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1 Introduction

Within special and general relativity time and space are integrated into a common spacetime.
Still, time and space have different characteristics. Timelike correlation functions often show
an oscillatory behavior, while spacelike correlations typically decay exponentially or with a
power law. This time-space asymmetry results from the particular signature (−,+,+,+) of
the metric.

In a unified treatment of time and space one may ask what causes this asymmetry.
We will consider a setting without a difference between time and space on a fundamental
level. Both are just coordinates which label families of observables. In four dimensions this
coordinate manifold can be taken as R4. Geometry, as given the metric and its signature,
arises only in terms of the expectation value of a suitable metric field gµν(x), xµ = (t, ~x),
µ = 0 . . . 3, which can be considered as a collective degree of freedom.
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One possibility for the emergence of a time-space asymmetry could be simply the
selection of observables. Different types of observables are selected for the description of
the evolution in time and the space-dependence of expectation values and correlations. The
selection proceeds by defining a family of hypersurfaces along which the “evolution” is
investigated — these hypersurfaces are labeled by the time coordinate t [1]. The direction
of the sequence of hypersurfaces in R4, or in a corresponding four-dimensional hypercubic
lattice of space-time points for a discrete formulation, is arbitrary. Observables are selected
such that their dependence on t can catch a unitary evolution along the t-hypersurfaces. An
example for this setting is given by a simple probabilistic cellular automaton that describes
a discrete Thirring type quantum field theory for interacting fermions [2, 3]. A setting
on a two-dimensional square lattice results in the continuum limit in a 1+1-dimensional
fermionic theory with Lorentz-symmetry. Lorentz-symmetry entails time-space asymmetry.
The selection of the t-axis and the x-axis on the two-dimensional square lattice is arbitrary,
however.

One may ask if an arbitrariness in the selection of a time-axis can be encoded in terms
of spontaneous symmetry breaking [4]. Consider metric fields gµν(x) that are independent
of x and diagonal. For an expectation value gµν = diag(−1, 1, 1, 1) the x0-axis is the time
direction, while for gµν = diag(1,−1, 1, 1) the time direction is associated with x1. The
selection of the time axis is related in this case to a particular expectation value of a field.
Once expectation values diag(−1, 1, 1, 1) and diag(1,−1, 1, 1) are admitted there seems to
be no reason why to exclude the value diag(1, 1, 1, 1). This corresponds, however, to a
different signature of the metric.

If the dynamics makes no difference between values diag(−1, 1, 1, 1) and diag(1,−1, 1, 1),
these two values may be related by a symmetry which is respected by the dynamics. The
selection of the time axis is then formulated as a result of a spontaneous breaking of
this symmetry. If dynamically selected “ground states” with metrics diag(−1, 1, 1, 1) or
diag(1,−1, 1, 1) are preferred as compared to a state with diag(1, 1, 1, 1), this can yield
a dynamical explanation of the time-space asymmetry. In contrast, if diag(1, 1, 1, 1) is
also related to (−1, 1, 1, 1) by a symmetry, not only the direction of time is an effect of
spontaneous symmetry breaking, but also the time-space asymmetry itself. In this paper
we are open to these different possibilities. What is central, however, is that no signature
constraint is imposed on the metric from the beginning.

In a theory with fermions a pseudo-metric can be formulated as a bilinear in the
complex generalized vierbein eµm,

Gµν = eµ
meν

nδmn . (1.1)

Since we do not want to introduce a time-space bias from the beginning, the contraction of
the “Lorentz indices” m,n = 0 . . . 3 proceeds by δmn. A negative sign of a real G00 obtains
in this case by an imaginary value of e0

0, e.g. for k, l = 1, 2, 3

e0
0 = i , ek

l = δkl , e0
k = 0 , ek

0 = 0 . (1.2)

A formulation without time-space bias is therefore based on complex values of the vierbein.
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The ground state and spontaneous symmetry breaking select an expectation value of the
vierbein, which in turn determines the signature of the metric by eq. (1.1).

In this formulation a state with euclidean signature can be obtained by replacing in
eq. (1.2) the value e0

0 = i by e0
0 = 1. A powerful and complete formulation of analytic

continuation from euclidean to Minkowski space can be realized by investigating a family of
complex vierbeins e0

0 = eiϕ and varying ϕ [5]. In the formulation of the present paper or
ref. [4] this formal property is directly related to a trajectory in field space. If we admit a
complex vierbein, the analytic continuation proceeds by evaluating observables for different
values of the vierbein.

Arbitrary values of a complex vierbein translate to complex Gµν by eq. (1.1). The
pseudo-metric retains a simple geometric interpretation as a metric only for the particular
cases where it is real. This challenges the fundamental microscopic formulation of a quantum
theory for gravity based only on geometric concepts.

So far, the short distance behavior of quantum gravity remains an important open
problem. If one formulates quantum gravity in terms of a fundamental metric degree
of freedom, one can obtain a renormalizable and asymptotically free model involving up
to four derivatives [6–8]. It is not unitary, however, since it contains ghost degrees of
freedom. A consistent perturbative quantum field theory on this basis remains elusive,
despite interesting recent developments [9–11]. If an ultraviolet fixed point of quantum
gravity exists, asymptotic safety [12–17] should lead to a consistent unitary short distance
behavior. In particular, it should establish a consistent short distance behavior of the
graviton propagator. There has been progress in this direction [18–20], but the issue is
rather complex and it seems fair to say that up to now no convincing understanding of the
short distance graviton propagator has emerged in this approach.

These difficulties of the pure metric formulation make it tempting to ask if different
degrees of freedom at short distances could lead to a simpler description. Superstring theories
are a rather maximal approach in this direction, involving “infinitely many particles“ at short
distances. At tree level the short distance behavior of the graviton propagator and graviton
scattering find a consistent and satisfactory picture. Unfortunately, no non-perturbative
approach to superstrings is available for an inclusion of the effects of fluctuations of the
graviton. Since graviton fluctuations appear to play a crucial role for all other approaches to
quantum gravity, this shortcoming turns the string solution for the short distance behavior
of gravity to at best a partial answer.

Our approach is based on the functional integral formulation of quantum field theories.
In this setting the fluctuations, which are a central ingredient of any quantum theory,
are directly incorporated and can be computed, in principle, by various perturbative or
non-perturbative methods. For the basic degrees of freedom used for the formulation of the
functional integral we use degrees of freedom different from the metric. This defines some
type of “pregeometry”. The metric has to emerge as the expectation value of some composite
field or collective degree of freedom. The present paper explores pregeometries with a
complex vierbein, such that the quest for a short-distance formulation of the quantum theory
of gravity can be combined with an investigation of the origin of time-space asymmetry.
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A rather minimalistic approach to “pregeometry” tries to formulate the short distance
behavior of the gravitational theories in terms of fermionic degrees of freedom [21–23]. In
spinor gravity [24–27] the vierbein, metric and spin connection are all described as composite
objects built from fermions. These theories possess beyond diffeomorphism invariance a
local gauge symmetry that includes the local Lorentz transformations [24, 25]. In this
context the time-space asymmetry induced by spontaneous symmetry breaking has been
investigated in ref. [4]. Practical computations in this approach to quantum gravity are not
sufficiently advanced, however, in order to assess the consequences for the short distance
behavior of the graviton propagator and similar issues.

In the present work we follow an intermediate approach to pregeometry. We formulate
pregeometry as a diffeomorphism invariant Yang-Mills gauge theory based on the non-
compact gauge group SO(4,C). Besides the gauge bosons Azµ it contains fermions ψα and
vectors eaµ in suitable representations of the gauge group. They are coupled to the gauge
bosons by standard covariant derivatives in their respective kinetic terms. These kinetic
terms involve up to two derivatives and may lead at short distances to a standard form of
the propagators. For the gauge symmetry we choose the complexified group SO(4,C) since
it contains both the Lorentz group SO(1, 3) and the euclidean rotations SO(4) as subgroups
and therefore does not induce a bias for the signature. Non-compact groups could, however,
lead to inconsistencies for a quantum field theory.

A quantum field theory based on this type of pregeometry has to obey several require-
ments. First, a functional integral for the fields of a given model should be well defined.
Second, the associated time evolution should be unitary. Third, flat Minkowski space should
be a stable approximate solution. The present paper constitutes a first exploration if these
requirements lead to objections against the use of a non-compact gauge group. While the
first two points concern the possible form of the microscopic or classical action, the third
point concerns the properties of the quantum effective action, see section 2.

We explore a microscopic action for which the inverse propagator for all physical bosonic
modes grows for large momenta ∼ q2 = qµq

µ. This is the standard behavior for massless or
massive particles. Avoidance of ghosts or tachyonic instabilities is therefore easier than for
higher-derivative theories as Stelle’s gravity [6]. Nevertheless, if we would construct the
kinetic term for the gauge fields in the usual form with the metric, we would immediately
find tachyonic modes. We will show that the use of a complex vierbein can avoid this
problem. We present a classical action that has neither ghost nor tachyon modes. For flat
euclidean space the inverse propagator for all physical excitations grows for high momenta
proportional to q2 with a positive coefficient. If a renormalizable theory can be built on
this type of pregeometry, it would constitute a good candidate for an ultraviolet completion
of quantum gravity.

Quantum fluctuations induce additional terms in the quantum effective action. They
could lead to new instabilities, connected to the form of the full propagator for physical
excitations. Ghosts, tachyons or other problems with the analytic structure of the propagator
could arise at this level. We investigate such additional terms, assuming that they do not
alter qualitatively the high momentum limit q2 → 0. These terms are needed for a realistic
form of low-energy gravity. A well known issue is the form of the full graviton propagator.
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Expanding the inverse propagator in powers of q2 and truncating at any finite order beyond
q2 necessarily leads to ghosts or tachyons.

We will argue that the full form of the graviton propagator can avoid this potential
disease. For an expansion around flat space we find a range of parameters of a possible
quantum effective action for which no instability in the form of tachyons or ghosts occurs for
the graviton. The graviton propagator is given by a momentum dependent function Ggrav(q2)
multiplying an appropriate projector on the transversal traceless metric fluctuations that
involves the index structure. We obtain for the inverse propagator function

G−1
grav

(
q2
)

= m2

8

{
(Z + 1) q2 +m2 −M2 (1.3)

−

√
[(Z − 1) q2 +m2 −M2]2 + 4 q

2

m2 (m2 −M2)2
}
.

Here M2 is the (reduced) squared Planck mass and m2 corresponds to the squared mass
for the gauge bosons after spontaneous symmetry breaking. These free parameters of our
model have to be in the range 0 < M2 < m2. A third parameter Z of our model multiplies
the kinetic term for the gauge bosons. It has to obey the restriction

0 < Z <
M2

m2

(
1− M2

m2

)−1

. (1.4)

This graviton propagator seems to be well behaved in the entire complex plane for q2. It
can serve as an example for a consistent graviton propagator in quantum gravity.

The squared momentum involves the inverse vierbein emµ,

q2 = qµqνem
µen

νδmn . (1.5)

The complex q2-plane can be spanned by complex values of the vierbein. For the appropriate
range of parameters the only pole of Ggrav(q2) in the complex q2-plane occurs for q2 = 0.
One can analytically continue this propagator from euclidean flat space with positive q2

to Minkowski space with q2 = −q2
0 + ~q2 without any obstruction. We can define complex

momenta by
qm = em

µqµ . (1.6)

Translating to the complex q0-plane in Minkowski space the poles occur for real q0 = ±
√
~q2,

typically accompanied by branch cuts. For a suitable parameter range they occur on the
real axis for q2

0 > |q2
c |+ ~q2, with |q2

c | a positive value of the order m2 different from zero.
For low momenta the inverse graviton propagator admits a polynomial expansion in q2,

G−1
grav(q2) = M2q2

4 + 1
4

(
Z − M2

m2

)
q4 + . . . (1.7)

For a truncation at the order q4 the graviton propagator (1.7) shows a ghost instability. This
ghost is not present for the full expression (1.3). It therefore is an artifact of the truncation.
This is a direct example how pregeometry can cure shortcomings of metric gravity.
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For the momentum range |q2| � m2 the metric appears as a composite object which
dominates the dynamics. The low momentum effective theory is described by general
relativity with the Einstein-Hilbert action based on the curvature scalar. Expanding
the low momentum effective theory in powers of derivatives or momenta one recovers
Stelle’s gravity [6] in a truncation in fourth order in derivatives. This is reflected in the
expansion (1.7). The ghost observed in this truncation turns out to be an artifact of the
approximation [28]. It is not present in our model of pregeometry if the full momentum
dependence of the graviton propagator is taken into account.

Besides the graviton our model of geometry involves other scalar, vector and tensor
fluctuations. We will discuss the corresponding propagators and stability properties for
parts of these modes. In this sense our investigation does not yield a complete answer to the
question if flat space is a stable ground state for the proposed effective action. Nevertheless,
many qualitative and partly quantitative features emerge from this investigation.

Even if a satisfactory form of the quantum effective action can be found a central
question remains: can such an effective action describe the effects of quantum fluctuations
for the functional integral based on the proposed classical action? This question concerns
the renormalizability of the model of pregeometry. It may be attacked by the functional
renormalization flow from the classical action to the quantum effective action as quantum
fluctuations are included in a stepwise manner. The present paper does not address this
key issue for a consistent model containing quantum gravity. We remain on the preliminary
level of exploring possible consistent forms of the classical and quantum effective action.

This paper is organized as follows. The first part of sections 2–5 addresses the question
of consistency of the classical action. We discuss in section 2 the basic setting of our
proposal for pregeometry. Section 3 formulates pregeometry as a SO(4,C)-gauge theory
with diffeomorphism symmetry. We introduce the diffeomorphism invariant kinetic terms
for the complex gauge fields and vierbeins. Section 4 investigates the mode expansion
around flat space. Flat space solutions are stable, and the short-distance behavior of the
inverse propagator for most physical modes is proportional to q2, without any tachyons
or ghosts. At this stage there are still a few physical modes that do not have a kinetic
term, and therefore admit no well defined propagator. In section 5 we introduce a complex
pseudo-metric as a bilinear of the vierbeins. Additional invariants for the vierbein can be
formulated via the use of this pseudo-metric. In the presence of these additional invariants
all physical degrees of freedom have a well behaved propagator. At this stage we have
candidates for valid microscopic or classical actions.

In the second part comprising sects. 6–8 we deal with possible forms of the quantum
effective action. We use an (incomplete) set of invariants with no more than two derivatives
for an ansatz for the quantum effective action. Section 6 demonstrates that this includes a
type of potential for the pseudometric. Solutions with a real pseudo-metric are singled out,
allowing for a definition of a real metric and an understanding of its particular significance.
In section 7 we turn to the low momentum effective theory. We describe the emergence of
general relativity. The stability of the propagators is investigated in section 8. In particular,
we find the well behaved graviton propagator (1.3). The ghosts in four-derivative gravity
are understood as truncation artifacts.
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The discussion in section 9 points to the tasks that need to be accomplished for
establishing the proposed pregeometry as a consistent quantum field theory. An extended
appendix A performs the field decomposition for fluctuations around flat space. It establishes
the propagators for all modes and defines the low-momentum effective theory as the theory
for the massless modes. In particular we compute the graviton propagator and find a
consistent form for a suitable range of parameters. This appendix partly recapitulates
material of ref. [29] for convenience of the reader.

2 Pregeometry as a Yang-Mills theory

We propose that a pregeometry based on a Yang-Mills gauge theory could serve as a starting
point for a quantum theory of gravity. For the particular case of a gauge group SO(1, 3) —
local Lorentz symmetry — or the euclidean counterpart SO(4), the real vector field e m

µ

plays the role of a generalized vierbein, m = 0 . . . 3, for which the covariant derivative
does not vanish. For this case our approach follows the discussion in refs. [30, 31] see
also [32]. We discuss the euclidean setting with gauge group SO(4) in detail in ref. [29] and
appendix A. Our approach in the main text will be more general. We consider a complex
generalized vierbein and concentrate on the complexified orthogonal group SO(4,C). This
setting does not favor a particular signature a priori.

Classical and quantum effective action. It is our aim to find a possible starting
point for a consistent quantum field theory that includes gravity. A non-perturbative
formulation is based on a functional integral. A well-defined functional integral requires
certain properties of the classical action such that the weight factor exp(−S) is well behaved,
not diverging in an unacceptable way. (We take here the “Euclidean action” S, related
to the “Minkowski action” SM by a factor i.) Since the weight factor can be complex the
precise conditions on S are not simple. We require here positive eigenvalues of the inverse
propagator matrix (no tachyons or ghosts) for vierbein configurations corresponding to flat
euclidean space and vanishing gauge fields. This is often considered as a rather minimal
requirement, even though strictly speaking it is neither sufficient nor necessary. Analytic
continuation to complex vierbeins may then preserve a well defined functional integral.

