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Model for the curvature response of the CDF II drift chamber
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The CDF II experiment at the Fermilab Tevatron used a drift chamber to measure the momenta of charged
particles. We present a model for the response of the drift chamber to the curvature of a charged particle’s tra-
jectory. Constraints on the model parameters are obtained from cosmic-ray data and from information published
by CDF in the context of the W boson mass measurement. Implications for the calibration of the drift chamber
measurement of momentum are discussed. The robustness of the CDF calibration procedure is demonstrated.
The model provides a framework for the analysis of precision magnetic trackers of high-momentum particles.
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I. INTRODUCTION

The CDF II collider detector operated at the Fermilab
Tevatron during 1999–2011. The central drift chamber of the
CDF II experiment, called the central outer tracker (COT),
measured the positions of charged particles as they traverse
the active volume [1]. The cylindrical chamber was coaxial
with the colliding beams and and was immersed in a 1.4 T
axial magnetic field that bent charged particles in the plane
transverse to the mutual axis. The particle positions were
recorded by up to 96 wires sequentially in the outward radial
direction. Half of the sense wires were axial and the remaining
wires had a small stereo angle to collectively determine the
particles’ positions and directions in three dimensions. A he-
lical fit is performed to the measured coordinates as a function
of radius to infer the track parameters.

In the context of precision measurements like that of the
W boson mass mW , the CDF drift chamber is the crucial
device because it provides the most important input—the
measurement of the momenta of the muons and electrons that
originate from the decay of W and Z bosons and the J/ψ
and ϒ mesons. The silicon vertex detector is not used in the
CDF measurements of mW because the improvement in the
momentum resolution is marginal and there is no benefit to
the analysis [2,3].

The helical trajectory of the particle in the axial mag-
netic field projects to a two-dimensional circle in the traverse
plane. The circle’s radius R is proportional to pT , the mo-
mentum component transverse to the beam axis, and its
curvature c is proportional to qR−1, where q = ±1 is the par-
ticle’s electric charge.1 Therefore, in the natural units2 of p−1

T

*Contact author: ashutosh.kotwal@duke.edu
1Experimentally, the particle’s charge is determined from the sign

of cmeasured.
2We use natural units by setting the speed of light to unity.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

(typically GeV−1), the curvature of the fitted track,
cmeasured ≡ (q/pT )measured is a function of the true curva-
ture c ≡ q/pT . This is the most important response function
since it is associated with the momentum calibration of
the device.

We begin this discussion with the ansatz that an open-cell
drift chamber in which the entire volume is active, instru-
mented and fiducial must have an analytic response function
for high-pT particles. In this context, analyticity refers to
smoothness, i.e., continuity and differentiability. Later we ex-
pand the discussion to the implications of and constraints on
nonanalytic behavior.

A salient feature of this drift chamber is that many of the
terms in the general ansatz for the response function can be
related to the fundamentals of the chamber’s construction and
operation. This feature enables the calibration of the device
largely from first principles. Pushing this approach as far as
possible maximizes the understanding of “how and why it
works” in the sense of reductionism and critical rationalism
[4] and avoids the black-box nature of very high-dimensional
fitting or machine learning [5].

Guided by this philosophy, the goal of this paper is to
analyze the drift chamber’s calibration for the transverse mo-
mentum of charged particles. While the measurement of the
polar angle is also important for the reconstruction of invari-
ant masses from the 3-momenta of the daughter particles,
the focus on the transverse momentum is motivated. Known
effects such as sense-wire misalignment and particle energy
loss induce a significant pT -dependence to the momentum
calibration, whereas the polar-angle measurement is much
less sensitive to pT -dependent effects. Hence, it is interesting
to investigate the relationship between cmeasured and c in the
pT -regime relevant to precision observables like mW . In par-
ticular, we are interested in the deviations of this relationship
from exact equality.

Since the invention of the multiwire proportional chamber
[6], this device and its derivative, the drift chamber, have been
used in a myriad of experiments in particle physics and more
broadly in medicine, biology and radiation detection. Their
capabilities in terms of precision, accuracy, particle rate and
radiation tolerance have steadily increased. In conjunction
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with a magnet, these tracking devices have been used to
measure particle momenta with high precision and accuracy,
such as muons at 470 GeV by the E665 experiment [7,8].
Most recently, the CDF Collaboraton has published an mW

measurement using the COT-based magnetic tracker whose
particle-momentum measurement has been calibrated to 25
parts per million (ppm) [2]. These and future precision mo-
mentum measurements with magnetic trackers motivate the
analysis of these devices from first principles. This paper
presents a framework for understanding the COT momentum
calibration, that may also be applicable to the precision mag-
netic trackers of the experiments at the LHC [9–11], future
colliders [12–16], and fixed-target experiments [17–19].

A. Analytic curvature response function

With no loss of generality, an analytic response function
with spatial degrees of freedom can be written as a Taylor
expansion around c = 0, the natural value of curvature in the
absence of a magnetic field,

cmeasured = a0 + (1 + a1 + b1q)c + (a2 + b2q)c2

+ (a3 + b3q)c3 + ...,

where quartic and higher-order terms are not shown. It will
be shown that, in the relevant range of pT , uncertainties due
the higher-order terms are encapsulated in the constraints
on the parameters up to the cubic coefficients. This justifies
the truncation of the Maclaurin expansion by information
criteria [20].

The correspondence between the nomenclature used in this
document and in previous CDF publications is described in
Appendix A.

The c → 0 limit corresponds to the straight-line trajectory
of a charged particle with very high pT when traversing an ax-
ial magnetic field. From the perspective of a tracking device,
c = 0 is just as natural as the situation with zero magnetic
field, when all charged-particle trajectories are straight lines.
For this reason, the Maclaurin expansion above can equally
well be considered as an expansion in the axial (z) compo-
nent of the magnetic field (B), for a charged particle with a
given pT . In other words, the Maclaurin expansion can be
re-interpreted as an expansion in Bz. In a thought experiment,
one can dial Bz from negative to positive values and the cur-
vature of the particle’s trajectory (of fixed pT ) will respond
proportionately to Bz. Since Bz can be varied continuously
and smoothly, the curvature and its measurement must track
this smooth variation.

A perfect spatial response, cmeasured = c, implies that all a
and b coefficients are zero. Therefore,

δc ≡ cmeasured − c = a0 + (a1 + b1q)c + (a2 + b2q)c2

+ (a3 + b3q)c3 + ...,

where c is defined at the beam axis. The latter coincides
with the cylindrical axis of the COT, because the COT has
been aligned with the beam axis for all running conditions
using tracks of particles promptly produced in beam-beam
collisions [2,21]. The procedure for matching the COT
axis and the beam axis is described in Appendix B 1. The

alignment between the COT and solenoid axes is discussed
in Appendix B 2.

1. Charge dependence

The presence of the two types of coefficients in the Maclau-
rin expansion allows for separate charge-independent and
charge-dependent imperfections that depend on the spatial
(but not temporal) trajectory of the particle. This ansatz gen-
eralizes the model presented in Ref. [3].

The a0 term represents the false curvature for a straight-
line trajectory which is typically induced by misalignment
of the tracker sensors. The a1 coefficient represents the de-
viation from unity of the proportional momentum calibration
factor, often referred to as the momentum scale factor or
simply the momentum scale, and may be caused by the use
of the incorrect value of the magnetic field or the tracker ra-
dius. The b2 coefficient is mimicked by the ionization energy
loss incurred upstream of the tracker. These terms represent
charge-symmetric effects.

The drift cells are tilted to compensate for the Lorentz
angle of the drifting electrons. The b1, a2, and b3 coeffi-
cients capture effects that might break the charge symmetry
due to this tilt. These charge-antisymmetric coefficients are
shown to be negligible or have no impact on the CDF mW

measurement [2].

2. Energy loss

The energy ε lost by the charged particle as it traverses
the tracker correlates with the temporal history of the par-
ticle. By convention, ε > 0 when the particle traverses the
tracker in the outward radial direction, i.e., a particle produced
in a beam-beam collision or an outward-going cosmic ray
(Fig. 1). For these particles, pmeasured

T = (pT − ε) since the
COT measurement occurs after the particle (produced with
pT ) traverses the beam pipe and the silicon detector which are
situated upstream of the COT. The energy loss almost entirely
occurs in these upstream devices and support structures. As a
correction to pT , ε is defined at normal incidence.

Figure 1 also shows that for an incoming cosmic ray,
pmeasured

T = (pT + ε) since the COT measurement occurs be-
fore the particle loses energy in the material between the
COT and the beam axis (where pT is defined). To account
for the bi-directional nature of cosmic-ray tracks, we intro-
duce a binary variable t , with t ≡ +1(−1) for an outgoing
(incoming) cosmic-ray track; t = +1 for particles produced
in beam-beam collisions (Fig. 1).

In Appendix C it is shown that the energy loss induces,
up to third order, the corrections terms (tqεc2 + ε2c3) to the
equation above,

δc = a0 + (a1 + b1q)c + (a2 + [b2 + tε]q)c2

+ ([a3 + ε2] + b3q)c3 + .... (1)

Thus, the energy loss induces a b2-like coefficient which
is distinguishable from the spatial (geometry-induced) b2

coefficient by comparing incoming (t ≡ −1) and outgoing
(t ≡ +1) cosmic-ray tracks. The energy loss also induces an
a3-like coefficient at second order which is indistinguishable
from geometrical sources of a3.
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FIG. 1. Schematics of the CDF II experiment’s cylindrical drift chamber (COT) in the transverse (azimuthal) view (left) and longitudinal
view (right). The beam line is along the longitudinal axis of the tracker, which is also the direction of the magnetic field. The green-shaded
region shows the active gas-filled volume, between radii of 40 and 138 cm from the cylinder (and beam) axis [1]. The eight darker-green annuli
depict the superlayers (rings of supercells) as shown in Fig. 4. The gray shading indicates the region occupied by the silicon tracking detector.
The red and blue trajectories illustrate two oppositely charged cosmic-ray muons propagating downward in azimuth, each of pT = 10 GeV.
Their impact parameter of ±1 cm is typical of the cosmic-ray sample analyzed in this paper and in Ref. [21]. Also shown as the black trajectory
is a muon with pT = 40 GeV emanating from a decaying W boson. The arrows indicate the direction of propagation. The complete cosmic-ray
trajectory is referred to as the dicosmic because it is comprised of the incoming (pointing towards the beam axis) and outgoing (pointing away
from the beam axis) legs of the cosmic-ray path.

Hard scattering from the drift chamber wires is a negligible
effect, as discussed in Appendix C.

3. Spatial uniformity

The coefficients an, bn, and ε of the response function may
initially depend on the azimuthal and polar angle at which the
particle traverses the drift chamber. Averaged over c, these
dependencies have been eliminated by an alignment proce-
dure3 that makes the COT response uniform with respect to
orientation [21]. A summary of the spatial uniformity of the
COT is provided in Appendix D.

We will show that by far the largest sources of systematic
uncertainty in the momentum calibration of the COT are the
a1 and ε parameters.

The curvature proportionality parameter a1 depends on the
COT radius and the magnetic field. The COT radius is defined
by its end plates and cannot depend on polar angle. The wires
deviate from a straight-line shape due to gravitational and
electrotatic deflections. A detailed analysis and corrections for
these deflections are presented in Ref. [21] and summarized in
Appendix D. A more significant source of polar-angle depen-
dence of a1 is the nonuniformity of the magnetic field due
to the fringe-field effect at the edges of the solenoid. This
effect is measured and corrected for using the J/ψ → μμ

data [2,3,24].
The energy loss ε is proportional to the length of the path

traversed; for the high-pT particles used in the mW analysis
[2], the dependence of the path length on the curvature is

3This average was performed such that 〈c〉 ≡ 0 for the alignment-
data sample [21].

negligible and the latter scales solely as (csc θ ) where θ is
the polar angle in cylindrical coordinates. As ε is defined at
normal incidence, its impact on the measured curvature is
nearly independent of θ . While the distribution of material
along the beam axis is not perfectly uniform due to the place-
ment of silicon-detector bulkheads, the dependence of ε on
this cylindrical z coordinate is averaged over in a sufficiently
similar way by all data samples used in the mW analysis. The
tracking detectors are also fairly symmetric in azimuth [1,22].

Thus, the salient features of the COT response are cap-
tured by an inclusive study of the an, bn, and ε coefficients.
A quantitative assessment of this conclusion is provided in
Appendix D.

