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Abstract
This review is focused on tests of Einstein’s theory of general relativity with

gravitational waves that are detectable by ground-based interferometers and pulsar-

timing experiments. Einstein’s theory has been greatly constrained in the quasi-

linear, quasi-stationary regime, where gravity is weak and velocities are small.

Gravitational waves are allowing us to probe a complimentary, yet previously

unexplored regime: the non-linear and dynamical extreme gravity regime. Such a

regime is, for example, applicable to compact binaries coalescing, where charac-

teristic velocities can reach fifty percent the speed of light and gravitational fields

are large and dynamical. This review begins with the theoretical basis and the

predicted gravitational-wave observables of modified gravity theories. The review

continues with a brief description of the detectors, including both gravitational-

wave interferometers and pulsar-timing arrays, leading to a discussion of the data

analysis formalism that is applicable for such tests. The review then discusses

gravitational-wave tests using compact binary systems, and ends with a description

of the first gravitational wave observations by advanced LIGO, the stochastic
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gravitational wave background observations by pulsar timing arrays, and the tests

that can be performed with them.

Keywords General relativity � Gravitational waves � Pulsar timing � Experimental

tests � Observational tests � Alternative theories � Compact binaries
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1 Introduction

1.1 The importance of testing

The era of precision gravitational-wave astrophysics commenced with the first

direct gravitational-wave observations by the advanced Laser Interferometer

Gravitational Observatory (aLIGO) (Abbott et al. 2016a) and all the other events

that were discovered by aLIGO, Virgo and KAGRA (Abbott et al.

2019a, 2021a, 2023). With it, a plethora of previously unavailable information

has flooded in, allowing for unprecedented astrophysical measurements and tests of

fundamental theories (Abbott et al. 2016d, 2019b, c, 2021b, c; Yunes et al. 2016;

Berti et al. 2018a, b). Nobody would question the importance of more precise

astrophysical measurements, but one may wonder whether fundamental tests are

truly necessary, considering the many successes of Einstein’s theory of General

Relativity (GR). GR has passed many tests through Solar System, binary pulsar and

cosmological observations (see e.g. Freire and Wex 2024; Will 2014; Psaltis

2008b), but what many of these have in common is that they sample the quasi-

stationary, quasi-linear weak field. That is, they sample the regime of spacetime

where the gravitational field is weak relative to the mass-energy of the system, the

characteristic velocities of gravitating bodies are typically small relative to the

speed of light, and the gravitational field is stationary or quasi-stationary relative to

the characteristic size of the system. Direct electromagnetic imaging of supermas-

sive black holes by the Event Horizon Telescope (EHT) (Akiyama et al.

2019, 2022a) has the potential to probe gravity in the strong gravitational potential
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regime (Akiyama et al. 2022b), provided astrophysical mismodeling and statistical

uncertainties can be controlled (Gralla 2021; Gralla et al. 2020; Völkel et al. 2021;

Lara et al. 2021). The systems EHT observes, however, are quasi-stationary and the

curvature of spacetime around supermassive black holes is not as high as that for

stellar-mass black holes and neutron stars. On the other hand, the extreme gravity
regime,1 where spacetime is highly dynamical, gravity is strong and self-gravitating

bodies have non-negligible velocities, is precisely the area gravitational waves open

for exploration.

To make this more concrete, let us define the gravitational compactness via

C ¼ M=R, where M and R are the characteristic mass and length scale of the

system (henceforth, we set G ¼ c ¼ 1). Let us also define the characteristic

velocities V of the system as a measure of the rate of change of the gravitational

field in the center of mass frame. The characteristic velocity can be related to the

timescale on which the gravitational energy changes significantly, T ¼ E= _E, with E

the characteristic gravitational energy and _E its rate of change, through V ¼ R=T .

While the compactness C is a measure of how strong gravity is in the system, the

velocity V is a measure of how dynamical the spacetime is. With these definitions at

hand, we define the weak field, the strong field and the extreme gravity regimes as

follows:

WeakFieldRegime : C � 1 ! M � R and V � 1 ! M � T ; ð1Þ

Strong FieldRegime : C.Oð1Þ ! M.R and V � 1 ! M � T ; ð2Þ

ExtremeGravity Regime : C.Oð1Þ ! M.R and V.Oð1Þ ! M.T :

ð3Þ

In spite of the naming convention, there is much information that can be gained

from weak-field and strong-field tests. In fact, entire classes of modified gravity

theories have been effectively ruled out (or at the very least stringently constrained)

by Solar System observations alone (Will 2014), as we discuss below.

Let us provide some examples of these regimes. The prototypical example for

weak-field tests are observations in the Solar System. For the Earth-Sun system, M
is essentially the mass of the Sun, while R is the Earth-Sun orbital separation, which

leads to C ¼ Oð10�8Þ, V ¼ Oð10�4Þ and T ¼ Oð106Þ seconds. The characteristic

compactness and velocity are clearly very small, and this is true for any planet or

satellite in the Solar System. Even if an object were in a circular orbit at the surface

of the Sun, its gravitational compactness would be Oð10�6Þ, its characteristic

velocity Oð10�3Þ and the characteristic timescale Oð103Þ seconds. A particularly

important Solar System test that has been used to stringently constrain many

modified theories of gravity is the observation of the Shapiro time delay, i.e. the

1 Notice that ‘‘extreme gravity’’ is not synonymous with Planck scale physics in this context. In fact, a

stationary black hole would not serve as a probe of extreme gravity, even if one were to somehow acquire

information about the gravitational potential close to the singularity. This is because any such observation

would necessarily be lacking information about the dynamical sector of the gravitational interaction.

Planck scale physics is perhaps more closely related to strong-curvature physics.
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delay of photons as they traverse a regime of curved spacetime. In 2003, the Cassini

Probe (Bertotti et al. 2003) sent radio signals to Earth while on its way to Saturn

while Earth was being eclipsed by the Sun, thus sensitively probing the Shapiro time

delay effect. The characteristic radius in this experiment is the radius of the Sun,

which gives C ¼ Oð10�6Þ and V ¼ 0, since this observation does not sample the

dynamical nature of spacetime.

The classic example for strong-field tests are observations of binary pulsars.

Neutron stars are strong-field sources of gravity because the ratio of their mass to

their radius (their matter compactness) is of Oð10�1Þ. However, many observables

are not sensitive to the gravitational field at the surface of the pulsar. For example,

observations of the orbital decay rate with the double binary pulsar J0737-3039

(Lyne et al. 2004; Kramer et al. 2006) have a characteristic compactness of

C ¼ Oð10�5Þ, velocities of V ¼ Oð10�3Þ and timescales of T ¼ Oð103Þ seconds,

where R is the orbital separation R ¼ Oð106 kmÞ and M � 3M� is the total mass.

Observations of the Shapiro time delay with the same system, where photons from

one neutron star pass close to its binary companion,2 have a characteristic

compactness of C ¼ Oð10�4Þ, where R ¼ Oð104 kmÞ is the photon’s distance of

closest approach and M ¼ Oð1:34M�Þ is the mass of one of the pulsars. Shapiro

time delay observations, however, are not probes of the dynamics of the spacetime,

so V ¼ 0 and T ¼ 1.

A typical example of an extreme gravity scenario is the merger of compact

objects, like black holes or neutron stars. In such scenarios, the characteristic

compactness and velocity can reach C ¼ Oð1Þ ¼ V during merger. Moreover, the

late inspiral proceeds so fast that the characteristic timescale can reach T ¼
Oð10�4Þ seconds. We see then that direct gravitational-wave observations sample

gravitational compactnesses and velocities much larger than those weak-field and

strong-field observations can probe. Of course, this had to be the case, since the

inspiral that aLIGO observed is completely driven by gravitational-wave emission,

where the latter cannot be treated as a small perturbation to linear order. However,

given the aLIGO observations to date, which have small to moderate signal-to-noise

ratios, the constraints on modified gravity effects derived from these cannot always

compete with those obtained with weak-field and strong-field observations yet.

Even though Solar System and binary pulsar observations do not give us access

to the extreme gravity regime, they have indeed served (and will continue to serve)

as invaluable tools to learn about gravity. Solar System tests effectively cured an

outbreak of modified gravity theories in the 1970s and 1980s, as summarized for

example in Will (2014). Binary pulsars were crucial as the first indirect detectors of

gravitational waves, and later to kill certain theories, like Rosen’s bimetric gravity

(Rosen 1974), and heavily constrain others that predict dipolar energy loss, as we

will see in Sects. 2 and 4. Similarly, electromagnetic observations of black hole

accretion disks probe GR in another strong-field sector: the non-linear but fully

2 Contrary to popular belief, this Shapiro time delay observation does not probe distances comparable to

the surface of neutron stars. Photons from pulsar A do graze pulsar B, but the photon’s distance of closest

approach depends sensitively on the inclination angle, which is not exactly 90 degrees for J0737-3039

(Lyne et al. 2004; Kramer et al. 2006).
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stationary regime, verifying that black holes are described by the Kerr metric

(Akiyama et al. 2022b).

Given these successes of Einstein’s theory, one may wonder why one should

bother with testing GR in the extreme gravity regime. Needless to say, the role of

science is to predict and verify and not to assume without proof. Moreover, the

incompleteness of GR in the quantum regime, together with the somewhat

unsatisfactory requirement of the dark sector of cosmology (including dark energy

and dark matter) have prompted many studies of modifications to GR. Gravitational

waves have now begun to verify Einstein’s theory in a regime previously

inaccessible to us, and as such, these tests are invaluable. In many areas of physics,

however, GR is so ingrained that questioning its validity is synonymous with

heresy. Dimensional arguments are usually employed to argue that any quantum

gravitational correction will necessarily and unavoidably be unobservable, as the

former are expected at a (Planck) scale that is inaccessible to detectors. This

rationalization is dangerous, as it introduces a theoretical bias in the analysis of new

observations of the Universe, thus quenching the potential for new discoveries. For

example, if astrophysicists had followed such a rationalization when studying

supernova data, they would not have discovered that the Universe is expanding.

Dimensional arguments suggest that the cosmological constant is over 100 orders of

magnitude larger than the value required to agree with observations. When

observing the Universe for the first time in a completely new way, it seems more

conservative to remain agnostic about what is expected and what is not, thus

allowing the data itself to guide our efforts toward theoretically understanding the

gravitational interaction.

1.2 Testing general relativity versus testing alternative theories

When testing GR, one considers Einstein’s theory as a null hypothesis and searches

for generic deviations. On the other hand, when testing modified gravity one starts

from a particular modified gravity model, develops its equations and solutions and

then predicts certain observables that then might or might not agree with

experiment. Similarly, one may define a bottom-up approach versus a top-down
approach. In the former, one starts from some observables in an attempt to discover

fundamental symmetries that may lead to a more complete theory, as was done

when constructing the standard model of elementary particles. On the other hand, a

top-down approach starts from some fundamental theory and then derives its

consequence.

Both approaches possess strengths and weaknesses. In the top-down approach

one has complete control over the theory under study, being able to write down the

full equations of motion, answer questions about well-posedness and stability of

solutions, and predict observables. But, as we see in Sect. 2, carrying out such an

approach can be quixotic within any one model. What is worse, the lack of a

complete and compelling alternative to GR makes choosing a particular modified

theory difficult.

Given this, one might wish to attempt a bottom-up approach, where one considers

a set of principles one wishes to test without explicit mention of any particular
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theory. One usually starts by assuming GR as a null-hypothesis and then considers

deformations away from GR. The hope is that experiments will be sensitive to such

deformations, thus either constraining the size of the deformations or pointing

toward a possible inconsistency. But if experiments do confirm a GR deviation, a

bottom-up approach fails at providing a given particular action from which to derive

such a deformation. In fact, there can be several actions that lead to similar

deformations, all of which can be consistent with the data within its experimental

uncertainties.

Nonetheless, both approaches are complementary. The bottom-up approach

draws inspiration from particular examples carried out in the top-down approach,

therefore allowing for a map between deformations of GR and theoretical physics.

Given a verification of GR through a bottom-up approach, one can then use this map

to place specific constraints on physical interactions that cannot present in the

observations carried out. This mapping, of course, is critically important, since

without it one would not know what physics one is constraining with the given

observations. This is indeed the route most commonly taken in observations of the

extreme gravity regime, as we will see in this review.

1.3 Gravitational-wave tests versus other tests of general relativity

Gravitational-wave tests differ from other tests of GR in many ways. Perhaps one of

the most important differences is the spacetime regime gravitational waves sample.

Indeed, as already mentioned, gravitational waves have access to the most extreme

gravitational environments in Nature. Moreover, gravitational waves travel

essentially unimpeded from their source to Earth, and thus, they do not suffer

from issues associated with obscuration. Gravitational waves also exist in the

absence of luminous matter, thus allowing us to observe electromagnetically dark

objects, such as black hole inspirals.

This last point is particularly important as gravitational waves from inspiraling

black-hole binaries are one of the cleanest astrophysical systems in Nature. In the

last stages of inspiral, when such gravitational waves are detectable by ground-

based interferometers, the evolution of binary black holes is essentially unaffected

by any other matter or electromagnetic fields present in the system. As such, one

does not need to deal with uncertainties associated with astrophysical matter. Unlike

tests of Einstein’s theory with accretion disk observations, binary black hole

gravitational-wave tests may well be the cleanest probes of GR.

Of course, what is an advantage here, can be also a huge disadvantage in another

context. Gravitational waves from compact binaries are intrinsically transient,

i.e. they turn on for a certain amount of time and then shut off. This is unlike binary

pulsar systems, for which astrophysicists have already collected tens of years of

data. Moreover, gravitational-wave tests rely on specific detections that cannot be

anticipated beforehand. This is in contrast to Earth-based laboratory experiments,

where one has complete control over the experimental setup. Finally, the intrinsic

weakness of gravitational waves makes detection a very difficult task that requires

complex data-analysis algorithms to extract signals from the noise. As such,

gravitational-wave tests are limited by the signal-to-noise ratio and affected by
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systematics associated with the modeling of the waves, issues that are not as

important in other loud astrophysical systems. The signal-to-noise-ratio limitation

will be remedied with next-generation detectors, which will be able to detect many

more events, some of which will be extremely loud.

1.4 Ground-based versus space-based detectors and interferometers
versus pulsar timing

This review article focuses only on ground-based detectors, by which we mean both

gravitational-wave interferometers, such as aLIGO (Abramovici et al. 1992; Abbott

et al. 2009; Harry 2010), Advanced Virgo (Acernese et al. 2005, 2007), KAGRA

(Yuzurihara 2023; Itoh 2023), the Einstein Telescope (ET) (Punturo et al. 2010;

Sathyaprakash 2012), and the Cosmic Explorer (CE) (Evans et al. 2021), as well as

pulsar timing arrays (for a review of gravitational-wave tests of GR with space-

based detectors, see Gair et al. 2013; Yagi 2013; Arun et al. 2022). Ground-based

detectors have the limitation of being contaminated by man-made and Nature-made

noise, such as ground and air traffic, logging, earthquakes, ocean tides and waves,

which are clearly absent in space-based detectors. Ground-based detectors,

however, have the clear benefit that they can be continuously upgraded and

repaired in case of malfunction, which is obviously not possible with space-based

detectors.

As far as tests of GR are concerned, there is a drastic difference in space-based

and ground-based detectors: the gravitational-wave frequencies these detectors are

sensitive to. For various reasons that we will not go into, space-based interferom-

eters are likely to have a million kilometer long arms, and thus, be sensitive in the

milli-Hz band. On the other hand, ground-based interferometers are bound to the

surface and curvature of the Earth, and thus, they have kilometer-long arms and are

sensitive in the deca- and hecta-Hz band. Different types of interferometers are then

sensitive to different types of gravitational-wave sources. For example, when

considering binary coalescences, ground-based interferometers are sensitive to late

inspirals and mergers of neutron stars and stellar-mass black holes, while space-

based detectors will be sensitive to supermassive black hole binaries with masses

around 105 M�.

The impact of a different population of sources in tests of GR depends on the

particular modified gravity theory considered. When studying quadratic gravity

theories, as we see in Sect. 2, the Einstein–Hilbert action is modified by introducing

higher order curvature operators, which are naturally suppressed by powers of the

inverse of the radius of curvature of the system. Thus, space-based detectors will not

be ideal at constraining these theories with supermassive black holes, as their radius

of curvature is much larger than that of the stellar-mass black holes at merger that

ground-based detectors observe. However, although space-based detectors will not

be sensitive to neutron-star–binary coalescences, they are expected to detect the

inspiral of a supermassive black hole with a neutron star or a stellar-mass black

hole. In these extreme mass-ratio inspirals, quadratic gravity modifications sourced

by the smaller object will be dominant (since recall these modifications scale
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inversely with the radius of curvature), and thus, may be constrained with space-

based detectors.

Space-based detectors are also unique in their potential to probe the spacetime

geometry of supermassive black holes through gravitational waves emitted during

extreme–mass-ratio inspirals. In these inspirals, the stellar-mass compact object is

on a generic decaying orbit around the supermassive black hole, generating millions

of cycles of gravitational waves in the sensitivity band of space-based detectors (in

fact, they can easily out-live the detector itself!). Therefore, even small changes to

the radiation-reaction force, or to the background geometry, can lead to noticeable

effects in the waveform observable and thus to stringent tests of GR (Amaro-Seoane

et al. 2007; Ryan 1995, 1997a; Kesden et al. 2005; Glampedakis and Babak 2006;

Barack and Cutler 2007; Li and Lovelace 2008; Gair et al. 2008; Sopuerta and

Yunes 2009; Yunes and Sopuerta 2010; Apostolatos et al. 2009; Lukes-Ger-

akopoulos et al. 2010; Gair and Yunes 2011; Contopoulos et al. 2011; Canizares

et al. 2012b; Gair et al. 2013; Perkins et al. 2021b; Maselli et al. 2020a, 2022;

Barausse et al. 2020; Arun et al. 2022).

Space-based detectors also have the advantage of range, which is particularly

important when considering modified gravity effects that accumulate with the

distance traveled by the gravitational wave, e.g. theories in which gravitons do not

travel at light speed (Mirshekari et al. 2012). Space-based detectors have a horizon

distance much larger than second-generation ground-based detectors; the former can

see black-hole mergers to redshifts of order 10 if there are any at such early times in

the universe, while the latter are confined to events within redshift 13. Gravitational

waves emitted from distant regions in spacetime need a longer time to propagate

from the source to the detectors. Thus, theories that modify the propagation of

gravitational waves will be better constrained by space-based detectors than second-

generation ground-based detectors (Will 1998; Berti et al. 2005a, 2011; Stavridis

and Will 2009; Yagi and Tanaka 2010a; Arun and Will 2009; Keppel and Ajith

2010; Mirshekari et al. 2012; Perkins et al. 2021b).

Another important difference between detectors is their response to an impinging

gravitational wave. Ground-based detectors, as we see in Sect. 3, cannot separate

between the two possible scalar modes (the longitudinal and the breathing modes) of

metric theories of gravity, due to an intrinsic degeneracy in the response functions.

Space-based detectors in principle also possess this degeneracy, but they may be

able to break it through Doppler modulation if the interferometer orbits the Sun.

Pulsar timing arrays, on the other hand, lack this degeneracy altogether, and thus,

they can in principle constrain the existence of these different polarizations

independently.

One way in which pulsar-timing arrays differ from interferometers in their

potential to test GR is the frequency space they are most sensitive to. Interferom-

eters can observe the late inspiral and merger of compact binaries, while pulsar

timing arrays are restricted to gravitational waves emitted in the very early inspiral.

This is why the latter do not need very accurate waveform templates that account for

the highly-dynamical and non-linear nature of gravity; leading-order quadrupole

3 Next-generation ground-based detectors are expected to have a horizon distance of z� 20.
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waveforms are sufficient (Corbin and Cornish 2010). In turn, this implies that pulsar

timing arrays cannot constrain theories that only deviate significantly from GR in

the late inspiral or merger, while they are exceptionally well-suited for constraining

low-frequency deviations.

We therefore see a complementarity emerging: different detectors can test GR in

different complementary regimes:

• Ground-based detectors are best at constraining non-GR effect that are largest in

the late inspiral and merger of stellar-mass compact binaries, including both

conservative and dissipative modifications.

• Space-based detectors are best at constraining modifications to the propagation

of gravitational waves, the geometry of supermassive black holes and

corrections to the radiation-reaction force in extreme mass-ratio inspirals.

• Pulsar-timing arrays are best at constraining the polarization content of

gravitational radiation and any deviation from GR that dominates at low orbital

frequencies.

Through the simultaneous implementation of all these tests, GR can be put on a

much firmer footing in all parts of the extreme gravity regime.

1.5 Notation and conventions

We follow mainly the notation of Misner et al. (1973), where Greek indices stand

for spacetime coordinates and spatial indices in the middle of the alphabet

ði; j; k; . . .Þ for spatial indices. Parenthesis and square brackets in index lists stand

for symmetrization and anti-symmetrization respectively,

e.g. AðlmÞ ¼ ðAlm þ AmlÞ=2 and A½lm� ¼ ðAlm � AmlÞ=2. Partial derivatives with

respect to spacetime and spatial coordinates are denoted olA ¼ A;l and oiA ¼ A;i

respectively. Covariant differentiation is denoted rlA ¼ A;l, multiple covariant

derivatives rlm... ¼ rlrm. . ., and the curved spacetime D’Alembertian

hA ¼ rlrlA. The determinant of the metric glm is g, Rlmdr is the Riemann

tensor, Rlm is the Ricci tensor, R is the Ricci scalar and Glm is the Einstein tensor.

The Levi-Civita tensor and symbol are �lmdr and ��lmdr respectively, with ��0123 ¼ þ1

in an orthonormal, positively oriented frame. We use geometric units (G ¼ c ¼ 1)

and the Einstein summation convention is implied.

We will be mostly concerned with metric theories, where gravitational radiation

is only defined much farther than a gravitational-wave wavelength from the source.

In this far- or radiation-zone, the metric tensor can be decomposed as

glm ¼ glm þ hlm; ð4Þ

with glm the Minkowski metric and hlm the metric perturbation. If the theory con-

sidered has additional fields /, these can also be decomposed in the far-zone as

/ ¼ /0 þ w; ð5Þ

with /0 the background value of the field and w a perturbation. With such a
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decomposition, the field equations for the metric will usually be wave equations for

the metric perturbation and for the field perturbation, in a suitable gauge.

2 Modified gravity theories

In this section, we discuss some of the many possible modified gravity theories that

have been studied in the context of gravitational-wave tests. We begin with a

description of the theoretically desirable properties that such theories must have. We

then proceed with a review of the theories so far explored as far as gravitational

waves are concerned. We will leave out the description of many theories in this

chapter, especially those which currently lack a gravitational-wave analysis; we

refer the interested reader to Berti et al. (2015), Barack et al. (2019). We will

conclude with a brief description of unexplored theories as possible avenues for

future research.

2.1 Desirable theoretical properties

The space of possible theories is infinite, and thus, one is tempted to reduce it by

considering a subspace that satisfies a certain number of properties. Although the

number and details of such properties depend on the theorist’s taste, there is at least

one fundamental property that all scientists would agree on:

1. Precision Tests. The theory must produce predictions that pass all solar system,

binary pulsar, cosmological, gravitational-wave and experimental tests that have

been carried out.

This requirement can be further divided into the following:

1:a General Relativity Limit. There must exist some limit, continuous or

discontinuous, such as the weak-field one, in which the predictions of the

theory are consistent with those of GR within experimental precision.

1:b Existence of Known Solutions (Wald 2009). The theory must admit solutions

that correspond to observed phenomena, including but not limited to (nearly)

flat spacetime, (nearly) Newtonian stars, and cosmological solutions.

1:c Stability of Solutions (Wald 2009). The special solutions described in

Property (1.b) must be stable to small perturbations on timescales smaller than

the age of the Universe. For example, perturbations to (nearly) Newtonian

stars, such as impact by asteroids, should not render such solutions unstable.

Of course, these properties are not all necessarily independent, as the existence of a

weak-field limit usually also implies the existence of known solutions. On the other

hand, the mere existence of solutions does not necessarily imply that these are

stable.

In addition to these fundamental requirements, one might also wish to require

that any new modified gravity theory possesses certain theoretical properties. These
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properties will vary depending on the theorist, but the two most common ones are

listed below:

2. Well-motivated from Fundamental Physics. There must be some fundamental

theory or principle from which the modified theory (effective or not) derives.

This fundamental theory would solve some fundamental problem in physics,

such as late time acceleration or the incompatibility between Quantum

Mechanics and GR.

3. Well-posed Initial-Value Formulation (Wald 2009). A wide class of freely

specifiable initial data must exist, such that there is a uniquely determined

solution to the modified field equations that depends continuously on this data.

The second property goes without saying at some level, as one expects modified-

gravity–theory constructions to be motivated from some (perhaps yet incomplete)

quantum- gravitational description of nature. As for the third property, the

continuity requirement is necessary because otherwise the theory would lose

predictive power, given that initial conditions can only be measured to a finite

accuracy. Moreover, small changes in the initial data should not lead to solutions

outside the causal future of the data; that is, causality must be preserved. Section 2.2

expands on this well-posedness property further.

