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Summary 
The report presented is a further development 

of the works performed by G.Parzen, 
P.Morton et al. [1, 2] and dealing with 
the effect of magnetic field errors on the 
motion of a beam with finite emittance and 
momentum spread in large accelerators and 
storage rings. The starting point is a Hamiltonian 
of transverse motion, in which 
complete field distortion is included. Expanding 
such a Hamiltonian in multipoles-which 
is adequate to the magnetic measurement 
technique-leads to the equations of 
coupled motion, from Which the dispersion 
of betatron oscillation frequences can be 
found. Considered are all the multipoles, 
all the powers of betatron oscillation 
amplitudes in two transverse directions, 
and all the powers of the closed orbit 
deviation from the ring center-line. The 
dispersion of betatron oscillation frequences 
is presented in a compact form due to 
the use of special functions such as the 
Legendre polynomials. The calculation procedure 
developed is valid for large machines, 
i.e. when one can neglect the ratio of 
transverse deviation to orbit radius. 

In large cyclic machines especially in 
storage rings a particle beam circulates 
for a long time (up to several days). In 
this case, the effect of the high order resonances 
on the transverse particle motion 
becomes important. There is an experience 
of correction of the magnet field distortions 
responsible for some nonlinear resonances. 
It is difficult, however, to correct 
all resonances being dangerous. Therefore, 
rigid limitations are imposed on betatron 
frequency dispersion with the aim to avoid 
high order resonance crossing. 

Betatron oscillation frequency dispersion 
far from resonance stopbands depends on magnet 
field nonlinearities, beam emittance, 
closed orbit distortions and momentum 
spread. Near the resonance stopbands the 
dispersion depends also on the amplitudes 
and phases of the betatron oscillations. 

Assume, that the curvature radius R of 
the charged particle trajectory in the magnetic 
field is much larger of the particle 
deviation from the equilibrium orbit. Then, 
only two magnet field components may be 
taken into account in the betatron oscillation 
equations: Bz is for radial motion and BX is for axial motion. The solution of 
these equations is fairly simplified and it 
can be shown, that the transverse coupled 
motion close to an arbitrary order resonance 
Smυx+snυz = Sq+δ (m,n, q - integers, s - positive integers, m, n have no 
common integers, δ«1 ) is described by 
the Hamiltonian 

and the canonical equations 
(2 ) 

where slowly-changeable variables are: 

- mean, - l o c a l 
curvature of tne central line 15, 
P - momentum deviation from the eauilibrium value 

18, 
Z = z + δ, ψ - dispersion function, x , z -
horisontal and vertical distortion of the 
closed orbit due to field errors in the magnet 

units and position errors. ξ { υ ) , (υ) 
describe betatron oscillations with respect 
to the distorted closed orbit x ( υ ) , z(υ); 
|αx,z|,αx,z - the amplitude and phase of the 
betatron oscillations, respectively; 

Ψ(Φx,z,υ) = sqυ' + s [,χx(υ') + nχz(υ')] + s[mΦx(υ))+nΦz(υ)].The magnetic field Bz in (1) is taken at the point of the particle 
position: 

- module and phase of the 
Floquet function, respectively, 

i s normalization 
condition 
W - Wronskian. 

The derivatives of the Hamiltonian second 
term with respect to the variables Ix,z are responsible for nonresonance shift of 
betatron oscillation frequencies and those 
of the third term are responsible for resonance 
shift of betatron oscillation frequencies. 
The latter amplitude determines the 
stopband width. 

The Hamiltonian (1) and canonical equations 
(2) describe two-fold nonlinear oscillations 
of the beam particles with finite 
emittance and momentum spread close to the 
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resonance SmυX + snυz=Sq + δ in the total accelerator field including random and regular 
distortions of the closed orbit. The 
dispersion of the betatron oscillation frequencies 
is considered in detail below. According 
to (1), (2) in a nonresonance case 
it is presented by the formulae: 

(4) 

Here, ξx,z 4wIx,z- beam emittance, βx,z = |fx,z|2/w. 
For single-fold radial motion (z = 0) without 
closed orbit distortion (x = 0) the formula 
(4) is in agreement with [2]. 

When Bz±(x,z) is given by (3) in an 
analytical form according to (4),(5) the effect 
of the total magnet field of the accelerator 
on the frequency dispersion can be 
taken into account. These formulae differ 
from those commonly used because they include 
the complete field in an aperture of the 
machine, taking into account random and regular 
distortions of the closed orbit rather 
than separate terms of the magnetic field 
Taylor expansion. The calculations give the 
most complete data on the effects mentioned. 

While considering tolerances on multipole 
amplitudes it is convenient to set Bz(x,z) as a Taylor expansion: 

(6) 

In this case, using the relation 

(7) 

where Plm(x) is an associated Legendre 
polynomial we find: 

(8) 

(9) 

Let's consider a simple and practically 
interesting case, namely: axial distortions 
of the closed orbit are equal zero, and x(υ) 
is included in a linear approximation. It is 
convenient to represent these expressions 
for even and odd magnet field nonlinearities 
and use the azimuthal variable s= υR0 : 

where 
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The expressions (10) have been used to calculate 
the betatron oscillation frequency 
spread in the first ring of UNK [3]: 

Resonance shifts of the betatron oscillation 
frequencies are well calculated from 
the (1), (2). 

The formula (4) has been used to calculate 
the radial betatron oscillation frequency 
spread associated with the orbit dispersion 
in UNK. According to the numerical simulation 
results [4] the UNK dipole field is well 
approximated by the dependence: 

(12) 

where α = 0, 136667 m - 2 , b = 0, 149171•10 3m - 4 , 
C = - 1 , 42581•10 - 3 m - 2 , d =132, 3464 m 1 . 

The integration in (4) is simple. The frequency 
shift is expressed in an analytical 

form through incomplete Bessel functions of 
an imaginary argument. The orbit deviation 
due to momentum spread is regular. Assume, 
that extra beam deviation from the chamber 
axis, induced by various magnet field distortions, 
is random and is subjected Gaussian 
distribution, then the frequency spread 
is | υx| = 0.092 and the spread dispersion 
is 2 υx r.m.s. = 0,02. It is assumed in this 
case, that the maximum deviation of the 
closed orbit from the center line after 
correction does not exceed 2 υx r.m.s. = 5 mm. 
Magnet lattice chromaticity correction provides 
sufficiently lower value of | υx| 
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