B. Nonanalytic response

It is conceivable that gaps in the acceptance of a tracking
detector due to uninstrumented or dead regions, or boundaries
between sensors lead to nonanalytic behavior of the response
function. An investigation of this possibility is presented in
Sec. VI in the form of (ar + brq)|c|r terms with negative or
fractional values of r. We find that the worst-case scenario
is adequately parameterized by a b0q term; other terms are
either redundant or inconsistent with the COT being a single,
unfragmented tracking volume. Thus, Eq. (1) may be fully
generalized by including this term. In Sec. VI we discuss
constraints on b0 from studies of COT hit efficiency and drift
displacement in the c → 0± limit.

II. CONSTRAINTS FROM COSMIC-RAY TRACKS

Cosmic rays provide a powerful control sample of data
that CDF has used to pin down many attributes of the drift
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chamber. There are two salient features of this sample. First,
high-pT cosmic-ray muons are automatically selected by the
same trigger paths that acquire the W and Z boson data in
the muon channel. This feature guarantees that the cosmic-ray
events are chosen in situ with collider data and that they
experience the same operating conditions of the detector as
the collider data used for physics analysis. The trigger-timing
requirements ensure that these cosmic rays are synchronous
with proton-antiproton collisions within a few nanoseconds
[23]. In addition to the five spatial parameters that character-
ize tracks originating from pp̄ collisions, cosmic-ray tracks
include the beamline-crossing time and the direction of prop-
agation as fitted parameters. These track-fitting procedures
ensure the equivalence of the fitted spatial parameters between
the two types of tracks [23]. For these reasons, measurements
of the drift chamber made with cosmic rays are usable for
reconstructed tracks in collider data.

Second, cosmic rays traversing the COT through all its
radial layers, and passing close to the beam axis, contain a
very useful redundancy that CDF exploits for accurate cali-
bration. Figure 1 shows that cosmic rays provide an excellent
data sample for tracker alignment and bias measurement [21].
The comparison of the two legs of the reconstructed cosmic-
ray trajectory provides an estimate of track parameter biases
because the two legs provide independent measurements of
the same particle (up to the muon’s ionization energy loss as
it traverses the silicon tracker) [21]. The distribution of the
cosmic rays is fairly uniform in azimuth and in polar angle.

The measured curvature of the outgoing leg is

cout = a0 + (1 + a1 + b1q)c + (a2 + [b2 + ε]q)c2

+ (a3 + ε2 + b3q)c3 + ...,

and the incoming leg is reconstructed as a muon of the
opposite charge, c → −c and q → −q, which is also time-
reversed, t → −t ,

cin = a0 + (1 + a1 − b1q)(−c) + (a2 − [b2 − ε]q)(−c)2

+ (a3 + ε2 − b3q)(−c)3 + ...

= a0 + (−1 − a1 + b1q)c + (a2 − b2q + εq)c2

+ (−a3 − ε2 + b3q)c3 + ....

Therefore,

�+
c = 1

2 (cout + cin ) = a0 + b1qc

+ (a2 + εq)c2 + b3qc3 + ... (2)

and

�−
c = 1

2 (cout − cin ) = (1 + a1)c + b2qc2

+ (a3 + ε2)c3 + .... (3)

For the right-hand side of these equations, the true value
of c is well-represented by the measurement of the “dicosmic
helix,” which is described in Refs. [21,23]. The dicosmic helix
fit is performed on the combined set of COT hits associated
with the incoming and outgoing legs together (Fig. 1). The
direction of the momentum of the cosmic-ray muon is taken
into account in this fit (and in the separate fits to the incoming

and outgoing legs for the measurement of cin and cout, respec-
tively) by adjusting each drift chamber hit coordinate for the
appropriate time-of-flight delay [23]. The same time-of-flight
delay is included in the helix fit to all outgoing drift-chamber
tracks of particles emanating from beam-beam collisions that
are used for physics analysis.

The curvature measurement cd from the dicosmic helix fit
is more precise than the measurements of cin and cout by a
factor of 8

√
2, due to the track length increase from 96 cm

to 274 cm and the doubling of the number of hits. Hence, the
dicosmic helix measurement provides a good proxy for the
true c. The corollary is that sgn(cd ) is a good proxy for q as
long as we avoid sensitivity to resolution-induced bias. The
resolution of cin and cout is measured to be 1.3 TeV−1 [21],
therefore the resolution of cd is expected to be 110 PeV−1.

The cosmic-ray data presented here are identical to the data
presented in Ref. [21]. The track impact parameter (d0) with
respect to the beam axis is distributed such that |d0| < 3 cm
and the z coordinate of the tracks’ point of closest approach to
the beam axis (z0) is required to be within 60 cm of the beam-
beam collision point. These conditions ensure that the cosmic-
ray tracks have similar trajectories as the particles selected for
the mW measurement [2].

A. Constraints from �+
c

The measurement of �+
c as a function of cd is shown in

Fig. 2. The five-parameter fit of Eq. (2) to the data is super-
posed, along with the fitted values of the parameters. Since
these data are post-alignment [21], it is expected that the fitted
value of a0 is statistically consistent with zero. The remaining
parameters provide new information about the COT response.
As shown in Appendix E 1, this analysis is expected to provide
accurate measurements of the coefficients in Eq. (2).

The fit to these cosmic-ray data finds a value for the energy
loss ε = (9.71 ± 0.65stat ) MeV. This measurement is consis-
tent with the value4 quoted in Sec. V B3 of Ref. [3], “Each
muon passing through the silicon and COT detectors loses on
average 9 MeV at normal incidence.” As the ε term is the only
term odd in q in Eq. (2), ε is minimally correlated with the
other parameters; the largest correlation coefficient between ε

and any other parameter is 8%.
Since the alignment procedure [21] brings a0 close to zero,

it is a redundant parameter in the fit shown in Fig. 2 (left). The
fit is repeated after constraining a0 = 0 to obtain the appropri-
ate constraints on the parameters b1, a2 and b3. As shown in
Fig. 2 (right), the latter are found to be statistically consistent
with zero, implying the absence of these imperfections in the
COT within the respective precisions. The uncertainties on
these parameters will be used to bound the corresponding
uncertainties in the mW measurement in Sec. IV. In this fit,
a2 is strongly anticorrelated with b1 and b3, with correlation
coefficients of −97% and −98%, respectively.

4The first-principles value of ε is obtained in Refs. [2,3] by ab
initio calculation of the energy loss, based on published formulas
and a fine-grained three-dimensional lookup table of the amount of
ionizing material used during construction of the silicon tracker and
the COT.
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FIG. 2. The measurement of �+
c as a function of cd, the measured curvature of the COT dicosmic helix, in cosmic-ray data collected in situ

during collider operation. The requirement |z0| < 60 cm ensures that the cosmic-ray tracks have similar trajectories as the particles selected
for physics analysis. Also shown are the fits to Eq. (2) and the values and statistical uncertainties of the fitted parameters (left) a0 (in PeV−1),
b1 (in ‰), a2 and ε (both in MeV), and b3 (in GeV2), and (right) b1, a2 and ε, and b3. The error bars indicate the statistical uncertainties on the
data points. The horizontal arrows indicate the range of q/pT of the leptons originating from W ± → �±ν and Z → �+�− decays that are used
in the mW analysis [2].

B. Comment on �−
c

The measurement of �−
c as a function of c, if the true c

were known, would provide information on the coefficients in
Eq. (3). However, if cd is used as a proxy for c, then no infor-
mation can be extracted from �−

c , as shown in Appendix E 2.

III. CONSTRAINT FROM POSITRON-ELECTRON
DIFFERENCE OF 〈E/p〉

The calorimeter measurement of the energy E of electrons
and positrons is combined with the polar-angle measurement
of the track to obtain their transverse energy ET . For electrons
and positrons of the same momentum incident at the same
location of the calorimeter, their electromagnetic shower ener-
gies are identical within (1 MeV)/E ∼ (1 MeV)/(40 GeV) �
30 ppm, where 40 GeV is the relevant ET for W and Z boson
decays and 1 MeV is the additional energy released from the
positron annihilation. Hence, the difference of 〈ET /pT 〉 be-
tween positrons and electrons is used to constrain the tracker
bias in the measurement of pT .

Using the calibrated measurement of ET as a proxy for q/c,
we write this difference as

�pe ≡ 1

2

[〈
ET

pT
(e+)

〉
−

〈
ET

pT
(e−)

〉]
= 1

2

qq

〈
ET

pT

〉

= 1

2

q

q

c
cmeasured = 1

2

q

q

c
(c + δc)

= 1

2

qq

δc

c
= 1

2

q

q

c
[a0 + (a1 + b1q)c + (a2 + b′

2q)c2

+ (a3 + ε2 + b3q)c3]

= 1

2

q

[
a0

q

c
+ (a1q + b1) + (a2q + b′

2)c

+ (a3q + ε2q + b3)c2

]

= a0〈pT 〉 + b1 + a2
〈
p−1

T

〉 + b3
〈
p−2

T

〉
(4)

since a1
qq, b′
2
qc and 
q(a3 + ε2)qc2 vanish by charge

symmetry. The combination of the two coefficients b′
2 ≡ b2 +

ε is motivated in Sec. IV A.
In the mW analysis [2], tracks are calibrated to eliminate

this difference so that �pe = 0 ± 43 ppm. The statistical un-
certainty on �pe is the same5 as the statistical uncertainty on
the fit to the inclusive ET /pT distribution shown in Ref. [2].
The bias on �pe due to the positron annihilation energy of
� 15 ppm is negligible compared to the statistical uncertainty.

As this method calibrates a quantity linear in δc, there is no
need to consider higher powers of δc.

A. Bremsstrahlung

While muons experience ionization energy loss as they
traverse the inner silicon vertex detector, electrons/positrons
also undergo energy loss due to bremsstrahlung photon ra-
diation. The radiated photons are almost always coalesced
with the calorimeter shower produced by the primary e±.
In these radiative cases, ET (pT ) measures the primary e±
before (after) the bremsstrahlung emission and the spectrum
of ET /pT has a high-side radiative tail (e.g., Fig. 2(B) of
Ref. [2]). Nonradiative e± candidates are selected for the �pe

measurement by requiring 0.9 < ET /pT < 1.1 [2,24]. The
interval isolates the resolution-broadened peak of ET /pT near
unity. The soft bremsstrahlung within this interval acts as a
percent-level scale factor on �pe which is irrelevant when the
alignment brings �pe to zero.

IV. BIAS IN INVARIANT-MASS FITS

The reconstruction of the invariant mass m of a neutral
particle from its two-body decay into massless particles can

5Taking the difference between two half-samples increases the sta-
tistical uncertainty by a factor of

√
2 × √

2 which is canceled by the
factor of 1

2 in the definition of �pe.
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be written as follows:

m2 = (p1 + p2)2 = 2p1.p2 = 2E1E2(1 − cos γ )

= 2pT 1 pT 2(1 − cos γ )/(sin θ1 sin θ2),

where γ is the opening angle between the 3-vectors of the
daughters and θ1,2 are their respective polar angles. Since the
uncertainty on the angle measurements has a negligible contri-
bution to the mass uncertainty in comparison to the curvature
uncertainty,6

m2 ∝ 2pT 1 pT 2 = 2
q1

c1

q2

c2
= −2

c1c2
.

A. First-order effects on mass reconstruction

The bias in the measured mass, δm caused by the COT
biases is

mδm|1st ∝ 1

c2

δc1

c2
1

+ 1

c1

δc2

c2
2

at first order and the corresponding fractional mass bias is

δm

m

∣∣∣∣
1st

=
(

1

c2

δc1

c2
1

+ 1

c1

δc2

c2
2

)
/m2 =

(
1

c2

δc1

c2
1

+ 1

c1

δc2

c2
2

)
c1c2

−2

= −1

2

(
δc1

c1
+ δc2

c2

)
.

Using the response model of Eq. (1), the fractional mass
bias can be expressed in terms of the a, b, and ε coefficients.
The first bias term is −a0〈c−1〉 = −a0〈q · pT 〉 which averages
to zero since the decay is charge-symmetric. Therefore, a0 can
only induce a mass bias at quadratic order, and by dimen-
sional analysis the fractional mass bias must be proportional
to (a0 pT )2, as shown in Sec. IV B.

