
Quantum Null Energy condition [123].25

25We thank Adam Levine for pointing this out to us.
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9.5.2 The Markov property for states on the lightcone

If we consider an arbitrary region on the lightcone we expect the Markov property
to hold for undeformed CFTs, since the lightcone is conformally equivalent to
the null-plane. The solution for an extremal surface in pure AdS ending on a
lightcone at the boundary was already discussed in section 9.4.2. Consider the
case where we have two different entangling surfaces given by ρ− = ΛA(φi) and
ρ− = ΛB(φi). We have seen before that the metric on the extremal surface is in fact
r− independent. However, again the dependence on the entangling surface can enter
through regularization of the integral and would show up in the cutoff-dependent
term.

In the coordinates of our choice θ, φi the divergent term in the area comes from
the integral over θ. Following the standard way of regulating the surface integral we
introduce a cutoff z = ε , which translates into cutting off the integral at θ = ε

r ≈
ε
ρ .

From this is follows that if we choose the canonical way of regulating the entropy,
the θ integral runs from 2ε

(ρ+0 −Λ)
≡ θ− to π/2.

The entropy which is proportional to the area term can now be calculated using
the explicit form of the induced metric, equation (9.41), and is given by∫

√
γ =

∫
dΩ

∫ π/2

θ−

dθ
cosd−2 θ

sind−1 θ
. (9.73)

The only way the shape of the entangling surface appears is through the cutoff, i.e.,
the surface area can be expanded as

A =
0∑

α=d−2
cn

(
ρ+0 − Λ(φ

i)

2ε

)α
, (9.74)

where the coefficients cn are the same for all entangling surfaces. In the light of
equation (9.73) saturation of strong subadditivity for two regions on a lightcone
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defined by ΛA and ΛB is guaranteed if∫
dΩ

(
(ρ+0 − ΛA(φ

i))α + (ρ+0 − ΛB(φ
i))α

−max(ρ+0 − ΛA(φ
i), ρ+0 − ΛB(φ

i))α −min(ρ+0 − ΛA(φ
i), ρ+0 − ΛB(φ

i))α
)
= 0,

(9.75)

which is trivially pointwise true. This again shows that strong subadditivity is
saturated, or in other words, reduced density matrices for regions on the lightcone
describe Markovian states. For more details on the form of the coefficients cn in
the expansion, see [124].

The authors of [118] also speculated about the possibility of introducing a cutoff
to regulate the area of extremal surfaces such that the area of the extremal surfaces of
subregions on the lightcone are all exactly equal. The previous discussion explicitly
shows that choosing to introduce a cutoff θ = ε instead of z = ε realizes such a
regularization procedure in which all entanglement entropies for regions on the
lightcone are in fact the same.

9.6 Discussion
The results of this chapter imply that for any classical asymptotically AdS spacetime
arising in a consistent theory of quantum gravity, the energy ∆Hξ must be positive
and must not decrease as we increase the size of region A. It would be interesting
to understand if it is possible to prove this result directly in general relativity,
by requiring that the matter stress-energy tensor satisfy some standard energy
condition.

It may be useful to point out that there is a differential quantity whose positivity
implies all the other positivity and monotonicity results considered here. If we
consider a deformation of the region A by an infinitesimal amount εv(Ω), where v
is some vector field on ∂A pointing along the lightcone away from p, the change in
relative entropy to first order must take the form

δS(ρA| |ρvacA ) = ε

∫
δΩv(Ω)SA(Ω) (9.76)
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The monotonicity property implies that the quantity SA(Ω) must be positive for all
A and all Ω.26 It would be interesting to make use of our results to come up with a
more explicit expression for the gravitational analogue of the quantity SA(Ω). One
approach to providing a GR proof of the subsystem energy theorems would be to
prove positivity of this.

The Markov property discussed in section 9.5 suggests that it should be in-
teresting to consider (for general states) the gravitational dual of the combination
S(A) + S(B) − S(A ∪ B) − S(A ∩ B) of entanglement entropies for regions A and
B on a lightcone. Since strong subadditivity is saturated for the vacuum state,
this gravitational quantity will vanish for pure AdS, but must be positive for any
nearby physical asymptotically AdS spacetime according to strong subadditivity.
Thus, strong subadditivity for these regions on a light cone will lead to a constraint
on gravitational physics that appears even when considering small perturbations
away from AdS. For two-dimensional CFTs, this quantity was already considered
previously in [34, 37]; the analysis there suggests that this gravitational constraint
takes the form of a spatially integrated null-energy condition. See [114] for some
additional discussion of gravitational constraints from strong subadditivity.

26A special case of this positivity result was utilized in the proof of the averaged null energy
condition in [125].

137



Chapter 10

Conclusions

10.1 Infrared quantum information
Part I of this thesis is concerned with the definition of information theoretic quanti-
ties for scattering in four dimensions in the presence of long range forces mediated
by photons and gravitons. The presence of long range forces results in infrared
divergences in the calculation of scattering amplitudes which need to be dealt with
by choosing one of two approaches. In the first, we only ask questions which can
also be operationally answered, and restrict our attention to inclusive observables.
The construction of inclusive quantities involves summing over all possible states
which yield outcomes compatible with our measurements. We have seen in chapter
4 that this treatment results in an essentially complete decoherence of the outgoing
density matrix. The condition under which an off-diagonal density matrix element
in the momentum basis does not decohere can be phrased in terms of a condi-
tion between an infinite number of current operators. The decoherence makes it
particularly easy to calculate the entanglement entropy between the hard and soft
modes. However, this procedure makes quantum electrodynamics and perturbative
quantum gravity inherently non-unitary.

Alternatively we can use so-called dressed formalisms which add a finely tuned
set of soft bosons to scattering states. These formalisms do not require a sum over
outgoing soft bosons and the S-matrix is formally unitary. Furthermore, they allow
one to ask questions about amplitudes and other “unphysical” quantities. Also, in

138



this case we can calculate the entanglement entropy between soft and hard modes.
In chapter 5 we found agreement with the calculation in the inclusive formalism.

Chapter 6 discussed an important difference between the two formalisms. In
the previous chapters, the calculations were done using incoming and outgoing
momentum eigenstates. If we replace momentum eigenstates by wavepackets, the
predictions of the inclusive and dressed formalism disagree; the reduced outgoing
density matrix in the inclusive formalism becomes trivial. This behavior can be
traced back to the fact that all components of the wavepackets after scattering are
orthogonal. In the dressed formalism, however, everything works as expected. This
suggests that the use of dressed states is not simply an alternative to the inclusive
formalism, but – at least in four dimensions – in fact required if one wants to treat
questions beyond scattering of momentum eigenstates.

In chapter 7 we tackled two issues. First, the total decoherence found by tracing
out soft modes only depends on the fact that S-matrix scattering assumes a limit in
which incoming and outgoing states have had an infinite amount of time to interact,
so that bosons of infinitely long wavelength can be produced. We thus tried to
understand late-but-finite time behavior of decoherence. Second, all dressed state
proposals have the issue that they either do not come with a well-defined Hilbert
space, their Hilbert space is non-separable, or that their Hilbert space is not a
representation of the canonical commutation relations of the soft-boson canonical
commutation relations, but instead a set of vectors coming from different, unitarily
inequivalent representations. We solve both problems for quantum electrodynamics
by showing that, if charged asymptotic states are equipped with the correct electric
field and additional radiative dressing, they form states in a single representation of
the CCR.Repeating the decoherence calculationwith states in such a representation,
it was possible to extract the time-dependence of decoherence at late time.

The above results can be used to calculate time dependence of quantum infor-
mation theoretic quantities such as relative entropy between different photon states.
A logical next step would be the extension of the Hilbert space construction in chap-
ter 7 to the case of perturbative quantum gravity. As we have seen in the course of
this thesis, many of our results are related to or can naturally be interpreted in the
context of asymptotic symmetries related to Weinberg’s soft theorems. It would be
interesting to investigate the relation between our results and symmetries related
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to subleading soft theorems. A better understanding of dressed states along those
lines will be a crucial contribution to understanding the Hilbert space structure of
flat space holography.

10.2 Quantum information and holography
In part II of this thesis we turned to more established applications of quantum
information theory in the context of theAdS/CFT correspondence. It was previously
shown that relative entropy between the density matrices of the vacuum and some
other holographic CFT state, reduced on a ball-shaped region, is dual to a measure
of energy of the associated entanglement wedges. In chapter 9 we showed that
this statement can be generalized to deformed ball-shaped regions which can be
expressed as a cone cut. This measure of energy inherits properties from relative
entropy, like monotonicity under inclusion of subregions and positivity. Moreover,
we gave an explicit form for the bulk extremal surface as a function of the CFT
entangling surface which bounds the deformed ball-shaped region. This was then
used to give a holographic proof of the Markov property of the vacuum state on
deformed ball-shaped regions.

It would be interesting to better understand how these class of new found positive
energy theorems relate to existing energy theorems in gravity, such as the various
energy conditions.

140



Bibliography

[1] D. Carney, L. Chaurette, D. Neuenfeld, and G. W. Semenoff, “Infrared
Quantum Information,” Physical Review Letters 119 no. 18, (Oct, 2017)
180502, arXiv:1706.03782.

[2] D. Carney, L. Chaurette, D. Neuenfeld, and G. W. Semenoff, “Dressed
infrared quantum information,” Physical Review D 97 no. 2, (Jan, 2018)
025007, arXiv:1710.02531.

[3] D. Carney, L. Chaurette, D. Neuenfeld, and G. Semenoff, “On the need for
soft dressing,” Journal of High Energy Physics 2018 no. 9, (Mar, 2018) ,
arXiv:1803.02370.

