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Abstract
The quantum blind millionaires’ (QBM) problem is an expanded version of the
millionaires’ problem in a quantum environment. For any two sets with different
members, the QBM problem represents the quantum solution of the private
summation in each set and the private comparison of the results simultaneously.
During it, the secrets of any participant should be protected. As a new topic in
quantum secure multiparty computation (QSMC), current solutions to QBM problems
usually require an honest third party to resist some potential attack strategies.
However, the assumptions will affect their applicability in practical cooperative
security systems. In this paper, we propose a new solution to the quantum blind
millionaires’ (QBM) problem without the help of an honest third party for the first
time. In our solution, the shift operations are applied to the d-dimensional 2-particle
entangled states to encode the secrets of the participants. According to our analysis,
the proposed solution can effectively resist typical internal and external attacks by
applying the detection methods generated by the participants. We hope that the
research will make positive developments for QSMC.

Keywords: Quantum blind millionaires’ problem; Private comparison; Secure
multiparty summation; d-dimensional 2-particle entangled states

1 Introduction
In the rapidly advancing information society, collaborative computational tasks are in-
creasingly common. For every participant, personal data usually involves privacy mes-
sages that cannot be known to others. In this view, it is necessary to protect private data
from being leaked during the computation process. To solve this security risk, secure mul-
tiparty computation (SMC) techniques are applied in practice. SMC is a critical topic of
cryptography derived from the millionaire problem in 1982 [1]. It refers to two million-
aires who own wealth x and y, respectively, and wish to contrast the magnitudes of x and
y without disclosing their respective wealth values. The millionaire’s problem points out
the idea of private comparison. After that, many experts have proposed a large number of
protocols to solve it and discuss its applications [2–9]. In recent years, the field of Quan-
tum Secure Multi-Party Computation (QSMC) has emerged, combining the principles
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of quantum computing with SMC to enhance security. The security of QSMC relies on
the unique properties of quantum mechanics, such as superposition and entanglement
against potential quantum attacks. QSMC aims to perform secure computations among
multiple parties using quantum protocols.

Expanding on the millionaire problem, the blind millionaires’ (BM) problem is intro-
duced. This problem involves grouping millionaires and comparing the sums of their
wealth across groups while preserving the privacy of each individual’s private wealth.
The idea of the BM problem can be widely used in the fields of data analysis, market
research, social surveys, etc. It offers an effective approach to balancing data utilization
with personal privacy protection during information processing. In data analysis, the BM
problem can be applied to process data sets that contain sensitive personal information.
Participants can group data anonymously and compare and analyze the sums of different
groups without revealing personal information. This approach enables effective data use
and analysis while protecting individual privacy. Market research can use the BM problem
to analyze consumer groups and compare preferences and behavioral habits between them
without revealing personally identifiable information. This helps companies better under-
stand market demand and develop more accurate marketing strategies. Social surveys and
opinion polls can also benefit from the BM problem, as it helps researchers collect data
and conduct subgroup analysis without violating the privacy rights of participants. This
method allows for the collection of objective and valid survey results while safeguarding
the confidentiality of participants’ personal information.

In recent years, the rapid development of quantum computing has inspired new ap-
proaches to classical cryptographic protocols. Quantum parallel computing capability en-
ables higher computational efficiency and exponential increases in computational speed.
Additionally, quantum entanglement is utilized for long-distance information transfer and
quantum communication. The generation of quantum randomness based on quantum
mechanics is not restricted by classical physical systems. This provides new secure com-
munication methods to improve the security of cryptographic protocols. In response to
the advantages brought about by quantum computing, an increasing number of scholars
have proposed quantum cryptographic protocols.

To solve the BM problem in a quantum environment, Zhang et al. introduced an honest
third party to solve a special case of the BM problem [10]. Here, the quantum blind mil-
lionaires’ (QBM) problem refers to dividing the participants into two sets with identical
numbers. Participants can use quantum technology to compare the relationship between
the size of the summation of the secrets of the two sets. Then Yao et al. solved the QBM
problem of any number of participants in two different sets based on d-level Bell states
[11]. However, it should be noted that during existing solutions, a trusted third-party is
introduced to ensure security and reduce the implementation difficulty. As it is difficult to
construct an absolutely honest party in practice, the assumption is not available and may
lead to some potential attack strategies on the honest party. For example, attackers may
destroy the communications between the honest server and the other participants and
generate failure attacks of a key single point in the quantum communication network.