The next terms causing a fractional mass bias are 1
2
q(a1 +

b1q). The b1 term cancels between the two opposite charges
and is not observable in the invariant mass. The a1 term is the
momentum calibration correction and therefore the fractional
mass bias is proportional to a1. Thus, a1 = 0 after the precise
calibration based on the J/ψ → μμ and ϒ → μμ mass fits
and the corresponding uncertainty has been incorporated in
the mW analysis [2].

The next two terms causing a mass bias are 1
2
q(a2 +

[b2 + tε]q)c. Again by the charge symmetry of the decay,
a2
qc = 0 so a2 is not visible in an inclusive mass fit.7

6The uncertainty due to the polar angle is 4 ppm, 8 ppm, and
11 ppm, respectively, for the J/ψ , ϒ , and Z boson mass measure-
ment [2]. These uncertainties have minimal impact given the total
uncertainties of 29 ppm, 36 ppm, and 70 ppm on the respective
momentum calibrations derived from these data [2]. The azimuthal
angle is measured 5 × (30×) more accurately than the polar angle
[21] without (with) the beam constraint, and does not contribute an
uncertainty on the mass measurements.

7The a2 term should be visible as the slope in a plot of δm/m
versus 〈c〉.

As invariant mass fits are performed for outgoing par-
ticles only (emanating from beam-beam collisions), t = 1
in this context (see Sec. I) and we can use the com-
bined b2 + ε = b′

2 for this discussion. The term 1
2 b′

2
qqc =
1
2 b′

2
q p−1
T = b′

2〈p−1
T 〉. Thus, the slope of δm/m versus 〈p−1

T 〉
measures b′

2. The b′
2 coefficient is tuned from the J/ψ → μμ

mass fits in bins of 〈p−1
T 〉 with an uncertainty of 34 keV

in the mW analysis [2]. Thus, we can set b′
2 = 0 after this

calibration. The corresponding uncertainty at the three mass
scales is

(1) at mW and mZ , pT ∼ 40 GeV: (34 keV)/(40 GeV) ∼1
ppm,

(2) at mϒ , pT ∼ 5 GeV: (34 keV)/(5 GeV) ∼7 ppm,
(3) at mJ/ψ , pT ∼ 3.3 GeV: (34 keV)/(3.3 GeV) ∼10

ppm.
This uncertainty on mW,Z is negligible and the uncertainty

on mϒ and mJ/ψ is included in the mW analysis [2].
The next two terms causing a mass bias are 
q([a3 +

ε2] + b3q)c2. Again by the charge symmetry of the decay,
b3
qqc2 = 0 so b3 is not visible in an inclusive mass fit.
Therefore, the surviving term is [a3 + ε2]〈c2〉. The order of
magnitude of the ε2 term at the three relevant mass scales is

(1) at mW and mZ , pT ∼ 40 GeV: ε2〈c2〉 ∼
[(9 MeV)/(40 GeV)]2 ∼ 0.1 ppm,

(2) at mϒ , pT ∼ 5 GeV: ε2〈c2〉 ∼ [(9 MeV)/(5 GeV)]2 ∼
3 ppm,

(3) at mJ/ψ , pT ∼ 3.3 GeV: ε2〈c2〉 ∼
[(9 MeV)/(3.3 GeV)]2 ∼ 7 ppm.

Not only are these energy-loss effects small at quadratic
order, they are already accounted for in the simulated line-
shape templates used for these mass fits [2], with vanishing
uncertainty.

In principle, the J/ψ → μμ data can be used to measure
a3 by fitting for a quadratic dependence of δm/m versus 〈p−1

T 〉.
In practice, the linear fit to these data using a1 and b′

2 as free
parameters is found to be consistent with the data within their
uncertainties [2]. By the Akaike information criterion (AIC)
[20], this implies that the inclusion of a3 as a fit parameter
would find a statistically insignificant value, and that the a3

uncertainty is already accounted for when the uncertainties
on a1 and b′

2 are propagated to low p−1
T . This procedure is

conservative because the effect of a3 vanishes more rapidly as
p−1

T → 0 than the effect of b′
2; therefore, absorbing the uncer-

tainty due to a3 into the uncertainty due to b′
2 overestimates

the propagated mW uncertainty.
An independent upper bound on the uncertainty due to a3

is obtained by comparing the J/ψ → μμ and ϒ → μμ data,
as discussed below.

We conclude that a mass measurement is biased at first
order by the parameters a1, b′

2 and a3, while the remaining pa-
rameters a0, b1, a2, and b3 do not introduce a first-order bias.
The uncertainties due to a1, b′

2, and a3 are already accounted
for in the mW analysis [2].

B. Second-order effects on mass reconstruction

We evaluate the mass bias induced at second order by
the curvature response function. Considering the second-order
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derivatives,

mδm|2nd ∝ −2
1

c2

(δc1)2

c3
1

− 2
1

c1

(δc2)2

c3
2

− 2
δc1

c2
1

δc2

c2
2

,

δm

m

∣∣∣∣
2nd

= c1c2

(
1

c2

(δc1)2

c3
1

+ 1

c1

(δc2)2

c3
2

+ δc1

c2
1

δc2

c2
2

)

=
(

δc1

c1

)2

+
(

δc2

c2

)2

+ δc1

c1

δc2

c2

=
(

δc1

c1
+ δc2

c2

)2

− δc1

c1

δc2

c2

=
(

2
δm

m
|1st

)2

− �q(A + qB),

where

A ≡ a1 + b′
2|c| + a3c2 = a1 + b′

2/pT + a3/p2
T (5)

contains the terms of the response function that induce a first-
order bias and

B ≡ q(a0/c + b1q + a2c + b3qc2)

= a0 pT + b1 + a2/pT + b3/p2
T (6)

contains the terms that do not induce a first-order bias. Note
that A and B are symmetric in charge, and δc/c ≡ A + qB.

In Sec. IV A it was shown that the first-order fractional
mass bias was equal to A. Thus, at second order,

δm

m

∣∣∣∣
2nd

= (2A)2 − (A + B)(A − B) = B2 + 3A2 ≈ B2

= �q
(
a0 pT + b1 + a2 p−1

T + b3 p−2
T

)
,

where the product is over the two (oppositely charged) daugh-
ter particles. The square of the first-order bias A2 < (10−4)2

is negligible; therefore, the second-order fractional mass bias
is approximated by B2.

1. Second-order effects at the mW,Z scale

Figure 2 provides the following estimates of the uncertain-
ties due to each of the terms in the second-order fractional
mass bias, at a typical pT ∼ 40 GeV, using the expression
for B2:

(1) a0 term: (11 PeV−1 · 40 GeV)2 ∼ (440 ppm)2 ∼ 0.2
ppm,

(2) b1 term: (0.5 ‰)2 ∼ 0.3 ppm,
(3) a2 term: ( 14 MeV

40 GeV )2 ∼ 0.2 ppm,
(4) b3 term: [(0.09 GeV2)(40 GeV)−2]2 ∼ (60 ppm)2 ∼ 3

ppb (parts per billion).
These estimates show that, even ignoring the large anticor-

relation between these coefficients as inferred from the fits in
Fig. 2, the second-order bias in W and Z boson mass fits is
expected to be negligible.

In the next two sections the effect of the large anticorre-
lation between these coefficients is estimated by removing
redundant parameters in the fit to the cosmic-ray data (Fig. 2).
We will find that the uncertainty on a2 reduces by a factor of

5, thereby reducing its second-order effect at the mW,Z scale
by a factor of 25 to 8 ppb. Thus, only a0 and b1 are relevant
for estimating the second-order effects at the mW,Z scale. This
is expected since a0 and b1 are low-curvature terms while a2

and b3 are high-curvature terms.
For the same reason, the observables obtained from the

W → �ν data, �pe (see Sec. III) and �∓
W (to be introduced

in Sec. V A) constrain a0 and b1 but not a2 and b3.

2. Second-order effects at the mϒ scale

Since b1 is dimensionless, the insignificant second-order
bias induced by this parameter is independent of curvature
and the mass being reconstructed. Hence, it is a negligible
parameter and can be removed from the response model.
Similarly, as the energy loss ε is measured precisely from
the J/ψ → μμ data and incorporated in the b′

2 parameter, we
can correct the cosmic-ray measurements for its known value
(which is consistent with the fitted value in Fig. 2) and remove
it as a free parameter.

The elimination of redundant parameters is equivalent to
propagating the covariance matrix (including correlation co-
efficients that approach −1 for redundant parameters) on the
original, complete set of parameters. In practice, redundant
parameters lead to numerical instabilities; hence the removal
of redundant parameters yields robust estimates.

With only a2 and b3 as free parameters, the fit to �+
c as a

function of cd provides more information on these parameters,
as shown in Fig. 3. The χ2/dof is improved relative to Fig. 2,
confirming that a0, b1 and ε are redundant parameters per the
AIC.

The second-order bias in the ϒ → μμ mass fit, with a
typical pT ∼ 5 GeV, is

(1) a0 term: (11 PeV−1 × 5 GeV)2 ∼ (55 ppm)2 ∼ 3 ppb,
(2) b1 term: (0.5 ‰)2 ∼ 0.3 ppm,
(3) a2 term: ( 3 MeV

5 GeV )2 ∼ 0.4 ppm,
(4) b3 term: [(0.036 GeV2)(5 GeV)−2]2 ∼ (1.4 ‰)2 ∼ 2

ppm.
Note that the correlation coefficient between the fitted

values of a2 and b3 in Fig. 3 (left) is −97%, which means
their combined bias is limited to 1.6 ppm. The uncertainties
due to a0, b1 and a2 are negligible compared to the total
quoted uncertainty on the momentum calibration of 25 ppm
[2], even without including their large anti-correlation, further
justifying their elimination from the fit of Fig. 3.

Since the largest effect is due to b3, the fit to �+
c as a

function of cd with only b3 as the free parameter is shown
in Fig. 3 (right). A small bias b3 = (0.023 ± 0.008) GeV2 is
discernible, corresponding to negligible bias of 1 ppm on the
ϒ → μμ mass fit.

3. Second-order effects at the mJ/ψ scale

A similar analysis for the typical pT ∼ 3.3 GeV in the
J/ψ → μμ data sample shows the following second-order
mass bias:

(1) a0 term: (11 PeV−1 × 3.3 GeV)2 ∼ (37 ppm)2 ∼ 1
ppb,

(2) b1 term: (0.5 ‰)2 ∼ 0.3 ppm,
(3) a2 term: ( 3 MeV

3.3 GeV )2 ∼ 0.8 ppm,
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FIG. 3. The measurement of �+
c as a function of cd, the measured curvature of the COT dicosmic helix, in cosmic-ray data collected in situ

during collider operation. The requirement |z0| < 60 cm ensures that the cosmic-ray tracks have similar trajectories as the particles selected
for physics analysis. The data have been corrected for the known energy loss ε. Also shown are the fits to Eq. (2) and the values and statistical
uncertainties of the fitted parameters (left) a2 (in MeV), and b3 (in GeV2), and (right) b3. The error bars indicate the statistical uncertainties on
the data points. The horizontal arrows indicate the range of q/pT of the leptons originating from W ± → �±ν and Z → �+�− decays that are
used in the mW analysis [2].

(4) b3 term: [(0.023 GeV2)(3.3 GeV)−2]2 ∼ (2.1 ‰)2 ∼
5 ppm.

Thus, the cosmic-ray data constrain the possible bias in the
J/ψ → μμ data due to the b3 term to 5 ppm which is much
smaller than the systematic uncertainty of 25 ppm quoted for
the momentum calibration uncertainty from these data [2].

We conclude that the constraints on the “B” parameters of
Eq. (6) from cosmic-ray data result in negligible uncertainty
at all mass scales.

C. Additional bounds on a3 and b3 from J/ψ and ϒ data

The cosmic-ray data have a curvature range 0 < |c| GeV <

0.1 which limits the precision on the b3 parameter whose
effects are only visible at high curvature. The J/ψ → μμ and
ϒ → μμ data extend the curvature range to 0.2 < |c| GeV <

0.45 and provide additional bounds on the a3 and b3

parameters.

1. Bound on a3

The comparison of the mass fits to the ϒ → μμ and
J/ψ → μμ data yields the following information. The frac-
tional bias on mϒ (mJ/ψ ) due to a3 is 5−2a3 (3.3−2a3).
The difference between the momentum calibrations extracted
from these data is 20 ppm, consistent with the uncertainty
on this difference [2]. This implies that a3(3.3−2–5−2) � 20
ppm, which bounds the uncertainty in extrapolating to mW to
a3(5−2–40−2) to 15 ppm.