[4] L. Chaurette, Infrared quantum information. PhD thesis, Unversity of
British Columbia, 2018.

[5] D. Neuenfeld, “Infrared-safe scattering without photon vacuum transitions
and time-dependent decoherence,” arXiv preprint (Oct, 2018) ,
arXiv:1810.11477.

[6] D. Neuenfeld, K. Saraswat, and M. Van Raamsdonk, “Positive gravitational
subsystem energies from CFT cone relative entropies,” Journal of High
Energy Physics 2018 no. 6, (Jun, 2018) 50, arXiv:1802.01585.

[7] K. Saraswat, “Constraints on geometry from causal holographic
information and relative entropy,” Master’s thesis, University of British
Columbia, 2017.

[8] J. D. Bekenstein, “Black Holes and Entropy,” Physical Review D 7 no. 8,
(Apr, 1973) 2333–2346.

[9] S. W. Hawking, “Black hole explosions?,” Nature 248 no. 5443, (Mar,
1974) 30–31.

141

http://dx.doi.org/10.1103/PhysRevLett.119.180502
http://dx.doi.org/10.1103/PhysRevLett.119.180502
http://arxiv.org/abs/1706.03782
http://dx.doi.org/10.1103/PhysRevD.97.025007
http://dx.doi.org/10.1103/PhysRevD.97.025007
http://arxiv.org/abs/1710.02531
http://dx.doi.org/10.1007/JHEP09(2018)121
http://arxiv.org/abs/1803.02370
http://dx.doi.org/10.14288/1.0370937
http://arxiv.org/abs/1810.11477
http://dx.doi.org/10.1007/JHEP06(2018)050
http://dx.doi.org/10.1007/JHEP06(2018)050
http://arxiv.org/abs/1802.01585
http://dx.doi.org/10.14288/1.0355226
http://dx.doi.org/10.14288/1.0355226
http://dx.doi.org/10.1103/PhysRevD.7.2333
http://dx.doi.org/10.1103/PhysRevD.7.2333
http://dx.doi.org/10.1038/248030a0
http://dx.doi.org/10.1038/248030a0


[10] A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, “Black holes:
complementarity or firewalls?,” Journal of High Energy Physics 2013
no. 2, (Feb, 2013) 62, arXiv:1207.3123.

[11] D. N. Page, “Black Hole Information,” review talk at conference (May,
1993) , arXiv:9305040 [hep-th].

[12] J. Maldacena, “The Large N Limit of Field Theories and Gravity,”
Advances in Theoretical Mathematical Physics 2 (Nov, 1998) 231–252,
arXiv:9711200 [hep-th].

[13] S. Ryu and T. Takayanagi, “Holographic Derivation of Entanglement
Entropy from the anti-de Sitter Space/Conformal Field Theory
Correspondence,” Physical Review Letters 96 no. 18, (May, 2006) 181602,
arXiv:0603001 [hep-th].

[14] V. E. Hubeny, M. Rangamani, and T. Takayanagi, “A covariant holographic
entanglement entropy proposal,” Journal of High Energy Physics 2007
no. 07, (Jul, 2007) 062–062, arXiv:0705.0016 [hep-th].

[15] M. Van Raamsdonk, “Comments on quantum gravity and entanglement,”
arXiv preprint (Jul, 2009) , arXiv:0907.2939.

[16] M. Van Raamsdonk, “Building up spacetime with quantum entanglement,”
General Relativity and Gravitation 42 no. 10, (Oct, 2010) 2323–2329,
arXiv:1005.3035.

[17] H. Casini, “Relative entropy and the Bekenstein bound,” Classical and
Quantum Gravity 25 no. 20, (Oct, 2008) 205021, arXiv:0804.2182.

[18] R. Bousso, Z. Fisher, S. Leichenauer, and A. C. Wall, “Quantum focusing
conjecture,” Physical Review D 93 no. 6, (Mar, 2016) 064044,
arXiv:1506.02669.

[19] A. C. Wall, “Lower Bound on the Energy Density in Classical and
Quantum Field Theories,” Physical Review Letters 118 no. 15, (Apr, 2017)
151601, arXiv:1701.03196.

[20] P. Hayden and J. Preskill, “Black holes as mirrors: quantum information in
random subsystems,” Journal of High Energy Physics 2007 no. 09, (Sep,
2007) 120–120, arXiv:0708.4025.

[21] F. Pastawski, B. Yoshida, D. Harlow, and J. Preskill, “Holographic quantum
error-correcting codes: toy models for the bulk/boundary correspondence,”

142

http://dx.doi.org/10.1007/JHEP02(2013)062
http://dx.doi.org/10.1007/JHEP02(2013)062
http://arxiv.org/abs/1207.3123
http://arxiv.org/abs/9305040
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/9711200
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://arxiv.org/abs/0603001
http://dx.doi.org/10.1088/1126-6708/2007/07/062
http://dx.doi.org/10.1088/1126-6708/2007/07/062
http://arxiv.org/abs/0705.0016
http://arxiv.org/abs/0907.2939
http://dx.doi.org/10.1007/s10714-010-1034-0
http://arxiv.org/abs/1005.3035
http://dx.doi.org/10.1088/0264-9381/25/20/205021
http://dx.doi.org/10.1088/0264-9381/25/20/205021
http://arxiv.org/abs/0804.2182
http://dx.doi.org/10.1103/PhysRevD.93.064044
http://arxiv.org/abs/1506.02669
http://dx.doi.org/10.1103/PhysRevLett.118.151601
http://dx.doi.org/10.1103/PhysRevLett.118.151601
http://arxiv.org/abs/1701.03196
http://dx.doi.org/10.1088/1126-6708/2007/09/120
http://dx.doi.org/10.1088/1126-6708/2007/09/120
http://arxiv.org/abs/0708.4025


Journal of High Energy Physics 2015 no. 6, (Jun, 2015) 149,
arXiv:1503.06237.

[22] X. Dong, D. Harlow, and A. C. Wall, “Reconstruction of Bulk Operators
within the Entanglement Wedge in Gauge-Gravity Duality,” Physical
Review Letters 117 no. 2, (Jul, 2016) 021601, arXiv:1601.05416.

[23] D. Carney, L. Chaurette, and G. Semenoff, “Scattering with partial
information,” arXiv preprint (Jun, 2016) , arXiv:1606.03103.

[24] G. Grignani and G. W. Semenoff, “Scattering and momentum space
entanglement,” Physics Letters B 772 (Sep, 2017) 699–702.

[25] A. Strominger, “Lectures on the Infrared Structure of Gravity and Gauge
Theory,” arXiv:1703.05448.

[26] A. Ashtekar, “Asymptotic quantization,”. Bibliopolis, 1987.

[27] V. Lysov, S. Pasterski, and A. Strominger, “Low’s subleading soft theorem
as a symmetry of QED,” Physical Review Letters 113 no. 11, (Sep, 2014)
111601, arXiv:1407.3814.

[28] A. Strominger, “On BMS invariance of gravitational scattering,” Journal of
High Energy Physics 2014 no. 7, (Jul, 2014) 152, arXiv:1312.2229.

[29] D. Kapec, M. Pate, and A. Strominger, “New symmetries of QED,”
Advances in Theoretical and Mathematical Physics 21 no. 7, (Jun, 2017)
1769–1785, arXiv:1506.02906.

[30] S. W. Hawking, M. J. Perry, and A. Strominger, “Soft Hair on Black
Holes,” Physical Review Letters 116 no. 23, (Jun, 2016) 231301,
arXiv:1601.00921.

[31] S. W. Hawking, M. J. Perry, and A. Strominger, “Superrotation charge and
supertranslation hair on black holes,” Journal of High Energy Physics 2017
no. 5, (May, 2017) 161, arXiv:1611.09175.

[32] A. Strominger, “Black Hole Information Revisited,” arXiv preprint (Jun,
2017) , arXiv:1706.07143.

[33] S. Haco, S. W. Hawking, M. J. Perry, and A. Strominger, “Black hole
entropy and soft hair,” Journal of High Energy Physics 2018 no. 12, (Dec,
2018) 98, arXiv:1810.01847.

143

http://dx.doi.org/10.1007/JHEP06(2015)149
http://arxiv.org/abs/1503.06237
http://dx.doi.org/10.1103/PhysRevLett.117.021601
http://dx.doi.org/10.1103/PhysRevLett.117.021601
http://arxiv.org/abs/1601.05416
http://arxiv.org/abs/1606.03103
http://dx.doi.org/10.1016/j.physletb.2017.07.030
http://arxiv.org/abs/1703.05448
http://dx.doi.org/10.1103/PhysRevLett.113.111601
http://dx.doi.org/10.1103/PhysRevLett.113.111601
http://arxiv.org/abs/1407.3814
http://dx.doi.org/10.1007/JHEP07(2014)152
http://dx.doi.org/10.1007/JHEP07(2014)152
http://arxiv.org/abs/1312.2229
http://dx.doi.org/10.4310/ATMP.2017.v21.n7.a7
http://dx.doi.org/10.4310/ATMP.2017.v21.n7.a7
http://arxiv.org/abs/1506.02906
http://dx.doi.org/10.1103/PhysRevLett.116.231301
http://arxiv.org/abs/1601.00921
http://dx.doi.org/10.1007/JHEP05(2017)161
http://dx.doi.org/10.1007/JHEP05(2017)161
http://arxiv.org/abs/1611.09175
http://arxiv.org/abs/1706.07143
http://dx.doi.org/10.1007/JHEP12(2018)098
http://dx.doi.org/10.1007/JHEP12(2018)098
http://arxiv.org/abs/1810.01847


[34] S. Banerjee, A. Bhattacharyya, A. Kaviraj, K. Sen, and A. Sinha,
“Constraining gravity using entanglement in AdS/CFT,” Journal of High
Energy Physics 2014 no. 5, (May, 2014) 29, arXiv:1401.5089.

