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基于Bayesian神经网络评价核裂变产额分布

王子澳, 强 雨, 裴俊琛†

(北京大学物理学院和核物理与核技术国家重点实验室，北京  100871)

摘要:  核裂变碎片的产额是核能和核应用领域中的关键基础数据。在实验和理论上，获得精确且完整的能量

依赖的裂变产额到目前为止都是一个挑战。贝叶斯神经网络 (Bayesian Neural Networks，BNN)可以描述需

要量化不确定性的逆向回归问题。基于BNN学习已有的裂变产额，可以给出未知的裂变产额及其不确定度。

特别是当裂变产物产额的实验数据不完整时，BNN可以推断出完整的裂变产额。在裂变产额的质量分布和

能量依赖关系上，BNN的评价结果比较合理。研究结果表明BNN在核数据评价领域有广泛的应用前景。
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1    引言

原子核裂变的发现深刻地改变了人类社会，一直是

核物理研究的一个重要关注点。核裂变数据是很多核技

术和核工程应用的重要基础数据 [1]。例如在核能、国防、

核辐射屏蔽、核废料处理和稀有同位素的生产中，裂变

产额均是重要的基础数据。在合成超重元素 [2−3]，中子

星并和过程中的 r-process[4]，以及反应堆中微子等研究

中，核裂变过程也是不可或缺的。特别是高精度的锕系

核区的裂变产物产额分布很有应用价值。利用对裂变产

物产额的系统分析，还可以进一步认识原子核结构以及

核动力学的演化 [5−7]，但是因为中子不带电，实验上很

难给出入射中子能量连续变化的诱发裂变产物产额的实

验值。现有个别能量点的实验测量数据但往往不完整。

在国际上主流核数据库中，如中国的CENDL[8]，美国

的 ENDF/B-VII.1[9]，日本的 JENDL-3.3[10]，和欧洲

的 JEFF-3.1.1[11]等，只有在热中子 (0.025 eV左右 )，

0.5和 14 MeV等三个能量点的中子诱发裂变的完整产额

分布。而走向未来的核能—快中子反应堆需要精确的能

量相关的裂变数据。因此对未知的不同中子能量的裂变

产额进行高精度的预测和评价是非常急需的。

原子核裂变过程是一种复杂的量子多体系统的大幅

度集体运动，对核裂变可观测量的精确描述仍是核物理

最具有挑战性的课题之一 [12]。发展时间相关的微观裂

变动力学模型(Time- Dependent- Hartree-Fock- Bogoliu-

bov[13]和 Time-Dependent-Generate-Coordinate-Meth-

od[14−15])可以更好地理解裂变机制，但离定量计算还

有较大的距离。虽然准微观的裂变模型可以与某些原子

核的现有实验数据符合得很好 [16]，但裂变模式也会随

质子数中子数的不同而演化。所以准微观裂变模型和唯

像裂变模型的预测能力很有限。裂变可观测量的计算主

要取决于复杂的多维的势能面 [12]。随着激发能的增加，

复合核裂变所涉及的量子效应逐渐减弱 [3, 17]。因此对

复合核裂变产物的产额 [17−18]和发射中子后裂变产物的

产额 [19]的能量依赖关系的描述将更为复杂。此外，针

对核理论模型的不确定性的量化研究是近年来很受关注

的问题 [20]。

目前人工智能与不同学科的交叉融合获得了广泛的

成功和关注。在学习复杂的大数据并作出预测方面，机

器学习是一个强有力的工具。神经网络深度学习 [21]是

机器学习的一个分支，通过构造多层神经网络来训练大

量数据，可以模拟复杂的物理关联。传统的神经网络很

难给出预测结果的不确定性，而贝叶斯神经网络

(BNN)的网络连接参数为概率分布，能够自然地给出

逆向回归问题的不确定度 [22]。对于不同激发能的核裂

变产物产额，有大量的但不完整的实验测量数据。因此，

BNN是描述复杂的裂变观测量和分析复合核裂变统计

特性的理想工具。近年来BNN已被广泛用于核物理，

包括预测远离稳定线核区的结合能 [22−25]，模拟核反应

截面 [26−27]，状态方程 [28]以及高能核核碰撞 [29]等。虽

然高斯过程也可以求解回归问题，但侧重于局部关联 [22]。
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而传统的核裂变评价模型，如Brosa模型 [30]等，主要

