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The intrinsic alignment (IA) of galaxies is potentially a major limitation in deriving cosmological constraints
from weak lensing surveys. In order to investigate this effect we assign intrinsic shapes and orientations to
galaxies in the light-cone output of the MICE simulation, spanning ∼ 5000 deg2 and reaching redshift 𝑧 = 1.4.
This assignment is based on a ’semi-analytic’ IA model that uses photometric properties of galaxies as well as
the spin and shape of their host halos. Advancing on previous work, we include more realistic distributions of
galaxy shapes and a luminosity dependent galaxy-halo alignment. The IA model parameters are calibrated against
COSMOS and BOSS LOWZ observations. The null detection of IA in observations of blue galaxies is accounted
for by setting random orientations for these objects. We compare the two-point alignment statistics measured in
the simulation against predictions from the analytical IA models NLA and TATT over a wide range of scales,
redshifts and luminosities for red and blue galaxies separately. We find that both models fit the measurements
well at scales above 8 ℎ−1Mpc, while TATT outperforms NLA at smaller scales. The IA parameters derived
from our fits are in broad agreement with various observational constraints from red galaxies. Lastly, we build
a realistic source sample, mimicking DES Year 3 observations and use it to predict the IA contamination to the
observed shear statistics. We find this prediction to be within the measurement uncertainty, which might be a
consequence of the random alignment of blue galaxies in the simulation.

I. INTRODUCTION

Weak gravitational lensing, able to directly probe dark-
matter-dominated large-scale structures in the Universe, has
become a core cosmological probe (Abbott et al. 2022, Hey-
mans et al. 2021, Hikage et al. 2019). In the coming years, next-
generation experiments including Euclid, the Vera C. Rubin
Observatory, and the Nancy Grace Roman Space Telescope,
will rely on weak lensing to provide a substantial part of their
overall constraining power. However, weak lensing analyses
bring several challenges, including both measurement method-
ology and understanding complex astrophysical effects. One of
the main astrophysical effects is the intrinsic alignment (here-
after also referred as IA) of source galaxies (e.g. Joachimi
et al. 2015, Kiessling et al. 2015, Kirk et al. 2015, Troxel &
Ishak 2015) which contaminates the alignment signal induced
by gravitational lensing. Understanding how IA affects the
observed weak lensing statistics is becoming increasingly im-
portant as the statistical errors are decreasing strongly with the
larger volumes probed by modern surveys. It has been shown
that ignoring IA can bias the constraints on cosmological para-
meters from these lensing surveys significantly (Krause et al.
2016). The IA contribution therefore needs to be included in
the modeling of the observed data when deriving cosmological
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constraints from weak lensing observations.
Analytic IA models (e.g. Blazek et al. 2019, Catelan et al.

2001, Crittenden et al. 2001, Fortuna et al. 2021a, Hirata &
Seljak 2004) are typically used to mitigate the impact of IA on
lensing measurements. However, it is not yet known which IA
models are sufficiently accurate to avoid biasing cosmological
parameter inference. Alternatively, employing overly complex
modeling can remove cosmological constraining power and
might introduce parameter degeneracy. It is thus important
to test if current IA models satisfy the accuracy requirements
for the upcoming observations. One possibility to do so is
provided by direct measurements of IA in spectroscopic sur-
veys, as these surveys enable a clear separation between fore-
ground and background galaxies. Such a separation is not
possible with the less accurate photometric redshift estimates
that are used in weak lensing surveys. Direct measurements of
IA have been made in several spectroscopic surveys, includ-
ing SDSS, WiggleZ, BOSS, KiDS+GAMA and PAU (Fortuna
et al. 2021b, Hirata et al. 2007, Joachimi et al. 2011, Johnston
et al. 2019, 2021, Mandelbaum et al. 2006, 2011, Singh & Man-
delbaum 2016, Singh et al. 2015) and revealed inaccuracies of
the analytic IA models, in particular at small scales. These
direct observations further showed that the IA signal depends
strongly on the luminosity and color range probed by a given
galaxy sample, indicating that the shapes and orientations of
galaxies are affected by the same evolutionary processes (e.g.
merging and cold gas accretion) that determine the photomet-
ric properties of galaxies. This conclusion lines up with results
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from hydrodynamic simulations (e.g. Codis et al. 2018). The
alignment contributions to the lensing signal are therefore ex-
pected to depend strongly on the photometric properties as
well as on the redshift of the source samples used in weak
lensing analysis. An assessment of how strongly inaccuracies
of analytical IA models may bias the cosmological constraints
derived from lensing surveys can therefore not be derived from
the current spectroscopic IA observations, which are focused
mainly on red galaxies at relatively low redshifts (𝑧 . 0.5).

This lack of observational IA constraints may be filled by
cosmological simulations, which can provide insights into IA
behavior and allow for testing of modeling and analysis meth-
ods in a realistic setting. Cosmological hydrodynamic simula-
tions of galaxy formation can predict the alignment of galaxies
as a function of color and luminosity up to high redshifts (Chis-
ari et al. 2015, Hilbert et al. 2017, Samuroff et al. 2021, Tenneti
et al. 2015, Velliscig et al. 2015). However, their relatively low
resolution as well as the assumptions involved in the imple-
mentations of galaxy formation processes may impose a bias
on the IA constraints derived from these simulations, which
has not been investigated so far. In addition, the volumes
covered by these simulations are several orders of magnitudes
below those probed by lensing surveys due to computational
limitations, which inhibits investigations at the large scales
probed in observations.

The need for simulating IA in large cosmological volumes
promoted the development of models which assign intrinsic
shapes and orientations to galaxies that were placed in dark
mater-only simulations using approximate methods. These
models (hereafter referred to as ’semi-analytic’ IA models)
are based on the assumption that each galaxy can be described
either as a discy or as an elliptical object. Discs are thereby
commonly assumed to be perfectly circular and oriented per-
pendicular to their host halos’ angular momentum, while el-
lipticals are assumed to have the same projected 2D shape and
orientation as their host halo (Croft & Metzler 2000, Heavens
et al. 2000). While assuming that all galaxies are discs, Hey-
mans et al. (2004) added more realism to the IA modeling by
introducing a disc thickness as well as a misalignment between
the disc and their host halos’ angular momentum, as sugges-
ted by hydrodynamic simulations (van den Bosch et al. 2002).
This misalignment strongly reduced the predicted amplitude
of the IA two-point statistics, bringing it in agreement with
COSMOS-17 observations. Heymans et al. (2006) further ad-
vanced the semi-analytic IA modeling by considering mixed
populations of discs and ellipticals in their simulation, while
applying a galaxy-halo misalignment only to the disc popula-
tion. Okumura & Jing (2009), Okumura et al. (2009) found
that a misalignment between ellipticals and their host halo is
needed in order to reproduce the observed alignment signal
of luminous red galaxies (hereafter referred to as LRGs) in
the Sloan Digital Sky Survey (hereafter referred to as SDSS).
These different semi-analytic IA models only considered cent-
ral galaxies, for which information on halo shape and angular
momenta could be obtained from the underlying dark matter
simulation. Joachimi et al. (2013a,b, hereafter jointly referred
to as J13) were the first to add satellite galaxies to the semi-
analytic IA modeling, using constraints on the radial alignment

of satellites with respect to their host halos center from a hy-
drodynamic simulation (Knebe et al. 2008). Considering both,
elliptical as well as disc galaxies, J13 applied their IA model
on galaxies from a semi-analytic model of galaxy formation
imposed on the Millennium simulation, which exceeded the
N-body simulations used in previous works in resolution and
volume. They showed that variations of the model parameters
controlling the disc thickness and the galaxy-halo misalign-
ment have a significant impact on the predicted IA contamin-
ation in the lensing signal. These authors further pointed out
that the ellipticity distribution for late-type galaxies in their
simulation does not reproduce the observed lack of circular
face-on disc galaxies. A more detailed overview on semi-
analytic IA models can be found in Kiessling et al. (2015).
More recently, Wei et al. (2018) applied the model of J13 on
a catalog of galaxies from a semi-analytic model of galaxy
formation that was run on a simulation from the Elucid pro-
ject, which matched the Millennium simulation in volume but
exceeds its resolution significantly. In contrast to previous
works, this IA simulation included not only intrinsic galaxy
ellipticities, but in addition gravitational shear derived from
ray tracing, which allowed for direct predictions of the IA con-
tributions to the lensing signal from the Kilo Degree Survey
(KiDS) and the Deep Lens Survey.

Overall these different works predicted small but significant
contributions of the IA to future lensing surveys. However,
these predictions may be affected by different shortcomings
in the IA implementation, which we aim to address in this
work with the following three steps: 1) We use a new model
for the intrinsic galaxy shapes, which reproduces the observed
galaxy axis ratio distribution from the COSMOS survey over
wide ranges of redshifts, galaxy luminosities and colors, ac-
counting for the lack of circular objects; 2) We calibrate the
semi-analytic IA model for the first time against observational
constraints from the BOSS LOWZ survey, provided by Singh
& Mandelbaum (2016, hereafter referred to as SM16), taking
into account the luminosity dependence of the observed sig-
nal by introducing a luminosity dependence in the galaxy-halo
misalignment for satellite galaxies; 3) We run this new IA
model on the light-cone output of the MICE Grand Challenge
simulation (Crocce et al. 2015, Fosalba et al. 2015a,b), which
provides lensing information together with mock galaxies gen-
erated with a hybrid approach of Halo Occupation Distribution
modeling and Halo Abundance matching that was calibrated
to match observational constraints on galaxy luminosity and
color distributions as well as the galaxy clustering. The MICE
light-cone covers one octant of the sky and reaches up to red-
shift 𝑧 = 1.4, which allows us to create the largest IA simulation
produced so far.

We use this simulation for a detailed investigation of the ac-
curacy of two analytical IA models that are applied in current
cosmological weak lensing analyses: the Non-Linear Align-
ment (NLA) model (Bridle & King 2007, Catelan et al. 2001,
Hirata & Seljak 2004, Hirata et al. 2007) and the Tidal Align-
ment and Tidal Torquing (TATT) model (Blazek et al. 2019).
We therefore compare these models with measurements in
MICE over wide ranges of scales, redshifts, galaxy luminosit-
ies and colors. We further compare constraints on the model
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parameters derived from the simulation against observational
constraints in luminosity and redshift ranges in which the sim-
ulation was not calibrated. Lastly, we construct a mock sample
resembling Metacalibration (Gatti & Sheldon et al., 2021),
the sample used in the analysis of the first 3 years of Dark
Energy Survey (DES) data, in order to predict the IA contam-
ination in current observations.

The paper is organized as follows. In Section II we intro-
duce the different two-point statistics used in this work together
with the two analytical IA models, NLA and TATT. Section
III describes the MICE simulation, the spectroscopic mock
BOSS LOWZ and the photometric DES-like samples construc-
ted from the MICE galaxy catalog as well as the COSMOS
data that was used in the calibration of the galaxy shapes in
MICE. Our method for modeling these shapes is described and
validated in Section IV, while the modeling of galaxy orienta-
tions is described and validated in Section V. In Section VI we
compare IA two-point statistics measured in MICE using true
redshifts against predictions from the NLA and TATT models.
In Section VII we study the IA contribution to the weak lensing
signal in a DES-like photometric sample, as predicted by our
simulation. We finally summarize and discuss our findings in
Section VIII.

II. CORRELATION FUNCTIONS

The two-point correlation function of the galaxy shear is the
main probe of lensing surveys and has further been used for the
direct detection of IA in spectroscopic data sets. We therefore
focus on this type of statistic for the calibration of the IA signal
in MICE and for deriving predictions for the IA contamination
in weak lensing observations from the simulation.

Before introducing the specific shear correlations used in
this work let us define the shear itself. In weak lensing studies
galaxies are approximated as 2D ellipses. The shapes and
orientations of these ellipses are fully described by the shear,
which is commonly defined as a complex spin-2 vector 𝛾 =

𝛾1+𝑖𝛾2 = 𝜖 exp(𝑖2𝜙). The galaxy ellipticity 𝜖 = (1−𝑞2𝐷)/(1+
𝑞2𝐷) is defined via the 2D axis ratio 𝑞2𝐷 = 𝐵2𝐷/𝐴2𝐷 , where
𝐴2𝐷 and 𝐵2𝐷 are the absolute value of the major and minor
axis vectors of the ellipse respectively. The galaxy orientation
angle 𝜙 is defined as the angle between one of the two principle
axis and an arbitrary reference axis, as we will specify later
on.

A. Definitions and estimators

1. Projected galaxy-galaxy, galaxy-shear and matter-shear
correlations (𝑤𝑔𝑔,𝑤𝑔+,𝑤𝑚+)

The projected galaxy-shear correlation is commonly used
for direct measurements of IA in spectroscopic surveys as
it provides a high signal-to-noise ratio compared to the an-
gular shear statistics that are commonly employed in weak
lensing cosmology, while being only weakly sensitive to red-
shift space distortions (e.g. Joachimi & Schneider 2010, Kirk

et al. 2015). In our work we use this statistic to calibrate the
IA model in MICE against observational constraints derived
from the BOSS LOWZ sample by SM16. In addition we study
the projected galaxy-galaxy correlation to validate the mock
BOSS LOWZ samples constructed from MICE that are used
for the calibration. When measuring these correlations we fol-
low SM16 by studying the cross-correlation between a ’shape’
sample 𝑆, consisting of the galaxies whose IA signal we want
to measure and a ’density’ sample 𝐷, which is used as a tracer
for the underlying matter distribution.

The galaxy-galaxy cross-correlation function is defined as
𝜉𝑔𝑔 (𝑟) ≡ 〈𝛿𝑆𝑔𝛿𝐷𝑔 〉(𝑟), where 𝛿𝑆𝑔 and 𝛿𝐷𝑔 are the galaxy density
contrasts of the shape and density samples respectively, sep-
arated by the distance 𝑟 , and 〈. . .〉 is the ensemble average.
We measure this correlation from the data using the estimator
from Landy & Szalay (1993),

𝜉𝑔𝑔 =
(𝑆 − 𝑅𝑆) (𝐷 − 𝑅𝐷)

𝑅𝑆𝑅𝐷
=
𝑆𝐷 − 𝐷𝑅𝑆 − 𝑅𝐷𝑆 + 𝑅𝐷𝑅𝑆

𝑅𝑆𝑅𝐷
.

(1)
Each term in the numerator and denominator on the right-hand
side of this equation stands for the counts of galaxy pairs that
are separated by 𝑟. 𝑅𝑆 and 𝑅𝐷 are thereby samples of ran-
dom points that are constructed to follow the radial probability
distribution 𝑁 (𝑑) of the 𝑆 and 𝐷 samples respectively, where
𝑑 is the comoving distance from the observer. We smooth
the 𝑁 (𝑑) distribution over 20 ℎ−1Mpc with a top-hat window
function to reduce the impact of cosmic variance and tested
that reducing the window size to 10 ℎ−1Mpc has only a neg-
ligible impact on the signal compared to the estimated errors
on the signal.

Analogously to the galaxy-galaxy correlation one can define
the galaxy - shear correlation as 𝜉𝑔+/× (𝑟) = 〈𝛿𝐷𝛾+/×〉(r). The
shear is here defined specifically for each 𝛿𝐷 - 𝛾 pair considered
in the average 〈. . .〉 such that the orientation angle is the angle
between the galaxies’ major axis and the distance vector r, i.e.
𝜙′ = 𝜙−𝜙𝑟 . In this coordinate system the shear components are
denoted as 𝛾 = 𝛾+ + 𝑖𝛾×. Radial (𝜙′ = 0) and tangential (𝜙′ =
𝜋/2) alignment then leads to 𝛾+ = 1 and 𝛾+ = −1 respectively,
with 𝛾× = 0. An alignment of 𝜙′ = 𝜋/4 and 𝜙′ = −𝜋/4 leads
to 𝛾× = 1 and 𝛾× = −1 respectively, with 𝛾+ = 0. Following
SM16 we focus our analysis on 𝜉𝑔+, which we measure using a
variation of Equation (1) given by Mandelbaum et al. (2006),

𝜉𝑔+ =
𝑆+ (𝐷 − 𝑅𝐷)
𝑅𝑆𝑅𝐷

=
𝑆+𝐷 − 𝑆+𝑅𝐷

𝑅𝑆𝑅𝐷
, (2)

with

𝑆+𝑋 =
∑︁
𝑖, 𝑗

𝛾+ (𝑖 | 𝑗), (3)

where 𝛾+ (𝑖 | 𝑗) = Re
[
𝛾 exp

{
−𝑖2𝜙𝑖 𝑗𝑟

}]
is the (+) component of

the shear of a galaxy 𝑖 in sample 𝑆, defined with respect to the
vector r pointing to position 𝑗 in sample 𝑋 , where 𝜙𝑖 𝑗𝑟 is the
orientation angle of r at the position 𝑖 and 𝑋 refers to either 𝐷
or 𝑅𝐷 .

So far we introduced 𝜉𝑔𝑔 and 𝜉𝑔+ (jointly referred to 𝜉𝑔𝑥 in
the following) as isotropic quantities, that are averaged over all
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orientations of r. In order to obtain the projected correlations
we measure 𝜉𝑔𝑥 first as a two-dimensional quantity by separ-
ating the distance vector r = r2 − r1 between two points at
position r1 and r2 into a line-of-sight and a transverse (or pro-
jected) component. The line-of-sight vector is thereby defined
as n ≡ (r1 + r2)/2. The line-of-sight and transverse compon-
ents are then obtained as 𝑟Π = r · n̂ and 𝑟𝑝 = (𝑟2

Π
− 𝑟2)1/2

respectively. For the measurements we follow SM16 by using
25 logarithmic bins in the interval 0.1 < |𝑟𝑝 | < 200 ℎ−1Mpc
and 20 linear bins in the interval 0 < |Π| < 60 ℎ−1Mpc. The
projected correlation is then given by

𝑤𝑔𝑥 (𝑟𝑝) =
∫ Π𝑚𝑎𝑥

−Π𝑚𝑎𝑥

𝜉𝑔𝑥 (𝑟𝑝 ,Π) 𝑑Π, (4)

where 𝑤𝑔𝑥 stands for 𝑤𝑔𝑔 and 𝑤𝑔+. Note that the projected
matter-shear correlation 𝑤𝑚+, which we investigate in Section
VI is defined analogously to 𝑤𝑔+, while the density sample in
Equation (2) is replaced by a random sub-sample of the dark
matter particle distribution in the simulation.