As the impact of a3 grows with curvature, the range
of |c| spanned by the J/ψ → μμ data yields additional
information. The momentum calibration in the bins of
largest |c| ∼ 0.43 GeV−1 differs from the momentum cal-
ibration derived from the remainder of the bins (whose
typical |c| ∼ 0.3 GeV−1) by 20 ppm [2]. This implies that
a3(0.432–0.32) � 20 ppm, which bounds the uncertainty in

extrapolating to mW to a3(0.32–40−2) to 19 ppm. Note that
this small deviation observed in the largest |c| bins is the
source of the largest systematic uncertainty quoted in the
momentum calibration from the J/ψ → μμ data in the CDF
mW analysis [2].

These two constraints together bound any effect of a3 to
12 ppm. From the data presented in Ref. [2] (Fig. 2), one
notes that an attempt to extract a3 from each of the above
comparisons would yield two values of opposite sign. Thus,
the combined value of a3 would be much smaller than its
estimated uncertainty of 12 ppm.

We conclude that, while the J/ψ → μμ data and the ϒ →
μμ data together suggest a vanishing value of a3, the rather
tight bound on it is already included as an uncertainty on the
momentum calibration in Ref. [2].

2. Bound on b3

The comparison of the mass fits to the ϒ → μμ

and J/ψ → μμ data can also yield information on b3.
The fractional bias on mϒ (mJ/ψ ) due to b3 is 5−4b2

3
(3.3−4b2

3). The consistency of these calibrations implies that
b2

3(3.3−4–5−4) � 20 ppm, which bounds the uncertainty in
extrapolating to mW to b2

3(5−4–40−4) to 5 ppm.
As the impact of b3 grows rapidly with curvature, the range

of |c| spanned by the J/ψ → μμ data yields additional infor-
mation on b3. As mentioned above, the momentum calibration
in the bins of largest |c| ∼ 0.43 GeV−1 differs from the mo-
mentum calibration derived from the remainder of the bins
(whose typical |c| ∼ 0.3 GeV−1) by 20 ppm [2]. This implies
that b2

3(0.434–0.34) � 20 ppm, which bounds the uncertainty
in extrapolating to mW to b2

3(0.34–40−4) to 6 ppm.
As with the bounds on a3, the J/ψ and ϒ data shown

in Ref. [2] exert pulls on b3 in opposite directions; their
average yields a vanishing value of b3, with a negligible uncer-
tainty of 4 ppm. When combined with the constraint from the
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cosmic-ray data of 5 ppm, the uncertainty due to b3 reduces
further to 3 ppm.

3. Summary of a3 and b3

The quoted uncertainty of 25 ppm on mW ascribed to the
momentum calibration includes the potential uncertainty of
12 ppm from a3, and the uncertainty due to b3 is negligible.

V. APPLICATION TO THE mW MEASUREMENT

In the pp̄ collisions at the Tevatron, the beams of equal
energy produce W + and W − bosons with identical momentum
distributions except for a longitudinally antisymmetric com-
ponent due to the CP-invariant initial state. The antisymmetric
component of �pe is discussed and incorporated into the mW

analysis [2]. Taking advantage of the ensuing symmetries in
the charged lepton distributions, as well as the longitudinal
and azimuthal symmetry in the construction of the COT, we
exploit the identity of the response function for both charges.

A. First-order bias in mW

The W boson mass is extracted from a fit to the pT distribu-
tion of the charged lepton, or to the distribution of transverse
mass or pν

T . The latter depend also on the calibration of the
hadronic recoil vector, which is calibrated using the tracker
as reference. Thus, we can consider mW ∝ pT ∝ q/c and the
first-order fractional bias in the W boson mass is

−δmW

mW
= q

δc

c2

c

q
= δc

c
= a0

c
+ (a1 + b1q) + (a2 + b′

2q)c

+ (a3 + b3q)c2,

where the ε2 term is accounted for in the mW measurement
with vanishing uncertainty and therefore dropped.

Consider the half-difference of δmW
mW

between W − and W +
bosons,

�∓
W ≡ −1

2

qq

δmW

mW

= 1

2

qq

[
a0

c
+(a1 + b1q)+(a2 + b′

2q)c +(a3 + b3q)c2

]

= 1

2

q

[
a0 pT + b1 + a2 p−1

T + b3 p−2
T

]
= a0 pT + b1 + a2 p−1

T + b3 p−2
T = B, (7)

since a1
qq, b′
2
qc and a3
qqc2 vanish by charge symmetry.

This expression is identical to �pe shown in Sec. III. As the
median pT and the Jacobian edge of the pT distribution are
similar within a few GeV, �∓

W is calibrated away by the con-
straint from �pe, the positron-electron difference of 〈E/p〉.
As expected, the charge-antisymmetric terms in B [Eq. (6)]
provide the causal explanation for the �∓

W observable.
We consider the average of δmW

mW
for W + and W − bosons,

which reflects a first-order bias in mW ,

1

2

q

δmW

mW
= 1

2

q

[
a0

c
+ (a1 + b1q) + (a2 + b′

2q)c

+ (a3 + b3q)c2

]
= a1 + b′

2 p−1
T + a3 p−2

T = A,

because a0〈c−1〉, b1
qq, a2〈c〉 and b3〈qc2〉 vanish by charge
symmetry. As expected, the charge-symmetric terms in A
[Eq. (5)] induce an mW bias.

As mentioned in Sec. IV, b′
2 is constrained to within

34 keV, hence its contribution to a first-order bias in mW

is negligible (b′
2〈p−1

T 〉 ∼ 34 keV
35 GeV ∼ 1 ppm). The momentum

scale parameter a1 has been calibrated to 25 ppm [2], which
includes a potential uncertainty due to a3 of 12 ppm. We con-
clude that the analytic curvature response function, expanded
up to c3 terms, is sufficiently well-constrained to prevent sig-
nificant first-order bias in mW .

B. Second-order bias in mW

Extending the derivative to second order,

δmW

mW
= q

(δc)2

c3

c

q
=

(
δc

c

)2

,

which after calibration (i.e., dropping the a1, b′
2 and ε2 terms)

simplifies to

δmW

mW
= (a0c−1 + b1q + a2c + a3c2 + b3qc2)2

= (
a0 pT + b1 + a2 p−1

T + b3 p−2
T + a3qp−2

T

)2

= (
�∓

W + a3qp−2
T

)2

= (�∓
W )2 + (

a3 p−2
T

)2 + 2q(�∓
W )

(
a3 p−2

T

)
.

The quantity �∓
W = (mW − − mW + )/mW is measured to be

consistent with zero within a statistical precision of 0.2‰

[2]; therefore, the first term is 0.04 ppm based on this mea-
surement. If �pe is used instead of �∓

W , then the constraint
has a statistical precision of (43 ppm)2 = 0.002 ppm which
is tighter by another order of magnitude. As mentioned in
Sec. IV B 1, the constraints from �∓

W and �pe apply mostly
to the low-curvature parameters a0 and b1; this is reflected in
Table I.

The term a3 p−2
T is constrained to 12 ppm from the J/ψ and

ϒ data; hence, the square of this term is vanishing.
The third (product) term is charge-dependent, of O(2 ×

0.2‰ × 34 ppm) ∼ 0.01 ppm or smaller, which is vanishing.
We conclude that the second-order bias on mW can be

estimated from the constraints on the parameters in the COT
response function, from the measurement of �∓

W , and from the
calibration based on �pe. All estimates are vanishingly small.

C. Summary of analytic curvature response function

The parameters of the analytic curvature response function
[Eq. (1)] propagate to the momentum calibration uncertainty
on mW at first or second order. Based on cosmic-ray data
and the published J/ψ and ϒ data [2], all uncertainties are
either already included in the mW analysis [2] or found to be
negligible.

As mentioned earlier, the CDF procedure to calibrate track
pT is based on mass measurements of the J/ψ and ϒ mesons
in the dimuon channel [2,3,24]. These data samples are
binned in the mean |c| of the two muons and mass fits are
performed in each bin separately. An inclusive mass fit is
also performed for the ϒ sample. The mass fits are based on
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TABLE I. The constraints obtained from independent datasets on the an and bn parameters of the curvature response model [Eq. (1) and
Sec. VI B 3]. The constraints are presented in terms of the corresponding uncertainty (in ppm) on the W boson mass. Note that b′

2 ≡ b2 + ε

where ε is the energy loss incurred by a muon as it traverses the tracker. The half-difference of 〈E/p〉 between positrons and electrons in
W → eν decays is denoted by �pe as shown in Eq. (4). The fractional half-difference in mW between positive and negative leptons is denoted
by �∓

W as shown in Eq. (7). The numbers in parentheses refer to the section of this document where the corresponding details are provided. The
I entries indicate parameters that are invisible to the corresponding observables. The N entries indicate parameters that are not constrained by
the corresponding observables. Note that the constraint on a1 from the J/ψ → μμ and ϒ → μμ data already takes into account the effects of
the b′

2, a3, and b3 parameters in the quoted 25 ppm uncertainty [2].

Dataset a0 b0 a1 b1 a2 b′
2 a3 b3

Cosmic 0.2 0.005 I 0.3 0.008 I I 0.003
rays (IV B 1) (VI C) (II B) (IV B 1) (IV B 1) (II B) (II B) (IV B 1)
J/ψ, ϒ N N 25 N N 1 12 4
→ μμ (IV A) (IV A) (I) (IV A) (IV A) (IV A) (IV C 1) (IV C 2)
�∓

W 0.04 I I 0.04 N I I N
(W → �ν ) (V B) (V A) (V A) (V B) (V B) (V A) (V A) (V B)
�pe 0.002 I I 0.002 N I I N
(W → eν ) (V B) (III) (III) (V B) (V B) (III) (III) (V B)

likelihood maximization using simulated templates for the
signal line-shapes. The background shapes are modeled and
their normalizations are constrained using the sidebands
of each mass peak in the data. The simulation models
meson/boson production and decay and the propagation of
muons (and electrons) through the detector, including energy
loss and resolution effects. The mass bias δm is defined as
the difference of the measured meson mass from the world-
average reference (particle data group) value.

We have shown that the fractional mass bias δm/m as a
function of |c| is parameterized in general by the A terms
[Eq. (5)] at first order, and by B2 [Eq. (6)] at second order. We
have also shown that B2 is strongly constrained to be zero by
both the cosmic-ray analysis and by �pe, the positron-electron
difference of E/p [Eq. (4)]. Since they contribute negligibly,
the B2 terms can be dropped in subsequent analysis and only
the A terms need to be extracted. Furthermore, since the a3

term in A is redundant within the quoted uncertainties on a1

and b′
2, it is appropriate to let a3 = 0 and extract a1 and b′

2
from a linear fit to δm/m versus |c|, as shown in Fig. 2(A)
of Ref. [2], Fig. 13 of Ref. [24], and Fig. 22 of Ref. [3]. In
practice, the energy loss ε is tuned in the simulation by a few
% of its ab initio value such that the linear fit returns b′

2 = 0.
Therefore, these figures in the respective publications display
the value of a1 corresponding to the as-built detector and track
reconstruction software, i.e., prior to final calibration of track
pT at the analysis level.

We note that the four points from J/ψ → μμ data at small
|c| in Fig. 2(A) of Ref. [2], if combined, would deviate from
the model by 2σ . The large number of points that are con-
sistent with the model, together with the stringent constraints
on the model from multiple independent control samples of
data, preclude nonlinear models. In order for these points to
be indicative of a systematic effect, the model must include
the B2 term of the form (a0 pT )2 = (a0/c)2. We have shown
that this term has been eliminated by the high-quality align-
ment, both internal and external, of the COT, and by the �pe

constraint. Furthermore, this term has negligible impact in the
range of |c| where the J/ψ and ϒ data constrain a1. Hence,
the extraction of a1 from the J/ψ and ϒ data using the linear

fit to δm/m versus |c| is robust. There is no justification for a
nonlinear fit, given the preponderance of evidence against it,
merely to accommodate a fluctuation.