[35] S. Banerjee, A. Kaviraj, and A. Sinha, “Nonlinear constraints on gravity
from entanglement,” Classical and Quantum Gravity 32 no. 6, (Mar, 2015)
065006, arXiv:1405.3743.

[36] J. Lin, M. Marcolli, H. Ooguri, and B. Stoica, “Locality of Gravitational
Systems from Entanglement of Conformal Field Theories,” Physical
Review Letters 114 no. 22, (Jun, 2015) 221601, arXiv:1412.1879.

[37] N. Lashkari, C. Rabideau, P. Sabella-Garnier, and M. Van Raamsdonk,
“Inviolable energy conditions from entanglement inequalities,” Journal of
High Energy Physics 2015 no. 6, (Jun, 2015) 67, arXiv:1412.3514.

[38] J. Bhattacharya, V. E. Hubeny, M. Rangamani, and T. Takayanagi,
“Entanglement density and gravitational thermodynamics,” Physical
Review D 91 no. 10, (May, 2015) 106009, arXiv:1412.5472.

[39] N. Lashkari, J. Lin, H. Ooguri, B. Stoica, and M. Van Raamsdonk,
“Gravitational positive energy theorems from information inequalities,”
Progress of Theoretical and Experimental Physics 2016 no. 12, (Dec, 2016)
12C109, arXiv:1605.01075.

[40] M. A. Nielsen and I. L. Chuang, “Quantum Computation and Quantum
Information,”. Cambridge University Press, Cambridge, 2010.

[41] E. Witten, “A Mini-Introduction To Information Theory,” arXiv preprint
(May, 2018) , arXiv:1805.11965.

[42] J. Von Neumann, “Mathematische Grundlagen der Quantenmechanik,”.
Springer, Berlin, Heidelberg, 1932.

[43] E. Witten, “APS Medal for Exceptional Achievement in Research: Invited
article on entanglement properties of quantum field theory,” Reviews of
Modern Physics 90 no. 4, (Oct, 2018) 045003, arXiv:1803.04993.

[44] S. Raju, “A Toy Model of the Information Paradox in Empty Space,” arXiv
preprint (Sep, 2018) , arXiv:1809.10154.

[45] M. Mirbabayi and M. Porrati, “Dressed Hard States and Black Hole Soft
Hair,” Physical Review Letters 117 no. 21, (Nov, 2016) 211301,
arXiv:1607.03120.

144

http://dx.doi.org/10.1007/JHEP05(2014)029
http://dx.doi.org/10.1007/JHEP05(2014)029
http://arxiv.org/abs/1401.5089
http://dx.doi.org/10.1088/0264-9381/32/6/065006
http://dx.doi.org/10.1088/0264-9381/32/6/065006
http://arxiv.org/abs/1405.3743
http://dx.doi.org/10.1103/PhysRevLett.114.221601
http://dx.doi.org/10.1103/PhysRevLett.114.221601
http://arxiv.org/abs/1412.1879
http://dx.doi.org/10.1007/JHEP06(2015)067
http://dx.doi.org/10.1007/JHEP06(2015)067
http://arxiv.org/abs/1412.3514
http://dx.doi.org/10.1103/PhysRevD.91.106009
http://dx.doi.org/10.1103/PhysRevD.91.106009
http://arxiv.org/abs/1412.5472
http://dx.doi.org/10.1093/ptep/ptw139
http://dx.doi.org/10.1093/ptep/ptw139
http://arxiv.org/abs/1605.01075
http://arxiv.org/abs/1805.11965
http://dx.doi.org/10.1103/RevModPhys.90.045003
http://dx.doi.org/10.1103/RevModPhys.90.045003
http://arxiv.org/abs/1803.04993
http://arxiv.org/abs/1809.10154
http://dx.doi.org/10.1103/PhysRevLett.117.211301
http://arxiv.org/abs/1607.03120


[46] R. Bousso and M. Porrati, “Soft hair as a soft wig,” Classical and Quantum
Gravity 34 no. 20, (Oct, 2017) 204001, arXiv:1706.00436.

[47] S. W. Hawking, “Particle creation by black holes,” Communications In
Mathematical Physics 43 no. 3, (Aug, 1975) 199–220.

[48] S. B. Giddings, “Nonviolent nonlocality,” Physical Review D 88 no. 6,
(Sep, 2013) 064023, arXiv:1211.7070.

[49] S. B. Giddings, “Nonviolent information transfer from black holes: A field
theory parametrization,” Physical Review D 88 no. 2, (Jul, 2013) 024018,
arXiv:1302.2613.

[50] N. Bao, S. M. Carroll, A. Chatwin-Davies, J. Pollack, and G. N. Remmen,
“Branches of the black hole wave function need not contain firewalls,”
Physical Review D 97 no. 12, (Jun, 2018) 126014, arXiv:1712.04955.

[51] Y. Nomura, “Reanalyzing an evaporating black hole,” Physical Review D
99 no. 8, (Apr, 2019) 086004, arXiv:1810.09453.

[52] J. D. Bjorken and S. S. Drell, “Relativistic quantum fields,”. McGraw-Hill,
1964.

[53] M. E. Peskin and D. V. Schroeder, “An Introduction To Quantum Field
Theory.,”. Westview Press, 1995.

[54] J. D. Dollard, “Asymptotic Convergence and the Coulomb Interaction,”
Journal of Mathematical Physics 5 no. 6, (Jun, 1964) 729–738.

[55] M. Srednicki, “Quantum Field Theory,”. Cambridge University Press,
Cambridge, 2007.

[56] S. Weinberg, “Infrared Photons and Gravitons,” Physical Review B 140
no. 2B, (1965) 516–524.

[57] S. Weinberg, “The Quantum Theory of Fields, Volume I: Foundations,”.
Cambridge University Press, 1995.

[58] D. R. Yennie, S. C. Frautschi, and H. Suura, “The infrared divergence
phenomena and high-energy processes,” Annals of Physics 13 no. 3, (Jun,
1961) 379–452.

[59] T. Kinoshita, “Mass Singularities of Feynman Amplitudes,” Journal of
Mathematical Physics 3 no. 4, (Jul, 1962) 650–677.

145

http://dx.doi.org/10.1088/1361-6382/aa8be2
http://dx.doi.org/10.1088/1361-6382/aa8be2
http://arxiv.org/abs/1706.00436
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1103/PhysRevD.88.064023
http://dx.doi.org/10.1103/PhysRevD.88.064023
http://arxiv.org/abs/1211.7070
http://dx.doi.org/10.1103/PhysRevD.88.024018
http://arxiv.org/abs/1302.2613
http://dx.doi.org/10.1103/PhysRevD.97.126014
http://arxiv.org/abs/1712.04955
http://dx.doi.org/10.1103/PhysRevD.99.086004
http://dx.doi.org/10.1103/PhysRevD.99.086004
http://arxiv.org/abs/1810.09453
http://dx.doi.org/10.1063/1.1704171
http://dx.doi.org/10.1016/0003-4916(61)90151-8
http://dx.doi.org/10.1016/0003-4916(61)90151-8
http://dx.doi.org/10.1063/1.1724268
http://dx.doi.org/10.1063/1.1724268


[60] T. D. Lee and M. Nauenberg, “Degenerate Systems and Mass
Singularities,” Physical Review 133 no. 6B, (Mar, 1964) B1549–B1562.

[61] P. A. M. Dirac, “Gauge-invariant Formulation of Quantum
Electrodynamics,” Canadian Journal of Physics 33 no. 11, (Nov, 1955)
650–660.

[62] F. Bloch and A. Nordsieck, “Note on the Radiation Field of the Electron,”
Physical Review 52 (1937) 54–59.

[63] T. He, P. Mitra, A. P. Porfyriadis, and A. Strominger, “New symmetries of
massless QED,” Journal of High Energy Physics 2014 no. 10, (Oct, 2014)
112, arXiv:1407.3789.

[64] V. Chung, “Infrared Divergence in Quantum Electrodynamics,” Physical
Review 140 no. 4B, (Nov, 1965) B1110–B1122.

[65] P. P. Kulish and L. D. Faddeev, “Asymptotic Conditions and Infrared
Divergences in Quantum Electrodynamics,” Teoreticheskaya i
Mathematicheskaya Fizika 4 no. 2, (1970) 153–170.

[66] T. W. B. Kibble, “Coherent Soft-Photon States and Infrared Divergences. I.
Classical Currents,” Journal of Mathematical Physics 9 (1968) 315–324.

[67] T. W. B. Kibble, “Coherent Soft-Photon States and Infrared Divergences. II.
Mass-Shell Singularities of Green’s Functions,” Physical Review 173 no. 5,
(1968) 1527–1535.

[68] T. W. B. Kibble, “Coherent Soft-Photon States and Infrared Divergences.
III. Asymptotic States and Reduction Formulas,” Physical Review 174
no. 5, (1968) 1882–1901.

[69] T. W. B. Kibble, “Coherent Soft-Photon States and Infrared Divergences.
IV. The Scattering Operator,” Physical Review 175 no. 5, (1968)
1624–1640.

[70] E. Bagan, M. Lavelle, and D. McMullan, “Charges from Dressed Matter:
Construction,” Annals of Physics 282 no. 2, (Jun, 2000) 471–502,
arXiv:9909257 [hep-ph].