In this paper, we design a protocol for the QBM problem without a third party that
allows for private comparisons and private summation between different numbers of par-
ticipants. Previously, two-particle entangled states of d dimension were applied. Using
shift operations, participants can encode their secrets and produce a binary sequence of
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random integers in the entangled states. In the protocol, though an honest third party is
not required, the privacy of the participants’ data can be better protected against some
internal and external threats, even if the majority of the malevolent participants conspire
together.

The arrangement of this paper is as follows. In Sect. 2, we describe some related study on
the QBM problem. In Sect. 3, the quantum resources and operations used in the presented
solution are described. In Sect. 4, a new QBM solution is proposed without a third party. In
Sect. 5, we briefly analyze the correctness of the solution. In Sect. 6, the necessary security
analysis are provided. Finally, a conclusion is given in Sect. 7.

2 Related work
In 2009, Yang and Wen first suggested a method to employ two-photon entanglement to
solve the millionaires’ problem [12]. As an early attempt at quantum secure multiparty
computation (QSMC), a few academics developed several methods to solve this problem
with the help of an honest third party. For example, Zhang et al. proposed some solutions
with better feasibility and security. The quantum blind millionaires’ (QBM) problem is
an extension of the millionaires’ problem [13]-[14]. As seen in its definition, it combines
multiparty quantum private summation and quantum private comparison.

For multiparty quantum Private Comparison, Ye and Ji et al. proposed some quan-
tum secure multiparty private comparison protocols based on entanglement exchange in
2016 [15–17]. Then Li et al. and Ye et al. proposed some efficient solutions with novel
quantum technologies [18–20]. In 2019, Ye et al. proposed a circular multiparty quan-
tum private comparison protocol with n-level single-particle states [21]. In 2022 and 2023,
Geng et al. [22] and Lian et al. [23] proposed semi-quantum private comparison protocols
based on Bell states. Recently, Lian et al. proposed a hybrid protocol for multiparty semi-
quantum private comparisons, multiplication, and summation based on single-particle
states of d dimensions without previously sharing keys [24].

For quantum private summation, Wang et al. proposed a multiparty quantum summa-
tion protocol based on the entanglement of d-dimensional Bell states and d-dimensional
cat states in 2021 [25]. Then, Zhang et al. proposed a multiparty quantum summation
protocol based on entanglement exchange [26]. In 2022, Ye et al. proposed a three-party
quantum summation protocol without the help of a third party [27]. Then, Duan and Ye et
al. proposed some quantum private summation protocols based on d dimensional quan-
tum systems [28]-[29].

With the development of the millionaires’ problem, a new idea named blind million-
aires’ (BM) problem was proposed in 2020 [30]. Here, Li et al. used shift registers and
probabilistic encryption algorithms to solve this problem. To give a quantum solution to
the BM problem, Zhang et al. first pointed out the quantum blind millionaires’ (QBM)
problem and provided a solution to its special case with multiparty entangled states by
introducing an honest third party [10]. Here, the QBM problem refers to the division of
participants into two sets with identical numbers. Then Yao et al. solved the QBM prob-
lem of any number of participants in two different sets based on d-level Bell states in 2023
[11]. However, as a new attempt at QSMC, it still requires further research.

3 Preliminary knowledge
This section introduces the fundamental concepts of quantum states and the operation
applied in the following solution.
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3.1 Computational basis and Fourier basis
In the d-dimensional quantum system, there exist two different bases named computa-
tional basis and a Fourier basis. {|j〉C , j = 0, 1, 2, . . . , d – 1} makes up the computational ba-
sis, and {|j′〉F , j = 0, 1, 2, . . . , d – 1} makes up the Fourier basis. Additionally, after applying
the quantum Fourier transform, each computational basis will be transformed into

∣
∣j′

〉

F = F |j〉C =
1√
d

d–1
∑

r=0

ξ jr|r〉 (1)

where ξ = e2π i/d .
It is evident that applying the Fourier operation on the computational basis yields the

Fourier basis.

3.2 d-dimensional 2-particle entangled states |χ2〉
For d-dimensional 2-particle entangled states |χ2〉, the computational basis is expressed
as

|χ2〉 =
1√
d

∑

j1+j2modd=0

|j1〉C|j2〉C , (2)

and the Fourier basis is expressed as

|χ2〉 =
1√
d

d–1
∑

j=0

|j′1〉F |j′2〉F . (3)

In the d-dimensional quantum system, the d-dimensional 2-particle entangled states
|χ2〉 have two common properties.