基于唯像模型的参数拟合 [31]。这种评价方法，在实验

数据点很少的时候可能不适用，且不能给出不确定度分

析。本文的主要目的是提出基于BNN方法对不完整裂

变产物进行评价 [32]，展示BNN在描述裂变碎片产额上

的初步能力，比较不同BNN结构的差异。BNN通过学

习复杂的裂变数据进行预测和分析，有可能包含目前裂

变理论模型之外的潜在关联，从而揭示在裂变过程中一

些新的机制。 

2    理论方法与结果分析
 

2.1    BNN模型

BNN将神经网络权重参数设定为概率分布 [33]，而

不是传统神经网络设定的固定数值。BNN将网络参数

的概率函数视作先验分布，利用贝叶斯公式训练后得到

后验分布，通过后验分布对多维的网络权重参数进行马

尔科夫链-蒙特卡洛积分，得到预测均值和不确定度。

通过对给定的训练样本数据进行有限的训练步骤，

BNN可以对包含预测均值的预测概率分布分析得到置

信区间，从而可以定量描述不确定性。BNN还可以对

特定问题采用不同的先验分布，从而引入惩罚函数避免

过拟合问题。另一方面，与贝叶斯统计不同的经典统计

的目的是通过无限次采样后获得精确的参数值。

BNN模型采用的前向神经网络的网络函数为

f(x, θ) = a+

H∑
j=1

bj tanh

(
cj +

l∑
i=1

dijxi

)
, (1)

H l

θ = {a, bj , cj , dij}
xi

xi = {Zi,

Ni, Ai, Ei} Zi Ni

Ai Ei = ei + Si

ei Si

p (D| θ) χ2

其中：  为隐藏层神经元个数；  为网络中输入参数个

数；  为模型参数集。该公式描述了单

隐藏层的神经网络。对于多层神经网络，每层的输入 

都是下一层的网络函数的输出。根据数据集的规模来确

定神经元的个数，进而决定了网络的复杂性。目前模型

采用了一层隐藏层，为了尽量避免在复杂网络中有的网

络参数未被激活利用。网络的输入数据集为  

 ，其中   为裂变核的电荷数；   为裂变核

的中子数；  为裂变碎片的质量数；  为复

合核的激发能 (其中  和  分别是中子入射能量和中子

分离能)。选择裂变核的激发能作为输入可以与激发能

为 0的自发裂变进行区别。网络模型输出每个碎片的独

立产额而不是所有产额的分布，但是总的裂变产额在

2%的误差内非常接近总产额的归一化的期望值 2.0。因

此总产额的归一化不存在问题，采用后验归一化已经足

够好。BNN网络的似然函数   和目标函数   由

下式给出：

p (D| θ) = exp (−χ2/2) ,

χ2 =

N∑
i

[ti − f (xi, θ)]
2
/∆t2i , (2)

D = {xi, ti} xi ti

∆ti

p (θ |x, t )

其中   网络数据；   为输入数据；   为输出

裂变产额；  为对应的噪声强度 [22−23, 25]。后验分布

 可由下式得到：

p (θ|D) =
p (D| θ) p (θ)r
p (D| θ) p (θ) dθ

, (3)

p (θ)

f (xn, θ) xn

其中  为设定的先验参数分布 [33]，一般采用高斯分

布。网络参数学习实际上是一个应用随机梯度朗之万动

力学方法，采样搜索后验分布的极大值的过程 [30]。随

机梯度朗之万动力学方法，即在梯度下降算法的基础上，

在导数中加入期望值为 0并与学习速率相关的噪声项。

基于给定的网络函数  可以得到新输入数据  的

预测结果。由于网络函数是一个概率分布，BNN网络

的均值预测涉及高维积分，可以使用马尔可夫链-蒙特

卡洛采样积分得到：

⟨f (xn, θ)⟩ =
w
f (xn, θ) p (θ |D ) dθ。 (4)

Dn当进一步加入新的实验数据  时，后验分布可以

依据下式更新：

p (θ |D,Dn ) =
p (Dn |θ ) p (θ |D )r
p (Dn |θ ) p (θ |D ) dθ

, (5)