[71] E. Bagan, M. Lavelle, and D. McMullan, “Charges from Dressed Matter:
Physics and Renormalisation,” Annals of Physics 282 no. 2, (Jun, 2000)
503–540, arXiv:9909262 [hep-ph].

146

http://dx.doi.org/10.1103/PhysRev.133.B1549
http://dx.doi.org/10.1139/p55-081
http://dx.doi.org/10.1139/p55-081
http://dx.doi.org/10.1007/JHEP10(2014)112
http://dx.doi.org/10.1007/JHEP10(2014)112
http://arxiv.org/abs/1407.3789
http://dx.doi.org/10.1103/PhysRev.140.B1110
http://dx.doi.org/10.1103/PhysRev.140.B1110
http://dx.doi.org/10.1063/1.1664582
http://dx.doi.org/10.1006/aphy.2000.6048
http://arxiv.org/abs/9909257
http://dx.doi.org/10.1006/aphy.2000.6049
http://dx.doi.org/10.1006/aphy.2000.6049
http://arxiv.org/abs/9909262


[72] J. Ware, R. Saotome, and R. Akhoury, “Construction of an asymptotic S
matrix for perturbative quantum gravity,” Journal of High Energy Physics
2013 no. 10, (Oct, 2013) 159, arXiv:1308.6285.

[73] T. He, V. Lysov, P. Mitra, and A. Strominger, “BMS supertranslations and
Weinberg’s soft graviton theorem,” Journal of High Energy Physics 2015
no. 5, (May, 2015) 151, arXiv:1401.7026.

[74] M. Campiglia and A. Laddha, “Asymptotic symmetries of QED and
Weinberg’s soft photon theorem,” Journal of High Energy Physics 2015
no. 7, (Jul, 2015) 115, arXiv:1505.05346.

[75] M. Campiglia and A. Laddha, “Asymptotic symmetries of gravity and soft
theorems for massive particles,” Journal of High Energy Physics 2015
no. 12, (Dec, 2015) 1–25, arXiv:1509.01406.

[76] B. Gabai and A. Sever, “Large gauge symmetries and asymptotic states in
QED,” Journal of High Energy Physics 2016 no. 12, (Dec, 2016) 95,
arXiv:1607.08599.

[77] D. Kapec, M. Perry, A. M. Raclariu, and A. Strominger, “Infrared
divergences in QED revisited,” Phys. Rev. D 96 no. 8, (2017) ,
arXiv:1705.04311.

[78] S. Choi and R. Akhoury, “BMS supertranslation symmetry implies
Faddeev-Kulish amplitudes,” Journal of High Energy Physics 2018 no. 2,
(Feb, 2018) 171, arXiv:1712.04551.

[79] S. Choi, U. Kol, and R. Akhoury, “Asymptotic dynamics in perturbative
quantum gravity and BMS supertranslations,” Journal of High Energy
Physics 2018 no. 1, (Jan, 2018) 142, arXiv:1708.05717.

[80] H. Afshar, D. Grumiller, and M. M. Sheikh-Jabbari, “Near horizon soft hair
as microstates of three dimensional black holes,” Physical Review D 96
no. 8, (Oct, 2017) 084032, arXiv:1607.00009 [hep-th].

[81] R. K. Mishra and R. Sundrum, “Asymptotic symmetries, holography and
topological hair,” Journal of High Energy Physics 2018 no. 1, (Jan, 2018)
14, arXiv:1706.09080.

[82] H. Bondi, M. van der Burg, and A. Metzner, “Gravitational Waves in
General Relativity: VII. Waves from Axisymmetric Isolated Systems,”
General Theory of Relativity 269 no. 1336, (Aug, 1973) 258–307.

147

http://dx.doi.org/10.1007/JHEP10(2013)159
http://dx.doi.org/10.1007/JHEP10(2013)159
http://arxiv.org/abs/1308.6285
http://dx.doi.org/10.1007/JHEP05(2015)151
http://dx.doi.org/10.1007/JHEP05(2015)151
http://arxiv.org/abs/1401.7026
http://dx.doi.org/10.1007/JHEP07(2015)115
http://dx.doi.org/10.1007/JHEP07(2015)115
http://arxiv.org/abs/1505.05346
http://dx.doi.org/10.1007/JHEP12(2015)094
http://dx.doi.org/10.1007/JHEP12(2015)094
http://arxiv.org/abs/1509.01406
http://dx.doi.org/10.1007/JHEP12(2016)095
http://arxiv.org/abs/1607.08599
http://dx.doi.org/10.1103/PhysRevD.96.085002
http://arxiv.org/abs/1705.04311
http://dx.doi.org/10.1007/JHEP02(2018)171
http://dx.doi.org/10.1007/JHEP02(2018)171
http://arxiv.org/abs/1712.04551
http://dx.doi.org/10.1007/JHEP01(2018)142
http://dx.doi.org/10.1007/JHEP01(2018)142
http://arxiv.org/abs/1708.05717
http://dx.doi.org/10.1103/PhysRevD.96.084032
http://dx.doi.org/10.1103/PhysRevD.96.084032
http://arxiv.org/abs/1607.00009
http://dx.doi.org/10.1007/JHEP01(2018)014
http://dx.doi.org/10.1007/JHEP01(2018)014
http://arxiv.org/abs/1706.09080
http://dx.doi.org/10.1016/B978-0-08-017639-0.50015-7


[83] W. H. Zurek, “Pointer basis of quantum apparatus: Into what mixture does
the wave packet collapse?,” Physical Review D 24 no. 6, (Sep, 1981)
1516–1525.

[84] H.-P. Breuer and F. Petruccione, “Destruction of quantum coherence
through emission of bremsstrahlung,” Physical Review A 63 no. 3, (Feb,
2001) 032102.

[85] G. Calucci, “Loss of coherence due to bremsstrahlung,” Physical Review A
67 no. 4, (Apr, 2003) 042702.

[86] G. Calucci, “Graviton emission and loss of coherence,” Classical and
Quantum Gravity 21 no. 9, (May, 2004) 2339–2349.

[87] S. Seki, I. Park, and S.-J. Sin, “Variation of entanglement entropy in
scattering process,” Physics Letters B 743 (Apr, 2015) 147–153,
arXiv:1412.7894.

[88] F. E. Low, “Scattering of Light of Very Low Frequency by Systems of Spin
1/2,” Physical Review 96 no. 5, (Dec, 1954) 1428–1432.

[89] M. Gell-Mann and M. L. Goldberger, “Scattering of Low-Energy Photons
by Particles of Spin 1/2,” Physical Review 96 no. 5, (Dec, 1954) 1433–1438.

[90] D. Zwanziger, “Scattering theory for quantum electrodynamics. I. Infrared
renormalization and asymptotic fields,” Physical Review D 11 no. 12, (Jun,
1975) 3481–3503.

[91] W. Dybalski, “From Faddeev-Kulish to LSZ. Towards a non-perturbative
description of colliding electrons,” Nuclear Physics B 925 (Dec, 2017)
455–469, arXiv:1706.09057.

[92] J.-L. Gervais and D. Zwanziger, “Derivation from first principles of the
infrared structure of quantum electrodynamics,” Physics Letters B 94 no. 3,
(Aug, 1980) 389–393.

[93] D. Buchholz, “The physical state space of quantum electrodynamics,”,
vol. 85. Springer-Verlag, 1982.

[94] C. Gomez and M. Panchenko, “Asymptotic dynamics, large gauge
transformations and infrared symmetries,” arXiv preprint (Aug, 2016) ,
arXiv:1608.05630.

148

http://dx.doi.org/10.1103/PhysRevD.24.1516
http://dx.doi.org/10.1103/PhysRevD.24.1516
http://dx.doi.org/10.1103/PhysRevA.63.032102
http://dx.doi.org/10.1103/PhysRevA.63.032102
http://dx.doi.org/10.1103/PhysRevA.67.042702
http://dx.doi.org/10.1103/PhysRevA.67.042702
http://dx.doi.org/10.1088/0264-9381/21/9/010
http://dx.doi.org/10.1088/0264-9381/21/9/010
http://dx.doi.org/10.1016/j.physletb.2015.02.028
http://arxiv.org/abs/1412.7894
http://dx.doi.org/10.1103/PhysRev.96.1428
http://dx.doi.org/10.1103/PhysRev.96.1433
http://dx.doi.org/10.1103/PhysRevD.11.3481
http://dx.doi.org/10.1103/PhysRevD.11.3481
http://dx.doi.org/10.1016/j.nuclphysb.2017.10.018
http://dx.doi.org/10.1016/j.nuclphysb.2017.10.018
http://arxiv.org/abs/1706.09057
http://dx.doi.org/10.1016/0370-2693(80)90903-X
http://dx.doi.org/10.1016/0370-2693(80)90903-X
http://arxiv.org/abs/1608.05630


[95] C. Gómez, R. Letschka, S. Zell, C. Gomez, R. Letschka, and S. Zell,
“Infrared divergences and quantum coherence,” The European Physical
Journal C 78 no. 8, (Aug, 2018) 610, arXiv:1712.02355.

[96] B. Schroer, “Infrateilchen in der Quantenfeldtheorie,” Fortschritte der
Physik 11 (1963) 1–32.

[97] J. von Neumann, “On infinite direct products,” Compositio Mathematica 6
(1939) 1–77.

[98] J. R. Klauder, J. McKenna, and E. J. Woods, “Direct-Product
Representations of the Canonical Commutation Relations,” Journal of
Mathematical Physics 7 no. 5, (May, 1966) 822–828.