(1) When it is measured using the computational basis, the result is

(j1 + j2)mod d = 0, (4)

(2) When it is measured using the Fourier basis, the result is

j′1 = j′2. (5)

3.3 Shift operation
In the following solutions, the secrets and random numbers are encoded using the shift
operation, which is described as

QSk =
d–1
∑

j=0

|j ⊕ k〉〈j|, (6)

where the sign ⊕ denotes the addition modulo d(d ≥ 2) and k ∈ {0, 1, . . . , d – 1}.
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3.4 The formal definition of QBM
The quantum blind millionaire problem (QBM) is an extension of the millionaire problem,
which is designed in a security framework to compare the sums of two secret sets without
revealing the individual elements of the sets.

Given two sets Set A and Set B, where:
(1). Set A consists of n participants Alice1, . . . , Alicen, each with a secret value xi =

{xi (1) , . . . xi (l)}.
(2). Set B consists of m participants Bob1, . . . , Bobm, each with a secret value yj =

{

yj (1) , . . . yj (l)
}

.
The QBM protocol that allows the participants to compare the sums of their secret val-

ues,
n∑

i=1
xi and

m∑

j=1
yj, without revealing the individual secret values. Specifically, the protocol

should satisfy the following conditions:
Correctness:
The protocol should correctly output the comparison result of

n∑

i=1
xi and

m∑

j=1
yj.

Privacy:
(1)Privacy of Set A: Participants in Set B should only know the comparison result, not

the secret values of Set A. Additionally, participants in Set A should not know the secret
values of other participants within Set A.

(2) Privacy of Set B: Participants in Set A should only know the comparison result, not
the secret values of Set B Additionally, participants in Set B should not know the secret
values of other participants within Set B.

4 QBM solution for participants without a third party
For two different sets, Set A has n participants, Alicei(i = 1, 2, . . . , n); Set B has m partici-
pants, Bobj(j = 1, 2, . . . , m). In this section, Alicei and Bobj have one secret xi and yi, respec-
tively. The secret of each participant is converted into a binary sequence with fixed lengths
L, where xi, yi ∈ {0, . . . , d – 1}. They want to compare the summation

∑n
i=1 xi,

∑m
i=1 yi with-

out divulging their secrets. The specific steps of the solution can be seen as follows.

4.1 Initialization phase
Step I1 Alice1 prepare l copies of the entangled states of d-dimensional 2-particle

|χ2〉1, |χ2〉2, . . . , |χ2〉l. (7)

Alice1 selects the first particle from each entangled state to form the particle se-
quence P1 = {p11, . . . , p1l} and selects the second particle to form the particle sequence
P2 = {p21, . . . , p2l}.

Step I2 Alice1 randomly selects δ particles from d-dimensional 2-particle |χ2〉 to insert
them into the sequence P2, and sends the sequence P2′ to the participant Bob1. Alice1 ran-
domly selects the computational basis or Fourier basis to measure the test particles of the
sequence, and publishes the position and measurement basis. The measurement results of
Alice1 and Bob1 are m1 and m2, respectively, when Alice1 selects the computational basis.
He then confirms whether (m1 + m2)mod d = 0. If Alice1 choose the Fourier basis, he will
determine whether m1 = m2. If the test is unsuccessful, Bob1 and Alice1 will announce to
stop and go back to Step 1. When the test is passed, it continues.
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4.2 Transmission phase
Step T1 Firstly, Alice1 converts his secrets into a binary sequence x1 = {x1(1), . . . , x1(t), . . . ,
x1(l)}, x1(t) ∈ {0, 1}. Then he generates a string of random numbers r1 = {r11, . . . , r1t , . . . , r1l},
where r1t ∈ {0, 1}. He encodes secret and random numbers x1 and r1 by performing the
shift operation in the sequence P1. Here, Alice1 encodes x1(t) and r1t on the corresponding
particle p1t , and receives a sequence P1

1. For example, if Alice1 encodes the secret and
the random number in the sequence P1, the sequence P1 will become the sequence P1

1 =
{p11 ⊕ x1(1) ⊕ r11, p12 ⊕ x1(2) ⊕ r12, . . . , p1l ⊕ x1(l) ⊕ r1l}.

