

Measure of Identity in high- K 3qp rotational bands

Harjeet Kaur, Pardeep Singh,* and Sham S. Malik

Department of Physics, Guru Nanak Dev University, Amritsar-143005, India.

Introduction

Identical bands found in low spin (ND) bands [1], have stimulated great exuberance in Nuclear physics. In the present article, specific examples from the experimental data on identical 3qp high- K rotational bands based on same bandhead spin are discussed and analyzed for the first time. Low-lying positive parity proton pair-broken bands with bandhead spin-parity $K^P = \frac{19}{2}^+ [\pi \frac{7}{2}^+ [404] \otimes \pi \frac{5}{2}^+ [402] \otimes \nu \frac{7}{2}^+ [633]]$ are observed in three $^{171,173,175}Hf$ isotopes and these bands in ^{173}Hf and ^{175}Hf nuclei exhibits identical nature. However, the rotational band observed in ^{171}Hf nucleus exhibits identical nature with the 3qp rotational band based on $[\nu \frac{5}{2}^- [512] \otimes \nu \frac{7}{2}^- [514] \otimes \nu \frac{7}{2}^+ [633]]$ configuration found in ^{177}W nucleus. Also, negative parity proton-pair broken band with bandhead spin-parity $K^P = \frac{25}{2}^- [\pi \frac{7}{2}^+ [404] \otimes \pi \frac{9}{2}^- [514] \otimes \nu \frac{9}{2}^+ [624]]$ and positive parity neutron pair-broken band with bandhead spin-parity $K^P = \frac{25}{2}^+ [\pi \frac{9}{2}^- [514] \otimes \nu \frac{9}{2}^+ [624] \otimes \nu \frac{7}{2}^- [514]]$ are observed in ^{177}Hf and ^{181}Re nuclei respectively. These 3qp rotational bands are found to have identical character too. 3qp rotational band observed in ^{159}Er nucleus with bandhead spin-parity $K^P = \frac{21}{2}^-$ based on $[\pi \frac{7}{2}^- [523] \otimes \pi \frac{7}{2}^+ [404] \otimes \nu \frac{3}{2}^+ [651]]$ configuration shows identity with the rotational band of ^{181}Os nucleus with same bandhead spin-parity involving $[\nu \frac{1}{2}^- [521] \otimes \nu \frac{9}{2}^+ [624] \otimes \nu \frac{7}{2}^+ [633]]$ configuration [2].

Mostly equality of γ -ray energies, kinematic moment of inertia $\mathfrak{J}^{(1)}$ and dynamic moment of inertia $\mathfrak{J}^{(2)}$ of two bands have been cho-

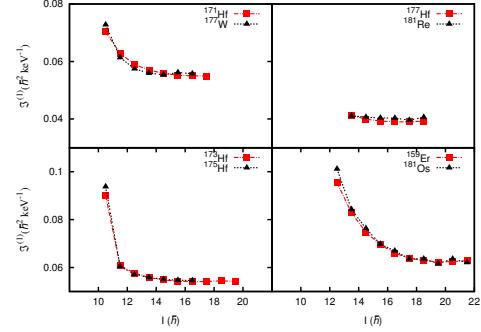


FIG. 1: Kinematic moment of inertia $\mathfrak{J}^{(1)}$ vs. $I(\hbar)$

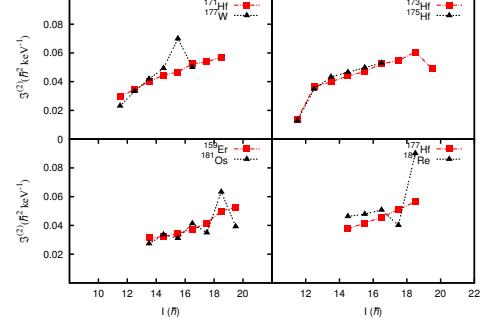


FIG. 2: Dynamic moment of inertia $\mathfrak{J}^{(2)}$ vs. $I(\hbar)$

sen as criteria for selection of IBs [3]. We did an analysis for IBs in high- K rotational bands based on both moments of inertia. From TABLE I, FIG. (1) and FIG. (2) we can notice the similarity in the γ -ray energies, $\mathfrak{J}^{(1)}$ and $\mathfrak{J}^{(2)}$ of the nuclei pair exhibiting the identical bands. Fractional change in $\mathfrak{J}^{(1)}$ is [3],

$$F.C.(A_1) = \frac{\mathfrak{J}_{A_1}^{(1)} - \mathfrak{J}_{A_2}^{(1)}}{\mathfrak{J}_{A_1}^{(1)}}$$