[99] A. Laddha and A. Sen, “Logarithmic terms in the soft expansion in four
dimensions,” Journal of High Energy Physics 2018 no. 10, (Oct, 2018) 56,
arXiv:1804.09193.

[100] J. Fröhlich, G. Morchio, and F. Strocchi, “Infrared problem and
spontaneous breaking of the Lorentz group in QED,” Physics Letters B 89
no. 1, (Dec, 1979) 61–64.

[101] D. Buchholz, “Gauss’ law and the infraparticle problem,” Physics Letters B
174 no. 3, (Jul, 1986) 331–334.

[102] J. Fröhlich, G. Morchio, and F. Strocchi, “Charged sectors and scattering
states in quantum electrodynamics,” Annals of Physics 119 no. 2, (Jun,
1979) 241–284.

[103] A. P. Balachandran and S. Vaidya, “Spontaneous Lorentz violation in gauge
theories,” The European Physical Journal Plus 128 no. 10, (Oct, 2013)
118, arXiv:1302.3406.

[104] G. t. Hooft, “Dimensional Reduction in Quantum Gravity,” in Conference
on Highlights of Particle and Condensed Matter Physics (SALAMFEST).
Oct, 1993. arXiv:9310026 [gr-qc].

[105] L. Susskind, “The world as a hologram,” Journal of Mathematical Physics
36 no. 11, (Nov, 1995) 6377–6396, arXiv:9409089 [hep-th].

[106] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys.
2 (Feb, 1998) 253–291, arXiv:hep-th/9802150 [hep-th].

149

http://dx.doi.org/10.1140/epjc/s10052-018-6088-2
http://dx.doi.org/10.1140/epjc/s10052-018-6088-2
http://arxiv.org/abs/1712.02355
http://dx.doi.org/10.1063/1.1931213
http://dx.doi.org/10.1063/1.1931213
http://dx.doi.org/10.1007/JHEP10(2018)056
http://arxiv.org/abs/1804.09193
http://dx.doi.org/10.1016/0370-2693(79)90076-5
http://dx.doi.org/10.1016/0370-2693(79)90076-5
http://dx.doi.org/10.1016/0370-2693(86)91110-X
http://dx.doi.org/10.1016/0370-2693(86)91110-X
http://dx.doi.org/10.1016/0003-4916(79)90187-8
http://dx.doi.org/10.1016/0003-4916(79)90187-8
http://dx.doi.org/10.1140/epjp/i2013-13118-9
http://dx.doi.org/10.1140/epjp/i2013-13118-9
http://arxiv.org/abs/1302.3406
http://arxiv.org/abs/9310026
http://dx.doi.org/10.1063/1.531249
http://dx.doi.org/10.1063/1.531249
http://arxiv.org/abs/9409089
http://arxiv.org/abs/hep-th/9802150


[107] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory
correlators from non-critical string theory,” Physics Letters B 428 no. 1-2,
(May, 1998) 105–114, arXiv:9802109 [hep-th].

[108] K. Skenderis, “Lecture notes on holographic renormalization,” Classical
and Quantum Gravity 19 no. 22, (Nov, 2002) 5849–5876, arXiv:0209067
[hep-th].

[109] S. Ryu and T. Takayanagi, “Aspects of holographic entanglement entropy,”
Journal of High Energy Physics 2006 no. 08, (Aug, 2006) 045–045,
arXiv:0605073 [hep-th].

[110] H. Casini, M. Huerta, and R. C. Myers, “Towards a derivation of
holographic entanglement entropy,” Journal of High Energy Physics 2011
no. 5, (May, 2011) 36, arXiv:1102.0440.

[111] A. Lewkowycz and J. Maldacena, “Generalized gravitational entropy,”
Journal of High Energy Physics 2013 no. 8, (Aug, 2013) 90,
arXiv:1304.4926.

[112] L. Susskind and E. Witten, “The Holographic Bound in Anti-de Sitter
Space,” arXiv preprint (May, 1998) , arXiv:9805114 [hep-th].

[113] B. Czech, J. L. Karczmarek, F. Nogueira, and M. Van Raamsdonk, “The
gravity dual of a density matrix,” Classical and Quantum Gravity 29
no. 15, (Aug, 2012) 155009, arXiv:1204.1330.

[114] M. Van Raamsdonk, “Lectures on Gravity and Entanglement,” in New
Frontiers in Fields and Strings, pp. 297–351. WORLD SCIENTIFIC, Jan,
2017. arXiv:1609.00026.

[115] M. Rangamani and T. Takayanagi, “Holographic Entanglement Entropy,”,
vol. 931 of Lecture Notes in Physics. Springer International Publishing,
Cham, Sep, 2017. arXiv:1609.01287.

[116] D. D. Blanco, H. Casini, L.-Y. Hung, and R. C. Myers, “Relative entropy
and holography,” Journal of High Energy Physics 2013 no. 8, (Aug, 2013)
60, arXiv:1305.3182.

[117] N. Lashkari and M. Van Raamsdonk, “Canonical energy is quantum Fisher
information,” Journal of High Energy Physics 2016 no. 4, (Apr, 2016)
1–26, arXiv:1508.00897.

150

http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/9802109
http://dx.doi.org/10.1088/0264-9381/19/22/306
http://dx.doi.org/10.1088/0264-9381/19/22/306
http://arxiv.org/abs/0209067
http://arxiv.org/abs/0209067
http://dx.doi.org/10.1088/1126-6708/2006/08/045
http://arxiv.org/abs/0605073
http://dx.doi.org/10.1007/JHEP05(2011)036
http://dx.doi.org/10.1007/JHEP05(2011)036
http://arxiv.org/abs/1102.0440
http://dx.doi.org/10.1007/JHEP08(2013)090
http://arxiv.org/abs/1304.4926
http://arxiv.org/abs/9805114
http://dx.doi.org/10.1088/0264-9381/29/15/155009
http://dx.doi.org/10.1088/0264-9381/29/15/155009
http://arxiv.org/abs/1204.1330
http://dx.doi.org/10.1142/9789813149441_0005
http://arxiv.org/abs/1609.00026
http://arxiv.org/abs/1609.01287
http://dx.doi.org/10.1007/JHEP08(2013)060
http://dx.doi.org/10.1007/JHEP08(2013)060
http://arxiv.org/abs/1305.3182
http://dx.doi.org/10.1007/JHEP04(2016)153
http://dx.doi.org/10.1007/JHEP04(2016)153
http://arxiv.org/abs/1508.00897


[118] H. Casini, E. Testé, G. Torroba, E. Teste, and G. Torroba, “Modular
Hamiltonians on the null plane and the Markov property of the vacuum
state,” Journal of Physics A: Mathematical and Theoretical 50 no. 36, (Sep,
2017) 364001, arXiv:1703.10656.

[119] T. Faulkner, M. Guica, T. Hartman, R. C. Myers, and M. Van Raamsdonk,
“Gravitation from entanglement in holographic CFTs,” Journal of High
Energy Physics 2014 no. 3, (Mar, 2014) 51, arXiv:1312.7856.

[120] S. Hollands and R. M. Wald, “Stability of Black Holes and Black Branes,”
Communications in Mathematical Physics 321 no. 3, (Aug, 2013) 629–680,
arXiv:1201.0463v4.

[121] A. C. Wall, “Maximin surfaces, and the strong subadditivity of the
covariant holographic entanglement entropy,” Classical and Quantum
Gravity 31 no. 22, (Nov, 2014) 225007, arXiv:1211.3494.

[122] C. R. Frye and C. J. Efthimiou, “Spherical Harmonics in p Dimensions,”
arXiv:1205.3548 [math.CA].

[123] J. Koeller, S. Leichenauer, A. Levine, and A. Shahbazi-Moghaddam,
“Local modular Hamiltonians from the quantum null energy condition,”
Physical Review D 97 no. 6, (Mar, 2018) 065011, arXiv:1702.00412.

[124] H. Casini, E. Testé, and G. Torroba, “All the entropies on the light-cone,”
Journal of High Energy Physics 2018 no. 5, (May, 2018) 5,
arXiv:1802.04278.

[125] T. Faulkner, R. G. Leigh, O. Parrikar, and H. Wang, “Modular Hamiltonians
for deformed half-spaces and the averaged null energy condition,” Journal
of High Energy Physics 2016 no. 9, (Sep, 2016) 38, arXiv:1605.08072.

151

http://dx.doi.org/10.1088/1751-8121/aa7eaa
http://dx.doi.org/10.1088/1751-8121/aa7eaa
http://arxiv.org/abs/1703.10656
http://dx.doi.org/10.1007/JHEP03(2014)051
http://dx.doi.org/10.1007/JHEP03(2014)051
http://arxiv.org/abs/1312.7856
http://dx.doi.org/10.1007/s00220-012-1638-1
http://arxiv.org/abs/1201.0463v4
http://dx.doi.org/10.1088/0264-9381/31/22/225007
http://dx.doi.org/10.1088/0264-9381/31/22/225007
http://arxiv.org/abs/1211.3494
http://arxiv.org/abs/1205.3548
http://dx.doi.org/10.1103/PhysRevD.97.065011
http://arxiv.org/abs/1702.00412
http://dx.doi.org/10.1007/JHEP05(2018)005
http://arxiv.org/abs/1802.04278
http://dx.doi.org/10.1007/JHEP09(2016)038
http://dx.doi.org/10.1007/JHEP09(2016)038
http://arxiv.org/abs/1605.08072


Appendix A

Infrared quantum information

Here, we show that the exponents ∆A,∆B controlling the infrared divergences
are always positive or zero, and give necessary and sufficient conditions for these
exponents to vanish.

