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ABSTRACT: Recently there has been a surge of interest in studying Lorentzian quantum cos-
mology using Picard-Lefschetz methods. The present paper aims to explore the Lorentzian
path-integral of Gauss-Bonnet gravity in four spacetime dimensions with metric as the
field variable. We employ mini-superspace approximation and study the variational prob-
lem exploring different boundary conditions. It is seen that for mixed boundary conditions
non-trivial effects arise from Gauss-Bonnet sector of gravity leading to additional saddle
points for lapse in some case. As an application of this we consider the No-boundary pro-
posal of the Universe with two different settings of boundary conditions, and compute the
transition amplitude using Picard-Lefschetz formalism. In first case the transition ampli-
tude is a superposition of a Lorentzian and a Euclidean geometrical configuration leading
to interference incorporating non-perturbative effects coming from Gauss-Bonnet sector of
gravity. In the second case involving complex initial momentum we note that the tran-
sition amplitude is an analogue of Hartle-Hawking wave-function with non-perturbative
correction coming from Gauss-Bonnet sector of gravity.
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1 Introduction

General relativity (GR) is the first theory to unite gravity with relativity using the notion
of curved spacetime. It has been hugely successful at offering explanations for a variety
of physical phenomenon ranging from astrophysical to cosmological scales. Despite its
huge successes as a classical theory, the theory suffers from lack of completion at small
scales as also is demonstrated by singularity theorems. When the successful framework of
quantum field theory (QFT) is applied to GR, then the QFT of GR is seen to be non-
renormalizable and the resulting theory lacks predictivity [1-7]. These results although
perturbative indicate the lack of compatibility of the two theories at small scales thereby
suggesting that either GR or QFT or both should suitably be modified at short distances
to have a well-defined ultraviolet complete theory of gravity.

Experimental observations at large distances fail to agree with the predictions of GR
coupled with standard model. This although doesn’t imply failure of GR, but it does hint
that the coupled system of standard model and GR is missing something. Over the years



researchers have tried to address this issue in different ways: (1) modify the standard model
by incorporating dark-matter and dark-energy while keeping GR to be unmodified, (2)
modify gravitational dynamics at large distances keeping the standard model unmodified
or (3) modify both GR and standard model. In the case (2) and (3) one goes beyond GR.

Numerous model has been proposed over the years to explain such deviations at both
ends of energy scales. For example at ultra short length scales, motivated by lack of renor-
malizabilty of GR (which has only two time derivatives of the metric field) proposals have
been made to incorporate higher-time derivatives of the metric field. Such modifications of
GR are collectively referred to as higher-derivative theories of gravity. It has been noticed
that incorporating higher-derivatives although addresses issues of renormalizability in four
spacetime dimensions but the theory lacks unitarity [8-10]. Some efforts have been made to
tackle this unwanted problem in the perturbative framework [11-14], in asymptotic safety
approach [15, 16] and ‘Agravity’ [17]. However, one also notices an important fact that
equation of motion in such UV modified theories have higher-time derivatives (more than
two) of metric field. One wonders at the presence of such higher-time derivatives which
although addresses renormalizability but also are responsible for lack of tree-level unitarity
in theory.

Overtime a need arose of having a modification of GR which consist of higher-
derivatives of the metric field, but when contributions from all such terms are summed
over then the highest order of time derivative is only two. The Gauss-Bonnet (GB) gravity
in four spacetime dimensions is one such simple modification of the GR, which satisfies ex-
actly this requirement. Here the dynamical evolution equations of field remains unaffected.
In four spacetime dimension GB sector of gravity action is also topological and doesn’t
play any role in dynamical evolution of spacetime metric. However, they play a key role
in path-integral quantization of gravity where it is used to classify topologies and has an
important role to play at boundaries. The bulk Gauss-Bonnet gravity action is following
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where G is the Newton’s gravitational constant, A is the cosmological constant term, « is
the Gauss-Bonnet coupling and D is spacetime dimensionality. The mass dimensions of
various couplings are: [G] = M2~ [A] = M? and [a] = M ~2. This action falls in the class
of Lovelock-Lanczos gravity theories [18-20], and are a special class of higher-derivative
gravity where equation of motion for the metric field remains second order in time.

Motivated by the above properties of GB gravity, it is worth asking how the path-
integral of the metric field behaves when its gravitational action is given by eq. (1.1)7
My interest in this paper is to study such a path-integral in a slightly simpler setting:
the context of quantum cosmology where the issues regarding various kind of boundary
conditions are easier to investigate [21-25]. We start by considering a generic metric
respecting spatial homogeneity and isotropicity in D spacetime dimensions. It is the FLRW
metric in arbitrary spacetime dimension with dimensionality D. In polar co-ordinates



{tp,r,0,---} the FLRW metric can be expressed as

2

ds? = =N (tp)dt> + a*(t,) % +72d0% | . (1.2)
It consists of two unknown time-dependent functions: lapse N, (t,) and scale-factor a(t,).
Here k = (0,£1) is the curvature, and dQ2p_o is the metric corresponding to unit sphere
in D — 2 spatial dimensions. This is the mini-superspace approximation of the metric.
This is a gross simplification of the original gravitational theory in a sense as we no longer
have gravitational waves. However, we do retain the diffeomorphism invariance of the
time co-ordinate t, and the dynamical scale-factor a(t,). This simple setting is enough to
investigate the effects the GB-modification of GR in the gravitational path-integral.

The Feynman path-integral for the reduced theory can be written as
bd; _ 3 1 _
Glbdp,bdi] = | DN,DrDa(ty)DpDCDP exp {h /0 dt, (Nz,ﬂr +ap+CP— NpH)} ,

i (1.3)
where beside the scale-factor a(t,), lapse N,, and fermionic ghost C we also have their corre-
sponding conjugate momenta given by p, m and P respectively. Here () denotes derivative
with respect to ¢,. The original path-integral measure becomes a measure over all the
variables. The time ¢, co-ordinate can be chosen to range from 0 < ¢, < 1 without com-
promising on generality. Here bdg and bd; refers to field configuration at initial (¢, = 0) and
final (¢, = 1) boundary respectively. The Hamiltonian constraint H consists of two parts

H:HGB[a,p]+th[N,7T,C,]5], (14)

the Hamiltonian corresponding to Gauss-Bonnet gravity action is denoted by Hgp and the
Batalin-Fradkin-Vilkovisky (BFV) [26] ghost Hamiltonian is denoted by Hgp.! The mini-
superspace approximation still retains diffeomorphism invariance which show up as a time
reparametrization symmetry. This invariance can be broken by fixing the proper-time gauge
N1,> = 0. For more elaborate discussion on BFV quantization process and ghost see [27-29].
In the mini-superspace approximation most of the path-integral in eq. (1.3) can be
performed analytically leaving behind the following path-integral
00 bdy .
G[bdg, bd] = / dN, Da(t,) eSlaNol/h (1.5)
0+ bdo
This residual path-integral is easy to interpret. The path-integral [Da(t,) eiSla:Npl/h
represent the quantum-mechanical transitional amplitude for the Universe to evolve from
one configuration to another in proper time N,. The integration over lapse-function NV,

!The BFV ghost is an extension of the usual Fadeev-Popov ghost which is based on BRST symmetry. In
usual gauge theories the constraint algebra forms a Lie algebra, while the constraint algebra doesn’t closes
in case of diffeomorphism invariant gravitational theories. For this reason one needs BFV quantization
process. In the case of mini-superspace approximation however, we have only one constraint H. In this
approximation therefore the algebra trivially closes leaving the distinction between two quantization process
irrelevant. Nevertheless BEV quantization is still preferable.



indicates that one has to consider paths of every proper duration 0 < N, < oco. Such
a choice leads to causal ordering of the two field configuration bdyg and bd; as shown
in [30], where ap < a; will imply expanding Universe while ag > a; will imply contracting
Universe. In this paper we are interested in studying this residual path-integral for the
case of Gauss-Bonnet gravity where we expect that the choice of boundary configurations
may or may-not give rise to non-trivial features coming from the Gauss-Bonnet term in
the gravitational action.

Ones task is now reduced to the study of functional integral in eq. (1.5). In general
the standard methodology to deal with flat spacetime Lorentzian functional integrals of
non-gravitational QFT is to Wick rotate the Lorentzian time co-ordinate and go to Eu-
clideanised time, which for example in the current case will mean ¢, — i7,, where 7, is
the Euclideanised time. Such a rotation of time co-ordinate analytically transforms the
flat spacetime Lorentzian path-integral to a Euclidean path-integral with an exponentially
suppressed weight factor, which is convergent and well-defined.

In case of gravity the situation is not so straightforward. One can in principle aim to
directly study the following Euclidean gravitational path-integral

bdy

G[bdg, bd;] = - Dy exp (—1[gu]) - (1.6)
Here g,,, is the metric whose corresponding Euclidean action I[g,, | appears in the exponen-
tial. The motivation to study directly such an Euclidean gravitational path-integral stems
from fact that similar but non-gravitational Euclidean path-integral arises in flat space-
time QFT which are obtained by analytic continuation of a meaningful time co-ordinate.
In case of gravity one is skeptical about the relation between the Euclidean and the corre-
sponding Lorentzian path-integral, in a sense whether the two can be analytically related
in some way. This is because it is not always possible to have a meaningful time co-
ordinate in generic curved spacetime. Moreover, the Euclidean gravitational path-integral
given in eq. (1.6) suffers from the conformal factor problem, where the path-integral over
the scale-factor is unbounded from below [31]. This implies that the Euclidean gravita-
tional path-integral is not convergent and is ill-defined. This is unlike the situation in flat
spacetime non-gravitational QFT where the Euclidean path-integral of the corresponding
Lorentzian path-integral is convergent and well-defined.?