Step T2 Bob1 generates a set of random numbers r1′ = {r11′ , . . . , r1t′ , . . . , r1l′ }, he performs
the same encoding operations as Alice1 and obtains particle sequence P1

2. Alice1 and Bob1

randomly select δ particles from the d-dimensional 2-particle |χ2〉 as test particles and in-
sert them into P1

1, P1
2, respectively. In this case, they will obtain the sequences P1′

1 , P1′
2 . Then

Alice1 sends the sequence P1′
1 to Alice2, and Bob1 sends the sequence P1′

2 to Bob2. After
receiving Alice2 and Bob2, Alice1 and Bob1 will publish the position of the test particles
and measure the test particles.

Step T3 After discarding the test particles, Alice2 obtains the sequences P1
1 and Bob2

obtains P1
2. The participants emulate Alice1 and Bob1 in their encoding procedures and

eavesdropping detection, and send sequences to the next participant. Therefore, Alicen

will get sequences Pn
1 and Bobm will get sequences Pm

2 . Then Alicen sends the sequence
Pn′

1 to Bob1. Similarly, Bobm sends the sequence Pm′
2 to Alicen.

Step T4 After discarding the test particles, Alicen obtains the sequences Pm
2 , Bob1 gets

the sequences Pn
1 . Then Alicen encodes his random number rn = {rn1, . . . , rnt , . . . rnl} in the

sequence Pm
2 and inserts the test particles. He obtains the sequences Pm+1′

2 and sends it to
Alicen–1. The participants execute the same operation as Alicen. Finally, Alice1 receives the
sequence Pm+n

2 . The participants in Set B perform the same operations for the sequence
Pn

1 , and Bob m sends the sequence Pn+m′
1 to Alice1.

4.3 Measurement comparison phase
Step M1 After discarding the test particles, Alice1 obtains the sequences P1

m+n and P2
m+n.

Then he will use the Fourier basis to measure the l particles in the first particle sequence
P1

m+n and obtain the result.

A1 =
n

∑

i=1

(xi(1) + ri1) +
m

∑

j=1

rj1′ + p11 (8)

...

Al =
n

∑

i=1

(xi(l) + ril) +
m

∑

j=1

rjl′ + p1l. (9)

Similarly, Alice1 uses the Fourier basis to measure the particles in the second particle
sequence P2

m+n and obtain the measurement results.

B1 =
m

∑

i=1

(yi(1) + ri1′ ) +
n

∑

j=1

rj1 + p21 (10)
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...

Bl =
m

∑

i=1

(yi(l) + ril′ ) +
n

∑

j=1

rjl + p2l. (11)

Finally, Alice1 publishes the measurement results to the participants
Step M2 As the secrets are encoded into binary numbers, the participants need to con-

vert it back according to the value of At(t = 1, . . . , l) and Bt . To better compare the sum-
mation of the two sets of secrets, participants can perform the following calculations.

H =
l

∑

t=1

2l–t(At – Bt). (12)

(1) If H > 0, it means that the secret summation in Set A is greater than the secret sum-
mation in Set B;

(2) If H < 0, it means that the sum of secrets in Set A is less than the sum of secrets in
Set B;

(3) If H = 0, it means that the sum of secrets in Set A is equal to the sum of secrets in
Set B.

The detailed secret transmission process in the QBM solution is shown in Fig. 1, and
the protocol flow is presented in Algorithm 1.

As shown in Fig. 1, the solid line indicates that the secret and random numbers are
encoded when the shift operations are performed. The dotted line indicates that only the
random numbers are encoded when the shift operations are performed. The pink arrow

Figure 1 Detailed process of secret transmission in QBM solution
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Algorithm 1 A blind millionaire’s protocol without a third party
Require: Xi = {xi (1) , xi (2) , . . . , xi (l)} and Yj =

{

yj (1) , yj (2) , . . . , yj (l)
}

1: for i ← 1 to n + m do
2: if i ≤ n then
3: Shifting P1

i–1 + Xi + Rand Ri → P1
i;

4: else
5: Shifting P1

i–1 + Rand R(i–n)′ → P1
i;

6: end if
7: if i ≤ m then
8: Shifting P2

i–1 + Yi + Rand Ri′ → P2
i;

9: else
10: Shifting P2

i–1 + Rand R(n+m+1–i) → P2
i;

11: end if
12:

∣
∣Pm+n

1
〉 → Alice1;

13: end for
14: Measurement

∣
∣Pm+n

1
〉

,
∣
∣Pm+n

2
〉 → Ak , Bk , (k = 1, 2, . . . , l)

15: H =
l∑

t=1
2l–t(At – Bt);

Ensure: H .

indicates the route of operation performed by P1 and the blue arrow indicates the route
of operation performed by P2 in this QBM scenario.