A consistent quantum theory should have a unitary time evolution. From the functional
integral point of view one introduces a slicing of space by some type of time-hypersurfaces.
The evolution of the probabilistic information from one time slice to a neighboring one
defines a generalized Schrödinger equation and the associated operator formalism. The
Hamiltonian of the generalized Schrödinger equation should be hermitian (self adjoint) in
order to guarantee an unitary evolution where information is not lost. For a general complex
S the conditions for a unitary evolution are not well known. It is usually thought that this
requires the absence of ghosts or tachyons. We will restrict our discussion to this issue.

A realistic theory of quantum gravity needs a consistent phenomenology. For low
momenta it has to reproduce general relativity or mild modifications thereof, possibly
with additional massless or light fields. In particular, for length scales probed by present
observations which are substantially smaller than the horizon of our present Universe, flat
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Minkowski space should be a stable solution. Otherwise our local environment would quickly
deviate from what is observed. In a theory of quantum gravity one would like to extend
this stability requirement to a range of length scales down to the Planck length.

The field equations needed for the analysis of stability of flat space have to include
the effects of quantum fluctuations. The relevant object for this purpose is the quantum
effective action which includes all effects of quantum fluctuations. The field equations
derived by variation of the quantum effective action are exact. Computing the quantum
effective action amounts to solving the quantum field theory. We are obviously far from
realizing this task.

What we can exploit, nevertheless, are general features of the quantum effective action,
as symmetries and certain locality (or smoothness) properties resulting in the validity of an
expansion in the number of derivatives for sufficiently large length scales. We will focus
on the question if a quantum effective action for pregeometry can be found that leads
effectively to general relativity and stable Minkowski space for low orders in a derivative
expansion. Stability can be linked to the absence of tachyons for physical excitations, but
now concerning the quantum effective action instead of the classical action. The issues
are different since quantum fluctuations typically produce additional terms in the effective
action that do not need to be present in the classical action. We will see that such terms
are required for a consistent phenomenology. If an acceptable quantum effective action can
be found, the big task remains to relate it to a classical action which is used to formulate
the functional integral.

Covariant derivative of generalized vierbein. Before presenting the detailed defini-
tion of the classical action for our model of pregeometry in the next section, it may be
useful to put this formulation into a more general geometric context. This should help to
see the relations with previous work on related or somewhat similar concepts.

For our model of pregeometry an important role is played by the non-vanishing covariant
derivative of the generalized vierbein, Dµe

m
ν . The square of this tensor can be used for the

construction of a diffeomorphism invariant kinetic term for the vierbein. In the limit where
this covariant derivative vanishes and the composite metric is real one recovers general
relativity. Our approach employs two different connections. One is the gauge connection
and given by the gauge fields, the other is the geometric connection given by the Levi-Civita
connection expressed in term of derivatives of the vierbein. The geometric connection is
torsion free and there is no non-metricity. This is the standard setting for Yang-Mills
theories coupled to gravity. The two connections correspond to different fiber bundles —
this was historically the reason why for this version of generalized gravity chiral fermions
could be obtained from dimensional reduction of higher dimensional theories with compact
internal space [30].

In this language there seems at first sight only little overlap with formulations of metric
affine gravity with torsion and/or non-metricity, for which a dynamical spin connection
plays the role of the gauge bosons of the Lorentz-group [33–44]. We will see, however, that it
is possible to choose a different geometric connection with torsion and a vanishing covariant
derivative of the vierbein that brings this particular version of pregeometry much closer
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to versions of metric affine gravity. Furthermore, for a subclass of field configurations the
bundle structure of the gauge sector can be identified with the one relevant for geometry.
The difference between two connections with the same bundle structure is a tensor. We can
then express the covariant derivative of the vierbein as a linear combination of the gauge
field and the torsion tensor, thereby establishing a close connection to the formulation
of Poincaré gravity in refs. [45–50]. Some aspects are also similar to the gauge theory in
refs. [51, 52].

Within a more general setting a model is specified by the choice of the gauge group
and the representation for the fermions ψ and vector fields eµ. One possible choice for
the gauge group could be the Lorentz group SO(1, 3), with ψ in a spinor representation
and eµ in a vector representation. For euclidean gravity, the gauge group is instead SO(4),
and we discuss this choice in detail in appendix A. For these rather minimal settings the
time-space asymmetry of SO(1, 3), which corresponds to the signature of the invariant
tensor ηmn = diag(−1,+1,+1,+1), has to be postulated a priori. It will determine the
signature of the composite metric. We pursue here an extended setting that admits both
Minkowski space and euclidean flat space as possible field configurations. The observed
time-space asymmetry arises from spontaneous symmetry breaking that selects Minkowski
space, or a corresponding cosmological solution, dynamically [4, 24, 25]. For alternative
ideas in this direction see refs. [53, 54].

Non-compact gauge group and ghosts. For the gauge group we choose SO(4,C).
This extends the orthogonal transformations in four dimensions to complex infinitesimal
transformation parameters, thereby doubling the number of generators and gauge fields.
Both SO(4) and SO(1, 3) are subgroups of SO(4,C). The vector field e m

µ belongs to the
complex four component vector representation, m = 0 . . . 3, corresponding for each µ to
eight real components. We may call it a “complex vierbein“. The fermions are complex
four-component Dirac spinors or two component Weyl spinors. The six complex (or twelve
real) gauge fields Aµmn = −Aµnm belong to the adjoint representation. One could restrict
the discussion to real gauge fields and real vierbeins by considering the gauge groups SO(1, 3)
or SO(4). Many points of our discussion can directly be taken over to these simpler cases.
In particular, a discussion of euclidean quantum gravity for the gauge group SO(4) and
real eµm can be found in ref. [29]. Our setting will be more general and involve additional
degrees of freedom. Larger gauge groups with an SO(1, 3)-subgroup, or both SO(1, 3) and
SO(4)-subgroups, are also possible.

The gauge group SO(4,C) is non-compact. This brings new potential problems since
the kinetic terms for the gauge bosons may not all have the same sign. As a result, ghost
instabilities could be present. On the level of the microscopic or classical action the issue of
ghosts concerns the question if the functional integral is well defined. On this level we have
found gauge-invariant terms which provide for euclidean flat space a positive kinetic term
for all gauge bosons, despite the non-compact character of SO(4,C). This demonstrates
that non-compact gauge groups do not necessarily lead to ghosts. Similarly, for suitable
invariants the kinetic terms for the complex vierbein are all positive on euclidean flat space.

– 9 –
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On the level of the quantum effective action possible problems from ghosts concern the
stability of solutions of the field equations derived from it. More precisely, this involves
the question if a supposed ground state or cosmological solution is stable with respect to
perturbations. While tachyons indicate an instability on the level of linear fluctuations, the
issue of ghosts is more complex. In the absence of tachyons problems can arise beyond the
linear approximation, while stability of small fluctuations is maintained. Furthermore, the
presence of ghosts could induce in the effective action additional terms which affect the
complex structure of propagators or similar, for example by generating a decay width with
the wrong sign due to quantum pair production of particles with negative energy. In our
view the issue of ghosts is not fully settled at the present stage.

Analytic continuation. The fact that excitations of Minkowski space and euclidean
space can be related by analytic continuation in field space may shed new light on the
questions concerning ghosts and possible instabilities. For stable classical propagators
(absence of ghosts) in euclidean flat space analytic continuation to Minkowski signature
may still permit a well defined functional integral. We will address several aspects of the
issue of analytic continuation, without a complete answer about the conditions under which
negative kinetic terms are not a cause of a physical instability of Minkowski space.

Analytic continuation is usually thought as a map between two different quantum field
theories. In the present approach analytic continuation can be realized within a given
theory, by continuously changing the complex vierbein field [5]. This offers new prospects of
exploring the configuration space of the quantum effective action of our theory by analytic
continuation in field space starting, for example, from flat euclidean space and reaching
Minkowski space. We will establish stability of the microscopic theory in euclidean space.
Analytic continuation in field space suggests that this carries over to Minkowski space.

A second version of analytic continuation does not only change the value of the complex
vierbein, but in addition the value of certain components of the complex gauge fields. For
this type of analytic continuation the euclidean SO(4)-subgroup of SO(4,C) is analytically
continued to the SO(1, 3)-subgroup.

Spontaneous gauge symmetry breaking . Any non-vanishing expectation value of
the vierbein breaks spontaneously both the local gauge symmetry SO(4,C) and the gauge
symmetry of diffeomorphisms. For suitable constant vierbeins a global symmetry SO(1, 3)
or SO(4), together with translation symmetry, remains preserved, corresponding to the
symmetry of Minkowski space or euclidean space. Analogously to the Higgs mechanism, the
“spontaneous breaking“ of the gauge symmetry provides mass terms for the gauge bosons —
for the simplest case an equal mass m for all gauge bosons. The effective low momentum
theory for momenta |q2| � m2 turns out to be some version of general relativity.

A composite real metric emerges as a bilinear in the vierbeins, gµν = Re(e m
µ e n

ν δmn).
In the presence of suitable invariants the solutions of the field equations lead to vierbein-
configurations for which the complex vierbein bilinear Gµν = e m

µ e n
ν δmn assumes real

values. This does not imply real vierbeins, however. Since Gµν is SO(4,C)-invariant, all
vierbeins related by local SO(4,C)-transformations lead to the same real Gµν . Fluctuations
for which Gµν becomes complex are suppressed, however, by mass terms. They are absent
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in the effective low-momentum theory. The bosonic physical degrees of freedom in the
low-momentum effective theory are all contained in the real metric gµν .

Local gauge symmetries are never spontaneously broken in a strict sense. This feature
is manifest if we formulate the effective low-momentum theory in terms of vierbeins. By
simple field-redefinitions the vierbein can be chosen to be real, with a metric given now by
gµν = e m

µ e n
ν ηmn, where ηmn has the signature appropriate to SO(1, 3) or SO(4), depending

on the particular solution of the field equations. In the effective low-momentum theory
the gauge fields Aµmn equal the spin connection ωµmn which is formed in the usual way
from derivatives of the vierbein. They are no longer independent degrees of freedom. Local
SO(1, 3)-symmetry or SO(4)-symmetry is still manifest, acting on the vierbein and fermions.
The degrees of freedom in the vierbein that lead to the same metric are gauge degrees of
freedom. The effective low-momentum theory also remains diffeomorphism invariant. In
the presence of suitable invariants within pregeometry, the low-momentum effective theory
is general relativity, with the Einstein-Hilbert action involving the curvature scalar formed
from gµν supplemented by higher derivative terms.

Ultraviolet completion of general relativity. The full theory is actually much simpler
than the low-momentum effective theory. The inverse propagators of all physical degrees of
freedom grow ∼ q2 for large momenta. One may consider the analogy to strong interactions
in particle physics. The metric corresponds to the pions, or more generally mesons, in
the effective low-momentum theory (chiral perturbation theory). The degrees of freedom
of pregeometry correspond to the gluons, for which the short distance behavior becomes
simple due to asymptotic freedom.

Embedding a pure metric formulation as an effective low-momentum theory in a more
complete theory of pregeometry sheds light on the origin of the complexity that is apparent
in a pure metric formulation of asymptotic safety. One can always formally integrate out all
degrees of freedom except for the composite metric. As a result, a simple local action for
pregeometry takes the form of a complicated non-local action for the metric in the range
of momenta q2 � m2. This is due to the presence of additional degrees of freedom in the
range of high momenta. In our analogy one could formally use mesons also for momenta
of 100GeV or larger. The resulting effective action would be complicated, obscuring the
simplicity of QCD with gluons.

The present paper can be considered as a starting point for an investigation if this
type of pregeometry can lead to a consistent quantum field theory. One has to find out if a
simple action with parameters in the range appropriate for a stable theory can be considered
as a good approximation to the quantum effective action. This will need functional
renormalization group (FRG) investigations since not all couplings are dimensionless small
parameters and a free short distance theory is not expected for gravitational interactions.
First FRG — investigations for models with vierbeins and an independent spin connection
are already available [55–57] and would need to be focused on our proposal.

If our proposal leads to a consistent quantum field theory, this does not imply that it is
the most fundamental formulation of pregeometry. In spinor gravity the vierbein and the
gauge fields arise as composite objects formed from fermions. One can reformulate a purely
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fermionic theory by adding composite fields, as well known from the Nambu-Jona-Lasinio
model for strong interactions or from solid state models as the Hubbard model. If spinor
gravity is a consistent quantum field theory, also its reformulation with composite fields,
which takes the structure of the present model of pregeometry, must be a consistent quantum
field theory.

3 Local non-compact SO(4,C)-gauge symmetry

This section presents the key objects of our model of pregeometry. Fields depend on
coordinates x = xµ = (x0, xk). There is no difference between the coordinates x0 = t and
xk. These coordinates parametrize R4 and are kept fixed. A particular geometry will only
arise with a composite metric gµν(x). The signature, which can differentiate between time
and space, is only fixed by the expectation value of this metric.

Complex vierbein and gauge transformations. A basic object of our discussion is
the complex generalized vierbein e m

µ . It can be considered as a complex 4 × 4-matrix,
with spacetime index µ = 0 . . . 3, and Lorentz index m = 0 . . . 3. With respect to general
coordinate transformations (diffeomorphisms) it transforms as a covariant vector, and it is
also a vector of SO(4,C), with infinitesimal transformation

δe m
µ = −e m

µ ε m
n = εmne

n
µ . (3.1)

We raise and lower Lorentz indices with δmn or δmn, such there is actually no difference
between upper and lower Lorentz-indices. The infinitesimal transformation parameters εmn
are complex and antisymmetric,

εmn = −εnm, ε n
m = εmpδ

pn. (3.2)

These are six independent complex or twelve independent real parameters, corresponding
to the generators of SO(4,C). The transformations of the vierbein field eµm(x) are local,
with εmn(x) depending on x.

Real parameters εmn generate the euclidean subgroup SO(4). Under this subgroup the
real and the imaginary parts of the vierbein transform separately, such that e m

µ consists of
two independent vector representations. For the subgroup SO(1, 3) — the Lorentz group —
the parameters ε0k = −εk0 are purely imaginary, while εkl are real, where k, l = 1 . . . 3. We
may define a “Minkowski vierbein” by multiplication of the zero component with −i,

e(M)0
µ = −ie 0

µ , e (M)k
µ = e k

µ . (3.3)

The “Minkowski transformation parameters”,

ε
(M)
0k = −ε(M)

k0 = iε0k = −iεk0, ε
(M)
lk = εlk, (3.4)

are real and antisymmetric for the subgroup SO(1, 3). We can write eq. (3.1) equivalently as

δe(M)m
µ = −e(M)n

µ ε(M)m
n , (3.5)
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where for Minkowski parameters we employ ηmn and ηmn for raising and lowering indices,

ηmn = ηmn = diag(−1, 1, 1, 1),

ε(M)m
n = ε(M)

np η
pm, ε

(M) k
0 = ε

(M) 0
k = iε k

0 = −iε 0
k .

(3.6)

More generally, the Lorentz indices of all Minkowski quantities are raised and lowered with
η, e. g. e(M)

µm = e
(M)m
µ ηnm. For the SO(1, 3)- subgroup the real and imaginary parts of e(M)m

µ

transform independently, in contrast to SO(4).
By taking suitable combinations of purely imaginary and real εmn one obtains the other

SO(n, 4− n)-subgroups of SO(4,C). We will not discuss these possibilities here since they
do not seem to play a role for observations.

In general, a SO(4,C)-vector Em transforms as

δEm = ε n
m En, (3.7)

and a second rank tensor Hmn as

δHmn = ε p
m Hpn + ε p

n Hmp. (3.8)

In particular, δmn or δmn is an invariant tensor

δ(δmn) = ε p
m δpn + ε p

n δmp = εmn + εnm = 0. (3.9)

Another invariant is the totally antisymmetric tensor εmnpq.
In a Minkowski formulation with

H
(M)
00 = −H00, H

(M)
k0 = iHk0,

H
(M)
0k = iH0k, H

(M)
kl = Hkl,

(3.10)

one has
δH(M)

mn = ε(M) p
m H(M)

pn + ε(M) p
n H(M)

mp (3.11)

The Minkowski formulation is not a different theory, but rather a simple rewriting by
choosing other conventions for real and imaginary components of emµ and εmn.

Complex gauge bosons. The gauge bosons of the SO(4,C)-symmetry group are de-
scribed by complex fields Aµmn = −Aµnm. This differs from the usual description of the
compact gauge group SO(4) in terms of real gauge fields. Complex gauge fields are not per
se something new. For example, the charged gauge bosons of the weak-interaction gauge
symmetry SU(2) =̂ SO(3) are denoted by complex fields W±µ in an appropriate basis.