2As a side remark it should be emphasised that flat spacetime has a meaningful time co-ordinate and
enjoys the properties of global symmetries to cast the Lorentz group in to a compact rotation group under
a transformation of the time co-ordinate. Such a beauty is not present in a generic curved spacetime. This
implies that the standard methodology of Wick-rotation used for defining sensible quantum field theory
(QFT) on flat spacetime is difficult to generalise reliably in a generic curved spacetime where ‘time’ is
just a parameter. The Feynman +ie-prescription in flat spacetime QFT is a systematic way to choose a
convergent integration contour for an otherwise highly oscillatory integral. It naturally implements causality
in path-integral in a systematic manner by requiring that the Euclideanised version of two-point function
must satisfy Osterwalder-Schrader positivity. Such benefits exist only in flat spacetime and don’t get
automatically inherited to generic Lorentzian curved spacetime. The situation gets even more cumbersome
when spacetime becomes dynamical due to gravity and/or gravitational field is also quantized. Some
attempts to incorporate Wick-rotation sensibly in curved spacetime have been made in [32-35]. However,
more work needs to be done for it to mature.



Picard-Lefschetz theory offers a systematic methodology to carefully handle oscillatory
path-integrals like the one in eq. (1.5). It is an extension of the Wick-rotation prescription to
define a convergent functional integral on a generic curved spacetime. In this framework one
uniquely finds contours in the complexified plane along which the integrand is well-behaved.
By definition the oscillatory integral along the original integration contour becomes well-
behaved and non-oscillatory along the new contour. Such contour-lines are termed Lefschetz
thimbles. This framework is based on complex analysis has been recently used in context
of Lorentzian quantum cosmology [38—40], where the authors studied gravitational path-
integral in the mini-superspace approximation for Einstein-Hilbert gravity.3

Once it is possible to have a well-defined convergent Lorentzian path-integral using
Picard-Lefschetz theory, one can then explore the various choices of allowed boundary
conditions. In the context of Euclidean quantum gravity, whose path-integral suffers from
conformal factor problem [31, 45], it was realised that a sensible choice of initial conditions
and integration contour leads to a well-defined convergent path-integral [46-48]. This has
motivated people to follow the same footsteps to study boundary condition choices in
the context of Lorentzian gravitational path-integral which become well-defined using the
framework of Picard-Lefschetz [38-40].

Motivated by these ideas we set to investigate the gravitational path-integral for the
Gauss-Bonnet gravity in the mini-superspace approximation using the technology of Picard-
Lefschetz theory. We start by varying the action with respect to field and study the nature
of surface terms. We explore three different choice of boundary conditions: Dirichlet (D),
Neumann (N) and Mixed (M) boundary conditions (BC). In each case the surface-terms
are either zero or contribute same as in GR, except in the case of mixed-boundary con-
ditions (MBC) where the surface terms gets an additional non-trivial contribution from
Gauss-Bonnet sector of gravitational action. This has interesting consequences in the fol-
lowup study of the path-integral. Mixed boundary conditions (MBC) are interesting and
have also been previously explored in the context of Einstein-Hilbert gravity [49, 50] in
relation with no-boundary proposal of the Universe. We explore MBC in the context of
gravitational path-integral of Gauss-Bonnet gravity, and find some non-trivial contribution
coming from Gauss-Bonnet sector. As a special case we consider the no-boundary pro-
posal of the Universe and find interesting features arising from the Gauss-Bonnet sector of
gravity action.

The outline of paper is follows: in section 1 we motivates our interest in studying
this problem. In section 2 we discuss the mini-superspace approximation and compute the
mini-superspace action of theory. In section 3 we discuss the action variation and study
the various boundary conditions. In section 4 we consider the path-integral of gravity
in mini-superspace approximation and start to compute the transition probability in sad-
dle point approximation. Section 5 studies the integration over lapse in complex space
via Picard-Lefschetz. In section 6 we study the no-boundary proposal of Universe with

3Tt should be mentioned that usage of complex analysis was also made in past to study Euclidean
gravitational path-integrals in eq. (1.6) which are know to suffer from conformal factor problem [36, 37].
In the context of Euclidean quantum cosmology usage of complex analysis was made to explore issues
regarding initial conditions: tunnelling proposal [41-43] and no-boundary proposal [36, 37, 44].



mixed boundary conditions. In section 7 we analyse the Hartle-Hawking wave-function
using Lorentzian path-integral and the corrections it receive due to Gauss-Bonnet sector
of gravity. We finish off by presenting a conclusion and outlook in section 8.

2 Mini-superspace action

The FLRW metric given in eq. (1.2) is conformally related to flat metric and hence its
Weyl-tensor Cype = 0. The non-zero entries of the Riemann tensor are [51-53]

a a' N!
Roioj = — < - — 9

a alNy,
B k a12
Riji = ol Nia? (9ikgj1 — 9a9jk) (2.1)

where g;; is the spatial part of the FLRW metric and (") denotes derivative with respect
to t,. For the Ricci-tensor the non-zero components are

o a N’
Roo = —=(D —1) <a_ aNp ;
p

(D —2)(kN2+a?) d'N,—adN!
Rij = 5 2p P 3 P 9ij 5 (2'2)
Nja aNy
while the Ricci-scalar for FLRW is given by
a’"N, —a'N) (D —2)(kN? + a'?)
_ P P
R=2(D-1) [ aN? 2NZa? . (2.3)

In the case of Weyl-flat metrics one can express Riemann tensor in terms of Ricci-tensor
and Ricci scalar.

R — Rypgve — Ruogup + Ruogup — RupGuos _ R(9upGvo — GuoGup) (2.4)
Hee D —2 (D—-1)(D-2) ° ‘

Due to this identity we have

2R?
(D—1)(D—-2)"

4
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It allow us to simplify our Gauss-Bonnet gravity action for Weyl-flat metrics.
‘/JﬁMjNRWWRWW—4&wHW+R%

D -3 DR?
:1)_2/d2mﬁg<—RwRW+- ). (2.6)

D -1



On plugging the FLRW metric of eq. (1.2) in the action in eq. (1.1) we get an action for
a(ty) and Np(tp).

VD—I (ID_3
= Tooa | [Ng{(D — 1)(D = 2)kN; — 2Aa®N; — 2(D — 1)aa’N),

2 " anE)(D — 4)
+(D —1)(D —2)a“N, +2(D — 1)Npaa" ¢ + (D — 1)(D — 2)(D — 3)« T

d (kd a?
EN? +a”)? +4aP 7 — [ — 4+ — H 2.7
X (ENy 4 a")* + 4a i, Np+3N5’ , (2.7)

where Vp_1 is the volume of D — 1 dimensional space and is given by,
r(1/2) (m\ P12
= — . 2.

oo = iy (7) %)

In D = 4 we notice that in the GB-sector terms proportional « either vanish or are total
time-derivatives. The mini-superspace gravitational action becomes following in D = 4

V3 3 6a’a’N),  6aa” = 6a"a? d (ka' a? ]
=— [ dt,|6kaN, — 2Aa’N, — da— | — + —=
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(2.9)

This action can be recast in to a more appealing form by a rescaling of lapse and scale
factor. Nt

Ny(t,)dt, = ( )dt, q(t) = a*(t). (2.10)

a(t)
This set of transformation changes our original metric in eq. (1.2) into following

N2
ds? = —@dtQ +q(t) [

and our action in D = 4 given in eq. (2.9) changes to following simple form

W 3¢ . d (g d (ki ¢
S—167TG/dt{(6k—2Aq)N+2N+3th(N>+24adt 3 } (2.12)

Here () here represent derivative with respect to time ¢. It is worth noting the GB-part

2

r
1 — kr2

+ TQdQ%_Q] : (2.11)

of action appears as a total derivative term. It will later be seen that this part plays a
crucial role in the action for the lapse N and will result in additional saddle points. In
the path-integral this term will play crucial role as it will in some sense be incorporating
topological corrections.

3 Boundary action and boundary conditions

To find the boundary action and the relevant set of boundary conditions we start by varying
the action in eq. (2.12) with respect to ¢(¢). From now on we work in the ADM gauge
N =0, which implies that N(t) = N, (constant). We write

q(t) = q(t) + €dq(t) (3.1)



where q(t) satisfy the equation of motion, dq(¢) is the fluctuation around it and e is pa-
rameter used to keep a track of the order of fluctuation terms. Plugging this in eq. (2.12)
and expanding to first order in € we have

G e 3 3.d, . d k @\ ..