5 Correctness analysis
This section will examine whether Equation (12) may be used to compare the size con-
nection between the sum of Set A and the sum of Set B to show that the proposed QBM
solution is correct.

Proof According to Equation (12), it is possible to obtain

H =
l

∑

t=1

2l–t (At – Bt)

= 2l–1 (A1 – B1) + 2l–2 (A2 – B2) + · · · + 2 (Al–1 – Bl–1) + (Al – Bl)

(13)

Substituting Equation (8) into Equation (11) and Equation (13), it will be

H = 2l–1

[ n
∑

i=1

xi (1) –
m

∑

i=1

yi (1)

]

+ 2l–2

[ n
∑

i=1

xi (2) –
m

∑

i=1

yi (2)

]

+ · · · + 2

[ n
∑

i=1

xi (l – 1) –
m

∑

i=1

yi (l – 1)

]

+

[ n
∑

i=1

xi (l) –
m

∑

i=1

yi (l)

]

=
n

∑

i=1

⎛

⎝

l
∑

t=1

2l–t
l

∑

j=1

xi
(

j
)

⎞

⎠ –
m

∑

i=1

⎛

⎝

l
∑

t=1

2l–t
l

∑

j=1

yi
(

j
)

⎞

⎠

(14)
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According to the encoding rules, there are

Xi =
l∑

t=1
2l–t

l∑

k=1
xi(k), i = 1, 2, . . . , n,

Yj =
l∑

t=1
2l–t

l∑

k=1
yj(k), j = 1, 2, . . . , m.

(15)

Substituting Equation (15) into Equation (14) yields

H =
n

∑

i=1

Xi –
m

∑

i=1

Yi (16)

In summary, Equation (12) can be used to determine the size of the secret sum of set A
and set B. �

To facilitate understanding, we illustrate the correctness of the QBM solution with a
simple example. The Set A has three participants Alicei(i = 1, 2, 3), whose secrets are 0111,
1010, 0110 after they convert it into binary. The Set B has two participants Bobj(j = 1, 2),
they have secrets 1100, 1001. Alice1 prepares four copies of d-level 2-particles. Alice1 gen-
erated an entangled state |χ2〉 and the first particle form sequence P1 = {p11, p12, p13, p14},
the second particle form sequence P2 = {p21, p22, p23, p24}. He sends the sequence P2 to
Bob1, and performs the shift operation on the sequence P1. Alice1 generates the random
number r1 = {1, 1, 0, 1} and performs the shift operation to encode x1 and r1 into the par-
ticle sequence P1. Thus, he will get the sequence P1

1 = {h1 ⊕ 0 ⊕ 1, . . . , h4 ⊕ 1 ⊕ 1}. Bob1

performs the same operations as Alice1, obtaining the sequences P1
2. The random numbers

of participants in sets A and B are shown in Fig. 2.
Alice1 and Bob1 insert test particles into P1

1, P1
2 and obtain the sequences P1′

1 , P1′
2 . Then

Alice1 sends the sequence P1′
1 to Alice2, and Bob1 sends the sequence P1′

2 to Bob2.
After discarding the test particles, Alice2 and Bob2 perform similar operations as Alice1

and Bob1 and send the sequences to the next participants. Therefore, Alicen and Bobm

obtain the sequences Pn
1 , Pm

2 . Then Alicen sends the sequence Pn′
1 to Bob1, here the ran-

dom numbers are encoded in the sequence. The participant in Set B performs the similar
operation as Bob1, which is finally sent back to Alice1 by Bobn. Similarly, Alicen encodes
his random number in the sequence, the other participants perform similar operations,
and Alice2 sends the final sequence to Alice1.