通过对后验分布的更新，可以对新的不完整的实验

数据进行评价。 

2.2    BNN模型的训练

χ2
N =

∑
i [ti − f(xi)]

2
/N

为了训练 BNN模型，我们首先将日本的 JENDL

核数据库 [10]中的 30个核 (例如 227,229,232Th， 231Pa，
232,233,234,235,236,237,238U，237,238Np，238,239,240,241,242Pu，
241,243Am， 242,243,244,245,246,248Cm， 249,251Cf， 254Es，
255Fm)的中子诱发裂变数据加入训练数据集中。BNN

网络训练的总误差定义为  。一

般认为全局优化和过拟合是神经网络模型中的两个最具

有挑战性的问题。复杂网络结构的BNN可能存在训练

的数值收敛问题 [22]。BNN模型需要足够的采样训练来

达到数值收敛，这将耗费较长的运算时间。神经网络对

包含 30个核的 5 350个数据点的训练数据集分别应用

了 32个和 40个神经元的隐藏层。该训练数据量大于应

用在原子核质量的BNN模型的数据量 [22−23, 25]。本文

所有的网络训练均应用了 100 000次采样学习。图 1给

  第 4 期 王子澳等：基于Bayesian神经网络评价核裂变产额分布 · 919 ·  



出BNN网络的部分训练结果。从图中可以看出，BNN

模型的训练结果基本上重现了裂变产额的分布，给出了

正确的裂变产额的位置分布和能量依赖特征。对于不同

核，BNN模型也给出了不同裂变模式，236U，242Pu和
237Np均能很好地重现实验值。其原因是训练数据集中

包含了 U和 Pu各同位素的数据。同样可以注意到，
232Th和 249Cf的训练结果略有偏离，这是因为训练数

据集中这些核的邻近核的裂变数据比较少。图 1显示训

练结果对应的 95%置信区间比较小，可以合理反映

BNN模型的描述能力。
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图 1    (在线彩图)BNN学习JENDL数据库的部分结果

阴影部分给出95%置信区间的分布， 图中给出了分别采用32神经元与40神经元的BNN学习结果对比。
 

 

除了训练数据集以外，神经网络的架构也可能影响

模型的性能。图 1也给出了隐藏层分别为 32神经元和

40神经元的BNN模型的训练结果的对比。40神经元在

质量数为 125~135的附近有较好表现。采用 40神经元

的 95%置信区间没有明显减小。总体上，40神经元训

练结果与 32神经元训练结果并没有显著差距。在本文

的网络架构下，随着隐藏层神经元数量上升，BNN方

法所需的运算时间增加，而且可能导致预测值会有更大

的不确定性。进一步，表 1给出不同模型方法的验证能

力的对比。表 1中包含了应用TALYS程序的结果，包

含Brosa和GEF模型的TALYS程序被广泛应用于裂变

数据的评估。基于发展物理模型与神经网络融合的目的，

我们采用了TALYS-1.9中GEF模型计算的初始裂变产

额，使用BNN模型学习其残差。表 1的结果表明BNN

模型较 TALYS程序有大幅度改进，然而由于 TA-

LYS程序的误差很大，结合TALYS程序的BNN模型

比仅使用BNN的模型并没有明显变好的结果。目前我

们正在研究多隐藏层的BNN，采用双隐藏层的BNN结

果对比单隐藏层结果会有明显的改善。但值得一提的是，

BNN结合微观核质量模型是十分成功的 [22−23, 25]，因
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此可以展望未来BNN结合微观裂变模型能够有很好的

预测能力。
  

表 1    不同网络模型的验证结果的误差
 

模型 χ2/10−5 

BNN-32 0.670

BNN-40 0.629

BNN-32+TALYS 1.902

BNN-40+TALYS 1.139

TALYS 16.79

注：表中BNN-32表示模型隐藏层包含32个神经元，TALYS结果由
TALYS-1.9中GEF模型在默认参数下的计算得到。
 
  