One might be concerned that Property (2) automatically implies that any

predicted deviation from astrophysical observables will be too small to be

detectable. This argument usually goes as follows. Any quantum gravitational

correction to the action will ‘‘naturally’’ introduce at least one new scale, and this,

by dimensional analysis, must be the Planck scale. Since this scale is usually

assumed to be larger than 1 TeV in natural units (or 10�35 m in geometric units),

gravitational-wave observations will never be able to observe quantum-gravitational

modifications (see, e.g., Dubovsky et al. 2007 for a similar argument). In our view,

such arguments can be extremely dangerous, since they induce a certain theoretical

bias in the search for new phenomena. For example, let us consider the supernova

observations of the late time expansion of the universe that led to the discovery of

the cosmological constant. The above argument certainly fails for the cosmological

constant, which on dimensional arguments is over 100 orders of magnitude too

small. If the supernova teams had respected this argument, they would not have

searched for a cosmological constant in their data. Today, we try to explain our way

out of the failure of such dimensional arguments by claiming that there must be

some exquisite cancellation that renders the cosmological constant small; but this,

of course, came only after the constant had been measured. One is not trying to

argue here that cancellations of this type are common and that quantum

gravitational modifications are necessarily expected in gravitational-wave observa-

tions. Rather, we are arguing that one should remain agnostic about what is

expected and what is not, and allow oneself to be surprised without quenching the

potential for new discoveries that accompanies the era of gravitational-wave

astrophysics.

One last property that we wish to consider for the purposes of this review is the

following:
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4. Extreme Gravity Inconsistency. The theory must lead to observable deviations

from GR in extreme gravity.

Many modified gravity models have been proposed that pose infrared or

cosmological modifications to GR, aimed at explaining certain astrophysical or

cosmological observables, like the late expansion of the Universe. Such modified

models usually reduce to GR in the strong-field, and particularly, in the extreme-

gravity regime, for example via a Vainshtein like mechanism (Vainshtein 1972;

Deffayet et al. 2002; Babichev and Deffayet 2013) in a static spherically-symmetric

context. Extending this mechanism to highly-dynamical extreme gravity scenarios

has not been fully worked out yet (de Rham et al. 2013a, b, 2024; Gerhardinger

et al. 2024). Gravitational-wave tests of GR, however, are concerned with modified

theories that predict deviations in extreme gravity, precisely where cosmological

modified models do not. Clearly, Property (4) is not necessary for a theory to be a

valid description of nature. This is because a theory might be identical to GR in the

weak, strong and extreme gravity regimes, yet different at the Planck scale, where it

would be unified with quantum mechanics. However, Property (4) is a desirable

feature if one is to test this theory with gravitational-wave observations.

2.2 Well-posedness and effective theories

Property (3) not only requires the existence of an initial-value formulation, but also

that it be well-posed, which is not necessarily guaranteed. For example, the

Cauchy–Kowalewski theorem states that a system of n partial differential equations

for n unknown functions /i of the form /i;tt ¼ Fiðxl;/j;l;/j;ti;/j;ikÞ, with Fi

analytic functions has an initial-value formulation (see, e.g., Wald 1984). This

theorem, however, does not guarantee continuity or the causal conditions described

above. For this, one has to rely on more general energy arguments, for example

constructing a suitable energy measure that obeys the dominant energy condition

and using it to show well-posedness (see, e.g., Hawking and Ellis 1973; Wald 1984).

One can show that second-order, hyperbolic partial differential equations, i.e.,

equations of the form

rlrl/þ Alrl/þ B/þ C ¼ 0; ð6Þ

where Al is an arbitrary vector field and (B, C) are smooth functions, have a well-

posed initial-value formulation. Moreover, the Leray theorem proves that any

quasilinear, diagonal, second-order hyperbolic system also has a well-posed initial-

value formulation (Wald 1984).

Proving the well-posedness of an initial-value formulation for systems of higher-

than-second-order, partial differential equations is much more difficult. In fact, to

our knowledge, no general theorems exist of the type described above that apply to

third, fourth or higher-order, partial, non-linear and coupled differential equations.

Usually, one resorts to the Ostrogradski theorem (Ostrogradsky 1850) to rule out (or

at the very least cast serious doubt on) theories that lead to such higher-order field

equations. Ostrogradski’s theorem states that Lagrangians that contain terms with
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higher than first time-derivatives possess a linear instability in the Hamiltonian (see,

e.g., Woodard 2007 for a nice review).4 As an example, consider the Lagrangian

density

L ¼ m

2
_q2 � mx2

2
q2 � gm

2x2
€q2; ð7Þ

whose equations of motion,

€qþ x2q ¼ � g

x2
q
:...
; ð8Þ

obviously contain higher derivatives. The exact solution to this differential equation is

q ¼ A1 cos k1t þ B1 sin k1t þ A2 cos k2t þ B2 sin k2t; ð9Þ

where ðAi;BiÞ are constants and k2
1;2=x

2 ¼ ð1 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 4 g
p

Þ=ð2 gÞ. The on-shell

Hamiltonian is then

H ¼ m

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 4g
p

k2
1 A2

1 þ B2
1

� �

� m

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 4g
p

k2
2 A2

2 þ B2
2

� �

; ð10Þ

from which it is clear that mode 1 carries positive energy, while mode 2 carries

negative energy and forces the Hamiltonian to be unbounded from below. The latter

implies that dynamical degrees of freedom can reach arbitrarily negative energy

states. If interactions are present, then an ‘‘empty’’ state would instantaneously

decay into a collection of positive and negative energy particles, which cannot

describe the Universe we live in (Woodard 2007).

The Ostrogradski theorem (Ostrogradsky 1850), however, can be evaded if the

Lagrangian in Eq. (7) describes an effective theory, i.e., a theory that is a truncation of a

more general or complete theory. Let us reconsider the particular example above,

assuming now that the coupling constant g is an effective theory parameter and Eq. (7)

is only valid to linear order in g. One approach is to search for perturbative solutions of

the form qpert ¼ x0 þ gx1 þ . . ., which leads to the system of differential equations

€xn þ x2xn ¼ � 1

x2
x
:...

n�1; ð11Þ

with x�1 ¼ 0. Solving this set of n differential equations and resumming, one finds

qpert ¼ A1 cos k1t þ B1 sin k1t: ð12Þ

Notice that qpert contains only the positive (well-behaved) energy solution of

Eq. (9), i.e., perturbation theory acts to retain only the well-behaved, stable solution

of the full theory in the g ! 0 limit. One can also think of the perturbative theory as

the full theory with additional constraints, i.e., the removal of unstable modes,

which is why such an analysis is sometimes called perturbative constraints (Cooney

et al. 2009, 2010; Yunes and Pretorius 2009a).

4 Stability and well-posedness are not the same concepts and they do not necessarily imply each other.

For example, a well-posed theory might have stable and unstable solutions. For ill-posed theories, it does

not make sense to talk about stability of solutions.
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Another way to approach effective field theories that lead to equations of motion

with higher-order derivatives is to apply the method of order-reduction. In this

method, one substitutes the low-order derivatives of the field equations into the

high-order derivative part, thus rendering the resulting new theory usually well-

posed. One can think of this as a series resummation, where one changes the non-

linear behavior of a function by adding uncontrolled, higher-order terms. Let us

provide an explicit example by reconsidering the theory in Eq. (7). To lowest order

in g, the equation of motion is that of a simple harmonic oscillator,

€qþ x2q ¼ OðgÞ; ð13Þ

which is obviously well posed. One can then order-reduce the full equation of

motion, Eq. (8), by substituting Eq. (13) into the right-hand side of Eq. (8). Doing

so, one obtains the order-reduced equation of motion

€qþ x2q ¼ g€qþOðg2Þ; ð14Þ

which clearly now has no high-order derivatives and is well posed provided g � 1.

The solution to this order-reduced differential equation is qpert once more, but with

k1 linearized in g � 1. Therefore, the solutions obtained with a perturbative

decomposition and with the order-reduced equation of motion are the same to linear

order in g. Of course, since an effective field theory is only defined to a certain order

in its perturbative parameter, both treatments are equally valid, with the unsta-

ble mode effectively removed in both cases.

Such a perturbative analysis, however, can say nothing about the well-posedness

of the full theory from which the effective theory derives, or of the effective theory

if treated as an exact one (i.e., not as a perturbative expansion). In fact, a well-posed

full theory may have both stable and unstable solutions. The arguments presented

above only discuss the stability of solutions in an effective theory, and thus, they are

self-consistent only within their perturbative scheme. A full theory may have non-

perturbative instabilities, but these can only be studied once one has a full (non-

truncated in g) theory, from which Eq. (7) derives as a truncated expansion. Lacking

a full quantum theory of nature, quantum gravitational models are usually studied in

a truncated low-energy expansion, where the leading-order piece is GR and higher

order pieces are multiplied by a small coupling constant. One can perturbatively

explore the well-behaved sector of the truncated theory about solutions to the

leading-order theory. Such an analysis, however, is incapable of answering

questions about well-posedness or non-linear stability of the full theory.

2.3 Explored theories

In this subsection we briefly describe the theories that have so far been studied in

some depth as far as gravitational waves are concerned. In particular, we focus only

on those theories that have been sufficiently studied so that predictions of the

expected gravitational waveforms (the observables of gravitational-wave detectors)

have been obtained for at least a typical source, such as the quasi-circular inspiral of

a compact binary.
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2.3.1 Scalar-tensor theories

2.3.2 Classic type

The classic type of scalar-tensor theory (Brans and Dicke 1961; Damour and

Esposito-Farèse 1992; Faraoni et al. 1999; Faraoni and Gunzig 1999; Fujii and

Maeda 2003; Goenner 2012) is defined by the Einstein-frame action (where we will

restore Newton’s gravitational constant G in this section)

S
ðEÞ
ST ¼ 1

16pG

Z

d4x
ffiffiffiffiffiffiffi�g

p
R� 2glm olu

� �

omuð Þ � VðuÞ
� �

þ Smat½wmat;A
2ðuÞglm�;

ð15Þ

where u is a scalar field, AðuÞ is a coupling function, VðuÞ is a potential function,

wmat represents matter degrees of freedom and G is Newton’s constant in the Ein-

stein frame. For more details on this theory, we refer the interested reader to the

reviews by Will (2014, 2018b).

The Einstein frame is not the frame where the metric governs clocks and rods,

and thus, it is convenient to recast the theory in the Jordan frame through the

conformal transformation ~glm ¼ A2ðuÞglm:

S
ðJÞ
ST ¼ 1

16pG

Z

d4x
ffiffiffiffiffiffiffi

�~g
p

/ ~R� xð/Þ
/

~glm ol/
� �

om/ð Þ � /2V

� �

þ Smat½wmat; ~glm�;

ð16Þ

where ~glm is the physical metric, the new scalar field / is defined via / 
 A�2, the

coupling field is xð/Þ 
 ða�2 � 3Þ=2 and a 
 A;u=A. When cast in the Jordan

frame, it is clear that scalar-tensor theories are metric theories (see Will 2014 for a

definition), since the matter sector depends only on matter degrees of freedom and

the physical metric (without a direct coupling of the scalar field). When the coupling

xð/Þ ¼ xBD is constant, then Eq. (16) reduces to the massless version of Jordan–

Fierz–Brans–Dicke theory (Brans and Dicke 1961).

The modified field equations in this classical scalar-tensor theory in the Einstein

frame are

hu ¼ 1

4

dV

du
� 4pG

dSmat

du
;

Glm ¼ 8pG Tmat
lm þ T ðuÞ

lm

	 


;

ð17Þ

where

T ðuÞ
lm ¼ 1

4p
u;lu;m �

1

2
glmu;du

;d � 1

4
glmVðuÞ

� �

ð18Þ

is a stress-energy tensor for the scalar field. The matter stress–energy tensor is not

constructed from the Einstein-frame metric alone, but by the combination AðuÞ2glm.
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In the Jordan frame and neglecting the potential, the modified field equations are

(Will 2018b)

~h/ ¼ 1

3 þ 2xð/Þ 8pTmat � dx
d/

~glm/;l/;m

� �

;

~Glm ¼
8pG
/

Tmat
lm þ x

/2
/;l/;m �

1

2
~glm ~g

rq/;r/;q

� �

þ 1

/
/;lm � ~glm ~h/
� �

;

ð19Þ

where Tmat is the trace of the matter stress-energy tensor Tmat
lm constructed from the

physical metric ~glm. The form of the modified field equations in the Jordan frame

suggest that in the weak-field limit one may consider scalar-tensor theories as

modifying Newton’s gravitational constant via G ! Gð/Þ ¼ G=/.

Using the decompositions of Eqs. (4)–(5), the field equations of massless Jordan–

Fierz–Brans–Dicke theory can be linearized in the Jordan frame to find (see, e.g.,

Will and Zaglauer 1989)

hgh
lm ¼ �16pslm; hgw ¼ �16pS; ð20Þ

where hg is the D’Alembertian operator of flat spacetime, we have defined a new

metric perturbation

hlm ¼ hlm � 1

2
glmh� w

/0

glm; ð21Þ

with h the trace of the metric perturbation and

slm ¼ /�1
0 Tlm

mat þ tlm ; ð22Þ

S ¼ � 1

6 þ 4xBD
Tmat � 3/

oTmat

o/

� �

1 � h
2
� w
/0

� �

� 1

16p
w;lmh

lm þ 1

/0

/;lw
;l

� �

;

ð23Þ

with cubic remainders in either the metric perturbation or the scalar perturbation.

The quantity oTmat=o/ arises in an effective point-particle theory, where the matter

action is a functional of both the Jordan-frame metric and the scalar field. The

quantity tlm is a function of quadratic or higher order in hlm or w. These equations

can now be solved given a particular physical system, as done for quasi-circular

binaries in Will and Zaglauer (1989), Saijo et al. (1997), Ohashi et al. (1996). Given

the above evolution equations, Jordan–Fierz–Brans–Dicke theory possesses a scalar

(spin-0) mode, in addition to the two transverse-traceless (spin-2) modes of GR, i.e.,

Jordan–Fierz–Brans–Dicke theory is of Type N3 in the E(2) classification (Eardley

et al. 1973; Will 2014).

Let us now discuss whether these scalar-tensor theories satisfy the properties

discussed in Sect. 2.1, starting with Property 1. Massless Jordan–Fierz–Brans–

Dicke theory agrees with all known experimental tests provided xBD [ 4 � 104, a

bound imposed by the tracking of the Cassini spacecraft through observations of the
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Shapiro time delay (Bertotti et al. 2003). Massive Jordan–Fierz–Brans–Dicke

theory has been constrained to xBD [ 4 � 104 and ms\2:5 � 10�20 eV, with ms the

mass of the scalar field (Perivolaropoulos 2010; Alsing et al. 2012). Of course, these

bounds are not independent, as when ms ! 0 one recovers the standard massless

constraint, while when ms ! 1, xBD cannot be bounded as the scalar becomes

non-dynamical. Observations of the Nordtvedt effect with Lunar Laser Ranging

observations, as well as observations of the orbital period derivative of white-dwarf/

neutron- star binaries, yield similar or slightly stronger constraints (Damour and

Esposito-Farèse 1996, 1998; Alsing et al. 2012; Freire et al. 2012b; Voisin et al.

2020; Kramer et al. 2021). For example, the Cassini bound was recently updated by

the observation of the Nordtvedt effect in a pulsar triple system J0337?1715

(Ransom et al. 2014; Archibald et al. 2018) to xBD [ 1:4 � 105 (Voisin et al.

2020). Neglecting any homogeneous, cosmological solutions to the scalar-field

evolution equation, it is clear that in the limit xBD ! 1 one recovers GR, i.e.,

scalar-tensor theories have a continuous limit to Einstein’s theory, but see Faraoni

(1999) for caveats for certain spacetimes. Moreover, Salgado et al. (2008),

Lanahan-Tremblay and Faraoni (2007), Wald (1984) have verified that scalar-

tensor theories with minimal or non-minimal coupling in the Jordan frame can be

cast in a strongly-hyperbolic form, and thus, they possess a well-posed initial-value

formulation. Therefore, scalar-tensor theories possess both Properties (1) and (3).

These classical scalar-tensor theories also possess Property (2), since they can be

derived from the low-energy limit of certain string theories. The integration of string

quantum fluctuations leads to a higher-dimensional string theoretical action that

reduces locally to a field theory similar to a scalar-tensor one (Garay and Garcı́a-

Bellido 1993; Fradkin and Tseytlin 1985), the mapping being / ¼ e�2w, with w one

of the string moduli fields (Damour and Polyakov 1994a, b). Moreover, scalar-

tensor theories can be mapped to f(R) theories, where one replaces the Ricci scalar

by some functional of R. In particular, one can show that f(R) theories are equivalent

to Jordan–Fierz–Brans–Dicke theory with xBD ¼ 0, via the mapping / ¼ df ðRÞ=dR
and Vð/Þ ¼ R df ðRÞ=dR� f ðRÞ (Chiba 2003; Sotiriou 2006). For a review on this

topic, see De Felice and Tsujikawa (2010).

As for Property (4), these classical scalar-tensor theories are not typically built

with the aim to introduce extreme gravity corrections to GR.5 Instead, they typically

lead to modifications of Einstein’s theory in the weak- field, i.e., modifications that

dominate in scenarios with sufficiently weak gravitational interactions. Although

this might seem strange, it is natural if one considers, for example, one of the key

modifications introduced by scalar-tensor theories: the emission of dipolar

gravitational radiation. Such dipolar emission dominates over the General

Relativistic quadrupolar emission for systems at large separation, where the

gravitational compactness is small, such as in binary pulsars or in the very early

inspiral of compact binaries. Therefore, one would expect scalar-tensor theories to

5 The process of spontaneous scalarization in a particular type of scalar-tensor theory (Damour and

Esposito-Farèse 1992, 1993) does introduce strong-field modifications because it induces non-

perturbative corrections that can affect the structure of neutron stars. These subclass of scalar-tensor

theories would satisfy Property (4).
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be best constrained by experiments or observations of compact binaries with large

separations, as it has been explicitly shown in Yunes et al. (2012).

Black holes and stars continue to exist in these scalar-tensor theories. Stellar

configurations are modified from their GR profile (Will and Zaglauer 1989; Damour

and Esposito-Farèse 1996, 1998; Harada 1997, 1998; Tsuchida et al. 1998; Sotani

and Kokkotas 2004; DeDeo and Psaltis 2003; Sotani 2012; Horbatsch and Burgess

2011), while black holes are not. Indeed, Hawking (Hawking 1972b; Dykla 1972;

Hawking 1971; Carter 1971; Israel 1968; Robinson 1975) has proved that Jordan–

Fierz–Brans–Dicke black holes that are stationary and the endpoint of gravitational

collapse are identical to those of GR. This proof has been extended to a general class

of scalar-tensor models (Sotiriou and Faraoni 2012). That is, stationary black holes

radiate any excess ‘‘hair’’, i.e., any additional degrees of freedom, after gravitational

collapse, a result sometimes referred to as the no-hair theorem for black holes in

scalar-tensor theories. This result has been extended even further to allow for quasi-

stationary scenarios in generic scalar-tensor theories through the study of extreme-

mass ratio inspirals (Yunes et al. 2012) (small black hole in orbit around a much

larger one), post-Newtonian comparable-mass inspirals (Mirshekari and Will 2013;

Lang 2014, 2015) and numerical simulations of comparable-mass black hole

mergers with a non-trivial initial scalar field profile (Healy et al. 2012; Berti et al.

2013). The only way for black holes to grow hair in scalar tensor theories is if one

allows for non-trivial boundary conditions for the scalar field (Healy et al. 2012;

Horbatsch and Burgess 2012) or if one allows for the presence of matter around

black holes (Cardoso et al. 2013a, b).

Let us now discuss going beyond these classical scalar-tensor theories. Damour and

Esposito-Farèse (1992), Damour and Esposito-Farèse (1993) proposed a theory defined

by the action in Eq. (16) but with the conformal factor AðuÞ ¼ eauþbu2=2 or the

coupling function xð/Þ ¼ �3=2 � 2pG=ðb log/Þ, where a and b are constants. When

b ¼ 0, one recovers standard Jordan–Fierz–Brans–Dicke theory. When b.� 4 (the

precise value of b depending on the equation of state), non- perturbative effects that

develop if the gravitational energy is large enough can force neutron stars to

spontaneously acquire a non-trivial scalar field profile, to spontaneously scalarize
(Damour and Esposito-Farèse 1992, 1993). Scalar charges of such neutron stars have

been tabulated in Anderson and Yunes (2019), while analytic expressions were found in

Yagi and Stepniczka (2021) through resummation or in Zhao et al. (2019), Guo et al.

(2021) through surrogate modeling. Moreover, binary neutron stars that initially had no

scalar hair in their early inspiral can also acquire it before they merge, either when their

binding energy exceeds some threshold (dynamical scalarization) or due to the presence

of an external scalar field (induced scalarization) (Barausse et al. 2013; Palenzuela

et al. 2014). In this way, this new class of scalar-tensor theories, as well as the screened

scalar tensor theories discussed in Zhang et al. (2017a), were thought to be consistent

with Solar System experiments, yet predict modifications in strong gravity scenarios.

Binary pulsar observations have constrained this theory in the ða; bÞ space; very

roughly speaking, b[ � 4 and a\10�3 (Damour and Esposito-Farèse 1996, 1998;

Freire et al. 2012b; Shao et al. 2017; Anderson et al. 2019; Voisin et al. 2020; Kramer

et al. 2021; Zhao et al. 2022a).
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Scalarization in the standard Damour–Esposito-Farèse scalar-tensor theory,

however, has been shown to be inconsistent with solar system constraints upon

accounting for the cosmological evolution of the scalar field (Damour and

Nordtvedt 1993a, b; Sampson et al. 2014b; Anderson et al. 2016). Back in the early

1990s, Damour and Nordtvedt (1993a, b) showed that for b[ 0, GR is an attractor

in cosmological phase space. This means that the scalar field damps out upon

cosmological evolution, becoming very small at small cosmological redshifts, and

thus, passing solar system tests today. When b\0, however, Sampson et al. (2014b)

showed that the cosmological evolution of the field leads to a runaway solution that

maximally violates solar system tests today. One is then forced to consider

variations of the standard theory (e.g., changing the conformal coupling function

AðuÞ (Anderson et al. 2016; Mendes and Ortiz 2016), giving the scalar a mass

(Ramazanoğlu and Pretorius 2016), etc.) or the standard theory with b[ 0

(Palenzuela and Liebling 2016) if one wishes both solar system tests to be passed

and scalarization to occur in neutron stars. For example, de Pirey Saint Alby and

Yunes (2017) showed that endowing the scalar field with a mass introduces

oscillatory behavior in the scalar field upon cosmological evolution, suppressing the

runaway solution and allowing the theory to pass solar system constraints, while still

allowing for spontaneous scalarization (Ramazanoğlu and Pretorius 2016).

2.3.3 Horndeski theory

Another type of scalar-tensor theory is Horndeski gravity (Horndeski 1974) (see, e.g.,

Kobayashi 2019 for a recent review). This theory is the most general model with a

single scalar field that leads to field equations with at most second-order derivatives

(Horndeski 1974). This theory has become popular because it was shown to be

equivalent to a curved-spacetime, generalized scalar-tensor theory with Galilean shift

symmetry (Deffayet et al. 2009), which is related to theories that aim at explaining the

late-time acceleration of the Universe with a modified theory of gravity (Ratra and

Peebles 1988; Caldwell et al. 1998; Armendariz-Picon et al. 2001; Dvali et al. 2000;

Nicolis et al. 2009; Sotiriou and Faraoni 2010; Tsujikawa 2010; Clifton et al. 2012;

Nojiri and Odintsov 2011). Horndeski gravity, however, is not a single theory, but

rather a class of models, where the action depends on free functional degrees of

freedom of the scalar field and its kinetic energy. Its action is given by

SHorndeski ¼
1

16pG

Z

d4x
ffiffiffiffiffiffiffi�g

p 


G2ð/;XÞ � G3ð/;XÞh/þ G4ð/;XÞR

þ G4X ðh/Þ2 � /lm/lm

h i

þ G5ð/;XÞGlm/lm �
G5X

6
ðh/Þ3 � 3h//lm/lm þ 2/lm/

mk/l
k

h i

�

þ Smat½wmat; glm�;
ð24Þ

where the Gið�; �Þ are arbitrary functionals of the scalar field / and X ¼ �/;l/
;l=2,

with GiX 
 oGi=oX. In an attempt to reduce this class to a smaller subset, one can
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restrict attention to models that allow for a stable Minkowski background and non-

trivial cosmological evolution in the presence of matter with a homogeneous and

isotropic spacetime, which defines the Fab Four class of theories (Charmousis et al.