The real parts of the complex gauge bosons are the gauge bosons of the subgroup SO(4)
of SO(4,C). The SO(4)-gauge transformations with real gauge parameters ε n

m remain
within the subspace of real gauge bosons. We can again define an equivalent Minkowski
formulation for the gauge bosons by multiplying fields with one lower Lorentz index by
a factor i,

A
(M)
µok = iAµok, A

(M)
µko = iAµko, A

(M)
µkl = Aµkl. (3.12)
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The real parts of A(M)
µmn are the gauge fields of the subgroup SO(1, 3). Correspondingly,

the SO(1, 3) — gauge fields with one zero Lorentz index are purely imaginary in the
euclidean formulation. This property can be understood most easily by noting that real
gauge parameters ε(M) n

m in the Minkowski formulation generate transformations that
leave the space of real tensors H(M)

mn or gauge fields A(M)
µmn in the Minkowski formulation

invariant. Real A(M)
µmn are transformed among themselves by the real ε(M) n

m which span
the SO(1, 3)-subgroup.

Analytic continuation. For the purpose of analytic continuation from euclidean geome-
try to Minkowski geometry we define a family of complex vierbeins

e 0
µ = eiϕ e(E) 0

µ , e k
µ = e(E) k

µ , (3.13)

with real e(E)m
µ . We can view analytic continuation as a map in the space of vierbeins

e m
µ → e′ mµ , e′ 0

µ = eiϕe 0
µ , e′ kµ = e k

µ . (3.14)

Changing ϕ from zero to π/2 changes e 0
µ = e

(E) 0
µ to e′ 0

µ = ie
(E) 0
µ , such that the Minkowski

form of the transformed vierbein equals the original vierbein

e′(M) m
µ = e m

µ . (3.15)

This can be used for analytic continuation from euclidean to Minkowski space [5]. We
emphasize that this version of analytic continuation keeps the coordinates xµ fixed. It
is purely achieved by a change of field values of the vierbein, and the associated metric,
which will be a composite of vierbeins. Analytic continuation in momentum space from
flat euclidean to Minkowski space is realized for q2 = gµνqµqν = qµqµ, qµ = gµνqν , qµ =
−i∂µ = −i ∂

∂xµ , by a change of the value of the composite inverse metric gµν . For flat space
one has gµν = δµν or gµν = ηµν for euclidean and Minkowski signature, respectively.

Analytic continuation of the inverse vierbein e µ
m maps e µ

0 → e−iϕe µ
0 . As a consequence,

one has for ϕ = π/2
e

(E)µ
0 → e ′µ0 = −ie (E)µ

0 . (3.16)

The Minkowski formulation of the analytically continued euclidean vierbein therefore again
equals the original vierbein in the euclidean form,

e
′(M)µ

0 = ie ′µ0 = e
(E)µ

0 . (3.17)

Analytic continuation also concerns the gauge fields. Similar to the inverse vierbein
it multiplies the components of Aµmn with one Lorentz index taking the value zero by a
factor e−iϕ. For ϕ = π/2 this results in the map

Aµk0 → A′µk0 = −iA(E)
µk0, Aµkl → A′µkl = A

(E)
µkl . (3.18)

Again the Minkowski version A′(M)
µmn of the transformed gauge field equals the euclidean

version of the original gauge field. As a consequence, the analytic continuation of the gauge
bosons for the SO(4) subgroup are the gauge bosons of the subgroup SO(1, 3).
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Analytic continuation only concerns the Lorentz indices. For contractions with vierbeins
as Aµνρ the phase factors of analytic continuation drop out. The metric will transform
non-trivially due to contraction with the tensor δmn, such that the phase factors of e m

µ e n
ν

are not canceled in this case.

Invariant action. The inverse vierbein e µ
m is defined as the inverse complex matrix

e m
µ e ν

m = δνµ, e µ
m e n

µ = δnm. (3.19)

With respect to diffeomorphisms it is a contravariant vector which transforms under
SO(4,C) as

δe µ
m = ε n

m e µ
n . (3.20)

The determinant of the complex matrix e m
µ is invariant

e = det(e m
µ ), δe = 0. (3.21)

With respect to diffeomorphisms e transforms as a density (similar to √g in a metric
formulation). Therefore an action S,

S =
∑
n

∫
d4x eLn, (3.22)

is invariant under both diffeomorphisms and SO(4,C) transformations if all Ln are invariant
under SO(4,C) and transform as scalars under diffeomorphisms.

Fermions and gauge fields. A Dirac fermion transforms with respect to SO(4,C) as

δψ = −1
2εmnΣmnψ, (3.23)

where the SO(4,C) generators Σmn and iΣmn can be constructed from the commutator of
Dirac matrices γm,

{γm, γn} = δmn, Σmn = −1
4[γm, γn]. (3.24)

We can again define Minkowski quantities by

(M) 0 = −iγ0, γ(M) k = γk,

Σ(M) 0k = −iΣ0k, Σ(M) kl = Σkl,

Σ(M)mn = −1
4
[
γ(M)m, γ(M)n

]
,

δψ = −1
2ε

(M)
mn Σ(M)mnψ .

Denoting
γµ = γme µ

m = γ(M)me(M)µ
m , (3.25)

one finds for the euclidean vierbein e µ
m = δµm that γµ=0 = γ0, while for a Minkowski

vierbein e
(M)µ
m = δµm one has γµ=0 = −iγ0. In the following we employ the euclidean

notation.
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We introduce the conjugate Dirac spinor ψ̄ which transforms as

δψ̄ = 1
2εmnψ̄Σmn, (3.26)

such that ψ̄ψ is invariant. With γ5 = −γ0γ1γ2γ3, {γ5, γm} = 0, [γ5,Σmn] = 0, a Dirac
spinor decomposes into two Weyl spinors

ψ± = 1
2
(
1± γ5

)
ψ, ψ̄± = 1

2 ψ̄
(
1∓ γ5

)
. (3.27)

We want to impose local SO(4,C)-gauge symmetry. For the construction of a kinetic
term for the fermions we need a covariant derivative involving gauge fields,

Dµψ = ∂µψ −
1
2AµmnΣmnψ. (3.28)

There are six complex gauge fields Aµmn = −Aµnm corresponding to twelve real gauge
fields. Their SO(4,C) transformation involves an inhomogeneous part

δAµmn = ε p
m Aµpn + ε p

n Aµmp − ∂µεmn, (3.29)

such that
δ(Dµψ) = −1

2εmnΣmn(Dµψ). (3.30)

The bilinear
E m
µ = iψ̄γmDµψ (3.31)

has the same transformation property as the vierbein

δE m
µ = −E n

µ ε m
n . (3.32)

We observe that our construction is compatible with the possibility that in a more funda-
mental theory as spinor gravity the vierbein is the expectation value of a fermion bilinear,
e m
µ = 〈E m

µ 〉.
Eq. (3.32) allows us to construct a gauge invariant kinetic term for fermions

Lψ = E m
µ e µ

m = iψ̄γme µ
m Dµψ = iψ̄γµDµψ. (3.33)

With respect to general coordinate transformations ψ and ψ̄ transform as scalars, Aµmn
and Dµψ as covariant vectors and e µ

m as a contravariant vector. Thus Lψ is indeed a scalar.
The Grassmann variables ψ and ψ̄ are independent. For given values of the vierbein one
can combine them into a complex Grassmann variable. The associated complex structure
depends on the signature [5].

Field strength and kinetic term for gauge bosons. For the construction of a gauge
invariant kinetic term for the gauge fields we introduce the complex field strength

Fµνmn = ∂µAνmn − ∂νAµmn +A p
µm Aνpn −A p

νm Aµpn. (3.34)
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It is an antisymmetric tensor with respect to diffeomorphisms and with respect to SO(4,C),

δFµνmn = ε p
m Fµνpn + ε p

n Fµνmp. (3.35)

An SO(4,C) invariant tensor is obtained by multiplication with the vierbein

Fµνρσ = Fµνmne
m
ρ e n

σ = −Fνµρσ = −Fµνσρ. (3.36)

Contracting Lorentz-indices with the vierbein is a rather general way to obtain SO(4,C)
invariants. We note, however, that F ∗µνmn transforms differently as compared to Fµνmn
since the transformation coefficients ε p

m are complex. Constructing an invariant tensor
F ∗µνρσ involves contractions with the complex conjugate vierbein e∗mρ e∗nσ .

Having at our disposal SO(4,C)-invariant terms, we need to construct scalars with
respect to diffeomorphisms. For this purpose we define the complex pseudo-metric as a
bilinear of the complex vierbeins,

Gµν = e m
µ e n

ν δmn, Gµν = e µ
m e ν

n δmn, GµνG
νρ = δ ρ

µ ,

Gµνe
m
ν = δmne µ

n = emµ, e µ
m Gµν = e n

ν δnm = eνm.
(3.37)

(Care is needed for the index position of objects carrying both world and Lorentz-indices.)
The pseudo-metric is a symmetric complex tensor which is invariant under SO(4,C)-
transformations. It can be used to lower and raise space-time indices

F ν σ
µ ρ = GναGσβFµαρβ . (3.38)

A kinetic invariant for the gauge fields can be constructed as

LF = L∗F = ZF
8 F ∗µ

ν σ
ρ F

µ ρ
ν σ = ZF

8 F ∗µνρσFαβγδG
∗µαGνβG∗ργGσδ. (3.39)

For this particular structure with the complex conjugate field strength the kinetic terms for
all gauge bosons are positive for euclidean space. This demonstrates in a simple way that
non-compact gauge groups do not necessarily lead to ghosts. The positivity would not hold
if one would use a real metric gµν for index contractions.

The real positive parameter ZF plays the role of an inverse squared gauge coupling, as
in usual Yang-Mills theories. The kinetic term can be brought to a standard normalization
by a rescaling Aµmn =

√
ZFA

R
µmn. The renormalized field ARµ with standard normalization

enters the covariant derivative of the fermions, as well as all other covariant derivatives, in
the form ∂µ − Z−1/2

F ARµ = ∂µ − gARµ , with g the gauge coupling. For large ZF the gauge
coupling is small. The theory is weakly interacting and perturbative methods may, at least
partially, apply. The invariant LF is not the only possible invariant constructed with up
to two derivatives of the gauge fields. Other invariants can be found by different index
contractions and different combinations of F ∗F , FF , F ∗F ∗, and will be discussed later.
Possible invariants also include an invariant which is linear in F .
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Kinetic term for vierbein. We next need a kinetic term for the complex vierbein field
e m
µ . For this purpose we employ the SO(4,C)-invariant tensor

Uµνρ = −Uµρν = 1
2
{
eµm

(
∂ρe

m
ν − ∂νe m

ρ

)
(3.40)

+ eνm
(
∂ρe

m
µ − ∂µe m

ρ

)
− eρm

(
∂νe

m
µ − ∂µe m

ν

)}
−Aµνρ

where
Aµνρ = Aµmne

m
ν e n

ρ . (3.41)

It can be related to the covariant derivative of the vierbein [30],

U m
µν = Dµe

m
ν = ∂µe

m
ν − Γ σ

µν e m
σ +A m

µ ne
n
ν . (3.42)

Here Γ σ
µν is constructed from e m

µ via the pseudo-metric Gµν ,

Γ σ
µν = 1

2G
σρ (∂µGνρ + ∂νGµρ − ∂ρGµν) . (3.43)

It generalizes the concept of a geometric connection to a complex composite pseudo-metric.
A SO(4,C) invariant tensor obtains as

Uµνρ = eρmU
m

µν = U m
µν δmne

n
ρ = eρm∂µe

m
ν − Γµνρ +Aµρν , (3.44)

where
Γµνρ = 1

2(∂µGνρ + ∂νGµρ − ∂ρGµν). (3.45)

Inserting Gµν = eµme
m
ν one finds eq. (3.40).

We define a kinetic invariant for the vierbein by

LU = m2

8
(
U∗µ

ν
ρU

µ ρ
ν + U∗µ ρ

ν U
ν

µ ρ

)
(3.46)

= m2

8 U∗µνρUαβγ
(
GµαG∗νβGργ +G∗µαGνβG∗ργ

)
.

Again, this is not the unique possible invariant and will be supplemented by other invari-
ants later.

At this point we may briefly summarize our geometric setting and clarify the relation to
other formulations of metric affine gravity [39–42]. Consider first the case of real vierbeins
e m
µ , real gauge fields Aµmn, and therefore also a real metric gµν instead of Gµν . We employ
two different connections, the metric connection Γ ρ

µν , which is the Levi-Civita connection
expressed in terms or the vierbein, and a gauge connection, given by the gauge fields Aµmn.
In principle, the corresponding fibre bundles need not to be related. This is the usual
setting for Yang-Mills theories coupled to gravity. The geometric connection shows neither
torsion nor non-metricity.

We could introduce a different connection

B ρ
µν = Γ ρ

µν + U ρ
µν . (3.47)
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With this new geometric connection the vierbein is covariantly conserved,

D̃µe
m
ν = ∂µe

m
ν −B ρ

µν e
m
ρ +A m

µ ne
n
ν = 0. (3.48)

The connection B ρ
µν leads to torsion

B ρ
µν −B ρ

νµ = U ρ
µν − U ρ

νµ , (3.49)

while non-metricity is still absent, according to

D̃µgνρ = Dµgνρ −
(
Uµνρ + Uµρν

)
= −

(
Uµνρ + Uµρν

)
= 0,

Dµgνρ = (Dµe
m
ν ) eρm +

(
Dµeρm

)
e m
ν = Uµνρ + Uµρν = 0.

(3.50)

We find it more convenient to keep the usual language of Yang-Mills-theories without torsion
and Dµe

m
ν 6= 0. This setting is extended to complex vierbeins, gauge fields, Gµν and Γ ρ

µν .
The usual product rules for covariant derivatives apply, where Γ ρ

µν appears for each world
index of a generalized tensor, and A m

µ p for each Lorentz-index. An example is

DµUνρσ = Dµ

(
U m
νρ eσm

)
=
(
DµU

m
νρ

)
eσm + U m

νρ Dµ (eσm) ,
(3.51)

where the left hand side only involves the geometric connection. We observe that index
conversion between latin and greek indices and covariant differentiation do not commute,

eσmDµU
m

νρ = DµUνρσ − U m
νρ Uµσm . (3.52)

This is a direct consequence of the non-vanishing covariant derivative of the generalized
vierbein.

4 Solutions of field equations and mode expansion

In this section we address the question if a classical action based on LF + LU + Lψ can
be used for a consistent definition of a functional integral. We want to avoid that already
the quadratic approximation in the vicinity of flat euclidean space with vanishing gauge
fields needs to an action that diverges to minus infinity as the field values grow. We will
find that this stability property is indeed realized. Beyond the positive eigenvalues of the
second functional derivative of the action we also observe zero eigenvalues. Those include,
of course, the gauge fluctuations which can be stabilized by a suitable gauge fixing. For the
action based on LF +LU there are also some physical fluctuation modes that do not have a
kinetic term. In the next section we add an invariant that cures this disease.

The field equations derived from an action based on LF + LU + Lψ admit flat space
as a solution, both with euclidean and Minkowski signature. The gauge fields vanish for
this solution. In order to investigate the stability of the high-momentum fluctuations of our
model we can employ a mode expansion around these flat space solutions. We base this
analysis first on LF + LU + Lψ and add further invariants subsequently.
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Field equations and solutions. The field equations obtain from the action

S =
∫

d4x e(Lψ + LF + LU ) (4.1)

by variation with respect to ψ̄, e m
µ and Aµmn. For the fermions one finds the Dirac equation

γµDµψ = 0. (4.2)

Since fermions have no expectation values we omit Lψ in the following. (Incoherent fermion
fluctuations can provide for source terms to the field equations for the bosonic field. We
will omit this here.)

The field equation for the gauge fields reads

e
(
DµF

ν
µmn − Jµmn

)
= 0, (4.3)

where

DνF
ν
µmn = ∂νF

ν
µmn − Γ ρ

νµ F
ν
ρmn

+ Γ ν
νρ F

ρ
µmn +A p

νm F νµpn +A p
νn F

ν
µmp .

(4.4)

For the vierbein one obtains

e
(
DνU

ν m
µ −K m

µ

)
= 0. (4.5)

The source terms Jµmn and Kµm vanish for Fµνmn = 0 and U m
µν = 0. This is realized for

Aµmn = 0 and e m
µ independent of x. In this case one also has DνF

ν
µmn = 0, DνU

ν m
µ = 0.

As a result we find a family of solutions with constant vierbein and vanishing gauge fields

∂νe
m
µ = 0, Aµmn = 0. (4.6)

In particular, this includes flat euclidean space e m
µ = δmµ , as well as flat Minkowski

space e(M)
µ
m = δmµ .

For any given choice of a non-vanishing constant vierbein the gauge group SO(4,C) is
spontaneously broken. Also diffeomorphism symmetry is spontaneously broken. For flat
euclidean space the vierbein e m

µ = δmµ is left invariant by global SO(4)-transformations
which combine particular SO(4,C)-transformations with suitable general coordinate trans-
formations. In case of flat Minkowski space this global symmetry group is replaced by the
Lorentz group SO(1, 3). The field equations derived from the classical action LF + LU pro-
vide an example for which the difference between space and time is a result of spontaneous
symmetry breaking [4]. We observe that e m

µ = 0, Gµν = 0, Aµmn = 0 is also a solution of
the field equations.