2.3    BNN模型进行评价

应用BNN模型的关键动机，是在学习现有完整裂

变产额实验数据的基础上，对特定核不完整裂变产额的

实验数据进行评价，并推断出完整的裂变产额。在学

习 JENDL的裂变产额数据后，BNN模型对 235U,238U,
239Pu在部分能量中子诱发下的不完整实验数据 [33]的

评估结果由图 2给出。现有数据库中没有相应的完整评

估。从图 2(c)和 (e)可以发现，在包括了这些实验数据

后 [33]，BNN模型可以对裂变产额给出相当合理的完整

评估。这可以部分归因于 1.37 MeV的能量颇为接近训

练数据集中已经包含的 0.5 MeV能量的数据。而当能量

处于 0.5和 14 MeV之间时，完整评价是具有挑战性的。

如图 2(b)，(d)和 (f)所示，BNN在远离 0.5 MeV能量

处的评估结果也比较合理。观察图 2(c)，评估结果在质

量数为 110附近存在不合理的裂变产额分布接近负值，

但包括不完整的实验数据点后，负值问题可以被避免。

此外通过加入惩罚约束也可以避免负值问题。
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图 2    (在线彩图)235U, 238U, 239Pu在部分能量中子诱发裂变的不完整实验数据的评估结果

阴影部分给出评估结果的95%置信区间。实验数据及其误差棒取自文献 [33]。
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基于不同能量中子诱发裂变的不完整实验数据的评

价，图 3给出 235U,238U,239Pu在不同能量的不完整实验

数据的评估汇总。分别包含 235U在 2.37，4.49，8.9，

14.8 MeV， 238U在 1.37， 2.37， 3.6， 14.8 MeV和
239Pu在 1.37，2.37，8.9，14.8 MeV时的中子激发能评

估曲线。可以注意到，在质量数为 110~130附近的谷

底，裂变产额随着能量单调上升。同时，随着激发能量

的上升，非对称裂变模式对应的两个峰值也逐渐减小。

一般认为，随着激发能的增加，对称裂变模式将逐渐占

据主导，非对称裂变模式逐渐减退 [17−18, 34]。因此可以

说明，BNN评价基本上合理地描述了裂变产额能量依

赖的特征。
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图 3    (在线彩图)235U, 238U, 239Pu在不同能量中子诱发裂变产额的不完整实验数据的评价结果

其中0.5V和14 MeV能量的实验数据取自JENDL[10]。
 

 

总体上BNN评价可以合理地给出置信区间作为不

确定性的度量。BNN方法预测裂变产额的峰值分布位

置是可靠的。虽然峰值附近的细致结构并不十分精确，

但BNN方法对于单个核裂变的细致结果是精确的。通

常，裂变产额是通过唯象模型来评估的，而唯象模型在

只有少数实验数据点可用的情况下是无法可靠应用的，

且无法给出不确定度。在这方面，BNN方法对有较大

误差和有分歧的实验数据进行融合评价和进行量化误差

分析有独特的优势。另外，通过在学习集中加入更多的

实验测量数据，并优化神经网络的结构，可以进一步改

进目前的网络模型。也可以引入其他辅助的物理量，例

如，电荷分布的奇偶效应和壳效应等来进一步改进神经

网络。最近我们基于改进的BNN对 239U复合核裂变的

电荷产额进行了推断，得到了可以与GEF模型相比较

的高精度的评价数据 [35]。在未来可以融合微观裂变模

型或者利用先验物理规律指导神经网络也是值得期待的。 

3    总结

本文应用BNN模型来研究和评价锕系区原子核在

不同入射中子能量下的诱发裂变产额，这是一个新的方

向。在很多情况下，中子诱发裂变产额分布的实验数据

是不完整的。基于所获得的信息，对不完整的裂变产额

数据进行BNN评价有广泛的应用前景。对裂变产额的

分布位置和能量依赖关系，BNN的结果是令人满意的，

而唯象评价模型在实验数据很少的情况下很难应用。此

外，贝叶斯神经网络模型可以自然地给出置信区间来合

理地估计预测的不确定性。今后我们将应用多隐藏层

的BNN，发展与微观裂变模型的融合，评价其他的裂

变观测量，以及分析裂变后的各种观测量之间的关联为

发展裂变理论提供线索。BNN模型的进一步改进可以

在未来提供更可靠和更精确的核裂变数据的评价，有望

满足核能和核工程领域对应用级核数据的实际需求。

参考文献：

 BERNSTEIN  L,  BROWN  D,  HURST  A,  et  al.  arXiv:

1511.07772[nucl-ex].

[1]

 HAMILTON J H, HOFMANN S, OGANESSIAN Y T, et al.