Errors on the measurements of𝑤𝑔𝑔, 𝑤𝑔+ and𝑤𝑚+ are estim-
ated using jackknife resampling. The MICE octant is therefore
split into 𝑁𝐽𝐾 = 88 angular sub-regions, which are defined as
healpix pixels with 𝑁𝑠𝑖𝑑𝑒 = 8 (see Fig. 26). The covariance is
then estimated as

𝐶𝐽𝐾𝑖 𝑗 = (𝑁𝐽𝐾 − 1)〈Δ𝑖Δ 𝑗〉, (5)

with Δ𝑖 = 𝑤𝐽𝐾
𝑖

− 𝑤𝑖 , where 𝑤𝑖 is the projected correlation
measured in the 𝑟𝑝 bin 𝑖 on the full area, 𝑤𝐽𝐾

𝑖
is the same

measurement, but neglecting one jackknife sub-region and
〈. . .〉 is the average over the 𝑁𝐽𝐾 measurements of Δ𝑖 . When
measuring the projected correlations we use the same healpix
sub-regions to organize the data in a one-dimensional tree-
structure in order to accelerate the search of galaxy pairs that
enter the estimators in Equation (1) and (2). We have veri-
fied that the angular correlations measured by our code match
corresponding measurements from the public code TreeCorr1
(Jarvis et al. 2004).

2. Angular shear-shear correlation

The real-space angular shear-shear cross-correlation
between galaxy samples in different redshift bins 𝐴 and 𝐵

is one of the main observables used for weak lensing tomo-
graphy in current surveys such as the DES. The shear field
gives rise to a pair of two-point correlations that preserve par-
ity invariance, defined as 𝜉𝐴𝐵+ ≡ 〈𝛾𝐴𝛾∗𝐵〉 and 𝜉𝐴𝐵− ≡ 〈𝛾𝐴𝛾𝐵〉,
where 〈. . . 〉 is the average over the products of all galaxy pairs
that are separated by an angle 𝜃. With the (+/×) decomposi-
tion of the complex shear these correlations can be written as

𝜉𝐴𝐵± =
〈
𝛾̃𝐴+ 𝛾̃

𝐵
+
〉
±

〈
𝛾̃𝐴× 𝛾̃

𝐵
×
〉
. (6)

1 https://github.com/rmjarvis/TreeCorr

We define 𝛾̃ ≡ −𝛾, following the literature convention in weak
lensing cosmology, according to which 𝛾̃+ (often denoted as
𝛾𝑡 ) = 1 indicates perfect tangential alignment (see Kiessling
et al. (2015) for a discussion of differences between shear
definitions in weak lensing and IA studies). We further follow
literature conventions for the notations of the correlations 𝜉𝐴𝐵±
and 𝜉𝑔+. Note here that the subscript + has different meanings
in both cases. For 𝜉𝐴𝐵± the + refers to the addition of the× term
in Equation (6) whereas for 𝜉𝑔+ it refers to the radial shear 𝛾+.

We measure 𝜉𝐴𝐵± in our mock DES-like source sample using
a similar estimator as in the analysis of DES Y3 data (e.g. Secco
& Samuroff et al., 2022a), but with significant simplifications
which can be made because of the absence of observational
effects in MICE. In detail, the response factor and weight
associated to each galaxy’s shear are set to unity while the mean
shear of each sample is negligible. This simplified estimator
can be written as

𝜉𝐴𝐵± (𝜃) =
𝑆𝐴+ 𝑆

𝐵
+ ± 𝑆𝐴×𝑆𝐵×
𝑆𝐴𝑆𝐵

, (7)

with

𝑆𝐴+ 𝑆
𝐵
+ =

∑︁
𝑖≠ 𝑗

𝛾𝐴+ (𝑖 | 𝑗) 𝛾𝐵+ ( 𝑗 |𝑖). (8)

𝑆𝐴×𝑆
𝐵
× is defined analogously and 𝑆𝐴𝑆𝐵 is the number of galaxy

pairs between the sample 𝐴 and 𝐵 that are separated by 𝜃. Note
that this estimator does not use pair counts between random
samples in the denominator in contrast to the 𝜉𝑔+ estimators.
The sums are taken over pairs for which the angular separation
is in the range |𝜽 − Δ𝜽 | and |𝜽 + Δ𝜽 |. Both, 𝜉𝐴𝐵+ and 𝜉𝐴𝐵−
are measured using 20 logarithmically spaced angular bins
between 2.5′ and 250′, using TreeCorr. The data covariance
matrix estimate and cosmology inference are described in Sec.
VII C.

B. Analytical modeling

1. NLA and TATT models for IA

In weak lensing analyses the observed shear is described
as the superposition of a component induced by gravitational
lensing (𝛾𝐺) and a component related to the galaxies intrinsic
ellipticity (𝛾𝐼 ), i.e. 𝛾 = 𝛾𝐺 + 𝛾𝐼 . The contribution of the
intrinsic shear to the observed shear correlations is most com-
monly described analytically using the Non Linear Alignment
model ("NLA", Bridle & King 2007, Hirata & Seljak 2004)
and the more recent Tidal Alignment and Tidal Torquing model
("TATT", Blazek et al. 2019). Both models are based on the
assumption that the galaxy alignment is induced by the tidal
tensor of the large-scale matter distribution,

𝑠𝑖 𝑗 (k) =
(
𝑘̂𝑖 𝑘̂ 𝑗 +

1
3
𝛿𝑖 𝑗

)
𝛿(𝑘). (9)

The TATT model uses a perturbative approach in which the
intrinsic galaxy shear is expressed via the tidal tensor as,

𝛾̄I
𝑖 𝑗 ' 𝐴1𝑠𝑖 𝑗 + 𝐴1𝛿𝛿𝑠𝑖 𝑗 + 𝐴2𝑠𝑖𝑘 𝑠𝑘 𝑗 . (10)

https://github.com/rmjarvis/TreeCorr
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The free parameters of the model, 𝐴1, 𝐴2 and 𝐴1𝛿 are effect-
ive parameters that capture the total response of galaxy shape
to the corresponding combination of cosmic tidal and density
fields. In this framework, 𝐴1 and 𝐴2 capture the direct impact
of "tidal alignment" and "tidal torquing", respectively, as well
as contributions from any small-scale astrophysical effects that
produce the corresponding response. Similarly, 𝐴1𝛿 includes
the impact of "density weighting" – the fact that we observe
IA only at the location of galaxies – as well as other potential
effects that can change its value from what we would expect
if only density weighting contributed. All three of these IA
parameters can depend on galaxy redshift, luminosity, and po-
tentially other properties. The NLA model corresponds to
the TATT model without contributions from tidal torquing,
i.e. (𝐴2, 𝐴1𝛿) = (0, 0). Finally, because we always use the
galaxies shape sample, the TATT model can be applied to
describe measurements of 𝑤𝑚+, even though this statistic cor-
relates with the unbiased matter density field. We note that this
statistic would not capture the impact of higher-order biasing
and correlations of these bias terms with IA. However, these
contributions are expected to be small and are currently not
included in TATT implementations applied to weak lensing
data (e.g. Abbott et al. (2022)).

2. Prediction for 𝑤𝑚+

One goal of our work is to obtain predictions for the IA
model parameters by fitting a model for the projected matter-
intrinsic shear correlation 𝑤𝑚+ against measurements in the
MICE simulation. By studying the matter-shear instead of
the galaxy shear correlation we circumvent the modeling of
galaxy bias, which would add uncertainties to our analysis.
Besides the bias the gravitational shear 𝛾𝐺 can also thereby
be neglected since we can separate it out in the simulation
signal. In any case its effect on 𝑤𝑚+ would be negligible
by construction since the correlations are studied for pairs
with line-of-sight distances |𝑟Π | < 60 ℎ−1Mpc over which
gravitational lensing contributions should be weak.

We model 𝑤𝑚+ using a Hankel transformation of the pos-
ition - intrinsic galaxy shear power spectrum and the Limber
approximation

𝑤𝑚+ = −
∫ ∞

0

𝑑𝑘⊥𝑘⊥
2𝜋

𝐽2 (𝑘⊥𝑟𝑝)𝑃𝑚𝐼 (𝑘⊥𝑟𝑝), (11)

where 𝐽2 is the second-order Bessel function of the first kind.
We compute this transformation by using the code Fast-PT2

(Fang et al. 2017, McEwen et al. 2016). The matter position
- intrinsic galaxy shear power spectrum 𝑃𝑚𝐼 = 〈𝛿𝑚𝛾𝐼 〉 is
thereby set by the intrinsic alignment parameters as detailed
in Blazek et al. (2019).

2 https://github.com/JoeMcEwen/FAST-PT

3. Prediction for 𝜉±

The modeling of the 𝜉± measurements in our mock DES-
like catalog in MICE is more complex than in the case of 𝑤𝑚+
since we now need to take into account the gravitational as well
as the intrinsic component for the "observed" shear, which are
superposed as 𝛾obs = 𝛾𝐺 + 𝛾𝐼 . Inserting this superposition
into the definition of the shear-shear correlation between two
redshift bins 𝐴 and 𝐵 leads to the emergence of several terms
in 𝜉±,

𝜉𝐴𝐵obs = 𝜉𝐴𝐵𝐺𝐺 + 𝜉𝐴𝐵𝐺𝐼 + 𝜉
𝐴𝐵
𝐼𝐺 + 𝜉𝐴𝐵𝐼 𝐼 . (12)

Observationally, these terms cannot be separated from each
other, and hence, they need to be modeled when extracting
cosmological information from the measurements. However,
the MICE simulation allows us to measure each of these terms
separately to investigate their contribution to the observed sig-
nal in mock surveys constructed from the simulation. In gen-
eral the predictions for the different terms of the angular shear
correlation are obtained as

𝜉𝐴𝐵± (𝜃) =
∑︁
ℓ

2ℓ + 1
2𝜋ℓ2 (ℓ + 1)2

[
𝐺+
ℓ,2 (cos 𝜃)

± 𝐺−
ℓ,2 (cos 𝜃)

]
𝐶𝐴𝐵 (ℓ),

(13)

where 𝐺±
ℓ
(𝑥) are related to Legendre polynomials 𝑃ℓ (𝑥) and

averaged over angular bins (see for instance Krause et al. 2021).
The 𝐺𝐺, 𝐼 𝐼, 𝐺𝐼 and 𝐼𝐺 terms from Equation (12) enter via
the 2D convergence power spectrum, 𝐶𝐴𝐵 = 𝐶𝐴𝐵

𝐺𝐺
+ 𝐶𝐴𝐵

𝐺𝐼
+

𝐶𝐴𝐵
𝐼𝐺

+ 𝐶𝐴𝐵
𝐼 𝐼

and are obtained from the 3D power spectra 𝑃
again under the Limber approximation as

𝐶𝐴𝐵𝐺𝐺 (ℓ) =
∫ 𝜒H

0
𝑑𝜒
𝑊 𝐴(𝜒)𝑊𝐵 (𝜒)

𝜒2 𝑃𝛿 𝛿

(
ℓ + 1/2
𝜒

, 𝑧(𝜒)
)
,

(14)

𝐶𝐴𝐵GI (ℓ) =
∫ 𝜒H

0
𝑑𝜒
𝑊 𝐴(𝜒)𝑛𝐵 (𝜒)

𝜒2 𝑃𝛿I

(
ℓ + 1/2
𝜒

, 𝑧(𝜒)
)
,

(15)
and

𝐶𝐴𝐵II (ℓ) =
∫ 𝜒H

0
𝑑𝜒
𝑛𝐴(𝜒)𝑛𝐵 (𝜒)

𝜒2 𝑃II

(
ℓ + 1/2
𝜒

, 𝑧(𝜒)
)
, (16)

where 𝑃𝛿𝛿 ≡ 〈𝛿𝛿〉 is the matter-matter power spectrum, 𝑃𝛿𝐼 ≡
〈𝛿𝛾𝐼 〉 is the same matter-intrinsic shear power spectrum which
enters the 𝑤𝑚+ prediction in Equation (11) and 𝑃𝐼 𝐼 ≡ 〈𝛾𝐼 𝛾𝐼 〉
is the intrinsic shear-intrinsic shear power spectrum. Both,
𝑃𝛿𝐼 and 𝑃𝐼 𝐼 are obtained from the NLA and the TATT model,
as detailed in Blazek et al. (2019). Additionally, 𝑛𝐴/𝐵 is the
normalized source galaxy redshift distribution in redshift bins
𝐴 or 𝐵,

𝑊 𝐴/𝐵 (𝜒) =
3𝐻2

0Ωm

2𝑐2
𝜒

𝑎(𝜒)

∫ 𝜒H

𝜒

𝑑𝜒′ 𝑛𝐴/𝐵 (𝑧(𝜒′)) 𝑑𝑧
𝑑𝜒′

𝜒′ − 𝜒
𝜒′

(17)
is the lensing efficiency kernel, 𝜒 is the comoving distance, 𝜒H
is the comoving distance at the horizon, 𝑎 is the scale factor,
𝐻0 is the Hubble constant and Ωm is the matter density.
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III. DATA

A. COSMOS

We use observed galaxy magnitudes, redshifts and shapes
from the COSMOS survey to calibrate the color cut and the
parameters of the galaxy axes ratio distribution in our IA
model. These galaxy properties are obtained from two pub-
lic catalogs, the COSMOS2015 3 (Laigle et al. 2016) and the
Advanced Camera for Surveys General Catalog (ACS-GC 4,
Griffith et al. 2012). In the following we briefly described the
main properties of these data sets. Details on quality cuts and
the matching between both catalogs are described in Hoffmann
et al. (2022). The COSMOS2015 catalog comprises photo-
metry in 30 bands and provides redshift estimates, which were
derived by fitting templates of spectral energy distributions to
the photometric data (Ilbert et al. 2006, 2009). We discard
objects which are classified as i) residing in regions flagged
as "bad" ii) saturated, and iii) not classified as galaxies. After
these cuts the sample contains 521, 935 objects which are used
to calibrate the color cut employed in our IA model.

In order to constrain the galaxy shape parameters as a func-
tion of redshift we further impose the recommended cuts on
the 3𝜎 limiting AB magnitudes in the near-infrared 𝐾𝑠-band
of 24.0 and 24.7 in the deep and ultra-deep fields, respectively
(Laigle et al. 2016). The ACS-GC is based on Hubble Space
Telescope (HST) imaging in the optical red 𝐼𝐴𝐵 broad band
filter F814W. The absence of atmospheric distortions allows
for an excellent image resolution, which is mainly limited by
the width of the HST point spread function (PSF) of 0.085” in
the F814W filter and the pixel scale of 0.03”. Sources were
detected using the Galapagos software (Häußler et al. 2011).
Galaxy shapes are described by the two-dimensional major
over minor axes ratios 𝑞2𝐷 , which are derived from fits of a
single Sérsic model and corrected for PSF distortions. We se-
lect objects from the catalog which were classified as galaxies
with good fits to the Sérsic profile. After applying the quality
cuts, the two catalogs are matched based on galaxy positions
and magnitudes as described in Hoffmann et al. (2022). The
final matched catalog contains 98, 604 objects.

B. MICE

The MICE Grand Challenge (MICE-GC) simulation (Fos-
alba et al. 2015b) is a large N-body run which evolved 40963

particles in a volume of (3072 ℎ−1Mpc)3 using the gadget-2
code (Springel 2005). It assumes a flatΛCDM cosmology with
Ω𝑚 = 0.25, ΩΛ = 0.75, Ω𝑏 = 0.044, 𝑛𝑠 = 0.95, 𝜎8 = 0.8 and
ℎ = 0.7. This results in a particle mass of 2.93 × 1010ℎ−1𝑀�.
The initial conditions were generated at 𝑧𝑖 = 100 using the

3 https://www.eso.org/qi/
4 vizier.u-strasbg.fr/viz-bin/VizieR-3?-source=J/ApJS/200/
9/acs-gc

Zel’dovich approximation and a linear power spectrum gener-
ated with camb5.

The dark-matter light-cone is decomposed into a set of con-
centric all-sky spherical shells of a given width Δ𝑟 around the
observer, following the approach introduced in Fosalba et al.
(2008) (see also Fosalba et al. 2015a). Given the size of the
simulation box, the resulting light-cone outputs show negli-
gible repetition along any line of sight up to 𝑧 = 1.4. A set
of 265 maps of the projected mass density field with Δ𝑟 = 35
mega-years in look-back time, and angular Healpix resolution
𝑁𝑠𝑖𝑑𝑒 = 8192 (i.e, 0.43 arcmin pixels) were used to discretize
the light-cone volume. These maps were then used to derive
the all-sky convergence field 𝜅 in the Born approximation by
integrating them along the line of sight weighted by the ap-
propriate lensing kernel (see Fosalba et al. (2008) for details).
The convergence was transformed to harmonic space, where a
simple relation to the shear field holds (for which the B-mode
exactly vanishes), and transformed back to angular space to
obtain the (𝛾1, 𝛾2) components of the shear field. In this way
discretized 3D lensing properties (kappa and shear) were pro-
duced across the 3D volume covered by the light-cone.

Halos in the ligh-cone were identified using the Friends-of-
Friends (FoF) algorithm with linking length 𝑏 = 0.2 down to
the limit of two particles per halo (Crocce et al. 2015). Fol-
lowing Carretero et al. (2015), a combination of Halo Occupa-
tion Distribution (HOD) and Sub Halo Abundance Matching
(SHAM) techniques were then implemented to populate halos
with galaxies in one octant of the light-cone, covering 5156.6
𝑑𝑒𝑔2. Galaxy positions, velocities, luminosities and colors
were thereby assigned, such that the catalog reproduces SDSS
observations of the luminosity function, the color-magnitude
distribution and the clustering as a function of color and lu-
minosity (Blanton et al. 2003, Zehavi et al. 2011). Spectral
energy distributions (SEDs) were then assigned to the galax-
ies re-sampling from the COSMOS catalog of Ilbert et al.
(2009) galaxies with compatible luminosity and (g-r) color at
the given redshift. Once the SEDs are assigned, magnitudes
can be computed in any desired filter. In particular, DES 𝑔𝑟𝑖𝑧
magnitudes are generated by convolving the SEDs with the
DES pass bands.