Mode expansion for flat space. For an investigation of stability we expand the ac-
tion (4.1) around a flat space solution with constant ē m

µ and Āµmn = 0. Choosing the
parametrization

e m
µ = ē m

µ + 1
2H

ν
µ ē m

ν , (4.7)
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we expand in second order in H and A. Since Fµνmn is at least linear in A we can employ
in eLF the lowest order H = 0 for the vierbein and replace covariant derivatives by partial
derivatives

eLF = ZF ē

8 Ḡ∗µαḠνβ
(
∂µA

∗
ν
ρ
σ − ∂νA∗µρσ

)
×
(
∂αA

σ
βρ − ∂βA σ

αρ

)
. (4.8)

Here the indices are changed with ē m
µ and Ḡµν . For euclidean flat space one has Ḡµα = δµα

and ē = 1.
For constant real Gµν the expression

eL
(E)
F = ZF ē

8 (∂µAνρσ − ∂νAµρσ)∗ (∂µAνρσ − ∂νAµρσ) . (4.9)

yields in momentum space, with q2 = qµqµ = qµqνG
µν , a kinetic term both for the “real”

and “imaginary” gauge bosons∫
x
eLF = ZF ē

4

∫
q
A∗µρσ

(
q2Ḡµν − qµqν

)
A ρσ
ν . (4.10)

For flat euclidean space, Gµν = δµν this term is positive semidefinite.
Indeed, decomposing A into its real and imaginary parts Aµρσ = AR,µρσ + iAI,µρσ and

using a multi-index z = (χ, ρ, σ), χ = (R, I), z = 1 . . . 12, this yields for euclidean space,
ē m
µ = δmµ , standard kinetic terms for all twelve gauge bosons Azµ∫

x
eLF = ZF

2
∑
z

∫
q
Azµ

(
q2δµν − qµqν

)
Azν . (4.11)

The sector of gauge fields alone is stable as in usual gauge theories. In the quadratic
approximation it describes twelve massless free photons. In flat Minkowski space one has
Ḡµν = ηµν and ē = i. The expressions (4.9), (4.10) remain the same, with indices raised
and lowered with η.

For LU we need Uµνρ in linear order in H and A

Uµνρ = 1
2
{
∂µH

(A)
νρ + ∂ρH

(S)
µν − ∂νH(S)

µρ

}
−Aµνρ, (4.12)

where we have decomposed Hµν = H σ
µ Ḡσν into its symmetric and antisymmetric parts

H(S)
µν = 1

2 (Hµν +Hνµ) , H(A)
µν = 1

2 (Hµν −Hνµ) . (4.13)

The quadratic approximation to LU contains three terms, LU = L
(1)
U + L

(2)
U + L

(3)
U . The

first term is a kinetic term for H

L
(1)
U =m2

32
{(
∂µH

(A)ν
ρ

)∗
∂µH(A)

ν
ρ

+
(
∂ρH

(S)
µ
ν − ∂νH(S)

µρ

)∗ (
∂ρH(S)µ

ν − ∂νH(S)µρ
)

+
(
∂µH

(A)ν
ρ

)∗ (
∂ρH(S)µ

ν − ∂νH(S)µρ
)

+
(
∂µH(A)

ν
ρ
)∗ (

∂ρH
(S)
µ
ν − ∂νH(S)

µρ

)
+ c. c.

}
(4.14)
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For real Ḡµν and using partial integration this simplifies to

L
(1)
U = −m

2

16
{
H(A)∗
µν ∂2H(A)µν

+ 2H(S)∗
µν

(
∂2δνρ − ∂ν∂ρ

)
H(S)ρµ

+
[
2H(A)∗

µν ∂ν∂ρH
(S)ρµ + c. c.

] }
,

(4.15)

where ∂2 = Ḡµν∂
µ∂ν .

The second term is a mass term for the gauge bosons

L
(2)
U = m2

8
(
A∗µ

ν
ρA

µ ρ
ν + c. c.

)
. (4.16)

For real Ḡµν this provides a mass for all twelve gauge bosons

L
(2)
U = m2

4 A∗µνρA
µνρ = m2

2
∑
z

AzµA
z
νḠ

µν , (4.17)

where the last identity holds for euclidean space. For ē 6= 0 the pseudo-metric Ḡµν has no
zero eigenvalues. All gauge bosons acquire a mass. For euclidean flat space all twelve gauge
bosons have the same mass m. The massive gauge bosons are a direct consequence of the
spontaneous breaking of the SO(4,C)-symmetry by a constant vierbein ē m

µ 6= 0, ē 6= 0.
The local symmetry is broken completely, with no local unbroken subgroup left. Therefore
all gauge bosons become massive. The mechanism is the analogue to the Higgs mechanism,
with the difference that e m

µ are covariant vectors and not scalars.
The third part is a source term for the gauge bosons

L
(3)
U = −m

2

8
{
A∗µ

ν
ρ(∂µH(A)

ν
ρ + ∂ρH(S)µ

ν

− ∂νH(S)µρ) + c. c.
}

= −1
2(A∗µmnJµmn + c. c.).

(4.18)

The source,

Jµmn = m2

4 Ḡ∗µαē
∗
m
ν ē∗ρn

(
∂αH(A)

ν
ρ + ∂ρH(S)α

ν − ∂νH(S)αρ
)
, (4.19)

is the linear approximation to eq. (4.3).

High momentum limit. The short-distance limit corresponds to momenta going to
infinity. For smooth “background” vierbeins and pseudo-metrics ē m

µ (x), Ḡµν(x) one can
neglect in this limit the dependence on x and approximate them by constant ē m

µ and Ḡµν ,
as discussed previously. In the high momentum limit we can also neglect the source term
and the mass for the gauge bosons. For the euclidean theory we find in this limit a consistent
theory for twelve photons. The high momentum limit may be associated to q2/m2 � 1.
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The kinetic term L
(1)
U for the complex vierbein fluctuation Hµν needs a more detailed

discussion. We consider real Ḡµν and decompose H(A)
µν and H(S)

µν as [58]

H(S)
µν = Tµν + ∂µKν + ∂νKµ + 1

3

(
Ḡµν −

∂µ∂ν
∂2

)
S + ∂µ∂ν

∂2 U,

H(A)
µν = Bµν + ∂µCν − ∂νCµ,

(4.20)

with

νTµν = ∂µTµν = 0, TµνḠ
µν = 0, ∂νBµν = ∂µBµν = 0,

∂µKµ = 0, ∂µCµ = 0, (4.21)

and

∂µH(S)
µν = ∂2Kν + ∂νU, ∂µH(A)

µν = ∂2Cν ,(
∂2δρµ − ∂µ∂ρ

)
H(S)
ρν = ∂2Tµν + ∂2∂νKµ + 1

3
(
Ḡµν∂

2 − ∂µ∂ν
)
S. (4.22)

Inserting these relations yields in momentum space yields

L
(1)
U =

∫
q

m2ē

16

{
2T ∗µνq2Tµν +B∗µνq

2Bµν + 2
(
K∗µ − C∗µ

)
q4 (Kµ − Cµ) + 2

3S
∗q2S

}
.

(4.23)

In euclidean space all terms are positive, diverge for q2 →∞, and vanish for q2 → 0. These
are standard kinetic terms for both the real and imaginary parts of Tµν , Bµν , Kµ − Cµ
and S. (The increase ∼ q4 for Kµ − Cµ is due to the normalization convention. By a
different normalization of Kµ and Cµ the kinetic term increases ∼ q2, as expected for an
action involving two derivatives.) We observe that L(1)

U does not involve the combinations
Kµ + Cµ and U .

We could add further kinetic invariants formed by different contractions of indices. For
example, the vector

Ũρ = GµνUµνρ

= 1
2(∂µH(A)

µρ + ∂ρḠ
µνH(S)

µν − ∂µH(S)
µρ )−Aµµρ

= 1
2
[
∂ρS − ∂2(Kρ − Cρ)

]
−Aµµρ

(4.24)

involves the scalar S and the vectors Kρ−Cρ and Aµµρ. An invariant term ∼ Ũ∗ρ Ũρ+ ŨρŨ∗ρ

modifies the kinetic term, mass term and source term for these fields. We observe that Ũρ
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does not involve the fields Kµ+Cµ or U . The same holds for the antisymmetric combination

Uµνρ − Uνµρ =
(
∂µe

m
ν − ∂νe m

µ

)
eρm −Aµνρ +Aνµρ

= 1
2 (∂µHνρ − ∂νHµρ)− (Aµνρ −Aνµρ)

= 1
2
{
∂µTνρ − ∂νTµρ + ∂µBνρ − ∂νBµρ (4.25)

+ ∂ρ [∂µ (Kν − Cν)− ∂ν (Kµ − Cµ)]
}

+ 1
6
(
Ḡνρ∂µS − Ḡµρ∂νS

)
− (Aµνρ −Aνµρ) .

In fact, with the linear expansion

Uµνρ = 1
2
{
∂ρTµν − ∂νTµρ + ∂µBνρ − ∂µ[∂ν(Kρ − Cρ)− ∂ρ(Kν − Cν)]

+ 1
3(Ḡµν∂ρS − Ḡµρ∂νS)

}
−Aµνρ,

(4.26)

it is clear that the fields Kµ+Cµ and U can never appear in quadratic order in any invariant
constructed from Uµνρ. The detailed mode decomposition of the gauge fields Aµνρ can be
found in the appendix A.

Physical and gauge modes. At this stage several fields do not have a kinetic term and
therefore no valid propagator: (i) The longitudinal components of the gauge bosons. These
are the gauge degrees of freedom of the local SO(4,C)-gauge group for a pure Yang-Mills
theory without additional matter fields. (ii) The real part of the transversal vectors Kµ+Cµ
and the real part of U . These four degrees of freedom are the gauge degrees of freedom
of diffeomorphisms. The absence of a kinetic term for the gauge degrees of freedom is a
direct consequence of gauge symmetry and not a problem. A valid continuum formulation
can be implemented by the usual gauge fixing procedure. (iii) Beyond the gauge degrees of
freedom another four degrees of freedom without a kinetic term are the imaginary parts of
Kµ + Cµ and U .

We will see in the next section that these fields actually acquire a kinetic term if we
include additional invariants. In particular, we can add an invariant LW , cf. eq. (5.10), such
that the combination LF + LU + LW leads for euclidean flat space to positive kinetic terms
that increase ∼ q2 for all modes. This combination is a candidate for a classical action that
defines a well defined functional integral.

5 Invariants for the composite pseudo-metric

A metric is a real symmetric second rank tensor that is invariant under generalized Lorentz
transformations, in our case invariant under SO(4,C). It can be constructed as a bilinear of
the complex vierbein. In our complex formulation the SO(4,C) invariant vierbein-bilinears
form a complex pseudo-metric. The imaginary part of the pseudo-metric constitutes an
additional tensor which permits the construction of further kinetic terms. The additional
kinetic terms provide for a well behaved propagator for all physical excitations.
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Complex pseudo-metric. The composite pseudo metric Gµν is a bilinear in the complex
vierbein

Gµν = e m
µ e n

ν δmn . (5.1)

It is invariant under SO(4,C transformations. We define the metric gµν as the real part of
the pseudo-metric Gµν

gµν = 1
2
(
Gµν +G∗µν

)
= 1

2
(
e m
µ e n

ν + e∗µ
me∗ν

n
)
δmn. (5.2)

A second SO(4,C)-invariant tensor is given by the imaginary part of the pseudo-metric,

wµν = − i2
(
Gµν −G∗µν

)
, (5.3)

such that
Gµν = gµν + iwµν . (5.4)

We may call the tensor wµν the “cometric”.
The inverse metric gµν obeys, as usual,

gµνgνρ = δµρ . (5.5)

Using the relation

Gµν = gµν − igµρwρσGσν = gµν − iGµρwρσgσν , (5.6)

we can convert the raising of indices with Gµν into the more usual raising with gµν , and
similarly for the lowering of indices by use of eq. (5.4). With

Gµν = gµν − iGµρwρσGσν + uµν = gµν − iwµν + uµν (5.7)

one has
uµν = (wµρ + iuµρ)w ν

ρ . (5.8)

For small wµν the tensor uµν vanishes in linear order in w, uµν = wµρw ν
ρ +O(w3), and we

can often neglect it.

Further kinetic invariants. The tensor wµν allows for the construction of further kinetic
invariants. They will provide the missing kinetic term for the imaginary part of Kµ + Cµ
and U . The covariant derivative

Yµνρ = Dµwνρ = ∂µwνρ − Γ σ
µν wσρ − Γ σ

µρ wνσ (5.9)

transforms as a tensor. Here Γ σ
µν is constructed from Gµν or e m

µ according to eq. (3.43).
We can add to the action an invariant eLW with (κ = κ∗)

LW = κ2

2
(
Y ∗µ

ν
ρY

µ ρ
ν + Y ν

µ ρ Y
∗µ ρ
ν

)
= κ2

2 Y
∗
µνρYαβγG

νβG∗ργ (Gµα +G∗µα) .
(5.10)
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In a quadratic expansion around a constant real Ḡµν we can omit Γ σ
µν , such that the

term linear in H reads

Yµνρ = ∂µwνρ = − i2∂µ
(
Gνρ −G∗νρ

)
= Y ∗µνρ

= − i2∂µ
(
H(S)
νρ −H(S)∗

νρ

)
= ∂µ Im

[
H(S)
νρ

]
= ∂µ Im

[
Tνρ + ∂νKρ + ∂ρKν

1
3

(
Ḡνρ −

∂ν∂ρ
∂2

)
S + ∂ν∂ρ

∂2 U

]
.

(5.11)

In contrast to Uµνρ in eq. (4.26), this expression contains the imaginary part of Kµ separately,
as well as the imaginary part of U .

Mode expansion of complex vierbein. We express the complex field fluctuations (4.20)
by real fields, corresponding to the real and imaginary parts

Tµν = tµν + isµν , Kµ = κµ + iλµ,

S = σ + iτ, U = u+ iv,

Bµν = bµν + idµν , Cµ = γµ + iδµ.

(5.12)

In terms of these fields LW reads in momentum space∫
d4x eLW =

∫
q
ēκ2

{
sµν (−q) q2sµν (q) + 2λµ (−q) q4λµ (q)

+ 1
3τ (−q) q2τ (q) + v (−q) q2v (q)

}
. (5.13)

For the fields sµν and τ this term simply adds a contribution ∼ κ2 to the term ∼ m2 from
eq. (4.23), such that the inverse propagator for sµν is ∼ (m2/8 + κ2)q2, and for τ it is
∼ (m2/24 + κ2/3)q2. The scalar field v acquires now a standard inverse propagator ∼ κ2q2,
curing the deficiency of an action based only on LU . For the vector fields λµ and δµ we
observe a mixing, with an inverse propagator given by a matrix

PV = q2
(
m2

16 + κ2 −m2

16
−m2

16
m2

16

)
, (5.14)

where the first line and row correspond to λµ, and the second to δµ, and we have absorbed
a factor 2q2 in a standard normalization of the vector fields. For κ 6= 0 both eigenvalues
λ

(V )
± of PV /q2 are positive, λ(V )

± > 0, such that stability is assured for all vector fields. The
absence of a kinetic term for the combination λµ + δµ in an action based solely on LU
is cured for κ 6= 0. The kinetic terms in the sector (tµν , bµν , κµ, γµ, σ, u) are not affected
by LW . In particular, the gauge degrees of freedom κµ + γµ and u do not appear in the
quadratic action.

We conclude that the bosonic part of the classical action based on LF +LU +LW leads
to well behaved kinetic terms and therefore well behaved propagators for all physical modes.
Such a classical action seems to be a good candidate for the formulation of a functional
integral for pregeometry. There seems to be no obvious obstructions from this side for the
formulation of a Yang-Mills theory for a non-compact gauge group. Replacing the real
metric by a complex pseudo metric is crucial for well behaved propagators of all gauge
fields. This section concludes our discussion of the classical action.
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6 Time-space symmetry breaking

This section addresses the central question of this paper about the origin of the asymmetry
between time and space. For this purpose we need the discussion of solutions of the field
equations that may either be flat Minkowski or euclidean space. The relevant field equations
are derived from the quantum effective action Γ. We therefore start in this section to
include additional terms in a derivative expansion of the effective action that are invariant
with respect to diffeomorphisms and local SO(4,C) symmetry. These invariants need not to
be present in the classical action.

Potential for the cometric. We can construct real scalar invariants Wi from wµν , as

W1 = wµνwρσG
µρG∗νσ = w∗µ

νw µ
ν ,

W2 = w∗µ
νw ρ

ν w
∗
ρ
σw µ

σ .
(6.1)

This allows us to supplement in the effective action Γ a potential term for the cometric

ΓV =
∫

d4x eV (W1,W2), (6.2)

with
V = γ1W1 + γ2W2 + λ1

2 W
2
1 + λ2

2 W
2
2 + . . . (6.3)

We will discuss other terms, as a constant V0 or a term linear in w µ
µ , later. For γ1 = γ2 = 0,

λ1 > 0, λ2 > 0, the potential is positive, V > 0, whenever W1 6= 0 or W2 6= 0. Its minimum
occurs in this case for W1 = W2 = 0.