Alice1 obtains the sequences Pn+m
1 and Pn+m

2 , then Alice1 measures the received particle
sequences and publishes the measurement results as Table 1 and Table 2. Therefore, the

Figure 2 The random numbers of participants



Du et al. EPJ Quantum Technology           (2024) 11:81 Page 10 of 17

Table 1 The summation of the participants’ random numbers and the participants’ secret
summation in Set A

State P1 At

|χ2〉1 h1 ⊕ 0⊕ 1⊕ 0⊕ 1⊕ 0⊕ 0⊕ 1⊕ 0 h1 ⊕ 3
|χ2〉2 h2 ⊕ 1⊕ 0⊕ 1⊕ 1⊕ 1⊕ 0⊕ 1⊕ 1 h2 ⊕ 6
|χ2〉3 h3 ⊕ 1⊕ 1⊕ 1⊕ 0⊕ 1⊕ 1⊕ 1⊕ 0 h3 ⊕ 6
|χ2〉4 h4 ⊕ 1⊕ 0⊕ 0⊕ 1⊕ 0⊕ 1⊕ 0⊕ 0 h4 ⊕ 3

Table 2 The summation of the participants’ random numbers and the participants’ secret
summation in Set B

State P2 Bt

|χ2〉1 h1 ⊕ 1⊕ 1⊕ 1⊕ 0⊕ 1⊕ 0⊕ 0 h1 ⊕ 4
|χ2〉2 h2 ⊕ 1⊕ 0⊕ 1⊕ 1⊕ 1⊕ 1⊕ 0 h2 ⊕ 5
|χ2〉3 h3 ⊕ 0⊕ 0⊕ 1⊕ 0⊕ 0⊕ 1⊕ 1 h3 ⊕ 3
|χ2〉4 h4 ⊕ 0⊕ 1⊕ 0⊕ 0⊕ 1⊕ 0⊕ 1 h4 ⊕ 3

result of the calculation H is as follows.

H = 23(A1 – B1) + 22(A2 – B2) + 21(A3 – B3) + 20(A4 – B4)

= 8 × (–1) + 4 × 1 + 2 × 3 + 1 × 0

= 2

(17)

The secret summation of the participants in Set A is greater than the secret summation
of the participants in Set B, as shown from H > 0.

6 Security analysis
According to the steps above, it is clear that the actions of the participants in Set A and
Set B are absolutely identical. Thus, we take the example of the participants in Set A to
analyze the security of the solution to the QBM problem. In this section, we will analyze
the security of the solution against both internal and external threats.

6.1 The internal attack
In most cryptography protocols, the security loopholes caused by malicious participants
may be more serious. As some necessary actions are performed in the protocol, they have
more chances to intercept the transmitted sequences to obtain the secrets of other par-
ticipants. In this section, we discuss internal attacks from both independent and collusive
aspects.

(1) Participant-independent attack
a. When a participant performs an independent attack, it is assumed that the partic-

ipant Alicek wants to get the secret of the participant Alicek–1 without being detected.
Therefore, after Alicek–1 and Alicek perform eavesdropping detection, Alicek will obtain
the particle sequence Pk–1

1 . He can directly perform single-particle measurements on the
sequence. In Step 1, it can be seen that the sequences Pk–1

1 and Pk–1
2 are entangled with each

other. When Alicek performs a single-particle measurement in the sequence, the result is
seen as

C1 =
k–1
∑

i=1

(xi(1) ⊕ ri1) ⊕ h1, (18)
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Figure 3 Trends in the probability of Alicek obtains the secret of Alicek–1

...

Cl =
k–1
∑

i=1

(xi(l) ⊕ ril) ⊕ hl, (19)

Since the participant encoded his secret into a binary sequence in Step 2, for participant
Alicek to obtain participant Alicek–1’s secret, the probability that participant Alicek obtains
the secret of participant Alicek–1 is

P1 =
1

l∑

t=1
2l–tCt

. (20)

It can be seen that the probability tends to 0 (see Fig. 3), so he cannot get Alicek–1’s
secret.

b. When Bobj, a participant in Set B, intercepts the sequence Pi′
1 sent by Alicei to Alicei+1.