In order to reproduce with high fidelity the distribution of
colors and magnitudes of the DES Year 3 (hereafter Y3) data,
we remap the MICE photometry into the observed photometry
using an N-dimensional probability density transfer method
(Pitié et al. 2005), which preserves the correlation among col-
ors. Once we have remapped the photometry (i.e. distributions
of magnitudes and colors) to the one of DES Y3, we compute
photometric redshift estimates using the Directional Neigh-
borhood Fitting (DNF, De Vicente et al. 2016) training-based
algorithm. DNF is one of the algorithms used to compute
photometric redshifts in DES albeit not the default one for the
source sample. As a training sample for DNF we consider
the same sample used to run DNF on the Y3 data, which is a
compilation of spectra from spectroscopic surveys that overlap
with the DES footprint (see Sevilla-Noarbe et al. (2021) for

5 http://camb.info

https://www.eso.org/qi/
vizier.u-strasbg.fr/viz-bin/VizieR-3?-source=J/ApJS/200/9/acs-gc
vizier.u-strasbg.fr/viz-bin/VizieR-3?-source=J/ApJS/200/9/acs-gc
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details). We will use the remapped photometry and the DNF
photometric redshifts in Section III E.

1. Halo orientations and angular momenta

The orientations and angular momenta of the FoF halos are
main components of our IA model. The orientations are ob-
tained from the eigenvectors of the reduced moment of inertia

𝐼𝑖, 𝑗 =
1
𝑁𝑝

𝑁𝑝∑︁
𝑛

𝑟𝑛,𝑖𝑟𝑛, 𝑗

𝑟2
𝑛

, (18)

where 𝑁𝑝 is the number of FoF particles, 𝑟𝑛,𝑖 are the compon-
ents of the 3D position vector of the 𝑛𝑡ℎ particle with respect
to the FoF center of mass and 𝑟𝑛 =

√︃
𝑟2
𝑛,1 + 𝑟

2
𝑛,2 + 𝑟

2
𝑛,3 is the

particle distance to that center. The angular momentum vec-
tors are given by

J =

𝑁𝑝∑︁
𝑛

r𝑛 × v𝑛, (19)

where v𝑛 is the 3D velocity vector of the 𝑛𝑡ℎ particle, defined
with respect to the average velocity vector of all halo particles.

The orientations and angular momenta where measured for
FoF groups with down to 10 particles. Using such low numbers
of particles can be problematic since noise in the measurements
could decrease the halo alignment to a degree that inhibits the
induction of a galaxy alignment signal that is sufficiently high
to match observational constraints. We therefore investigate
the impact of noise on the alignment of halo orientations and
angular momenta in Appendix A. For that purpose we compute
these quantities from subsets of random particles of massive
halos in MICE and measure a 3D alignment statistics for dif-
ferent subset sizes. We find that even with 10 particles we
are still able to detect a clear signal, although with a signific-
antly decreased amplitude. The dependence of noise in the
halo orientations and angular momenta on the number of halo
particles will affect the mass dependence of the halo align-
ment and therefore potentially also the luminosity dependence
of the galaxy alignment in the simulation. However, in Section
V we argue that we can compensate for such systematic effects
when calibrating the galaxy-halo misalignment as a function
of galaxy luminosity.

Note further that the FoF particle positions have not been
stored in MICE for halos with less than 10 particles, while
the HOD model uses halos containing as few as two particles.
The 10 particle limit therefore imposes a luminosity cut in the
simulation, which we discuss in Appendix B.

A common alternative to the reduced moment of inertia is
the standard moment of inertia, which is defined as in Equation
(18), but with 𝑟𝑛 = 1 in the denominator. By using the reduced
instead of the standard moment of inertia we hence assign more
weight to the inner regions of the halos when measuring their
orientations. This choice is motivated by the assumption that
the central galaxy orientation should be more closely related

to the orientation of the host halo center than to the orientation
of the host halos’ outer regions. Furthermore, FoF particles in
the outer regions are more likely to be spuriously linked by the
FoF algorithm (e.g. Springel et al. 2001), which may bias the
measured orientations. The halo properties measured for this
work are part of a public halo catalog that has been presented
by Gonzalez et al. (2022).

C. Color cuts

Observations have shown that the shapes as well as the
intrinsic alignment signal depend strongly on galaxy color
(e.g. Guo et al. 2020, Joachimi et al. 2015). We incorporate
such a color dependence in our model by using different model
parameters for red and blue galaxies. The color type is set by a
cut in the 𝑢−𝑟 ≡ 𝑀𝑢−𝑀𝑟 color index, where 𝑀𝑢 and 𝑀𝑟 refer
to the absolute rest frame magnitudes in the CFHT 𝑢-band and
the Subaru 𝑟-band respectively. We infer the value of this cut
by comparing the 𝑢−𝑟 distributions from MICE and COSMOS
in Fig. 1, focusing on galaxies within the redshift and apparent
𝑖-band magnitude range covered by MICE, i.e. 0.1 < 𝑧 < 1.4
and 𝑚𝑖 < 24 6. We find that a cut at 𝑢 − 𝑟 = 1.2, shown as
horizontal solid line in the left panel of Fig. 1 separates the
red and the blue sequences in COSMOS reasonably well at all
considered redshifts. The global fraction of blue galaxies in
COSMOS defined by this cut is 𝑓𝑏𝑙𝑢𝑒 = 0.69. We adjust this
cut in the MICE simulation to 𝑢 − 𝑟 = 0.94 to obtain the same
global fraction of blue galaxies, as shown in the right panel
of Fig. 1. The red dots indicate the color cut which would
reproduce the exact fraction of blue galaxies from COSMOS
in different redshift bins. We find that these redshift dependent
cuts lie close to the globally defined cut, which confirms that
using a redshift independent cut in MICE is an appropriate
choice. As an additional validation we compare the fractions
of blue galaxies in the redshift bins to results in COSMOS
in Fig. 2. The blue fractions in MICE lie within 5% of the
COSMOS results, except for the lowest redshift bins at 𝑧 ' 0.2,
where we find a ' 10% deviation.

Note here that a simple color cut does not separate mor-
phological types very well, in particular because a significant
fraction of disc galaxies is red due to dust extinction when
seen edge-on (e.g. Graham & Worley 2008, Hoffmann et al.
2022). A more robust selection of morphological types based
on photometric properties could be done using a color-color
cut, based on two different color indices (e.g. Joachimi et al.
2013b). However, it is less obvious how to adjust such a
color-color selection in the simulation to match the relative
abundance of the different morphological types in an observa-
tional reference sample. For the sake of simplicity we therefore
proceed using a simple color-cut, leaving more sophisticated
cuts as improvements for future updates of our model.

6 The fluctuations in the redshift distribution, noticeable as vertical stripes in
Fig. 1, result from cosmic variance. This variance is expected to be high
since the data used for this figure was sampled in narrow light-cones of a
few square degree in COSMOS as well as in MICE.
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Figure 1. Absolute restframe color index versus redshift for galaxies
with 𝑚𝑖 < 24 in COSMOS and MICE. Horizontal solid lines mark
the redshift independent cuts used for selecting red and blue sub-
samples. Dots in the right panel indicate the color cuts in MICE that
would reproduce the fraction of red and blue galaxies in COSMOS
in different redshift bins.
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Figure 2. Fraction of blue galaxies in MICE and COSMOS, selected
by the redshift independent color cuts, shown in Fig. 1. The dashed
lines mark ±5% deviations from the COSMOS data.

D. Mock BOSS LOWZ samples

For the calibration of our IA model against observed IA stat-
istics of LRGs from the BOSS LOWZ survey from SM16, we
construct a mock LOWZ catalog from the MICE simulation.
We therefore select galaxies from MICE in the redshift range
analyzed by SM16 (0.16 < 𝑧 < 0.36) and apply the LOWZ
selection in color-magnitude space, given by

𝑚𝑟 < 13.5 + 𝑐 ‖/0.3 + Δ𝑚𝑟 (20)
16.0 < 𝑚𝑟 < 19.6 + Δ𝑚𝑟

|𝑐⊥ | < 0.2
0.16 < 𝑧 < 0.36,

where

𝑐 ‖ = 0.7(𝑚𝑔 − 𝑚𝑟 ) + 1.2[(𝑚𝑟 − 𝑚𝑖) − 0.18] (21)
𝑐⊥ = (𝑚𝑟 − 𝑚𝑖) − (𝑚𝑔 − 𝑚𝑟 )/4.0 − 0.18,

and 𝑚𝑔, 𝑚𝑟 , 𝑚𝑖 are the apparent magnitudes in the corres-
ponding SDSS broad-band filters 7.
Δ𝑚𝑟 is a constant that is zero in the observational LOWZ

selection and adjusted to a value of 0.085 in MICE to obtain
the observed galaxy number density of the LOWZ sample.

In order to study the luminosity dependence of the IA signal
we follow SM16 by splitting the mock LOWZ sample into four
luminosity sub-samples, called L1-L4 (from bright to dim),
which are selected as quantiles of the absolute SDSS 𝑟-band
magnitude distribution, containing 20%, 20%, 20% and 40%
of the objects respectively. The number of galaxies in each
sub-sample is given in Table I together with the corresponding
magnitude ranges, mean magnitudes and mean redshifts. More
details on the selection of the MICE LOWZ sample and its
luminosity sub-samples are given in Appendix B.

We validate our sample selection by comparing the 𝑤𝑔𝑔
auto-correlation of the full MICE LOWZ sample and its cross-
correlation with the sub-samples L1-L4 to the correspond-
ing measurements in BOSS observations from SM16 in Fig.
3. We find that the simulation reproduces the overall scale
dependence of the observed 𝑤𝑔𝑔 signal as well as the rel-
atively weak dependence on luminosity. At scales between
20 < 𝑟𝑝 < 40 ℎ−1Mpc the amplitudes for the simulated and
the observed samples are in good agreement as well with de-
viations of . 10%. At smaller and larger scales the 𝑤𝑔𝑔
measurements in MICE are up to ∼ 60% and ∼ 90% below
the observations respectively. For scales 𝑟𝑝 & 10 ℎ−1Mpc
the deviation between observation and simulations are con-
sistent with the 1𝜎 error estimates, while the deviations at
small scales are highly significant as the errors are smaller.
These small scale deviations are similar for the samples L1-
L3, and highest for the dimmest sample L4, which could be
related to the over-density artefict at 𝑧 ' 0.25 that is discussed
in Appendix B.

When interpreting these deviations it is important to keep
in mind that the MICE HOD-SHAM model has been calib-
rated against the clustering statistics of the SDSS main sample,
which covers lower redshifts and dimmer magnitudes than
those probed by the BOSS LOWZ survey (Carretero et al.
2015). Deviations of the galaxy clustering statistics in our
mock LOWZ samples from observational results are therefore
not unexpected. Furthermore, the cosmological parameters
used to simulate the matter distribution in MICE differ signi-
ficantly from recent constraints, while we expect these devi-
ations to have a weak effect on the clustering compared to the

7 Note that the BOSS target selection is based on model magnitudes (Dawson
et al. 2013), while MICE magnitudes were assigned to match the Blanton
et al. (2003) SDSS luminosity function derived from Petrosian magnitudes.
However, the latter authors find only a weak change of the luminosity
function when using model magnitudes. We therefore do not expect the
differences in the magnitude definition to be relevant for the construction
of the mock BOSS LOWZ samples.
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Sample 𝑀𝑚𝑖𝑛𝑟 𝑀𝑚𝑎𝑥𝑟 〈𝑀𝑟 〉 〈𝑧〉 𝑁𝑔
L1 −23.61 −22.21 −22.43 0.29 30924
L2 −22.21 −21.98 −22.08 0.28 30923
L3 −21.98 −21.76 −21.87 0.27 30923
L4 −21.76 −19.53 −21.41 0.24 61847

Table I. Characteristics of the luminosity sub-sample from the mock
LOWZ catalog constructed from MICE. The columns (from second
left to right) show the minimum, maximum and mean values of the
absolute rest-frame SDSS 𝑟-band magnitude (𝑀𝑟 ), the mean redshifts
and the number of galaxies for each sub-sample.

HOD-SHAM parameters. However, given the implications of
these deviations on the IA model calibration that we discuss
in Section V B, it might be worth trying a more sophisticated
mock construction by adjusting the LOWZ cuts in MICE, such
that the mock samples match the observed clustering instead
of the observed number density.

E. DES-like source sample

In order to predict the IA signal for a galaxy population that
approximates a realistic weak lensing sample, we construct a
mock tomographic catalog utilizing photometric redshift es-
timates in MICE. The mock sample resembles the one used
in the DES Y3 analysis (Metacalibration, Gatti et al. 2021)
in its overall magnitude and redshift distribution, as well as
in constraining power in the cosmological parameter space as
described below.

Firstly, we verify in Appendix B that the (non-tomographic)
magnitude distributions in the 𝑟, 𝑖 and 𝑧DES broad bands from
the Y3 data are in good agreement with the distributions of
remapped magnitudes in MICE (described in Section III B).
The resulting MICE DES-like mock contains over 130 million
galaxies, which is slightly more than the 100 million galaxies
in the DES Y3 catalog, but is roughly consistent in number
density given the ∼ 25% greater area of the MICE octant
compared to DES. Additionally, where cosmology inference
is carried out, we adapt the per-galaxy shape noise in order
to match the DES Y3 small-scales covariance (see Section
VII C).

Secondly, we split our mock sample into tomographic bins
along the line of sight using photometric redshifts estimated for
MICE galaxies with the DNF algorithm described in Section
III B. We sort galaxies into four bins defined by hard nom-
inal edges that match DES Y1: [0.2, 0.43, 0.63, 0.90, 1.30]
(Troxel et al. 2018). While this procedure is different than the
methodology employed in DES Y3, based on Self-Organizing
Maps (SOMPZ) (Myles et al. 2021), it suffices for our goal to
create a set of realistic redshift distributions that approximate
a DES selection. We show histograms of the true redshifts of
the galaxies binned via DNF point-estimates in Fig. 4, with an
overall mean redshift of 𝑧 = 0.6, along with the binned DES
Y3 distributions (Myles et al. 2021) for a visual comparison.
We note that the MICE redshift distributions are generally
narrower and peak higher redshifts than their DES Y3 coun-
terparts. The methodological differences between MICE and

z-bin centrals satellites centrals+satellites
1 0.526 0.386 0.467
2 0.583 0.332 0.467
3 0.589 0.298 0.488
4 0.667 0.358 0.594

Table II. Fraction of blue galaxies in the DES-like from MICE
samples, defined by our 𝑢 − 𝑟 = 0.94 color cut.

DES Y3 redshifts exist for practical purposes and imply that
the testing presented here should be taken as an additional
piece of evidence that the IA modeling in DES Y3 is sound,
though not as a final proof.

We find that a significant fraction of central galaxies are
defined as blue by the color cut used in our modeling (see
Table II). Since the orientations of blue galaxies are highly
randomized in our model (see Section V), we can already
expect from this finding that the IA signal in the DES-like
samples predicted by our model will be weak, which is indeed
the case (see Section VII). A more detailed discussion on the
galaxy color distribution in the DES-like samples can be found
in Appendix B.

F. Volume limited samples

We construct two sets of volume-limited color samples. The
first set is used to derive predictions for the two-point IA
statistics up to high redshifts where observational constraints
are currently not available. It covers three redshift bins that are
centered around 𝑧 = 0.2, 𝑧 = 0.4 and 𝑧 = 0.6 and have a width
of Δ𝑧 = 0.2. Galaxies in each redshift bin are separated into
six bins by their absolute restframe SDSS 𝑟-band magnitude
(𝑀𝑟 ) which have a width ofΔ𝑀𝑟 = 1.0. The faint limit of these
magnitude samples is set to 𝑀𝑟 < −20 to ensure that host halo
shape measurements are available for all central galaxies in the
sample (see Appendix B). Each of the resulting volume limited
samples is further split into a red and a blue sub-sample at the
same 𝑢 − 𝑟 = 0.94 color cut which we use in our IA model
(Section III C). The selection of the resulting 36 samples is
illustrated Fig. 25.

A second set of volume-limited color samples is constructed
to calibrate the parameters of our shape model against COS-
MOS observations. Each of these samples has a width of
Δ𝑧 = 0.2 and Δ𝑀𝑟 = 1 in redshift and absolute Subaru 𝑟-band
magnitude respectively. The samples are equally spaced on a
regular grid in the 𝑧 − 𝑀𝑟 space with an overlap of Δ𝑧/2 and
Δ𝑀𝑟/2. This overlap allows for an increased sampling resol-
ution while keeping the number of galaxies per sample large
enough to allow for statistically meaningful measurement of
the 2D axis ratio distribution over a wide range in magnitude
and redshift. We discard samples that contain less than 100
galaxies, which leads to 115 and 196 samples for red and
blue galaxies respectively. The positions of these samples in
magnitude-redshift space are shown as dots in the right pan-
els of Fig. 5, where each dot’s color indicates the number
of galaxies in the corresponding sample. We use 10 samples
from the second set as examples to validate if the distribution
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Figure 3. Top: Projected galaxy correlation functions from the BOSS LOWZ survey (SM16) and a mock catalog constructed from the MICE
simulation (black dots and red open circles respectively). The left panel shows the auto-correlation measured in the full LOWZ sample, the
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Figure 4. Arbitrarily normalized redshift distribution of the DES-like
MICE source sample (solid histograms) and real DES Y3 data (black
lines). Redshift point estimates in MICE are obtained with DNF and
qualitatively resemble the 𝑛(𝑧) distributions in DES Y3 (see text for
further details).

of galaxy axis ratios in the final MICE IA simulation matches
the reference observations from COSMOS. The areas spanned
in the magnitude-redshift space by these example samples are
shown in Fig. 24. Note that red and blue sub-samples are
selected in MICE by the same cut at 𝑢 − 𝑟 = 0.94 used in
the first set of samples while we cut the COSMOS samples at
𝑢 − 𝑟 = 1.2 as explained in Section III C.