We can consider w ν
µ as the elements of a complex matrix Ŵ , with

W1 = tr
(
Ŵ ∗Ŵ

)
, W2 = tr

(
Ŵ ∗ŴŴ ∗Ŵ

)
. (6.4)

One can evaluate the traces in a basis where Ŵ ′ = DŴD−1 is diagonal. For the particular
case where both Ŵ ′ and (Ŵ ∗)′ are diagonal,

Ŵ ′ = diag(λi), Ŵ ′∗ = diag(λ∗i ),

Ŵ ′∗Ŵ ′ = diag
(
|λi|2

)
,

(6.5)

one has W1 ≥ 0, W2 ≥ 0. More generally, in the subspace of configurations Gµν for which
W1 ≥ 0, W2 ≥ 0 the potential has its minimum at W1 = W2 = 0 for all γ1 ≥ 0, γ2 ≥ 0.

Expanding in small wµν one has W1 ∼ w2, W2 ∼ w4. In the vicinity of a real euclidean
“background metric” Ḡµν = δµν one finds W1 > 0,

W1 =
∑
µ,ν

(wµν)2. (6.6)

This differs from an expansion around Minkowski space, Ḡµν = ηµν , where W1 can take
negative values (k, l = 1 . . . 3)

W1 =
∑
k,l

w2
kl + w2

00 − 2
∑
k

w2
0k. (6.7)

In this case the configuration Gµν = ηµν , wµν = 0, corresponds to a saddle point if γ1 6= 0.

– 27 –



J
H
E
P
0
6
(
2
0
2
2
)
0
6
9

Spontaneous time-space asymmetry. The presence of a potential modifies the field
equations. Arbitrary constant ē m

µ are no longer solutions. Solutions of the field equations
are found for constant vierbeins for which the pseudo-metric Gµν is real,

Ḡµν = Ḡ∗µν , wµν = 0. (6.8)

In this case, one has
∂V

∂wµν
= 0, ∂V

∂Gµν
= 0, ∂V

∂e m
µ

= 0. (6.9)

The condition (6.8) singles out the subspace of real pseudo-metrics. It still contains metrics
gµν with arbitrary signature.

Two metrics with different signature are continuously connected in the space of all
complex vierbeins. For example, the Minkowski metric Gµν = ηµν can be obtained from
the euclidean metric Gµν = δµν by a phase change of e 0

µ that corresponds to analytic
continuation (3.13). This continuous change of phase does not remain, however, within the
space of solutions of the field equations. Within the space of real Gµν every continuous
path from δµν to ηµν has to pass through the point where det(Gµν) = 0 or e = 0. The
difference between time and space is generated by spontaneous symmetry breaking [4], with
euclidean and Minkowski signature of the metric corresponding to different extrema, for
which different subgroups of SO(4,C) remain unbroken. For all constant complex vierbeins
that lead to a real constant Gµν = gµν both the potential and the action vanish, V = 0,
S = 0. This still provides for a continuous family of solutions corresponding to flat directions
of the potential V .

Conditions for flat space solutions. The condition for flat space to be a solution of
the field equations is the absence of terms linear in the fields in an expansion around flat
space. Since we are mainly interested in this case here, we have not included a cosmological
constant, corresponding to an invariant piece in the action

ΓV0 = V0

∫
x

e. (6.10)

As for standard gravity, a flat space solution requires V0 = 0, since e involves a term linear
in H. A term (6.10) is irrelevant for momenta much larger than V 1/4

0 . It plays no role for
the stability issue at high momenta. For low momenta and cosmology the cosmological
constant should be included. In order to keep the focus of this paper simple we set here
V0 = 0, however.

Similarly, the particular role of real Gµν would not hold if the potential eV contains a
term linear in wµν . Potential candidates would be terms that are linear in the scalar

y = wµνG
νµ = w µ

µ = trŴ . (6.11)

Expanding around an arbitrary real metric gµν , Gµν = gµν + iwµν , the real part of y is
indeed linear in w

1
2 (y + y∗) = 1

2wµν (Gνµ +G∗νµ) = wµνg
νµ +O

(
w2
)
. (6.12)
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In contrast, the imaginary part is of the order w2,

− i

2 (y − y∗) = − i2wµν (Gνµ −G∗νµ) = −wµνwνµ +O
(
w3
)
, (6.13)

where we employ the relation (5.7). If we impose on S/e a discrete symmetry

e m
µ ↔ e∗mµ (6.14)

a term linear in y + y∗ cannot appear in the potential. The combination
1
2(y + y∗) = − i4(Gµν −G∗µν)(Gνµ +G∗νµ) (6.15)

is odd under the discrete symmetry, since eq. (6.14) implies

Gµν ↔ G∗µν . (6.16)

Supplementing eq. (6.14) with Aµmn ↔ A∗µmn the invariants LF and LU are invariant under
this discrete transformation.

A constant term V0 in the potential also induces in the expansion of eV0 a term linear
in w µ

µ , since

e = ē

[
1 + 1

2H
µ

µ −
1
8
(
H ν
µ H µ

ν −H µ
µ H ν

ν

)]
+ . . . (6.17)

and

w µ
µ = − i2G

νµ
(
Gµν −G∗µν

)
= − i2G

νµ
(
H(S)
µν −H(S)∗

µν

)
= − i2

(
H µ
µ −H∗ µµ

)
(6.18)

implies
e = ē

[
1 + 1

4
(
H µ
µ +H∗ µµ

)
+ i

2w
µ
µ

]
+ . . . (6.19)

In the presence of a term linear in w µ
µ in eV the solutions of the field equation typically

lead to a pseudo-metric
Gµν = eiα(gµν + iw̃µν), (6.20)

with real gµν and w̃µν . This modifies the relation (5.2) between the metric gµν and the
pseudo-metric Gµν . We avoid here a discussion of this complication by choosing couplings
for which the term linear in w µ

µ in an expansion of eV vanishes.
We conclude that the invariants based on the imaginary part wµν of the pseudo-metric

play an important double role for the quantum effective action. First, the combination of
the terms LF + LU + LW renders for a euclidean metric a well behaved propagator for all
physical fluctuation fields in the limit of large q2. This holds provided Z, m2 and κ2 are
positive, where these couplings need not to coincide with the ones in the classical action.
All fields except for the gauge degrees of freedom have a standard kinetic term with positive
coefficients. If interactions remain under control for large q2, such an effective action is
expected to have a well behaved short distance limit. Second, the potential V selects a
subsector with a real metric. The dependence of the effective action on the real part gµν
and the imaginary part wµν of the pseudo-metric Gµν is different.
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Real metric limit and real gauge field limit. An interesting limit is the “real metric
limit” achieved by taking κ → ∞, γi → ∞, λi → ∞. Expanded around a euclidean
metric gµν(x),

Gµν(x) = gµν(x) + iwµν(x), (6.21)

all field configurations that lead to a small wµν 6= 0 have a divergent positive action if e
is real, positive, and different from zero. We may therefore define an effective theory that
discards all fields for which wµν 6= 0, setting them to zero in the effective action. This
imposes a non-linear constraint in the space of complex vierbeins. All vierbeins that are
related by SO(4,C)-transformations lead to the same pseudo-metric. (The pseudo-metric
Gµν can be used to characterize orbits of SO(4,C)-transformations.) Out of the 16 complex
components of e m

µ only ten can lead to different Gµν . The constraint G∗µν = Gµν eliminates
ten real degrees of freedom, such that ten real degrees of freedom are left. They correspond
to the ten degrees of freedom of gµν . Only six of them are physical, since four degrees of
freedom correspond to a diffeomorphism transformation of the “physical metric” [59].

The real metric limit can be supplemented by a “real gauge field limit”. For this purpose
we consider the invariant

LI = −ZI
32
(
F ∗µ

ν σ
ρ − F ν σ

µ ρ

) (
F ∗ν

µ ρ
σ − F µ ρ

ν σ

)
. (6.22)

It is similar to the invariant LF in eq. (3.39), but only involves the imaginary part of F ν σ
µ ρ .

For real Gµν this invariant only involves the imaginary part of Aµνρ, similar to eq. (4.8).
The kinetic term for gauge bosons leading to imaginary Aµνρ is multiplied by ZF + ZI,
while the one for the gauge bosons leading to real Aµνρ remains multiplied by ZF . For
ZI → ∞ the imaginary part of Aµνρ decouples effectively from the other fields since the
gauge coupling (ZF + ZI)−1/2 goes to zero. Different gauge couplings for different gauge
bosons of the group SO(4,C) may be surprising at first sight. This effect arises since the
kinetic term for the gauge bosons is directly affected by the value of the vierbein and the
associated spontaneous symmetry breaking from any e m

µ 6= 0. (The kinetic term vanishes
for e m

µ 6= 0 due to e = 0.) A similar effect is known for grand unified gauge theories where
scalar expectation values breaking the symmetry can give rise to different kinetic terms and
therefore different gauge coupling for gauge bosons belonging to different subgroups [60, 61].
We notice that the fields that decouple are the gauge bosons corresponding to imaginary
Aµνρ. For complex vierbeins this is not equivalent to imaginary Aµmn.

Mass split for the gauge bosons. Another invariant for imaginary fields is given similar
to eq. (3.46) by

LJ = −m
2
J

16
(
U∗µ

ν
ρ − U ν

µ ρ

) (
U∗µ ρ

ν − Uµ ρ
ν

)
. (6.23)

Besides a contribution to the kinetic terms for the imaginary parts in HS and HA similar
to eq. (4.15) and correspondingly eq. (4.23), and a contribution to the source term similar
to eq. (4.18), this term contributes a mass term for the gauge bosons with imaginary Aµνρ
similar to eq. (4.16). The squared mass for these bosons is given by m2 +m2

J . For m2
J →∞

these bosons not only decouple as for ZI →∞, but also have a divergent mass. They can
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be discarded from the effective theory. Combining the real metric limit with the real gauge
field limit ZI →∞, m2

J →∞, all configurations that do not lead to real Gµν and real Aµνρ
can be omitted from the effective theory.

In this limit our model is very similar to a model of euclidean gravity with real vierbeins
and real gauge fields Aµmn for an SO(4)-gauge group. Such a model shows the acceptable
ultraviolet behavior of a Yang-Mills theory with massless vector-matter fields e m

µ and
fermions. Restricting our setting from the beginning to real e m

µ and Aµmn, the inverse
propagator for both the physical gauge and vector-matter fields increases ∼ q2 for large q2.
The action based on LF + LU is positive, with a minimum at S = 0 corresponding to a
constant ē m

µ and Āµmn = 0. One may therefore employ numerical Monte-Carlo simulations
for its investigation. It will be interesting to see if this model is asymptotically free. The
unusual features of this gauge theory are the appearance of the inverse vierbein in the
action, and the additional invariance under diffeomorphisms. It remains to be seen if a
quantum field theory of this type shows acceptable features for euclidean quantum gravity.
If valid, one may obtain a model for quantum gravity with Minkowski signature by analytic
continuation.

Despite many similarities with the euclidean gravity model above the real metric
and real gauge field limit of our SO(4,C)-invariant pregeometry shows also an important
difference. The reason is that the constraint of real Gµν and real Aµνρ does not enforce real
e m
µ and real Aµmn. A real metric with Minkowski signature and imaginary e 0

µ obeys these
constraints as well. The real metric and gauge field limit describes simultaneously theories
with a different signature of the metric. If we take very large but finite parameters κ, γi, λi,
ZI and m2

J , small imaginary fluctuations around a euclidean metric lead first to a sharp
increase of L, while the action develops an imaginary part due to the prefactor e. This holds,
for example, if we follow the path of analytic continuation given by eq. (3.13). For ϕ = π/2,
however, the terms V , LW , LI, LJ vanish again since Gµν is again real. The effective theory
describes simultaneously the euclidean signature and the Minkowski signature obtained by
analytic continuation. Both “branches”, as well as other branches with different signatures,
are actually continuously connected at the configuration e m

µ = 0.
For a real metric ḡµν we can consider standard real metric fluctuations

gµν = ḡµν + hµν . (6.24)

They are connected to the vierbein fluctuations by

hµν = Re
[
H(S)
µν + 1

4H
ρ

µ Hρν

]
. (6.25)

This is the reason for the chosen normalization of Hµν .
At this level no obvious obstructions to the formulation of a consistent model of

pregeometry based on a SO(4,C) Yang-Mills theory are visible. What remains to be
achieved is a realistic phenomenology. This requires the presence of further invariants in the
quantum effective action that dominate for low enough momenta. These invariants could
lead to new instabilities. This issue will be discussed in the remaining parts of this paper.

– 31 –



J
H
E
P
0
6
(
2
0
2
2
)
0
6
9

7 Low momentum limit and the emergence of general relativity

Even in the real metric and the real gauge field limit our theory remains a pregeometry.
At short distances the degrees of freedom are vierbeins and gauge fields. These constitute
a larger number of physical degrees of freedom than the ones contained in the metric.
For high momenta the composite metric field does not play any apparently crucial role.
This changes in the long distance or low momentum limit, for which standard general
relativity emerges. In this limit we can still use a vierbein e m

µ and a gauge field Aµmn.
The gauge field will equal the spin connection ωµmn. These objects will be directly related
to the metric, however, and do not describe any longer independent fluctuations. General
relativity emerges as the effective low energy theory. In the presence of a suitable invariant
in pregeometry one obtains the Einstein-Hilbert action for the composite metric.

Freezing of the gauge bosons. For momenta much smaller thanm2 the mass term (4.16)
for the gauge bosons dominates over the kinetic term (4.8). The gauge bosons are “frozen”
and cease to be relevant propagating degrees of freedom. This does not mean, however,
that we can set Aµmn = 0. The reason is the source term (4.18) which forbids solutions
Aµmn = 0 for inhomogeneous vierbeins, ∂µe m

ν 6= 0.
If we neglect for a moment the kinetic invariants for the gauge fields, the field equation

for the gauge fields reads
Uµνρ = 0. (7.1)

From eq. (3.40) we infer that Aµνρ becomes a function of the vierbein, Aµνρ = ωµνρ(e),

ωµνρ (e) = 1
2
{
eµm

(
∂ρe

m
ν − ∂νe m

ρ

)
+ eνm

(
∂ρe

m
µ − ∂µe m

ρ

)
− eρm

(
∂νe

m
µ − ∂µe m

ν

)}
. (7.2)

For A = ω(e) the covariant derivative of the vierbein vanishes

Dµe
m
ν = 0. (7.3)

For real e m
µ and ωµmn eq. (7.2) is the expression of the spin connection in Cartan’s

geometry [33]. In our context this generalizes to complex e m
µ and ωµmn. With eq. (7.2)

the gauge fields are no longer independent degrees of freedom, only the vierbein remains as
a relevant bosonic degree of freedom. In the real metric limit we may choose for a euclidean
signature of gµν real vierbeins e m

µ . For a Minkowski signature we can choose real e(M)m
µ ,

corresponding to imaginary e 0
µ . Then ω(M)

µmn is real.