There will also be second order terms, but for the purpose of having a sensible boundary

value problem for the equation of motion this is sufficient. We notice that there are two total
time-derivative pieces in the above equation which will be responsible for fixing appropriate
boundary conditions. The term proportional to dq gives the equation of motion for ¢

2
G= gANf : (3.3)

This is easy to solve and its general solution is

AN?
q(t) = ?CtQ + it + e, (3.4)

where ¢ 2 are constants and will be determined based on the boundary conditions. The
total-derivative terms in the above will result in a collection of boundary terms

Vs | 3 ) . kS¢r 3o kédo  G3ddo
= B 12 (01661 — qod 24 — .
Sody = 167G N, (01041 = g09do) + a{<2Nc + 8N3 oN. T 8N3 » (3.5)

where
w0=q(t=0), qa=qt=1), dqp=4qt=0), @=qt=1). (3.6)
3.1 Neumann boundary condition (NBC)

If we impose Neumann boundary condition (NBC) which is fixing ¢ at both the ends of the
g-trajectory [23, 49]. Then we notice that the surface term in eq. (3.5) vanish completely.

d0,1 NBC — fixed = 5qo71|NBC =0, (37)
where the |npc refers to imposing Neumann boundary condition. However, it is soon
realised that with this boundary condition the constant c¢; 2 appearing in the solution to
equation of motion (3.4) cannot be fixed uniquely. In particular ¢y is left undetermined
while ¢; will have two different values. This implies that it is not a well-posed problem
as it leads to inconsistencies. This boundary condition cannot be imposed even though
the surface term in eq. (3.5) vanishes entirely and one doesn’t have to incorporate any
additional boundary action.

3.2 Dirichlet boundary condition (DBC)

In this boundary condition we fix the value of ¢ at the two end points. This means we have

qovl|DBC = fixed = 5qo71|DBC = O, (3.8)



where the |ppc refers to imposing Dirichlet boundary condition. Our surface contribution
in eq. (3.5) doesn’t vanish under the imposition of this boundary condition. In the case
when o = 0 (only Einstein-Hilbert gravity), then in order to have a sensible Dirichlet
boundary value problem one has to add an extra boundary action. This is the well known
Gibbon-Hawking-York term [21, 22, 31], which in mini-superspace reduces to

Vs 3qqlt V3 (3611()1 3%@0)

160G N.|, 167G\ N, N,

On varying the Squy action it is noticed that it cancels the d¢ terms at the boundary

Scay =

(3.9)

in eq. (3.5) for a = 0. It therefore sets up a successful imposition dirichlet boundary
condition, atleast for the Einstein-Hilbert gravity part of theory, thereby leading to a
consistent solution to equation of motion.

But the same thing can not be implemented for the Gauss-Bonnet sector of gravita-
tional surface terms. They will be proportional to f(¢)dq, where f(¢) = (1/2N. + ¢?/SN?).
In principle one can construct a possible surface term for the Gauss-Bonnet sector.

Snlyay = F(a:d)lp - (3.10)

During the process variation of action with respect to ¢ to compute equation of motion,
this surface term on variation will lead to

oF oF _.

Then in order to cancel the surface contribution proportional to « in eq. (3.5), we notice

1
(3.11)

0

that implies
1

OF _ |1 €Va k G2
Sy 24 9 )il =
“ 25, " 16rc O‘{<2Nc+8N§ 11, 0,
W ki@
= F(q,q) = —1om24a <2Nc S 7ied RO (3.12)

As the Gauss-Bonnet surface part in eq. (3.5) doesn’t have any term proportional to dqoy
or dq1, so this implies that ¢’(¢) = 0, which can be fixed to zero. Then the total boundary
action is a summation of Gibbon-Hawking term from eq. (3.9) and Gauss-Bonnet part
coming from eq. (3.12).

: .3
Ssurface = SGHY — 1(:?6?240{ (21336 + 2fNC3> : (3.13)
This when added to the boundary contributions coming from varying the bulk action
results in complete cancelation of the terms proportional to «. As a result it doesn’t lead
to any non-trivial contributions coming from Gauss-Bonnet sector. However, for Dirichlet
boundary conditions the equation of motion can still be solved without any inconsistencies,
but the gravitational path-integral will not have non-trivial features coming from Gauss-
Bonnet sector of gravitational action. In a sense if our motivation is look for situations
where Gauss-Bonnet piece of gravitational action contribute non-trivially then DBC doesn’t
fall in the category.



3.3 Mixed boundary condition (MBCQC)

After not being able to have a consistent boundary value problem with Neumann boundary
conditions and lack of obtaining non-trivial effects in the case of Dirichlet boundary con-
ditions, we next consider the situation with mixed boundary conditions where we specify
q at one end and ¢ at another end. Similar mixed boundary conditions have also been
investigated in [25, 49, 50, 54], here inspired by their work we consider applying them in
case of Gauss-Bonnet gravity.

In this case there are two possibilities:

Case (a) : Specify qp and ¢; = dqp = 0¢1 =0,
Case (b) : Specify ¢o and g1 = dq1 = dgp = 0. (3.14)

We will consider each of this cases individually in more detail later in paper. But first we
study the boundary action that is needed for each of these. The surface action for each of

these is
(a) Vs | 3q0do kdo | dd
- 24 1
Ssurtace 167rG[ N a<2Nc 24N3 )|’ (3.15)
Vs [3q141 kg | g7
A p—— [ 24 . 3.16
swface = “Jgrg | N, o\ 2N, T 24N3 (3.16)

During the computation of equation of motion, each of them can be varied and added to
the boundary action in eq. (3.5). This will result in

EV 3 kj5 . .25 .
dey + 5Ss(u12face = 16 SG [ ((115(]1 + QO5QO) + 24« <2]301 + qu%1>] s (317)
€V 3 l{j(s . .25 .
dey + 6Ss(uzrface = 16 3(;' [ (Q15Q1 + q06q0) + 24« (2]33 q80Nq30>‘| . (318)

From this one immediately notices that in former case (a) if we fix gop and ¢; then r.h.s. of
eq. (3.17) vanishes. Similarly in the later case (b) if we fix ¢; and ¢ then the r.h.s. of the
eq. (3.18) vanishes. In this way the boundary value problem is well-posed. Moreover the
total action of theory is

a Vs 3¢* | 3qj
Siot = 5+ Suitace = 167G / dt[(ﬁk —2ANet g Nc]
Vs | 3q040 iy i
167G l N, 24 <2NC 24N3 | |7 (3.19)
3.2 3aé
SO —5+50 = oo G / dt[ (6k — 2Aq) N, o qu]
Vs 3q1q1 kqo
- 24 9
167TG[ N, * a( 24N3>] (3.20)

,10,



In each of these cases one can compute the momentum corresponding to field variable ¢(t)
by varying the bulk Lagrangian with respect to ¢. This is given by
oL 34
T=—=—.
oG N

It should be noted the bulk momentum in both the cases is same.

(3.21)

The variational problem in the two cases is well-posed resulting in equation of motion
whose solution can be found consistently. The solution to equation of motion in each of
these cases is given by

AN? 2AN?
¢“(t) = TCF + (ql -5 ) t+qo, (3.22)
(b) ANZ 5 AN?
g (t) = — it Go(t —1)+ (a1 — - - (3.23)

These solution can be plugged back in corresponding action of theory in eq. (3.19) and (3.20)
to obtain action for the lapse V.. The lapse action for the two cases is given by,

@_ V3 3¢1(290 +d1) : 2N2A? g ( g7 )}

Stot = T6-C [6‘ch LT (240 + @) NeA + —5— + N, (126 + Nz)) (3.24)
w_ Vs 3do(do —2q1) | . 2NZA*  ado ( o ﬂ

Sot = 150 [6ch Ly — +(do = 201)NeA + — N 12k + Nz)| (3.25)

The lapse action include non-trivial features coming from the Gauss-Bonnet sector of grav-
itational action, which arise in the case of MBC. In the following we will study these two
cases in more detail.

4 Transition probability

Generically once the action of a theory is known at the classical level then it can be used in
the path-integral to study the behaviour of the corresponding quantum theory. In the case
investigated in present paper the well-known classical action of Einstein-Hilbert gravity is
modified by inclusion of Gauss-Bonnet gravity terms which is topological in four spacetime
dimensions. Although such topological extensions doesn’t affect dynamical evolution of
fields at the classical level as has been noted in the previous section, but their presence
play a crucial role in dictating the choice of boundary conditions.

In the case of gravitational path-integral one can study a simpler situation by restrict-
ing oneself to the mini-superspace approximation. Within this approximation one can
precisely ask the following question: what is the transition amplitude from one 3-geometry
to another? Is it possible to address this directly in Lorentzian signature? and what is
the role played by boundary conditions in the computation of this transition amplitude
given by path-integral? The relevant quantity that we are interested in can be expressed
in mini-superspace approximation as follows (see [38, 46] for the Euclidean gravitational
path-integral in mini-superspace approximation)

0o bd;
Glbdo, bd,] = / dN,

7
Dy(t S0>, 41
o+ bdo alt) exp (ﬁ ot (1)
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where bdg and bd; are initial and final boundary configurations respectively. The path-
integral over ¢(t) is performed such that it respects those boundary conditions. For our
present case the above path-integral will be analysed with mixed boundary conditions
as discussed in eq. (3.14) in previous section. Sie is the total action incorporating the
appropriate boundary condition as given in (3.190 and (3.20) respectively. The original
contour of integration for N, is (07, 00). This contour integral over N, will be computed
using the technology of Picard-Lefschetz theory.