The first step is to notice that the expressions for the differential exponents (4.8)
between the processes α → β and α → β′ are the same as the exponents (4.6) for
the divergences in the process β→ β′, that is

∆Aββ′,α = Aβ′,β/2,

∆Bββ′,α = Bβ′,β/2.
(A.1)

To see this, note from the definitions (4.4), (4.6), and (4.8) that there are terms in
each of Aβ,α, Aβ′,α, and Ãββ′,α coming from contractions between pairs of incoming
legs, pairs of an incoming and outgoing leg, and pairs of outgoing legs. One can
easily check that the in/in and in/out terms cancel pairwise between the A and Ã

terms in ∆A. The remainder is the terms involving contractions between pairs of
outgoing legs:

∆Aββ′,α =
1
2

∑
p,p′∈β

γpp′ +
1
2

∑
p,p′∈β′

γpp′ −
∑

p∈β,p′∈β
γpp′ (A.2)

where we defined γpp′ = epep′β
−1
pp′ log[(1+ βpp′)/(1− βpp′)]. We have used the fact

that every ηp that would have been in (A.2) is a −1 since every line being summed is
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an outgoing particle. But then we have a relative minus sign and factor of 2 between
the first two terms and the third; this is precisely the same factor that would have
come from the relative ηin = −1 and ηout = +1 terms in exponent for the process
β→ β′, namely

Aβ′,β =
∑

p,p′∈β
γpp′ +

∑
p,p′∈β′

γpp′ − 2
∑

p∈β,p′∈β′
γpp′ . (A.3)

This proves (A.1) for ∆A; an identical combinatorial argument shows that the
gravitational exponent obeys the analogous relation, ∆Bββ′,α = Bβ′,β/2.

Now we prove that for the process α → β + (soft) the exponent Aβ,α is always
greater or equal to zero with equality if and only if the in and outgoing currents
agree; we can then take α = β′ to get the results quoted in the text. Referring to
Weinberg’s derivation [56], we can write Aβ,α as

Aβ,α =
1

2(2π)3

∫
S2

dq̂ tµ(q̂)tµ(q̂). (A.4)

Here,

tµ(q̂) ≡
∑
n

enηnpµn
pn · q

= c(q)qµ + ci(q)(qi
⊥)
µ . (A.5)

In this equation, we have defined a lightlike vector qµ = (1, q̂) and qi
⊥, i = 1,2

are two unit normalized, mutually orthogonal, purely spatial vectors perpendicular
to qµ. The sum on n ∈ α, β runs over in- and out-going particles. By charge
conservation, t · q = 0, which justifies the decomposition in the second equality in
(A.5). With this decomposition we may write

Aβ,α =
1

2(2π)3

∫
S2

dq̂(c2
1(q) + c2

2(q)) ≥ 0, (A.6)

which immediately proves the statement that Aβ,α ≥ 0.
Now it remains to be shown that equality holds if and only if all of the in-

and out-going currents match. From the previous paragraph we know that Aβ,α
vanishes if and only if both ci(q) = 0 for all q, that is if and only if t · qi

⊥ = 0.
Assume that Aβ,α = 0, so that q⊥ · t(q) = 0. Now suppose also that jv0(α) , jv0(β)

153



for some v0, where these are the eigenvalues of jv |α〉 = jv(α) |α〉 and similarly
for β. We derive a contradiction. For any finite set of velocities, the functions
fv(q̂) = (v · q⊥)/(1 − v · q̂) are linearly independent. Therefore the terms in

0 = t · q⊥ =
∑
n

enηnvn · q⊥
vn · q

(A.7)

must cancel separately for each velocity in the list of vn. Consider in particular the
term for v0. For this to vanish, the sum of the coefficients must vanish, i.e.,

0 =
∑

n |vn=v0

enηn =
[
jv0(α) − jv0(β)

]
, (A.8)

the relative minus coming from the η factors. But this contradicts our assumption
that jv0(α) , jv0(β). This completes the proof for A.

The proof for gravitons goes similarly. Again referring to Weinberg we write
B as

Bβ,α =
G

4π2

∫
S2

dq̂tµνDµνρσtρσ . (A.9)

Here, Dµνρσ = ηµνηρσ − ηµρηνσ − ηµσηνρ is the numerator of the graviton propa-
gator, and

tµν =
∑
n

ηnpµnpνn
pn · q

= cq(µqν) + ciq(µqν)
⊥,i + ci jq(µ

⊥,iq
ν)
⊥, j . (A.10)

This symmetric tensor obeys tµνqν = 0 by energy-momentum conservation, which
justifies the decomposition in the second equality. Using this we have

tµνDµνρσtρσ = 2cijc
j
i −

(
cii

)2
= (λ1 − λ2)

2 (A.11)

with λ1,2 the two eigenvalues of the matrix ci j . Plugging this into (A.9) we
immediately see that B ≥ 0. The condition for vanishing of Bβ,β′ is that the
eigenvalues are equal λ1 = λ2, which means that ci j is proportional to the identity
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matrix. Hence, if B vanishes we have that

0 = tµνq⊥,1µ q⊥,2ν =
∑
n

ηnEn
(vn · q1

⊥)(vn · q
2
⊥)

vn · q
. (A.12)

As before, any finite set of functions gv(q) = (v · q1
⊥)(v · q

2
⊥)/(v · q) are linearly

independent functions of q, and so by direct analogy with the previous proof, B = 0
if and only if jgrv (α) = jgrv (β) for every v.
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Appendix B

Dressed soft factorization

p

p′

k

p

p′

k

p

p′

k

p

p′k

Figure B.1: Diagrams contributing to the dressed scattering with additional
bremsstrahlung. The first two diagrams correspond to photons coming
from the dressing, while the latter two diagrams correspond to the usual
Feynman diagrams where the photon is emitted from the electron lines.

The soft photon theorem looks somewhat different in dressed QED. In standard,
undressed QED, the theorem says that the amplitude for a process p → q accom-
panied by emission of an additional soft photon of momentum k and polarization `
has amplitude

Sqk`,p = e
[
q · ε∗` (k)

q · k
−

p · ε∗` (k)
p · k

]
Sq,p. (B.1)
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This is singular in the k → 0 limit. On the other hand, in the dressed formalism of
QED, the statement is that

S̃qk`,p = e f (k)S̃q,p, (B.2)

where f (k) ∼ O(|k|0), so that the right-hand side is finite as k → 0. We can see
this by straightforward computation. In computing equation (B.2), there will be
four Feynman diagrams at lowest order in the charge (see figure B.1). We will get
the usual pair of Feynman diagrams coming from contractions of the interaction
Hamiltonian with the external photon state, leading to the poles, equation (B.1).
Moreover we will get a pair of terms coming from contractions of the interaction
Hamiltonian with dressing operators. These contribute a factor

[
f ∗` (k,p) − f ∗` (k,q)

]
→

[
q · ε∗` (k)

q · k
−

p · ε∗` (k)
p · k

]
+ O(|k|0), (B.3)

times −e, where the limit as k → 0 follows from the definition (3.50). This extra
contribution precisely cancels the poles in (B.1), leaving only the order O(|k|0)
term.
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Appendix C

On the need for soft dressing

C.1 Proof of positivity of ∆A,∆B
The exponent that is responsible for the decoherence of the system is defined as

∆Aββ′,αα′ =
1
2

Aβ,α +
1
2

Aβ′,α′ − Ãββ′,αα′ . (C.1)

The factor in the first two terms, Aβ,α, is defined as in [56]

Aβ,α =
1

2(2π)3

∫
S2

dq̂

(∑
n∈β

enηnpµn
pn · q̂

)
gµν

(∑
m∈α

emηmpµm
pm · q̂

)
. (C.2)

Performing the integral over q̂ yields

Aβ,α = −
∑

n,n′∈α,β

enen′ηnηn′
8π2 βnn′ log

[
1 + βnn′
1 − βnn′

]
. (C.3)

Similarly Ãββ′,αα′ can be written as

Ãββ′,αα = −
∑

n∈α,β
n′∈α′β′

enen′ηnηn′
8π2 βnn′ log

[
1 + βnn′
1 − βnn′

]
. (C.4)
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We rearrange the terms such that ∆A can be written as

∆Aββ′,αα′ = −
1
2

∑
n,n′∈α,ᾱ′,β,β̄′

enen′ηnηn′
8π2 β−1

nn′ log
[
1 + βnn′
1 − βnn′

]
, (C.5)

where a bar means incoming particles are taken to be outgoing and vice versa (or
equivalently, ηᾱ′ = −ηα′). From equation (C.5), it is clear that incoming particles
are found within the set {α, β′} while the outgoing particles are part of {α′, β}. Let
us rename those sets σ and σ′ respectively. ∆A now takes the form

∆Aββ′,αα′ = −
1
2

∑
n,n′∈σ,σ′

enen′ηnηn′
8π2 β−1

nn′ log
[
1 + βnn′
1 − βnn′

]
=

1
2

Aσσ′ ≥ 0, (C.6)

as was proven in [1]. This shows that ∆Aββ′,αα′ ≥ 0. The same proof goes through
for ∆Bββ′,αα′.

C.2 The out-density matrix of wavepacket scattering
In this part of the appendix we flesh out the argument in section 6.3, namely that
after tracing out soft radiation, the only contribution to the out-density matrix is
coming from the identity term in the S-matrix. We will focus on the case of QED.