These procedures lead to the inference that δm/m = a1 for
all resonances. CDF developed these procedures to constrain
a1 from the J/ψ and ϒ data and apply it to calibrate the pT

of tracks from W and Z boson decays at the analysis level.
The uncertainties due to b′

2 and a3 have been included in
the quoted uncertainty on a1, and we have shown that all
other terms in the curvature response function [Eq. (1)] are
negligible. Thus, the most general analytic response function
is completely pinned down.

VI. SINGULAR CURVATURE RESPONSE FUNCTIONS

Equation (1) shows the analytic response function for cur-
vature as a Maclaurin expansion, appropriate for the W ±, Z ,
ϒ , and J/ψ samples which have symmetric c distributions
about c = 0 at the Tevatron.8 Since tracking detectors measure
curvature, the coefficients of the response function relate to
the geometry and the physics principles on which the hit
measurements are based.

A. Terms with negative exponents

One may consider extending the response function from
an analytic Maclaurin series to a nonanalytic Laurent series
by adding terms of the form c−|n| for integer values of n. Such
terms must be forbidden on physical grounds; as c → 0 they
imply δc → ∞ which means that the particle’s straight-line
trajectory becomes indeterminate. Equivalently, such terms
are inconsistent with the simple fact that if the axial mag-
netic field were ramped down to zero magnitude, Bz → 0±,
all trajectories tend to straight lines which can easily be re-
constructed by the drift chamber with no loss of directional
information.

8The leptons from W boson decays do not have symmetric c distri-
butions at the LHC.
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FIG. 4. End view of a section of the CDF COT end plate. The sense wires are organized into eight concentric “superlayers.” Each superlayer
is partitioned azimuthally into cells, and each cell contains 12 sense wires separated from adjacent cells by field sheets. Precision-machined
slots in the end plates hold each cell’s sense wires and field sheets under tension. The radius at the center of each superlayer is shown in cm.
Figure reproduced with permission from Fig. 2 of Ref. [1].

Figure 4 shows the physical construction of the COT [1].
It is a single, cylindrical gaseous volume in which sense wires
and field sheets are embedded. The only way for a particle
trajectory to be indeterminate is if the particle were to traverse
an uninstrumented region of the tracking volume. As c → 0
the particle trajectories approach a straight line in the radial
direction. All sense-wire and field-sheet planes are tilted (at
35o) with respect to the radial direction in an azimuthally
symmetric manner [1]. With this construction, there is no dead
space that the particle can traverse; the entire volume is active.
There are no azimuthal boundaries through which a particle
may pass without ionizing gas adjacent to every sense wire.
Hence, every radial straight line is detectable as such.

1. COT performance studies with cosmic rays

As described in Sec. II, the cosmic-ray sample is collected
in situ with collider data using the high-pT inclusive muon
trigger that also acquires the W → μν and Z → μμ data. The
sample can therefore be used to study the COT performance
under the same operating conditions as the physics signals.

The fraction of the maximum possible number of COT
hits contributing to cosmic-ray tracks is shown in Fig. 5.
As the track tends to a straight line, the fraction of hits as-
sociated with the track increases slightly, by 1‰, because
pattern recognition becomes easier as the curvature reduces.
Importantly, there is no indication of a loss of performance or
efficiency in the c → 0± limit.

The typical alignment accuracy of the wires is 1 µm [2,21].
Even if we make the extremely conservative assumption that
the change in efficiency is due to one particular wire which
induces a curvature bias of O(1 µm/l2), where l ∼ 1 m
is the length of the track, this bias would amount to 0.2

ppm at mW,Z (see Appendix F for the calculation). Further-
more, as a (signed) curvature bias, it cancels at first order in
sign-averaged mass measurements and would be vanishing at
second order. To induce a first-order bias, there would need
to be a difference in this inefficiency variation between posi-
tive and negative particles. As seen in Fig. 5, the difference
between positive and negative tracks is much smaller than
1‰. We conclude that the high degree of stability of the
hit efficiency (pattern recognition) with respect to curvature,
together with the accurate alignment, supports the ansatz that
the COT has no discernible discontinuity in the c → 0± limit.

Another performance metric is the fraction of superlayers
that contribute to the track (see Fig. 5), where a superlayer is
counted if it contributes at least 5 of the maximum 12 hits.
This criterion is the one used in the mW analysis for candidate
track selection [2]. The superlayer fraction is ε = 999.5‰,
independent of curvature as c → 0± and reduces by �ε =
0.2‰ for pT values below the selection criterion used for W
and Z boson samples [2]. This metric is the most relevant for
the curvature response function and indicates that the COT
performance is independent of curvature in the c → 0 limit.

In Fig. 5 (right), the parameter κ is designed to capture any
charge-dependent superlayer efficiency as c → 0±. We find
that κ is zero within a statistical precision of 0.04‰, strongly
disfavoring any discontinuous behavior.

In Appendix F we also estimate the possible mass bias
induced by the superlayer inefficiency, and arrive at a more
realistic bound of 4 ppb, based on a maximum superlayer
efficiency variation of 0.1‰ in the c → 0± limits.

The stability of the COT performance with respect to time
is demonstrated in Fig. 6. To interpret time stability in the
context of collider data, hit and superlayer efficiencies are
presented in sequential blocks of integrated luminosity. Fig. 6
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FIG. 5. (Left) The fraction of the maximum possible number of COT hits contributing to the cosmic-ray tracks. (Right) The fraction of
the maximum possible number of superlayers contributing to the cosmic-ray tracks, when a superlayer is required to contribute at least 5
(of 12) hits. The fit is intended to guide the eye. The superlayer efficiency is constant at 99.95% at low curvature and lower by 0.02% for
|c−1

th | = pT � 25 GeV when a different trigger is used. The fit function is y = ε + �ε/(1 + e−ξ ) + q
2 κ/(1 + eξ ) where ξ = (|x| − |cth|)/β.

The parameter κ = (0.002 ± 0.004)% describes the difference in superlayer efficiency as c → 0+ versus c → 0−.

shows that the hit efficiency actually increased after 2007,
when 3/4 of the data were collected, and remained remark-
ably stable post-2007, with a worst-case drop of 1.5‰. The
superlayer efficiency is even more stable due to the inherent
redundancy in the requirement of 5-of-12 hits per superlayer.
This inefficiency is consistent with a constant value of 520 ±
30 ppm over the 10-year operation of the COT, proving that
there is little evidence for degradation or radiation damage and
no visible impact on tracking efficiency.

Stability with respect to instantaneous luminosity, i.e.,
occupancy is provided by the COT track reconstruction proce-
dure. After the first pass of pattern recognition, hit association
and track-fitting, a second-pass refit of COT tracks is per-
formed. Prior to this refit, hits whose distance from the track

exceeds a threshold of about 4× the hit resolution are removed
from the track. Next, unused hits whose distance from the
track is less than about 3× the hit resolution are added to
the list of associated hits. The updated hit list is refitted to
obtain the track parameters used for analysis. This “drop-add”
procedure removes spurious hits and rescues hits that were
missed in the first-pass reconstruction due to high occupancy.
Together with the high level of redundancy in the COT tracker
(up to 96 hits per track), the procedure makes COT tracks
robust, stable and insensitive to occupancy.

2. Summary of performance studies and negative-exponent terms

By design, the COT geometry is continuous, without
boundaries, and is sampled uniformly by tracks in the c → 0±
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FIG. 6. (Left) The fraction of the maximum possible number of COT hits contributing to the cosmic-ray tracks. (Right) The fraction of the
maximum possible number of superlayers contributing to the cosmic-ray tracks, when a superlayer is required to contribute at least 5 (of 12)
hits. The fractions are shown in four sequential time periods, with each period delivering a quarter of the total integrated luminosity recorded
by CDF II and used for the mW measurement [2]. The superlayer inefficiency is consistent with a constant value of (520 ± 30) ppm over the
entire 10-year operation of the COT. For these data, the requirement pT > 20 GeV is imposed to be applicable to the W and Z boson data. The
complementary sample with 10 < pT < 20 GeV shows similarly stable efficiencies at slightly lower values, as seen in Fig. 5.
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FIG. 7. (Left) The measurement of �+
c as a function of cd, the measured curvature of the COT dicosmic helix, in cosmic-ray data collected

in situ during collider operation. The requirement |z0| < 60 cm ensures that the cosmic-ray tracks have similar trajectories as the particles
selected for physics analysis. The data have been corrected for the known energy loss ε, same as in Fig. 3. Also shown is the fit to Eq. (2)
including the ar |c|r term (0 < r < 1), with the values and statistical uncertainties of the fitted parameters ar , r, a0 (in TeV−1), b1 (in ‰), and
b3 (in GeV2). (Right) The same data and fit with ar , r and b3 as the fitted parameters. The error bars indicate the statistical uncertainties on the
data points. The horizontal arrows indicate the range of q/pT of the leptons originating from W → �±ν and Z → �+�− decays that are used
in the mW analysis [2].

limits. This reasoning eliminates terms of the form c−|n| and
by extension, c−|r| for real values of r. Studies of hit efficiency
and superlayer efficiency as a function of curvature support
this reasoning at a more stringent level (by four orders of
magnitude) than the uncertainty of 25 ppm on the momentum
calibration quoted in Ref. [2].

B. Terms with fractional exponents

The Maclaurin series may be extended to a Puiseux se-
ries by including terms with fractional (positive) exponents.
We consider terms with fractional positive powers of c in
the response function. Since c is a signed quantity we must
consider two types of terms, |c|r and q|c|r , where 0 < r < 1.
In principle, such factors may multiply the entire analytic
function of Eq. (1). However, the a0, a1 and ε terms have
obvious physical interpretations and may not be altered.

The degrees of freedom incorporated in Eq. (1) already
span the phase space of the calibration data. By the AIC
we can use the minimal model that adequately describes the
data, and propagate the uncertainties in the model parameters.
Therefore, the additional terms of fractional powers are only
needed to explore the c → 0 limit.

We consider the terms ar |c|r and brq|c|r individually, since
they are even and odd in q, respectively.

1. Charge-independent term with fractional exponent

In Fig. 7 (left) we extend the fit of Fig. 3 to include the
term ar |c|r . The fit finds r = 0 which means that this term
is redundant with a0; a conclusion confirmed by their mutual
correlation coefficient of −97%. Also, the b1 and b3 terms are
anticorrelated with a correlation coefficient of −88%. The a0

and b1 terms are dropped to increase the incisiveness of the fit;
the χ2/dof decreases as shown in Fig. 7 (right). This fit returns
r = 0+0.06

−0 which implies that the data do not differentiate this
term from the a0 term.

In Fig. 8 (left) we illustrate the function |c/0.1|0.06 where
the exponent is chosen to reflect the range compatible with
the fit of Fig. 7 (right). This term is highly nondifferentiable
at c = 0; the slope changes from −∞ at c = 0− to ∞ at
c = 0+. It implies that zero curvature is distinguishable from
vanishing curvature, a conclusion inconsistent with the fact
that all drift distances in the COT change continuously with
c for all relevant values of c. There is no physical model that
generates such a fractional-exponent term.

Also shown in Fig. 8 (left) are two linear functions based
on the a0 and b1 terms from Eq. (1). These linear functions
are intended to guide the eye. One of these lines intersects
|c/0.1|0.06 at |c| = 0.05 GeV−1 and |c| = 0.01 GeV−1, i.e.,
pT = 20 GeV and 100 GeV which flank the range of the
charged leptons from W and Z boson decays. The second
line is tangent to |c/0.1|0.06 at pT = 40 GeV, typical for these
leptons. The similarity of these linear functions to |c/0.1|0.06

indicates that this function can be adequately approximated
by Eq. (1) in the relevant pT range; furthermore, the approxi-
mation improves as the exponent reduces.

We conclude that a charge-independent term with frac-
tional exponent is excluded by the cosmic-ray data. It is also
inconsistent with the known physical properties of the COT.
In any case, the a0, b1, a2, and b3 terms provide a physically
justifiable model that can adequately mimic any such effect in
the relevant range of curvature.

2. Charge-dependent term with fractional exponent

We consider the extremes of the possible range 0 < r <

1 of the exponent in the term brq|c|r . As r → 1 the term
brq|c|r → a1c and hence becomes redundant with the mo-
mentum scale. As r → 0 the derivative of the response
function near c = 0 diverges more rapidly as |c|r−1. This is
illustrated in Fig. 8 (right). We also have limr→0 brq|c|r = b0q
so that the response function develops a discontinuous step
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FIG. 8. (Left) An illustration of the function |c/0.1|0.06 (solid blue curve). (Right) An illustration of the function q|c/0.1|r for r = 0.5
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function at c = 0. The implication is that a nearly straight
track (with indeterminate q) is reconstructed with a false
curvature whose sign depends on q. A physical explanation
for such a response function of the COT is not plausible on
the basis of its geometry and principles of operation, since the
response cannot be insensitive to q and depend strongly on q
at the same time.