IV. MODELING GALAXY SHAPES

Our model for galaxy shapes is based on the assumption
that each galaxy’s shape can be approximated as a 3D ellipsoid
whose shape is fully described by two of the three axis ratios

𝑞3𝐷 ≡ 𝐵3𝐷

𝐴3𝐷
, 𝑟3𝐷 ≡ 𝐶3𝐷

𝐵3𝐷
, 𝑠3𝐷 ≡ 𝐶3𝐷

𝐴3𝐷
, (22)

where 𝐴3𝐷 , 𝐵3𝐷 , 𝐶3𝐷 are the 3D major, intermediate and
minor axis respectively. This modeling choice is motivated
by findings reported in the literature, which show that ran-
domly oriented populations of such 3D ellipsoids can lead to
distributions of projected 2D axes ratios,

𝑞2𝐷 ≡ 𝐵2𝐷/𝐴2𝐷 (23)

which match those from observed ensembles of early- as well
as late-type galaxies with high accuracy (e.g. Binney 1978,
Lambas et al. 1992, Noerdlinger 1979, Ryden 2004, Sandage
et al. 1970). In particular this model describes successfully
the lack of circular face-on galaxies (i.e. 𝑞2𝐷 ' 1) found in
observations. Achieving such a match was shown to be prob-
lematic in previous work in which discs were modeled as as flat
coin-like cylinders (Joachimi et al. 2013a). However, whether
this lack is physical, a result of observational limitations or
both remains an open question (e.g. Bernstein & Jarvis 2002,
Bertola et al. 1991, Huizinga & van Albada 1992, Joachimi
et al. 2013a, Rix & Zaritsky 1995).

Besides the ellipsoidal model for each galaxy’s shape,
matching the observed 2D axis ratio distribution further re-
quires a model for the distribution of 3D axes ratios. Several
models of such distributions have been presented in the literat-
ure (see Hoffmann et al. 2022, for an overview). In this work
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we employ a simple Gaussian model,

𝑃̃(𝑞3𝐷 , 𝑟3𝐷) = 𝑒𝑥𝑝
{
−1

2

[(
𝑞3𝐷 − 𝑞0

𝜎𝑞𝑟

)2
+

(
𝑟3𝐷 − 𝑟0

𝜎𝑞𝑟

)2
]}
,

(24)
where 𝑞0, 𝑟0 and 𝜎𝑞𝑟 are the free model parameters. The
normalized truncated distribution is then given by

𝑃 =

{
𝑃̃3𝐷/N if 𝑞3𝐷 , 𝑟3𝐷 ∈ (0, 1]
0 else

(25)

with N =
∫ 1
0

∫ 1
0 𝑃̃3𝐷 (𝑞3𝐷 , 𝑟3𝐷)𝑑𝑟3𝐷𝑑𝑞3𝐷 . This model is

motivated by the model proposed by Hoffmann et al. (2022),
which we simplify by assuming the same width𝜎𝑞𝑟 for 𝑞3𝐷 and
𝑟3𝐷 to reduce the numbers of free parameters in our simulation.

To model the shape of a specific galaxy in the simulation we
first draw the two 3D axis ratios 𝑞3𝐷 and 𝑟3𝐷 randomly from
the distribution in Equation (25). The observed 2D axis ratio is
obtained later on by projecting the 3D ellipsoid on a tangential
plane that is oriented perpendicular to the observers line of
sight, following the methodology presented in J13. Note that
this projection requires not only the 3D axis ratios as input, but
also each galaxy’s 3D orientation. The modeling of the latter
is described in Section V. An important aspect for producing
realistic mock observations is to incorporate the dependence
of the galaxy shapes on photometric properties and redshift.
We introduce such a dependence in our model by adjusting the
parameter vector p ≡ (𝑞0, 𝑟0, 𝜎𝑞𝑟 ), according to each galaxy’s
redshift, absolute magnitude and color before drawing its 3D
axes ratios.

A. Parameter calibration

We determine the dependence of the parameter vector p
on redshift and absolute 𝑟-band magnitude for a given color
(red or blue) from the observed distribution of 2D axes ratios
𝑃(𝑞2𝐷) in COSMOS. The 𝑃(𝑞2𝐷) distribution is therefore
measured for red and blue galaxies (defined via the 𝑢 − 𝑟 color
index as detailed in Section III C) in the volume limited COS-
MOS samples that are described as the ’second set’ in Section
III F. For each of these samples we determine the values of
p for which the corresponding 𝑃(𝑞2𝐷) prediction fits the ob-
servations. We obtain this prediction for a given candidate p
by first generating a set of 𝑁 3D ellipsoids, whose 3D axis
ratios are drawn randomly from the distribution in Equation
(25). For each 3D ellipsoid in this set we then compute 𝑞2𝐷
following J13 while assuming a random 3D orientation. The
𝑃(𝑞2𝐷) prediction is then measured from the resulting set
of 𝑁 projected 2D axis ratios and compared to the reference
measurement from the observed sample. The observed as well
as the predicted distributions are thereby measured using the
same binning in 𝑞2𝐷 . The number of bins is adjusted to the
number of galaxies in each COSMOS sub-sample, following
the Freedman–Diaconis rule for optimal binning (Freedman
& Diaconis 1981). We derive the best fit values p by maxim-
izing the likelihood which is computed from the 𝜒2 deviation
between the predicted and the observed 𝑃(𝑞2𝐷) distribution.

For the measurements we assume shot-noise errors, while neg-
lecting errors on the predictions since those are generated using
much higher number of axis ratios (i.e. 1000 points per bin
on average). The posterior of the parameter space is estim-
ated using the Markow-Chain-Monte-Carlo algorithm emcee8
(Foreman-Mackey et al. 2013) with flat priors in the ranges
0.01 < 𝑞0 < 0.99, 0.01 < 𝑟0 < 0.99 and 0.01 < 𝜎𝑞𝑟 < 0.35.
The upper limit for𝜎𝑞𝑟 is set to an arbitrary value that is chosen
to be well above the typical best fit values found for this para-
meter. We define the best fit parameters as the position of the
maxima of the marginalized posterior distribution.

The distribution of the fitted p components (𝑞0, 𝑟0, 𝜎𝑞𝑟 )
in the redshift-magnitude plane, interpolated between the po-
sitions of the volume limited samples, is shown for red and
blue galaxies in the three left panels Fig. 5. The second panel
from the right shows the corresponding 𝜒2 per 𝑞2𝐷 bin, which
correlates with the number of galaxies per sample, shown on
the right of Fig. 5. This correlation means that deviations
between best fit model and reference measurements become
more significant as the shot-noise errors on the measurements
decrease. This indicates that our shape model is too simple to
capture the details of the observed 2D shape distributions. An
improvement on that aspect might be possible by using more
flexible extensions for the 3D axis ratio distribution model (e.g.
Hoffmann et al. 2022). However, such an extension would in-
troduce additional parameters in our modeling, while we find
the model employed here to be sufficiently accurate for the
purpose of this work, as detailed in the following.

B. Shape mock construction and validation

We assign 3D axes ratios to a given galaxy in the simula-
tion by linearly interpolating the constrained values of 𝑞0, 𝑟0
and 𝜎𝑞𝑟 for red and blue samples at the galaxy’s position in
the magnitude-redshift space. For galaxies in the simulation
which lie outside of the magnitude-redshift range covered by
the COSMOS data we assign the average values of the paramet-
ers over all volume limited sub-samples within each red and
blue sample, shown as homogeneously colored areas in Fig.
5. Note that a more sophisticated extrapolation of the observa-
tional constraints is not trivial due to the complex dependence
of the parameters on magnitude and redshift. However, in
practice this problem is not relevant as most galaxies used
in our analysis lie within the magnitude and redshift ranges
covered by COSMOS.

We validate the performance of our model by comparing the
𝑃(𝑞2𝐷) distributions from MICE against measurements from
COSMOS in Fig. 6 for the set of 10 volume limited samples
described in Section III F and displayed in Fig. 24. We find
an overall good agreement between the simulated an observed
data. Deviations are most noticeable for the brightest sample
of blue galaxies at 𝑧 ' 1.1. They may result from the short-
comings of the modeling that we discussed in the previous

8 emcee.readthedocs.io
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sub-section, from potential inaccuracies in the linear inter-
polation of the model parameters as well as from differences
between the redshift-magnitude distributions of observed and
simulated galaxies within a given sample. It is interesting to
note that the 𝑃(𝑞2𝐷) distributions for red and blue galaxies
deviate significantly from those expected for discy and ellipt-
ical galaxies respectively. The observed distributions for disc
galaxies show typically a plateau in the center (at 𝑞2𝐷 ' 0.5)
with two knee-like cut-offs on each side. Those for ellipticals
have typically the shape of a skew Gaussian distribution with
a maximum close to unity and a long tail towards low axis
ratios (e.g. Rodríguez & Padilla 2013). The reason that the
axis ratio distributions of our color sub-samples do not follow
this expectation may result from the fact that a single color cut
does not separate different morphological types very well as
detailed in Section III C.

V. MODELING GALAXY ORIENTATIONS

We implement 3D galaxy orientations using methodology
from Joachimi et al. (2013b), with some modifications. Galax-
ies are thereby separated into three groups: red centrals, blue
centrals and satellites, where the latter include red as well as
blue objects. Red and blue galaxies are selected as described
in Section III C.

Red centrals have their 3D principle axes aligned with
those of their host halo, i.e. ( 𝐴̂3𝐷 , 𝐵̂3𝐷 , 𝐶̂3𝐷)𝑔𝑎𝑙 =

( 𝐴̂3𝐷 , 𝐵̂3𝐷 , 𝐶̂3𝐷)ℎ𝑎𝑙𝑜. This alignment is based on the as-
sumption that all red galaxies are pressure supported ellipticals
whose shape and orientation is set by the same tidal stretching
that determines the shape and orientation of the host halo.

Blue centrals are assumed to be rotationally supported
discs, whose minor axis is aligned with the angular momentum
vector of the host halo, i.e. 𝐶̂𝑔𝑎𝑙3𝐷 = 𝐽ℎ𝑎𝑙𝑜3𝐷 while the major axis
𝐴̂3𝐷 is oriented randomly on a plane that is perpendicular to
the minor axis.

Satellites Red and blue satellites are assumed to have their
major axes pointed towards the host halo center while the minor
axis is oriented randomly on a plane which is perpendicular
to the major axis. This model assumption is motivated by
evidence for a preferred orientation towards the center that has
been found in observations as well as simulation.
An illustration of the model is shown in Fig. 7. Within the
framework of the analytical IA models described in Section
II the alignment between central ellipticals and their host halo
can be associated with the tidal alignment terms, while the
alignment between central discs and the host halo’s angular
momentum can be associated to the tidal torquing terms. The
combined effects of tidal alignment, tidal torquing, and the
impact of galaxy density weighting are captured by the para-
meters 𝐴1, 𝐴2 and 𝐴1𝛿 .

Note here that our assumption that all blue galaxies are discs
and all red galaxies are ellipticals is motivated by the observed
correlation between morphological and photometric galaxy
properties. However, the simple color cut used in this work
may lead to an inaccurate discrimination between the two mor-
phological types, as we discuss in Section III C. Future updates

of our model may therefore employ more complex photometric
cuts to define discs and ellipticals. For detailed discussions of
how the different model assumptions are motivated by obser-
vations, hydrodynamic simulations and analytical models, we
refer the reader to the reviews of Joachimi et al. (2015), Kiess-
ling et al. (2015), Kirk et al. (2015) and references therein.

A. Misalignment

Deviations from this simplistic model are accounted for by
randomizing the galaxy orientations in a subsequent step. Such
a randomization has been shown to be an effective way to calib-
rate semi-analytic IA simulations against observed alignment
statistics (e.g. Heymans et al. 2004, Joachimi et al. 2013b,
Okumura et al. 2009). In this work we randomize the galaxy
orientations in 3D before projection along the observers line
of sight. This approach allows for extracting constraints on
the 3D galaxy alignment from calibrating the model against
2D observations. In addition it opens up the possibility to cal-
ibrate the model against 3D alignment statistics measured at
high redshifts in hydrodynamic simulations in future studies.
For the randomization we draw misalignment angles 𝜃 from
the Misis-Fisher distribution,

𝑃(cos(𝜃)) = 1
2𝜎2

𝑚 𝑓
𝑠𝑖𝑛ℎ(𝜎−2

𝑚 𝑓
)
𝑒𝑥𝑝

(
𝑐𝑜𝑠(𝜃)
𝜎2
𝑚 𝑓

)
, (26)

where the width 𝜎𝑚 𝑓 is a free parameter of our model. Higher
values of 𝜎𝑚 𝑓 lead to a higher randomization of the original
orientation vector (see Fig. 8) and therefore to a lower align-
ment signal. Bett (2012) showed that in hydrodynamic sim-
ulations the distribution of misalignment angles between the
galaxy spin vector and the host halos minor axis is well ap-
proximated by Equation (26). It has therefore been used by
Joachimi et al. (2013b) to model the 3D misalignment of the
circular discs in their model. In our model we use Equation
(26) to model the 3D misalignment for all types of galaxies (in-
cluding discs, ellipticals, centrals and satellites) with respect
to their initial orientations. Assuming that this modeling is
valid not only for discs, but also for ellipticals, we are able to
successfully reproduce observed alignment statistics of LRG
samples which consist mainly of ellipticals (see Section V B).
However, it would be worthwhile to validate this assumption
with measurements of galaxy-halo misalignment of ellipticals
from hydrodynamic simulations (similar to those presented for
instance by Bhowmick et al. 2019, Chisari et al. 2017, Tenneti
et al. 2015).

Since we model all galaxies as 3D ellipsoids which are in
general rotationally asymmetric we need to randomize their
orientations in two directions. We thereby start by random-
izing the orientation of the minor and major axes 𝐴3𝐷 and
𝐶3𝐷 , using two misalignment angles 𝜃𝐴 and 𝜃𝐶 , which are
drawn from the Misis-Fisher distribution with the same value
of 𝜎𝑚 𝑓 for both angles. The randomized orientation vectors
Â𝑟3𝐷 and Ĉ𝑟 ,′3𝐷 are constructed such that Â3𝐷 · Â𝑟3𝐷 = cos(𝜃𝐴)
and Ĉ3𝐷 · Ĉ𝑟 ,′3𝐷 = cos(𝜃𝐶 ). Ĉ𝑟 ,′3𝐷 is thereby a temporary vec-
tor which is in general not perpendicular to Â𝑟3𝐷 . The fi-
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Figure 5. Left, central left, central panels: Interpolated distribution of the parameters in our Gaussian model for the 3D galaxy axis ratio
distribution, 𝑞0, 𝑟0 and 𝜎𝑟 , given in Equation (24) as a function of galaxy redshift and absolute 𝑟-band magnitude for blue and red galaxies (top
and bottom panels respectively). The parameters were derived from the 2D galaxy axis ratio distributions, measured in overlapping volume
limited samples in the COSMOS survey (see Section IV for details). Central right panel: 𝜒2 per degree of freedom (𝑑.𝑜. 𝑓 .) of the fits to the
observed 2D axis ratio distribution for each volume limited sample. Right panel: Number of galaxies per volume limited sample. The dots in
the right panels are located at the mean redshifts and 𝑟-band magnitudes of the volume limited samples.

a b
red centrals 0.65 0.0
red satellites 0.7 -7.7
blue centrals 2.0 0.0
blue satellites 2.0 0.0

Table III. Parameters describing the magnitude dependence of the
misalignment parameter 𝜎𝑚 𝑓 in Equation (27).

nal randomized minor axis orientation is therefore obtained
as C𝑟3𝐷 = (Â𝑟3𝐷 × Ĉ𝑟 ,′3𝐷) × Â𝑟3𝐷 and is then normalized to
Ĉ𝑟3𝐷 = C𝑟3𝐷/|C

𝑟
3𝐷 |. In order to control the dependence of

the alignment on galaxy magnitude and color, we introduce
simple dependencies of 𝜎𝑚 𝑓 on these properties. We thereby
assume a linear relation between 𝜎𝑚 𝑓 and the absolute r-band
magnitude 𝑀𝑟 ,

𝜎𝑚 𝑓 (𝑀𝑟 ) = 𝑎 + 𝑏
(
𝑀𝑟

𝑀0
− 1

)
, (27)

where 𝑎 and 𝑏 are free model parameters and 𝑀0 = −22 is
an arbitrarily chosen normalization constant. The color de-
pendence of the alignment is introduced in the model by using
different values of 𝑎 and 𝑏 for red and blue galaxies, where
the colors are defined as described Section III C. When ad-
justing these parameters we further separate between central
and satellite galaxies, which provides control over the scale-
dependence of the IA signal in the simulation. The parameters
used in our model are summarized in Table III. They are ob-
tained from calibrating the model by hand, as outlined in the
next subsection. The final output of the IA model are the
two 3D axis ratios 𝑞3𝐷 and 𝑠3𝐷 as well as the orientations of
the three principle axes for each galaxy in the simulation. In
order to compare this output to observations we project these

ellipsoids along the observer’s line of sight who is located at
𝑧 = 0.0 in the MICE light-cone and obtain the intrinsic shear
components, as described in Section IV.

B. Parameter calibration against observed IA statistics

We calibrate the parameters for controlling the randomiz-
ation of galaxy orientations, 𝑎 and 𝑏 in Equation (27), for
red and blue galaxies separately. For blue galaxies, including
centrals as well as satellites, we set [𝑎, 𝑏] = [2, 0] such that
𝜎𝑚 𝑓 = 2, independent of the galaxy magnitude. The random-
ized orientations for blue galaxy are consequently close to a
uniform distribution on a sphere (see Fig. 8). This choice
is motivated by the non-detection of intrinsic alignment for
blue galaxies in the surveys WiggleZ, SDSS, DES and PAUS
(Johnston et al. 2019, 2021, Mandelbaum et al. 2011, Samur-
off et al. 2019). However, achieving such a non-detection in
the simulation may also be possible with much lower values of
𝜎𝑚 𝑓 , since the halos’ angular momentum alignment is relat-
ively weak compared to the alignment of the halos’ principle
axes, as we show in Appendix A.