2012a, b). The action of this class of theories is

SFab�Four ¼
1

16pG

Z

d4x
ffiffiffiffiffiffiffi�g

p
V1ð/ÞRþ V2ð/ÞRGB þ V3ð/ÞGlmðol/Þðom/Þ
�

þV4ð/ÞPlmqrðol/Þðom/Þðoq/Þðor/Þ
�

þ Smat½wmat; glm�;
ð25Þ

where RGB is the Gauss–Bonnet invariant, Plmqr is the double-dual Riemann tensor

(Maselli et al. 2016c) and the Við/Þ are free functions of the scalar field. Different

choices of the latter define different scalar-tensor theories. For example, when

V1ð/Þ ¼ 1, V2ð/Þ ¼ / and all other Við/Þ, the theory reduces to Einstein–dilaton–

Gauss–Bonnet gravity in the decoupling limit (Yunes and Stein 2011; Yagi et al.

2012b), which we will discuss in more detail in Sec. 2.3.4. Horndeski theories admit

a modified harmonic formulation (Kovács and Reall 2020a, b) that makes the

theories well-posed, as long as the coupling parameter in the theories is smaller than

all the other length scales in the problem. The well-posedness of scalar-tensor

theories was also studied in Bezares et al. (2021), Lara et al. (2022) by applying a

formulation inspired by that of Müller, Israel and Stewart for relativistic viscous

hydrodynamics (Cayuso et al. 2017; Allwright and Lehner 2019; Cayuso and

Lehner 2020; Cayuso et al. 2023; Corman et al. 2024).

Compact black holes and stars have been studied in Horndeski gravity and in the

Fab Four subclass. Hui and Nicolis (2013) have proved that black holes in shift-

symmetric Horndeski gravity have no-hair, i.e., the scalar field does not activate,

provided the spacetime is asymptotically flat, static and spherically symmetric, with

the scalar field inheriting these symmetries. One can of course break some of the

assumptions that Hui and Nicolis used, and thus, construct hairy black hole

solutions (see, e.g., Rinaldi 2012; Sotiriou and Zhou 2014a; Anabalon et al. 2014;

Babichev and Charmousis 2014; Minamitsuji 2014b; Sotiriou and Zhou 2014b;

Minamitsuji 2014a; Cisterna et al. 2015; or the review by Herdeiro and Radu 2015).

Many of these results were extended in the slow-rotation limit in Maselli et al.

(2015b). Slowly-rotating neutron star solutions in the Fab Four subclass of

Horndeski theories were studied in Maselli et al. (2016c). This analysis showed that

a particular theory (the so-called ‘‘Paul’’ member of the Fab Four class) is ruled out

due to its inability to allow for neutron star solutions. Sakstein et al. (2017) found

very massive neutron star solutions embedded in an asymptotically de Sitter

spacetime within a particular type of extended theory. See, for example, Chagoya

and Tasinato (2018), Kobayashi and Hiramatsu (2018), Ogawa et al. (2020),

Barranco et al. (2021), Boumaza and Langlois (2022) for other recent works on

relativistic stars in Horndeski and beyond.

2.3.4 Massive graviton theories

Massive graviton theories are those in which the gravitational interaction is

propagated by a massive gauge boson, i.e., a graviton with mass mg 6¼ 0 or Compton
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wavelength kg 
 h=ðmgcÞ\1. Einstein’s theory predicts massless gravitons and

thus gravitational propagation at light speed, but if this were not the case, then a

certain delay would develop between electromagnetic and gravitational signals

emitted simultaneously at the source. Fierz and Pauli (1939) were the first to write

down an action for a free massive graviton, and ever since then, much work has

gone into the construction of such models. For a detailed review, see, e.g.,

Hinterbichler (2012), de Rham (2014).

Gravitational theories with massive gravitons are somewhat well-motivated from

a fundamental physics perspective, and thus, one can say they possess Property (2).

Indeed, in loop quantum cosmology (Ashtekar et al. 2003; Bojowald 2005), the

cosmological extension to loop quantum gravity, the graviton dispersion relation

acquires holonomy corrections during loop quantization that endow the graviton

with a mass (Bojowald and Hossain 2008) mg ¼ D�1=2c�1ðq=qcÞ, with c the

Barbero–Immirzi parameter, D the area operator, and q and qc the total and critical

cosmological energy densities respectively. In string-theory–inspired effective

theories, such as Dvali’s compact, extra-dimensional theory (Dvali et al. 2000) such

massive modes also arise.

Massive graviton modes also occur in many other modified gravity models. In

Rosen’s bimetric theory (Rosen 1974), for example, photons and gravitons follow

null geodesics of different metrics (Will 2014, 2018b). In Visser’s massive graviton

theory (Visser 1998), the graviton is given a mass at the level of the action through

an effective perturbative description of gravity, at the cost of introducing a non-

dynamical background metric, i.e., a prior geometry. A recent re-incarnation of this

model goes by the name of new massive gravity, or its generalization bigravity,

where again two metric tensors are introduced (Pilo 2011; Paulos and Tolley 2012;

Hassan and Rosen 2012a, b; De Felice et al. 2014; Narikawa et al. 2015). In

Bekenstein’s Tensor-Vector-Scalar (TeVeS) theory (Bekenstein 2004), the exis-

tence of a scalar and a vector field lead to subluminal GW propagation.

Old massive graviton theories have a theoretical issue, the van Dam–Veltman–

Zakharov (vDVZ) discontinuity (van Dam and Veltman 1970; Zakharov 1970),

which is associated with Property 1.a, i.e., a GR limit. The problem is that certain

predictions of massive graviton theories do not reduce to those of GR in the mg ! 0

limit. This can be understood qualitatively by studying how the 5 spin states of the

graviton behave in this limit. Two of them become the two GR helicity states of the

massless graviton. Another two become helicity states of a massless vector that

decouples from the tensor perturbations in the mg ! 0 limit. The last state, the

scalar mode, however, retains a finite coupling to the trace of the stress-energy

tensor in this limit. Therefore, massive graviton theories in the mg ! 0 limit do not

reduce to GR, since the scalar mode does not decouple.

Given these difficulties, and lacking a specific action that was not vDVZ

discontinuous, the community began to consider certain phenomenological effects

that one would expect to be present in massive gravity. If the graviton is truly

massive, whatever the action may be, two class of modifications to Einstein’s theory

are expected to be present:

(i) Modification to Newton’s laws;
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(ii) Modification to gravitational wave propagation.

Typically, modifications of class (i) correspond to the replacement of the Newtonian

potential by a Yukawa type potential (in the non-radiative, near-zone of any body of

mass M): V ¼ ðM=rÞ ! ðM=rÞ expð�r=kgÞ, where r is the distance to the body

(Will 1998). Tests of such a Yukawa interaction have been proposed through

observations of bound clusters, tidal interactions between galaxies (Goldhaber and

Nieto 1974) and weak gravitational lensing (Choudhury et al. 2004), but such tests

are model dependent. On the other hand, solar system bounds are more robust, as we

will discuss later.

Modifications of class (ii) are in the form of a modified gravitational-wave

dispersion relation. Such a modification was originally parameterized via (Will

1998)

v2
g

c2
¼ 1 �

m2
gc

4

E2
; ð26Þ

where vg and mg are the speed and mass of the graviton, while E is its energy,

usually associated to its frequency via the quantum mechanical relation E ¼ hf .
This modified dispersion relation is inspired by special relativity, a more general

version of which, inspired by quantum gravitational theories, is (Mirshekari et al.

2012)

v2
g

c2
¼ 1 � ka; ð27Þ

where a is now a parameter that depends on the theory and k is a dimensionless

quantity that represents deviations from light speed propagation. For example, in

Rosen’s bimetric theory (Rosen 1974), the graviton does not travel at the speed of

light, but at some other speed partially determined by the prior geometry. In many

metric theories of gravity, k ¼ Am2
gc

4=E2, where A is some amplitude that depends

on the metric theory (see discussion in Mirshekari et al. 2012). Either modification

to the dispersion relation has the net effect of slowing gravitons down, such that

there is a difference in the time of arrival of photons and gravitons. Moreover, such

an energy-dependent dispersion relation would affect the accumulated gravitational

wave phase observed at gravitational-wave detectors, as we will discuss in Sect. 4.

Given these modifications to the dispersion relation, one would expect the gener-

ation of gravitational waves to also be greatly affected in such theories. We will

present general arguments in Sect. 4, however, that point at these generation effects

being subdominant relative to modifications that arise in the propagation of gravi-

tational waves, since the latter accumulate as they travel and sources of gravitational

waves are at cosmological distances (Yunes et al. 2016).

From the structure of the above phenomenological modifications, it is clear that

GR can be recovered in the mg ! 0 limit, avoiding the vDVZ issue altogether by

construction. Such phenomenological modifications have been constrained by

several types of experiments and observations (de Rham et al. 2017). Using the

modification to Newton’s third law and precise observations of the motion of the
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inner planets of the solar system together with Kepler’s third law, Will (1998) found

a bound of kg [ 2:8 � 1012 km, which was recently updated to kg [ 3:9 �
1013 km (Will 2018a; Bernus et al. 2020) and 1:22 � 1015 km (Mariani et al.

2023). Recent observations of the S2 star orbit around Sgr A� have placed a new

bound of kg [ 4:3 � 1011 km (Zakharov et al. 2016). Such constraints are purely

static, as they do not probe the radiative sector of the theory. Dynamical constraints,

however, do exist: through observations of the decay of the orbital period of binary

pulsars, Finn and Sutton (2002) found a bound6 of kg [ 1:6 � 1010 km; working

within cubic Galileon theory, which is effectively a massive gravity theory, Shao

et al. (2020) found kg [ 7 � 1018 km due to the absence of Galileon radiation

(de Rham et al. 2013b) in binary pulsars, taking into account the Vainshtein

suppression in radiation; by investigating the stability of Schwarzschild and Kerr

black holes, Brito et al. (2013b) placed the constraint kg [ 2:4 � 1013 km in Fierz–

Pauli theory (Fierz and Pauli 1939). New constraints that use gravitational waves

have been proposed, including measuring a difference in time of arrival of

electromagnetic and gravitational waves (Cutler et al. 2003; Kocsis et al. 2008), as

well as direct observation of gravitational waves emitted by binary pulsars. As we

shall see in Sect. 4.3.1, aLIGO has placed stringent constraints on massive graviton

effects in the propagation of gravitational waves (Abbott et al. 2016d; Yunes et al.

2016; Abbott et al. 2019b, c, 2021b, c).

Somewhat recently, however, it has been found that the vDVZ discontinuity can

in fact be evaded by carefully including non-linearities in the action. Vainshtein

(Vainshtein 1972; Kogan et al. 2001; Deffayet et al. 2002; Babichev and Deffayet

2013) showed that around any spherically-symmetric source of mass M, there exists

a certain radius r\rV 
 ðrSk4
gÞ

1=5
, with rS the Schwarzschild radius, where linear

theory cannot be trusted. Since rV ! 1 as mg ! 0, this implies that there is no

radius at all in which the linear approximation can be trusted in the massless limit.

Of course, to determine then whether massive graviton theories have a continuous

limit to GR, one must include non-linear corrections to the action (see also an

argument by Arkani-Hamed et al. 2003), which are much more difficult to construct

and work with. These considerations gave birth to new, non-linear massive gravity

theories (Bergshoeff et al. 2009; de Rham et al. 2011, 2013a, b; Gümrükçüoğlu

et al. 2012; Bergshoeff et al. 2013), or new massive gravity for short. In this theory,

non-linear interactions are added to the action through the inclusion of an auxiliary

fixed metric. A generalization of new massive gravity that allows the auxiliary

metric to be dynamical goes by the name of bigravity.

There has been much activity in the study of gravitational waves in the ghost-free

bigravity extension of new massive gravity theories (De Felice et al. 2014;

Narikawa et al. 2015; Max et al. 2017, 2018), so let us here present more details of

this model. The ghost-free bigravity action is given by

6 The model considered by Finn and Sutton (2002) is not phenomenological, but it contains a ghost

mode.
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Sbg ¼
M2

g

2

Z

d4x
ffiffiffiffiffiffiffi�g

p
Rþ

jbM2
g

2

Z

d4x
ffiffiffiffiffiffiffi

�~g
p

~R� m2M2
g

Z

d4x
ffiffiffiffiffiffiffi�g

p X

4

n¼0

cnVnðYl
m Þ þ Sm½wmat; glm� ;

ð28Þ

where glm is the metric tensor of our universe, i.e., that which couples to the matter

degrees of freedom wmat with coupling Mg ¼ ð8pGÞ�1=2
, with R its associated Ricci

scalar and g its determinant. The metric tensor ~glm, with its associated Ricci scalar

~R, determinant ~g and coupling constant jb, couples non-minimally to glm through

the third term in the action. The latter depends on the graviton mass m, coupling

constants cn and complicated functionals Vn½�� of Yl
m :¼

ffiffiffiffiffiffiffiffiffiffiffiffi

gla ~gam
p

.

The generation of gravitational waves has not been worked out in this theory yet,

but their propagation has. In bigravity, the glm and ~glm metric tensors are massless

and massive spin-2 degrees of freedom respectively, which implies they carry 2 þ 5

modes (2 transverse-traceless ones in glm, 2 transverse-traceless ones in ~glm, 2

transverse vector ones in ~glm, and a breathing mode in ~glm). The evolution equations

for the dominant transverse-traceless modes (assuming propagation on the same

background) are (Narikawa et al. 2015)

hchþ;� þ m2Cc hþ;� � ~hþ;�
� �

¼ 0 ; ð29Þ

h ~c
~hþ;� þ m2Cc

jb n
2
c

~hþ;� � hþ;�
� �

¼ 0 ; ð30Þ

where ðCc; ncÞ are constants that depend on the coupling parameters of the theory,

while the operator hc ¼ o2
t � v2r2, with v the propagation speed of the mode. One

then sees that the perturbation to the physical metric couples to the perturbation of

the auxiliary metric, leading to oscillations between the two modes. This behavior is

analogous to neutrino oscillations in the standard model, where the ‘‘mass matrix’’

is non-diagonal.

Given how relatively new massive gravity and bigravity are, many of the

properties listed in Sect. 2.1 have not yet been fully explored. Clearly, these theories

are constructed to satisfy Property 1.a, the GR limit. Black holes, neutron stars and

white dwarfs in ghost-free massive gravity and bigravity have been studied in

Volkov (2012), Volkov (2013), Babichev and Fabbri (2014a), Enander and Mortsell

(2015), Katsuragawa et al. (2016), Li et al. (2016), Aoki et al. (2016), Sullivan and

Yunes (2018), Hendi et al. (2017), Yamazaki et al. (2019), Eslam Panah and Liu

(2019), Gervalle and Volkov (2020), and their stability has also been analyzed

(Babichev et al. 2016) (see Babichev and Brito 2015 for a review on black hole

solutions in massive gravity). Spherically symmetric black holes were constructed

in Comelli et al. (2012), Volkov (2012), Gervalle and Volkov (2020), Brito et al.

(2013a), which appear to be linearly stable in a region of parameter space (Babichev

and Fabbri 2013, 2014b; Brito et al. 2013b, c; Kobayashi et al. 2016; Gervalle and

Volkov 2020). Rotating black hole solutions were also found with asymptotically
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flat boundary conditions in Babichev and Fabbri (2013) and with anti-de Sitter

boundary conditions in Ayón-Beato et al. (2016), although it is not clear whether

these solutions are stable. A weak field analysis was carried out in De Felice et al.

(2014), where the authors found that Solar System tests can be avoided if the mass

of the graviton is large enough due to the activation of a form of Vainshtein

screening in bigravity. Similarly, the construction of stars in massive bigravity

began around 2012. The first neutron stars in massive bigravity were constructed by

Volkov (2012), assuming spherical symmetry and an incompressible fluid equation

of state. This analysis was then extended in Enander and Mortsell (2015), who also

considered whether black holes and neutron stars can arise naturally from

gravitational collapse in these theories. Sullivan et al. (2021) constructed the first

rotating neutron star solutions in massive bigravity, using the Hartle–Thorne slow-

rotation approximation and a wide class of realistic equations of state. The stability

of these solutions has not yet been studied, and thus, much more work remains to be

done to understand their non-linearly stability. Lacking knowledge of what a

bigravity spacetime for binary systems looks like, the study of the generation of

gravitational waves in dynamical spacetimes has not yet been tackled.

Whether all of these theories are well-posed as an initial-value problem (Property

3) remains unclear. For ghost-free massive gravity with flat reference metric,

however, the theory has indeed been shown to be well-posed by introducing higher

order gradient terms (de Rham et al. 2023). The well-posedness of bigravity has not

yet been proven. Torsello et al. (2020) studied a covariant formulation in this theory

that allows one to prove strong hyperbolicity in GR. The authors found that strong

hyperbolicity in bigravity cannot be claimed with the same assumptions as in GR.

Massive gravity theories are well-motivated extensions of GR from a fundamental

physics standpoint, given that many particles in the standard model that are known

to have a mass. Finally, it is currently unclear whether these theories lead to

modifications in the extreme gravity regime, except perhaps for the graviton

oscillations discussed above. One might be concerned that the mass of the graviton

and subsequent modifications to the graviton dispersion relation should be

suppressed by the Planck scale. However, Collins et al. (2004), Collins et al.

(2009) have suggested that Lorentz violations in perturbative quantum field theories

could be dramatically enhanced when one regularizes and renormalizes them. This

is because terms that vanish upon renormalization due to Lorentz invariance do not

vanish in Lorentz-violating theories, thus leading to an enhancement (Gambini et al.

2011). Whether such an enhancement is truly present in massive gravity depends on

the particular model considered and has not yet been studied in detail.

Let us close this section with a note of caution about Lorentz violations and

massive gravity: although massive gravity theories unavoidably lead to a

modification to the graviton dispersion relation, and the latter are also common in

Lorentz-violating theories, the converse is not necessarily true, i.e. a modification to

the dispersion relation, for example due to Lorentz-violating effects, does not

necessarily imply a massive graviton. In fact, modifications to the dispersion

relation are usually accompanied by modifications to either the Lorentz group or its

action in real or momentum space. Such Lorentz-violating effects are commonly

found in quantum gravitational theories, including loop quantum gravity (Bojowald
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and Hossain 2008) and string theory (Chouha and Brandenberger 2005; Szabo

2010), as well as other effective models (Berezhiani et al. 2007, 2008). In Doubly

Special Relativity (Amelino-Camelia 2001; Magueijo and Smolin 2002; Amelino-

Camelia 2002, 2010), the graviton dispersion relation is modified at high energies

by modifying the law of transformation of inertial observers. Modified graviton

dispersion relations have also been shown to arise in generic extra-dimensional

models (Sefiedgar et al. 2011a), in Hořava–Lifshitz theory (Hořava 2009a, b;

Vacaru 2012; Blas and Sanctuary 2011) and in theories with non-commutative

geometries (Garattini 2011; Garattini and Mandanici 2011, 2012). Even though the

dispersion relation is modified in these theories, they do not require a massive

graviton.

2.3.5 Einstein-æther theory and khronometric gravity

Violations of Lorentz symmetry are inherent in quantum gravitational models.

Particle physics experiments have already placed very stringent constraints on

Lorentz violation in the matter sector (Kostelecky 2004; Kostelecky and Russell

2011; Mattingly 2005; Jacobson et al. 2006; Kostelecky and Tasson 2011). A

generic way to represent such constraints is to bound the coefficients of the standard

model extension (SME) (Colladay and Kostelecký 1998; Kostelecky 1998, 1999), a

framework in which one adds all possible Lorentz-violating interactions to the

action of the Standard Model. These experiments, however, cannot place stringent

constraints on Lorentz violation that enters primarily in the gravitational sector,

inducing violations in the matter sector only as a second-order process (Pospelov

and Shang 2012; Liberati 2013).

The most common way to represent violations of Lorentz symmetry in the

gravity sector is through a preferred time direction at every spacetime point. This

preferred frame is typically described by an æther vector field Ul that is timelike

and unit-norm, thus breaking boost symmetry, and consequently Lorentz invariance.

The most generic covariant action that (i) depends only on the metric tensor and the

æther vector field, and their first derivatives, and (ii) is quadratic in the latter, is

given by (Jacobson and Mattingly 2001; Eling et al. 2004; Jacobson 2008a)

SEA ¼ 1

16pGEA

Z

d4x
ffiffiffiffiffiffiffi�g

p ðR�Mab
lmraU

lrbU
mÞ þ Smðwmat; glmÞ; ð31Þ

up to total divergences, where g is the determinant of the metric glm, R is its

associated Ricci scalar,

Mab
lm 
 c1g

abglm þ c2d
a
ld

b
m þ c3d

a
md

b
l þ c4U

aUbglm; ð32Þ

(c1, c2, c3 c4) are (dimensionless) coupling constants, and

GN ¼ GEA½1 � ðc1 þ c4Þ=2��1
, with GEA the ‘‘bare’’ gravitational constant and GN

the ‘‘Newtonian’’ gravitational constant measured with Cavendish-type experiments

(Carroll and Lim 2004). This action defines Einstein-æther theory (Jacobson and

Mattingly 2001), which ought to be thought of as an effective field theory, i.e., the
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low-energy description of some as-of-yet-unknown high-energy theory (Armen-

dariz-Picon et al. 2010).

A simpler way to violate Lorentz symmetry gravitationally is to require that the

preferred time direction be present globally, rather than locally in spacetime. This

amounts to restricting Einstein-æther theory by requiring the æther field to be

orthogonal to hypersurfaces of constant preferred time. Defining these hypersur-

faces through level surfaces of the khronon7 scalar field T, then this implies

requiring that

Ul ¼
olT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

glmolTomT
p ; ð33Þ

and thus, the æther vector field is no longer generic. Choosing the time coordinate to

coincide with the khronon field, and reducing the Einstein-æther action through the

above constraint, one finds (Jacobson 2010; Blas et al. 2010a, 2011)

SKG ¼ 1 � b
16pGEA

Z

dTd3x N
ffiffiffi

h
p

KijK
ij � 1 þ k

1 � b
K2 þ 1

1 � b
ð3ÞRþ a

1 � b
aia

i

� �

þ Smatðwmat; glmÞ ;
ð34Þ

where N ¼ ðgTTÞ�1=2
is the lapse function, Kij, ð3ÞR and hij are the extrinsic cur-

vature, the 3-Ricci curvature and the 3-metric associated with the constant T
hypersurfaces respectively, the acceleration of the khronon field is ai 
 oi lnN, and

ða; b; kÞ are coupling constants related to the Einstein-æther couplings via

ða; b; kÞ ¼ ðc1 þ c4; c1 þ c3; c2Þ. This action defines khronometric gravity (Blas

et al. 2010a, 2011), and it also ought to be thought of as an effective theory. In fact,

khronometric gravity is the low-energy limit of Hořava gravity (Hořava 2009b), a

power-counting renormalizable theory of gravity (Hořava 2009b; Blas et al. 2010b).

Variation of the action with respect to all fields yields the field equations of the

theory. The field equations of Einstein-æther theory are

Gab � TEA
ab ¼ 8pGEAT

mat
ab ; ð35Þ

ð36Þ

where Gab is the Einstein tensor, and the æther stress-energy tensor is

7 This word comes from the Greek word vq �omo1 (khronos), meaning time. The letter ‘‘k’’ was chosen to

avoid confusion with other theories that use the prefix ‘‘chrono’’ (Lévi 1927; Segal 1972).
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TEA
ab ¼ rl J

l
ða UbÞ � JlðaUbÞ � JðabÞU

l
	 


þ c1 ðrlUaÞðrlUbÞ � ðraUlÞðrbU
lÞ

� �

þ UmðrlJ
lmÞ � c4

_U
2

h i

UaUb þ c4
_Ua _Ub þ

1

2
Mrq

lmrqU
mgab ;

ð37Þ

with the shorthands Jal 
 Mab
lmrbU

m and _Um 
 UlrlUm. The field equations of

khronometric gravity are

ð38Þ

ð39Þ

where Æa was defined in Eq. (36).

The field equations in these two Lorentz-violating gravity theories have been

solved in a variety of scenarios. For example, spherically symmetric, static, and flat

vacuum solutions (non-rotating black holes) have been found, and in fact discovered

to be the same in the two theories (Jacobson 2010; Blas and Sibiryakov 2011; Blas

et al. 2011; Barausse and Sotiriou 2012). In fact, hypersurface-orthogonal solutions

to Einstein-Æther theory will also be solutions in khronometric gravity. Slowly-

rotating black hole solutions have also been found, but they are not the same (Wang

2013; Barausse and Sotiriou 2012, 2013b, a). Recently, rotating black hole solutions

without the slow-rotation approximation were constructed numerically (Adam et al.

2022). Slowly-moving black hole solutions were studied in Ramos and Barausse

(2019), Kovachik and Sibiryakov (2023) with which one can extract sensitivities

that are responsible for scalar and vector radiation in a binary (Foster 2007; Yagi

et al. 2014a, b). Quasi-normal modes of black holes were studied in Konoplya and

Zhidenko (2007a, b), Ding (2017, 2019), Churilova (2020), Franchini et al. (2021).