3. Effect of singular term on observables

If the term b0q is added to the response function of Eq. (1),
then it cancels in the sum over the two legs of the cosmic
ray and does not show up in �+

c [Eq. (2)]. It is shown in
Appendix E 2 that �−

c cannot constrain this term.
The effect of the b0 term on �pe, the positron-electron

difference of 〈E/p〉 [Eq. (4)], and on �∓
W , the mass difference

between W − and W + bosons [Eq. (7)], is vanishing,

1

2

qq

δc

c
= 1

2

qq

b0q

c
= b0

2

qc−1 = b0

2

qqpT = 0,

by charge symmetry.
The effect of the b0 term on the reconstructed invariant
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q
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2
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Thus, any COT measurement bias that is mimicked by the b0q
term will result in biased mW and mZ measurements because
it will not be calibrated by the J/ψ and ϒ data at lower pT .

4. Study of discontinuous COT response

As mentioned above, the b0q term in the response func-
tion requires an unphysical discontinuity in the response as
c → 0±. Since the entire gaseous volume is instrumented, a
discontinuity would have to be generated by some feature
of the electron drift. The drift cells are build to be almost

mirror-symmetric (the plane of sense wires is half-way be-
tween the parallel planes of field sheets [1]), so the fraction
of hits that involve leftward and rightward drifts are roughly
equal. A small asymmetry between these fractions can be
generated by the 35o supercell9 tilt which compensates for the
Lorentz angle in the magnetic field [1], and by the deflection
of the wires due to the electrostatic forces from the field sheets
[1,21].

Related to the left-right drift asymmetry is the average
displacement of the hits from the sense wires. For exactly left-
right symmetric drift, the average hit distance from the sense
wire would be equal in both directions, thereby canceling in
the average displacement.

Of interest to this study is the dependence of these cell-
level diagnostics on the track curvature. Again, we use the
dicosmic helix to provide the most precise and accurate mea-
surement of the curvature cd of the cosmic-ray muons. The
left-right asymmetry and the average drift displacement for
all cells is shown as a function of cd in Fig. 9. In each case
we fit for four parameters using the following linear function
of |cd| (in GeV−1), y0 + qδ0/2 + 10|cd|(s + qδs/2), with an
explicit dependence on charge included. Thus, δ0 captures any
discontinuity in the c → 0± limits and δs captures any charge-
dependence in the slope as one approaches these limits.

The charge-independent geometrical effects of the COT
geometry are captured by the y0 and s parameters that describe
these pT > 10 GeV data. The drift-direction asymmetry and
the average drift displacement provide consistent descriptions
of the cell drift where the maximum drift distance is 8.8 mm
[1]; multiplying this maximum distance by the directional
asymmetry yields predictions for the average displacement
that are consistent with the observed values of the latter. This
consistency implies that the drift speeds are the same on both
sides of the drift cell.

9A supercell consists of 12 drift cells, with each cell containing one
sense wire.
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FIG. 9. Measurements of drift-cell properties using cosmic-ray data. (Left) The asymmetry between the fraction of hits drifting left versus
right in each drift cell. (Right) The average drift displacement for all hits. (Top) The data are fit with the functional form y0 + qδ0/2 + 10|c|(s +
qδs/2) where c is in GeV−1. (Bottom) The fit is repeated to the same data with the constraint δs = 0.

The δ0 and δs values are consistent with zero and do
not support the hypothesis of a b0q term. Since these pa-
rameters are strongly anticorrelated, the fit is repeated with
the constraint δs = 0, i.e., the slope is taken to be charge-
independent. This improves the χ2/dof and the constraining
power on δ0, the parameter that tests for a discontinuity in the
high-pT limit. We find no discontinuity within a precision of
1.2 µm.

In Appendix F a hypothetical charge-dependent alignment
bias of 1 µm is used to estimate an mW bias of 4 ppb. Thus, the
above constraint on δ0 implies a bound of 5 ppb on any mW

bias.
A simulation of the COT geometry and drift cells can be

used to explore potential sources of a b0q term; currently no
physical model for this term can be created. In Appendix G
we present an energy-loss model as an illustration of an effect
that generates this term, albeit with a vanishing value of the
b0 coefficient.

C. Summary of singular response functions

A nonanalytic response can be parameterized by terms
of the form (ar + qbr )|c|r where r is not a whole number.
All such terms imply discontinuities (gaps in acceptance or

anomalous charge drift) that are inconsistent with the con-
struction of the COT. We have demonstrated this fact by
studying the hit efficiency and the drift displacement versus
curvature, and showing that both observables vary extremely
smoothly as c → 0±. The upper bound on any discontinuity
in each observable corresponds to a systematic uncertainty on
the momentum calibration of 5 ppb.

We have shown that a nonanalytic response is adequately
captured by a term of the form δc = b0q to parametrize
a discontinuity as c → 0±. We show in Appendix G that
synchrotron radiation induces this term with a momentum
miscalibration of 0.0001 ppb.

VII. SUMMARY

We have discussed a curvature response model for the
COT, the CDF experiment’s drift chamber that operated dur-
ing Run 2 of the Tevatron. In the preceding sections we have
described how the model parameters an and bn (n = 0, 1, 2, 3)
capture the degrees of freedom relevant for calibrating the
curvature response in the context of the mW measurement.
The constraints on these parameters have been derived from
cosmic-ray alignment data collected in situ with collider data,
as well as the E/p ratio of positrons and electrons from W →
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TABLE II. The constraints obtained from cosmic-ray data on a subset of the an and bn parameters of the curvature response model [Eq. (1)
and Sec. VI B 3]. The constraints are presented in terms of the corresponding uncertainty (in ppm) on the mJ/ψ and mϒ analyses; these
constraints can be interpreted as the corresponding uncertainties on the a1 extracted from the J/ψ and ϒ data. The remaining parameters, b′

2

and a3 have already been accounted for in the quoted 25 ppm uncertainty on a1 [2]. The columns labeled “Sec.” refer to the section of this
document where the corresponding details on the preceding columns are provided.

Analysis a0 b1 a2 b3 Sec. b0 Sec.

mJ/ψ 0.001 0.3 0.8 5 IV B 3 <0.001 VI C
mϒ 0.003 0.3 0.4 1 IV B 2 <0.001 VI C

eν decays, and the J/ψ → μμ and ϒ → μμ data. These and
other measurements over-constrain the model parameters and
bound the systematic uncertainty on mW , as summarized in
Table I.

Table I reiterates the conclusion from Sec. V C that the
analytic model of Eq. (1) is highly constrained by the com-
bination of the datasets. In particular, the analytic parameters
that contribute the largest momentum calibration uncertainty
on mW are already accounted for in the analysis of the J/ψ
and ϒ data. All other parameters contribute negligibly to the
uncertainty on mW .

We also considered the impact of all parameters on the
mJ/ψ and mϒ analyses. Table II summarizes the constraints
from cosmic-ray data and their impact on the momentum scale
parameter a1 extracted from the J/ψ and ϒ data. Table II
reiterates the conclusion from Sec. V C that the momentum
calibration is robust with respect to analytic deformations of
the COT.

Finally, a detailed analysis of nonanalytic response func-
tions has been performed. It is shown that such functions
imply a discontinuity as c → 0± which is adequately captured
by a term of the form δc = b0q. Cosmic-ray data are used
to study the smoothness of the COT efficiency and drift dis-
placement in the c → 0± limit and the systematic uncertainty
on mW is constrained to 5 ppb due to any discontinuity. This
is noted in Tables I and II. Cosmic-ray data also show that
the COT efficiency is extremely stable in time; the superlayer
inefficiency is consistent with a constant value of (520 ± 30)
ppm over its entire 10-year operation.

Having considered a general curvature response model,
we find that all parameters are tightly constrained by control
samples of in-situ cosmic-ray data, J/ψ and ϒ data in the
dimuon channel, and the charge-asymmetry of lepton pT mea-
surements. Uncertainties due to all other parameters are found
to be negligible in comparison with the quoted uncertainty on
the momentum calibration [2].

VIII. CONCLUSIONS

We have studied a parametric model for the curvature
response of the CDF experiment’s drift chamber, which pro-
vides the momentum measurement of charged particles. This
investigation includes terms that are analytic in curvature as
well as terms that capture nonanalytic behavior in the limit
of vanishing curvature. The study includes in situ cosmic-ray
data recorded by the CDF detector during collider operation,
as well as information from the publications describing the
measurement of the W boson mass.

We find that the analytic terms in the most general ansatz
have well-defined physical interpretations. They are either
constrained within the published uncertainties or contribute
negligibly to the uncertainty on the momentum calibration.
Furthermore, the analysis presented here on the basis of
first principles shows how parameter uncertainties can be
controlled and understood without recourse to black-box
methodology such as machine learning or high-dimensional
fitting.

We find no realistic model that would generate significant
nonanalytic terms without violating the principles of opera-
tion of the drift chamber or the physics of particle interactions.
Nonanalytic terms are further constrained by analysis of the
cosmic-ray data.

Without loss of generality, uncertainties due to all other
parameters are found to be vanishing in comparison with the
quoted uncertainty on the momentum calibration in the CDF
mW measurement [2], demonstrating the explanability and
robustness of these procedures.

This study provides a framework for further investigation
of this drift chamber and the analyticity of the curvature
response of tracking detectors in general. The topic is of
relevance to high-precision measurements of observables such
as the W boson mass and the weak mixing angle where ac-
curacy of particle tracking is important, at future fixed-target
and collider experiments. A gaseous detector with a single
unfragmented active volume can be calibrated at the level of
accuracy required to meet the goals of those experiments.
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APPENDIX A: CORRESPONDENCE OF CURVATURE
RESPONSE MODELS

The curvature response model presented here generalizes
Eq. (23) of Ref. [3],

δc = ε1 + ε2c + ε3c2 + ε4c3,

with the correspondence εn+1 ↔ an as used in Eq. (1) of this
document. In this work we have extended the model to include
the bnq terms.
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As noted in Sec. IV A, the parameter b2 and the ionization
energy loss appear in combination as a sum when these mod-
els are applied to outgoing particles. The ionization energy
loss is explicitly considered as a tunable parameter in all
CDF publications, i.e., Eq. (27) of Ref. [3], Sec. VII B 3 of
Ref. [24], and Sec. VI A of Ref. [2]. Therefore, the inclusion
of b2 in this work does not materially augment the model; the
new parameters we have included are b0, b1, and b3. More
importantly, we have shown that, with the inclusion of these
parameters, the model is fully generalized for pT > 2 GeV.

In previous CDF II publications, models were introduced
to capture the spatial variation of a0 after the cosmic-ray
alignment; in particular, Eq. (24) of Ref. [3] and Eq. (14) of
Ref. [24] parameterize the dependence of our a0 parameter
on the azimuthal and polar angles. After those earlier CDF
publications, the cosmic-ray alignment of the COT was con-
siderably improved [21], as was the determination of the beam
coordinates, and no further azimuthal variation was observed
(as demonstrated in Ref. [21]). As a result, most of the param-
eters of Eq. (24) of Ref. [3] and Eq. (14) of Ref. [24] were no
longer needed for the latest CDF publication of mW (Eq. (S4)
of Ref. [2]).

As explained in Appendixes D 2 and D 4, a small depen-
dence on polar angle remains after the cosmic-ray alignment
due to the residual inaccuracy of the wire-shape model. The
same quadratic parameterization is used in all three CDF II
publications to correct for this residual misalignment. The
nomenclature A, B,C is used in Eq. (15) of Ref. [24] and
in Eq. (S4) of Ref. [2] (where the values of A and C are
displayed), while the correspondence A → a0, B → a1, C →
a2 matches Eq. (24) of Ref. [3], for the parameters of the
quadratic polar-angle dependence.

Thus, the symbols used in the earlier parameterizations to
describe spatial variation of the alignment have no correspon-
dence with the an, bn notation used in this work to describe
curvature-dependent effects.

APPENDIX B: GLOBAL COT ALIGNMENT

The COT is well-aligned with the solenoid axis and accu-
rately aligned with the beam axis.