For red galaxies we adjust 𝑎 and 𝑏 such that the simula-
tion reproduces the observed scale and magnitude dependence
of the alignment statistics, measured for LRGs in the BOSS
LOWZ sample by SM16. The alignment is thereby quanti-
fied with the projected cross-correlation between positions of
galaxies in a ’density’ sample and the intrinsic shear of galaxies
in a ’shape’ sample, 𝑤𝑔+, as detailed in Section II.

Before discussing the calibration in more detail we show
in Fig. 9 how the IA correlation reacts to variations of 𝜎𝑚 𝑓
for a test sample of galaxies that are brighter than 𝑀𝑟 = −21
in the redshift range 0.1 < 𝑧 < 0.3. When computing the
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Figure 6. 2D galaxy axes ratios measured for red and blue galaxies in
different volume limited samples. The redshift and absolute Subaru 𝑟-
band limits of each sample are indicated on the right. Red and black
histograms show results from the MICE simulation and COSMOS
observations respectively.

IA correlation we use the matter distribution of the simula-
tion as the density sample in order to minimize noise on the
measurement. The corresponding correlation is hereafter re-
ferred to as 𝑤𝑚+. In this test case we set the same 𝜎𝑚 𝑓 for
galaxies of all luminosities and all colors. We find in Fig.
9 that the overall amplitude decreases by roughly a constant
factor when increasing the misalignment by increasing 𝜎𝑚 𝑓
for satellites as well as for centrals from 0.1 to 0.5 (comparing
red and yellow lines). When increasing only the misalign-
ment of satellites we find the signal to decrease only at small
scales (𝑟𝑝 < 5 ℎ−1Mpc), while it remains unaffected at large

Figure 7. 2D Illustration of the model used for assigning 3D galaxy
orientations in the MICE simulation for red and blue galaxies (top
and bottom sub-figures respectively). The major and minor axes of
red centrals are aligned with those of their host halo. The minor
axis of blue centrals is aligned with the angular momentum vector of
the host halo. The major axes of red and blue satellites are pointed
towards the halo center. In a subsequent step of the modeling the
orientations are distorted by a random angle 𝜃 that depends on galaxy
type, magnitude and color.

scales (comparing red and blue lines). Increasing the mis-
alignment only for centrals on the other hand has an effect on
all scales, while the impact is stronger on scales larger than
𝑟𝑝 > 5 ℎ−1Mpc (comparing red and green lines). In practice,
the fact that satellite alignment does not affect the alignment
statistics in the simulation at large scales simplifies the model
calibration, as we can first calibrate 𝜎𝑚 𝑓 for centrals focus-
ing on the large scales, before calibrating the parameters for
satellites, focusing on small scales.

In order to calibrate the parameters 𝑎 and 𝑏 in the 𝜎(𝑀𝑟 )
relation from Equation (27) we measure 𝑤𝑔+ in our mock
LOWZ sample (described in Section III D), where we take the
full sample as density sample and the four luminosity sub-
samples 𝐿1 − 𝐿4 as shape samples, following SM16 9

As a first step in the calibration we then set magnitude in-
dependent values of 𝜎𝑚 𝑓 for centrals and satellites for each
LOWZ luminosity sample separately. These values are chosen
such that 𝜒2 deviation between 𝑤𝑔+ measurements in MICE
and the observational reference is minimized. We thereby ob-
tain a relation between 𝜎𝑚 𝑓 and the mean 𝑟-band magnitude

9 Note that SM16 showed that different shape measurement methods can
lead to ∼ 𝜎 variations of the observed signal, which introduces additional
uncertainties in our modeling. In this work we calibrate the simulation
against their results based on re-gaussianized shapes (Hirata & Seljak 2003,
Reyes et al. 2012). Further note that SM16 apply cuts based on the quality
galaxy shape measurements, which we cannot mimic in the construction of
mock catalogs from MICE.
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Figure 8. Mises-Fisher distribution for different misalignment para-
meters 𝜎𝑚 𝑓 . Points mark randomized orientations on the surface
of a unit sphere with respect of an input vector. The Mises-Fisher
distribution is used for randomizing galaxy orientations in our IA
model.

〈𝑀𝑟 〉 of each sample, from which we can infer a first guess
of the parameters 𝑎 and 𝑏. Starting from this first guess we
then vary 𝑎 and 𝑏 by hand until the simulation matches the ob-
served 𝑤𝑔+ measurements for the different luminosity samples
𝐿1 − 𝐿4 simultaneously. Note that this match is quantified
purely by eye. In future work we plan to improve the cal-
ibration technique, using quantitative measures for IA model
performance and an automated calibration pipeline. Fig. 10
shows the comparison between 𝑤𝑔+ from the calibrated MICE
simulation together with the observational reference measure-
ments from SM16. The simulation reproduces the observed
dependence of 𝑤𝑔+ on scale as well as on magnitude as the
deviations from the observations are consistent with the 1𝜎
jackknife error estimates. The errors on the MICE results are
overall larger than those on the observations, which can be ex-
pected from the smaller area covered by the MICE octant. In
addition, differences in the errors can result from differences
in the size and geometry of the jackknife samples.

When calibrating 𝜎𝑚 𝑓 on the different LOWZ luminosity
samples we compensate automatically for systematic effects in
the mass dependence of the host halo alignment (see Appendix
A), at least within the luminosity and redshift ranges covered
by the LOWZ sample. It is not obvious that this compensation
also works for magnitudes and redshifts that are not considered
in the calibration. However, our results in Section VI indicate
that this might be the case, since the IA amplitudes predicted
by MICE for luminosities and redshifts that are not covered by
the LOWZ sample are consistent with various observational
constraints.

A shortcoming in our calibration based on 𝑤𝑔+ results from
the fact that this statistics is not only sensitive to the alignment,
but also to the clustering of galaxies. Since the clustering,
quantified by 𝑤𝑔𝑔 for the MICE LOWZ samples, is predicted
to be. 30% below the reference observations from BOSS (Fig.
3), we are setting the IA signal in the simulation too high, when
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Figure 9. Projected matter - intrinsic shear correlation 𝑤𝑚+ for test
runs of the semi-analytic IA model on a catalog of MICE galaxies with
0.1 < 𝑧 < 0.3 and 𝑀𝑟 < −21, using one misalignment parameter for
all centrals (𝜎𝑐𝑒𝑛𝑡 ) and one for all satellites (𝜎𝑠𝑎𝑡 ), independently
from galaxy luminosity and color. Results are shown for different
values of 𝜎𝑐𝑒𝑛𝑡 and 𝜎𝑠𝑎𝑡 . Increasing 𝜎 decreases the amplitude of
𝑤𝑚+. Misalignment of centrals affects the signal at all scales, while
the impact of satellite misalignment is limited to 𝑟𝑝 . 5 ℎ−1Mpc
(vertical dashed line).

trying to match the observed 𝑤𝑔+ signal. However, we expect
the error on the 𝑤𝑔+ amplitude to be significantly smaller than
30% based on the following consideration. At large scales
we can approximate 𝑤𝑔𝑔 ∝ 𝑏2

1 and 𝑤𝑔+ ∝ 𝑏1, where 𝑏1 is
the linear clustering bias. Assuming that the difference in 𝑤𝑔𝑔
between MICE and BOSS is mainly driven by differences in 𝑏1,
a 30% inaccuracy in 𝑏2

1 would propagate into a 17% inaccuracy
on 𝑏1 and hence on 𝑤𝑔+. This inaccuracy is well below the
dependence of 𝑤𝑚+ on luminosity, color and redshift, which
we will study later on.

Another potential source of bias in our calibration may result
from the fact that the galaxy shapes in our simulation are calib-
rated against observed axis ratio distributions that were derived
from Sérsic model fits (Section III A). Using a reference dis-
tribution based on a different shape measurement method may
change the galaxy ellipticity distribution and hence lead to a
change in 𝑤𝑔+ (e.g. SM16). However, since in our simulation
the orientations and shapes are calibrated independently, a bias
in the ellipticities can be compensated by adjusting the galaxy
misalignment, such that 𝑤𝑔+ still matches the observational
constraints.

C. Distribution of misalignment angles

The distribution of misalignment angles between galaxies
and their host halos has been investigated in several previous



16

10−2

10−1

100

101

102

-4
-2
0
2
4

0.1 1 10 100 0.1 1 10 100 0.1 1 10 100 0.1 1 10 100 0.1 1 10 100

w
g
+

[M
p
c/

h
]

LOWZ - LOWZ

obs.
sim.

LOWZ - L1 LOWZ - L2 LOWZ - L3 LOWZ - L4
w

s
i
m

g
+

w
o
b
s

g
+

−
1

rp[Mpc/h] rp[Mpc/h] rp[Mpc/h] rp[Mpc/h] rp[Mpc/h]
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studies. It therefore provides an opportunity to validate our
simulation in a way that is independent of the 𝑤𝑔+ comparison
against the BOSS LOWZ constraints, used for the calibration
of the simulation parameters. Observational constraints on the
distribution of misalignment angles of LRGs have been derived
by Okumura & Jing (2009) and Okumura et al. (2009) (jointly
referred to as OO9 in the following). Using a methodology
similar to the one presented in this work, these authors ran-
domized the orientations of dark matter halos from an N-body
simulation such that the simulation reproduces the observed
alignment statistics of LRGs in the SDSS. In contrast to our
approach of randomizing galaxy orientations in 3D before pro-
jection, OO9 randomized the 2D orientations after projection,
assuming a Gaussian distribution of misalignment angles with
zero mean and a variance 𝜎𝜙 . In order to compare their res-
ults to predictions for the LRGs in the mock BOSS LOWZ
sample from MICE, we compute the 2D misalignment angles
as the difference between the 2D orientation angles before and
after randomizing the galaxies in the simulation. We find the
variance of the distribution of 2D misalignment angles in the
LOWZ sample to be 𝜎𝜙 = 32.64◦, which deviates by just
∼ 7% from the ∼ 35◦ degree variance reported by OO9. This
finding is interesting, given that LRGs in SDSS and those in
the BOSS LOWZ sample probe different ranges in color, lu-
minosity and redshift. Furthermore, the simulations employed
to interpret the observations are based on N-body simulations
which differ in their resolution and cosmology, the definition
of halo shapes and orientations as well as in the HOD model
and the IA model used to produce the mock catalogs that are
compared to the observations.

In addition to the constraints on the 2D misalignment, the
MICE simulation provides predictions for the distribution of
3D misalignment angles. In Fig. 11 we show the distribution
of these misalignment angles, defined as the angle between
the 3D major axes A before and after randomization for the
mock samples of the BOSS LOWZ and the DES surveys. The

results for the LOWZ sample demonstrate that our IA model
implementation for red galaxies works as expected. In our
model the misalignment of red centrals is independent of the
galaxy magnitude (Table III) which leads to almost identical
distributions of misalignment angles for the different lumin-
osity sub-samples. The misalignment angles for satellites are
increasing significantly for dimmer samples, as expected from
the modeling. Similar trends can be seen for the mock DES
samples, although less clearly since these samples consist to
∼ 50% of blue galaxies (Table II), which are almost completely
randomized in our model. The distributions of misalignment
angles in the DES samples lie therefore closer to a distribution
expected for completely randomly oriented objects (shown as
dashed line in Fig. 11) than the distributions of misalignment
angles in the LOWZ samples.

It is further interesting to note here that the 3D misalignment
angles that we obtain from calibrating the IA model in MICE
are significantly higher than those found for the galaxy-halo
misalignment in the MassiveBlack-II simulation by Tenneti
et al. (2015). These authors report an average misalignment
of ∼ 13 degree for galaxies in halos with masses larger than
1013ℎ−1M�. This prediction is significantly below the values
that we find in the MICE LOWZ samples, which reside mostly
in halos of that mass range. One potential explanation could be
that these authors study the alignment of galaxies with respect
to their host subhalo, whereas our results refer to the alignment
of galaxies with respect to their host FOF group, which may
present a weaker alignment with the central galaxies.

VI. PREDICTIONS FOR TWO-POINT IA STATISTICS

After having validated that MICE is consistent with obser-
vational IA constraints from LRGs in SDSS and BOSS, we
now proceed by using the simulation to derive predictions at
redshift and luminosity ranges that are not covered by these
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surveys. We are thereby interested in the following three ques-
tions. 1) How well do the analytical IA models NLA and TATT
fit the IA statistics measured in MICE at the redshifts covered
by current photometric weak lensing surveys, such as DES?
2) How do the parameters of these models depend on galaxy
color, luminosity, and redshift, and how well do these depend-
encies agree with observational constraints from surveys other
than BOSS, to which the simulation has not been calibrated?
3) How strong is the IA contribution to the observed shear stat-
istics predicted by the simulation in mock DES observations?
We address these questions in the following.

A. Dependence of 𝑤𝑚+ on galaxy magnitude, color and
redshift

In order to test the accuracy of the NLA and TATT mod-
els we fit corresponding predictions for the projected matter-
intrinsic shear cross-correlation, 𝑤𝑚+ (introduced in Section
II A 1), to the measurements in MICE. Note that using matter
instead of galaxies as the density field facilitates the interpret-
ation of our results, as we do not need to take into account
inaccuracies of galaxy clustering bias models. However, be-
fore discussing these fits we would like to point out some
interesting aspects of the 𝑤𝑚+ measurements themselves. In
Fig. 12 we show these measurements for the 36 volume lim-
ited color samples described in Section III F. We find that the
measurements for samples of blue galaxies are consistent with
zero, which confirms that the galaxy-halo misalignment set for
these galaxies in the simulation (see Table III) is high enough
to eradicate a statistically significant signal at all scales, mag-

nitude and redshift ranges covered in our analysis. For the red
galaxy samples the measured signal is clearly present, show-
ing dependencies on scale, magnitude and redshift. At a given
redshift the amplitude of 𝑤𝑚+ increases with the brightness
of the sample. At small scales (𝑟𝑝 . 5 ℎ−1Mpc), such an in-
crease can be expected from our IA model, since the misalign-
ment of red satellites is set to decrease for brighter magnitudes
by the corresponding parameters in Table III. At large scales
(𝑟𝑝 & 5 ℎ−1Mpc) the 𝑤𝑚+ alignment signal is dominated by
central galaxies (see Fig. 9) for which the galaxy-halo mis-
alignment is set to be independent of the galaxy magnitude.
The luminosity dependence of 𝑤𝑚+ at large scales is hence in-
duced by a change of the host halo alignment. According to the
SHAM technique employed for the production of the MICE
galaxy catalog, the brightness of central galaxies increases
with the mass of their host halos (see Section III B). The in-
crease of the alignment of central galaxies with luminosity is
therefore induced by an increase of the host halo alignment
with halo mass, which we study in Appendix A (see also Piras
et al. 2018).

In addition to the magnitude dependence, we find in Fig. 12
a decrease of the 𝑤𝑚+ amplitude with redshift for red galaxies
within a fixed magnitude range. This redshift dependence is
most clearly apparent at large scales. Since our model does
not include a redshift dependence of the galaxy-halo misalign-
ment, the decrease of 𝑤𝑚+ with redshift at large scales is pre-
sumably induced by the decrease of the host halo alignment
with redshift , which we find in Appendix A. Furthermore one
could expect the𝑤𝑚+ signal to decrease, even if halo alignment
was redshift independent, due to the decrease of the matter
power spectrum amplitude with redshift. We conclude that
the interpretation of the luminosity and redshift dependence
of IA statistics in terms of galaxy-halo misalignment relies on
a detailed understanding of the mass and redshift dependence
of halo alignment which we investigate in Appendix A.

For the comparison between the theory predictions for 𝑤𝑚+
and the corresponding measurements, which we discuss in the
next section, it is interesting to inspect how strongly measure-
ments on different scales are correlated with each other, which
is described by the covariance 𝐶𝑖 𝑗 . In Fig. 27 we show ex-
amples of the normalized covariance for four of our 36 volume
limited samples. We find that the covariances are dominated
by the diagonal elements, indicating that the errors on 𝑤𝑚+
are dominated by noise that originates from the dispersion of
intrinsic galaxy ellipticities, which are spatially uncorrelated.

B. NLA and TATT fits to 𝑤𝑚+ measurement

In order to examine the accuracy of the NLA and TATT
models we fit the corresponding predictions for 𝑤𝑚+ (Section
II B 2) to the measurements in MICE (hereafter referred to
as the data vector d) by maximizing the posterior probability
𝑃(𝜽 |d) for the parameter vector 𝜽 , given d, where 𝜽 is given
by 𝐴1 and (𝐴1, 𝐴2, 𝐴1𝛿) in the case of the NLA and the TATT
model respectively. 𝑃(𝜽 |d) is inferred from the likelihood
L(d|𝜽) of measuring d given 𝜽 , using Bayes’ theorem. We
estimate the likelihood from the data, assuming that it is well
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described by a multivariate normal distribution, i.e.

lnL(d|𝜽) = −1
2
𝜒2 (d|𝜽) + 𝑐𝑜𝑛𝑠𝑡. (28)

with

𝜒2 (d|𝜽) = [d − m(𝜽)]T𝐶−1 [d − m(𝜽)] . (29)

The model𝑚(𝜽) is the NLA or TATT prediction for 𝑤𝑚+ from
Equation (4) for a given 𝜽 . The covariance 𝐶 is estimated
from measurements of 𝑤𝑚+ in jackknife samples as detailed
in Section II A 1. The posterior is given by Bayes’ theorem as

𝑃(𝜽 |d) ∝ L(d|𝜽)Π(𝜽). (30)

In our analysis we set the prior Π(𝜽) flat to unity in the interval
[−25, 25] and zero elsewhere for all parameters, covering the
range of parameter values expected from observations with a
high margin. We estimate 𝑃(𝜽 |d) by sampling the parameter
space with the Markov-Chain-Monte-Carlo algorithm emcee
(introduced in Section IV A). For each posterior we run 16
chains with 300 steps each. The best fit parameters are defined
as the sampling point with the highest posterior probability.
The confidence intervals for each parameter are derived from
the corresponding marginalized posterior distribution.