We start by considering the fluctuations around the solution to equation of motion,
which has been obtained previously respecting the boundary conditions.

q(t) = 7V (#) + ¢V8TGQ(1), (4.2)

where ¢(*%) () is the solution to equation of motion given in eq. (3.22) and (3.23), Q(t) is the
fluctuation around the background ¢(*%(t), and ¢ is the parameter to keep track of order
of terms. This decomposition can be plugged back in total action given in (3.19) and (3.20)
and expanded to second-order in €. Q(t) obeys similar set of boundary conditions as the
background (@ (t):

Case (a) : Specify Qo and Q1 = Qo= Q1 =0,

Case (b) : Specify Qo and Q1 = Q1 =Qy=0. (4.3)
After imposing these boundary conditions on () and performing the expansion in powers
of ¢ we notice that first order terms in € vanish as ¢\ b)( t) satisfies equation of motion.

The second order terms are non-vanishing. The series in €’ stops at second order. The full

expansion can be written as

2
S@b) = glab) _ 36 Vs / dtQ? (4.4)

b)

where St(gt’ is given in eq. (3.24) and (3.25). In the path-integral measure such a decom-

position will imply
/ Dy(t) = / DQ(t) . (4.5)

As the action in eq. (4.4) separates into a part independent of @ and part quadratic in
Q, therefore the path-integral over ) can be performed independently of the rest. This
path-integral over @ is

Q'[1]=0 Q1]=0 3ic2Vy (1. )
F(N,) = / DQ(t)| OR / DQ(t) |exp [ - a0?) . (4.6
Q[0]=0 Q'[0]=0 4hN,. Jo

Case (a) Case (b)

~—

This path-integral is very similar to the path-integral for a free where the trajectories at end
points are kept fixed. However, this one is slightly different as at one of the boundary we are
fixing Q. A similar path-integral over mixed boundary conditions was encountered in [54]
where the authors have computed it in appendix of the paper. Following the footsteps
in [54] we note

(4.7)
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The important point to note is that in case of mixed boundary conditions the above path-
integrals leads a N.-independent numerical factor, unlike in case of Dirichlet boundary
conditions where the above path-integral is proportional to N, 12,

Then our transition amplitude G[bdg, bd;] becomes
1 0 i o(a b))
G[bdy, bd :—/ dN. ex (SO’ , 4.8
[bdo, bd] i Jos p 7, tot (4.8)

where St(gt’b) is given in eq. (3.24) and (3.25). Now the task is reduced to performing the
contour integration over lapse N.. Here we will make use of complex analysis and Picard-
Lefschetz formalism to analyse this integral. We start by studying the various saddle points

of the action St(ffg”’ appearing in the exponent.

4.1 Saddle points

The saddle points of the action can be found using

9S4
ot _g. 4
N, 0 (4.9)

The important thing to note here is about the structure of St(gt’b) in terms of N, which can
be noticed from eq. (3.24) and (3.25). It has term proportional to N2, N, 1/N,. and 1/N2.

Setting (87G) = 1 the structural form for St(gt’b) can be written as

st _ % ACH N B](\Zb) N 2N§ A2 . ai;;b) | (4.10)
where
A® =6k — (20 + 41)A, A®) =6k + (4o — 2q1)A, (4.11)
Bla) — W + 12akdy , B®) = W — 12akdo (4.12)
c@ =, c® =g (4.13)

This structure is largely same as in the case of Einstein-Hilbert gravity, except the emer-
gence of new additional term proportional to 1/N2 which is coming from the Gauss-Bonnet
sector. The presence of this new term give rise to additional saddle points which are absent
in the case of Einstein-Hilbert gravity.

(a,b) (a,b) 272 (a,b)
0%t _ g o glap) _ B7  2NEAT 3D (4.14)

ON, N? 3 N4

Cc C

It can be seen from this that the saddle point equation is cubic in N2, resulting in three
pairs of roots. This cubic equation can be solved by the known methods of dealing with
cubic polynomial equation. In particular if the cubic equation has real coefficients then
the nature of roots can be determined by analysing the behaviour of the discriminant of
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cubic equation. Such a strategy is no longer valid if the coefficients are complex. The
discriminant of cubic polynomial with real coefficients is given by

A = (A(“’b)>2 (BW’))2 + 8{; (B(“’b)f +12a (A(W)?’ (ctn)

13604 (A (BED) (Ce) —10807A* (D). (4.15)

If A > 0 the cubic equation has three distinct real roots for N2. If D < 0 the equation has
two complex-conjugate roots, and one real root for N2. By defining variables

v 3 <A<a,b>)2 + 3 gy

4A* 272
3 a,b a,b 1 a,b 3 e a,b
V= 5BNAC 4+ (ale)” S0 (4.16)
one can write the roots as
1 b 1/2
No —j:<y++y_—2)\2A(’)) ,
+ 2 1 wn)?
N ==x(yjw+y-w _ﬁA ,
+ 2 1 an)
Ny =+ (ysw +y-w— 2—)\214 ’ , (4.17)
where
\% vz U3 v
Y+ = (2 =+ T 27) . (4.18)

where 1, w and w? are the three roots of unity. These are the six saddle points that arise
in this system.

The boundary conditions decide the nature of A(@b) B(@b) and €@ If they are real
then one can compute the discriminant of the cubic equation whose behaviour dictates the
kind of roots for N2. We can collectively write the saddle point as N, where o = 0, 1,
and 2. Corresponding to each of these saddle points we have a metric

2 2
@N\2_ N5 o (ap) dr 2 12
(dste?)” = T e (t) [1_ Tt dQQ] : (4.19)

where ¢(®%)(t) is given by eq. (3.22) and (3.23). Note that it is N2 that enters the metric,
which implies that the metric is same for each pair N of saddle points. As long as N2 is
real and positive, we are in Lorentzian signature. When it is real and negative then it is
Euclidean signature, as in those cases N, is imaginary. In cases when N2 is complex, the
spacetime has a mixed signature. Geometries become singular when ¢(®? () — 0. In this
case the spacetime volume goes to zero.

For each of these saddle points one has a corresponding on-shell action. As the saddle
points will generically be complex in nature therefore their corresponding on-shell action
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will have a real and an imaginary part. The momentum at the saddles can be computed
using eq. (3.21).
3¢(a:b)
(ab) — 24 4.20
T = . .
T (120)
By making use of solution to equation of motion given in (3.22) and (3.23) one can compute
the momentum at the end points.

@ 3 [ 2AN? @ _ 341
Ty " = N(a)i q1 — 3 ; ™ = N(a)i 3
. (b)2
® _ 3do ®» 3 [2ANs ,
To = )t ™= INCE ( 3 +qo| - (4.21)

The crucial point to note here is that momentum at the boundaries can be complex if the
saddle point N, is complex. This is interesting as it carries characteristics of tunneling
phenomena.

5 N.integration via Picard-Lefschetz

We then go forth to compute the N -integration. We will make use of Picard-Lefschetz (PL)
theory to analyse the behavior of the integrand in the complex plane [55-58]. Along with
PL theory we make use of WKB methods to compute the integral. For this we need the
set of saddle points and collection of steepest descent/ascent paths associated with each
saddle point. A saddle point is termed ‘relevant’ if the steepest ascent path emanating
from it intersects the original contour integration. The original integration contour can
then be distorted to lie along the steepest descent paths passing through relevant saddle
points. Instead of using the prescription of Wick-rotation to deform the contour, we follow
the methods of PL-theory to choose a contour of integration uniquely, along which the
integrand is absolutely convergent.

The problem of performing path-integration is reduced to a task of computing thimbles
(steepest descent paths) on a complex plane. In the following we will give a review of
Picard-Lefschetz formalism. We start by considering the path-integral in the following
manner

= / Da(t) S/ (5.1)

where the exponent is functional of z(¢). In general the integrand can be quite oscillatory
and hence not an easy task to compute the integral. In flat spacetime the global symmetries
of spacetime allow one to cast Lorentz group in to a compact rotation group under a
transformation of time co-ordinate. This privilege doesn’t exist in non-flat spacetimes.
Such a transformation of time co-ordinate in flat spacetime leads to exponential damping
of above integrand. In PL theory one analytically continues both z(¢) and S(z) in to
complex plane, and interprets S as an holomorphic functional of z(¢). This implies that S
satisfies a functional form of Cauchy-Riemann conditions

I ox T
0z 0= 0ReS _ _ 4ImS (52)
oy - or
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5.1 Flow equations

On writing the complex exponential as Z = iS/h = h+iH and writing z(t) = x1(¢) +ix2(t),

the downward flow is defined as

- Yigy (5.3)
where g;; is a metric defined on the complex manifold, X is flow parameter and (—) sign
refers to downward flow. The steepest descent flow lines follow a trajectory dictated by
above equation. They are also knowns as thimbles (can be denoted by J,). Steepest ascent
flow lines are defined with a plus sign in front of g;; in the eq. (5.3), and are denoted as K.
Here o refers to the saddle point to which these flow-lines are attached. The definition of
flow lines immediately implies that the real part h (also called Morse function) decreases
monotonically as one moves away from the critical point along the steepest descent curves.
This can be seen by computing