C.2.1 Contributions to the out-density matrix

First, let us decompose the IR regulated S-matrix into its trivial part and the M-
matrix element. For simplicity we ignore partially disconnected terms, where only
a subset of particles interact. Then,

SΛα,β = δ(α − β) − 2πiMΛαβδ
(4)(pµα − pµβ), (C.7)

where the first term is the trivial LSZ constribution to forward scattering. This trivial
part does not involve any divergent loops and therefore exhibits no Λ-dependence.
However, the factorization of the S-matrix into a cutoff dependent term times some
power of λ/Λ remains valid since all exponents of the form Aα,β vanish identically
for forward scattering. This decomposition of the S-matrix gives rise to three
different terms for the outgoing density matrix, containing different powers ofM.

159



“No scattering”-term

The case where both S-matrices contribute the delta function term results – unsur-
prisingly – in the well-defined outgoing density matrix

ρ
(I)
ββ′ =

∫
dαdα′ f (α) f (α′)∗δ(α − β)δ(α′ − β′)δαα′ = f (β) f ∗(β′). (C.8)

Contribution from forward scattering

We would now expect to find an additional contribution to the density matrix
reflecting the non-trivial scattering processes, coming from the cross-terms

−2πi
(
δ(α − β)MΛα′βδ

(4)(pµα′ − pµβ) − δ(α
′ − β)M†Λαβδ

(4)(pµα − pµβ)
)
. (C.9)

For simplicity, let us focus solely on the case in which S∗ contributes the delta
function and S contributes the connected part

ρ
(II)
ββ′ = −2πi f ∗(β′)

∫
dα f (α)MΛβαδ

(4)(pµα − pµβ)λ
∆Aα,βG(E,ET ,Λ)β,α + . . . ,

(C.10)

where the ellipsis denotes the contribution coming from the omitted term of (C.9).
The exponent of λ only vanishes if the currents in α and β agree. We will show in
appendix C.2.2 that we can take the limit λ→ 0 before doing the integrals. Taking
this limit, λ∆Aα,β gets replaced by

δαβ =


1, if charged particles in α and β have the same velocities

0, otherwise,
(C.11)

which is zero almost everywhere. If the integrand was regular, we could conclude
that the integrand is a zero measure subset and integrates to zero and thus

ρ
(II)
ββ′ = 0. (C.12)

160



However, the integrand is not well-behaved. Singular behavior can come from the
delta function or the matrix element, so let’s consider the two possibilities.

The singular nature of the Dirac delta does not affect our conclusion: for n

incoming particles, the measure dα runs over 3n momentum variables while the
delta function constrains 4 of them, leaving us with 3n− 4 independent ones. If we
managed to find a configuration for which ∆Aβ,α = 0, any infinitesimal variation
of the momenta in α along a direction that conserves energy and momentum would
modify the eigenvalue of the current operator jv(α) − jv(β) and make ∆Aβα non-
zero. Therefore, the integrandwould still be a zero-measure subset for the remaining
integrals.

What could still happen is that MΛβα is so singular that it gives a contribution.
For this to happen it would need to have contributions in the form of Dirac delta
functions. However, also this does not happen, for example for Compton scattering
which scatters into a continuum of states. Additional IR divergences also do not
appear as guaranteed by the Kinoshita-Lee-Nauenberg theorem. We will not give
a general proof since for our purposes it is problematic enough to know that no
scattering is observed for some physical process.

The scattering term

It is evident that a similar argument goes through for theM2 term. One finds

ρ
(III)
ββ′ = −4π2

∫
dαdα′ f (α) f ∗(α′)MΛβαM

Λ∗
α′β′λ

∆Aαα′ ,ββ′ (C.13)

× F(E,ET ,Λ)ββ′,αα′δ
(4)(pµα − pµβ)δ

(4)(pµα′ − pµβ′). (C.14)

The analysis boils down the the question whether the term∫
dαdα′λ∆Aαα′ ,ββ′δ(4)(pµα − pµβ)δ

(4)(pµα′ − pµβ′). (C.15)

vanishes. As soon as there is at least one particle with charge, we need to obey
the condition that the charged particles in α and β′ agree with those in β and α′

for the exponent of λ to vanish. Infinitesimal variations of α and α′ that preserve
the eigenvalue of the current operator jv(α) − jv(α′) form a zero-measure subset of
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the 6n − 8 directions that preserve momentum and energy, forcing us to conclude
that the integration runs over a zero measure subset and the only contribution to the
reduced density matrix comes from the trivial part of the scattering process. This
means that

ρout, red.ββ′ = f (β) f ∗(β′) = ρinββ′, (C.16)

or in other words it predicts that a measurement will not detect scattering for
wavepackets. This is clearly in contradiction with reality and suggests that the
standard formulation of QED and perturbative quantum gravity which relies on the
existence of wavepackets is invalid.

C.2.2 Taking the cutoff λ→ 0 vs. integration

One might be concerned that the limit λ→ 0 and the integrals do not commute. In
this part of the appendix, we will check the claim made in the preceding subsection,
i.e., we will show that one can explicitly check that the integration and taking the IR
regulator λ to zero commute. We assume in the following that we talk about QED
with electrons and muons in the non-relativistic limit, which again is good enough
as it is sufficient to show that we can find a limit in which no sign of scattering
exists in the outgoing hard state. The wave packets are chosen to factorize for every
particle and to be Gaussians in velocity centered around v = 0,

f (v) =
(

2
πκ

)3/4
exp

(
−
v2

κ

)
. (C.17)

In order to stay in the non-relativistic limit, κ must be sufficiently small. They are
normalized such that ∫

d3v | f (v)|2 = 1. (C.18)

In the exponent of λ we set α′ = β′ for simplicity, i.e., we consider the case of
forward scattering. In the non-relativistic limit, we can expand the exponent of λ

162



into

∆Aα,β =
e2

24π2

∑
n,m∈α,β

(vα − vβ)
2. (C.19)

Thus, λ∆A has the form

λ∆A ∝ exp

(
−

1
2
γ

∑
n,m∈α,β

(vα − vβ)
2

)
, (C.20)

where taking the cutoff λ to zero corresponds to γ ∝ − log(λ) → ∞. The state α
consists of a muon with well defined momentum and one electron with momentum
mv, where v is centered around 0. The state β consists of the same muon (we
assume it was not really deflected) and one electron with momentum mv′. To
obtain the contribution to forward scattering, we have to perform the integral

∝

∫
d3v

(
2
πκ

)3/4
exp

(
−
v2

κ

)
exp

(
−γ(v − v′)2

)
· (other terms). (C.21)

Here, we assumed that the other terms which include the matrix element in the
regime of interest is finite and approximately independent of v. The integral yields(

2πκ
(1 + γκ)2

)3/4
exp

(
−
γv′2

1 + γκ

)
. (C.22)

Taking the limit γ → ∞, it is clear that this expression vanishes. If we want to
consider an outgoing wave packet we have to integrate this over f (v′ − vout). The
result is proportional to (

2πκ
(1 + 2γκ)2

)3/4
exp

(
−

γv2
out

1 + 2γκ

)
(C.23)

and still vanishes if we remove the cutoff, γ →∞.
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Appendix D

Cone Relative Entropies

D.1 Equivalence of Hξ on the boundary and the modular
Hamiltonian

In this appendix we will show that Hξ reduces to the modular Hamiltonian on
the boundary, even in the case of a deformed entangling surface. We take the
infinitesimal difference between pure AdS and another spacetime that satisfies the
linearized Einstein’s equations around pureAdS, i.e., wewant to calculate δQξ−ξ ·θ

on a constant z slice near the boundary. We can find in the appendix of [39] that

δQξ−ξ ·θ =
1

16πGN
ε̂ab

[
δgac∇cξ

b −
1
2
δgcc∇

aξb + ξc∇bδgac − ξ
b∇cδg

ca + ξb∇aδgcc

]
.

(D.1)
The next step is to expand the sum over a and b. As we approach the boundary we
consider volume elements on on constant z slices and thus the term involving the
volume element ε̂µν vanishes. In Fefferman-Graham gauge (δgzc = 0) we find

δQξ − ξ · θ =
1

16πGN
ε̂µz

[
1
2
δgνν∇

zξµ − ξµ∇zδgνν − ξ
c∇µδgzc + ξ

µ∇cδg
cz

]
+

1
16πGN

ε̂µz

[
δgµν∇νξ

z −
1
2
δgνν∇

µξz + ξν∇zδg
µ
ν − ξ

z∇νδg
νµ + ξz∇µδgνν

]
.

(D.2)
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Now all we need to do is find the leading order behaviour near z = 0. To this effect
we assume that the vector fields have a asymptotic expansion near the conformal
boundary given in equation (9.29).