1. Mutual alignment of the COT and the beam axis

The consistency of the COT coordinate system and the
location of the beam axis is important to eliminate bias when
the COT tracks are constrained to the beam coordinates. This
consistency is ensured using a large collection of COT tracks
of high quality. Their two-dimensional impact parameter vec-
tors with respect to the beam axis (as recorded in the database)
is used to compute any shift between the COT coordinate
system and the beam axis. The COT is then shifted in the
track reconstruction software and the data are re-reconstructed
to confirm that the mutual alignment is now perfect (at the
submicron level) since there is no shortage of data for this
procedure. Convergence is achieved typically in one iteration
and a maximum of two iterations.

This alignment is performed in separate run blocks by first
identifying relative shifts between the beam axis and the COT
coordinate system over the entire 10 years of operation. The

run blocks integrate data between occurrences of significant
shifts. The procedure ensures submicron-level mutual align-
ment over the full collider dataset.

One of the benefits of this accurate mutual alignment is
that prompt COT tracks can be constrained to include the
beam spot of transverse size ∼30 µm in the track fit, which
improves the curvature (and thereby momentum) resolution
considerably. There is no benefit from including silicon vertex
detector information in the track fit, because the incremental
improvement in momentum resolution is marginal and the
COT track resolution is already good enough to not limit any
aspect of the mW measurement [2].

2. Mutual alignment of the COT and the solenoid

The COT is mounted on the inside of the solenoid support
structure. The time-of-flight detector is installed between the
COT and the solenoid, leaving free space of O(1 mm) between
the detectors. This tolerance limits the relative displacement
or tilt of the COT with respect to the solenoid axis.

The static magnetic field inside the solenoid varies
smoothly according to Laplace’s equation. The magnetic field
has circular symmetry and cannot have a first-order trans-
verse gradient near its axis. A small transverse displacement
between the COT and solenoid axes cannot change the field
near the axis at first order. Away from the axis any change
in the field averages over azimuth to zero at first order. The
longitudinal component of the magnetic field changes by the
cosine of a tilt angle; as the latter is limited to O(1 mm/1 m
≈1‰), Bz is affected at O(1 ppm) which is negligible.

Miscalibration of the magnetic field can only scale the
track pT by a smooth spatial function which precludes sin-
gular behavior in the c → 0 limit, i.e., it cannot introduce
singular terms in Eq. (1). Furthermore, a0, b1, a2, and b3 [B
terms in Eq. (6)] cannot be induced because the magnetic
field affects both charges symmetrically. Any induced A terms
[a1, b2, and a3 in Eq. (5)] are calibrated using the J/ψ and
ϒ data (Sec. V C) modulo the small nonuniformity of the
magnetic field which is not averaged identically by the J/ψ ,
ϒ , W , and Z boson decays. The field nonuniformity versus
polar angle (a small fringe-field miscalculation) is calibrated
using the J/ψ data in the CDF mW analyses [2,3,24] with
an uncertainty due to differences between the spatial distri-
butions of the decay muons in the various signal samples.

APPENDIX C: IONIZATION ENERGY LOSS
FOR COSMIC RAYS

For a transverse energy loss ε, the measured curvature
is cmeasured = q/(pT − tε), where t = +1(−1) for outgoing
(incoming) particles. Defining ζ ≡ ε/pT = εqc,

δc ≡ cmeasured − c = q

pT − tε
− q

pT
= c(

1

1 − tζ
− 1)

= c
tζ

1 − tζ
� ctζ (1 + tζ ) = c(tζ + ζ 2) = c(tqεc + ε2c2).

Therefore, the energy loss induces the correction terms
εc2(tq + εc) in the measured curvature of the incoming and
outgoing muons, respectively.
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Hard scattering from the drift chamber wires introduce
small discontinuities in the curvature of the tracks. The impact
of hard scattering may be estimated using the Rutherford
formula for the differential scattering cross section,

dσ

d�
=

(
Zα

4Eμ sin2(θ/2)

)2

≈
(

Zα

Eμθ2

)2

, (C1)

for a nucleus of atomic number Z , lepton energy Eμ and
small scattering angle θ , where α = e2

4π
= 137−1 is the fine-

structure constant for lepton charge e.
A 40 GeV lepton traversing a 1.4 T magnetic field pro-

duces a curvature of 53 × 10−6/cm and a maximum sagitta
of ≈9 mm in the COT. This curvature is mimicked by a
hard-scattering angle of 13 mrad at the middle radius of the
COT. Since any hard scattering will create a deflection that is
uncorrelated with the sign of the lepton charge and its track
curvature, the deflection angle will not bias the true curvature
but will cause fluctuations around the true curvature. A deflec-
tion of 0.4 mrad, when projected on the transverse plane by a
factor of 1/

√
2, will contribute a resolution of ≈2% on the

curvature. The intrinsic curvature resolution of the COT 10 at
40 GeV is 2%, therefore the impact of a 0.4 mrad deflection is
similar to the intrinsic resolution.

The probability of a hard-scatter deflection larger than
0.4 mrad can be conservatively estimated by integrating the
Rutherford scattering differential cross section, yielding the
cross section

σ ≈ π

(
Zα

Eμθ

)2

= π

(
74/137

40, 000 MeV × 0.0004

)2

= π

(
74/(137 × 16)

MeV

)2

≈ π (6.7 fm)2 (C2)

for a 40 GeV lepton scattering off a tungsten nucleus.
The probability p of a hard scatter is given by p =
σnd where n is the number density of scattering cen-
ters (atoms) and d is the thickness of the scattering
layer. For a tungsten wire of 40 µm diameter [1] in the
COT, n = 6.4 × 1022/cm3 yields p = π (6.7 × 10−13 cm)2 ×
(6.4 × 1022 cm−3) × (40 × 10−4 cm) = 0.36‰.

Each sense wire sits in the middle of a drift region of
width 2 × 8.8 mm. The probability of a particle hitting a spe-
cific wire is (40 µm)/(17.6 mm) = 2.3‰. The corresponding
poisson probability of the hard scatter is 0.36‰ × 2.3‰ ≈1
ppm. Summing over the wires in the radial direction, the total
probability of a hard scatter with θ > 0.4 mrad in any wire is
0.2‰.

Repeating this analysis for different θ thresholds leads to
the same conclusion. For example, lowering the threshold by
10× will increase the rate 100× to 2%, but these smaller-
angle scatters will contribute to the intrinsic resolution in
quadrature and increase the latter by only 1% of itself; the
net effect will again be 0.2‰ on the resolution. If we raise the
threshold by 10×, then these large-angle scatters can affect
the momentum measurement by 20%; however, their rate

10The resolution of beam-constrained COT tracks is δ(GeV/pT ) =
0.5‰ [3].

of 2 ppm is lower than misidentification backgrounds from
other sources by three orders of magnitude [2,3,24]. Finally,
we note that coherent elastic scattering off the nucleus, per
the Rutherford formula, dominates over incoherent, inelastic
scattering; thus, the latter can also be ignored.

These estimates show that the probability of a hard scatter
is so small that it modifies the intrinsic resolution at less
than the permille level. Furthermore, the resolution is modeled
using hit residuals measured for the muon tracks in Z → μμ

data [2]; thus, the model already subsumes the tiny contribu-
tion from hard scattering. The observed non-Gaussian tails in
the hit residuals, which are caused by complexity of pattern
recognition, are incorporated in the model [2]. The small
non-Gaussian (power-law) tail due to hard scattering is also
subsumed.

This is the reason that the COT track fit is a simple
χ2-minimizing fit. More sophisticated methods such as the
Kalman filter are unnecessary for a tracking detector that is
as transparent as the COT. Furthermore, the simplicity of the
simple χ2-minimizing fit provides the advantage that COT
tracking is easy to simulate from first principles, which aids
in its accurate calibration. This is one of the motivations for
building a transparent gaseous tracker such as a drift chamber
or a time-projection chamber at a future electron-positron
collider, where the tracker must be calibrated with extreme
accuracy for measuring precision electroweak and Higgs ob-
servables.

Pions, kaons, and protons undergo additional hard scatters
in the COT due to hadronic interactions. The thickness of
tungsten traversed on average through the entire COT is 18 µm
or 0.3‰ of a nuclear collision length. This rather small prob-
ability of a hadronic interaction explains why the same simple
χ2-minimizing fit in COT tracking is used for all particles,
leptons, and hadrons.

APPENDIX D: SPATIAL UNIFORMITY OF THE COT

Figures 2 and 3 show the post-alignment constraints from
cosmic-ray data on the a0, b1, a2 and b3 parameters; only b3

is statistically significant. Tables I and II show that b3 has no
impact on the mW , mJ/ψ , and mϒ analyses. Hence, the spatial
variation of b1, a2 and b3 is moot.

The a0 term is directly induced by misalignments. This
is clear from Eq. (1); if the cosmic-ray alignment were per-
formed with zero magnetic field,11 the cosmic-ray trajectories
would be straight lines with zero curvature and only a0 would
be sensitive to misalignments. It is therefore natural to asso-
ciate with the a0 parameter the a priori dependence of the
alignment on the azimuthal (φ) and polar (θ ) angles. The
zero-field situation is effectively mimicked by reweighting
positive cosmic rays to obtain the sample average 〈c〉 = 0.

11In order for the cosmic-ray alignment to be applicable to physics
measurements, the cosmic-ray sample must be collected in situ with
collider data at full solenoidal magnetic field. The COT drift cells
are designed to operate at the corresponding Lorentz angle. The
drift model would not be appropriate for zero magnetic field and the
alignment derived with a different drift model may not be applicable
for full-field operation.
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TABLE III. A summary of the variability displayed by the pulls as a function of azimuth, z0 and polar angle, respectively (reproduced from
Figs. 20–25 of Ref. [21]). Each pull is defined by the comparison of the observable between the incoming and outgoing legs of the cosmic ray.
Note that �+

c [Eq. (2)] is defined as half of the pull defined in Ref. [21]. The φ0, d0 and z0 (t0) observables denote the azimuthal angle, the
impact parameter and the z position (time of occurrence), respectively, of the tracks at the point of closest approach to the beam axis. “Pre-”
and “Post-” refer to prealignment and postalignment with the cosmic-ray procedure, and “RMS” refers to the RMS of inclusive distribution
of the pull after alignment, i.e., the intrinsic resolution. The first three (next two) rows of observables describe the track’s trajectory in the
transverse plane (longitudinal view). The 8 ps bias in t0 translates to an immaterial 0.4 µm effect using the drift speed of 50 µm/ns in the COT.

Pull Azimuth z0 cot θ

observable Pre- Post- Pre- Post- Pre- Post- RMS

�+
c (PeV−1) [−1200, 0] ±20 [−620, −580] ±40 [−800, −500] ±30 930

�φ0 (µrad) [−1400, 0] ±5 [−650, −500] ±15 [−600, −500] ±10 840
�d0 (µm) [−400, 100] ±2 [−180, −160] ±8 [−230, −150] ±4 310
� cot θ (10−6) [−4000, 3000] ±40 [−2500, −500] ±150 [−1600, −1200] ±50 4300
�z0 (µm) [−3000, 3000] ±40 [−350, −250] ±30 [−400, −300] ±40 3800
�t0 (ps) [−150, 300] 8 ± 8 [0,20] [0,20] [0,30] [0,30] 430

Formally, the interplay between the an and bn coefficients
in the alignment procedure can be understood as follows.
The positions of the supercells are adjusted to minimize the
residuals with respect to the dicosmic fit [21]; as a conse-
quence, the sample average 〈�+

c 〉 is minimized. Equation (2)
implies that the quantity [a0 + b1〈|c|〉 + a2〈|c|2〉 + b3〈|c|3〉]
is minimized. We ignore the statistically insignificant coef-
ficients b1 and a2. The |c| distribution is approximately a
Gaussian with mean 35 TeV−1 and RMS 25 TeV−1, thus
〈|c|3〉 ∼ 110 000 TeV−3. Using b3 ∼ 0.022 GeV2 from Fig. 3
yields b3〈|c|3〉 ∼ 2.5 PeV−1. Thus, the effect of b3 is much
smaller than the statistical uncertainty of 10 PeV−1 on a0 and
can be ignored; spatial uniformity needs to be addressed in the
context of a0 only.