(5.4)

ax~ an ez 0 Lax ax

dh dzt Oh (d:z:i da:i>

= <0.
This generically holds for any Riemannian metric. However, in this paper for simplicity
we assume ¢, , = gzz = 0 and ¢,z = gz, = 1/2. This leads to a simplified version of flow

equations -

dz 0T dz 0T

dA 0z’ dA 0z (5:5)
Using them it is easy to notice that the imaginary part of ImZ = H is constant along the
flow lines.

dH  1dZ-1) 1 <8Idz 8Idz> o (5.:6)

dN 2 dh 2\ 0zdN 9z d)

This is a wonderful feature of flow-lines and can be used to determine the structure of flow-
lines in the complex N.-plane. It is seen that the oscillatory integral becomes convergent
and well-behaved along any of the steepest descent lines (thimbles). This motivates one
check if it is possible to analytically deform the original integration contour to integration
along either one thimble or a sum of thimbles. This is a true generalization of Wick-rotation.
In the complex N.-plane the flow equations corresponding to steepest descent (ascent)

becomes the following in cartesian co-ordinates

dxq - OReZ daxo B OReZ

D — _— = .
escent = D el D Oy (5.7a)
dzy  OReZ daxe  OReZ
A t — = — = . 5.7b
e T A\ 0w (5.7b)

It is noticed that the ImZ doesn’t enter the flow equations as ImZ = const. along the
flow lines. Each saddle point has two steepest descent lines and two steepest ascent lines
attached to it. The boundary conditions and the parameter values dictate the location
of the saddles on the complex N.-plane. Solving these flow equations can be sometimes
hard as Z can be complicated. However, it is possible to deal with them numerically. One
can bypass solving them entirely by making use of knowledge that H is constant along
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them. This determines all the flow-lines. But to find out about the nature of flow lines
one has to compute the gradient of first derivative (second order derivative of action at the
saddle points).

5.2 Choice of contour

Once the set of saddle points along with the set of steepest ascent/descent flow-lines associ-
ated with each saddle point are known, one can begin to find the new contour of integration
to which the original integration contour will be deformed. The integral in complex N,.-
plane is absolutely convergent along this new contour (for more detail see [38, 56, 57]).

In the complex N, plane the behavior of h and H determines the ‘allowed’ regions (re-
gion where integral is well-behaved) and ‘forbidden’ region (region where integral diverges).
We label the former by J, while later is denoted by K,, and as mentioned previously o
refers the saddle point. These regions have h(J,) < h(N,), while h(K,) > h(N,). h goes
to —oo along the steepest descent lines and ends in a singularity, while along the steepest
ascent contours h — +o0o. These lines usually intersect at only one point where they are
both well-defined. With a suitable choice of orientation one can write

Int (Jy, Kor) = 050 - (5.8)

The purpose is to write the integral over the original contour as an integral along the new
contour which is sum of integrations done along Lefschetz thimbles. Schematically this can
be expressed as
D= (0"00)=C=) n5Js, (5.9)
g

in a homological sense for some integers n, which will take value 0 or +1 when accounting
for orientation of contour over each thimble. This will also imply that n, = Int(C, ;) =
Int(D, ICyy ). As the intersection number is topological and doesn’t change if we deform the
contour, therefore the necessary and sufficient condition for a thimble 7, to be relevant is
that the steepest ascent curve from the corresponding saddle point intersects the original
integration domain . The integration contour is chosen to lie in the region J, (which
is the ‘allowed’ region) and follow the contour trajectory dictated by the steepest descent
paths [38]. In this circumstance there is no hindrance in smoothly sliding the intersection
point along the K, to the relevant saddle point.

Once the original integration contour is deformed to a sum over integration done along
various relevant thimbles then we have

I— / dz()eSE =3 n, [ ds(t)eSEN, (5.10)
C - To

It is common that in such process more than one thimble contributes to integration, re-
sulting in interference of contributions coming from various thimbles. This is feature of
performing complex integration via Picard-Lefschetz methodology. The integration along
each of the thimbles is absolutely convergent if

dz(t)eiS[z}/h

‘ g/ |dz(t)||eis[zl/ﬁy=/ 1dz(8)]e"(2) < oo (5.11)
To NE NE
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If we denote the length along the contour path as [ = [|dz(t)|, then convergence of above
integral require that e® ~ 1/l as | — oo. The original integration hence can be analytically
deformed into a sum of absolutely convergent integrals along various Lefschtez thimbles
passing through relevant saddle points. If one does an expansion in A then to leading order
we get the following

I:/dz(t)eis[z]/h = ZnoeiH(N")/
C g

where A, is the contribution coming after performing a gaussian integration around the
saddle point N,.

o

dz(t)e = Y n SN A, + O], (5.12)

5.3 Flow directions

The direction of flow lines either emanating from the saddles or going into it can be deter-
mined analytically (to some extent) by expanding the N -action of theory given in eq. (3.24)
and (3.25) around the saddle points given in eq. (4.17). If we write N. = N, + N (where
N, is any saddle point of action), then the action has a power series expansion in JNV.
ds© 1 d25©
SO — g0 4 = SN + = ——— (ON)? +--- . (5.13)

o 2
dN, N=N, 2 dN; N=N,

The first order terms will vanish identically by definition.

The second order terms can be computed directly from the action in eq. (3.24)
and (3.25), by just taking double-derivative with respect to N.. From this the direction
of flow-lines can be determined. One should recall that the imaginary part of exponential
iS (or H) is constant along the flow lines. This implies that Im [¢S —iS(Ns)] = 0. The
second variation at the saddle point can be written as d25(®) /dN2 = re', where r and p
depends on boundary conditions. Near the saddle point the change in H will go like

(4250

) (6N,)? ~ n2e!(m/2+200pa) (5.14)
No

97 and 6, is the direction of flow lines at the corresponding

where we write SN = ngye’
saddle point. Given that the imaginary part H remains constant along the flow lines, so

this means

2k —1)7m  po
O, = — = 2 5.15
1 5 (5.15)
where k € 7Z.

For the steepest descent and ascent flow lines, their corresponding ngs/ ** is such that

the phase for AH correspond to e!("/2+205+ps) — 1. This implies

s Po ™ Po
0l =k +— -2, S =fr— -2, 5.16
o Tty T Ve TR T (5.16)

These angles can be computed numerically for the given boundary conditions and for
gravitational actions.
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5.4 Saddle-point approximation

Once the set of saddle points, flow directions and steepest descent/ascent paths associated
with them (denoted by J,/K, respectively) are known, it is then easy to find the relevant
saddle points. A saddle point is termed relevant if the steepest ascent path emanating
from it intersect with the original contour of integration. In the current case the original
integration contour is (07, 00). The original integration contour then becomes sum over
the contribution coming from all the Lefschetz thimbles passing through relevant saddle
points. We can then do saddle-point-approximation to compute the transition amplitude
in eq. (4.8). In the & — 0 limit we have

Glbdo, by ~ Znoexp[ S50 (Vo) [ aNeesn [ (67

)NCNc (Ne - NU)Q] ’

(5.17)

where we consider only the leading order term in i. Here N, are the relevant saddle points
for the various boundary conditions given in eq. (4.17), St(gtb) (Ny) is the on-shell action
which can be computed from eq. (3.24) and (3.25) for the relevant saddles. (St(gt’b)>N N

the second variation of the action with respect to N, computed at the relevant saddle points.

is

On writing N — N, = ne'®s, where 6, is the angle the Lefschetz thimble make with
the real N-axis while o corresponds to relevant saddle point. Then the above integration
can be performed easily. It gives the following

_ . i (a
Glao.n) = = ool (S) 172w [ 43860 (V)] - 59

In the next section we will make use of it and apply it to the case of no-boundary proposal
of Universe to compute the transition amplitude.