Low momentum effective theory. We next include the kinetic invariants for the gauge
fields. We can write the gauge fields Aµνρ as a difference between the (generalized) spin
connection ωµνρ(e) and the SO(4,C)-invariant tensor Uµνρ,

Aµνρ = ωµνρ − Uµνρ. (7.4)

The inhomogeneous transformation part of Aµνρ cancels for the difference Aµνρ − ωµνρ(e).
Instead of the independent gauge fields Aµνρ we could choose the tensor Uµνρ as a field
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variable. In terms of Uµνρ the kinetic invariant LF reads

LF = ZF
8
(
R∗µ

ν σ
ρ − V ∗µ ν σ

ρ

)
(R µ ρ

ν σ − V µ ρ
ν σ ) , (7.5)

with
V σ
µνρ = e σ

m (DµU
m

νρ −DνU
m

µρ ). (7.6)

Here the complex curvature tensor Rµνρσ is constructed from the complex connection Γ ρ
µν

in eq. (3.45) in the usual way. It only depends on the pseudo-metric Gµν . Eq. (7.5) can be
derived directly from the commutator of covariant derivatives of the vierbein [30]

(DµDν −Dν Dµ)e m
ρ = F m

µν n e
n
ρ −R σ

µν ρe
m
σ = V m

µνρ , (7.7)

inserting into eq. (3.39) the relation

Fµνρσ = Rµνρσ − Vµνρσ. (7.8)

The low momentum limit can be formulated in a more concise way by considering the
field equation for Uµνρ, evaluated for a given fixed e m

µ (x). The term LF contains a kinetic
term (DU)2 for U as well as a mixed term ∼ RV . (We omit here indices for simplicity.)
Employing partial integration the mixed term turns to a source term U DR linear in U ,
with source containing covariant derivatives DR of the curvature tensor R. The relevant
mass scale m is set by LU ∼ m2U2. If the curvature tensor varies only smoothly on a length
scale set by m−1, the influence of the source on the solution for U becomes small. To a
good approximation the field equation for U has the solution U ∼ DR/m2, which vanishes
for m2 →∞. Inserting this solution into LF yields

LF = ZF
8 R∗µνρσR

µνρσ +O
(
Z2
FRD

2R

m2

)
. (7.9)

Also LU turns out of the order Z2
FRD

2R/m2. The condition for the neglection of the
second term in eq. (7.4), and therefore for the applicability of the low momentum limit,
can be formulated as ∣∣∣∣∣ZF D2R

m2R

∣∣∣∣∣� 1. (7.10)

For an effective theory at low momenta the invariants with a small number of derivatives
play a leading role. The term with no derivatives, the potential V in eq. (6.3), only affects the
imaginary part of the pseudo-metric. The field equations have solutions Gµν = G∗µν = gµν ,
wµν = 0, cf. eq. (6.8). For these solutions the pseudo-metric and the curvature tensor Rµνρσ
are real. The terms LU + LF reduce in the low momentum limit to a metric theory with
effective action (e = √g) involving the squared Riemann curvature tensor

ΓF = ZF
8

∫
x

√
gRµνρσR

µνρσ. (7.11)

With different contractions of FF -terms the effective action for pregeometry can also induce
terms ∼ RµνR

µν and R2. This is four-derivative gravity. For suitable coefficients of the
various terms no inconsistency of such an effective action is visible. It is, however, not a
realistic theory for gravity since the Einstein-Hilbert term is missing.
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Emergence of Einstein-Hilbert action. For a realistic effective action of pregeometry
one needs for small enough momenta an effective term proportional to the curvature scalar
R which contains only two derivatives of the metric. Consistent with all symmetries
pregeometry indeed admits an invariant with one derivative,

LR = −M
2

4
(
e µ
m e ν

n F mn
µν + c. c.

)
= −M

2

4
(
F µν
µν + c. c.

)
= −M

2

4
(
R− V µν

µν + c. c.
)
, (7.12)

with curvature scalar
R = R µν

µν . (7.13)

In the low momentum limit we can neglect

V µν
µν = e µ

m

(
DµU

νm
ν −DνU

νm
µ

)
. (7.14)

For low momenta the leading term in LR therefore reduces to the Einstein-Hilbert action

ΓR = −M
2

2

∫
x

√
gR. (7.15)

This term dominates over ΓF in eq. (7.11) for |R/M2| � 1.
This low momentum limit of our SO(4,C)-gauge theory is simply Einstein’s general

relativity. The parameter M can be identified with the (reduced) Planck mass. We notice
the presence of two mass scales m and M . For m�M the low momentum limit can be
taken in two steps. In the first step the condition (7.10), together with real metric solutions,
leads to an intermediate effective action which depends only in the metric and involves up
to four derivatives

Γ =
∫
x

√
g

{
−M

2

2 R+ Z̃

8 RµνσλR
µνσλ − C

2 R
2
}
. (7.16)

In leading order in M2/m2 the coefficient Z̃ equals ZF , and we have omitted the Gauss-
Bonnet topological invariant. In a second step for R/M2 � 1 the second term can be
neglected, resulting in Einstein’s gravity.

8 Stable propagators

The effective action (7.16) is Stelle’s gravity with up to four derivatives acting on the metric.
For M2 = 0, Z̃ > 0, C > 0 there seems to be no problem for an effective action of this type.
For M2 > 0, as needed for realistic gravity, one encounters again the tachyons or ghosts of
four-derivative gravity. It may seem at first sight that our model of pregeometry brings
no advantage in this respect. The effective action (7.16) is, however, a low momentum
expansion which looses its validity in the momentum region where the problematic tachyon
or ghost poles in the graviton propagator appear. We will demonstrate that for simple
forms of the effective action for pregeometry the instabilities of eq. (7.16) are artifacts of
the derivative expansion. The graviton propagator remains well behaved.
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The invariants LU and LR are crucial for the emergence of the effective low energy
theory. In their presence the propagating modes in flat space mix vierbein fluctuations and
gauge fields. This mixing is a key element for the transition from a stable high-momentum
behavior to a stable low-momentum behavior of the propagators. The inverse propagators
for the physical particles are not polynomials in q2. They rather interpolate smoothly
between two different approximate polynomials for small and large q2, thereby avoiding
ghost or tachyonic instabilities as for the graviton propagator in eq. (1.3).

Mode mixing and stability. The intermediate effective action (7.16) involves a term
with four derivatives, while our pregeometry is formulated with terms involving only up
to two derivatives. The origin of this behavior is the relation (7.4), (7.2), which expresses
the gauge fields as derivatives of the vierbein. The action (7.16) is known to be unstable,
containing ghosts as characteristic for higher derivative theories. If we start with a stable
pregeometry the instability of the effective theory is an artifact of the low momentum
approximation. Since this issue is of wider interest for the relation between pregeometry
and higher derivative gravity, we will sketch the origin of the apparent instability in more
detail. The issue is unrelated to a complex vierbein and gauge fields — it is the same for a
theory with real vierbein and gauge fields. The essence is the mixing between the gauge
fields and derivatives of the vierbein. We discuss this issue for the graviton and scalar
degrees of freedom in detail in appendix A, focusing on euclidean gravity. This leads to
the well-behaved graviton propagator in eq. (1.3). In the present section we describe the
general structure of the stability issue.

Omitting indices the inverse propagator matrix or the matrix of second functional
derivatives of S takes in momentum space the form

P (q2) =
(
Zq2 +m2 −icm2q

icm2q bm2q2

)
. (8.1)

This type of inverse propagator matrix characterizes the different irreducible representations
separately, with different effective constants Z, m2 and c. The first line and row correspond
in eq. (8.1) to the gauge bosons, the second to the vierbein. The terms ∼ m2 arise from LU ,
including the off-diagonal terms that reflect the source term L

(3)
U . The term ∼ Z reflects

LF . The term LR induces additional off-diagonal terms ∼M2q. We include it in c, which
becomes a function c(M2/m2). The issue of stability and the apparent instability of the
low momentum approximation can be discussed in terms of the simple 2× 2-matrix P , with
real Z > 0, m2 > 0, b > 0 and c.

We first perform a general discussion of the propagator P−1 and turn to our specific
model later. Poles of the propagator in the complex plane for q2 correspond to vanishing
eigenvalues of P . In turn, those are given by a vanishing determinant

detP = bm2q2
(
Zq2 + b− c2

b
m2
)
. (8.2)

In the absence of mixing, c = 0, we recognize a massless particle with pole at q2 = 0 and a
massive particle with pole at q2 = −m2/Z. For c 6= 0 the massive particle pole is shifted to
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lower values. All poles are on the real axis. A stable particle obtains for

c2 < b, (8.3)

while for c2 > b one observes a tachyon instability. For c2 = b poles can only occur for q2 = 0.
We absorb a factor of m in the definition of the vierbein field, such that all entries in

PR have the same dimension

PR(q2) =
(
Zq2 +m2 −icmq
icmq bq2

)
. (8.4)

The eigenvalues of PR obey

λ± = 1
2

{
Zq2 +m2 + bq2 ±

[(
Zq2 +m2 − bq2

)2
+ 4c2m2q2

]1/2
}
. (8.5)

The pole at q2 = 0 corresponds to λ−. Expanding λ− around q2 = 0,

λ− =
(
b− c2

)
q2 +O

(
q4
)
, (8.6)

yields a positive coefficient for q2 if b > c2. This corresponds to a stable massless particle.
Similarly, for an expansion of λ+ around the location of the propagator-pole at

q2
p = −m

2

Z

(
1− c2

b

)
, (8.7)

one obtains

λ+ = αZ(q2 − q2
p), α =

(
1− c2

b

)(
1− (Z + b)c2

b2

)−1

. (8.8)

This holds for
(Z + b)c2 < b2, (8.9)

and the massive particles is stable in this case. Instabilities occur for c2 > b or (Z+b)c2 > b2.
For (Z + b)c2 > b2 the massive particle pole is described by a second zero of λ−, while λ+
has no zero. Eq. (8.8) holds now for λ−, and α < 0 indicates a ghost-instability. For the
boundary case (Z + b)c2 = b2 both λ+ and λ− are proportional

√
q2 − q2

p for q2 → q2
p.

Finally, for the boundary of stability c2 = b one has

λ± = 1
2

{
m2 + (Z + b) q2 ±

[(
m2 + (Z + b) q2

)2
− 4Zbq4

]1/2
}
. (8.10)

For Z = 0 this yields
λ+ = m2 + bq2, λ− = 0, (8.11)

corresponding to a single stable massive particle with squared mass m2/b, plus a flat
direction. For Z > 0 one finds for small q2

λ− = Zbq4

m2 . (8.12)

The eigenvalue λ+ no longer has a zero.
We conclude that for positive Z and m2 the parameters have to obey two stability

conditions (8.3), (8.9) in order to avoid ghosts or tachyons. If these conditions are met no
instability occurs in the corresponding sector of excitations.
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Impact of the invariant LR and graviton propagator. Taking in our model only
the invariant LU corresponds to the case c2 = b, Z = 0. The action depends in this case
only on a particular combination of A and De, while the direction in field space orthogonal
to it is flat, cf. eq. (8.11). Adding LF introduces Z > 0. The inverse propagator ∼ q4

corresponds to the four derivatives in eq. (7.11). Finally, adding the term LR induces
additional non-diagonal elements such that

c =
√
b

(
1− fM

2

m2

)
, (8.13)

or
b− c2 =

(
2fM

2

m2 −
f2M4

m4

)
b. (8.14)

Furthermore, the contribution of LR to the gauge boson mass term shifts m2 in eq. (8.4) to
m2
g. (For the general stability discussion of this section we omit the index g.)
There is a stable massless particle for

0 < fM2

m2 < 2, (8.15)

corresponding to the graviton, cf. eq. (8.6). There is also a massive particle with squared
mass −q2

p given by eq. (8.7),

m2
U = −q2

p = 2fM2 − f2M4/m2

Z
. (8.16)

According to eq. (8.9) the massive particle is stable provided
Z

b
<

1(
1− fM2

m2

)2 − 1. (8.17)

For larger Z the massive particle becomes a ghost.
We conclude that there is a possible range of parameters for which both the massless

graviton and a heavy particle are stable. No instability occurs in this sector. The inverse
heavy particle propagator obeys near the pole

λ+ = Z
(
2x− x2)

2x− x2 − Z
b (1− x)2

(
q2 +m2

U

)
, x = fM2

m2 . (8.18)

This corresponds to the heavy degree of freedom related to the tensor field Uµνρ.
For the graviton we find in appendix A the values

m2
g = (1− y)m2, y = M2

m2 ,

b = 1, c =
√

1− y, f = (1−
√

1− y) (1− y)
y

,

x = fy

1− y = 1−
√

1− y.

(8.19)

Insertion of these values into λ−(q2) in eq. (8.5) yields the inverse graviton propagator (1.3).
The conditions of stability 0 < M2 < m2 and 0 < Z < Zc in eq. (1.4) correspond to the
stability conditions (8.15), (8.17).
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Propagator in effective low momentum theory. The effective low momentum theory
discards the heavy degree of freedom related to Uµνρ. It only keeps the massless field whose
inverse propagator is described by λ−(q2),

λ− = 1
2

{
m2 + (Z + b) q2 −

√
(m2 + (Z − b) q2)2 + 4bm2 (1− x)2 q2

}

= m2 + (Z + b) q2

2 ×
{

1− ε
(
q2
)√

1− 4bq2 (Zq2 +m2 (2x− x2))
(m2 + (Z + b) q2)2

}
(8.20)

with
ε(q2) = sign

(
m2 + (Z + b)q2

)
. (8.21)

If the stability condition (8.17) is respected, we know that the only zero of λ− in the
complex q2-plane occurs for q2 = 0. Indeed from eq. (8.2) we infer that the only other
possible zero could be at q2 = q2

p, as given by eq. (8.16). Evaluating

λ−
(
q2
p

)
=
m2 + (Z + b) q2

p

2
(
1− ε

(
q2
p

))
, (8.22)

we observe ε(q2
p) = −1 if the condition (8.17) is obeyed. With λ−(q2

p) < 0 the only possible
zero is at q2 = 0.

Expansion for small momentum and fake ghosts. Expanding λ−(q2) for small q2,

λ−
(
q2
)

= b
(
2x− x2

)
q2 + b (1− x)2

(
Z −

(
2x− x2

)
b
) q4

m2 + . . . , (8.23)

we observe for small x the structure of the low momentum effective theory (7.16)

m2λ−
(
q2
)
≈ 2fbM2q2 + Zbq4. (8.24)

If one determines the propagator-poles in the low-momentum effective theory (8.23)
or (8.24) one finds besides the stable graviton pole at q2 = 0 a ghost pole at q2 = −2fM2/Z.
This is the usual ghost instability of higher derivative gravity. This pole is a pure artifact
of the polynomial expansion of λ−(q2). As we have seen, the full expression for λ−(q2) does
not contain further zeros and all excitations are stable if the condition (8.17) is met. We
observe that the fake pole occurs at q2

p as given by eq. (8.16). If the condition (8.17) is
violated, this zero is indeed present in λ−(q2) and the model has a ghost instability. On the
other hand, if eq. (8.17) holds, the true pole corresponds to a zero of λ+(q2) and describes
a stable massive excitation.

Propagator for high momentum. For large values of q2 we observe

lim
q2→∞

λ−(q2) =

Zq
2, for Z < b

bq2, for Z > b.
(8.25)

For both possibilities this momentum behavior is stable. The mode λ− either corresponds
to the gauge bosons (Z < b) or the vierbein (Z > b). The limiting behavior (8.25) clearly
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demonstrates that the term ∼ q4 corresponds to a transient behavior, switching from
λ− ∼ q2 for small q2 to λ− ∼ q2 for large q2, though with different coefficients. Any
Taylor expansion describing such a crossover will typically contain a term ∼ q4 in the small
momentum expansion.

General stability analysis. While the simple inverse propagator matrix (8.1) contains
all essential features, the complete stability analysis of our model is more involved. First
of all, for Ḡµν = δµν two fields Hµν and ∂ρA ρ

µ ν , ∂νAρρµ etc. can mix only if they belong
to the same SO(4)-representation. The elements of the matrix (8.1) may depend on the
SO(4)-representation and one would like to require that for all mixings they lead to a stable
situation. Part of the stability analysis can be found in appendix A.

Furthermore, our discussion reveals that a more accurate treatment of the low-
momentum effective theory should omit the modes corresponding to λ+(q2) after proper
diagonalization of the inverse propagator matrix, rather than simply setting Uµνρ = 0. The
invariants LF and LR contain terms linear in Uµνρ and one should insert the solution of
the field equations for Uµνρ in terms of Gµν . This will add higher derivative terms to the
effective action (7.16), corresponding to the momentum dependence of λ−(q2). At the
present stage at least the excitations in the graviton sector (traceless transversal tensor
fluctuations of the metric) should be stable for a suitable choice of parameters. For Einstein
gravity the physical scalar mode in the metric is not bounded from below in euclidean flat
space. Nevertheless, this theory is stable due to the positive energy condition in Minkowski
space. The situation may be similar in our model. It will be an interesting task to find
for the various couplings multiplying invariants the range for which the excitations in flat
space are stable.

Emergence of general four-derivative gravity. Finally, in addition to LF we can also
construct invariants involving different index contractions by forming the tensor Fµν = F ρ

µρν

and the scalar F = F µ
µ . Invariants based on F ∗ νµ F µ

ν and F ∗F yield for the effective low-
momentum actions terms ∼ RµνRµν and ∼ R2. These additional terms modify the stability
analysis quantitatively. Furthermore, invariants with two derivatives can be constructed by
index contractions differing from eq. (3.39), keeping in mind Fνµ 6= Fµν , Fµνρσ 6= Fρσµν . In
addition, we can construct invariants employing the totally antisymmetric tensor εµνρσ. The
coefficients of all these invariants may differ for the short-distance theory q2 � m2 and the
low momentum theory q2 � m2 due to the renormalization flow of couplings. One expects
a renormalization flow from the couplings in the classical action for the short distance limit
to the couplings in the quantum effective action in the long distance limit. For the short
distance theory one wants to establish a set of couplings for which the functional integral is
well defined. For the couplings in the effective action the set of couplings should guarantee
stability of Minkowski space.

9 Discussion

We have proposed a model of pregeometry based on the local gauge symmetry SO(4,C) and
diffeomorphism invariance. If this is a consistent quantum field theory, general relativity
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emerges naturally in the low-momentum limit. Our theory would then be a valid model for
quantum gravity.