We fit the NLA as well as the TATT model up to scales of
𝑟𝑝 < 60 ℎ−1Mpc, which corresponds to the projection length
Π, used for the 𝑤𝑚+ measurements. Blazek et al. (2015)
pointed out that the Limber approximation that enters the 𝑤𝑚+
prediction requires 𝑟𝑝 << Π to be valid. However, we do not
find a significant change in our parameter constraints when
reducing the upper limit to 𝑟𝑝 < 30 ℎ−1Mpc (see Appendix
D), presumably because the likelihood is dominated by small
scales measurements, as the measurement errors increase with
scale. The lower scale limit of the fitting range is set to 1
and 8 ℎ−1Mpc for the TATT and the NLA model respectively.
The choice of these lower limits is motivated in Appendix D.
Since we limit the NLA fits to large scales at which satellite
galaxy alignment does not affect the 𝑤𝑚+ amplitude measured
in MICE (Fig. 9), we expect the 𝐴1 constrains from the NLA
fits to be set solely by the large-scale alignment of central
galaxies in the simulation.

We compare the best fits of the NLA and the TATT predic-
tions against 𝑤𝑚+ measurements in Fig. 12 and find that both
models fit the data with similar ∼ 1𝜎 accuracy at scales above
8 ℎ−1Mpc. At smaller scales the fit of the TATT model stays
within the 1 𝜎 uncertainties of the data down to the lower limit
of the fitting range of 1 ℎ−1Mpc. The NLA model tends to lie
above the measurements below 8 ℎ−1Mpc, which is also the
case when reducing the lower limit of the NLA fitting range
(see Appendix D). These results indicate that the TATT model
provides accurate predictions of galaxy alignment statistics
over a wide range of scales, redshifts and luminosities.

We assess the fitting performance of the IA model predic-
tions for 𝑤𝑚+ in a more quantitative way in Fig. 13, where we
show the minimum 𝜒2 deviation between measurements and
predictions (corresponding to the maximum of the likelihood)
per degrees of freedom versus the smallest scale used in the fit.
The degrees of freedom are given by 𝑑.𝑜. 𝑓 . = 𝑛 − 𝑚, where

𝑛 is the number of 𝑤𝑚+ bins within the fitting range and 𝑚 is
the number of model parameters (𝑚 = 1, 3 for NLA, TATT re-
spectively). The figure confirms the TATT model predictions
fit the 𝑤𝑚+ measurements better than those based on the NLA
model as the 𝜒2/𝑑.𝑜. 𝑓 . values tend to be lower, in particular at
small scales. We further find the fits to perform better at lower
redshifts, which could result from larger errors on the meas-
urements at low redshifts, due to the smaller volume of the
light-cone (see Fig. 12). Interestingly we do not find a clear
dependence of the fitting performance on the magnitude range
probed by the different samples and hence on the amplitude
of 𝑤𝑚+. This finding might as well be related to the fact that
the different samples have distinct errors, even if they cover
the same redshift bin, due to their different number densit-
ies and noise properties. Inspecting the absolute 𝜒2

𝑚𝑖𝑛
/𝑑.𝑜. 𝑓 .

values shown in Fig. 13, we notice that various results are
well below unity. This finding could indicate overfitting of the
data by the models. However, the fact that these low values
are also present for the NLA model (which has only one free
parameter) as well as over a wide range of scales (i.e. different
numbers of scale bins 𝑚) could be an indication for shortcom-
ings in the 𝜒𝑚𝑖𝑛 estimation. Such shortcomings may result
from the approximations implied in the jackknife method for
estimating the covariance, leading, for instance, to an overes-
timation of the variance. Note that the noise in the covariance
estimates, which we see in the off-diagonal elements in the ex-
amples shown in Fig. 27, is expected to reduce the amplitude
of the inverse covariance by ∼ 25% for the number of bins and
samples used on this analysis (Hartlap et al. 2007). Correcting
for this effect of noise would further reduce the 𝜒2 values by
the same factor. When assessing the fitting performance of the
IA model predictions, one must further bear in mind that the
reference data from MICE is based on a simple model for IA,
which provides a good match with the alignment signal of 𝑤𝑔+
in BOSS LOWZ, but so far has not been validated against cor-
responding constraints from other surveys covering different
ranges in redshift, luminosity and color ranges.

C. Dependence of IA model parameters on galaxy magnitude,
color and redshift

We proceed by investigating the dependence of the NLA and
TATT model parameters on galaxy redshift, luminosity and
color by comparing the posterior distributions that we derived
from the 𝑤𝑚+ fits in the different volume limited samples from
MICE.

We start by inspecting the joint posterior distributions for
the TATT parameters (𝐴1, 𝐴2, 𝐴1𝛿), derived from red and
blue sub-samples at intermediate redshifts and magnitudes
(0.3 < 𝑧 < 0.5, −21.5 < 𝑀𝑟 < −21.0) in Fig. 14. We find
the constraints on the parameters for the blue sub-sample to
be consistent with (𝐴1, 𝐴2, 𝐴1𝛿) = (0, 0, 0) at the 1𝜎 level.
This is expected from the null detection of the 𝑤𝑚+ (see Fig.
12) which results from the highly randomized orientations
of blue galaxies in MICE. Since we find similar results for
all blue sub-samples we focus in the following discussion on
the parameter constraints from samples of red galaxies. The



19

-10.0

0.0

10.0

r p
w
m

+
[h
−

1
M

p
c]

2

0.1 < z < 0.3

NLA (red)

TATT (red)

MICE (red)

0.3 < z < 0.5

M
r
<
−

22.5

0.5 < z < 0.7

NLA (blue)

TATT (blue)

MICE (blue)

-2.5

0.0

2.5

5.0

r p
w
m

+
[h
−

1
M

p
c]

2
−

22.5
<
M

r
<
−

22.0

0.0

5.0

r p
w
m

+
[h
−

1
M

p
c]

2

−
22.0

<
M

r
<
−

21.5

-2.0

-1.0

0.0

1.0

r p
w
m

+
[h
−

1
M

p
c]

2
−

21.5
<
M

r
<
−

21.0

-1.0

0.0

1.0

r p
w
m

+
[h
−

1
M

p
c]

2
−

21.0
<
M

r
<
−

20.5

10−1 100 101 102

rp [h−1Mpc]

-0.5

0.0

0.5

1.0

r p
w
m

+
[h
−

1
M

p
c]

2

10−1 100 101 102

rp [h−1Mpc]
10−1 100 101 102

rp [h−1Mpc]

−
20.5

<
M

r
<
−

20.0

Figure 12. Projected matter-intrinsic shear two-point correlation functions measured in the 18 volume limited samples shown in Fig. 25.
Each sample’s range in redshift and absolute 𝑟-band magnitude is indicated on the top and right respectively. Red and blue symbols show
measurements in the MICE simulation for red and blue galaxies. Dashed-dotted and dashed lines show fits of the NLA and the TATT model
respectively, where the line color is matched to the corresponding color sample. The lower limits of the fitting ranges are shown for each model
as vertical black lines in the corresponding line-style. The upper limit is indicated by a vertical black solid line. The dotted horizontal line
at 𝑟𝑝 𝑤𝑚+ = 1.0 facilitates the visual comparison of the amplitudes in different samples. Error bars indicate 1𝜎 uncertainties, which can be
smaller than the symbol size. The significance of deviations between fits and measurements is shown for various fitting ranges in Fig. 28.
Note that results for blue galaxies with 𝑀𝑟 < −22.5 and 0.1 < 𝑧 < 0.3 (top left panel) are not shown because the low number of objects did
not allow for meaningful measurements. The absence of the small scale signal in the same magnitude range at higher redshifts results from a
lack of bright blue satellites in these samples (see Fig. 25). The short vertical solid lines at 𝑟𝑝 = 5 ℎ−1Mpc indicate the scale above which the
correlation function is dominated by central galaxies (see Fig. 9).
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Figure 13. 𝜒2 deviation between the best fits of the NLA and TATT
model predictions for 𝑤𝑚+ and the corresponding measurements (as
shown in Fig. 12), versus the smallest scale of the fitting range.
Results are shown for the 18 volume limited samples of red galaxies
in MICE.

parameters for the red sub-sample, shown in Fig. 14, dif-
fer significantly from zero which lines up with the significant
signal of the corresponding 𝑤𝑚+ measurements. We further
find the parameter 𝐴2 to correlate weakly with 𝐴1 and slightly
stronger with 𝐴1𝛿 , while 𝐴1 and 𝐴1𝛿 appear to be uncorrel-
ated. The joint constraints on the TATT parameters from the
other volume limited samples (not shown) exhibit a similar
behaviour. The dependence of the NLA and TATT parameter
constraints on luminosity is shown for the red sub-samples in
three redshift bins in Fig. 15. In that figure we display the mar-
ginalized posterior distributions as violins at the logarithm of
each samples luminosity 𝐿, normalized by a pivot luminosity
𝐿0, i.e. 𝑙𝑜𝑔10 (𝐿/𝐿0) = (〈𝑀𝑟 〉 − 𝑀0)/(−2.5), where 〈𝑀𝑟 〉 is
each sample’s mean SDSS 𝑟-band magnitude and 𝑀0 = −22,
according to literature conventions. We find that the margin-
alized posteriors of the 𝐴1 parameter in the TATT model are
mostly consistent with those from the NLA model, shown as
red and blue violins in the top panels of Fig. 15 respectively.
However, for certain samples, in particular in the central red-
shift bin (0.3 < 𝑧 < 0.5), deviations between the NLA and
TATT constraints are significant, while the general trends of
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Figure 14. Posterior probability distribution of the TATT model
parameters, derived from fits to the 𝑤𝑚+ measurements from red and
blue galaxies in a volume limited sample, selected by 0.3 < 𝑧 < 0.5
and −21.5 < 𝑀𝑟 < −21.0 (shown in Fig. 12).

how 𝐴1 changes with redshift and luminosity are the same for
both models. These deviations remain significant when vary-
ing the scale range over which the TATT model is fitted to
𝑤𝑔+ (see Fig. 29). We further note that the 𝐴1 constraints are
tighter for the NLA than for the TATT model, which can be
expected from the higher number of free parameters in TATT.

The 𝐴1 constraints from MICE are compared to observa-
tional constraints from various samples of red galaxies from
different spectroscopic surveys, that were presented in the lit-
erature (shown as black symbols in Fig. 15). These obser-
vational constraints have been derived analogously to those
from MICE from fits of the NLA model to 𝑤𝑔+ measure-
ments. Circles show results from Joachimi et al. (2011) for
two luminosity samples (L3 and L4) of dim red galaxies in
the SDSS-Main sample, two redshift samples of SDSS LRGs
(with 𝑧 ≶ 0.27) and the MegaZ-LRG sample. Triangles show
𝐴1 constraints from Singh et al. (2015) for four luminosity
sub-samples of the BOSS LOWZ sample 10. Stars show res-
ults from Johnston et al. (2019) for red galaxies in the SDSS
main sample and the high and low redshift sub-samples from
the combined KiDS+GAMA survey. Diamonds show results
from Fortuna et al. (2021b) from the KiDS survey for dim and
bright sub-samples (denoted by the authors as ’dense’ and ’lu-
minous’ respectively), that cover different ranges of redshifts.
Note that the observational results are displayed in Fig. 15
across the three redshift bins in which we analyzed the MICE
simulation, according to each samples mean redshift 〈𝑧〉.

10 These sub-samples are similar, although somewhat brighter than the lumin-
osity sub-samples from Singh & Mandelbaum (2016) to which we calibrate
the MICE simulation
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Figure 15. Marginalized posterior distributions of the NLA and TATT model parameters, derived from fits to 𝑤𝑚+ measurements for red
galaxies in different volume limited samples of the MICE simulation, shown in Fig. 12. The posteriors are displayed at each samples logarithmic
mean 𝑟-band luminosity, normalized by a pivot luminosity 𝐿0 that corresponds to 𝑀𝑟 = −22. The top panel shows results for the 𝐴1 parameter,
derived from fits of the NLA and the TATT model together with constraints from fits of the NLA model to different 𝑤𝑔+ measurements in
observational samples of red galaxies, provided in the literature (circles: Joachimi et al. (2011), stars: Johnston et al. (2019), triangles: Singh
et al. (2015), diamonds: Fortuna et al. (2021b)). Dashed and solid lines show power law fits to the observed data from Fortuna et al. (2021b).
The central and bottom panels show results for the parameters 𝐴2 and 𝐴1𝛿 from the TATT model. The horizontal lines at ±2 facilitate the
comparison of the parameter amplitudes by eye.

We find in Fig. 15 that most observational constraints on
𝐴1 are consistent with those derived from the volume lim-
ited samples in MICE within the estimated errors. This find-
ing is remarkable, given that the MICE IA model has been
calibrated only against constraints from LRGs in the BOSS
LOWZ sample. Predictions beyond the color-magnitude-
redshift range covered by the LOWZ sample rely on the simple
assumptions of the IA model. Furthermore, the observational
constraints are based on samples of red galaxies from various
surveys and have been selected with different cuts on color,
magnitude and redshift. These differences in the selection
may contribute to the deviations between observations and

simulation as well as to the variation across the observational
constraints. A more meaningful comparison between observa-
tions and simulations would require the construction of mock
catalogs, which is beyond the scope of this work.

In addition to the observational 𝐴1 constraints from separate
surveys, we compare in Fig. 15 the MICE results with two
power laws fitted to the combined observational constraints
on 𝐴1, provided by Fortuna et al. (2021b). We find that the
MICE results roughly follow the single power law fit in the
lowest redshift bin over the full luminosity range. At higher
redshifts the MICE constraints are still consistent with the
same single power law at low luminosities (𝑙𝑜𝑔10 (𝐿/𝐿0) <
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−0.25), but decrease with redshift for brighter sub-samples.
This behaviour is apparent in the 𝐴1 constraints from the TATT
as well as from the NLA model. Since the latter was fitted
at (𝑟𝑝 > 8 ℎ−1Mpc), we attribute the magnitude and redshift
dependence of 𝐴1 to be set by the large-scale amplitude of𝑤𝑚+.
We argued previously that the large-scale alignment signal is
dominated by the alignment of central galaxies (Fig. 9). Given
that the misalignment between central galaxies and their host
halos is modeled independently of redshift and luminosity,
we expect the dependence of 𝐴1 on these quantities to be
driven by the redshift and mass dependence of the host halo
alignment, which we discuss in Appendix A. Due to a lack
of observational constraints on 𝐴1 for luminous, high redshift
samples, it remains an open question if the redshift evolution
of 𝐴1 for red galaxies as predicted by MICE is supported by
observation. However, our results line up with predictions
from the Horizon AGN hydrodynamic simulation, according
to which the alignment between massive elliptical galaxies and
their surrounding tidal field decreases with redshift (Bate et al.
2020).

The central and bottom panels of Fig. 15 show the mar-
ginalized posteriors for the parameters 𝐴2 and 𝐴1𝛿 of the
TATT model. For dim samples (𝐿 < 𝐿0) we find both para-
meters to be roughly constant, taking values of 𝐴2 ∼ 2 and
𝐴1𝛿 ∼ −2. When approaching brighter luminosities the para-
meters switch their sign and reach higher amplitudes for the
samples at 𝑧 > 0.3, while constraints at lower redshifts are
too noisy to reveal any trend. We further do not find a clear
dependence of the 𝐴2 and 𝐴1𝛿 constraints on redshift. Note
here that 𝐴1𝛿 in our modeling depends not only on galaxy
alignment but also on galaxy clustering, as detailed in Section
II.

VII. APPLICATION TO DES Y3

After having investigated the IA signal predicted by MICE
in volume limited samples, we now study how strongly IA con-
taminates the lensing signal in the simulated DES-like samples
constructed from MICE (see Section III E). This predicted con-
tamination was used in the DES Y3 cosmic shear analysis to
show that both the NLA and TATT models recover the input
cosmology in MICE within the 1𝜎 uncertainties of parameter
posteriors. This process provides a valuable test of the model-
ing, since the simulated data is not analytically generated with
either model. Note that this investigation becomes possible
due to the large area and redshift range covered by the MICE
simulation without repetition, while including both the lensing
and the IA signal, allowing for separate measurements of the
GG, GI, IG and II terms introduced in Section II.

A. Projected matter-intrinsic shear correlation (𝑤𝑚+)

In order to compare the IA signal in the DES-like samples
with the signal in the volume limited samples we measure the
𝑤𝑚+ statistics, focusing on the lowest two of the four photo-
metric redshift bins, which cover a similar redshift range. The
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Figure 16. Projected matter-intrinsic shear correlation, measured
in the two lowest redshift bins of the DES-like sample constructed
from MICE. Results are shown for the full sample as well as for
sub-samples of red and blue galaxies. The amplitudes are compar-
able to those from our measurements in the dimmest volume limited
samples (i.e. 𝑟𝑝𝑤𝑚+ . 0.5 ℎ−2Mpc2, see Fig. 12), showing that the
IA contamination in the DES-like samples is predicted to be weak.
Symbols for the red and blue sub-samples are slightly shifted along
the 𝑟𝑝-axis for clarity.

measurements are shown in Fig. 16 for the full sample in
each bin as well as for the red and blue sub-samples which
are defined by our 𝑢 − 𝑟 = 0.94 color cut, as shown in Fig.
23. We find the strongest signal for the red sub-sample and
no significant signal for the blue sub-sample, while the signal
for the full sample lies between those of the two sub-samples.
The color dependence is expected from our modeling as well
as from the 𝑤𝑚+ measurements in the volume limited samples.
The amplitudes of the full samples and the red sub-samples are
comparable to those derived from red galaxies in our dimmest
volume limited samples (Fig. 12), showing that the IA con-
tamination in our DES-like samples is relatively weak. This
finding is consistent with the large galaxy-halo misalignment
angles for the DES-like samples, shown in Fig. 11.
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B. Angular shear-shear correlation (𝜉±)

We focus now on the angular shear-shear correlation 𝜉±
which was introduced in Section II and used in the cosmolo-
gical weak lensing analysis of the DES Y3 data release. In
Figure 17 we show the 𝜉± measurements of the IA terms that
contribute to the cosmic shear signal, GI+IG and II, divided by
the theoretical GG signal computed at the cosmology and red-
shift distributions of the MICE mock. Each panel corresponds
to a different cross-correlation between redshift bins, and the
shaded bands correspond to angular scales that are removed
from the cosmic shear cosmology inference, mainly due to the
effect of baryonic feedback (see Amon et al. (2022), Secco &
Samuroff et al., (2022a) for a justification).