These black holes have been shown numerically to be the end state of gravitational

collapse for values of the coupling constants that are consistent with observational

constraints (Eling and Jacobson 2006; Garfinkle et al. 2007; Barausse et al. 2011;

Akhoury et al. 2018). Regarding neutron stars, non-rotating configurations were

studied in Eling et al. (2007), while slowly-moving solutions were constructed in

Yagi et al. (2014a, b), Barausse (2019), Gupta et al. (2021). Recently, Ajith et al.

(2022) studied slowly-rotating or tidally-deformed neutron stars and found that

there exist new types of Love numbers. Moreover, the motion of test-particles has

been found to be geodesic in both theories, which implies the absence of a ‘‘fifth

force’’ and violations of the WEP. This comes about because both theories are

diffeomorphism invariant, which then implies that the matter stress-energy tensor

associated with Sm is covariantly conserved, rlTmat
lm ¼ 0. This is not, however, the

case for strongly self-gravitating bodies (like neutron stars and black holes), which

follow non-geodesic paths that depend on the bodies’ internal structure, a violation

of the strong equivalence principle that is sometimes referred to as the Nördvedt

effect (Nordtvedt Jr 1968a; Roll et al. 1964).
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Lorentz-violating gravity has been constrained with solar system observations

that check for the existence of preferred-frame effects. Constraints derived with

such observations are parameterized in terms of the ðappN
1 ; appN

2 Þ preferred-frame

parameters of the ppN framework. In particular, lunar laser observations and

observations of the solar alignment with the ecliptic plane have placed the

constraints jappN
1 j.10�4 and jappN

2 j.10�7 (Will 2014) – binary pulsar observations

have also placed stringent constraints on the strongly self-gravitating counterparts to

a1;2 (Shao et al. 2013; Shao and Wex 2012). In Einstein-æther theory, the ppN

parameters ða1; a2Þ are functions of the coupling constants ci, namely

appN;EA
1 ¼ � 8ðc2

3 þ c1c4Þ
2c1 � cþc�

;

appN;EA
2 ¼ appN

1

2
� ðc1 þ 2c3 � c4Þð2c1 þ 3c2 þ c3 þ c4Þ

ð2 � c14Þðc1 þ c2 þ c3Þ
;

ð40Þ

while in khronometric gravity, the ppN parameters are functions of the ða; b; kÞ,
namely

appN;KG
1 ¼ 4

a� 2b
b� 1

;

appN;KG
2 ¼ ða� 2bÞ

ðb� 1Þðkþ bÞða� 2Þ ½�b2 þ bða� 3Þ þ aþ kð�1 � 3bþ 2aÞ� :

ð41Þ

Notice that appN;KG
2 can be written in terms of appN;KG

1 , so requiring that the latter be

small automatically ensures the former is also small.

Because of the many coupling constants in these theories, solar system

constraints on only two combinations (appN
1 and appN

2 ) are not enough to break all

degeneracies and constrain the individual coupling parameters; for this, one requires

new constraints, such as those obtained from binary pulsar observations. The latter

are typically studied by assuming appN
1 ¼ 0 ¼ appN

2 to reduce the 4- and 3-

dimensional coupling parameter spaces to a 2-dimensional one. In Einstein-æther

theory, this implies (Foster and Jacobson 2006; Jacobson 2008a)

c2 ¼ �2c2
1 � c1c3 þ c2

3

3c1

; c4 ¼ � c2
3

c1

; ð42Þ

leaving c
 
 c1 
 c3 as the only two free coupling parameters, while in khrono-

metric gravity the condition implies a ¼ 2b, leaving ðb; kÞ as the only two free

coupling parameters. The strongest constraints on c
 and ðb; kÞ come from obser-

vations of the orbital decay rate of PSR J1141-6545 (Bhat et al. 2008), PSR

J0348?0432 (Antoniadis et al. 2013), PSR J0737-3039 (Kramer et al. 2006) and

PSR J1738?0333 (Freire et al. 2012a), which require ðcþ; c�Þ.ð0:03; 0:003Þ and

ðb; kÞ.ð0:005; 0:1Þ (Yagi et al. 2014a, b). The khronometric constraint also makes

use of Big-Bang Nucleosynthesis constraints (Audren et al. 2013; Carroll and Lim

2004; Zuntz et al. 2008; Jacobson 2008a), derived from the agreement between

123

    3 Page 30 of 233 N. Yunes et al.



observed and predicted metal abundances in the early universe, which require that

the ratio of Newton’s gravitational constant in that cosmological era to that mea-

sured today be close to unity. Weaker constraints on c
 have also been obtained by

requiring the stability of perturbations about a Minkowski background (Jacobson

and Mattingly 2004) and the absence of gravitational Cherenkov radiation (Elliott

et al. 2005). Combining all of these constraints together, one arrives at ci.10�2,

while ða; b; kÞ.ð0:01; 0:005; 0:1Þ.
As we will discuss later, the binary neutron star merger event GW170817

(Abbott et al. 2017c), together with its electromagnetic counterparts GRB 170817A

(Abbott et al. 2017d), has constrained deviations in the propagation speed of

gravitational waves to less than one part in 1015 relative to the speed of light (Abbott

et al. 2017a). In Einstein-æther and khronometric gravity, the propagation speed of

the tensor mode depends only on c1 þ c3 or b. This means that this combination of

parameters is constrained to be smaller than 10�15. Imposing this new bound and all

the other bounds mentioned earlier, two viable regions remain in the Einstein-Æther

parameter space (Sarbach et al. 2019; Oost et al. 2018). The first region can be

found by saturating the solar system bound on a1 (namely, assuming ja1j.10�4 but

not ja1j � 10�4). Doing so implies that c1 � �c3 þOð10�15Þ, c4 � c3 þOð10�4Þ,
and c2 � ðc4 � c3Þ½1 þOð10�3Þ�, which then means that c1 þ c3 � 0,

c4 � c3 � c2 � 0, while c1 � c3 remains unconstrained. The second region can be

found when one does not saturate the bound on a1, but instead requires that its

magnitude be much smaller than 10�14. In doing so, the a2 bound is automatically

satisfied when c1 þ c3 � 0 and one is left with a two-dimensional parameter space

ðc2; c1 � c3Þ with the only constraint jc2j.0:1 coming from Big Bang Nucleosyn-

thesis bounds. Gupta et al. (2021) reanalyzed the binary pulsar bounds on Einstein-

æther theory within these viable parameter spaces and derived a new bound on a1,

namely ja1j.10�5, which is 10 times stronger than the bound from solar system

experiments. Regarding khronometric gravity, the new bounds on the coupling

constants after GW170817 are given by jaj.10�7, jbj.10�15 and jkj.10�1

(Emir Gümrükçüoğlu et al. 2018).

Let us conclude this overview with a discussion of whether Einstein-æther theory

and khronometric gravity satisfy the criteria laid out in Sect. 2.1. As discussed

above, both theories satisfy Property 1, since they pass all constraints for sufficiently

small coupling constants and solutions that could present astrophysical systems

have been found and shown to be stable. Both theories also possess Property 2, since

they are very well-motivated from fundamental physics. In fact, it is difficult to find

a quantum gravitational model that does not violate Lorentz symmetry. Einstein-

æther theory also satisfies Property 3, at least in part, since it has been shown to

have an initial-value formulation that is also well- posed (Coley et al. 2015; Sarbach

et al. 2019). Khronometric gravity, on the other hand, has not been studied in

sufficient detail to determine whether the theory is well-posed, although given the

results from Einstein-æther theory, one would expect it to be (at least in some limit).

Finally, property 4 is also satisfied, since extreme gravity will be altered in Lorentz-

violating theories. These modifications, however, are not just confined to the
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extreme gravity regime, thus allowing for rather stringent bounds from solar system

observations and from strong- field binary pulsar tests.

2.3.6 Modified quadratic gravity

Modified quadratic gravity is a family of models first discussed in the context of

black holes and gravitational waves in Yunes and Stein (2011), Yagi et al. (2012b).

The 4-dimensional action is given by

S 

Z

d4x
ffiffiffiffiffiffiffi�g

p n

jRþ a1f1ð#ÞR2 þ a2f2ð#ÞRlmR
lm þ a3f3ð#ÞRlmdrR

lmdr

þ a4f4ð#ÞRlmdr
�Rlmdr � b

2
rl#
� �

rl#ð Þ þ 2Vð#Þ
� �

þ Lmat

o

:

ð43Þ

The quantity �Rl
mdr ¼ ð1=2Þ�drabRl

mab is the dual to the Riemann tensor. The

quantity Lmat is the external matter Lagrangian, while fið�Þ are functionals of the

field #, with ðai; bÞ coupling constants and j ¼ ð16pGÞ�1
. Clearly, the two terms

second to last in Eq. (43) represent a canonical kinetic energy term and a potential.

At this stage, one might be tempted to set b ¼ 1 or the ai ¼ 1 via a rescaling of the

scalar field functional, but we shall not do so here.

The action in Eq. (43) is well-motivated from fundamental theories, as it contains

all possible quadratic, algebraic curvature scalars with running (i.e., non-constant)

couplings. The only restriction here is that all quadratic terms are assumed to couple

to the same field, which need not be the case. For example, in string theory some

terms might couple to the dilaton (a scalar field), while other couple to the axion (a

pseudo scalar field) (Kanti and Tamvakis 1995; Cano and Ruipérez 2022).

Nevertheless, one can recover well-known and motivated modified gravity theories

in simple cases. For example, dynamical Chern–Simons modified gravity (Alexan-

der and Yunes 2009) is recovered when a4 ¼ �aCS=4 and all other ai ¼ 0. Einstein–

dilaton–Gauss–Bonnet gravity (Pani and Cardoso 2009) is obtained when a4 ¼ 0

and ða1; a2; a3Þ ¼ ð1;�4; 1ÞaEDGB.8 Both theories unavoidably arise as low-energy

expansions of heterotic string theory (Green et al. 1987a, b; Kanti and Tamvakis

1995; Alexander and Gates Jr 2006; Burgess 2004; Cano and Ruipérez 2022). As

such, modified quadratic gravity theories should be treated as a class of effective

field theories. Moreover, dynamical Chern–Simons Gravity also arises in loop

quantum gravity (Ashtekar and Lewandowski 2004; Rovelli 2004) when the

Barbero–Immirzi parameter is promoted to a field in the presence of fermions

(Ashtekar et al. 1989; Alexander and Yunes 2008; Taveras and Yunes 2008;

Mercuri and Taveras 2009; Gates Jr et al. 2009).

One should make a clean and clear distinction between the theory defined by the

action of Eq. (43) and that of f(R) theories. The latter are defined as functionals of

the Ricci scalar only, while Eq. (43) contains terms proportional to the Ricci tensor

and Riemann tensor squared. One could think of the subclass of f(R) theories with

8 Technically, Einstein–Dilaton–Gauss–Bonnet gravity has a very particular set of coupling functions

f1ð#Þ ¼ f2ð#Þ ¼ f3ð#Þ / ec#, where c is a constant. In most cases, however, one can expand about

c# � 1, so that the functions become linear in the scalar field.
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f ðRÞ ¼ R2 as the limit of modified quadratic gravity with only a1 6¼ 0 and f1ð#Þ ¼ 1.

In that very special case, one can map quadratic gravity theories and f(R) gravity to

a scalar-tensor theory. Another important distinction is that f(R) theories are usually

treated as exact, while the action presented above is to be interpreted as an effective
theory (Burgess 2004) truncated to quadratic order in the curvature in a low-energy

expansion of a more fundamental theory. This implies that there are cubic, quartic,

etc. terms in the Riemann tensor that are not included in Eq. (43) and that

presumably depend on higher powers of ai. Thus, when studying such an effective

theory one should also order-reduce the field equations and treat all quantities that

depend on ai perturbatively, the so-called small-coupling approximation. One can

show that such an order reduction removes any additional polarization modes in

propagating metric perturbations (Sopuerta and Yunes 2009; Stein and Yunes 2011)

that naturally arise in f(R) theories. In analogy to the treatment of the Ostrogradski

instability in Sect. 2.1, order-reduction also lead to a theory with a well-posed initial

value formulation (Delsate et al. 2015).

This family of theories is usually simplified by making the assumption that the

coupling functions fið�Þ admit a Taylor expansion: fið#Þ ¼ fið0Þ þ f 0i ð0Þ#þOð#2Þ
for small #, where fið0Þ and f 0i ð0Þ are constants and # is assumed to vanish at

asymptotic spatial infinity. Reabsorbing fið0Þ into the coupling constants að0Þi 

aifið0Þ and f 0i ð0Þ into the constants að1Þi 
 aif 0i ð0Þ, Eq. (43) becomes S ¼ SGR þ
S0 þ S1 with

SGR 

Z

d4x
ffiffiffiffiffiffiffi�g

p
jRþ Lmatf g ; ð44aÞ

S0 

Z

d4x
ffiffiffiffiffiffiffi�g

p
að0Þ1 R2 þ að0Þ2 RlmR

lm þ að0Þ3 RlmdrR
lmdr

n o

; ð44bÞ

S1 

Z

d4x
ffiffiffiffiffiffiffi�g

p
að1Þ1 #R2 þ að1Þ2 #RlmR

lm þ að1Þ3 #RlmdrR
lmdr

n

þ að1Þ4 # Rlmdr
�Rlmdr � b

2
rl#
� �

rl#ð Þ þ 2Vð#Þ
� �

�

:

ð44cÞ

Here, SGR is the Einstein–Hilbert plus matter action, while S0 and S1 are correc-

tions. The former is decoupled from #, where the omitted term proportional to að0Þ4

does not affect the classical field equations since it is topological, i.e., it can be

rewritten as the total 4-divergence of some 4-current. Similarly, if að0Þi were chosen

to reconstruct the Gauss–Bonnet invariant, ðað0Þ1 ; að0Þ2 ; að0Þ3 Þ ¼ ð1;�4; 1ÞaGB, then

this combination would also be topological and not affect the classical field equa-

tions. On the other hand, S1 is a modification to GR with a direct (non-minimal)

coupling to #, such that as the field goes to zero, the modified theory reduces to GR.

Another restriction one usually makes to simplify quadratic gravity theories is to

neglect the að0Þi terms and only consider the S1 modification, which defines

restricted quadratic gravity. The að0Þi terms represent corrections that are non-
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dynamical. The term proportional to að0Þ1 resembles a certain class of f(R) theories.

As such, it can be mapped to a scalar tensor theory with a complicated potential,

which has been heavily constrained by torsion-balance Eöt-Wash experiments to

að0Þ1 \2 � 10�8 m2 (Hoyle et al. 2004; Kapner et al. 2007; Berry and Gair 2011).

Moreover, these theories have a fixed coupling constant that does not run with

energy or scale. In restricted quadratic gravity, the scalar field effectively forces the

running of the coupling. Nevertheless, gravitational waves in quadratic gravity with

að1Þi ¼ 0 have been studied in Naf and Jetzer (2011), Kim et al. (2021), Tachinami

et al. (2021), Alves et al. (2023).

Let us then concentrate on restricted quadratic gravity and drop the superscript in

að1Þi . The modified field equations are

Glm þ
a1#

j
Hð0Þ

lm þ a2#

j
I ð0Þ
lm þ a3#

j
J ð0Þ

lm þ a1

j
Hð1Þ

lm þ a2

j
I ð1Þ
lm þ a3

j
J ð1Þ

lm

þ a4

j
Kð1Þ

lm ¼ 1

2j
Tmat
lm þ T ð#Þ

lm

	 


;

ð45Þ

where we have defined

Hð0Þ
lm 
2RRlm �

1

2
glmR

2 � 2rlmRþ 2glmhR ; ð46aÞ

I ð0Þ
lm 
hRlm þ 2RldmrR

dr � 1

2
glmR

drRdr þ
1

2
glmhR�rlmR ; ð46bÞ

J ð0Þ
lm 
8RdrRldmr � 2glmR

drRdr þ 4hRlm � 2RRlm þ
1

2
glmR

2 � 2rlmR ; ð46cÞ

Hð1Þ
lm 
� 4ðrðl#ÞrmÞR� 2Rrlm#þ glm 2Rh#þ 4ðrd#ÞrdR

� �

; ð46dÞ

I ð1Þ
lm 
� ðrðl#ÞrmÞR� 2rd#rðlRmÞd þ 2rd#rdRlm þ Rlmh#

� 2RdðlrdrmÞ#þ glm rd#rdRþ Rdrrdr#
� �

;
ð46eÞ

J ð1Þ
lm 
� 8 rd#

� �

rðlRmÞd �rdRlm
� �

þ 4Rldmrrdr# ; ð46fÞ

Kð1Þ
lm 
� 4 rd#

� �

�drvðlrvR r
mÞ þ 4ðrdr#Þ�Rðl

d
mÞ
r
: ð46gÞ

The # stress-energy tensor is

T ð#Þ
lm ¼ b ðrl#Þðrm#Þ �

1

2
glm rd#ð Þ rd#

� �

� 2Vð#Þ
� �

� �

: ð47Þ

The field equations for the scalar field are

bh#� b
dV

d#
¼ � a1R

2 � a2RlmR
lm � a3RlmdrR

lmdr � a4Rlmdr
�Rlmdr : ð48Þ

Notice that unlike traditional scalar-tensor theories, the scalar field is here sourced
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by the geometry and not by the matter distribution directly. This implies that black

holes in such theories are hairy, when some of the coupling constants are non-

vanishing, and thus, their inertial mass does not coincide with their gravitational

mass (Yunes and Stein 2011; Benkel et al. 2017, 2016; Berti et al. 2018b; Prabhu

and Stein 2018; Julié and Berti 2019; Julié et al. 2022; Hegade et al. 2022), vio-

lating the strong equivalence principle (a violation typically quantified through

certain sensitivity parameters—see also Sect. 4). Other compact stars, such as

neutron stars, however, can be shown to not be hairy,9 and thus have vanishing

sensitivities, in the above restricted quadratic gravity theory with couplings to the

Gauss–Bonnet invariant or the Pontryagin density (Yagi et al. 2012b, 2016), as well

as in more generic shift-symmetric Horndeski theories (Barausse and Yagi 2015).

This fact is particularly important since dipole radiation, which has been stringently

constrained with binary pulsars, is proportional to the square of the difference in the

sensitivities of the stars. Thus, a suppression in the sensitivities implies that these

theories automatically pass binary pulsar constraints, while still allowing for

extreme gravity modifications in systems with black holes (Yagi et al. 2016; Bar-

ausse and Yagi 2015).

Let us review compact objects in quadratic gravity in more detail. In non-

dynamical theories (when b ¼ 0 and the scalar-fields are constant, refer to Eq. (43)),

Yunes and Stein (2011) have shown that all metrics that are Ricci tensor flat are also

solutions of the modified field equations (see also Psaltis et al. 2008). This is not so

for dynamical theories, since then the # field is sourced by curvature, leading to

corrections to the field equations proportional to the Riemann tensor and its dual.

In dynamical Chern–Simons gravity, stationary and spherically-symmetric

spacetimes are still described by GR solutions, but stationary and axisymmetric

spacetimes are not. Instead, they are represented by (Yunes and Pretorius 2009a;

Konno et al. 2009)

ds2
CS ¼ ds2

Kerr þ
5

4

a2
CS

bj
a

r4
1 þ 12

7

M

r
þ 27

10

M2

r2

� �

sin2 h dh dt þOða2=M2Þ; ð49Þ

with the scalar field

#CS ¼ 5

8

aCS

b
a

M

cos h
r2

1 þ 2M

r
þ 18M2

5r2

� �

þOða3=M3Þ; ð50Þ

where ds2
Kerr is the line element of the Kerr metric, and we recall that aCS ¼ �4a4 in

the notation of Sect. 2.3.4. These expressions are obtained in Boyer–Lindquist

coordinates and in the small-rotation/small-coupling limit to Oða=MÞ in Yunes and

Pretorius (2009a), Konno et al. (2009), to Oða2=M2Þ in Yagi et al. (2012d), and

solutions to higher order in spin in Maselli et al. (2015a). The linear-in-spin cor-

rections modify the frame-dragging effect, and they are of 3.5 post-Newtonian

order. The quadratic-in-spin corrections modify the quadrupole moment, which

9 To be more specific, ‘‘hair’’ here refers to the monopole scalar charge. Neutron stars can have higher

order hair, like dipole scalar hair in dynamical Chern–Simons gravity (Yagi et al. 2013).
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induces 2 post-Newtonian-order corrections to the binding energy. However, the

stability of these black holes has only been studied linearly (Garfinkle et al. 2010).

In Einstein–Dilaton–Gauss–Bonnet gravity, stationary and spherically-symmetric

spacetimes are described, in the small-coupling approximation, by the line element

(Yunes and Stein 2011)

ds2
EDGB ¼ �fSchw 1 þ hð Þdt2 þ f�1

Schw 1 þ kð Þdr2 þ r2dX2; ð51Þ

in Schwarzschild coordinates, where dX2 is the line element on the two-sphere,

fSchw ¼ 1 � 2M=r is the Schwarzschild factor, and we have defined

h ¼ a2
3

bjM4

1

3fSchw

M3

r3
1 þ 26

M

r
þ 66

5

M2

r2
þ 96

5

M3

r3
� 80

M4

r4

� �

; ð52Þ

k ¼ � a2
3

bjM4

1

fSchw

M2

r2
1 þM

r
þ 52

3

M2

r2
þ 2

M3

r3
þ 16

5

M4

r4
� 368

3

M5

r5

� �

; ð53Þ

while the corresponding scalar field is

#EDGB ¼ a3

b
2

Mr
1 þM

r
þ 4

3

M2

r2

� �

: ð54Þ

This solution is not restricted just to Einstein–Dilaton–Gauss–Bonnet gravity, but it

is also the most general, stationary and spherically-symmetric solution in quadratic

gravity. This is because all terms proportional to a1;2 are proportional to the Ricci

tensor, which vanishes in vacuum GR, while the a4 term does not contribute in

spherical symmetry (see Yunes and Stein 2011 for more details). Linear slow-

rotation corrections to this solution have been found in Pani et al. (2011c), and

analytic solutions to higher order in spin were found in Maselli et al. (2015a).

Although the stability of these black holes has only been studied linearly as well

(Ayzenberg et al. 2014), other dilatonic black hole solutions obtained numerically

(equivalent to those in Einstein–Dilaton-Gauss–Bonnet theory in the limit of small

fields) (Kanti et al. 1996) have been found to be mode stable under axial and polar

perturbations (Kanti et al. 1998; Torii and Maeda 1998; Pani and Cardoso 2009;

Blázquez-Salcedo et al. 2016).

Neutron stars also exist in quadratic modified gravity. In dynamical Chern–

Simons gravity, the mass-radius relation remains unmodified to first order in the

slow-rotation expansion, but the moment of inertia changes to this order (Yunes

et al. 2010d; Ali-Haı̈moud and Chen 2011), while the quadrupole moment and the

mass measured at spatial infinity change to quadratic order in spin (Yagi et al.

2013). This is because the mass-radius relation, to first order in slow-rotation,

depends on the spherically-symmetric part of the metric, which is unmodified in

dynamical Chern–Simons gravity. In Einstein–Dilaton–Gauss–Bonnet gravity, the

mass-radius relation is modified (Pani et al. 2011a). As in GR, these functions must

be solved for numerically, and they depend on the equation of state.

The above restricted quadratic gravity model is not a good representative

member of the wider class of quadratic gravity theories when fið#Þ cannot be
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approximated as a linear function. Examples include fið#Þ ¼ #2 and

fið#Þ ¼ ½1 � expð�6#2Þ�=12. For these cases and with a Gauss–Bonnet combination

of ða1; a2; a3; a4Þ ¼ ð1;�4; 1; 0Þa, recent analyses have shown that black holes can

spontaneously scalarize (Doneva and Yazadjiev 2018; Silva et al. 2018; Macedo

et al. 2019; Cunha et al. 2019; East and Ripley 2021a; Doneva et al. 2022a), similar

to spontaneous scalarization for neutron stars in scalar-tensor theories. The scalar

charges can also be induced by spins (Collodel et al. 2020; Herdeiro et al. 2021;

Berti et al. 2021; Dima et al. 2020; Elley et al. 2022). In a binary, dynamical

scalarization can occur in analogy to scalar-tensor theories (Silva et al. 2021b;

Doneva et al. 2022b; Julié 2023; Kuan et al. 2023a; Annulli and Herdeiro 2023;

Lara et al. 2024), but a crucial difference is that in scalar-Gauss–Bonnet gravity,

black holes in a binary can also de-scalarize (Silva et al. 2021b; Doneva et al.

2022b).