Four issues need a more profound clarification: (i) renormalizability, (ii) unitarity,
(iii) stability, (iv) consistency of Yang-Mills theories with non-compact gauge group, together
with the associated questions of time-space asymmetry and analytic continuation. We
address these open points in a short discussion.

In a quantum field theory the exact field equations, propagators and interaction vertices
are all derived from the quantum effective action Γ. This includes all effects of quantum
fluctuations. Questions of stability and causality concern the solutions of the field equations
derived from the quantum effective action. In the second part of this paper our discussion
of field equations, solutions and stability should be interpreted as an approximation to the
quantum effective action which includes the corresponding invariants.

In a quantum field theory the couplings multiplying these invariants are “running” or
scale-dependent couplings. Instead of explicitly discussing the dependence of propagators
and vertices on the momenta involved, it is convenient to introduce an infrared cutoff k

such that only quantum fluctuations with momenta q2 > k2 are effectively included in
the effective average action Γk. This allows one to investigate the running of couplings in
an approximation with a finite number of derivatives, instead of an explicit discussion of
the non-localities related to running couplings in dependence on external momenta. Since
external momenta do not always act as universal infrared cutoffs the effective average action
implements the stepwise inclusion of fluctuations more directly. There is, in general, no
direct translation between the running of couplings with k and the dependence of vertices
on external momenta.

We can consider the couplings Z(k), m2(k), M2(k) etc. as k-dependent couplings. In
principle, their running with k can be derived from suitable approximations to an exact
flow equation [62] for the k-dependence of Γk. For k → 0 the effective average action
Γk equals the quantum effective action Γ since all fluctuations are included. For k →∞
no fluctuations are included and Γk equals the microscopic or “bare” action S. For an
assessment if the proposed SO(4,C)-gauge theory constitutes a renormalizable quantum
field theory one needs to understand the running of couplings. For example, it is possible
that Z(k →∞)→∞, in which case the gauge interactions are asymptotically free. On the
other hand, it seems hard to turn off the interactions of the vierbein in the ultraviolet (UV)
limit k →∞. In this case renormalizability can be achieved by asymptotic safety if there
exists an UV-fixed point for all dimensionless couplings as m̃2(k) = m2(k)/k2 etc. The issue
of renormalizability involves then the establishment of the existence of an UV-fixed point.
Many features of asymptotic safety for gravity, as predictions for parameters (renormalizable
couplings) in the standard model of particle physics, will be similar for our model.

Unitarity concerns the microscopic formulation of the theory or the classical action.
It is a statement that the microscopic Hamiltonian that describes the evolution from a
given time-hypersurface to the infinitesimally neighboring one should be hermitian. For
formulating this problem in a consistent way the functional integral defining the quantum
field theory with Minkowski signature should be well defined. This issue involves to a large
extent the properties of the microscopic or classical propagators. It is believed that a model
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has high chances to be unitary if all poles of propagators correspond to physical particles
rather than tachyons or ghosts. No poles in the complex plane should hinder analytic
continuation. The propagators should fall off sufficiently fast for |q2| → ∞ and show no
essential singularities. If the high-momentum behavior of the action is well approximated
by the invariants LF + LU + LW we have shown that these properties are obeyed in the
short distance limit. The propagators of all physical excitations are proportional q−2 or
(q2 + m2)−1. The question arises if these properties hold for all momenta, including the
low-momentum limit.

In perturbation theory the issue of unitarity is closely related to the issue of stability of
small fluctuations around a given ground state or cosmological solution. Beyond perturbation
theory the connection gets more loose since stability concerns the quantum effective action,
while unitarity involves properties of the classical action. More in detail, stability concerns
the behavior of solutions of the field equations and therefore involves the properties of
the quantum effective action from which they are derived. In a non-perturbative context
the relevant couplings in the effective action may differ substantially from the classical
action. More generally, even the degrees of freedom may differ. We follow here a simple
assumption about the form of the effective action by considering a set of invariants with up
to two derivatives. The couplings multiplying these invariants may differ from those for the
classical action. Many couplings, as for example the terms linear in derivatives ∼ F , may
actually be absent in the classical action.

A first discussion of stability is rather encouraging. For euclidean flat space we
have found for many modes that also for low momenta the diagonalized propagators,
corresponding to λ−1

± (q2), do not lead to tachyonic or ghost poles if the parameters are in
a suitable range. In this case the ghosts appearing in a four-derivative approximation to
gravity are fake — they are artifacts of the approximation [28]. The important question
is therefore if the running couplings remain within this “range of stability”. The issue of
metastability of euclidean flat space in the scalar sector seems similar to Einstein-gravity
where no instability occurs due to the positive energy theorem.

The issues of renormalizability, unitarity and stability can first be investigated in a
simpler theory for euclidean gravity. For this purpose the vierbein e m

µ and the gauge fields
Aµmn can be taken real, and the gauge group is the compact group SO(4). An extension
to pregeometry with gauge group SO(4,C) presumably relies strongly on the properties of
analytic continuation. We emphasize, however, that the theory with complex vierbeins and
gauge fields has additional degrees of freedom which will influence the running of couplings
and the properties of a possible UV-fixed point.

Our first discussion of consistency of a gauge theory based on the non-compact gauge
group SO(4,C) is also encouraging. For a suitable form of the effective action all physical
degrees of freedom have acceptable propagators for large q2 when expanded around euclidean
flat space. This is not trivial due to the non-compact character of the gauge group SO(4,C).
For example, the invariant ηmn for the SO(1, 3)-subgroup has one negative eigenvalue, such
that a standard kinetic term constructed only with the real metric δµν of euclidean space
would lead to the presence of a ghost-mode with a negative sign of the kinetic term. The
term LF in eq. (3.39) demonstrates how such ghost modes are avoided by use of the complex
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conjugate F ∗µνρσ . The construction of the SO(4,C) invariant field strength Fµνρσ requires
the presence of the complex vierbein and would not be possible if only real vierbeins are
admitted.

If stability holds for euclidean space, the propagators in Minkowski space can be
obtained by analytic continuation. As well known from gauge fields, the second functional
derivative of the effective action can change sign when continued from euclidean to Minkowski
space. This occurs for all components of fields with an odd number of zero indices, due
to contractions with ηµν instead of δµν . The issue is well understood for gauge fields Azµ
with a single world index and poses no problem. Better understanding may be needed for
objects with several indices as Hµν or Aµνρ. Our description of analytic continuation as
continuation in the value of the complex vierbein field gives an unambiguous prescription for
analytic continuation, including chiral fermion fields [5]. This provides for a solid starting
point for a discussion of stability in ground states with a metric signature different from
euclidean signature.

For the effective action at low momenta one wants to end with a geometric description
involving a real metric gµν . We have found a simple scenario how the properties of the
ground state can single out a real metric gµν as a composite field from complex vierbeins.
This definition is valid for a vanishing “cosmological constant” V0, or more generally the
vanishing of a term linear in the trace of the complex pseudo-metric. Adaptation to V0 6= 0
needs additional work.

Even tough our proposal for pregeometry still has important open issues, it nevertheless
also seems to lead to important simplifications as compared to other scenarios of quantum
gravity based only on the metric, or associated geometric quantities in discrete settings.
A main advantage is the simple form of the inverse propagator in the short distance limit.
It can be well described by an action containing only two derivatives, avoiding issues of
causality, locality and lack of unitarity. Furthermore, the difference between time and space
needs not to be postulated a priori. Time-space asymmetry can emerge from spontaneous
symmetry breaking as a property of the ground state or cosmological state.
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A Mode expansion and propagators for euclidean pregeometry

In this appendix we discuss a simpler version of pregeometry, based on the compact gauge
group SO(4). The vierbein and the gauge fields are here real fields, in contrast to the
complex fields in the main text. The emergent low-momentum effective theory will be
euclidean gravity. By analytic continuation we can reach an SO(1, 3)-gauge theory. The
emergent gravity is then general relativity with Minkowski signature. The SO(4)-gauge
theory discussed in this appendix is a genuine euclidean quantum field theory with a well
defined functional integral, once regularized, for example, on a lattice. As we have discussed
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in section 4, it can also be taken as a partial description of the “real metric and real gauge
field limit” of the SO(4,C)-gauge theory.

Many results of the main text can be taken over by simply omitting the imaginary
parts of the complex vierbein and gauge fields. For this case the action is real and bounded
from below. This will allow us to discuss further aspects of our proposal of pregeometry
based on Yang-Mills theories. The number of degrees of freedom being smaller than for
the SO(4,C)-gauge theory, we can also perform a simpler discussion of the mode expansion
and stability. We recall, however, that the full discussion of stability for the SO(4,C)-
gauge theory needs to include the imaginary parts of the vierbein and gauge fields. Also
the renormalization group running will be different for the SO(4,C) — and SO(4)-gauge
theories. This appendix partly overlaps with material in ref. [29]. This should enhance
the self-consistency of the present paper and give the reader direct access to examples
illustrating the general discussion in section 7.

A.1 Mode decomposition

We decompose the fluctuations of the vierbein and the gauge fields around euclidean flat
space and zero gauge fields. The decomposition involves different representations of the
“euclidean Lorentz group” SO(4) that cannot mix in quadratic order. Mixing is observed,
however, between modes belonging to the same representation. This renders the discussion
of stability rather complex. We discuss the general structure of the mixing and focus
subsequently on the graviton propagator and the scalar propagator. We find a stable
graviton propagator without ghosts or tachyons. The mode decomposition of the vierbein
can be taken over from sections 3, 4. We supplement this here by a decomposition of the
gauge fields.

We decompose the linear gauge fields Aµνρ in flat space into transversal modes Bµνρ
and longitudinal modes Lνρ,

Aµνρ = Bµνρ + ∂µLνρ , ∂µBµνρ = 0 . (A.1)

With
P νµ = δνµ −

∂µ∂
ν

∂2 , ∂µP νµ = 0 , P νµ∂ν = 0 , (A.2)

we can write
Bµνρ = P σµAσνρ = P σµBσνρ . (A.3)

The transversal fluctuations can be decomposed as

Bµνρ = 1
4ε

στ
νρ (Pµσvτ − Pµτvσ) + 1

3 (Pµνwρ − Pµρwν) +Dµνρ ,

Dµνρ = 1
2 (∂νEµρ − ∂ρEµν) + Cµνρ , (A.4)

with transversal traceless symmetric tensor Eµν

∂µEµν = 0 , δµνEµν = 0 , Eµν = Eνµ , (A.5)
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and Cµνρ obeying

Cµνρ = −Cµρν , ∂µCµνρ = 0 , εµνρσCµνρ = 0 ,
δµνCµνρ = δµρCµνρ = 0 , P̃ νρ

στ Cµνρ = 0 . (A.6)

Here the projector

P̃ νρ
στ = 1

2∂2 (∂σ∂νδρτ − ∂τ∂νδρσ − ∂σ∂ρδντ + ∂τ∂
ρδνσ) , (A.7)

obeys

P̃ αβ
στ P̃ νρ

αβ = P̃ νρ
στ , P̃ νρ

νρ = 3 ,

∂τ P̃ νρ
στ = 1

2(∂ρδνσ − ∂νδρσ) , (A.8)

and

P̃ νρ
στ Dµνρ = (∂σEµτ − ∂τEµσ) ,

P̃ νρ
στ (∂νEµρ − ∂ρEµν) = (∂σEµτ − ∂τEµσ) ,

Cµνρ = Dµνρ − P̃ στ
νρ Dµστ . (A.9)

Out of the 24 components Aµνρ six degrees of freedom Lνρ = −Lρν are longitudinal
degrees of freedom. Thus there are 18 transversal modes Bµνρ. The four modes vµ
correspond to the totally antisymmetric part A[µνρ], while the four modes wρ account for
the trace Aµνρδµν . There remain 10 modes for Dµνρ. The projector P̃ eliminates half of
them, and the traceless transversal symmetric tensor Eµν accounts indeed for five modes.
The other five modes correspond to Cµνρ = −Cµρν , which indeed is subject to 19 constraints.
The vectors vµ and wµ can be decomposed into transversal vectors and scalars

vµ = v(t)
µ + ∂µṽ , wµ = w(t)

µ + ∂µw̃ ,

∂µv(t)
µ = 0 , ∂µw(t)

µ = 0 . (A.10)

The irreducible representations of the transversal modes Bµνρ are 2× 5 + 2× 3 + 2× 1. In
particular, the scalar part of Bµνρ reads

B(s)
µνρ = 1

2ε
τ

µνρ ∂τ ṽ + 1
3 (δµν∂ρw̃ − δµρ∂νw̃) . (A.11)

Finally, the six longitudinal modes are two triplets

Lνρ = Mνρ + ∂ν lρ − ∂ρlν , (A.12)

with
∂νMνρ = ∂ρMνρ = 0 , ∂ν lν = 0 . (A.13)

This decomposition can be performed equally for complex fields, or separately for
their real and imaginary parts. It can be the basis for a stability discussion of the full
SO(4,C)-gauge theory. Since all fields carry only word-indices they are SO(4,C)-invariant.
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A.2 High momentum limit for real vierbein and gauge fields.

In the following we focus the discussion by considering the euclidean gauge group SO(4) with
real gauge fields Aµmn and real vierbeins e m

µ . We expand around flat space, e m
µ = δmµ .

The source term L
(3)
U mixes the gauge fields Aµνρ and the vierbein fluctuations Hµν . In

quadratic order one finds from eq.∫
x
eL

(3)
U = −m

2

4

∫
x
Aµνρ

(
∂µH

(A)
νρ + ∂ρH

(S)
µν −∂νH(S)

µρ

)
= m2

4

∫
x

{
Lνρ

(
∂2H(A)

νρ + ∂ρ∂
µH(S)

µν − ∂ν∂µH(S)
µρ

)
+ 2∂ρBµνρH(S)

µν

}
= m2

4

∫
x

(Yl + Yt) .

(A.14)

For the longitudinal part Yl we employ eqs. (4.20)–(4.22), (5.12)

Yl = Mνρ∂2bνρ + 2lµ∂4(κµ − γµ) . (A.15)

For the transversal modes we decompose the tensor ∂ρBµνρ into its traceless symmetric,
antisymmetric, and (modified) trace parts

∂ρB
µνρ = B̃(S)µν + B̃(A)µν + 1

3P
µν b̃ , (A.16)

with

B̃(S)µν = B̃(S)νµ, B̃(S)µνδµν = 0, B̃(A)µν = −B̃(A)νµ ,

∂µB̃
(S)µν + ∂µB̃

(A)µν = 0 . (A.17)

Comparing with the expansion (A.4) we identify

B̃(S)µν = −1
2∂

2Eµν , B̃(A)µν = 1
2ε

µνρτ∂ρv
(t)
τ ,

b̃ = ∂2w̃ . (A.18)

The components Cµνρ do not appear due to the identity

∂ρCµνρ = 0 , (A.19)

which follows from eqs. (A.8), (A.9). Inserting also the expansion (4.20), (5.12) for H(S)
µν

the transversal part of eq. (A.14) reads

Yt =
(
2B̃(S)µν + 2

3P
µν b̃

)
H(S)
µν = −Eµν∂2tµν + 2

3 w̃∂
2σ . (A.20)

We observe that the twelve transversal gauge field fluctuations v(t), w(t), ṽ, Cµνρ do not
appear in L(3)

U . Also the four gauge modes κµ + γµ and u are absent.
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Similarly, we can decompose the gauge boson mass term L
(2)
U ,

L
(2)
U = m2

4 AµνρAµνρ = m2

4
(
BµνρBµνρ − Lνρ∂2Lνρ

)
= m2

4

{
−1

2E
νρ∂2Eνρ + CµνρCµνρ + v(t)µv(t)

µ −
3
2 ṽ∂

2ṽ

+ 4
9w

(t)µw(t)
µ −

2
3 w̃∂

2w̃ −Mνρ∂2Mνρ + 2lµ∂4lµ

}
,

(A.21)

and employ eq. (4.23) for L(1)
U ,

L
(1)
U = m2

4

{
−1

2 t
µν∂2tµν −

1
4b

µν∂2bµν + 1
2 (κµ − γµ) ∂4 (κµ − γµ)− 1

6σ∂
2σ

}
. (A.22)

Taking things together, LU involves a couple of independent pieces

LU = m2

4
{
LtE + Lσw̃ + LbM + Lκγl + L′m

}
. (A.23)

For the transversal traceless symmetric tensors t and E one has

LtE = −1
2 (tµν + Eµν) ∂2 (tµν + Eµν) , (A.24)

while in the scalar sector σ and w̃ are connected

Lσw̃ = −1
6(σ − 2w̃)∂2(σ − 2w̃) . (A.25)

The sector for the longitudinal gauge bosons involves

LbM = −1
4(bµν − 2Mµν)∂2(bµν − 2Mµν) , (A.26)

and
Lkγl = 1

2 (κµ − γµ + 2lµ) ∂4 (κµ − γµ + 2lµ) . (A.27)

Up to absorption of momentum-dependent normalization factors the mixing takes the form
of the terms m2 in eq. (8.1). The remaining part L′m involves only mass terms for the gauge
bosons and no mixing

L′m = CµνρCµνρ + v(t)µv(t)
µ −

3
2 ṽ∂

2ṽ + 4
9w

(t)µw(t)
µ . (A.28)

The kinetic term for the gauge bosons (4.10) involves only the transversal gauge bosons,

LF = −ZF4 Aµνρ∂2P σ
µ Aσνρ = −ZF4 Bµνρ∂2Bµνρ . (A.29)

The decomposition is similar to the transversal part of eq. (A.21), replacing m2 by −ZF∂2,

LF = ZF
4

{1
2E

νρ∂4Eνρ − Cµνρ∂2Cµνρ − v(t)µ∂2v(t)
µ + 3

2 ṽ∂
4ṽ − 4

9w
(t)µ∂2w(t)

µ + 2
3 w̃∂

4w̃

}
.