We find that the amplitudes of the IA signals compared to
GG is small and consistent overall with shape noise fluctu-
ations. This finding indicates that the alignment signal, which
we found to be weak but significantly above the noise level in
the 𝑤𝑚+ measurements for the DES-like samples in Fig. 16,
falls below the noise level when probing it in the same samples
with angular statistics. We attribute this decrease in signal-to-
noise to the projection over large line-of-sight distances that is
implied in the definition of angular correlations.

C. Results of Likelihood Analysis

In order to produce a likelihood analysis with the measured
data vector, we construct an analytic Gaussian covariance us-
ing CosmoCov11 (Fang et al. 2020) for the present DES-like
MICE sample, matching the statistical power of DES Y3 (see
the description in Appendix A of Secco & Samuroff et al.,
2022a). The theory prediction in the likelihood evaluation
is summarized in Equation 13 (with 𝐶 (ℓ) spectra containing
IA contributions), and we ultimately infer the posteriors on
cosmological and nuisance parameters of the 𝜉± (𝜃) model.

For this inference, we sample the parameter space utilizing
Polychord (Handley et al. 2015), with similar performance
settings as those used in the DES Y3 analyses. Our flatΛCDM
cosmology model has 6 free parameters: the matter density
Ωm, the baryon density Ωb, the primordial amplitude 𝐴s, the
spectral index 𝑛s, the Hubble parameter ℎ and the neutrino
density Ω𝜈ℎ

2. We additionally vary 8 calibration parameters
(a shear multiplicative bias 𝑚𝑖 and a photo-𝑧 shift parameter
Δ𝑧𝑖 for each redshift bin 𝑖). Freeing these nuisance parameters
is not strictly required in our present analysis, which does
not include shear and photo-𝑧 systematics, but are important
to guarantee a roughly similar figure-of-merit between this
exercise and the actual DES Y3 analysis. In addition, we also
vary 2 IA parameters in the NLA model (𝐴1 and its redshfit
evolution power-law 𝜂1) and 5 parameters for the TATT model
(both NLA parameters plus a galaxy bias parameter 𝑏TA and
the amplitude and redshift evolution of torquing terms, 𝐴2 and
𝜂2). We note that this choice follows closely the DES Y3

11 https://github.com/CosmoLike/CosmoCov

analysis: we explicitly parameterize the impact of the linear
bias of the source galaxies contributing to the tidal signal as
𝐴1𝛿 = 𝑏TA𝐴1, allowing for extra freedom in the model. This
"fiducial" setting thus includes 19 (22) free parameters. The
explicit priors on these cosmological and nuisance parameters
are generally uninformative and can be found in e.g. Secco &
Samuroff et al., (2022a), Table I.

In addition to this fiducial setting, we also run inferences
with cosmological parameters fixed at the known MICE truth
values and shear/redshift calibration parameters fixed at zero
(thus freeing only the IA model parameters), and a "baseline"
analysis in which no IA signals are added, in which case we ex-
pect IA constraints to be compatible with zero. In the baseline
scenario, we find IA posteriors to be consistent with zero, in
line with our expectations:

𝐴1 = −0.32+0.57
−0.25 (TATT baseline)

𝐴2 = −0.10+0.74
−0.59 (TATT baseline)

where the central values are the maxima of the marginalized
posterior distributions and the upper and lower values are the
distances to the bounds of the corresponding 68% confid-
ence intervals. The main IA constraints as probed by 𝜉± with
this DES-like source sample come from the simplified, fixed-
cosmology scenario. In this reduced parameter space we find,
when fitting NLA:

𝐴1 = −0.11+0.21
−0.27 (NLA with fixed cosmology)

and similarly we find, for the TATT model:

𝐴1 = −0.30+0.49
−0.51 (TATT with fixed cosmology)

𝐴2 = 0.67+1.23
−0.41 (TATT with fixed cosmology)

In all of the cases above, we find 𝐴1 parameters that are con-
sistent with zero within one standard deviation, and only find
a marginal preference for positive 𝐴2 in the case of TATT at
a fixed cosmology. These results are not unexpected given
the overall small impact on the DES-like source sample as a
fraction of the GG signal, as seen in the correlation functions
shown in Fig. 17 .

Finally, for the cases where we additionally vary cosmo-
logical and nuisance parameters, when fitting the data vector
with the NLA model we find:

𝐴1 = −0.51+0.62
−0.27 (NLA with free cosmology & nuis.)

and similarly when employing the TATT model:

𝐴1 = −0.55+0.71
−0.33 (TATT with free cosmology & nuis.)

𝐴2 = −0.37+1.68
−1.65 (TATT with free cosmology & nuis.).

These results are also in line with our expectations based on
Fig. 17: the overall IA amplitudes are consistent with zero
within a standard deviation, and the constraining power on
the individual 1D parameters is suppressed with respect to the
fixed cosmology analogs since there is a greater number of
parameters in the likelihood analysis, weakening those con-
straints. Apart from IA, the cosmological parameters of main
importance for this type of analysis are the amplitude 𝑆8 and

https://github.com/CosmoLike/CosmoCov
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Figure 17. Intrinsic alignment correlation functions as measured from combinations of the individual 𝐺 and 𝐼 ellipticities in MICE, divided
by the theory GG signal computed at the MICE cosmology and with the mock redshift distributions. Different panels show cross-correlations
of redshift bins in 𝜉+ and 𝜉−, and shaded bands correspond to the scales that are removed from the inference of cosmological and nuisance
parameters. Error bars indicate the estimated 1𝜎 shape noise uncertainties.

the matter density Ωm, which are presented for this simulated
MICE sample in Secco & Samuroff et al., (2022a, Appendix
A) and found to be unbiased with respect to the MICE input
cosmology.

In conclusion, utilizing a cosmic shear measurement ob-
tained from the DES-like simulated source sample, we find
that IA amplitudes are subdominant as a contributor to the
tomographic 𝜉± (𝜃) data vector and that, accordingly, posterior
distributions on IA parameters for both TATT and NLA mod-
els are largely consistent with zero. In tandem, the analysis
presented in Secco & Samuroff et al., (2022a) also shows,
using the same simulated mock catalog, that inferring cos-
mological parameters with both IA models recovers the input
MICE simulation cosmology without biases.

We emphasize that these results are specific to our simula-
tion, which was calibrated to match the IA signal of LRGs at
relatively low redshifts, while assuming effectively no align-

ment for blue galaxies, which constitute a significant fraction
of the DES-like samples (see Section III E).

VIII. SUMMARY AND CONCLUSIONS

We implemented intrinsic galaxy alignment (IA) in the light-
cone output of the cosmological simulation MICE to study
it as a contamination in measurements of two-point correla-
tion functions from weak lensing observations of the cosmic
large-scale structure. The simulation was thereby used for two
purposes: a) to investigate the accuracy of analytical models
that describe the IA contamination at luminosities and red-
shifts for which observational constraints from spectrospcopic
surveys are currently not available and b) to predict the IA
contamination in the weak lensing observations of the Dark
Energy Survey (DES). We thereby take advantage of the fact
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that MICE provides both, the intrinsic as well as the gravita-
tional shear components. For the IA implementation we use
a semi-analytic model to assign a shape and an orientation to
each galaxy of the HOD-SHAM catalog of the MICE simula-
tion, taking into account the galaxy’s brightness and color as
well as the orientation and angular momentum of its host halo.
Our model is inspired by semi-analytic IA models presented
previously in the literature (e.g. Joachimi et al. 2013a,b), but
includes substantial advancements in three aspects.

1. We developed a new method for assigning 3D galaxy
shapes, assuming a simple ellipsoidal morphology for
each object. The parameters of this shape model were
calibrated such that the distribution of projected 2D axis
ratios matches observational constraints from the COS-
MOS survey for different ranges of galaxy color, abso-
lute magnitude and redshift (Section IV).

2. The misalignment between the orientations of galaxies
and those of their host halos was calibrated such that
the projected galaxy-intrinsic shear correlation (𝑤𝑔+),
measured in a mock BOSS LOWZ sample of LRGs
from MICE, matches direct IA measurements in the
corresponding observations from Singh & Mandelbaum
(2016) in four different magnitude bins over a large range
of scales (0.1 < 𝑟𝑝 < 200 ℎ−1Mpc, see Section V). We
found that the galaxy-halo misalignment for LRGs in
MICE is consistent with constraints derived by Okumura
et al. (2009).

3. The MICE light-cone covers one octant of the sky (∼
5000 𝑑𝑒𝑔2) and reaches up to redshift 𝑧 = 1.4. The
simulated IA catalog is therefore the largest presented
in the literature so far, which allows us to construct
realistic mock catalogs of current weak lensing surveys
and measure the IA signal with high significance.

In our investigation of the accuracy of analytical IA models
we focus on the NLA model and the TATT model. We assess
the models’ accuracy by comparing their predictions for the
projected matter-intrinsic shear correlation (𝑤𝑚+) against cor-
responding measurements in MICE (Section VI). The latter
are derived for a set of volume limited samples of red and blue
galaxies that span over the redshift range 0.1 < 𝑧 < 0.7 and
probe absolute magnitudes down to 𝑀𝑟 = −20. In contrast
to observations, the simulation allows us to access the matter
field directly, which significantly reduces the impact of galaxy
bias on the IA statistics. As discussed in Section II, we can
therefore study the accuracy of IA modeling with less sensit-
ivity to the details of nonlinear galaxy bias than when using
the observable 𝑤𝑔+.

Our𝑤𝑚+ measurements in MICE show strong dependencies
on galaxy color, magnitude and redshift, which allow to test the
analytical models in a wide range of possible alignment scen-
arios (Fig. 12). We find that the NLA and the TATT model fit
the 𝑤𝑚+ measurements with similar accuracy when restricting
the fit to scales larger than 8ℎ−1Mpc as deviations from the
measurements are consistent with the ∼ 1𝜎 error estimates.
When including smaller scales the NLA model breaks down,

while the TATT model retains a ∼ 2𝜎 accuracy down to the
smallest scale considered of 1ℎ−1Mpc (Fig. 28). It is import-
ant to keep here in mind that the IA signal predicted in MICE is
based on assumptions employed in the HOD and semi-analytic
IA modeling, which might be too simplistic. However, the fact
that the 𝑤𝑔+ signal in MICE matches the BOSS observations,
even in the 1-halo regime below 1ℎ−1Mpc, is an indication
that these simplistic assumptions provide reasonably effective
descriptions of the true galaxy alignment.

As an additional validation of the simulation we compare
the constraints on the NLA and TATT parameter 𝐴1, which is
sensitive to the IA signal at large scales, to constraints from
the literature that were derived from various observed samples
of red galaxies to which the MICE simulation has not been
calibrated (Fig. 15). We find that the 𝐴1 constraints from
MICE are in broad agreement with the observations, given
the large error bars and taking into account that the selection
of the volume limited samples in MICE differs significantly
from the selection of the observed samples. At low redshifts
(𝑧 ≤ 0.3) the luminosity dependence of the 𝐴1 parameters in
MICE is consistent with a single power law, which was de-
rived from fits to observational 𝐴1 constraints for red galaxies
by Fortuna et al. (2021b), while the broken power law proposed
by these authors shows clear deviations from our results. At
higher redshifts (𝑧 > 0.3) the luminosity dependence of 𝐴1
for red galaxies in MICE decreases, which is mainly driven by
a decrease of the alignment amplitude for LRGs. As for low
redshifts, this luminosity dependence seems to be better de-
scribed by a single, rather than a broken power law. Verifying
the high redshift predictions from MICE will be possible with
IA measurements in upcoming spectroscopic surveys, such as
DESI or PAU.

The alignment parameters for samples of blue galaxies in
the simulation are consistent with zero (Fig. 14). This result is
expected since central blue galaxies are oriented in our model
with the host halos’ angular momentum, for which we find
only a weak alignment signal in Appendix A. Furthermore, we
highly randomize the orientations of these objects, to ensure
that the simulation reproduces the null detection of IA for blue
galaxies in current observations.

As a last step in our analysis we investigate the contribution
of IA to the angular shear correlation 𝜉± in mock samples
of the DES survey, taking advantage of the fact that the
simulation allows us to measure the GG, II and GI term
separately from each other. Interestingly, the II and the GI
terms predicted for the DES samples by MICE are consistent
with zero (Fig. 17). We have validated that the 𝑤𝑚+ measure-
ments for the same samples show a signal that is significant
with respect to the errors. However, the amplitude of this
signal is relatively low compared to our measurements for red
galaxies, which can be expected from the ∼ 50% fraction of
blue galaxies that the simulation predicts for the DES-like
samples (Table II). A possible reason for the non-detection of
the II and GI terms in MICE could be that the angular shear
statistics 𝜉± is less sensitive to IA contaminations than the
projected statistics 𝑤𝑚+, as it probes the integrated IA signal
over a wide range of redshifts, including galaxy pairs with
large physical separations that are only weakly intrinsically
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aligned. The resulting decrease in the signal-to-noise ratio
could lead to a null detection for the IA terms in the angular
statistics.

A weak IA signal in angular statistics lines up with findings
of Wei et al. (2018), who study IA contaminations in mock ob-
servations of the weak lensing surveys KiDS and DLS using
a semi-analytic model to implement IA in the Elucid simula-
tion. In contrast to our results these authors find a weak but
still significant IA contribution to the GG signal. One poten-
tial reason for that difference may be the use of constraints on
galaxy-halo misalignment angles that were derived from LRGs
for the entire KiDS sample in that work. This could result in
an overly high signal, as LRGs show the strongest alignment
signal compared to other galaxy populations (see e.g. Fig.
15).

Another reason for the weak alignment in the DES-like
samples could be the fact that predictions for the alignment of
dim galaxies (which constitute a significant part of the sample)
are presumably affected by the relatively low mass resolution,
causing noise in the measured host halo orientations and hence
decreasing the predicted galaxy alignment (see Appendix A).
However, a weak contribution of IA in DES-like samples lines
up with recent findings from Secco & Samuroff et al., (2022a),
who derive constraints on IA model parameters from the cos-
mological analysis of the cosmological weak lensing signal
and find those to be consistent with zero.

We stress here that the IA predictions from the MICE sim-
ulation for DES-like samples need to be taken with caution
since the simulation has only been tested directly against IA
observations from red galaxies at redshift that are well below
those probed by DES. Furthermore, the DES samples contain
a high fraction of blue galaxies, in particular at high redshifts
(Table II) for which the simulation predicts no IA signal by
construction. This lack of alignment has been observed for
blue galaxies at low redshifts. However, the alignment of blue
galaxies at high redshifts remains unconstrained by observa-
tions.

Future improvements of the simulation could therefore con-
sist in taking into account IA observations at higher redshifts
from upcoming spectrosopic surveys. An interesting extension
of our work in that regard based on current observations would
be to reduce the misalignment of blue galaxies, such that the
simulation reproduces the observed null detection for this type
of galaxies (e.g. from direct measurements in a SDSS sample
(Johnston et al. 2019) or indirect measurements in DES Y1
data (Samuroff et al. 2019)) within the corresponding errors.
Such a decrease of misalignment may lead to more significant
IA contributions to the predicted DES Y3 lensing signal.

An additional improvement of our modeling could consist
in a more realistic selection of discs and ellipticals, for instance
using two different color indices as discussed in Section III C.
In our current implementation all galaxies defined as red by a
single color index cut are treated as ellipticals and are therefore
aligned with their host halos principle axes. A more sophist-
icated color cut could identify a fraction of red objects as
discs and align them with their host halo’s angular momentum
vector, which might change the predictions of our simulation.

One shortcoming which is harder to address is that a signific-
ant fraction of galaxies have an irregular morphology, which
is currently not taken into account in the modeling. Hydro-
dynamic simulations may help to find an effective model that
describes the intrinsic alignment of such galaxies. More real-
ism could further be added to the simulation by introducing a
dependence of satellite alignment on the distance to the host
halo center, which has been found in observations (Georgiou
et al. 2019, Huang et al. 2018) as well as in hydrodynamic
simulations (Knebe et al. 2020).

There are several potential applications of our IA simulation
not explored here. For instance, studies of IA in third-order
lensing correlations (Pyne & Joachimi 2021, Schmitz et al.
2018), in particular because such statistics have been detected
at high signal-to-noise in recent DES Y3 data (Secco et al.
2022b). Another application would be to study priors on the
IA modeling, in particular on TATT parameters that are poorly
constrained otherwise.

We expect that the unique size and depth of the MICE IA
simulation presented here, and the improvements in the IA
assignment model, will play a central role in constraining our
understanding of the IA contribution in ongoing and future
weak lensing observations.

AVAILABILITY OF DATA AND SOFTWARE

The MICE IA simulation presented in this work as well as
the halo catalog used in the modeling are publicly available
at CosmoHub12 (Carretero et al. 2017, Tallada et al. 2020).
A public version of our IA simulation code is available on
GitHub 13.
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Figure 18. 3D halo alignment statistics quantifying the average align-
ment of the major axis and angular momentum of dark matter halos
in MICE (A and J, solid and dashed lines respectively) and the vector
r pointing to neighboring halos, as defined in Equation A1. Res-
ults are shown for halos at 𝑧 = 0.25 with more than 𝑁𝑝 = 320
particles (𝑀ℎ & 1012.97ℎ−1M�). 𝑁𝑟𝑎𝑛𝑑 indicates the number of
random particles per halo from which A and J were measured. 𝜂 = 0
corresponds to random alignment.