1. Benefits of symmetry and continuity

The simplicity of the COT geometry and its azimuthal
(Fig. 4) and longitudinal symmetries limit the a priori spatial
variation of the a0 parameter. Table III shows that this vari-
ability is similar to the intrinsic resolution.

The longitudinal symmetry is broken by the deviation of
the wires’ shape from a straight line due to electrostatic de-
flection and gravitational sag. Nevertheless, only a handful of
parameters are required to describe the shape analytically; it
must be a smooth, quadratic function of |z| at static equilib-
rium and it must be a smooth, sinusoidal function of azimuth
due to the interplay between the azimuthal symmetry of the
COT end plates and the direction of gravity [1].

These simplifying features distinguish a drift chamber with
a single active volume from the complicated geometry of a
silicon tracker which is a patchwork of planar tiles.

2. Benefits of cosmic-ray alignment

The a priori azimuthal variation is suppressed by two or-
ders of magnitude by the cosmic-ray alignment (see Table III).
Importantly, the remaining variation is consistent with statis-
tical scatter [1]. Further studies can therefore be performed
inclusively over azimuth.

The a priori variability with respect to the longitudinal
variables z0 (position of the track along the z axis) and polar

angle is even smaller than the azimuthal variability, reflecting
a good understanding of the wire deflections due to electro-
static and gravitational forces. To achieve the ultimate goal
of the accuracy of the alignment, the radial dependence of
the wire shape is investigated in Ref. [21], because wire
tensions likely cause the end plates to bend inward with a
radius-dependent displacement. With additional tuning of the
wires’ shape to accommodate this hypothesis, the variability
of the pulls with respect to z0 and cot θ is suppressed by 1–2
orders of magnitude, as shown in Ref. [21] and summarized
in Table III. The pulls are largest near the edges of the phase
space in z0 and cot θ , both before and after this tuning. This
is consistent with the hypothesis that inaccuracies in the wire
shape are the root cause since the shape changes most rapidly
at large |z| [1].

The postalignment variability with respect to z0 and cot θ
is only a factor of 1.5–2 larger than statistical scatter. Any
systematic impact of averaging over this variation is further
mitigated because studies with cosmic rays are performed in
the same phase space as collider data: |z0| < 60 cm and the
fiducial acceptance of all COT superlayers. Thus, the average
a0 for cosmic-ray data matches the collider data much more
closely than this residual variability.

3. Benefit of COT-beam alignment

Once the COT is internally well-aligned, accuracy of the
beam coordinates is important. Upon constraining the COT
track to the beam axis, a sin φ modulation will be induced if
the beam-axis coordinates are incorrect in the COT coordinate
system. Equation (24) of Ref. [3] and Eq. (14) of Ref. [24]
include this term in the model.

In Appendix F we show that a 1 µm misalignment of the
beam axis induces a 5 PeV−1 bias in the beam-constrained
curvature; as mentioned in Appendix B 1, the beam axis has
been pinned down over the entire running period to better
than this. Averaging a sinusoidal modulation over azimuth
suppresses any residual bias by at least another order of mag-
nitude. Thus, any φ-asymmetry due to beam-constraining will
be far smaller than the 10 PeV−1 estimate used for Tables I
and II, and subsequent studies can be performed inclusively
over azimuth.
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4. Ultimate �pe tune

The a0 parameter features prominently in the �pe observ-
able [Eq. (4) and Sec. IV B 1] and has been used to derive a
final alignment correction as a quadratic function of cot θ , the
relevant physical variable. The average over the z0 profile of
the beam luminous region applies consistently for all collider
data, and azimuthal variation has already been eliminated. The
azimuthal dependence modeled in Eq. (24) of Ref. [3] and
Eq. (14) of Ref. [24] was not required in Eq. (S4) of Ref. [2],
where no systematic azimuthal variation of �pe was found.
The parameters capturing the dependence on cot θ have the
same meaning in all three models, with a change of notation
from Ref. [3] to Refs. [2,24] as mentioned in Appendix A.

The coefficient linear in cot θ is the only one that induces
a nonnegligible systematic uncertainty on mW because it cou-
ples to the charge asymmetry in W -boson production at the
Tevatron. It is strongly constrained by the cosmic-ray data
which span the COT in the z direction and pin down the
relative rotation between the end plates, i.e., the end-to-end
twist of the COT. The twist degree of freedom for each COT
supercell is explicitly measured in the cosmic-ray alignment
procedure [21], which explains why the �pe tune finds the
twist coefficient to be (0 ± 4stat ) PeV−1 (Eq. (S4) of Ref. [2]).
The remaining two parabolic coefficients of the �pe tune
have nonzero values that are consistent with the imperfections
in the wire-shape corrections derived from cosmic-ray data
(Fig. 25 of Ref. [21]) as noted in Table III. The internal con-
sistency of the alignment over independent control samples of
data gives confidence in robustness of the procedure.

The twist coefficient induces a small systematic uncer-
tainty of 0.8 MeV on mW , while the remaining two parabolic
coefficients have negligible impact [2].

APPENDIX E: ANALYSIS OF �+
c AND �−

c

In Sec. II we used the fitted dicosmic helix’ curvature cd

as a proxy for the true curvature c because the resolution of
cd is a factor of 12 better than the curvature resolution of the
separate measurements of the incoming and outgoing muons.
We check whether this substitution allows us to be sensitive
to the systematic bias δc of Eq. (1), since the same bias may
be present in cd, i.e., cd = c + δcd. Here, δcd represents the
subset of terms present in δc that are capable of biasing the
dicosmic fit.

In the following, we set a1 = 0 without loss of generality
since a1 represents a correction to a global scale factor on
curvature.

1. Analysis of �+
c

The �+
c observable [Eq. (2)] is an expansion in small

coefficients an and bn. Consider a term in δc of the form
ancn (where n is a positive integer) which upon substitution
expands to

ancn = an(cd − δcd )n ≈ an
(
cn

d − ncn−1
d δcd

)

= ancn
d

(
1 − n

δcd

cd

)

to first order in δc when n > 0.

As δcd
cd

< δc
cd

� 10−4 (known from the measurements of
�pe and the Z boson mass [2]), the use of cd as a proxy for c al-
lows us to infer the values of the an coefficients with a relative
accuracy better than 0.01% for n > 0. Replacing an → bnq
proves the same consequence for the bn coefficients for n > 0.
Thus, there is no loss of accuracy when cd is substituted for c.

Since this proof fails for n = 0, we consider the a0 coeffi-
cient explicitly. The use of cd in Eq. (2) yields, to first order in
δc as c → 0,

�+
c ≈ a0 + b1q(cd − δc) ≈ a0(1 − b1q) + b1qcd,

which shows that the fractional inaccuracy on the a0 determi-
nation is given by b1, which is negligible.

We conclude that one can use cd as a proxy for c when
analyzing �+

c to measure the coefficients appearing in Eq. (2)
with no loss of accuracy. These conclusions have been verified
by a Monte Carlo study of this observable.

2. Analysis of �−
c

The use of cd in Eq. (3) yields, to first order in δc as c → 0,

�−
c ≈ b0q + c = b0q + (cd − δcd ).

Subtracting the term linear in cd yields, as c → 0,

�−
c − cd = b0q[1 − 1 + O(b2c)] ∝ b0b2c.

This observable is suppressed by the b2 factor. Furthermore,
it cancels in the analysis of |�−

c − cd| if linear in c and is
absorbed in a1 if linear in |c|. We conclude that b0 cannot be
constrained by the analysis of the �−

c observable.
Next, consider a term in δc of the form brq|c|r (where 0 <

r < 1 is a positive fraction). Without loss of generality we
consider c > 0 since the calculation will be mirrored for c <

0. Therefore,

�−
c ≈ brcr + c = brcr + (cd − brcr ) ≈ cd ⇒ �−

c − cd ≈ 0.

Similarly, consider a term in δc of the form b2qc2.
For c > 0,

�−
c ≈ b2c2 + c = b2c2 + (cd − b2c2) ≈ cd ⇒ �−

c − cd ≈ 0,

and the same conclusion is reached for c < 0 by replacing
b2 → −b2.

By extension, none of the terms in δc that show up in the
�−

c observable as a function of c can be extracted by studying
�−

c as a function of cd.
The reason that the coefficients in Eq. (3) cannot be ex-

tracted by analyzing �−
c versus cd is that �−

c represents
the average of the curvature measurements of the incoming
(corrected for direction of propagation) and outgoing legs of
the cosmic-ray trajectory, and cd represents a similar (con-
strained) average curvature of the entire trajectory. Thus,
�−

c
∼= cd and the analysis of �−

c versus cd is blind to the
coefficients in Eq. (3).

APPENDIX F: SINGLE-WIRE BIAS ON CURVATURE

A curvature bias δc is related to a sagitta (d) bias as
d ∼ (δc)l2 where l is the length of the track. The typical
alignment accuracy of the wires is 1 µm [2,21]. For d =
1 µm and l = 1 m, δc ∼ 10−8 cm−1 = 5 PeV−1 for the 1.4 T
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magnetic field of CDF. At pT ∼ 40 GeV, this curvature bias
translates to a momentum bias of 200 ppm. Since a sagitta
bias this large would materialize at the maximum rate of
1‰ (Sec. VI A 1), the maximum momentum calibration bias
would be 200 ppm×1‰ or 0.2 ppm. Any difference of this
rate between positive and negative tracks would translate to
a charge-averaged mass bias; Fig. 5 suggests an additional
suppression factor of 5, i.e., an upper bound on a mass bias of
40 ppb. This bound is conservative because a single-hit sagitta
does not translate into a track sagitta given the large number
of hits.

A similar calculation based on the superlayer efficiency
variation of (at most) 0.1‰ (Sec. VI A 1) provides an even
more stringent (and more realistic) bound of 4 ppb on a mass
bias due to possible curvature-dependent pattern-recognition
effects in the c → 0± limit.

APPENDIX G: A MODEL FOR b0q TERM
IN CURVATURE RESPONSE

The difficulty of creating a COT model that will generate
a b0q term in the curvature response is that as c → 0 there
is no information available to the COT on which a charge-
dependent effect can be based. This observation leads to the
conclusion that, in this limit, the particle’s charge can only be
known to the particle itself. Therefore, such a discontinuous
response can only be generated by the particle’s local interac-
tions and not by the COT.

An example of a particle-interaction model is an en-
ergy loss that grows quadratically with energy, ploss

T = b0 p2
T .

Therefore,

δc = q

pT − b0 p2
T

− q

pT
= q

pT

(
1

1 − b0 pT
− 1

)

= q

pT

b0 pT

1 − b0 pT
≈ b0q,

where energy conservation requires the fractional energy loss
to be within the range 0 � b0 pT < 1. In practice, the consis-
tency of the mZ measurement using the J/ψ and ϒ-based
calibrations [2] implies that b0 pT < 100 ppm as shown in
Sec. VI B 3. Thus, the b0 pT term can be neglected in the
denominator and this energy-loss model induces the b0q term
with b0 > 0.

The reasoning is that, since the pT always reduces inde-
pendent of charge, the change in curvature has the same sign
as the charge, even as c → 0, because the particle’s charge
is conserved. We also note that this model cannot generate
b0 < 0 because it is impossible to mimic a particle gaining
energy during propagation.

Synchrotron radiation off a charged particle in a magnetic
field causes an energy loss per revolution that is proportional
to γ 4/R, where γ = E/m is the energy to mass ratio, i.e.,
the Lorentz boost factor, and R is the radius of the particle’s
circular arc [25]. As R ∝ E for a fixed magnetic field and
polar angle, the reduction in the track pT is ploss

T ∝ E3 per
revolution. The fraction of a revolution executed inside the
COT is l/(2πR) where l is the radius of the COT. Scaling ploss

T
by this fraction yields the result ploss

T ∝ E3/R ∝ E2 ∝ p2
T , or

ploss
T = b0 p2

T . For a muon of pT = 40 GeV, ploss
T evaluates to

3 meV (millielectron Volt) [25], corresponding to a vanish-
ingly small b0 pT = 0.0001 ppb.

If we imagine an energy loss model of the form ploss
T =

br p2−r
T = −δpT , then it leads to

br p−r
T = −δpT

p2
T

= qδc = br |c|r ⇒ δc = qbr |c|r .

As shown in Sec. VI B 3, positive values of b0 or br bias the
measured mass to lower values, as expected from an unantic-
ipated process of energy loss from the leptons.
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