(A.30)
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A.3 Unitarity

Let us consider a microscopic or classical action based on LF + LU . With an appropriate
normalization, the inverse propagator for the gauge boson fluctuations C, v(t), w(t) and ṽ is
the standard one for massive particles in momentum space

P = G−1 = q2 + m2

ZF
. (A.31)

In the t− E-sector the inverse propagator matrix takes the form

P = G−1 = q2

4

(
ZF q

2 +m2 , m2

m2 , m2

)
. (A.32)

The only zero eigenvalue of P occurs for q2 = 0, corresponding to eq. (8.2) for c2 = b. The
eigenvalues of P are

λ± = q2

8

(
ZF q

2 + 2m2 ±
√
Z2
F q

4 + 4m4
)
. (A.33)

Up to an overall normalization factor q2/4 this corresponds to eq. (8.5) with b = m2/q2,
c2 = b. The different normalizations factors can be absorbed in a momentum dependent
renormalization of the fields, ERµν = q

2Eµν , q =
√
|q2|, tRµν = m

2 tµν , resulting in

PR =
(
ZF q

2 +m2 , mq

mq , q2

)
(A.34)

This equals eq. (8.4) for b = c = 1, up to factors of i that do not affect the eigenvalues and
have been used in eq. (8.4) for a formal correspondence ∂µ = iqµ. The q- dependence in the
renormalization of E corresponds to the standard normalization of gauge fields A, noting
A ∼ qE, while the normalization of t provides a canonical mass dimension to this field. For
the renormalized fields the eigenvalues of PR are (Z = ZF )

λ± = 1
2

{
(Z + 1) q2 +m2 ±

√
(Z − 1)2 q4 + 2(Z + 1)q2m2 +m4

}
. (A.35)

For the high momentum behavior, q2 � m2, this yields

λ+ =


Z

(
q2 + m2

Z − 1

)
for Z > 1

q2 + m2

1− Z for Z < 1 ,

λ− =


q2 − m2

Z − 1 for Z > 1

Z

(
q2 − m2

1− Z

)
for Z < 1 .

(A.36)
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Near the pole at q2 = 0 one finds

λ− = Zq4

m2 , λ+ = m2 + (Z + 1)q2 , (A.37)

in accordance with eq. (8.12).
In the w̃ − σ-sector the inverse propagator matrix

P = q2

3


Zq2 +m2 ,−m

2

2

−m
2

2 ,
m2

4

 (A.38)

has the same structure as eq. (A.32), up to an overall factor 4/3 and a rescaling of σ by a
factor (−2).

For the longitudinal gauge bosons there is no contribution from LF . This corresponds
to the case Z = 0, c2 = b in eq. (8.10). The inverse propagator matrix in the M − b-sector
obtains from LbM in eq. (A.26)

P = q2m2

2

 1 −1
2

−1
2

1
4

 . (A.39)

After proper renormalization of the fields this becomes

PR =

 m2 −mq
−mq q2

 . (A.40)

The eigenvalue λ− is zero for all q2, corresponding to detP = 0 or detPR = 0. This reflects
the gauge mode of local SO(4)-gauge transformations. Indeed, these gauge transformations,
applied to a “vacuum state” Aµmn = 0, emµ = δmµ , do not only shift the longitudinal
components of Aµmn, but also rotate emµ , contributing infinitesimally to H(A)

µν . For this reason
the gauge modes are a linear combination of Lµν and bµν . The combination corresponding
to the gauge mode is the one that does not appear in the SO(4)-invariant tensor Uµνρ. The
other linear combination is a physical mode, corresponding to the eigenvalue λ+ of PR

λ+ = q2 +m2 . (A.41)

This corresponds to the standard propagator for a massive particle.
In summary, all euclidean propagators are well behaved, without tachyons and ghosts

for ZF > 0, m2 > 0. The only touchy point is the double pole in the transversal traceless
sector, corresponding to λ− ∼ q4 in eq. (A.37). It is not obvious why this behavior should
obstruct the consistent definition of a functional integral.
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A.4 Stability and invariant linear in field strength

For a discussion of stability one has to investigate the quantum effective action. As compared
to the classical action this contains additional terms. For example, the invariant LR is
crucial for a realistic low-momentum theory for gravity. The new invariants modify the
propagators and could induce new tachyonic or ghost instabilities. We investigate this
issue by adding to LF + LU the invariant LR, cf eq. (7.12). In contrast to LF and LU the
invariant LR is not a square and can therefore take negative values. Since LR is linear in q,
it cannot modify the leading behavior ∼ q2 for large q2. In the infrared limit of small q2

it can play an important role, however. We well see that it dominates the behavior near
massless propagator poles at q2 = 0.

We need to expand

eLR = −M
2

2 eemµenνFµνmn (A.42)

in quadratic order in H and A around emµ = δmµ , Aµmn = 0. Since Fµνmn is a least linear
in Aµmn according to eq. (3.34), we need the vierbein in linear order in H,

eemµenν = δmµδnν + 1
2Hρσ

(
δmµδnνδρσ − δmµδnρδνσ − δmρδnνδµσ

)
. (A.43)

The linear term ∂µA
µν

ν −∂νA µν
µ is a total derivative and therefore vanishes. In quadratic

order one finds two contributions, LR = L
(1)
R + L

(2)
R ,

eL
(1)
R = −M

2

4 Hρσ

{(
∂µA

µν
ν − ∂νA µν

µ

)
δρσ (A.44)

−
(
∂µA

µρ
ν − ∂νA µρ

µ

)
δνσ−

(
∂µA

ρν
ν − ∂νA ρν

µ

)
δµσ
}
,

and
eL

(2)
R = −M

2

2
{
A µρ
µ A ν

νρ −A µρ
ν A ν

µρ

}
. (A.45)

For the first term we observe that only the transversal gauge bosons contribute to
Fµνmn in linear order,

eL
(1)
R = M2

2 Hρσ

{
δρσ∂µB

νµ
ν − ∂µBσρµ− ∂σB µρ

µ

}
= M2

2 Hρσ

{(2
3δ

ρσ + 1
3
∂ρ∂σ

∂2

)
b̃− B̃(S)σρ − B̃(A)σρ − 2

3∂
σw(t)ρ − ∂σ∂ρw̃

}
.

(A.46)

The decomposition yields

eL
(1)
R = M2

2

{2
3 w̃∂

2σ + 1
2E

ρσ∂2tσρ + 1
2ε

µνρσv(t)
µ ∂νbρσ + 2

3w
(t)µ∂2(κµ − γµ)

}
. (A.47)

This contributes to the mixing between transversal gauge bosons and vierbein fluctuations,
similar to eq. (A.20). As it should be, the gauge modes κµ + γµ and u do not appear. The
second term decomposes as

eL
(2)
R = M2

2

{1
4E

µν∂2Eµν + CµνρC
νρµ + 2

9w
(t)µw(t)

µ −
2
3 w̃∂

2w̃ + 1
2v

(t)µv(t)
µ −

3
2 ṽ∂

2ṽ

+ 4
3w

(t)µ∂2lµ − εµνρσv(t)
µ ∂νMρσ

}
. (A.48)
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The different contributions of eLR can be listed as follows

eLR = M2

4
(
∆LtE + ∆Lσw̃ + LvM + LwL + LC + Lṽ

)
. (A.49)

Here
∆LtE = Eµν∂2tµν + 1

2E
µν∂2Eµν , (A.50)

and
∆Lσw̃ = 4

3
(
w̃∂2σ − w̃∂2w̃

)
, (A.51)

add to eqs. (A.24)(A.25) further contributions, while

LvM = εµνρσv(t)
µ ∂ν (bρσ − 2Mρσ) + v(t)µv(t)

µ (A.52)

can be combined with LbM in eq. (A.26), involving the same physical combination bµν−2Mµν .
Similarly

Lwl = 4
3w

(t)µ∂2 (κµ − γµ + 2lµ) + 4
9w

(t)µw(t)µ
µ (A.53)

combines with Lkγl in eq. (A.27). The remaining parts,

LC = 2CµνρCνρµ , Lṽ = −3ṽ∂2ṽ , (A.54)

add mass terms to the gauge boson fluctuations C and ṽ.

A.5 Graviton propagator

In the t− E-sector the renormalized inverse propagator matrix (A.34) is replaced by

P
(tE)
R =


ZF q

2 +m2 −M2 ,
m2 −M2

m
q

m2 −M2

m
q , q2

 . (A.55)

The poles of the propagators or zero eigenvalues of PR occur for

q2 = 0 , q2 = −µ2 , (A.56)

with
µ2 = m2

ZF
y(1− y) , y = M2

m2 . (A.57)

A stable particle requires µ2 > 0, or

0 6 y 6 1 , 0 6M2 6 m2 . (A.58)

Otherwise one encounters a tachyonic instability. The inverse particle propagators are given
by the eigenvalues of PR,

λ± = 1
2

{
(Z + 1) q2+m2−M2±

√
[(Z − 1) q2 +m2 −M2]2 + 4 q

2

m2 (m2 −M2)2
}
. (A.59)
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For q2 → 0 one finds the massless graviton, corresponding to

λ− = M2q2

m2 +
(
Z − M2

m2

)
q4

m2 . (A.60)

This reflects the low-momentum effective action (7.16).
Near the second pole at q2

p = −µ2 one finds for

− (Z + 1)µ2 +m2 −M2 < 0 (A.61)

or
Z < Zc , Zc = y

1− y , (A.62)

a negative λ− for q2 near −µ2,

λ− = −m2
t −

1
2

(
Z + 1− Atm

2

m2
t

)(
q2 + µ2

)
(A.63)

with positive m2
t for Z < Zc,

m2
t = (Z + 1)µ2 −m2 +M2 = m2y (1− y)

( 1
Z
− 1
Zc

)
, (A.64)

and
At = (1− y)

(
Z + 1−

(
Z + 1

Z

)
y

)
. (A.65)

Here we have always assumed the range 0 6 y 6 1 required by stability according to
eq. (A.58). For large |q2| one obtains

lim
q2→∞

λ− =

q2 for Z > 1
Zq2 for Z < 1 ,

lim
q2→−∞

λ− =

Zq2 for Z > 1
q2 for Z < 1 .

(A.66)

For Z < Zc the function λ−(q2) remains negative and real for the range of real q2 with
−µ2 < q2 < 0.

For Z > Zc the graviton propagator λ−1
− (q2) has a second pole at q2 = −µ2, with a

behavior for q2 near −µ2 given by

λ−
(
q2
)

= Bt
(
q2 + µ2

)
, (A.67)

where
Bt = 1

2

(
Z + 1 + Atm

2

m2
t

)
= Zy

y − Z(1− y) . (A.68)

For Z > Zc one has m2
t < 0 and Bt < 0. The negative prefactor of q2 + µ2 corresponds to

a negative residuum at the pole at q2 = −µ2. This indicates a ghost instability. A stable
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theory with a well behaved graviton propagator for all momenta therefore requires the
“stability condition” (A.62), Z < Zc.

With this condition the graviton propagator has only a single pole in the complex q2-
plane at q2 = 0. In the standard normalization with dimensionless metric or vierbein fields
the graviton propagator is given by

Ggrav(q2) = 4
m2λ−(q2) . (A.69)

This is the graviton propagator (1.3) mentioned in the introduction. For q2 near zero it
reads, cf. eq. (A.60),

Ggrav
(
q2
)

= 4
M2q2

(
1 + (Z − y) q2

M2

)−1

. (A.70)

While the truncated propagator has a ghost pole at q2 = −M2/(Z − y), this pole is not
present in the propagator (A.69). It is therefore an artifact of the truncation [28].

In the stable range for Z < Zc one obtains for λ+(q2) for q2 in the vicinity of the pole
at q2 = −µ2,

λ+ = Bt
(
q2 + µ2

)
. (A.71)

With m2
t > 0 this yields Bt > 0. The eigenmode λ+(q2) corresponds to a stable massive

spin-two particle, with mass µ and residuum at the pole B−1
t > 0. In the stable range both

eigenvalues of the inverse propagator matrix (A.55) correspond to stable modes. There is
no instability in this sector. At q2 = 0 one finds a positive value of λ+,

λ+
(
q2 = 0

)
= m2 −M2 . (A.72)

For the boundary case M2 = m2 one observes a second stable massless particle, with

λ+ = Zq2 , λ− = q2 . (A.73)

For an overall picture of the q2-dependence of the two eigenvalues λ±(q2) we further
note that at a critical value q2

c < 0 both eigenvalue can coincide

λ+
(
q2
c

)
= λ−

(
q2
c

)
. (A.74)

This occurs when the square root in eq. (A.59) vanishes, determining

q2
c±
m2 = − 1− y

(1− Z)2

{
Z + 1− 2y ∓ 2

√
1− y

√
Z − y

}
. (A.75)

The condition for the existence of real intersection points is Z > y. For Z = y, which
belongs to the stable region, λ+(q2) and λ−(q2) touch each other at q2

c = −m2. For Z > y

one has a finite region q2
c− < q2 < q2

c+ for which the argument in the square root of eq. (A.59)
becomes negative. In this region λ+(q2) and λ−(q2) have a non-vanishing imaginary part
for real q2. (For Z → 1 one has q2

c− → −∞ , q2
c+ → −m

2/4, while for Z 6= 1, Z > y both
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q2
c− and q2

c+ are finite.) The region with an imaginary part of λ±(q2) occurs always beyond
the location of the second pole of the propagator, qc± < µ2. This is visible from

q2
c

m2 = − µ
2

m2 − xt , (A.76)

with

x± = 1
(Z − 1)2

(
b∓

√
b2 − (Z − 1)2 v2

)
, v = m2

t

m2 ,

b = 2 (1− y)2 + (Z − 1)
(

1− y − µ2

m2

)

= (1− y)
[
(Z + 1) (1− y) + y

Z
(Z − 1)2

]
. (A.77)

The argument of the square root being smaller than b2, both x+ and x− are positive
since b > 0.

For y < Z < y/(1 + y) the graviton propagator has a cut in the complex q2- plane
for real negative q2, extending from q2

c− to q2
c+ . Except for the pole at q2 = 0 and this

cut, it is analytic, decaying ∼ |q|−2 for large |q|. Nothing obstructs analytic continuation
from euclidean space to Minkowski space. We can therefore extend our analysis to field
configurations for which the metric is the Minkowski metric, gµν = ηµν . In Minkowski
space one has q2 = −q2

0 + ~q 2. In the complex q0-plane the graviton propagator has two
poles at q0 = ±

√
~q 2. It inherits the cuts on the real q0-axis, extending from q2

0 = |q2
c− |+ ~q 2

to |q2
c+ |+ ~q 2. The prescription for the usual infinitesimal iε-terms is dictated by analytic

continuation. This graviton propagator is well behaved in Minkowski space, without any
instability. For Z < y the branch points in the complex q2- plane acquire an imaginary part
and analytic continuation has to be discussed more carefully.

We can map these results to the general discussion in section 5. Comparing the inverse
propagator matrix (A.55) with eq. (8.4), and denoting the gauge boson mass m in eq. (8.4)
by mg in order to distinguish it from m as used in this section, we can identify

m2
g = m2 −M2 = m2(1− y) , b = 1 , c =

√
1− y . (A.78)

Here we disregard the factor ±i in the off-diagonal elements of eq. (8.4) since they do not
influence the eigenvalues λ±(q2). The relation

c2 = b− y (A.79)

identifies in eqs. (8.14), (8.18)

x = fM2

m2
g

= fy

1− y ,
b−c2

b
= 2x− x2 = y , (1− x)2 = 1− y . (A.80)

The stability condition (8.15) translates to (A.58), 0 < y < 1, and the tachyon mass in
eqs. (8.16) and (A.57) coincides,

m2
U = 2x− x2

Z
m2
g = µ2 . (A.81)
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The stability condition for the absence of ghosts (8.17) is equivalent to eq. (A.62). For the
inverse propagator of the stable massive particle near the pole eqs. (8.18) and (A.71) are
identical. The Taylor expansion for λ−(q2) for small q2 is identically given by eqs. (8.24)
or (A.60).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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