6 No-boundary Universe

This is special boundary condition where the Universe start from nothing. In the current
situation this implies go = 0, implying that Universe started with a zero scale factor
a [36, 3840, 49, 50]. In case (a) where we specify field ¢y at one end point while its
first derivative ¢; at another end point this immediately leads to a simplified N, action.
However, at the final boundary, following the solution to equation of motion from eq. (3.22)

we also have a relation AN2
N,
R (6.1)
This allow us to express the derivative of field in terms of field value at the final boundary.
This is useful as one can study the problem by doing the analysis in terms of ¢; where
we require that for physical reasons ¢; > 0. A real and positive ¢; immediately implies a
possibly complex q'ga) if N2 is complex. On the other hand this also means that if ¢; has a
fixed real positive value and the number of relevant saddle points are more that one, then
it will imply that at the final boundary q@ will have multiple values. This is contradictory
to our initial requirement that in case (a) q{“) is fixed at final boundary, and implies that

the Universe at final time has multiple values of ¢;
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In the case (b) on other hand the boundary conditions require fixing q'(()b) and ng). This

implies that at ¢t = 0 by following the solution 3.23, if the Universe started from nothing
(¢®(t = 0) = 0), then it leads to a relationship between ng) and q%b)

(b p AN?
Q) =" - =5~ (6.2)

Here if at final boundary ng) > 0 (real and positive) then the initial q(()b) could be complex

when N2 is complex. Moreover, when the number of relevant saddle points are more than
one, then the final geometry is seen to arising from superposition multiple initial geometries.
This is quite possible and doesn’t lead to a contradiction unlike in case (a). In the following
we will study this particular scenario in more detail. We can plug the relation in eq. (6.2)
in the action for N, for case (b) in eq. (3.25) to obtain the N.-action for the no-boundary
proposal.

w_ W
tot 167G

{(aA = 3)q1 + 12ka} N A N (9 + 2a) g} + 24kaq

N,
o =30 it

3+ 20A)A2N3  agd
84 208) C+O‘ql]. (6.3)

54 N3

It should be noted that if we set & = 0 then we get the action for the no-boundary Universe
in case of pure Einstein-Hilbert gravity. We note that this residual action is bit different
from the action that one obtains in the case of dirichlet boundary conditions [38-40]. This
is because we used mixed boundary conditions to arrive at the action in eq. (6.3). The
saddle point equation correspondingly is

2
Case (i) - AET2N o L gp AU F O s
_ {12143(1(]1 + (2 + OéA) q%} Ng — 30[(]? =0. (6.4)

The interesting thing to note here is that in case (b) there exist a ¢; for which the coefficient
of N} in eq. (6.4) can vanishe. This will offer some simplification in the expressions for
saddle points.

The saddle-point equation is cubic in N2 with real coefficients. Its nature of roots can
be decided based by analysing the behaviour of its discriminant in the parameter space of
couplings and boundary value ¢;. It is seen that for positive k, A, and « the discriminant
is always positive for ¢; > 0. This is interesting as it quickly implies that the saddle point
equation has three distinct real roots for N2. Also as a and ¢; are positive, the zeroth-order
term in N2 in the saddle-point equation is positive. This means that the product of three
roots has to be positive. It leads to two possibilities: either all roots for N? are positive
or one is positive and other two are negative. However, as the coefficient of N? is negative
so this immediately implies the later case with one positive root and two negative roots
for N2. This means that we have two saddle points lying on real-axis in complex N,-plane
(one positive and one negative); while four saddle points lie on imaginary axis in complex
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N-plane (two of them in positive imaginary axis, while other two in negative imaginary
axis). It is worth stating here that saddle point where N2 > 0 correspond to the usual
Lorentzian geometry with a Lorentzian evolution, as can be seen from eq. (4.19). On the
other hand the saddle point where N2 < 0 correspond to Euclidean geometries.

To workout the transition amplitude in eq. (5.18) one also needs to know the second
variation of the above action. These will subsequently be needed to determine the direction
of Lefschetz thimbles at the various relevant saddle points. The second variation is given by

( S(b)) _ V3 [ (3+20A)A®N, N (9 + 2aA)g} + 24kaq: N 12aq;
NeNe 167G

9 N3 Np
At real saddle points the second variation is also real, while when N, is complex then the

(6.5)

second variation will also be complex.

The nature of relevance of each of these saddle-points depends on the parameter values
and whether the steepest ascent path emanating from them intersects the original integra-
tion contour. In principle this seems like a well-defined way of finding out the relevance of
saddle points. However, in practice often the action has large amount of symmetry. Due to
this there is degeneracy between steepest ascent and steepest descent curves. It means that
the steepest ascent curve from one saddle point overlaps with the steepest descent curve
from another saddle point. To lift these degeneracy one can add a small perturbation in
the N, action which helps in breaking symmetry. Lifting this degeneracy also aid us to
correctly locate the relevant saddle points.

We will consider a numerical example to investigate the state of art once parameters
are fixed to some value. For numerical analysis and to lift degeneracy of the system we
consider adding a small perturbation to the N, action
1V3€e’ N,

167G’

where €’ is a small parameter. Notice that the perturbation is imaginary in nature and it

Spert = (6.6)

is somewhat reminiscent to +ie-prescription in standard flat spacetime field theory. In a
sense we are inspired by the Feynman’s +ie-prescription to choose this perturbation.

For purpose of better understanding the system, we pick up an example. We consider
the value of parameters: k =1, A = 3, o = 2 and €’ = 1072 (we have set 87G = 1). For
k = 1 the volume V3 = 72 which can be computed using eq. (2.8). We compute the saddle
points following the eq. (6.4). As discussed previously it is seen that the cubic equation in
N2 has three distinct roots: NZ, N and N3. As expected the Re(Ng) > 0, Re(N?) < 0
and Re(N3) < 0 for all ¢;. Each of these roots for N2 gets a small imaginary part due to
the perturbation, which thereby give rise to a small deviation in the saddle points value

m (6NF) =+, 10> 0,
Re (6N{) =#u1, 11>0,
Re (0NF) =+15, 15>0. (6.7)

In figure 1 we plot the real and imaginary part of these roots as a function of ¢; (the
value of g at t = 1). To determine the nature of saddle points (relevant or irrelevant) one has
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Figure 1. Here we analyse the real and imaginary part of the saddle points (N3, N7 and N3) for
various values of ¢;. In this numerical example we consider k = 1, A =3, o = 2 and €/ = 1072,
There is a small imaginary part which comes due to the perturbation added to the total N.-action.
As discussed the real part of N¢ remains positive, while real part of NZ and N3 remains always
negative. In the plot on left we show the real part of various N2, while on the right plot we see the
behavior of [Im(N2)/Re(N2)| as a function of g;. For the plot on right we have scaled the value by
10% to plotting purpose.

2000¢

0.05¢
h(Ny) 0.00 \ h(Ny) 0 _\ )

— h(No")

— h(No)

-0.05¢ . = hv)
-0.10; A ~1000} e
-0.15¢ ‘ ‘ ‘ ‘ x| R 2000 N e
0 2 4 6 8 10 0 2 4 6 8 10 12
q q1

Figure 2. Plotting Morse-function h for various saddle point against g;. For this we consider
parameter values k = 1, A = 3, a = 2 and €’ = 1072, From the plots we notice that only h(N;)
and h(N; ) remains always negative. h(NQi) change sign after a certain threshold ¢i®.

to study the steepest descent/ascent flow lines corresponding to each saddle point. These
flow lines can be drawn by exploiting the knowledge that along these lines H(N.) = H(Ny).
In the absence of perturbation in (6.6) there will be some degeneracy in the sense that
steepest descent line of one saddle will overlap with the steepest ascent line from another
saddle. The addition of perturbation helps in lifting this degeneracy. In order to find the
relevance of saddle points it is also crucial to analyse the nature of Morse-function h at each
of these saddle points. Picard-Lefschetz theory dictates that relevant saddle points must
be reached by flowing down from the original integration contour via steepest ascent paths.
This will immediately imply that h < 0 at the relevant saddle points. A complex action
bypasses this rigid constraint though. However, in our present case this is not possible.

If we plot h(N,) against ¢; we notice that for some of saddle points h changes sign
as ¢ is varied. This is shown in figure 2. For the present situation there are six saddle
points. Only those which can be reached by flowing downward along the steepest ascent
lines from the original integration contour are relevant. The saddle points Ny~ and N lie
in lower-right and upper-left quadrant respectively. Only the former can be reached via
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Im(N,)

Re(N,)

Figure 3. We consider the case of no-boundary Universe where we choose parameter values: k = 1,
A =3¢ =10"2 and a = 2. We take q; = 3. We plot on x-axis real-part of N, while the y-axis
is imaginary part of N.. The red lines correspond to steepest descent lines (thimbles 7 ), while
the thin black lines are steepest ascent lines and denoted by K,. The various saddle points N, are
shown in blue. The blue cross-circle are irrelevant saddle points. The saddle point blue-square and
blue-triangle are relevant. The steepest ascent line emanating from it can be connected to original
integration contour. H remains constant along the red and black lines, and is equal to the value of
H(N,). The green region is allowed region with h < h(N,) for all values of o. The orange region
(forbidden region) has h > h(N,) for all o. The light-green, light-orange and un-colored region has
intermediary values. The boundary of these region is depicted in brown lines. Along these line we
have h = h(N,). The original contour of integration (0,00™) is shown by thick black line.

steepest ascent lines from original integration contour and hence is relevant. The saddles
Nl+ and Ny lie in upper-right and lower-left quadrant respectively. Both these saddle-
point can be reached from original integration contour by flowing downward along the
steepest ascent flow lines. However only the later lie in allowed region with corresponding
h < 0 and is favourable. Nj is therefore relevant. The saddle points N5 and Ny lie
in lower-right and upper-left quadrant respectively. Both are irrelevant: the former can’t
be reached via a steepest ascent path from original integration contour while later has
h > 0. So out of six saddle-points only two of them are relevant: Ni” and N; . In figure 3
we consider an example of the above scenario. We plot the set of saddle points along
with the collection of flow lines associated with each saddle. The coloring of graph is
done obeying the relation between the values of Morse-function at various saddle points.
The region where h(N.) < h(Ny) is colored green. The region where h(N.) > h(N;")
is colored orange. The light-green and light-orange region has intermediary values. The
boundary of these regions is depicted in brown lines. The steepest descent lines are shown
in red while the steepest ascent lines are shown in black. The thick black-line depicts the
original integration contour. The upward flow through original integration contour only
hits the saddle points Ny, N; and N, . However, only the former two are relevant with
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Figure 4. We consider the case of no-boundary Universe where we choose parameter values: k = 1,
A =3, ¢ =10"2 and a = 2. Here we plot the transition amplitude G(0,q;) as ¢; is varied.

corresponding h < 0, while Ny is irrelevant with corresponding h becoming positive for
q1 > ¢i* (threshold value).