Annu Rev Nucl Part Sci, 2013, 63: 383.

[2]

 PEI J C, NAZAREWICZ W, SHEIKH J A, et al. Phys Rev

Lett, 2009, 102: 192501.

[3]

 EICHLER M,  ARCONES A,  KELIC A,  et  al. Astrophys  J,

2015, 808: 30.

[4]

 ITKIS M G, VARDACI E, ITKIS I M, et al. Nucl Phys A,

2015, 944: 204.

[5]

 ANDREYEV  A  N,  NISHIO  K,  SCHMIDT  K  H.  Rep  Prog

Phys, 2018, 81(1): 016301.

[6]

 SCAMPS G, SIMENEL C. Phys Rev C, 2019, 100: 041602.[7]

 GE Z G,  ZHAO Z X,  XIA H H,  et  al. J  Korean Phys  Soc,

2011, 59: 1052.

[8]

 CHADWICK  M  B,  HERMAN  M,  OBLOZINSKY  P,  et  al.

Nuclear Data Sheets, 2011, 113(12): 2887.

[9]

 SHIBATA K, IWAMOTO O, NAKAGAWA T, et al. Journ-

al of Nuclear Science and Technology, 2011, 48: 1.

[10]

 Joint  Evaluated  Fission  and  Fusion  (JEFF)  Nuclear  Data

Library[EB/OL].  [2020-04-15].  https://www.oecd-nea.org/db-

data/jeff/.

[11]

 SCHUNCK  N,  ROBLEDO  L  M.  Rep  Prog  Phys,  2016,[12]

  · 922 · 原  子  核  物  理  评  论 第 37 卷  

https://doi.org/10.1146/annurev-nucl-102912-144535
https://doi.org/10.1146/annurev-nucl-102912-144535
https://doi.org/10.1146/annurev-nucl-102912-144535
https://doi.org/10.1146/annurev-nucl-102912-144535
https://doi.org/10.1103/PhysRevLett.102.192501
https://doi.org/10.1103/PhysRevLett.102.192501
https://doi.org/10.1103/PhysRevLett.102.192501
https://doi.org/10.1103/PhysRevLett.102.192501
https://doi.org/10.1103/PhysRevLett.102.192501
https://doi.org/10.1088/0004-637X/808/1/30
https://doi.org/10.1088/0004-637X/808/1/30
https://doi.org/10.1088/0004-637X/808/1/30
https://doi.org/10.1088/0004-637X/808/1/30
https://doi.org/10.1088/0004-637X/808/1/30
https://doi.org/10.1016/j.nuclphysa.2015.09.007
https://doi.org/10.1016/j.nuclphysa.2015.09.007
https://doi.org/10.1016/j.nuclphysa.2015.09.007
https://doi.org/10.1016/j.nuclphysa.2015.09.007
https://doi.org/10.1016/j.nuclphysa.2015.09.007
https://doi.org/10.1088/1361-6633/aa82eb
https://doi.org/10.1088/1361-6633/aa82eb
https://doi.org/10.1088/1361-6633/aa82eb
https://doi.org/10.1088/1361-6633/aa82eb
https://doi.org/10.1088/1361-6633/aa82eb
https://doi.org/10.1088/1361-6633/aa82eb
https://doi.org/10.1103/PhysRevC.100.041602
https://doi.org/10.1103/PhysRevC.100.041602
https://doi.org/10.1103/PhysRevC.100.041602
https://doi.org/10.1103/PhysRevC.100.041602
https://doi.org/10.3938/jkps.59.1052
https://doi.org/10.3938/jkps.59.1052
https://doi.org/10.3938/jkps.59.1052
https://doi.org/10.3938/jkps.59.1052
https://doi.org/10.3938/jkps.59.1052
https://doi.org/10.1016/j.nds.2011.11.002
https://doi.org/10.1016/j.nds.2011.11.002
https://doi.org/10.1016/j.nds.2011.11.002
https://doi.org/10.1016/j.nds.2011.11.002
https://doi.org/10.1016/j.nds.2011.11.002
https://doi.org/10.1080/18811248.2011.9711675
https://doi.org/10.1080/18811248.2011.9711675
https://doi.org/10.1080/18811248.2011.9711675
https://doi.org/10.1080/18811248.2011.9711675
https://doi.org/10.1080/18811248.2011.9711675
https://www.oecd-nea.org/dbdata/jeff/
https://www.oecd-nea.org/dbdata/jeff/
https://www.oecd-nea.org/dbdata/jeff/
https://doi.org/10.1088/0034-4885/79/11/116301


79(11): 116301.