Appendix A: Dark matter halo alignment

1. Effects of noise in halo orientations

We investigate here the impact of noise resulting from low
halo particle numbers on halo alignment statistics in MICE.
For that purpose we select halos in the MICE light-cone with
𝑁𝑝 & 320 particles (𝑀ℎ & 1012.97ℎ−1M�), then select ran-
domly a subset of 𝑁𝑟𝑎𝑛𝑑 particles from these halos without
replacement and measure the halo major axis and angular mo-
mentum vectors (A and J respectively) as detailed in Section
III B 1. Finally, we measure the 3D alignment statistics of
these halos with the large-scale structure as

𝜂𝑋 (𝑟) = 〈|X̂1 · r̂|〉(𝑟) − 1/2, (A1)

which is the inner product of the the unit vectors X̂ and r̂,
where X refers to either A or J, r is a vector pointing to a
neighboring halo and 〈. . .〉 denotes the average over all halo
pairs separated by the distance 𝑟. Relative orientations of X
and r that are random, parallel and perpendicular to each other
lead to 𝜂𝑋 = 0, > 0 and < 0 respectively. In Fig. 18 we
compare our measurements of 𝜂𝐴 and 𝜂𝐽 for various values of
𝑁𝑟𝑎𝑛𝑑 . We find a positive amplitude of 𝜂𝐴, which indicates
that the major axes tend to point towards neighboring halos.
The amplitude starts to decrease significantly for 𝑁𝑟𝑎𝑛𝑑 . 80.
At 𝑁𝑟𝑎𝑛𝑑 = 10 the amplitude is decreased by roughly 30%,
while we still find a clear signal.

The amplitude of 𝜂𝐽 is mostly negative, indicating that the
halos’ angular momenta tend to be aligned perpendicular to the
vector pointing towards neighboring halos. We see no clear
dependence of 𝜂𝐽 on 𝑁𝑟𝑎𝑛𝑑 , as we saw it for 𝜂𝐴. A potential
explanation for hat finding could be that the dispersion of the
particles’ angular momentum directions is low for the halos
used in our test, such that the average does not vary much
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Figure 19. 3D halo alignment statistics of the halo major axis, minor
axis and angular momentum in the MICE simulation (top, central and
bottom panels respectively). Results are shown for halos in the four
mass ranges that are indicated on the top. The limits at 𝑙𝑜𝑔10 (𝑀ℎ) =
(11.47, 11.77, 12.37, 12.97) [𝑙𝑜𝑔10 ( [ℎ−1M�)] correspond to 𝑁𝑝 =

(10, 20, 80, 320) particles per halo. Solid, dashed-dotted and dashed
lines show results at the redshifts 𝑧 = 0.2, 0.7 and 1.2 respectively.

across different random subsets of particles. Another inter-
esting result is that the absolute values of 𝜂𝐽 are significantly
lower than those of 𝜂𝐴. The lower amplitude of 𝜂𝐽 implies that
blue galaxies, which are aligned with J in our simulation, will
always show a significantly weaker IA signal than red galax-
ies, which are aligned with A, unless we set a much stronger
misalignment for red than for blue galaxies.

2. Mass and redshifts dependence

We consolidate this last point by comparing the amplitudes
of 𝜂𝐽 with those of 𝜂𝐴 as well as 𝜂𝐶 for halos in four mass
samples at three different redshifts of the MICE light-cone in
Fig. 19. For 𝜂𝐴 we find positive amplitudes for all mass and
redshift samples. The amplitudes are increasing with the halo

mass and decrease with redshift. Overall the redshift depend-
ence is relatively weak compared to the mass dependence, in
particular for low halo masses. This finding explains why the
large scale amplitudes of 𝑤𝑔+ in Fig. 10 and the correspond-
ing 𝐴1 parameter in Fig. 15 are decreasing more strongly with
redshift for luminous than for dim samples, since the luminous
galaxies reside in more massive halos than dim galaxies. The
fact that 𝜂𝐴 increases more strongly with halo mass than with
redshifts may be partially explained by the mass dependent
noise on the halo orientations, causing a weaker alignment for
lower halo masses. However, the resolution effects on 𝜂𝐴 that
we show in Fig. 18 are weaker than the mass dependence in
Fig. 19. The results for 𝜂𝐶 are similar to those 𝜂𝐴, while the
amplitudes are negative since C ⊥ A.

The results for 𝜂𝐽 line up with the results from Fig. 18
as the amplitude is weaker than for 𝜂𝐴 and 𝜂𝐶 for all red-
shift and mass samples. A similar finding has been reported
by Forero-Romero et al. (2014), who compare the alignment
amplitude of halo shapes and angular momenta with the large-
scale structure in a cosmological simulation. This consolidates
our expectation that blue galaxies in our simulation would be
weakly aligned compared to red galaxies, even when setting a
lower misalignment for blue galaxies than used in our current
model. It is further interesting to note that 𝜂𝐽 shows a more
complex dependence on mass and scale than 𝜂𝐴 and 𝜂𝐶 . For
massive objects we find the amplitude to switch from negative
to positive for increasing scales, indicating a change in the
orientations of J from perpendicular to parallel with respect to
neighboring halo directions. Another sign flip occurs at small
scales (𝑟 . 20 ℎ−1Mpc) between low and high mass samples.
Such a flip has also been found in other simulation based stud-
ies of halo spin alignment (e.g. Aragon-Calvo & Yang 2014,
Forero-Romero et al. 2014, Lee & Libeskind 2020). However,
a detailed discussion of these findings is beyond the scope of
this work.

Appendix B: Color, magnitude and redshift distributions

1. BOSS LOWZ

In Fig. 20 we compare the distribution of 𝑚𝑟 , 𝑐 ‖ and 𝑐⊥
(defined in Equation (21)) of galaxies in MICE to observations
from the BOSS LOWZ Data Release 11 14 in the combined
Southern and Northern galactic pole, focusing on the SM16
redshift range. We find a reasonable agreement between the
observed and simulated distributions. However, when apply-
ing the LOWZ cuts on MICE with Δ𝑚𝑟 = 0 we find a ∼ 16%
lower number density than in the observations. The latter is
obtained from the number of LOWZ Data Release 12 galaxies
in the SM16 redshift range, 𝑁𝑔 = 249938 and the correspond-
ing effective area of 𝐴 = 8, 579 𝑑𝑒𝑔2, given in Table 2 of Reid
et al. (2016), which leads to 𝑛𝑔 = 𝑁𝑔/𝐴𝑒 𝑓 𝑓 = 29.97. We
therefore adjust the cuts on 𝑚𝑟 in MICE Δ𝑚𝑟 = 0.085, which

14 https://data.sdss.org/sas/dr11/boss/lss/
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Figure 20. LOWZ selection cuts in BOSS and MICE (left right
respectively) on the apparent SDSS 𝑟-band magnitude 𝑚𝑟 and the
color cuts 𝑐⊥ and 𝑐 ‖ , as defined in Equation (20). The 𝑚𝑟 cut for
MICE is slightly shifted to dimmer magnitudes in order to match the
BOSS LOWZ number density, as indicated by the red dotted line in
the top right panel.

results in a ∼ 0.2% agreement in the observed number density,
with 154617 galaxies in the 5156.62 𝑑𝑒𝑔2 octant of the MICE
simulation.

Note that the LOWZ catalog used by SM16 is slightly re-
duced in size and density compared to the original LOWZ
sample since only galaxies for which three different shape
measurements were available were used in that analysis. As a
result dim objects were excluded from their analysis and the
average brightness is increased to some degree. One can there-
fore expect the clustering amplitude in the LOWZ sample to be
slightly increased. Including the exact same selection effects
in the mock construction is not feasible as the MICE simula-
tion does not include the relevant observational systematics.
However, we do not expect these effects to be critical, since the
clustering amplitude in our mock is in good agreement with
the observations (Fig. 3).

The selection of luminosity sub-samples in the mock BOSS
LOWZ sample from MICE is illustrated in the top panel of
Fig. 21, where we show the joint magnitude-redshift distri-
bution. The bottom panel of the same figure compares the
redshift distribution of the sub-samples in MICE LOWZ with
the observed redshift distribution from the BOSS DR11. We
find that the redshift distribution of the MICE sub-samples
L1-L3 are consistent with the observations, while the dim-
mest sub-sample L4 has a strong overabundance of galaxies
around 𝑧 ∼ 0.25. We have validated that this overabundance
is present at all angular positions. It might thus result from an
interplay of the HOD-SHAM methodology used for assign-
ing magnitudes and colors to galaxies and the LOWZ sample
selection, leading to a preferred selection of objects at that

Figure 21. Top: Absolute SDSS r-band magnitude versus redshift of
galaxies in the mock BOSS LOWZ catalog. The LOWZ sample is
split into four luminosity sub-samples (L1-L4, from bright to faint)
by quantiles, following SM16. The sample limits in redshift and
magnitude are shown as dashed vertical and horizontal lines respect-
ively. Bottom: Redshift distribution of the MICE luminosity samples
in the same color coding as in the top panel. The black line shows the
observed distribution of the entire LOWZ sample from BOSS DR11.

redshift. Further investigations are needed to fully understand
this effect. However, we do not expect this overabundance to
significantly affect our measurements of the projected correl-
ations 𝑤𝑔𝑔 and 𝑤𝑔+ since it is isotropic and therefore taken
into account in the random catalogs used in the estimators (see
Section II).

2. DES-like samples

We verify the selection of the DES-like catalog in MICE by
comparing the distributions of apparent magnitudes in the 𝑟 ,
𝑖 and 𝑧 DES broads from the DES Y3 data and the remapped
MICE photometry (described in Section III B) in Fig. 22. We
find a reasonable agreement between MICE and DES Y3, with
MICE containing a slightly longer tail toward bright objects.
The DES Y3 distributions in that figure employ the fiducial
quality cuts described in Gatti & Sheldon et al., (2021), plus
an extra cut removing objects in Metacalibration with mag-
nitude 𝑖 > 23 to enable a closer comparison with the MICE
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Figure 22. Comparison between magnitude distributions on the DES
Y3 Metacalibration catalog and the MICE photometry in 𝑟𝑖𝑧

bands. We introduce an extra apparent magnitude cut of 𝑖 < 23 to
Metacalibration in this comparison, matching MICE specifica-
tions.

photometry, which is limited at that magnitude15.
In Fig. 23 we display the 𝑢 − 𝑟 color index (as defined

in Section III C) versus the absolute SDSS 𝑟-band magnitude
for the DES-like redshift samples from MICE, showing how
a significant fraction of central galaxies are defined as blue
according to the color cut used in our modeling, (see Table II).
Fig. 23 further reveals a lack of central galaxies dimmer than
𝑀𝑟 ∼ −19. This cut-off results from the fact that we require
halos to have at least 10 particles. This condition imposes an
absolute magnitude limit that affects only central galaxies as a
consequence of the HOD-SHAM model with which galaxies
are generated in MICE 16. Due to the apparent magnitude limit
in the DES-like samples of 𝑖 < 23, this artefict affects mainly
centrals in the two lowest redshift bins 1 and 2 of the DES-
like samples. The 𝑖 < 23 cut on the other hand affects a
significant fraction of centrals as well as satellites in the two
highest redshift bins 3 and 4.

Both, the 𝑀𝑟 ∼ −19 and the 𝑖 = 23 cuts, can potentially
boost the IA amplitude, as they remove centrals in low mass
halos as well as faint satellites. Centrals in low mass halos
should be weakly aligned due to a decrease in halo alignment
with decreasing mass (Piras et al. 2018), and, moreover, the
noise in measured orientations increases as the number of halo
particles decreases. Satellites with faint absolute magnitudes
have more randomized orientations than bright satellites, ac-
cording to our semi-analytic IA model (Section V). Removing
such highly randomized objects from the sample could hence

15 Note that the 𝑖 < 23 cut does not affect the comparison to COSMOS data in
Fig. 1, since this is based on MICE galaxies in an area, which is complete
down to 𝑖 < 24.

16 Note here that this lack of galaxies in low mass halos only affects the MICE
IA catalog, not the full simulated catalog, for which FoF halos down to two
particles were populated with galaxies.
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Figure 23. Normalized distribution of the 𝑢 − 𝑟 restframe color index
versus absolute r-band magnitude in four redshift bins of the DES-like
samples with i<23. Red lines indicate the color cut used to define red
and blue galaxies in the IA modeling.

increase the amplitude of the IA statistics. However, investig-
ating the magnitude of such an increase would require a higher
resolution simulation that is complete below to 𝑖 = 23. In this
work we therefore regard the IA signal predicted by MICE for
the DES-like samples as an upper bound for an IA signal that
we would measure when including galaxies in halos with less
than 10 particles and apparent magnitudes below 𝑖 = 23.

3. Volume limited sample selection

The selection of volume limited samples, used to compare
the galaxy axis ratio distributions in COSMOS and MICE
(Section IV) is illustrated in Fig. 24, separately for red and
blue galaxies. Fig. 25 shows the selection of the volume
limited samples that are used to study the redshift, magnitude
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Figure 24. Normalized distribution of absolute Subaru 𝑟-band mag-
nitudes in COSMOS and MICE for red and blue galaxies. The set
of volume limited sub-samples used for comparing the axis ratio dis-
tributions in Fig. 6 are marked by red rectangles. The drop in the
density for galaxies in MICE with 𝑀𝑟 > −20 results from a lack of
host halos with less than 10 particles (see discussion Section III E)

and color dependence of the IA statistics in MICE (Section
VI A), separately for central and satellite galaxies.

Appendix C: Jackknife covariance

Our delete-one jackknife estimates of the covariance matrix
of the projected correlations, described in Section II A 1 are
derived from angular sub-samples, that are defined as healpix
pixels with 𝑁𝑠𝑖𝑑𝑒 = 8. The area covered by the different sub-
samples in the MICE octant is shown in Fig. 26. In Fig. 27
we show examples of the normalized covariance estimated for
𝑤𝑚+ measurements in 4 of our 16 volume limited samples.
We find that all covariances are dominated by the diagonal
elements, while the off-diagonal elements are noisy, which
potentially affects the fits of the NLA and the TATT model
predictions for 𝑤𝑚+ to the measurements.

Appendix D: Scale dependence of TATT parameters

We investigate here how well the NLA and the TATT
model predictions for 𝑤𝑚+ fit the measurements over differ-
ent ranges of the transverse distance scale 𝑟𝑝 . In addition we
study how variations in the fitting range affect the inferred
model parameters. For that purpose we perform the Bayesian
parameter inference, described in Section VI B, for the lower
limits of 𝑟𝑚𝑖𝑛𝑝 ∈ [1, 2, 4, 8] ℎ−1Mpc and the upper limits of
𝑟𝑚𝑎𝑥𝑝 ∈ [30, 60] ℎ−1Mpc. In Fig. 28 we show the significance
of the deviations between 𝑤𝑚+ (𝑟𝑝) measurements and fits,
defined as the absolute difference over the standard deviation,
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Figure 25. Normalized distribution of the 𝑢 − 𝑟 restframe color index
versus absolute r-band magnitude in three redshift bins of the MICE
simulation. Red dashed lines indicate the limits of the color-redshift
samples used for the measuring predictions for 𝑤𝑚+ (Fig. 12).

Figure 26. Healpix regions (𝑁𝑠𝑖𝑑𝑒 = 8) in the MICE octant, used for
the jackknife estimation of the covariance for 𝑤𝑔+ and 𝑤𝑚+.

for different 𝑟𝑚𝑖𝑛𝑝 and a fixed value of 𝑟𝑚𝑎𝑥𝑝 = 60 ℎ−1Mpc.
Results are shown for the same 16 volume limited sample of
red galaxies as in Fig. 12. Note that we do not investigate res-
ults for blue samples, since their alignment signal is consistent
with zero by construction. The results in Fig. 28 show that
the fits of the TATT model do not deviate by more than 2𝜎
from the measurements within the scale range over which the
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fit is performed. This is true even for 𝑟𝑚𝑖𝑛𝑝 = 1 ℎ−1Mpc, which
we therefore choose as lower scale cut for the fits shown in
Fig. 12. In addition we find that the fitting performance of the
TATT model at large scales (𝑟𝑝 > 8 ℎ−1Mpc) is only weakly
affected by the small scale cut. The results for the TATT model
are contrasted by those for the NLA model. For this model we
find strong deviations of more than 4𝜎 when fitting between
1 and 60 ℎ−1Mpc. The fitting performance at large scales is
thereby strongly affected by the lower scale cut, indicating a
lack of flexibility in the model. However, when restricting the
lower scale cut to 𝑟𝑚𝑖𝑛𝑝 = 8 ℎ−1Mpc we find the NLA model
to fit the measurements with a similar 2𝜎 uncertainty as the
TATT model. This scale cut is therefore chosen for the NLA
fits shown in Fig. 12. It is further interesting to note that there
is no clear dependence of the fitting performance on either
magnitude or redshift and hence on the amplitude of 𝑤𝑚+.

In Fig. 29 we show the parameters of the TATT model versus
the luminosity of the different volume limited samples in three
redshift bins. We find no significant change of the parameters
when changing the upper (lower) limit of the fiducial fitting
range of 1 < 𝑟𝑚𝑎𝑥𝑝 = 60 ℎ−1Mpc to 4 (30) ℎ−1Mpc. This
finding shows that the conclusions drawn from Fig. 15 are
robust towards moderate variations of the chosen fitting range.
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Figure 28. Significance of the deviations between the 𝑤𝑚+ measurements, shown in Fig. 12 and fits to the NLA and the TATT model.
Results are shown for 16 volume limited samples whose redshift and magnitude ranges are indicated on the top and right respectively.
Dashed, dashed-dotted, dashed-double dotted and dotted lines are results derived for different lower limits of the fitting range, which are set
to 𝑟𝑚𝑖𝑛𝑝 = 1, 2, 4, 8 ℎ−1Mpc respectively. These limits are marked by the vertical lines in the corresponding line types. The upper limit of the
fitting range is set to 𝑟𝑚𝑎𝑥𝑝 = 60 ℎ−1Mpc.
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samples of red galaxies in MICE versus each sample’s logarithmic normalized mean 𝑟-band luminosity (analogous to Fig. 15). Results are
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