We also take δgab = zd−2Γ
(d)
ab
+ zd−1Γ

(d+1)
ab

+ .... The leading order terms of
equation (D.2) are

d
16πGN

ηµλε̂µzΓ
(d)
λν ξ

νzd+1 + ... = O(1), (D.3)

where we use the fact that for a CFT traceless stress-energy tensor implies that
ηνρg

(d)
νρ = 0 and ε̂µz = O

(
z−(d+1)) . Finally, employing the relation between the

metric perturbation in FG coordinates and the stress-energy tensor,

∆〈Tµν〉 =
d

16πGN
Γ
(d)
µν

���
z=0

(D.4)

and the definition of ε given in section 9.2 we arrive at

δQξ − ξ · θ = ε
ρ
〈
Tρσ

〉
ξσ + O(z). (D.5)

D.2 The HRRT surface ending on the null-plane
In order to derive the HRRT surface which ends on a curve located on a boundary
null-plane, we split the coordinates into x± = t ± x (here x is the spatial direction
parallel to the null-plane), boundary directions xi⊥ orthogonal to the null-plane, and
the bulk coordinate z. The metric on the Poincaré patch in these coordinates is

ds2 =
1
z2 (dz2 − 2dx+dx− + dxi⊥dx⊥i). (D.6)

We choose static gauge for the coordinates on our extremal surface, such that x± =

x±(z, xi⊥). The entangling surface on the boundary is then given by x± = x±(0, xi⊥).
The equations which determine the embeddings x±(z, xi⊥) are given by

γab
∂γab
∂x±

= −
1
√
γ
∂a

(
2
√
γγabg+−∂bx∓

)
, (D.7)
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where the induced metric is denoted by γab. Having the extremal surface ending
on a boundary null-plane means that either x+ or x− are constant. Without loss of
generality, we choose x− = x−0 = const. This reduces the two equations (D.7) to a
single equation for x+(z, xi⊥). Making the ansatz x+(z, xi⊥) = hk(z)gk(xi⊥) we can
separate the equation into

zd−1∂z(z1−d∂zhk(z)) = −∆⊥gk(xi⊥). (D.8)

The general solutions for the functions hk(z) and gk(xi⊥) are given by

gk(x⊥) = ak i e
ik i xi⊥, (D.9)

hk(z) = ck zd/2Id/2(zk) + dk zd/2Kd/2(zk), (D.10)

where k = |k i | and xi⊥k i denotes the Euclidean inner product between the vectors
k i and xi. Iν and Kν denote the modified Bessel functions of first and second kind,
respectively. We also define h0 = limz→0 hk(z). It turns out that we do not want
the full solution for hk . Intuitively, it is clear that the effect of deformations of the
entangling surface on the boundary should die off as z → ∞. At the same time
we also require that the shape of the extremal surface is uniquely determined by
boundary conditions. The asymptotic behavior of hk as z →∞ and z → 0 is

lim
z→∞

hk(z) = ck

√
1

2πk
ekz + dk

√
π

2k
e−kz, (D.11)

lim
z→0

hk(z) = dk2
d−2

2 Γ

(
d
2

)
k−d/2. (D.12)

We can only fulfill above requirements if we set ck = 0. Hence any extremal surface
ending on the null-plane x− = x−0 is given by

x+(z, xi⊥) =
2 2−d

2 kd/2

Γ(d/2)

∫
dd−2ka®k zd/2Kd/2(zk)eik

i xi . (D.13)

The normalization is chosen such that

lim
z→0

x+(z, xi⊥) =
∫

dd−2kak i e
ik i xi⊥ (D.14)
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determines ak in terms of the entangling surface x+(0, x⊥).

D.3 Calculation of the binormal
The binormal nµν is defined as

nµν = nµ2 nν1 − nν2nµ1 , (D.15)

where n1 and n2 are orthogonal ±1 normalized normal vectors to the extremal
surface. To calculate them start by calculating the d − 1 tangent vectors to the
surface which will be labeled by n as tn = tµn ∂µ, n ∈ {1,2, ..., d − 1}. They satisfy
tµn ∂µ(r+ − ρ+0 ) = 0 and tµn ∂µ(r− −Λ(θ, φi)) = 0. A convenient set of tangent vectors
is given by

t1 =
√
gθθ ((∂θΛ)∂− + ∂θ) , (D.16)

t2 =
√
gφ

1φ1
(
(∂φ1Λ)∂− + ∂φ1

)
, (D.17)

t3 =
√
gφ

2φ2
(
(∂φ2Λ)∂− + ∂φ2

)
, (D.18)

t4 = . . . (D.19)

and so on for all φi. It is easy to see that these vectors form an orthonormal basis on
the Ryu-Takayanagi surface. Requiring that n1 and n2 are orthogonal to all tangent
vectors, gµνnµ1,2tνa = 0. This requirement is fulfilled by choosing

n+1,2 = g+−, na
1,2 = −∂

a
Λ, (D.20)

where a stands again for all angular components. The condition that n1 and n2

be orthogonal and normalized to +1 and −1, respectively, is obeyed provided we
choose

n−1 =
1
2
(1 − ∂aΛ∂aΛ) , n−2 = −

1
2
(1 + ∂aΛ∂aΛ) . (D.21)
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One can check that the only non-zero components of the binormal are given by:

n+− = g+−, na− = −∂aΛ. (D.22)

D.4 Hollands-Wald gauge condition
In this appendix, we argue that for the example of a planar black hole in AdS4,
considered as a perturbation of pure AdS, we can choose a gauge where g

(1)
−a |Σ =

0 = g(1)−− |Σ which at the same time is compatible with Hollands-Wald gauge. In this
case, the final term in our second order expression (9.65) for the relative entropy
vanishes.

Hollands-Wald gauge is determined by requiring that the extremal surface in the
deformed spacetime sits at the same coordinate location than the extremal surface
in the undeformed spacetime. In particular this means that

r− = Λ(θ, φ), r+ = ρ+0 . (D.23)

The requirement that also after a perturbation of the metric the extremal surface Ã

sits at its old coordinate location translates into

0 = ∂−
(
γab
(0) γ

(1)
ab

)
− ∂c(

√
γ(0)γca

(0)∂axµg(1)−µ)
����
Ã

, (D.24)

0 = −
1
2

√
γ(0)γab

(0) ∂ar−g(0)+−∂b(γ
cd
(0)γ

(1)
cd
) + ∂c(

√
γ(0)∂dr−g(0)+−γ

ca
(0)γ

(1)
ab
γbd
(0) )

− ∂b(

√
γ(0)γab

(0) ∂ar−g(1)+−) − ∂b(
√
γ(0)γab

(0) g
(1)
+a) +

1
2

√
γ(0)∂+(γ

ab
(0) γ

(1)
ab
)

����
Ã

.

(D.25)

As a warm-up consider a ball-shaped entangling surface with a corresponding
extremal surface at r+ = ρ+0 ,r

− = −ρ+0 placed in a planar black hole background,

ds2 =
1
z2

(
−(1 − µzd)dt2 +

dz2

(1 − µzd)
+ dx2

)
, (D.26)

at leading order in µ. The equations for the extremal surface now become at first
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order

0 =
1
2

√
γ(0)∂±

(
γab
(0) γ

(1)
ab

)
− ∂a

(√
γ(0)γab

(0) g
(1)
±b

)����
Ã

. (D.27)

We can use the symmetry of the perturbation under time translations and regularity
at the boundary to find a vector field v that generates a diffeomorphism g → Lvg

which locates the extremal surface in the perturbed geometry at the same coordinate
location as the extremal surface in the unperturbed geometry.

v+ = −
µ

64
sin θ(1 + sin2 θ)(r+ − r−)2, (D.28)

v− =
µ

64
sin θ(1 + sin2 θ)(r+ − r−)2, (D.29)

vθ =
µ

64
(r+ − r−)3 cos3 θ, (D.30)

vφ = 0. (D.31)

This diffeomorphism brings the metric perturbation into the form

δds2 =
µ

8
(r+ − r−)

1 + sin2 θ

sin θ
dy+dy− +

µ

32
(r+ − r−)3 cos θ cot θdθ2

−
µ

32
(r+ − r−)3 cos3 θ cot θdφ2.

(D.32)

The only non-vanishing components of the metric in the new coordinates are
g+−,gθθ and gφφ. In particular, we have that g(1)−a = 0 = g(1)−−. The main benefit of
these coordinates is that equation (D.27) holds automatically. Hence at least for
a ball-shaped entangling surface we are in Hollands-Wald gauge and the extremal
surface is located at r± = ±ρ+0 . It can be seen from the metric that lines of constant
r± are lightlike and therefore we know that the new entangling surface still is on
the bulk lightcone of a point p at the boundary.

From this we can conclude that the entanglement wedge associated to any region
bounded by a lightcone does not contain any point outside the causal wedge. As
we have seen this is true for ball-shaped regions. A deformation of the entangling
surface cannot change this, since the boundary domain of dependence is smaller
than that of some ball-shaped region. At the same time, the extremal surface cannot
lie within the causal domain of dependence and therefore we must conclude that
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the extremal surface also lies on the lightcone.
This means that the transformations (D.28) – (D.31) bring the HRRT surface

to its correction r+ location. The only additional adjustment we need to make to
the coordinate system is to reparameterize r− around the extremal surface, e.g. by
rescaling the r− coordinate in an angle-dependent way.

To find a solution to the general Hollands-Wald gauge condition, equation
(D.25), we alter the plus-component of the vector field, v+ → v+ + ṽ+(θ, φ), around
the extremal surface such that it shifts the extremal surface into its new correct
location on the lightcone. This vector field can be chosen such that at the extremal
surface Ã it remains constant along r− and r+ and thus depends only on θ and φ.
It should be clear that such a solution exists, since at the boundary the correction
ṽ+(θ, φ) vanishes and is smooth everywhere else. More formally, in this case
equation (D.25) reduces to

µ

16
∂θ(cot θ∂θ(ρ+0 − Λ(θ, φ))

2) +
µ

16
tan θ∂2

φ(R − Λ(θ, φ))
2
����
Ã

= ∂θ(cos θ(∂θ ṽ+(θ, φ) + 2 cot θṽ+(θ, φ))) +
1

cos θ
∂2
φ ṽ+(θ, φ)

����
Ã

.

(D.33)

For small deformations of the ball shaped entangling surface we can write Λ(θ, φ)
as a series expansion in the deformations. At first order, this gives us a linear
PDE which can be solved. Higher orders become inherently non-linear and thus
this equation is in general very hard to solve. An interesting observation one can
make for small n = 1 deformations of the entangling surface is that the linear order
correction is zero.
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