From the structure of the above equations, it should be clear that the dynamics of

# guarantee that the modified field equations are covariantly conserved exactly. That

is, one can easily verify that the covariant divergence of Eq. (45) identically

vanishes upon imposition of Eq. (48). Such a result had to be so, as the action is

diffeomorphism invariant. If one neglected the kinetic and potential energies of # in

the action, as was originally done in Jackiw and Pi (2003), the theory would possess

preferred-frame effects and would not be covariantly conserved. A manifestation of

the latter is the fact that such a theory requires an additional constraint, i.e., the

right-hand side of Eq. (48) would have to vanish, which is an unphysical

consequence of treating # as prior structure (Yunes and Sopuerta 2008; Grumiller

and Yunes 2008).

One last simplification that is usually made when studying modified quadratic

gravity theories is to ignore the potential Vð#Þ, i.e., set Vð#Þ ¼ 0. This potential can

in principle be non-zero, for example if one wishes to endow # with a mass or if one

wishes to introduce a cosine driving term, like that for axions in field and string

theory (see, e.g., Nashed and Nojiri 2023 for slowly-rotating black holes in

dynamical Chern–Simons gravity with non-vanishing potentials). However, reasons

exist to restrict the functional form of such a potential. First, a mass for # will

modify the evolution of any gravitational degree of freedom only if this mass is

comparable to the inverse length scale of the problem under consideration (such as a

binary system). This could be possible if there is an incredibly large number of

fields with different masses in the theory, such as perhaps in the string axiverse

picture (Arvanitaki and Dubovsky 2011; Kodama and Yoshino 2012; Marsh et al.

2012). In that picture, however, the moduli fields are endowed with a mass due to

shift-symmetry breaking by non-perturbative effects; such masses are not expected

to be comparable to the inverse length scale of binary systems. Second, no mass

term may appear in a theory with a shift symmetry, i.e., invariance under the

transformation # ! #þ const. Such symmetries are common in four-dimensional,

low-energy, effective string theories (Boulware and Deser 1985; Green et al.

1987a, b, Campbell et al. 1992; Burgess 2004), such as dynamical Chern–Simons

and Einstein–Dilaton–Gauss–Bonnet theory. Similar considerations apply to other,

more complicated potentials, such as a cosine term.
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Given these field equations, one can linearize them about Minkowski space to

find evolution equations for the perturbation in the small-coupling approximation.

Doing so, one finds (Yagi et al. 2012b)

hg# ¼� a1

b
1

2j

� �2

T2
mat �

a2

b
1

2j

� �2

Tlm
matT

mat
lm

� 2a3

b
ðhab;lmha½b;l�m þ hab;lmh

l½m;a�bÞ

� 2a4

b
��ablmhad;cbhm

½c;d�
l ;

ð55Þ

where we have order-reduced the theory where possible and used the harmonic

gauge condition (which is preserved in this class of theories; Sopuerta and Yunes

2009; Stein and Yunes 2011). The corresponding equation for the metric pertur-

bation is rather lengthy and can be found in Eqs. (17)–(24) in Yagi et al. (2012b).

Since these theories are to be considered effective, working always to leading order

in ai, one can show that they are perturbatively of type N2 in the E(2) classification

(Eardley et al. 1973), i.e., in the far zone, the only propagating modes that survive

are the two transverse-traceless (spin-2) metric perturbations (Sopuerta and Yunes

2009; Wagle et al. 2019). In the strong-field region, however, it is possible that

additional modes are excited, although they decay rapidly as they propagate to

future null infinity.

Lastly, let us discuss what is known about whether modified quadratic gravity

satisfies the requirements discussed in Sect. 2.1. As it should be clear from the

action itself, this modified gravity theory satisfies the fundamental requirement, i.e.,

passing all precision tests, provided the couplings ai are sufficiently small. This is

because such theories have a continuous limit to GR as ai ! 0.10 Dynamical Chern–

Simons gravity is constrained only weakly from solar system experiments,

n1=4
4 \108 km, where n4 
 a2

4=ðbjÞ, through observations of Lense–Thirring

precession (Ali-Haı̈moud and Chen 2011; Nakamura et al. 2019). However, much

stronger bounds have been obtained through gravitational wave observations.

Ringdown observations place a new bound of n1=4
4 \103 km (Silva et al. 2023) by

assuming a small-spin expansion (which may not be valid for rapidly-spinning black

hole remnants), while a multi-messenger observations of gravitational wave and X-

ray observations place a bound of n1=4
4 \22:6 km (Silva et al. 2021a) as a null test of

GR. The coupling constant of Einstein–Dilaton–Gauss–Bonnet gravity,

n3 
 a2
3=ðbjÞ, on the other hand, has been constrained by several experiments:

solar system observations of the Shapiro time delay with the Cassini spacecraft

placed the bound n1=4
3 \1:3 � 107 km (Bertotti et al. 2003; Amendola et al. 2007);

the requirement that neutron stars still exist in this theory placed the constraint

n1=4
3 .26 km (Pani et al. 2011a), with the details depending somewhat on the central

10 Formally, as ai ! 0, one recovers GR with a dynamical scalar field. The latter, however, only couples

minimally with the metric and does not couple to the matter sector, so it does not lead to any observable

effects that distinguish it from GR.
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density of the neutron star; the requirement that the neutron star maximum mass

exceeds 2M� also places the bound n1=4
3 .3:43 km (Saffer and Yagi 2021), though

this bound depends on the choice of the equation of state of nuclear matter;

observations of the rate of change of the orbital period in the low-mass X-ray binary

A0620-00 (Psaltis 2008a; Johannsen et al. 2009) has led to the 1r constraint

n1=4
3 \4:3 km (Yagi 2012b); finally, recent gravitational wave observations place a

90%-credible constraint n1=4
3 \3:1 km (Nair et al. 2019; Perkins et al. 2021a; Wang

et al. 2021a; Lyu et al. 2022), which provides the strongest bound (see also Shao

et al. 2023; Wang et al. 2023a; Gao et al. 2024 for more recent works).

Not all sub-properties of the fundamental requirement, however, are known to be

satisfied. One can show that certain members of modified quadratic gravity possess

known solutions and these are stable, at least linearly and in the small-coupling

approximation. For example, in dynamical Chern–Simons gravity, spherically

symmetric vacuum solutions are given by the Schwarzschild metric with constant #
to all orders in ai (Jackiw and Pi 2003; Yunes and Sopuerta 2008; Rogatko 2013).

Moreover, one can show that such a solution, as well as non-spinning black holes

and branes in anti-de Sitter space (Delsate et al. 2011), are linearly stable to small

perturbations (Molina et al. 2010; Garfinkle et al. 2010). Spinning solutions, on the

other hand, continue to be elusive, with linearly-stable (Ayzenberg et al. 2014;

Wagle et al. 2022), approximate solutions in the slow-rotation/small-coupling limit

known both for black holes (Yunes and Pretorius 2009a; Konno et al. 2009; Pani

et al. 2011c; Yagi et al. 2012d; Maselli et al. 2017; Alexander et al. 2021) and stars

(Yunes et al. 2010d; Ali-Haı̈moud and Chen 2011; Pani et al. 2011a; Yagi et al.

2013) and solutions in the fast-rotation/small-coupling limit known for black holes

only (Konno and Takahashi 2014; Stein 2014; McNees et al. 2016; Delsate et al.

2018). In Einstein–Dilaton–Gauss–Bonnet theory, both non-spinning (Yunes and

Stein 2011) and spinning (Pani et al. 2011c; Ayzenberg and Yunes 2014; Maselli

et al. 2015a; Kleihaus et al. 2011, 2016a) black hole solutions are known, and they

have been found to be linearly stable (Pani and Cardoso 2009; Blázquez-Salcedo

et al. 2016; Okounkova 2019; Pierini and Gualtieri 2021, 2022). Neutron stars

solutions have been constructed for non-spinning (Pani et al. 2011a; Saffer et al.

2019), spinning (Kleihaus et al. 2014, 2016b) and tidally-deformed (Saffer and Yagi

2021) configurations. Ripley and Pretorius (2020) found evidence that scalarized

black holes are non-linearly stable when the coupling constant is sufficiently small.

The study of modified quadratic gravity theories as effective theories is valid

provided one is sufficiently far from its cut-off scale, i.e., the scale beyond which

higher-order curvature terms cannot be neglected any longer. One can estimate the

magnitude of this scale by studying the size of loop corrections to the quadratic

curvature terms in the action due to n- point interactions (Yagi et al. 2012d). Simple

counting requires that the number of scalar and graviton propagators, Ps and Pg,

satisfy the following relation in terms of the number of vertices V:
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Ps ¼
V

2
; Pg ¼ ðn� 1ÞV

2
: ð56Þ

Loop corrections are thus suppressed by factors of aVi M
ð2�nÞV
pl KnV , with Mpl the

Planck mass and K an energy scale introduced by dimensional arguments. The cut-

off scale above which the theory cannot be treated as an effective one can be

approximated as the value of K at which the suppression factor becomes equal to

unity:

Kc 
 M
1�2=n
pl a1=n

i ; ð57Þ

This cut-off scale automatically places a constraint on the magnitude of ai above

which higher-curvature corrections must be included. Setting the largest value of Kc

to be equal to Oð10l m), thus saturating bounds from table-top experiments

(Kapner et al. 2007), and solving for ai, we find

a1=2
i \Oð108 kmÞ: ð58Þ

Current bounds on ai require the coupling constant to be much smaller than 108 km

(Ali-Haı̈moud and Chen 2011; Yagi 2012b; Nakamura et al. 2019; Nair et al. 2019;

Silva et al. 2021a; Perkins et al. 2021a; Wang et al. 2021a; Lyu et al. 2022; Silva

et al. 2023), thus justifying the treatment of these theories as effective models.

As for the other requirements discussed in Sect. 2.1, it is clear that modified

quadratic gravity is well-motivated from fundamental theory, but it is not clear

whether it has a well-posed initial-value formulation. From an effective point of

view, a perturbative treatment in ai naturally leads to stable solutions and a well-

posed initial value problem, but this is probably not the case when the theory is

treated as exact (Delsate et al. 2015). In fact, if one were to treat such a theory as

exact (to all orders in ai), then the evolution system is not hyperbolic in general, as

higher than second time derivatives now drive the evolution (Delsate et al. 2015).

Notice, however, that this says nothing about the fundamental theories that modified

quadratic gravity derives from. This is because even if the truncated theory were ill-

posed, higher order corrections that are neglected in the truncated version could

restore well-posedness. For the Einstein–dilaton–Gauss–Bonnet case, the field

equations remain second order in derivatives. Ripley and Pretorius (2019, 2020),

East and Ripley (2021b) showed that, under spherical symmetry, the field equations

remain hyperbolic and are well-posed when the coupling constant is small, On the

other hand, when the coupling constant is large, there arises elliptic regions in

spacetime where hyperbolicity of the equations is broken (see also Hegade et al.

2023).

As for the last requirement (that the theory modifies extreme gravity), modified

quadratic theories are ideal in this respect. This is because they introduce

corrections to the action that depend on higher powers of the curvature. In the

extreme gravity regime, such higher powers could potentially become non-

negligible relative to the Einstein–Hilbert action. Moreover, since the curvature

scales inversely with the mass of the black holes under consideration, one expects
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the largest deviations in systems with small mass, such as stellar-mass black hole

mergers or extreme–mass-ratio inspirals (Sopuerta and Yunes 2009; Maselli et al.

2020a, 2022; Barsanti et al. 2022; Tan et al. 2024).

2.3.7 Variable G theories and large extra dimensions

Variable G theories are defined as those where Newton’s gravitational constant is

promoted to a spacetime function. Such a modification breaks the principle of

equivalence (see Will 2014) because the laws of physics now become local position

dependent. In turn, this implies that experimental results now depend on the

spacetime position of the laboratory frame at the time of the experiment.

Many known modified gravity theories that violate the principle of equivalence,

and in particular, the strong equivalence principle, predict a varying gravitational

constant. A classic example is scalar-tensor theory (Will 2018b), which, as

explained in Sect. 2.3.1, modifies the gravitational sector of the action by

multiplying the Ricci scalar by a scalar field (in the Jordan frame). In such

theories, one can effectively think of the scalar as promoting the coupling between

gravity and matter to a field-dependent quantity G ! Gð/Þ, thus violating local

position invariance when / varies. Another example are bimetric theories, such as

that of Lightman–Lee (Lightman and Lee 1973), where the gravitational constant

becomes time-dependent even in the absence of matter, due to possibly time-

dependent cosmological evolution of the prior geometry. A final example is higher-

dimensional, brane-world scenarios, where enhanced Hawking radiation (Emparan

et al. 2002; Tanaka 2003) may lead to a time-varying effective 4D gravitational

constant (Deffayet and Menou 2007), whose rate of change depends on the

curvature radius of extra dimensions (Johannsen et al. 2009; McWilliams 2010;

Yagi et al. 2011).

One can also construct f(R)-type actions that introduce variability to Newton’s

constant. For example, consider the f(R) model (Frolov and Guo 2011)

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
j R 1 þ a0 ln

R

R0

� �� �

þ Smat; ð59Þ

where j ¼ ð16pGÞ�1
, a0 is a coupling constant and R0 is a curvature scale. This

action is motivated by certain renormalization group flow arguments (Frolov and

Guo 2011). The field equations are

Glm ¼
1

2�j
Tmat
lm � a0

�j
Rlm � 2

j
�j
a0

R2
rðlRrmÞR� 1

2

a0j
�j

glmhR ; ð60Þ

where we have defined the new constant

�j :¼ j 1 þ a0

j
ln

R

R0

� �� �

: ð61Þ

Clearly, the new coupling constant �j depends on the curvature scale involved in the

problem, and thus, on the geometry, forcing G to run to zero in the ultraviolet limit.
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Another example is a scalar-tensor theory with a non-minimal coupling to a

topological invariant. For example, consider the model

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
j # Rþ # T � 1

2
rl#
� �

rl#ð Þ
� �

þ Smat; ð62Þ

where j ¼ ð16pGÞ�1
and T is a topological invariant constructed from the curva-

ture tensor, like the Gauss–Bonnet invariant or the Pontryagin density. Such a

model, for example, arises in the axiverse scenario (Arvanitaki and Dubovsky 2011;

Kodama and Yoshino 2012), where here we have redefined the field so that its

kinetic energy is standard, and we have neglected any potential. The field equations

are

Glm ¼
1

2�j
Tmat
lm þ 1

2�j
T ð#Þ
lm � 1

j
ffiffiffiffiffiffiffi�g

p
d

dglm
ffiffiffiffiffiffiffi�g

p
T

� �

; ð63Þ

h# ¼ �j R� T ð64Þ

where T
ð#Þ
lm is the stress-energy tensor of the # scalar field [see Eq. (47)], and we

have defined the new constant �j :¼ j #. We see then that G ! Gð#Þ ¼ G=#, where

# is sourced by a topological invariant constructed from the curvature tensor and its

trace.

An important point to address is whether variable G theories can lead to

modifications to a vacuum spacetime, such as a black hole binary inspiral. In

Einstein’s theory, G appears as the coupling constant between geometry, encoded

by the Einstein tensor Glm, and matter, encoded by the stress energy tensor Tmat
lm .

When considering vacuum spacetimes, Tmat
lm ¼ 0 and one might naively conclude

that a variable G would not introduce any modification to such spacetimes. In fact,

this is the case in scalar-tensor theories (without homogeneous, cosmological

solutions to the scalar field equation), where the no-hair theorem establishes that

black hole solutions are not modified (Hawking 1972b). On the other hand, scalar-

tensor theories with a non-trivial boundary conditions for the scalar field (Healy

et al. 2012; Jacobson 1999; Horbatsch and Burgess 2012) or in non-vacuum

spacetimes (Cardoso et al. 2013a, b) can evade the no-hair theorem, endowing black

holes with time-dependent hair, which in turn would introduce variability into

G even in vacuum spacetimes (Berti et al. 2013).

In general, Newton’s constant plays a much more fundamental role than merely a

coupling constant: it defines the relationship between energy and length. For

example, for the vacuum Schwarzschild solution, G establishes the relationship

between the radius R of the black hole and the rest-mass energy E of the spacetime

via R ¼ 2GE=c4. Similarly, in a black-hole–binary spacetime, each black hole

introduces an energy scale into the problem that is quantified by a specification of

Newton’s constant. Therefore, one can think of variable G modifications as induced

by some effective theory that modifies the mapping between the curvature scale and

the energy scale of the problem, as is done for example in scalar-tensor theories with
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a non-minimal coupling to a topological invariant (as shown above) or as done in

theories with extra dimensions.

An explicit example of the latter is realized in braneworld models. Superstring

theory suggests that physics should be described by 4 large dimensions, plus another

6 that are compactified and very small (Polchinski 1998a, b). The size of these extra

dimensions is greatly constrained by particle theory experiments. Braneworld

models, where a certain higher-dimensional membrane is embedded in a higher

dimensional bulk spacetime, can however evade this constraint as only gravitons

can interact with the bulk. The ADD model (Arkani-Hamed et al. 1998, 1999) is a

particular example of such a braneworld, where the bulk is flat and compact and the

brane is tensionless with ordinary fields localized on it. The size of these extra

dimensions is constrained to micrometer scales by table-top experiments (Kapner

et al. 2007; Adelberger et al. 2007).

What is relevant to gravitational-wave experiments is that in many of these

braneworld models, black holes may not remain static (Emparan et al. 2002; Tanaka

2003). The argument goes roughly as follows: a five-dimensional black hole is dual

to a four-dimensional one with conformal fields on it by the ADS/CFT conjecture

(Maldacena 1998; Aharony et al. 2000), but since the latter must evolve via

Hawking radiation, the black hole may lose mass. The Hawking mass loss rate is

here enhanced by the large number of degrees of freedom in the conformal field

theory, leading to an effective modification to Newton’s laws and to the emission of

gravitational radiation. Effectively, one can think of the black hole mass loss as due

to the black hole being stretched away from the brane into the bulk, reducing the

size of the brane-localized black hole. For black-hole binaries, one can then draw an

analogy between this induced time-dependence in the black hole mass and a

variable G theory, where Newton’s constant becomes time-dependent (Yunes et al.

2010c). However, Figueras et al. (2011), Figueras and Wiseman (2011), Figueras

and Tunyasuvunakool (2013) numerically found stable static solutions that do not

require a radiation component and this was recently extended for rotating black

holes (Biggs and Santos 2022). If such solutions were the ones realized in nature as

a result of gravitational collapse on the brane, then the black hole mass would be

time-independent, up to quantum correction due to Hawking evaporation, a

negligible effect for realistic astrophysical systems. This is likely to be the case

based on numerical simulations of the dynamics of gravitational collapse in such

scenarios (Wang and Choptuik 2016) that are consistent with the static black hole

solutions found in Figueras and Wiseman (2011).

Many experiments have been carried out to measure possible deviations from a

constant G value, and they can broadly be classified into two groups: (a) those that

search for the present or nearly present rate of variation (at redshifts close to zero);

(b) those that search for secular variations over long time periods (at very large

redshifts). Examples of experiments or observations of the first class include

planetary radar-ranging (Pitjeva 2005; Genova et al. 2018), surface temperature

observations of low-redshift millisecond pulsars (Jofré et al. 2006; Reisenegger

et al. 2009), lunar ranging observations (Williams et al. 2004) and pulsar timing

observations (Kaspi et al. 1994; Deller et al. 2008; Zhu et al. 2015, 2019), the latter

two being the most stringent. Examples of experiments of the second class include
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the evolution of the Sun (Guenther et al. 1998) and Big-Bang Nucleosynthesis

(BBN) calculations (Copi et al. 2004; Bambi et al. 2005; Alvey et al. 2020), again

with the latter being more stringent. For either class, the strongest constraints are

about _G=G.10�13 yr�1, varying somewhat from experiment to experiment.

Lacking a particularly compelling action to describe variable G theories, one is

usually left with a phenomenological model of how such a modification to

Einstein’s theory would impact gravitational waves. Given that the part of the

waveform that detectors are most sensitive to is the gravitational wave phase, one

can model the effect of variable G theories by studying how the rate of change of its

frequency would be modified. Assuming a Taylor expansion for Newton’s constant,

one can derive the modification to the evolution equation for the gravitational wave

frequency, given whichever physical scenario one is considering. Solving such an

evolution equation then leads to a modification in the accumulated gravitational

wave phase observed at detectors on Earth. In Sect. 4 we will provide an explicit

example of this for a compact binary system.

Let us now discuss whether such theories satisfy the criteria defined in Sect. 2.1.

The fundamental property can be satisfied if the rate of change of Newton’s constant

is small enough, as variable G theories usually have a continuous limit to GR (as all

derivatives of G go to zero). Whether variable G theories are well-motivated from

fundamental physics (Property 2) depends somewhat on the particular effective

model or action that one considers. But in general, Property 2 is usually satisfied,

considering that such variability naturally arises in theories with extra dimensions,

and the latter are also natural in all string theories. Variable G theories, however,

usually fail at introducing modifications in the extreme gravity regime. Usually,

such variability is parameterized as a Taylor expansion about some initial point with

constant coefficients. That is, the variability of G is not usually constructed to

become stronger closer to merger. The well-posed property and the sub-properties

of the fundamental property depend somewhat on the particular effective theory

used to describe varying G modifications. In the f(R) case, one can impose

restrictions on the functional form f ð�Þ such that no ghosts (f 0 [ 0) or instabilities

(f 00 [ 0) arise (Frolov and Guo 2011). This, of course, does not guarantee that this

(or any other such) theory is well-posed. A much more detailed analysis would be

required to prove well-posedness of the class of theories that lead to a variable

Newton’s constant, but such is currently lacking.

2.3.8 Non-commutative geometry

Non-commutative geometry is a gravitational theory that generalizes the continuum

Riemannian manifold of Einstein’s theory with the product of it with a tiny,

discrete, finite non- commutative space, composed of only two points. Although the

non-commutative space has zero spacetime dimension, as the product manifold

remains four dimensional, its internal dimensions are 6 to account for Weyl and

chiral fermions. This space is discrete to avoid the infinite tower of massive particles

that would otherwise be generated, as in string theory. Through this construction,

one can recover the Standard Model of elementary particles, while accounting for
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all (elementary particle) experimental data to date. Of course, the simple non-

commutative space described above is expected to be replaced by a more complex

model at Planckian energies. Thus, one is expected to treat such non-commutative

geometry models as effective theories. Essentially nothing is currently known about

the full non-commutative theory, of which the theories described in this section are

an effective low- energy limit.

Before proceeding with an action-principle description of non-commutative

geometry theories, we must distinguish between the spectral geometry approach

championed by Connes (1996), and Moyal-type non-commutative geometries

(Snyder 1947; Groenewold 1946; Moyal and Bartlett 1949). In the former, the

manifold is promoted to a non-commutative object through the product of a

Riemann manifold with a non-commutative space. In the latter, instead, a non-trivial

set of commutation relations is imposed between operators corresponding to

position. These two theories are in principle unrelated. In this review, we mostly

concentrate on the former, though we will comment on the latter too.

The effective action for spectral non-commutative geometry theories (henceforth,

non-commutative geometries for short) is

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
jRþ a0ClmdrC

lmdr þ s0R
�R� � n0R jHj2

	 


þ Smat ; ð65Þ

where H is related to the Higgs field, Clmdr is the Weyl tensor, ða0; s0; n0Þ are

couplings constants and we have defined the quantity

R�R� :¼ 1

4
�lmqr�abcdRlm

abRqr
cd: ð66Þ

Notice that this term integrates to the Euler characteristic, and since s0 is a constant,

it is topological and does not affect the classical field equations. The last term of

Eq. (65) is usually ignored, as H is assumed to be relevant only in the early uni-

verse. Finally, the second term can be rewritten in terms of the Riemann and Ricci

tensors as

ClmdrC
lmdr ¼ 1

3
R2 � 2RlmR

lm þ RlmdrR
lmdr: ð67Þ

Notice that this corresponds to the modified quadratic gravity action of Eq. (44)

with all að1Þi ¼ 0 and ðað0Þ1 ; að0Þ2 ; að0Þ3 Þ ¼ ð1=3;�2; 1Þ, which is not the Gauss–Bonnet

invariant. Notice also that this model is not usually studied in modified quadratic

gravity theory, as one usually concentrates on the terms that have an explicit scalar

field coupling.

The field equations of this theory can be read directly from Eq. (45), but we

repeat them here for completeness:

Glm �
2a0

j
2rjk þ Rkj
� �

Clkmj ¼ 1

2j
Tmat
lm : ð68Þ

One could in principle rewrite this in terms of the Riemann and Ricci tensors, but

the expressions become quite complicated, as calculated explicitly in Eqs. (2) and
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(3) of Yunes and Stein (2011). Due to the absence of a dynamical degree of freedom

coupling to the modifications to the Einstein–Hilbert action, this theory is not

covariantly conserved in vacuum. By this, we mean that the covariant divergence of

Eq. (68) does not vanish in vacuum, thus violating the weak-equivalence principle

and leading to additional equations that might over-constrain the system. In the

presence of matter, the equations of motion will not be given by the vanishing of the

covariant divergence of the matter stress-energy alone, but now there will be

additional geometric terms.