As he does not know the location of the test particles despite the fact that he can measure
the sequence with Fourier basis, the probability of getting Alicei’ secret is

Pe = 1 –
1
dδ

(21)

It can be seen that the probability tends to be 1 (see Fig. 4), so he will definitely be found.
c. Specifically, it is assumed that Alice1 wants to obtain the secret of Alice2. Since Alice1

generated the initial quantum states, after Alice2 performs the shifting operation, Alice1

intercepts the particle sequence that Alice2 sends to Alice3. However, this sequence con-
tains δ decoy particles, which means the probability of Alice1 being detected is very high,
approaching 1. Furthermore, Alice1 does not know the random numbers chosen by Alice2,
so he will not be able to obtain Alice2’s secret.
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Figure 4 Trends in the probability of Alicei+1 being detected

(2) Conspiracy to attack by the same set of participants
In a practical situation, it is inevitable that more than one malicious participant will ap-

pear to perform some special attack. We assume that the participants Alicek , . . . , Aliceq(k <
q) in Set A are dishonest. They conspire to obtain the secret of Aliceh. Depending on the
order in which participants encode their secrets, the collusion attack can be categorized
into three scenarios.

a. h < k: this means that the particle sequence encoded by Aliceh will eventually pass to
Alicek . After detecting eavesdropping, Alicek obtains the particle sequence Pk–1

1 . There-
fore, after performing a single particle measurement on the received sequence, the prob-
ability that these malicious participants obtain Aliceh’s secret is P1.

b. h > q: this means that the participants Alicek , . . . , Aliceq(k < q) need to intercept the
sequence Ph′

1 from Aliceh to Aliceh+1. Since the participant Aliceh+1 is honest, a malicious
participant that intercepts the particles cannot detect eavesdropping with Aliceh. Obvi-
ously, the malicious participant cannot distinguish between the particle encoding the se-
cret and the test particles, so the malicious participant cannot obtain useful messages
about Aliceh’ secret. If the malicious participant does not send any particles to Aliceh+1,
Aliceh+1 will realize the presence of the attacker and notify Aliceh to terminate the protocol
and restart from Step 1. If the malicious participant prepares a large number of particles
and sends them to Aliceh+1, the attacker will inform Aliceh and terminate the protocol.
The probability that the malicious participant will be detected when Aliceh and Aliceh+1

are eavesdropping is Pe converges to 1. In summary, it can be seen that if malicious partic-
ipants intercept the secret sequence of Aliceh, they will definitely be detected and cannot
obtain the secret sequence of Aliceh.

c. k < h < q: this means that the participant Aliceh encodes the secret in a sequence be-
tween the malicious participants, but he is not malicious. In this case, the malicious partic-
ipant Aliceh–1 will get the sequence P(h–1)′

1 . After Aliceh encodes the secret, he will send the
secret sequence to malicious participants. After Aliceh and Aliceh+1 have detected eaves-
dropping, the malicious participant Aliceh+1 will receive the sequence Ph′

1 . Here, malicious
participants can perform single-particle measurements on the sequences Ph–1

1 ⊕ Ph
1 , the
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result is

D1 = xh(1) ⊕ rh1, (22)

...

Dl = xh(l) ⊕ rhl, (23)

Therefore, the probability that malicious participants Alicek , . . . , Aliceq obtains the se-
cret of participant Aliceh is

P2 =
1

l∑

t=1
2l–tDt

. (24)

d. Specifically, it is assumed that Alice1 colludes with other participants in Set A to obtain
the secret of Alice2. When Alice1 measures the final sequence Pm+n

1 , the sequence includes

random numbers
m∑

j=1
rjt′ from participants in Set B and random numbers r2t from Alice2,

which Alice1 does not know. Therefore, even with collusion among the participants in Set
A, they cannot obtain Alice2’s secret.

(3) Conspiracy to attack different sets of participants
In order to obtain Alice1’s secret, Alice2, a participant in Set A, wants to conspire with

Bob1, a participant in Set B. When Alice2 detects the eavesdropping with Alice1, Alice1 will
obtain the sequence P1

1 and measure it, and obtain the measurement result h1 ⊕ r1 ⊕ x1.
At the same time, Bob1 measures the particles P1

2 in his hand on the Fourier basis, so Bob1

will get the measurement result h1. At this point, the probability that they will get Alice1’s
secret is P2(h = 1). This is the maximum probability of getting the participant’s secret.

6.2 The external attack
Assuming that Eve is the external attacker, he seeks to obtain the secret of Alicei(i =
1, . . . , n). To get Alicei’s secret, Eve needs to intercept the particle sequence Pi′

1 transmitted
from Alicei to Alicei+1 in Step 5. Obviously, the sequence of intercepted particles includes
the secrets, the random numbers of the first i participants, and the test particles. When
Eve wants to get the secret of Alicei from the intercepted particle sequence Pi′

1 , he needs
to measure it. The sequence Pi′

1 can be measured in two ways to obtain useful information
about the secret.