The deformed contour of integration can be chosen such that it passes through all
the relevant saddle points (depicted in blue-triangle and blue-square), and follow closely
the Lefschetz-thimbles passing though them. The saddles depicted by blue-triangle is
predominantly imaginary, and hence correspond to a predominantly Euclidean geometry,
while the saddle point depicted in blue-square is predominantly real and hence correspond
to a predominantly Lorentzian geometry.

The deformed contour starts at blue-triangle then circles around following the
Lefschetz-thimble (red-line) lying in lower-right quadrant. Then it approaches origin.
Thereafter near the origin it turns back, hovers around in the green region following the
steepest-descent line approaching the blue-square. Thereafter it follows the Lefschetz-
thimble (red line) connecting blue-square in the upper-right quadrant. For the two relevant
saddle the corresponding ¢o at the initial boundary can be computed using eq. (6.2). As
the N, at the two saddle point is different, as a result the initial ¢g is different, indicating
that the final geometry is a super-position of two different initial configurations.

We numerically compute the transition amplitude in this particular case and plot it
in figure 4 as a function of ¢;. For this situation under consideration we have 6, = 0 and
Om = 7/4. Both saddle-points contribute in exponentially suppressed manner as h < 0
for both of them. But this suppression varies with respect to ¢;. At each ¢; the weight
of blue-square saddle point is more than the weight of blue-triangle saddle favouring a
Lorentzian geometry.
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7 Complex initial momentum

In this section we consider a very simple model of no-boundary proposal where we directly
fix the initial field derivative . Certainly, this scenario fall in case (b) category as discussed
in subsection 3.3. To properly motivate the choice of ¢y we start by considering deSitter
(dS) geometry which will be solution to bulk equation of motion. This means that for
A =3)2 > 0in d = 4 we have for the spacetime dS metric in eq. (1.2)

1
N,=1, alty) = Xcosh (Mtp) . (7.1)

dS can be embedded in 5-dimensions where in closed slicing it can pictured as hyperboloid
having a minimum spatial extent at ¢, = 0. The intuition behind the no-boundary proposal
is that the geometry is rounded off, so as to have no boundary in the beginning of time.
This can be achieved by analytically continuing the original dS metric to Euclidean time,
starting exactly at the waist of hyperboloid at ¢, = 0. This means

m T
= I - — <7< —. .2

tp jFZ<T 2)\>’ V=T=9) (7:2)
This means that along the Fuclidean section the dS metric transforms in to that of a
4-sphere

1
ds? =dr? + 2 sin? (A7) dQ3. (7.3)

This geometry has no boundary at 7 = 0 and smoothly closes off.

It should be emphasised that there are two possibilities of the time rotation to Eu-
clidean time above, corresponding to the sign appearing in eq. (7.2). Each of these choices
correspond to a different Wick rotation. The upper sign correspond to the standard Wick
rotation which is also used in the flat spacetime QFT. It is also the sign chosen in the
work of Hartle and Hawking [37, 59]. For this sign the perturbations around the geometry
are stable and suppressed. The lower sign in eq. (7.2) correspond to Vilenkin’s tunneling
geometry where small perturbation around the geometry are unsuppressed [39, 47]. The
process of Wick rotation can also be thought of the lapse IV, changing its value from N, =1
to N, = Fi, thereby implying that the total time T}, = [ N,dt, becoming complex valued.

This can be translated into the language of metric in eq. (2.11) and will thereby imply

sinh (\t,) = A2 Nunt + 1, (7.4)

where Ny will turn out to the saddle-point value of the lapse integral corresponding to
Hartle-Hawking geometry [37, 59]. It is given by

\/)\2(]1 —1 1

where ¢; = q(t = 1). The HH-geometry fall in case (b) of the mixed boundary conditions.
On comparing it with eq. (3.23) one has ¢(t = 0) = 0, while the ¢(¢) is given by

do=aq— NNy, = qum(t) = N Nigt® + (@ — \Ngy) ¢, (7.6)
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where 0 <t < 1. From this we can immediately notice the complex nature of saddle point
value Npp encodes the direction of Wick rotation. This can be seen by computing the
momentum using eq. (3.21) at t =0
dHH
2Nun =0

—_— (7.7)

Motivated by the Hartle-Hawking geometry [37, 59] where we notice that the initial mo-
mentum is complex and appears with positive sign resulting in a stable and suppressed
behaviour of fluctuations, we can consider appling this boundary condition in the case (b)
scenario that is considered in this paper. More clearly motivated by the works of Hartle-
Hawking [37, 59], we choose the following mixed boundary condition in the case (b)

@) =+2iNe, V(=1 =q. (7.8)
Plugging this special condition in eq. (3.23) and (3.25) we get
q® () = N2N212 + 2iN.t + q1 — 2iN, — \°N? (7.9)

and the corresponding action for lapse IV, is given by

SiTH — Vs ININE + 6iA2 N2 — 61 \2N.. — 2i {3q1 + 8a} (7.10)
167G

respectively. There are few crucial things to note here for this special mixed boundary
condition: (1) the action for lapse N, is complex (2) the action is no longer singular at
N, = 0. The former is a direct consequence of the imposition of complex initial momentum
which subsequently leads to complex geometries. A complex action will mean that even for
real values of lapse N, there will be a non-zero weighting of the corresponding geometrical
configuration.

The later point about the lack of N. = 0 singularity can be understood by realising
that as we are fixing the initial momentum (and not the initial size of geometry). As result
we are summing over all possible initial 3-geometry size and their transition to 3-geometry
of size ¢1. This will also include a transition from ¢; — ¢;. Such a transition can occur
instantaneously i.e. with N, = 0. This means that there is nothing singular happening at
N, =0.

An interesting third observation is that the saddle point equation following from action
in eq. (7.10) is quadratic in N..

dst! 4772 2 2

—===0 = ANNZ+2INN,.—q )\ =0. (7.11)

dN,
This quadratic equation has only two saddle point solution, unlike the scenarios studied in
previous section where there were six saddle points. In the present case the saddle points
are also independent of the Gauss-Bonnet coupling a. These saddle points have a very

—i £ vV (]1)\2 —1
A2 '

simple expression

Ni= (7.12)
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It should be noted that Ny is same as the saddle point considered in the work of Hartle-
Hawking [37, 59].

At this point our interest is to compute eq. (4.8) for the case (b) for the boundary
condition mentioned in eq. (7.8). The N.-action is given in eq. (7.10). As the integrand is
not singular for N, = 0, so one can extend the range of the N.-integration from —oo to co.
Then we have

. ) 1 e 7
Glin = 2iNeuar] = 5= [~ AN exp (550 . (7.13)

This can be performed using the Picard-Lefschetz and WKB methods. Once the saddle
points for the action S{II! are known, one can compute the steepest ascent/descent flow
lines corresponding to each of the saddle point. A saddle point is termed relevant if
the steepest ascent path emanating from it hits the original integration contour which is
(—00,4+00). If the action is real then it implies that the relevant saddle points will have
their corresponding Morse-function h < 0. However, in the case when action is complex

this obstruction can be evaded.

The analyse the nature of Morse-function at each saddle point we first compute the
on-shell action, which is obtained by plugging the saddle point solution given in eq. (7.12)
back in the action given in eq. (7.10). The on-shell action at the two saddle points is
given by,

2 1\3/2
SHH — o2 [—i (;2 + 4a) T (q”‘vl)] . (7.14)

It should be emphasised here that only the imaginary part of the action gets correction
from the Gauss-Bonnet sector of gravity while the real parts remains unaffected and is
same as for pure Einstein-Hilbert gravity. This immediately implies that for ¢; > 1/)\2,
the Morse-function for the two saddle points is

7.‘.2
h(Ns) = 27 (;2 + 4a> | (7.15)

It is real-positive and independent of q;. However, it receives a correction from the Gauss-
Bonnet sector of gravity action. By analysing the steepest ascent flow lines emanating from
both the saddle points it is realised that both of them are relevant. Even though for both
of them h(Ny) > 0.