Given these field equations, one can linearize them about a flat background to

find the evolution equations for the metric perturbation (Nelson et al. 2010a, b)

1 � b�2hg
� �

hghlm ¼ �16pTmat
lm ; ð69Þ

where the term proportional to b2 ¼ ð�32pa0Þ�1
acts like a mass term. Here, one

has imposed the transverse-traceless gauge (a refinement of Lorenz gauge), which

can be shown to exist (Nelson et al. 2010a, b). Clearly, even though the full non-

linear equations are not covariantly conserved, its linearized version is, as one can

easily show that the divergence of the left-hand side of Eq. (69) vanishes. Because

of these features, if one works perturbatively in b�1, then such a theory will only

possess the two usual transverse-traceless (spin-2) polarization modes, i.e., it is

perturbatively of type N2 in the E(2) classification (Eardley et al. 1973).

Let us now discuss whether such a theory satisfies the properties discussed in

Sect. 2.1. Non-commutative geometry theories clearly possess the fundamental

property, as one can always take a0 ! 0 (or equivalently b�2 ! 0) to recover GR.

Therefore, there must exist a sufficiently small a0 such that all precision tests carried

out to date are satisfied. As for the existence and stability of known solutions,

Nelson et al. (2010a, b) have shown that Minkowski spacetime is stable only for

a0\0, as otherwise a tachyonic term appears in the evolution of the metric

perturbation, as can be seen from Eq. (69). This then automatically implies that b
must be real.

Current constraints on Weyl terms of this form come mostly from solar system

experiments. Ni (2012) recently studied an action of the form of Eq. (65) minimally

coupled to matter in light of solar system experiments. He calculated the relativistic

Shapiro time-delay and light deflection about a massive body in this theory and

found that observations of the Cassini satellite place constraints on ja0j1=2\5:7 km

(Ni 2012). This is currently the strongest bound we are aware of on a0.

Many solutions of GR are preserved in non-commutative geometries. Regarding

black holes, all solutions that are Ricci flat (vacuum solutions of the Einstein

equations) are also solutions to Eq. (68). This is because by the second Bianchi

identity, one can show that

rjkRlkmj ¼ rj
mRlj �hRlm; ð70Þ

and the right-hand side vanishes in vacuum, forcing the entire left-hand side of

Eq. (68) to vanish. However, this is not so for neutron stars, where the equations of

motion are likely to be modified, unless they are static (Nelson 2010). Moreover, as
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of now there has been no stability analysis of black-hole or stellar solutions and no

study of whether the theory is well-posed as an initial-value problem, even as an

effective theory. Thus, except for the fundamental property, it is not clear that non-

commutative geometries satisfy any of the other criteria listed in Sect. 2.1.

Let us now discuss the second approach of non-commutative theories, the Moyal-

type. We promote the coordinates xl to an operator x̂l and impose the following

canonical commutation relation:

½x̂l; x̂m� ¼ i hlm; ð71Þ

where hlm represents the amount of violation of commutation (like �h in quantum

mechanics) that corresponds to the ‘‘quantum fuzziness’’ of spacetime. Within this

model and working in an effective field theory formulation in which one assumes a

black hole is sourced by a massive scalar field (Bjerrum-Bohr et al. 2003; Koba-

khidze 2009), the stress-energy tensor for a black hole (assumed to be a point

particle) at yðtÞ is given by (Kobakhidze et al. 2016)

Tlmðx; tÞ ¼ mcðtÞvlðtÞvmðtÞd3½x� yðtÞ� þ m3K2

8
vlðtÞvmðtÞhkhlokold3½x� yðtÞ�;

ð72Þ

Here cðtÞ is the Lorentz factor, m and vl are the mass and four-velocity of the black

hole, while K and the unit vector hi are defined by

K hi ¼ h0i

lptp
; ð73Þ

where lp and tp are the Planck length and time respectively. The above non-com-

mutative correction to the stress-energy tensor leads to modifications in the orbital

dynamics at 2nd post-Newtonian order.

We end this section by explaining whether the Moyal-type non-commutative

theory satisfies the properties discussed in Sect. 2.1. The theory has a continuous

limit to GR (K ! 0). From the pericenter precession of binary pulsars, K has been

constrained to
ffiffiffiffi

K
p

.Oð10Þ (Jenks et al. 2020), while gravitational wave observa-

tions place a slightly stronger bound, as we will discuss in Sec. 4.2.5. The theory

possesses the property that the non-GR correction grows as one moves to the

extreme gravity regime, as the correction enters at 2nd post-Newtonian order.

Further analysis is necessary to reveal the stability of compact objects and well-

posedness of the theory.

2.3.9 Gravitational parity violation

Parity, the symmetry transformation that flips the sign of the spatial triad, has been

found to be broken in the Standard Model of elementary interactions. Only the

combination of a parity transformation, time inversion and charge conjugation

(CPT) remains still a true symmetry of the Standard Model. Experimentally, it is

curious that the weak interaction exhibits maximal parity violation, while other
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fundamental forces seem to not exhibit any. Theoretically, parity violation

unavoidably arises in the Standard Model (Bell and Jackiw 1969; Adler 1969;

Álvarez-Gaumé and Witten 1984), as there exist one-loop chiral anomalies that give

rise to parity violating terms coupled to lepton number (Weinberg 1996). In certain

sectors of string theory, such as in heterotic and in Type I superstring theories,

parity violation terms are also generated through the Green–Schwarz gauge

anomaly-canceling mechanism (Green et al. 1987b; Polchinski 1998b; Alexander

and Gates Jr 2006). Finally, in loop quantum gravity (Ashtekar et al. 1989), the

scalarization of the Barbero–Immirzi parameter coupled to fermions leads to an

effective action that contains parity-violating terms (Taveras and Yunes 2008;

Calcagni and Mercuri 2009; Mercuri and Taveras 2009; Gates Jr et al. 2009). Even

without a particular theoretical model, one can generically show that effective field

theories of inflation generically contain non-vanishing, second-order, parity

violating curvature corrections to the Einstein–Hilbert action (Weinberg 2008).

Alternatively, phenomenological parity-violating extensions of GR have been

proposed through a scalarization of the fundamental constants of nature (Contaldi

et al. 2008).

One is then naturally led to ask whether the gravitational interaction is parity

invariant in extreme gravity. A violation of parity invariance would occur if the

Einstein–Hilbert action were modified through a term that involved a Levi-Civita

tensor and parity invariant tensors or scalars. Let us try to construct such terms with

only single powers of the Riemann tensor and a single scalar field #:

(ia) Rabcd �
abcd, (ib) Rabcl �abcm rl

m#,

(ic) Rabcl �abdm rlc
md# , (id) Rafcl �abdm rlc

bmd
f# .

Option (ia) and (ib) vanish by the Bianchi identities. Options (ic) and (id) include

the commutator of covariant derivatives, which can be rewritten in terms of a

Riemann tensor, and thus it leads to terms that are at least quadratic in the Riemann

tensor. Therefore, no scalar can be constructed that includes contractions with the

Levi-Civita tensor from a single Riemann curvature tensor and a single field. One

can try to construct a scalar from the Ricci tensor

(iia) Rab �abcdrcd#, (iib) Rab �alcdrcdl
b#,

but again (iia) vanishes by the symmetries of the Ricci tensor, while (iib) involves

the commutator of covariant derivatives, which introduces another power of the

curvature tensor. Obviously, the only term one can write with the Ricci scalar would

lead to a double commutator of covariant derivatives, leading to extra factors of the

curvature tensor.

One is then forced to consider either theories with two mutually independent

fields or theories with quadratic curvature tensors. Of the latter, the only

combination that can be constructed and that does not vanish by the Bianchi

identities is the so called Pontryagin density, i.e., R�R, and therefore, the action

(Jackiw and Pi 2003; Alexander and Yunes 2009)
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S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
j Rþ a

4
# R�R

	 


; ð74Þ

is the most general, quadratic action with a single scalar field that introduces

gravitational parity violation,11 where we have rescaled the a prefactor to follow

historical conventions. This action defines non-dynamical Chern–Simons modified

gravity, initially proposed by Jackiw and Pi (Jackiw and Pi 2003; Alexander and

Yunes 2009). Notice that this is the same as the term proportional to a4 in the

quadratic gravity action of Eq. (44), except that here # is prior geometry, i.e., it does

not possess self-consistent dynamics or an evolution equation. Such a term violates

parity invariance because the Pontryagin density is a pseudo-scalar, while # is

assumed to be a scalar.

The field equations for this theory are12

Glm þ
a

4j
Kð1Þ

lm ¼ 1

2j
Tmat
lm ; ð75Þ

which is simply Eq. (45) with ða1; a2; a3Þ set to zero and no stress-energy for #.

Clearly, these field equations are not covariantly conserved in vacuum, i.e., taking

the covariant divergence one finds the constraint

aR�R ¼ 0: ð76Þ

This constraint restricts the space of allowed solutions, for example disallowing the

Kerr metric (Grumiller and Yunes 2008). Therefore, it might seem that the evolution

equations for the metric are now overconstrained, given that the field equations

provide 10 differential conditions for the 10 independent components of the metric

tensor, while the constraint adds one additional, independent differential condition.

Moreover, unless the Pontryagin constraint, Eq. (76), is satisfied, matter fields will

not evolve according to rlTmat
lm ¼ 0, thus violating the equivalence principle.

From the field equations, we can derive an evolution equation for the metric

perturbation when linearizing about a flat background, namely

hghlm þ
a
j

#;c �ðl
cdvhghmÞd;v � #;c

f �ðl
cdvhjdfj;mÞv þ #;c

f �ðl
cdvhmÞd;vf

� �

¼ � 2

j
Tmat
lm

ð77Þ

in a transverse-traceless gauge, which can be shown to exist in this theory

(Alexander et al. 2008; Yunes and Finn 2009). The constraint of Eq. (76) is iden-

tically satisfied to second order in the metric perturbation. However, without further

information about #, one cannot proceed any further, except for a few general

observations. As is clear from Eq. (77), the evolution equation for the metric

11 If we allow for multiple scalar fields or multiple derivatives of the scalar field, one can construct a

more general parity-violating gravity theory, including a term with a single curvature tensor in the action

(Crisostomi et al. 2018). In fact, one can even construct ghost-free, parity-violating theories that evade

the Ostrogradskii instability (Crisostomi et al. 2018), though such theories predict that gravitational

waves propagate at speeds different from c in general (Nishizawa and Kobayashi 2018).

12 The tensor Kð1Þ
lm is sometimes written as Clm and referred to as the C-tensor.
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perturbation can contain third time derivatives, which generically will lead to

instabilities. In fact, as shown in Alexander and Martin (2005) the general solution

to these equations will contain exponentially growing and decaying modes. The

theory defined by Eq. (74), however, is an effective theory, and thus, there can be

higher order operators not included in this action that may stabilize the solution.

Regardless, when studying this theory, order-reduction is necessary if one is to

consider it an effective model.

Let us now discuss the properties of such an effective theory. Because of the

structure of the modification to the field equations, one can always choose a

sufficiently small value for a such that all solar system tests are satisfied. In fact, one

can see from the equations in this section that in the limit a ! 0, one recovers GR.

Non-dynamical Chern–Simons gravity leads to modifications to the non-radiative

(near-zone) metric in the gravitomagnetic sector, leading to corrections to Lense–

Thirring precession (Alexander and Yunes 2007a, b). This fact has been used to

constrain the theory through observations of the orbital motion of the LAGEOS

satellites (Smith et al. 2008) to ða=jÞ _#\2 � 104 km, or equivalently

ðj=aÞ _#�1J10�14 eV. Much better constraints, however, can be placed through

observations of the double binary pulsar (Yunes and Spergel 2009; Ali-Haı̈moud

2011): ða4=jÞ _#\0:8 km.

Some of the sub-properties of the fundamental requirement are satisfied in non-

dynamical Chern–Simons Gravity. On the one hand, all spherically symmetric

metrics that are solutions to the Einstein equations are also solutions in this theory

for a ‘‘canonical’’ scalar field (h / t) (Grumiller and Yunes 2008). On the other

hand, axisymmetric solutions to the Einstein equations are generically not solutions

in this theory. Moreover, although spherically symmetric solutions are preserved,

perturbations of such spacetimes that are solutions to the Einstein equations are not

generically solutions to the modified theory (Yunes and Sopuerta 2008). What is

perhaps worse, the evolution of perturbations to non-spinning black holes have been

found to be generically overconstrained (Yunes and Sopuerta 2008). This is a

consequence of the lack of scalar field dynamics in the modified theory, which via

Eq. (76) tends to overconstrain it. Such a conclusion also suggests that this theory

does not possess a well-posed initial-value problem. One can argue that non-

dynamical Chern–Simons Gravity is well-motivated from fundamental theories

(Alexander and Yunes 2009), except that in the latter, the scalar field is always

dynamical, instead of having to be prescribed a priori. Thus, perhaps the strongest

motivation for such a model is as a phenomenological proxy to test whether the

gravitational interaction remains parity invariant in extreme gravity, a test that is

uniquely suited to this modified model.

2.4 Currently unexplored theories in the gravitational-wave sector

The list of theories we have here described is by no means exhaustive. In fact, there

are many fascinating theories that we have chosen to leave out because they have

not yet been analyzed in the gravitational wave context in detail. We will update this

review with a description of these theories, once a detailed gravitational-wave study

123

    3 Page 50 of 233 N. Yunes et al.



for compact binaries or supernovae sources is carried out and the predictions for the

gravitational waveform observables are made for any physical system plausibly

detectable by current or near future gravitational-wave experiments. Similarly, there

are theories that have only recently began to be studied in the gravitational wave

context, such as bigravity and Horndeski gravity. We have chosen to include these

theories in this review, as work has already begun to understand their predictions for

gravitational waves. Once more work is done, we will update this review to splinter

such theories into whole sections in their own right.

3 Detectors and testing techniques

3.1 Gravitational-wave interferometers

Kilometer-scale gravitational-wave interferometers have been in operation for

almost two decades. This type of detectors use laser interferometry to monitor the

locations of test masses at the ends of the arms with exquisite precision.

Gravitational waves change the relative length of the optical cavities in the

interferometer (or equivalently, the proper travel time of photons) resulting in a

strain

h ¼ DL
L

;

where DL is the path length difference between the two arms of the interferometer.

Fractional changes in the difference in path lengths along the two arms can be

monitored to better than 1 part in 1020. It is not hard to understand how such

precision can be achieved. For a simple Michelson interferometer, a difference in

path length of order the size of a fringe can easily be detected. For the typically-

used, infrared lasers of wavelength k� 1 lm, and interferometer arms of length

L ¼ 4 km, the minimum detectable strain is

h� k
L
� 3 � 10�10:

This is still far off the 10�20 mark. In principle, however, changes in the length of

the cavities corresponding to fractions of a single fringe can also be measured

provided we have a sensitive photodiode at the dark port of the interferometer, and

enough photons to perform the measurement. This way we can track changes in the

amount of light incident on the photodiode as the lengths of the arms change and we

move over a fringe. The rate at which photons arrive at the photodiode is a Poisson

process and the fluctuations in the number of photons is �N1=2, where N is the

number of photons. Therefore we can track changes in the path length difference of

order

DL� k

N1=2
:

The number of photons depends on the laser power P, and the amount of time
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available to perform the measurement. For a gravitational wave of frequency f, we

can collect photons for a time t� 1=f , so the number of photons is

N � P

fhpm
;

where hp is Planck’s constant and m ¼ c=k is the laser frequency. For a typical laser

power P� 1 W, a gravitational wave frequency f ¼ 100 Hz, and k� 1 lm the

number of photons is

N� 1016;

so that the strain we are sensitive to becomes

h� 10�18:

The sensitivity can be further improved by increasing the effective length of the

arms. In the LIGO instruments, for example, each of the two arms forms a resonant

Fabry–Pérot cavity. For gravitational-wave frequencies smaller than the inverse of

the light storage time, the light in the cavities makes many back and forth trips in the

arms while the wave is traversing the instrument. For gravitational waves of fre-

quencies around 100 Hz and below, the light makes about a thousand back and forth

trips while the gravitational wave is traversing the interferometer, which results in a

three-orders-of-magnitude improvement in sensitivity,

h� 10�21:

For frequencies larger than 100 Hz the number of round trips the light makes in the

Fabry–Pérot cavities while the gravitational wave is traversing the instrument is

reduced and the sensitivity is degraded.

The proper light travel time of photons in interferometers is affected by the

metric perturbation, which can be expressed as a sum over polarization modes

hijðt; x~Þ ¼
X

A

hAijðt; x~Þ; ð78Þ

where A labels the six possible polarization modes in metric theories of gravity. The

metric perturbation for each mode can be written in terms of a plane wave

expansion,

hAijðt; x~Þ ¼
Z 1

�1
df

Z

S2

dX̂ ei2pf ðt�X̂�x~Þ ~h
Aðf ; X̂Þ�AijðX̂Þ: ð79Þ

Here f is the frequency of the gravitational waves, k~¼ 2pf X̂ is the wave vector, X̂ is

a unit vector that points in the direction of propagation of the gravitational waves, eAij
is the Ath polarization tensor, with i; j ¼ x; y; z spatial indices. The metric pertur-

bation due to mode A from the direction X̂ can be written by integrating over all

frequencies,
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hAijðt � X̂ � x~Þ ¼
Z 1

�1
df ei2pf ðt�X̂�x~Þ ~h

Aðf ; X̂Þ�AijðX̂Þ: ð80Þ

By integrating Eq. (79) over all frequencies we have an expression for the metric

perturbation from a particular direction X̂, i.e., only a function of t � X̂ � x~. The full

metric perturbation due to a gravitational wave from a direction X̂ can be written as

a sum over all polarization modes

hijðt � X̂ � x~Þ ¼
X

A

hAðt � X̂ � x~Þ: ð81Þ

The response of an interferometer to gravitational waves is generally referred to as

the antenna pattern response, and depends on the geometry of the detector and the

direction and polarization of the gravitational wave. To derive the antenna pattern

response of an interferometer for all six polarization modes we follow the discussion

in Nishizawa et al. (2009) closely. For a gravitational wave propagating in the z
direction, the polarization tensors are as follows

�þij ¼
1 0 0

0 �1 0

0 0 0

0

B

@

1

C

A

; ��ij ¼
0 1 0

1 0 0

0 0 0

0

B

@

1

C

A

;

�xij ¼
0 0 1

0 0 0

1 0 0

0

B

@

1

C

A

; �yij ¼
0 0 0

0 0 1

0 1 0

0

B

@

1

C

A

;

�bij ¼
1 0 0

0 1 0

0 0 0

0

B

@

1

C

A

; �‘ij ¼
0 0 0

0 0 0

0 0 1

0

B

@

1

C

A

;

ð82Þ

where the superscripts þ, �, x, y, b, and ‘ correspond to the plus, cross, vector-x,

vector-y, breathing, and longitudinal modes.

Suppose that the coordinate system for the detector is

x̂ ¼ ð1; 0; 0Þ; ŷ ¼ ð0; 1; 0Þ; ẑ ¼ ð0; 0; 1Þ, as in Fig. 1. Relative to the detector, the

gravitational-wave coordinate system is rotated by angles ðh;/Þ,
x̂0 ¼ ðcos h cos/; cos h sin/;� sin hÞ, ŷ0 ¼ ð� sin/; cos/; 0Þ, and

ẑ0 ¼ ðsin h cos/; sin h sin/; cos hÞ. We still have the freedom to perform a rotation

about the gravitational-wave propagation direction which introduces the polariza-

tion angle w,

m̂ ¼ x̂0 coswþ ŷ0 sinw;

n̂ ¼ �x̂0 sinwþ ŷ0 cosw;

X̂ ¼ ẑ0:

The coordinate systems ðx̂; ŷ; ẑÞ and ðm̂; n̂; X̂Þ are also shown in Fig. 1. To gener-

alize the polarization tensors in Eq. (82) to a wave coming from a direction X̂, we

use the unit vectors m̂, n̂, and X̂ as follows
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�þ ¼m̂� m̂� n̂� n̂;

�� ¼m̂� n̂þ n̂� m̂;

�x ¼m̂� X̂þ X̂� m̂;

�y ¼n̂� X̂þ X̂� n̂;

�b ¼m̂� m̂þ n̂� n̂;

�‘ ¼X̂� X̂:

ð83Þ

For LIGO and Virgo the arms are perpendicular so that the antenna pattern response

can be written as the difference of projection of the polarization tensor onto each of

the interferometer arms,

Fig. 1 Detector coordinate system and gravitational-wave coordinate system
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FAðX̂;wÞ ¼ 1

2
x̂ix̂j � ŷiŷj
� �

�AijðX̂;wÞ: ð84Þ

This means that the strain measured by an interferometer due to a gravitational wave

from direction X̂ and polarization angle w takes the form

hðtÞ ¼
X

A

hAðt � X̂ � xÞFAðX̂;wÞ: ð85Þ

Explicitly, the antenna pattern functions are,

Fþðh;/;wÞ ¼ 1

2
ð1 þ cos2 hÞ cos 2/ cos 2w� cos h sin 2/ sin 2w;

F�ðh;/;wÞ ¼ � 1

2
ð1 þ cos2 hÞ cos 2/ sin 2w� cos h sin 2/ cos 2w;

Fxðh;/;wÞ ¼ sin h ðcos h cos 2/ cosw� sin 2/ sinwÞ;
Fyðh;/;wÞ ¼ � sin h ðcos h cos 2/ sinwþ sin 2/ coswÞ;

Fbðh;/Þ ¼ � 1

2
sin2 h cos 2/;

F‘ðh;/Þ ¼ 1

2
sin2 h cos 2/:

ð86Þ

The dependence on the polarization angles w reveals that the þ and � polarizations

are spin-2 tensor modes, the x and y polarizations are spin-1 vector modes, and the b
and ‘ polarizations are spin-0 scalar modes. Note that for interferometers the

antenna pattern responses of the scalar modes are degenerate. Figure 2 shows the

antenna patterns for the various polarizations given in Eq. (86) with w ¼ 0. The

color indicates the strength of the response with red being the strongest and blue

being the weakest.

3.2 Pulsar timing arrays

Neutron stars can emit powerful beams of radio waves from their magnetic poles. If

the rotational and magnetic axes are not aligned, the beams sweep through space

like the beacon on a lighthouse. If the line of sight is aligned with the magnetic axis

at any point during the neutron star’s rotation the star is observed as a source of

periodic radio-wave bursts. Such a neutron star is referred to as a pulsar. Due to their

large moment of inertia pulsars are very stable rotators, and their radio pulses arrive

at Earth with extraordinary regularity. Pulsar timing experiments exploit this

regularity; gravitational waves can cause measurable deviations in the expected

times of arrival of radio pulses from pulsars.

The effect of a gravitational wave on the pulses propagating from a pulsar to

Earth was first computed in the late 1970s by Sazhin (1978) and Detweiler (1979).

Gravitational waves induce a redshift in the pulse train
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zðt; X̂Þ ¼ 1

2

p̂ip̂j

1 þ X̂ � p̂
Dhij; ð87Þ

where p̂ is a unit vector that points in the direction of the pulsar, X̂ is a unit vector in

the direction of gravitational wave propagation, and

Fig. 2 Antenna pattern response functions of an interferometer (see Eq. (86)) for w ¼ 0. a, b show the
plus (jFþj) and cross (jF�j) modes, c, d the vector x and vector y modes (jFxj and jFyj), and panel e shows

the scalar modes (up to a sign, it is the same for both breathing and longitudinal). Color indicates the
strength of the response with red being the strongest and blue being the weakest. The black lines near the
center give the orientation of the interferometer arms
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Dhij 
 hijðte; X̂Þ � hijðtp; X̂Þ; ð88Þ

is the difference in the metric perturbation at the pulsar when the pulse was emitted

at t ¼ tp (second term) and the metric perturbation on Earth when the pulse was

received at t ¼ te (first term). The inner product in Eq. (87) is computed with the

Euclidean metric.

In pulsar timing experiments it is not the redshift, but rather the timing residual
that is measured. The times of arrival (TOAs) of pulses are measured, and the timing

residual is produced by subtracting off a model that includes the rotational

frequency of the pulsar, the spin-down (frequency derivative), binary parameters if

the pulsar is in a binary, sky location and proper motion, etc. The timing residual

induced by a gravitational wave, R(t), is just the integral of the redshift

RðtÞ 

Z t

0

dt0 zðt0Þ: ð89Þ

Times-of-arrival are measured a few times a year over the course of several years

allowing for gravitational waves in the nano-Hertz band to be detected. Currently,

the best timed pulsars have residual RMSs of a few tens of ns over a decade or

longer.

The equations above (87) can be used to estimate the strain sensitivity of pulsar

timing experiments. For gravitational waves of frequency f the expected induced

residual is

R� h

f
; ð90Þ

so that for pulsars with RMS residuals R� 100 ns, and gravitational waves of

frequency f � 10�8 Hz, gravitational waves with strains

h�Rf � 10�15 ð91Þ

would produce a measurable effect.