(1) Intercept-measure-resend attack: To avoid being detected, Eve may prepare a large
number of d-level 2-particle entanglement states |χ2〉 as forged particles to be sent to
Alicei+1. When Eve performs single-particle measurements on the particles, he cannot
distinguish between the encoded secret particle and the test particle. As a result, he will
undoubtedly be discovered and will be unable to get any valuable information regarding
the secret. After Alicei+1 receives the particle sequence, he first conducts a detection eaves-
dropping with Alicei. Since Pi′

1 contains the test particles, the probability of Eve’s detection
is Pe.

(2) Entangle–measure attack: After intercepting the particles, the external attacker Eve
uses the operation UE to entangle the intercepted quantum state with the constructed
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auxiliary state that contains the quantum system. Thus, it can be seen as

UE|j〉|e〉 =
d–1
∑

k=0

ajk|k〉|ejk〉 (25)

where |j〉 ∈ {0, . . . , d – 1} and
d–1∑

k=0
|ajk|2 = 1.

When it is measured using a computational basis, in order to avoid introducing any
inaccuracies and pass eavesdropping detection, the equation

ajk =

{

0, j �= k
1, j = k

(26)

needs to satisfy Equation (25).
When it is measured using the Fourier basis, the equation is

UE|fj〉|e〉 = UE(
d–1
∑

i=0

aji|i〉)|e〉

=
d–1
∑

i=0

ajiUE|i〉|e〉

=
d–1
∑

i=0

aji
d–1
∑

r=0

ωir|r〉|eir〉

=
d–1
∑

i=0

d–1
∑

r=0

ajiωir|r〉|eir〉

=
d–1
∑

i=0

aji
d–1
∑

l=0

a–il|fl〉|eii〉

=
d–1
∑

i=0

d–1
∑

l=0

aji–il|fl〉|eii〉

(27)

which leads to

|e00〉 = |e11〉 = · · · = |ed–1,d–1〉 (28)

As a result, Eve cannot get the secrets of the participants. It demonstrates that the pro-
posed method is immune to entanglement measurement attack strategies.

7 Comparison and discussion
The quantum blind millionaire problem is a novel research topic. In this section, we com-
pare the existing QBM protocols with our proposed protocol in terms of quantum re-
sources, quantum operations, qubit efficiency, number of participants, and third-party
involvement, as shown in Table 3.

The qubit efficiency of secure quantum communication was defined as

η =
c

q + b
(29)
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Table 3 Comparison of quantum blind millionaires’ protocol in Ref. [10, 11] and the proposed
protocol

Ref [18] Ref [19] Ours

Quantum resource d-level 2-particle entangled
states

d-level Bell states and
d-level single-photon state

d-level 2-particle entangled
states

Quantum operations shift operation shift operation shift operation
Third-party involvement Yes Yes No
Qubit efficiency 1

2n+10
1

4n+10
1

4n+2
Number of participants 2n n +m n +m

where c denotes the total number of the classical message bits, q represents the number
of the used qubits and b denotes the number of classical bits exchanged for decoding the
message. For simplicity, we assume that each set has n participants, and the number of
decoy particles used to check eavesdropping is equal to the secret length, both of which
are l.

From Table 3, we can conclude the following: Ref [18] and Ref [19] both require the
participation of a third party (TP). TP is assumed to be a semi-honest who may perform
an attack but cannot conspire with any party. However, the involvement of TP may com-
promise the security of the protocols. Therefore, we further extend the QBM protocol to
scenarios without a third party, allowing for the secure comparison of the sums of secrets
between participants in two sets without the need for a third party. With this improve-
ment, our protocol can exhibit higher security, making our protocol suitable for a wider
range of practical applications.

8 Conclusion
In this paper, a novel non-third-party solution is provided to the quantum blind million-
aires’ problem, which encodes the participant’s secret into d-dimensional 2-particle en-
tangled states using the shift operations. In our solution, a simple encoding method is used
to encode two sets of secrets to the entangled state of two particles in d dimensional. Fur-
thermore, the correctness of the solution is illustrated. The security analysis shows that
the solution is secure against both external and internal attacks, even if most of the par-
ticipants are malicious. As a first solution to QBM problem, we hope that the work will
lead to positive developments in quantum-secure multiparty computation in future.
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