In figure 5 we plot the various flow-line, saddle points, forbidden/allowed regions.
As both the saddle points are relevant, so the corresponding Lefschetz thimbles pass-
ing through both the saddle points constitute the deformed contour of integration. This
deformed contour starts at upper-left quadrant, follow the red-line, crosses the negative
real-axis then goes over to lower-left quadrant and asymptotes to —ico. The second part of
contour starts —ioco in lower-right quadrant, follows the red-line, crosses the positive real-
axis, then goes to the upper-right quadrant following the red-line. The Picard-Lefschetz
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Im(Ne)

Re(N,)

Figure 5. We consider the case of no-boundary Universe where we impose the mixed boundary
condition: with Euclidean momentum at ¢ = 0 and fixed final size at ¢t = 1. The lapse action given
in eq. (7.11) is complex. We take ¢y = +2iN, motivated by work of Hartle-Hawking [37, 59]. For
the purpose of this numerical example we take A = 1, a = 2. We choose final boundary condition to
be g1 = 3. We plot on z-axis real-part of N, while the y-axis is imaginary part of N.. The red lines
correspond to steepest descent lines (thimbles J,), while the thin black lines are steepest ascent
lines and denoted by K,. Both the saddle points are depicted in blue: N_ (blue-square) and N
(blue-circle). Both saddle points are relevant. The steepest ascent lines emanating from both of
them intersects the original integration contour (—oo, 400) which is shown by thick-black line. The
Morse-function h is same for both saddle points: h(Ni) > 0. H remains constant along the red
and thin-black lines, and is equal to the value of H(N,). The light-green region is allowed region
with h < h(N,) for all values of o. The light-orange region (forbidden region) has h > h(N,) for all
0. The boundary of these region is depicted in brown lines. Along these line we have h = h(N,).

theory then gives the transition amplitude in the saddle point approximation as

- HH . oHH
Gldo = 2iNe.q1] = 2\}5 [exp (”H}SVJ) +exp (zSuh(M)ﬂ

—im/4 ) 2 1 2 2)\ 1 3/2
e T T

We notice that we get a non-perturbative correction from the Gauss-Bonnet sector of grav-

ity to the Hartle-Hawking wave-function from a Lorentzian path-integral. This transitional
amplitude is fully non-perturbative and incorporates the non-trivial features coming from
the Gauss-Bonnet coupling.

8 Conclusion

In this paper we study the path-integral of gravitational theory where the gravitational
dynamics is governed by Einstein-Hilbert gravity with an addition of Gauss-Bonnet gravity.
We study this setup in four spacetime dimensions directly in Lorentzian signature. In four
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spacetime dimensions the Gauss-Bonnet sector of gravity action is also topological and
doesn’t contribute in the bulk dynamics. However it has a crucial role to play at boundaries.
Depending on the nature of boundary conditions the Gauss-Bonnet modifications will affect
the study of path-integral. This paper aims to investigate these issues by considering the
gravitational path-integral in a reduced setup of mini-superspace approximation.

We start by considering the mini-superspace action of the theory and vary it with
respect to field variables to study the dynamical equation of motion and the nature of
boundary terms. To have a consistent boundary value problem one has to incorporate
additional terms at the boundary. We notice that with Neuman boundary condition one
ends up with inconsistencies in fixing the free parameters in the solution to the equation
of motion. With Dirichlet boundary conditions on other hand it is seen that no non-
trivial effects arise from the Gauss-Bonnet sector. However, in the case of mixed boundary
conditions (where one specifies ¢(¢) at one end point and its derivative ¢(t) at another end
point) we notice that the Gauss-Bonnet sector starts to play a non-trivial role. Although the
solution to the equation of motion for ¢(¢) doesn’t get contribution from the Gauss-Bonnet
sector, however, the action for the lapse N, gets non-trivial addition due the non-vanishing
boundary terms. Such non-trivialities arising from the Gauss-Bonnet sector later leads to
richer features while evaluating the integration over lapse N, in eq. (4.1).

The paper aims to study the transition amplitude from one 3-geometry to another
and investigate the circumstances under which the Gauss-Bonnet sector starts to affects
this amplitude in a non-trivial manner. Such a transition amplitude is dictated by a path-
integral over ¢(t) and a contour integration over lapse N.. The path-integral over ¢(t) can
be performed exactly as the Gauss-Bonnet part controls only the boundary, while the bulk
remains unaffected. The path-integral over ¢(t) is governed entirely by the Einstein-Hilbert
part of gravity action. Once the integral over ¢(t) respecting the boundary conditions is
performed, we are left with an contour integration over lapse N, given in eq. (4.8), with
the integrand containing non-trivial features coming from the Gauss-Bonnet sector.

We analyse this contour integration by lifting lapse N, to complex plane and making
use of Picard-Lefschetz theory to investigate the nature of integrand. We find the saddle
points of the N.-action and realise that they occur in three pairs. This is a new feature
of the Gauss-Bonnet gravity which is absent in the case of pure Einstein-Hilbert gravity
having only two (or less) pairs of saddle points. In the mixed boundary conditions case the
Gauss-Bonnet sector contributes non-trivially and give rise to additional saddle points in
the complex N, plane. The three pairs of saddle points follow from the cubic saddle-point
equation in NZ2. Moreover, if the cubic polynomial equation has real coefficients then the
nature of saddle points can be determined by analysing the discriminant A of the cubic
equation, which in turn depend on parameter values and boundary conditions.

As an application of this we considered an example of no-boundary Universe, and
analyse the transition amplitude in this setup. In this situation the initial gg = 0. This
has consequences: in case (a) qga) and qga) are related, while in case (b) q'(()b) and q§b) are
related. In either case we have multiple relevant saddle points, so this implies that for real-
positive ¢; in the case (a) we will have multiple possibilities for q'§“). This is contradictory
to our original boundary condition requirement where q'la) is supposed to be fixed at the
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final boundary. Case (a) is therefore ruled out. Such a contradiction doesn’t happen in
case (b). In case (b) for a fixed real-positive ng) there are multiple value for q'(()b) for the
corresponding relevant saddle-points. This is acceptable as the final geometry can be seen
as arising from the superposition of multiple allowed initial configurations.

In case (b) by making use of the relation in eq. (6.2) one can obtain the action for lapse
N, entirely in terms of ¢;. As ¢ is positive, so the action for lapse is entirely real. The
saddle point equation is cubic in N2 with real coefficients. We realise that for positive k,
A, and o there are three distinct real roots for N2: one positive and two negative. This
implies that one saddle point is always real-positive while its ‘twin’ is real-negative. There
are four saddle points lying on imaginary axis: two on positive imaginary axis while their
conjugate twins on negative imaginary axis. There are total of six saddle-points, which is
new compared to the pure Einstein-Hilbert gravity. Attached to each saddle-point there
are two Lefschetz thimbles and two steepest ascent lines. Only three of the saddle point can
be reached by flowing downward along the steepest ascent lines starting from the original
integration contour (0%,00). Out of the three only two have their corresponding Morse-
function A < 0, making them relevant. One of the relevant saddle-point lies on negative
imaginary axis while other lies on positive real-axis. The deformed contour of integration
passes through these relevant saddles following the Lefschetz-thimbles. The deformed con-
tour therefore incorporate contributions from both saddles resulting in interference. The
full amplitude is a superposition of the contribution coming from two configurations with
the more weight associated to Lorentzian saddle compared to Euclidean saddle.

We consider another special case of no-boundary proposal with a complex initial mo-
mentum. Here we are inspired by the past works of Hartle-Hawking [37, 59], where the
authors noticed that a particular choice of Wick-rotation leads to stable and suppressed
perturbations. This choice of Wick-rotation eventually implies that the initial momentum
in the cosmic evolution was complex. Inspired by their work we choose a special initial
boundary condition to be q'(()b) = 42iN,.. This particular scenario falls in the category of
case (b) of mixed boundary conditions. We notice that in particular in this situation the
lapse N, action is complex, and that the action is non-singular at N, = 0. Moreover, in
this case we have only two saddle-points and both are relevant. We compute the transition
amplitude from the initial to final configuration and obtain an analogue of Hartle-Hawking
wave-function having a non-trivial and non-perturbative correction from the Gauss-Bonnet
sector of gravity theory.

Certainly, more work needs to be done in this direction as many things are still unex-
plored. In the study in section 6 we haven’t directly fixed the initial line ¢g in the case (b),
rather sort of derived it by imposing condition that q(()b) =0and ng) > 0. This two require-
ments eventually leads to two relevant saddle points. For each of these saddle point there
is a corresponding fixed q'(()b). This is hinting at fact that the final geometry of Universe is
arising due to superposition of the two very different initial configurations. Perhaps there
are two different copies of Universe initially whose evolution and interference resulted in
the final geometry of the Universe. Were these two Universe entangled in past and overtime
this entanglement grew stronger resulting in current Universe? This is hard to answer in
present manuscript.
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Another crucial thing missing in this paper is an analysis about the behaviour of fluc-
tuations, which are important to understand the stability of Universe. In past works on
no-boundary Universe it was noticed that such models are unstable to fluctuations [39].
This is a worrisome feature which if it exists make the model less reliable. Past attempts
to overcome these issues involved imposing different types of boundary conditions for back-
ground and for fluctuations [49, 50]. It is worth asking this same question in the case of the
Gauss-Bonnet gravity too. Does the Gauss-Bonnet modifications leads to a more stable
behaviour of fluctuations? If not then what kind of boundary conditions should be im-
posed for the fluctuations? Moreover, in the case of HH-model the choice of Wick-rotation
leads to stable and suppressed behaviour of fluctuations [37, 59]. Currently it is not clear
whether these fluctuations will remain suppressed when non-perturbative corrections from
Gauss-Bonnet gravity are incorporated. We plan to address this in our future work.
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