 PEI  J  C.  Science  China  Physics,  Mechanics  &  Astronomy,

2020, 50(5): 052004.

[13]

 REGNIER D,  DUBRAY N,  SCHUNCK N,  et  al. Phys  Rev

C, 2016, 93: 054611.

[14]

 YOUNES W, GOGNY D, BERGER J F. A Microscopic The-

ory of Fission Dynamics Based on the Generator Coordinate

Method[M]. Cham, Switzerland: Springer Nature Switzerland

AG, 2019: 950.

[15]

 SCHMIDT  K  H,  JURADO  B.  Rep  Prog  Phys,  2018,  81:

106301.

[16]

 RANDRUP J, MOLLER P. Phys Rev C, 2013, 88: 064606.[17]

 ZHAO  J,  NIKSIC  T,  VRETENAR  D,  et  al.  Phys  Rev  C,

2019, 99: 014618.

[18]

 OKUMURA S, KAWANO T, JAFFKE P, et al. J Nucl Sci

Technol, 2018, 55(9): 1009.

[19]

 MCDONNELL J D, SCHUNCK N, HIGDON D, et al. Phys

Rev Lett, 2015, 114: 122501.

[20]

 LECUN Y, BENGIO Y, HINTON G. Nature, 2015, 521: 436.[21]

 NEUFCOURT L, CAO Y C, NAZAREWICZ W, et al. Phys

Rev C, 2018, 98: 034318.

[22]

 NIU Z M, LIANG H Z. Phys Lett B, 2018, 778: 48.[23]

 ZHANG H F, WANG L H, YIN J P, et al. J Phys G, 2017,[24]

44: 045110.

 UTAMA R,  PIEKAREWICZ J,  PROSPER H B. Phys  Rev

C, 2016, 93: 014311.

[25]

 TALOU  P,  YOUNG  P  G,  KAWANO  T,  et  al.  Nucl  Data

Sheets, 2011, 112(12): 3054.

[26]

 MA C W, PENG D, WEI H L, et al. Chin Phys C, 2020, 44:

014104.

[27]

 PRATT S, SANGALINE E, SORENSEN P, et al. Phys Rev

Lett, 2015, 114: 202301.

[28]

 PANG LG,  ZHOU K,  SU N,  et  al. Nature  Comm,  2018,  9:

210.

[29]

 BROSA U, GROSSMANN S, MULLER A. Phys Rep, 1990,

197(4): 167.

[30]

 ENGLAND T R, RIDER B F. Evaluation and compilation of

fission product yields 1993[R]. Los Alamos National Laborat-

ory Report, 1993, LA-SUB-94-170.

[31]

 WANG Z A, PEI J, LIU Y, et al. Phys Rev Lett, 2019, 123:

122501.

[32]

 NEAL R M. Bayesian Learning for Neural Networks[M]. New

York: Springer, 1996.

[33]

 SHEIKG  J  A,  NAZAREWICZ  W,  PEI  J  C.  Phys  Rev  C,

2009, 80: 011302.

[34]

 QIAO C Y, PEI J C, WANG Z A, et al. arXiv: 2102.09314.[35]

Evaluation of Fission Yields with Bayesian Neural Networks

WANG Ziao,  QIANG Yu,  PEI Junchen†

(State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China)

Abstract:  Nuclear fission data are important infrastructure data in nuclear applications and nuclear engineering. It
is  still  challenging  to  obtain  accurate  and  complete  energy-dependent  fission  yields  in  experiments  and  theories.
Bayesian Neural Network (BNN) is idea to treat inverse regression problems and can provide quantified uncertain-
ties. We apply BNN to infer fission yields based on learning of existing fission yields. In particular, BNN is very
useful for evaluations of fission yields when incomplete experimental data are available. We demonstrated that the
BNN evaluations are quite satisfactory on mass distributions and energy dependencies of fission yields. This indic-
ates that BNN is very promising in nuclear data community.
Key words:  nuclear fission; bayesian neural networks; fission yields
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