To find the antenna pattern response of the pulsar-Earth system, we are free to

place the pulsar on the z-axis. The response to gravitational waves of different

polarizations can then be written as

FAðX̂;wÞ ¼ 1

2

ẑiẑj

1 þ cos h
�AijðX̂;wÞ; ð92Þ

which allows us to express the Fourier transform of (87) as

~zðf ; X̂Þ ¼ 1 � e�2pifLð1þX̂�p̂Þ
	 


X

A

~hAðf ; X̂ÞFAðX̂Þ ð93Þ

where the sum is over all possible gravitational-wave polarizations:

A ¼ þ;�; x; y; b; l, and L is the distance to the pulsar.

Explicitly,
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Fþðh;wÞ ¼ sin2 h
2

cos 2w ð94Þ

F�ðh;wÞ ¼ � sin2 h
2

sin 2w ð95Þ

Fxðh;wÞ ¼ � 1

2

sin 2h
1 þ cos h

cosw; ð96Þ

Fyðh;wÞ ¼ 1

2

sin 2h
1 þ cos h

sinw; ð97Þ

FbðhÞ ¼ sin2 h
2

ð98Þ

F‘ðhÞ ¼ 1

2

cos2 h
1 þ cos h

: ð99Þ

Just like for the interferometer case, the dependence on the polarization angle w,

reveals that the þ and � polarizations are spin-2 tensor modes, the x and y polar-

izations are spin-1 vector modes, and the b and ‘ polarizations are spin-0 scalar

modes. Unlike interferometers, the antenna pattern responses of the pulsar-Earth

system do not depend on the azimuthal angle of the gravitational wave, and the

scalar modes are not degenerate.

In the literature, it is common to write the antenna pattern response by fixing the

gravitational-wave direction and changing the location of the pulsar. In this case the

antenna pattern responses are (Lee et al. 2008; Alves and Tinto 2011; Chamberlin

and Siemens 2012),

~F
þðhp;/pÞ ¼ sin2 hp

2
cos 2/p

~F
�ðhp;/pÞ ¼ sin2 hp

2
sin 2/p

~F
xðhp;/pÞ ¼

1

2

sin 2hp
1 þ cos hp

cos/p;

~F
yðhp;/pÞ ¼

1

2

sin 2hp
1 þ cos hp

sin/p;

~F
bðhpÞ ¼ sin2 hp

2

~F
‘ðhpÞ ¼

1

2

cos2 hp
1 þ cos hp

;

ð100Þ

where hp and /p are the polar and azimuthal angles of the vector pointing to the

pulsar, respectively. Up to signs, these expressions are the same as Eq. (99) taking

h ! hp and w ! /p. This is because fixing the gravitational-wave propagation

direction while allowing the pulsar location to change is analogous to fixing the

pulsar position while allowing the direction of gravitational-wave propagation to
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change—there is degeneracy in the gravitational-wave polarization angle and the

pulsar’s azimuthal angle /p. For example, changing the polarization angle of a

gravitational wave traveling in the z-direction is the same as performing a rotation

about the z-axis that changes the pulsar’s azimuthal angle. Antenna patterns for the

pulsar-Earth system using Eq. (100) are shown in Fig. 3. The color indicates the

strength of the response, red being the largest and blue the smallest.

3.3 Compact binary coalescence analysis

Gravitational waves emitted during the inspiral, merger and ringdown of compact

binaries are the most studied in the context of data analysis and parameter

estimation. In this section, we will review some of the main data analysis techniques

employed in the context of parameter estimation and tests of GR. We begin with a

discussion of matched filtering and Fisher theory (for a detailed review, see Finn

and Chernoff 1993; Chernoff and Finn 1993; Cutler and Flanagan 1994; Finn and

Sutton 2002; Jaranowski and Królak 2012). We then continue with a discussion of

Bayesian parameter estimation and hypothesis testing (for a detailed review, see

Sivia and Skilling 2006; Gregory 2005; Cornish and Littenberg 2007; Littenberg

and Cornish 2009; Romano and Cornish 2017).

3.3.1 Matched filtering and Fisher analysis

When the detector noise n(t) is Gaussian and stationary, and when the signal s(t) is

known very well, the optimal detection strategy is matched filtering. For any given

realization, such noise can be characterized by its power spectral density Snðf Þ,
defined via

h~nðf Þ ~n�ðf 0Þi ¼ 1

2
Snðf Þd f � f 0ð Þ; ð101Þ

where recall that the tilde stands for the Fourier transform, the asterisk for complex

conjugation and the brackets for the expectation value.

The detectability of a signal is determined by its signal-to-noise ratio or SNR,

which is defined via

q2 ¼ sjhð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hjnð Þ njhð Þ
p ; ð102Þ

where h is a template with parameters ki and we have defined the inner product

AjBð Þ 
 4<
Z 1

0

~A
� ~B

Sn
df : ð103Þ

If the templates do not exactly match the signal, then the SNR is reduced by a factor

of �M, called the match:
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�M 
 sjhð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sjsð Þ hjhð Þ
p ; ð104Þ

where 1 � �M ¼ MM is the mismatch.

For the noise assumptions made here, the probability of measuring s(t) in the

detector output, given a template h, is given by

p / e� s�hjs�hð Þ=2; ð105Þ

and thus the waveform h that best fits the signal is that with best-fit parameters such

that the argument of the exponential is minimized. For large SNR, the best-fit

parameters will have a multivariate Gaussian distribution centered on the true values

of the signal k̂
i
, and thus, the waveform parameters that best fit the signal minimize

Fig. 3 Antenna patterns for the pulsar-Earth system. The plus mode is shown in (a), breathing modes in
(b), the vector-x mode in (c), and longitudinal modes in (d), as computed from Eq. (100). The cross mode
and the vector-y mode are rotated versions of the plus mode and the vector-x mode, respectively, so we
did not include them here. The gravitational wave propagates in the positive z-direction with the Earth at
the origin, and the antenna pattern depends on the pulsar’s location. The color indicates the strength of the
response, red being the largest and blue the smallest
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the argument of the exponential. The statistical parameter errors dki will be dis-

tributed according to

pðdkiÞ / e�
1
2
Cijdk

idk j

; ð106Þ

where Cij is the Fisher matrix

Cij 

oh

oki

�
�

�

�

�

oh

ok j

�

: ð107Þ

The root-mean-squared (1r) error on a given parameter k
�i is then

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðdk�iÞ2i
q

¼
ffiffiffiffiffiffi

R�i�i
p

; ð108Þ

where Rij 
 ðCijÞ�1
is the variance-covariance matrix and summation is not implied

in Eq. (108) (k
�i denotes a particular element of the vector ki). This root-mean-

squared error is sometimes referred to as the statistical error in the measurement of

k
�i. One can use Eq. (108) to estimate how well modified gravity parameters can be

measured assuming an observation consistent with Einstein’s theory. Put another

way, if a gravitational wave were detected and found consistent with GR, Eq. (108)

would provide an estimate of how close to zero these modified gravity parameters

would have to be consistent with statistical fluctuations.

The Fisher method to estimate projected constraints on modified gravity theory

parameters is as follows. First, one constructs a waveform model in the particular

modified gravity theory one wishes to constrain. Usually, this waveform will be

similar to the GR one, but it will contain an additional parameter, j, such that the

template parameters are now ki plus j. Let us assume that as j ! 0, the modified

gravity waveform reduces to the GR expectation. Then, the accuracy to which j can

be measured, or the accuracy to which we can say j is zero given an observation

consistent with GR, is approximately ðRjjÞ1=2
, where the Fisher matrix associated

with this variance-covariance matrix must be computed with the non-GR model

evaluated at the GR limit (j ! 0). Such a method for estimating how well modified

gravity theories can be constrained was pioneered by Will (Will 1994; Poisson and

Will 1995), and since then, it has been widely employed as a first-cut estimate of the

power of gravitational wave tests.

The Fisher method described above can dangerously lead to incorrect results if

abused (Vallisneri 2008, 2011; Rodriguez et al. 2013). One must understand that

this method is suitable only if the noise is stationary and Gaussian and if the SNR is

sufficiently large. How large a SNR is required for Fisher methods to work depends

somewhat on the signals considered, but usually for applications concerning tests of

GR, one would be safe with qJ30. In real data analysis, the first two conditions are

rarely satisfied, and one must be lucky to make observations at high SNR.

Fortuitously, however, the first detection that aLIGO made was at rather high SNR,

q� 24 (Abbott et al. 2016b, c), and as shown in Yunes et al. (2016), Cornish et al.

(2011), Fisher estimates using the spectral noise of aLIGO during their first
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observation run are surprisingly close to constraints obtained with a full Bayesian

method (Abbott et al. 2016d).

3.3.2 Bayesian theory and model testing

Bayesian theory is ideal for parameter estimation and model selection. Let us then

assume that we have detected a signal and that it can be described by some model

M, parameterized by the vector ki. Using Bayes’ theorem, the posterior distribution

function (PDF) or the probability density function for the model parameters, given

data d and model M, is

pðfkigjd;MÞ ¼ pðdjfkig;MÞpðfkigjMÞ
pðdjMÞ : ð109Þ

Obviously, the global maximum of the PDF in the parameter manifold gives the best

fit parameters for that model. The prior probability density pðkijMÞ represents our

prior beliefs of the parameter range in model M. The marginalized likelihood or

evidence, is the normalization constant

pðdjMÞ ¼
Z

dk1dk2. . .dki pðdjfkig;MÞ pðfkigjMÞ; ð110Þ

which clearly guarantees that the integral of Eq. (109) integrates to unity. The

quantity pðdjki;MÞ is the likelihood function, which is simply given by Eq. (105),

with a given normalization. In that equation we used slightly different notation, with

s being the data d and h the template associated with model M and parameterized

by ki. The marginalized PDF, which represents the probability density function for a

given parameter k
�i (recall that k

�i is a particular element of ki), after marginalizing

over all other parameters, is given by

pðk�ijd;MÞ ¼ 1

pðdjMÞ

Z

i6¼�i

dk1dk2. . .dki 6¼
�i pðfki 6¼�igjMÞ pðdjfki 6¼�ig;MÞ; ð111Þ

where the integration is not to be carried out over �i.
Let us now switch gears to model selection. In hypothesis testing, one wishes to

determine whether the data is more consistent with hypothesis A (e.g. that a GR

waveform correctly models the signal) or with hypothesis B (e.g. that a non-GR

waveform correctly models the signal). Using Bayes’ theorem, the PDF for model A
given the data is

pðAjdÞ ¼ pðdjAÞpðAÞ
pðdÞ : ð112Þ

As before, p(A) is the prior probability of hypothesis A, namely the strength of our

prior belief that hypothesis A is correct. The normalization constant p(d) is given by
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pðdÞ ¼
Z

dM pðdjMÞ pðMÞ; ð113Þ

where the integral is to be taken over all models. Thus, it is clear that this nor-

malization constant does not depend on the model. Similar relations hold for

hypothesis B by replacing A ! B in Eq. (112).

When hypothesis A and B refer to fundamental theories of nature we can take

different viewpoints regarding the priors. If we argue that we know nothing about

whether hypothesis A or B better describes Nature, then we would assign equal

priors to both hypotheses. If, on the other hand, we believe GR is the correct theory

of Nature, based on all previous experiments performed (including, e.g., those in the

Solar System and with binary pulsars), then we would assign pðAÞ[ pðBÞ. This

assigning of priors necessarily biases the inferences derived from the calculated

posteriors, which is sometimes heavily debated when comparing Bayesian theory to

a frequentist approach. However, this ‘‘biasing’’ is really unavoidable and merely a

reflection of our state of knowledge of Nature (for a more detailed discussion on

such issues, please refer to Littenberg and Cornish 2009).

The integral over all models in Eq. (113) can never be calculated in practice,

simply because we do not know all models. Thus, one is forced to investigate

relative probabilities between models, so that the normalization constant p(d)

cancels out. The so-called odds-ratio is defined by

OA;B ¼ pðAjdÞ
pðBjdÞ ¼

pðAÞ
pðBÞBA;B; ð114Þ

where BA;B 
 pðdjAÞ=pðdjBÞ is the Bayes Factor and the prefactor p(A)/p(B) is the

prior odds. Vallisneri (2012) investigated the possibility of calculating the odds-

ratio using only frequentist tools and without having to compute full evidences. The

odds-ratio should be interpreted as the betting-odds of model A over model B. For

example, an odds-ratio of unity means that both models are equally supported by the

data, while an odds-ratio of 102 means that there is a 100 to 1 odds that model

A better describes the data than model B.

The main difficulty in Bayesian inference (both in parameter estimation and

model selection) is sampling the PDF sufficiently accurately. Several methods have

been developed for this purpose, but currently the two main workhorses in

gravitational wave data analysis are Markov chain Monte Carlo and Nested

Sampling. In the former, one samples the likelihood through the Metropolis–

Hastings algorithm (Metropolis 1980; Hastings 1970; Cornish and Crowder 2005;

Rover et al. 2006). This is computationally expensive in high-dimensional cases,

and thus, there are several techniques to improve the efficiency of the method, e.g.,

parallel tempering (Swendsen and Wang 1986). Once the PDF has been sampled,

one can then calculate the evidence integral, for example via thermodynamic

integration (Veitch and Vecchio 2008; Feroz et al. 2009; van der Sluys et al. 2008).

In Nested Sampling, the evidence is calculated directly by laying out a fixed number

of points in the prior volume, which are then allowed to move and coalesce toward

regions of high posterior probability. With the evidence in hand, one can then infer
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the PDF. As in the previous case, Nested Sampling can be computationally

expensive in high-dimensional cases.

Another recent approach is to implement deep neural network techniques to

gravitational-wave data analysis, which can drastically enhance efficiency when

used properly. The Markov-chain Monte Carlo and Nested Sampling techniques

mentioned above use likelihood-based samplers to draw samples from posteriors,

and this can be time-consuming when the dimensionality of the parameter space is

high. One can somewhat overcome this issue with simulation-based, likelihood-free

inference methods through deep learning, where one trains the neural network with

simulated data. The normalizing flows method (Rezende and Mohamed 2015) is an

example that can represent complicated probability distributions through neural

networks. The main idea here is to ‘‘flow’’ from a simpler distribution (like a normal

distribution) to a more complicated one through a change of variables. Dingo (Deep

Inference for Gravitational-wave Observations) (Green et al. 2020; Green and Gair

2021; Dax et al. 2021a, b) is an example of a current, open-source Python package

that implements normalizing flows to carry out gravitational-wave data analysis.

One can, in fact, improve the efficiency and accuracy of the analysis by combining

this likelihood-free method with a likelihood-based one through importance

sampling. With this approach, one takes samples from normalizing flows and uses

them as proposals for likelihood-based sampling (Dax et al. 2023).

Del Pozzo et al. (2011) were the first to carry out a Bayesian implementation of

model selection in the context of tests of GR. Their analysis focused on tests of a

particular massive graviton theory, using the gravitational wave signal from quasi-

circular inspiral of non-spinning black holes. Cornish et al. (2011), Sampson et al.

(2013a) extended this analysis by considering model-independent deviations from

GR, using the parameterized post-Einsteinian (ppE) approach (Sect. 4.3.6) (Yunes

and Pretorius 2009b). This was continued by Li et al. (2012a, b), who carried out a

similar analysis to that of Cornish et al. (2011), Sampson et al. (2013a) on a large

statistical sample of aLIGO detections using simulated data and a restricted ppE

model. All of these studies suggest that Bayesian tests of GR are possible, given

sufficiently high SNR events. And indeed, after the first gravitational wave

observations, these tests were carried out in Abbott et al. (2016d), Yunes et al.

(2016), the signal was shown to be consistent with GR and a plethora of theoretical

models were constrained at different levels.

3.3.3 Systematics in model selection

The model selection techniques described above are affected by other systematics

present in data analysis. In general, we can classify these into the following

(Vallisneri and Yunes 2013; Gupta et al. 2024):

• Mismodeling Systematic, caused by inaccurate models of the gravitational-

wave template.

• Instrumental Systematic, caused by inaccurate models of the gravitational-

wave response.
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• Astrophysical Systematic, caused by inaccurate models of the astrophysical

environment.

Mismodeling systematics are introduced due to the lack of an exact solution to the

Einstein equations from which to extract an exact template, given a particular

astrophysical scenario. Inspiral templates, for example, are approximated through

post-Newtonian theory and become increasingly less accurate as the binary

components approach each other. Cutler and Vallisneri (2007) were the first to carry

out a formal and practical investigation of such a systematic in the context of

parameter estimation from a frequentist approach.

Mismodeling systematics will prevent us from testing GR effectively with signals

that we do not understand sufficiently well. For example, when considering signals

from black hole coalescences, if the total mass of the binary is sufficiently high, the

binary will merge in band. The higher the total mass, the fewer the inspiral cycles

that will be in band, until eventually only the merger is in band. Since the merger

phase is the least understood phase, it stands to reason that our ability to test GR will

deteriorate as the total mass increases. But the situation is not so simple, since the

higher the mass of the system, the larger the SNR of the event, and thus, the better

we can constrain Einstein’s theory. Moreover, we do understand the ringdown phase

very well, and tests of the no-hair theorem could be done during this phase, provided

a sufficiently large SNR (Berti et al. 2007). For neutron star binaries or very low-

mass black hole binaries, the merger phase is expected to be essentially out of band

for aLIGO (above 1 kHz), and thus, the noise spectrum itself may shield us from our

ignorance. See Moore et al. (2021) for recent work on waveform systematics for

tests of GR with gravitational waves. We also note that mismodeling of the

waveform due to non-GR effects can produce stealth bias to GR parameters (Yunes

and Pretorius 2009b; Vallisneri and Yunes 2013).

Instrumental systematics are introduced by our ignorance of the transfer function,

which connects the detector response to the incoming gravitational waves. Through

sophisticated calibration studies with real data, one can approximate the transfer

function very well (Accadia 2011; Abadie et al. 2010; Tuyenbayev et al. 2017; Sun

et al. 2020; Vitale et al. 2021; Wade et al. 2023). However, this function is not

time-independent, because the noise in the instrument is not stationary or Gaussian

(Zackay et al. 2021; Kumar et al. 2022). Thus, un-modeled drifts in the transfer

function can still introduce systematics in parameter estimation that, as of now, are

as large as 2% in the amplitude and the phase (Accadia et al. 2011; Tuyenbayev

et al. 2017; Sun et al. 2020; Vitale et al. 2021; Wade et al. 2023). In fact, the

specific realization of the noise during the first gravitational wave observations did

introduce systematics in the first tests of GR carried out (Abbott et al. 2016d).

GW191109_010717 showed statistically significant deviations in some of the null

tests performed by the LIGO-Virgo-KAGRA Collaboration (Abbott et al. 2021c),

though it is likely that these are glitch artifacts in the noise. Some of the impact of

these systematics is reduced by cross-correlating the output from multiple detectors;

although instrumental systematics are present in each instrument, the noise is mostly

uncorrelated between them. Therefore, as more instruments join the gravitational

wave effort, cross-correlation should help ameliorate instrumental systematics.
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Astrophysical systematics are induced by our lack of exact a priori knowledge of

the gravitational wave source. As explained above, matched filtering requires

knowledge of a waveform template with which to filter the data. Usually, we assume

the sources are in a perfect vacuum and isolated. For example, when considering

inspiral signals, we ignore any third bodies, electric or magnetic fields in black hole

spacetimes, the accelerated expansion of the Universe, any intervening gravitational

lens between the source and the observer, etc. Fortunately, however, most of these

effects are expected to be small: the probability of finding third bodies sufficiently

close to a binary system is very small (Yunes et al. 2011b); for low redshift events,

the expansion of the Universe induces an acceleration of the center of mass, which

is also very small (Yunes et al. 2010c); electromagnetic fields and neutron star

hydrodynamic effects may affect the inspiral of black holes and neutron stars, but

not until the very last stages, when most signals will be out of band anyway. For

example, tidal deformation effects enter a neutron star binary inspiral waveform at 5

post-Newtonian order, which therefore affects the signal outside the most sensitive

part of the Adv. LIGO sensitivity bucket. When these effects are not small, such as

in the case of lensed gravitational-wave signals, recent work suggests that the

combination of a Bayes Factor model-selection analysis and a fitting-factor signal-

to-noise ratio residual test would avoid false-positive inferences of a GR deviation

(Liu et al. 2024). See Barausse et al. (2014) for a systematic study on environmental

effects on gravitational wave astrophysics.

Perhaps the most dangerous source of astrophysical systematics is due to the

assumptions made about the astrophysical systems we expect to observe. For

example, when considering neutron star binary inspirals, one usually assumes the

orbit will have circularized by the time it enters the sensitivity band. Moreover, one

assumes that any residual spin angular momentum that the neutron stars may

possess is very small and aligned or anti-aligned with the orbital angular

momentum. These assumptions certainly simplify the construction of waveform

templates, but if they happen to be wrong, they would introduce mismodeling

systematics that could also affect parameter estimation and tests of GR. See Saini

et al. (2022), Bhat et al. (2023) for recent studies on systematic bias on tests of GR

with gravitational waves due to neglect of orbital eccentricity.

3.4 Burst analyses

In alternative theories of gravity, gravitational-wave sources such as core collapse

supernovae may result in the production of gravitational waves in more than just the

plus- and cross-polarizations (Shibata et al. 1994; Scheel et al. 1995; Harada et al.

1997; Novak and Ibáñez 2000; Novak 1998; Ruiz et al. 2012). Indeed, the near-

spherical geometry of the collapse can be a source of scalar breathing-mode

gravitational waves. The precise form of the waveform, however, is unknown

because it is sensitive to the initial conditions.

When searching for un-modeled bursts in alternative theories of gravity, a

general approach involves using linear combinations of data streams from all

available detectors to form maximum likelihood estimators for the waveforms in the

various polarizations, and the use of null streams. In the context of ground-based
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detectors and GR, these ideas were first explored by Gürsel and Tinto (1989) and

later by Chatterji et al. (2006) with the aim of separating false-alarm events from

real detections. The main idea was to construct a linear combination of data streams

received by a network of detectors, so that the combination contained only noise. In

GR, of course, one need only include hþ and h� polarizations, and thus a network of

three detectors is sufficient. This concept can be extended to develop null tests of

GR, as originally proposed by Chatziioannou et al. (2012) and later implemented by

Hayama and Nishizawa (2013).

Let us consider a network of D� 6 detectors with uncorrelated noise and a

detection by all D detectors. For a source that emits gravitational waves in the

direction X̂, a single data point (either in the time-domain, or a time-frequency

pixel) from an array of D detectors (either pulsars or interferometers) can be written

as

d ¼ Fhþ n: ð115Þ

Here

d 


d1

d2

..

.

dD

2

6

6

6

6

4

3

7

7

7

7

5

; h 


hþ

h�

hx

hy

hb

h‘

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

; n 


n1

n1

..

.

nD

2

6

6

6

6

4

3

7

7

7

7

5

; ð116Þ

where n is a vector with the noise. The antenna pattern functions are given by the

matrix,

Fþ F� Fx Fy Fb F‘
� �




Fþ
1 F�

1 Fx
1 Fy

1 Fb
1 F‘

1

Fþ
2 F�

2 Fx
2 Fy

2 Fb
2 F‘

2

..

. ..
. ..

. ..
. ..

. ..
.

Fþ
D F�

D Fx
D Fy

D Fb
D F‘

D

2

6

6

6

6

6

4

3

7

7

7

7

7

5

: ð117Þ

For simplicity we have suppressed the sky-location dependence of the antenna

pattern functions. These can be either the interferometric antenna pattern functions

in Eq. (86), or the pulsar response functions in Eq. (99). For interferometers, since

the breathing and longitudinal antenna pattern response functions are degenerate,

and even though F is a 6 � D matrix, there are only 5 linearly-independent vectors

(Boyle 2010a, b; Chatziioannou et al. 2012; Hayama and Nishizawa 2013).

If we do not know the form of the signal present in our data, we can obtain

maximum likelihood estimators for it. For simplicity, let us assume the data are

Gaussian and of unit variance (the latter can be achieved by whitening the data). Just

as we did in Eq. (105), we can write the probability of obtaining datum d, in the

presence of a gravitational wave h as
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PðdjhÞ ¼ 1

ð2pÞD=2
exp � 1

2
d � Fhj j2

� �

: ð118Þ

The logarithm of the likelihood ratio, i.e., the logarithm of the ratio of the likelihood

when a signal is present to that when a signal is absent, can then be written as

L 
 ln
PðdjhÞ
Pðdj0Þ ¼

1

2
dj j2� d � Fhj j2
h i

: ð119Þ

If we treat the waveform values for each datum as free parameters, we can maxi-

mize the likelihood ratio

0 ¼ oL

oh

�

�

�

�

h¼hMAX

; ð120Þ

and obtain maximum likelihood estimators for the gravitational wave,

hMAX ¼ ðFTFÞ�1FT d: ð121Þ

We can further substitute this solution into the likelihood, to obtain the value of the

likelihood at the maximum,

ESL 
 2LðhMAXÞ ¼ dTPGWd; ð122Þ

where

PGW 
 F ðFTFÞ�1FT : ð123Þ

The maximized likelihood can be thought of as the power in the signal, and can be

used as a detection statistic. PGW is a projection operator that projects the data into

the subspace spanned by F. An orthogonal projector can also be constructed,

Pnull 
 ðI � PGWÞ; ð124Þ

which projects the data onto a subspace orthogonal to F. Thus, one can construct a

certain linear combination of data streams that has no component of a certain

polarization by projecting them to a direction orthogonal to the direction defined by

the beam pattern functions of this polarization mode

dnull ¼ Pnulld: ð125Þ

This is called a null stream and, in the context of GR, it was introduced as a means

of separating false-alarm events due, say, to instrumental glitches from real

detections (Gürsel and Tinto 1989; Chatterji et al. 2006).