with A_1 and A_2 ($A_2 < A_1$) are the mass num-

*Electronic address: pardeepphy@gmail.com

with A_1 and A_2 ($A_2 < A_1$) are the mass num-

^{173}Hf			^{175}Hf		
I^π	E_γ	I^π	E_γ		
$21/2^+$	116.8	$21/2^+$	112.2		
$23/2^+$	189.2	$23/2^+$	189.9		
$25/2^+$	216.6	$25/2^+$	218.6		
$27/2^+$	241.7	$27/2^+$	241.7		
$29/2^+$	264.4	$29/2^+$	263.2		
$31/2^+$	285.7	$31/2^+$	283.3		
$33/2^+$	304.8	$33/2^+$	302.0		
^{171}Hf			^{177}W		
I^π	E_γ	I^π	E_γ		
$21/2^+$	148.9	$21/2^+$	144.3		
$23/2^+$	183.2	$23/2^+$	187.5		
$25/2^+$	212.0	$25/2^+$	217.5		
$27/2^+$	236.9	$27/2^+$	241.4		
$29/2^+$	259.4	$29/2^+$	261.7		
$31/2^+$	280.8	$31/2^+$	(276.0)		
$33/2^+$	299.9	$33/2^+$	296.0		
^{177}Hf			^{181}Re		
I^π	E_γ	I^π	E_γ		
$27/2^-$	254.8	$27/2^+$	255.4		
$29/2^-$	281.4	$29/2^+$	277.0		
$31/2^-$	305.4	$31/2^+$	297.9		
$33/2^-$	327.3	$33/2^+$	317.6		
$35/2^-$	346.9	$35/2^+$	342.5		
$37/2^-$	364.6	$37/2^+$	353.6		
^{159}Er			^{181}Os		
I^π	E_γ	I^π	E_γ		
$25/2^-$	131.0	$25/2^-$	123.6		
$27/2^-$	166.0	$27/2^-$	160.2		
$29/2^-$	194.0	$29/2^-$	190.0		
$31/2^-$	223.0	$31/2^-$	222.3		
$33/2^-$	250.0	$33/2^-$	246.4		
$35/2^-$	274.0	$35/2^-$	275.5		
$37/2^-$	294.0	$37/2^-$	290.8		
$39/2^-$	313.0	$39/2^-$	316.3		
$41/2^-$	328.0	$41/2^-$	322.4		
$43/2^-$	342.0	$43/2^-$	346.2		

Nuclei pair	N	$\Delta E_\gamma/E_\gamma(\%)$	R_γ	$F.C.$
$^{173}\text{Hf},^{175}\text{Hf}$	7	1.088	0.562	0.560
$^{171}\text{Hf},^{177}\text{W}$	7	1.973	0.334	0.354
$^{177}\text{Hf},^{181}\text{Re}$	6	1.965	0.518	0.524
$^{159}\text{Er},^{181}\text{Os}$	10	1.913	0.079	0.096

TABLE I: Identical bands in 3qp rotational bands

bers of the nuclei having the identical bands. For N number of transitions, then $F.C.$ is given as the ratio of total measure of the relative variation in $\mathfrak{V}^{(1)}$ to the relative difference in the moment of inertia due to the variation in mass number of two nuclei.

$$F.C.(A_1) = \left[\frac{1}{N} \sum_{n=1}^N F.C._n(A_1) \right] / \left[\frac{A_1^{\frac{5}{3}} - A_2^{\frac{5}{3}}}{A_1^{\frac{5}{3}}} \right]$$

where n is the label of state. The limit set for F.C. is chosen as less than one for the bands to be identical in ND regime. The parameter R_γ measures the comparison to rigid rotor as it is defined as the ratio of fractional change in γ -ray energies to the fractional change in $A^{\frac{5}{3}}$:

$$R_\gamma = \frac{\Delta E_\gamma(J)/E_{\gamma 1}(J)}{(A_1/A_2)^{\frac{5}{3}} - 1}$$

where A_1 and A_2 ($A_1 > A_2$) are the mass numbers of nuclei, $\Delta E_\gamma(J) = E(J) - E(J-1)$ and $E_{\gamma 1}(J)$ are the γ -ray energies associated with rotational band of nucleus with mass number A_1 . For the bands to be perfectly identical, R_γ should be equal to zero. Thus, smaller the value of R_γ , better will be identity in the bands. In the present work, we determine the R_γ , $\Delta E_\gamma/E_\gamma$ and $F.C.$ for various nuclei in which high-K rotational IBs are observed as shown in TABLE I.

Acknowledgments

This work is supported by C.S.I.R., India. Discussions with Sukhjeet Singh Dhindsa are gratefully acknowledged.

References

- [1] A. K. Jain, Z. Phys. A, **317**, 2050 1984.
- [2] S. Singh, S. S. Malik, A. K. Jain and B. Singh, At. Data and Nucl. Data Tables **92**, 1, 2006.
- [3] C. Baktash, B. Haas and W. Nazarewicz, Annu. Rev. Nucl. Part. Sci., **45** 485, 1995.