With just three independent detectors, we can choose to eliminate the two tensor

modes (the plus- and cross-polarizations) and construct a GR null stream: a linear

combination of data streams that contains no signal consistent within GR, but could

contain a signal in another gravitational theory, as illustrated in Fig. 4. With such a

GR null stream, one can carry out null tests of GR and study whether such a stream
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contains any statistically significant deviations from noise. Notice that this approach

does not require a template; if one were parametrically constructed, such as in

Chatziioannou et al. (2012), more powerful null tests could be applied. As of now,

the two aLIGO detectors in the United States, advanced Virgo in Italy, and KAGRA

in Japan have started operation, and LIGO-India in India is expected to join in the

near future. Given a gravitational wave observation that is detected by all five

detectors, one can then construct three GR null streams, each with power in a signal

direction. For pulsar timing experiments where one is dealing with the data streams

of about a few tens of pulsars, waveform reconstruction for all polarization states, as

well as numerous null streams, can be constructed.

3.5 Stochastic background searches

Much work has been done on the response of ground-based interferometers to non-

tensorial polarization modes, stochastic background detection prospects, and data

analysis techniques (Maggiore and Nicolis 2000; Nakao et al. 2001; Gasperini and

Ungarelli 2001; Nishizawa et al. 2009; Corda 2010; Callister et al. 2017; Isi and

Stein 2018; Callister et al. 2023). In the context of pulsar timing, the first work to

deal with the detection of such backgrounds in the context of alternative theories of

gravity is due to Lee et al. (2008), who used a coherence statistic approach to the

detection of non-Einsteinian polarizations. They studied the number of pulsars

required to detect the various extra polarization modes, and found that pulsar timing

arrays are especially sensitive to the longitudinal mode. Alves and Tinto (2011) also

found enhanced sensitivity to longitudinal and vector modes. Here we follow the

work in Nishizawa et al. (2009), Chamberlin and Siemens (2012) that deals with the

LIGO and pulsar timing cases using the optimal statistic, a cross-correlation that

maximizes the SNR.

In the context of the optimal statistic, the derivations of the effect of extra

polarization states for ground-based instruments and pulsar timing are very similar.

We begin with the metric perturbation written in terms of a plane wave expansion,

Fig. 4 Schematic diagram of the
projection of the data stream d
orthogonal to the GR subspace

spanned by Fþ and F�, along
with a perpendicular subspace,
for 3 detectors to build the GR
null stream
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as in Eq. (79). If we assume that the background is unpolarized, isotropic, and

stationary, we have that

h ~h�Aðf ; X̂Þ ~hA0 ðf 0; X̂0Þi ¼ d2ðX̂; X̂0ÞdAA0dðf � f 0ÞHAðf Þ; ð126Þ

where HAðf Þ is the gravitational-wave power spectrum for polarization A. HAðf Þ is

related to the energy density in gravitational waves per logarithmic frequency

interval for that polarization through

XAðf Þ 

1

qcrit

dqA
d ln f

; ð127Þ

where qcrit ¼ 3H2
0=8p is the closure density of the universe, and

qA ¼ 1

32p
h _hA ijðt; x~Þ _h

ij

Aðt; x~Þi ð128Þ

is the energy density in gravitational waves for polarization A. It follows from the

plane wave expansion in Eq. (80), along with Eqs. (126) and (127) in Eq. (128),

that

HAðf Þ ¼
3H2

0

16p3
jf j�3XAðjf jÞ; ð129Þ

and therefore

h ~h�Aðf ; X̂Þ ~hA0 ðf 0; X̂0Þi ¼ 3H2
0

16p3
d2ðX̂; X̂0ÞdAA0dðf � f 0Þjf j�3XAðjf jÞ: ð130Þ

For both ground-based interferometers and pulsar timing experiments, an isotropic

stochastic background of gravitational waves appears in the data as correlated noise

between measurements from different instruments. The data set from the ath

instrument is of the form

daðtÞ ¼saðtÞ þ naðtÞ; ð131Þ

where saðtÞ corresponds to the gravitational wave signal and naðtÞ to noise. The

noise is assumed in this case to be stationary and Gaussian, and uncorrelated

between different detectors,

hnaðtÞi ¼0; ð132Þ

hnaðtÞnbðtÞi ¼0; ð133Þ

for a 6¼ b.

Since the gravitational wave signal is correlated, we can use cross-correlations to

search for it. The cross-correlation statistic is defined as
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Sab ¼
Z T=2

�T=2

dt

Z T=2

�T=2

dt0daðtÞdbðt0ÞQabðt � t0Þ; ð134Þ

where Qabðt � t0Þ is a filter function to be determined. Henceforth, no summation is

implied on the detector indices ða; b; . . .Þ. At this stage it is not clear why Qabðt � t0Þ
depends on the pair of data sets being correlated. We will show how this comes

about later. The optimal filter is determined by maximizing the expected SNR

SNR ¼ lab
rab

: ð135Þ

Here lab is the mean hSabi and rab is the square root of the variance

r2
ab ¼ hS2

abi � hSabi2
.

The expressions for the mean and variance of the cross-correlation statistic, lab
and r2

ab respectively, take the same form for both pulsar timing and ground-based

instruments. In the frequency domain, Eq. (134) becomes

Sab ¼
Z 1

�1
df

Z 1

�1
df 0dTðf � f 0Þ ~d�aðf Þ ~dbðf 0Þ ~Qabðf 0Þ; ð136Þ

by the convolution theorem, and the mean, lab, is then

lab 
 hSabi ¼
Z 1

�1
df

Z 1

�1
df 0 dTðf � f 0Þh~s�aðf Þ~sbðf 0Þi ~Qabðf 0Þ; ð137Þ

where dT is the finite time approximation to the delta function,

dTðf Þ ¼ sin ðpftÞ=ðpf Þ. With this in hand, the mean of the cross-correlation statistic

is

lab ¼
3H2

0

16p3
T
X

A

Z 1

�1
df jf j�3 ~Qabðf ÞXAðf ÞCA

abðf Þ; ð138Þ

and the variance in the weak signal limit is

r2
ab 
 hS2

abi � hSabi2 � hS2
abi

� T

4

Z 1

�1
df Paðjf jÞPbðjf jÞ ~Qabðf Þ

�

�

�

�

2
;

ð139Þ

where CA
abðf Þ is the overlap reduction function to be discussed in detail later, while

the one-sided power spectra of the noise are defined by

h~n�aðf Þ~naðf 0Þi ¼
1

2
dðf � f 0ÞPaðjf jÞ; ð140Þ

in analogy to Eq. (101), where Pa plays here the role of Snðf Þ.
The mean and variance can be rewritten more compactly if we define a positive-

definite inner product using the noise power spectra of the two data streams
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ðA;BÞab 

Z 1

�1
df A�ðf ÞBðf ÞPaðjf jÞPbðjf jÞ; ð141Þ

again in analogy to the inner product in Eq. (103), when considering inspirals.

Using this definition

lab ¼
3H2

0

16p3
T ~Qab;

P

A XAðjf jÞCA
abðjf jÞ

jf j3Paðjf jÞPbðjf jÞ

 !

ab

; ð142Þ

r2
ab �

T

4
~Q; ~Q
� �

ab
; ð143Þ

where we recall that the capital Latin indices ðA;B; . . .Þ stand for the polarization

content. From the definition of the SNR and the Schwartz’s inequality, it follows

that the optimal filter is given by

~Qabðf Þ ¼ N

P

A XAðjf jÞCA
abðjf jÞ

jf j3Paðjf jÞPbðjf jÞ
; ð144Þ

where N is an arbitrary normalization constant, normally chosen so that the mean of

the statistic gives the amplitude of the stochastic background.

The differences in the optimal filter between interferometers and pulsars arise

only from differences in the so-called overlap reduction functions, CA
abðf Þ. For

ground-based instruments, the signal data sa are the strains given by Eq. (85). The

overlap reduction functions are then given by

CA
abðf Þ ¼

Z

S2

dX̂FA
a ðX̂ÞFA

b ðX̂Þe2pif X̂�ðx~a�x~bÞ; ð145Þ

where x~a and x~b are the locations of the two interferometers. The integrals in this

case all have solutions in terms of spherical Bessel functions (Nishizawa et al.

2009), which we do not summarize here for brevity.

For pulsar timing arrays, the signal data sa are the redshifts za, given by Eq. (93).

The overlap reduction functions are then given by

CA
abðf Þ ¼

3

4p

Z

S2

dX̂ ei2pfLað1þX̂�p̂aÞ � 1
	 


e�i2pfLbð1þX̂�p̂bÞ � 1
	 


FA
a ðX̂ÞFA

b ðX̂Þ; ð146Þ

where La and Lb are the distances to the two pulsars. For all transverse modes pulsar

timing experiments are in a regime where the exponential factors in Eq. (146) can

be neglected (Anholm et al. 2009; Chamberlin and Siemens 2012), and the overlap

reduction functions effectively become frequency independent (see Boı̂tier et al.

2021, 2022; Hu et al. 2022 for recent works on extensions beyond this short

wavelength approximation). For the þ and � mode the overlap reduction function

becomes
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Cþ
ab ¼ 3

1

3
þ 1 � cos nab

2
ln

1 � cos nab
2

� �

� 1

6

� �� �

; ð147Þ

where nab ¼ cos�1ðp̂a � p̂bÞ is the angle between the two pulsars. This quantity is

proportional to the Hellings and Downs curve (Hellings and Downs 1983). For the

breathing mode, the overlap reduction function takes the closed form expression

(Lee et al. 2008; Chamberlin and Siemens 2012):

Cb
ab ¼

1

4
3 þ cos nabð Þ; ð148Þ

and for the vector modes

Cv
ab � 3 log

2

1 � cos nabð Þ

� �

� 4 cos nabð Þ � 3: ð149Þ

For the longitudinal mode the overlap reduction functions retains significant fre-

quency dependence and full analytic expressions for all overlap reduction functions

including the frequency dependence were found relatively recently (Hu et al. 2022).

The result for the combination of cross-correlation pairs to form an optimal

network statistic is also the same in both ground-based interferometer and pulsar

timing cases: a sum of the cross-correlations of all detector pairs weighted by their

variances. The detector network optimal statistic is,

Sopt ¼
P

ab r
�2
ab Sab

P

ab r
�2
ab

; ð150Þ

where
P

ab is a sum over all detector pairs.

In order to perform a search for a given polarization mode one first needs to

compute the overlap reduction functions (using either Eq. (145) or (146)) for that

mode. With that in hand and a form for the stochastic background spectrum XAðf Þ,
one can construct optimal filters for all pairs in the detector network using

Eq. (144), and perform the cross-correlations using either Eq. (134) (or equivalently

Eq. (136)). Finally, we can calculate the overall network statistic Eq. (150), by first

finding the variances using Eq. (139).

It is important to point out that the procedure outlined above is straightforward

for ground-based interferometers. Pulsar timing data, however, are irregularly

sampled, and have a pulsar timing model subtracted out. This needs to be accounted

for, and generally, a time-domain approach is more appropriate for these data sets.

The procedure is similar to what we have outlined above, but power spectra and

gravitational-wave spectra in the frequency domain need to be replaced by auto-

covariance and cross-covariance matrices in the time domain that account for the

model fitting (for an example of how to do this see Ellis et al. 2013). A full

description of the pulsar timing data analysis (Bayesian and frequentist) methods

used in the most recent analyses can be found in Johnson et al. (2024).

Let us summarize some recent studies of the capabilities of pulsar timing arrays

to probe non-GR, gravitational-wave polarizations. Nishizawa et al. (2009) showed

that with three spatially separated detectors the tensor, vector, and scalar
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contributions to the energy density in gravitational waves can be measured

independently. Lee et al. (2008) and Alves and Tinto (2011) extended this analysis

to show that pulsar timing experiments are especially sensitive to the longitudinal

mode, and, to a lesser extent, to the vector modes. Recently, O’Beirne et al. (2019)

proved that the modeling of possible additional polarizations together with

modifications to the gravitational wave phase evolution (Cornish et al. 2018) can

be used to separate polarization modes if more than tensor ones are present. Cornish

et al. (2018), however, demonstrated that longitudinal modes could in practice be

difficult to detect due to very large variances in their pulsar-pulsar correlation

patterns. Chamberlin and Siemens (2012) explained that the sensitivity of the cross-

correlation to the longitudinal mode using nearby pulsar pairs can be enhanced

significantly compared to that of the transverse modes. For example, for the

NANOGrav pulsar timing array, two pulsar pairs separated by 3� result in an

enhancement of 4 orders of magnitude in sensitivity to the longitudinal mode

relative to the transverse modes. The main contribution to this effect is due to

gravitational waves that are coming from roughly the same direction as the pulses

from the pulsars. In this case, the induced redshift for any gravitational-wave

polarization mode is proportional to f L, the product of the gravitational-wave

frequency and the distance to the pulsar, which can be large. When the gravitational

waves and the pulse direction are exactly parallel, the redshift for the transverse and

vector modes vanishes, but it is proportional to f L for the scalar-longitudinal mode.

Another interesting polarization mode one may wish to detect are circularly

polarized tensor modes, which would be useful for probing e.g. parity violation

through amplitude birefringence (Alexander et al. 2008; Alexander and Yunes

2009; Yunes et al. 2010b; Alexander and Yunes 2018). Pulsar timing arrays are not

sensitive to circular polarization if the background is isotropic, although they have

some sensitivity to this mode for anisotropic backgrounds (Kato and Soda 2016;

Belgacem and Kamionkowski 2020; Sato-Polito and Kamionkowski 2022).

Let us now discuss probing specific fundamental pillars in GR or modified

theories of gravity with pulsar timing arrays. Lee et al. (2010), Lee (2013) studied

the detectability of massive gravitons in pulsar timing arrays through stochastic

background searches. They introduced a modification to Eq. (87) to account for

graviton dispersion, and found the modified overlap reduction functions (i.e.,

modifications to the Hellings–Downs curves Eq. (147)) for various values of the

graviton mass for both tensorial (Lee et al. 2010) and non-tensorial (Lee 2013)

polarization modes. They conclude that many stable pulsars (� 60) are required to

distinguish between the massive and massless cases, and that future pulsar timing

experiments could be sensitive to graviton masses of about 10�22 eV (� 1013 km).

This method is competitive with some of the compact binary tests described later in

Sect. 4.3.1 (see Table 2). In addition, since the method of Lee et al. (2010) only

depends on the form of the overlap reduction functions, it is advantageous in that it

does not involve matched filtering (and therefore prior knowledge of the

waveforms), and generally makes few assumptions about the gravitational-wave

source properties. See Liang and Trodden (2021) for a recent follow-up work on

computing overlap reduction functions and modified Hellings–Downs curves in a
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complete analytical form in massive gravity. Qin et al. (2021) studied subluminal

stochastic gravitational wave background in pulsar timing arrays and its application

to f(R) gravity that contains a massive scalar degree of freedom. Gong et al. (2018)

derived the modified Hellings–Downs curves in Einstein-æther theory. Full analytic

expressions for all overlap reduction functions were found relatively recently by Hu

et al. (2022), and can be elegantly cast in the language of spherical harmonics (see

the work of Anil Kumar and Kamionkowski 2024).

Gravitational waves have recently been discovered in the nanohertz band using

pulsar timing arrays (see, for example, Agazie et al. 2023), and some studies have

be implemented to place new constraints on these modified theories (Agazie et al.

2024). We summarize these results in Sect. 5.

4 Bestiary of gravitational-wave tests

In this section, we present a descriptive treatise on various kinds of tests of GR with

gravitational waves. Due to the uneven proportion of studies that deal with compact

binary systems, the latter will be emphasized in this section. We begin by explaining

the difference between direct and generic tests. We then proceed to describe the

many direct or top-down tests and generic or bottom-up tests that have been

proposed once gravitational waves are detected, including tests of the no-hair

theorems. We concentrate here only on binaries composed of compact objects, such

as neutron stars, black holes or other compact exotica. We will not discuss tests one

could carry out with electromagnetic information from binary (or double) pulsars, as

these are already described in Will (2014). We will also not review tests of GR with

accretion disk observations, for which we refer the interested reader to Psaltis

(2008b).

4.1 Direct versus generic tests and propagation versus generation

Gravitational-wave tests of Einstein’s theory can be classed into two distinct

subgroups: direct tests and generic tests. Direct tests employ a top-down approach,

where one starts from a particular modified gravity theory with a known action,

derives the modified field equations and solves them for a particular gravitational

wave-emitting system. On the other hand, generic tests adopt a bottom-up approach,

where one takes a particular feature of GR and asks what type of signature its

absence would leave on the gravitational-wave observable; one then asks whether

the data presents a statistically-significant anomaly pointing to that particular

signature.

Historically, direct tests have by far been the traditional approach to testing GR

with gravitational waves. The prototypical examples here are tests of Jordan–Fierz–

Brans–Dicke theory. As described in Sect. 2, one can solve the modified field

equations for a binary system in the post-Newtonian approximation to find a

prediction for the gravitational-wave observable, as we will see in more detail later

in this section. Other examples of direct tests include those concerning modified

quadratic gravity models and non-commutative geometry theories.
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The main advantage of such direct tests is also its main disadvantage: one has to

pick a particular modified gravity theory. Because of this, one has a well-defined set

of field equations that one can solve, but at the same time, one can only make

predictions about that modified gravity model. Unfortunately, we currently lack a

particular modified gravity theory that is particularly compelling; many modified

gravity theories exist, but none possess all the criteria described in Sect. 2, except

perhaps for the subclass of scalar-tensor theories with spontaneous scalarization.

Lacking a clear alternative to GR, it is not obvious which theory one should pick.

Given that the full development (from the action to the gravitational wave

observable) of any particular theory can be incredibly difficult, time and

computationally consuming, carrying out direct tests of all possible modified

gravity models now that gravitational waves have been detected is clearly

unfeasible.

Given this, one is led to generic tests of GR, where one asks how the absence of

specific features contained in GR could impact the gravitational wave observable.

For example, one can ask how such an observable would be modified if the graviton

had a mass, if the gravitational interaction were Lorentz or parity violating, or if

there existed large extra dimensions. From these general considerations, one can

then construct a ‘‘meta’’-observable, i.e., one that does not belong to a particular

theory, but that interpolates over all known possibilities in a well-defined way. This

model has come to be known as the parameterized post-Einsteinian framework

(Yunes and Pretorius 2009b), in analogy to the parameterized post-Newtonian

scheme used to test GR in the solar system (Will 2014). Given such a construction,

one can then ask whether the data points to a statistically-significant GR deviation.

The main advantage of generic tests is precisely that one does not have to specify

a particular model, but instead one lets the data select whether it contains any

statistically-significant deviations from our canonical beliefs. Such an approach is,

of course, not new to physics, having most recently been successfully employed by

the WMAP team (Bennett et al. 2011). The intrinsic disadvantage of this method is

that, if a deviation is found, there is no one-to-one mapping between it and a

particular action, but instead one has to point to a class of possible models. Of

course, such a disadvantage is not that limiting, since it would provide strong hints

as to what type of symmetries or properties of GR would have to be violated in an

ultraviolet completion of Einstein’s theory.

Whether one is considering direct tests or generic tests, modifications to GR can

always be classified into those that affect the generation of gravitational waves and

those that affect their propagation. The study of the generation of gravitational

waves involves the linearization of the modified field equations about a fixed

(Minkowski or cosmological) background, and their solution either through a

multipolar post-Newtonian formalism (see Blanchet 2014 for a review) or through

purely numerical methods. Such a task is very difficult and time-consuming, which

is why it has only been tackled in a few modified gravity cases. The study of the

propagation of gravitational waves involves the linearization of the field equations

in flat spacetime to derive the wave’s dispersion relation or its propagator.

Typically, this is a much more straightforward calculation that has been carried out

in many specific modified gravity theories and phenomenological models.
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Given these two generic types of modifications to gravity, which one is more

important when carrying out gravitational wave tests? The answer to this question

depends strongly on the particular modification to gravity that one is considering.

Indeed, there are modified theories, such as scalar-tensor theories, in which the

propagation of gravitational waves is not modified at all, while the generation is. In

such cases, the modifications to the generation of gravitational waves is all that

matters. In general, however, a modified theory of gravity will introduce

modifications to both the generation and propagation of gravitational waves. In

this case, typically the modifications to the propagation lead to a stronger constraint

than the modifications to the generation simply because the former accumulate with

distance traveled, while the latter only accumulate with coalescence time, which is

typically proportional to the binary’s total mass. Indeed, in simple massive gravity

theories the ratio of the modification in the Fourier phase introduced by generation

to that introduced by propagation effects is roughly (Finn and Sutton 2002; Yunes

et al. 2016)

Wpropðf Þ
Wgenðf Þ

¼ 1018 M

28M�

� �5=3 DL

380 Mpc

� �

f

100 Hz

� �8=3

; ð151Þ

where M is the binary’s chirp mass, DL is the luminosity distance and we have

evaluated the ratio at 100 Hz. One sees clearly that the propagation effect is clearly

dominant, in spite of the propagation effect entering at higher post-Newtonian order

than the generation effect. One is thus drawn to conclude that if both generation and

propagation effects are present in a modified gravity theory, then typically propa-

gation effects dominate irrespective of the post-Newtonian order they enter at.

4.2 Direct tests

4.2.1 Scalar-tensor theories

Let us first concentrate on Jordan–Fierz–Brans–Dicke theory, where black holes and

neutron stars have been shown to exist. In this theory, the gravitational mass

depends on the value of the scalar field, as Newton’s constant is effectively

promoted to a function, thus leading to violations of the weak-equivalence principle

(Eardley 1975; Will 1977; Will and Zaglauer 1989). The usual prescription for the

modeling of binary systems in this theory is due to Eardley (1975).13 He showed

that such a scalar-field effect can be captured by replacing the constant inertial mass

by a function of the scalar field in the distributional stress-energy tensor and then

Taylor expanding about the cosmological constant value of the scalar field at spatial

infinity, i.e.,

13 A modern interpretation in terms of effective field theory can be found in Goldberger and Rothstein

(2006a, b).
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ma ! mað/Þ ¼ mað/0Þ 1 þ sa
w
/0

� 1

2
s0a � s2

a þ sa
� � w

/0

� �2

þO
w
/0

� �3
" #( )

;

ð152Þ

where the subscript a stands for a different sources, while w 
 /� /0 � 1 and the

sensitivities sa and s0a are defined by

sa 
 � o lnmað Þ
o lnGð Þ

� �

0

; s0a 
 � o2 lnmað Þ
o lnGð Þ2

" #

0

; ð153Þ

where we remind the reader that G ¼ 1=/, the derivatives are to be taken with the

baryon number held fixed and evaluated at / ¼ /0. These sensitivities encode how

the gravitational mass changes due to a non-constant scalar field; one can think of

them as measuring the gravitational binding energy per unit mass. The internal

gravitational field of each body leads to a non-trivial variation of the scalar field,

which then leads to modifications to the gravitational binding energies of the bodies.

In carrying out this expansion, one assumes that the scalar field takes on a constant

value at spatial infinity / ! /0, disallowing any homogeneous, cosmological

solution to the scalar field evolution equation [Eq. (20)].

With this at hand, one can solve the massless Jordan–Fierz–Brans–Dicke

modified field equations [Eq. (20)] for the non-dynamical, near-zone field of N
compact objects to obtain (Will and Zaglauer 1989)

w
/0

¼ 1

2 þ xBD

X

a

1 � 2sað Þma

ra
þ . . . ; ð154Þ

g00 ¼ �1 þ
X

a

1 � sa
2 þ xBD

� �

2ma

ra
þ . . . ; ð155Þ

g0i ¼ �2 1 þ cð Þ
X

a

ma

ra
via þ . . . ; ð156Þ

gij ¼ dij 1 þ 2c
X

a

1 þ sa
1 þ xBD

� �

ma

ra
þ . . .

" #

; ð157Þ

where a runs from 1 to N, we have defined the spatial field point distance

ra 
 jxi � xiaj, the parameterized post-Newtonian quantity c ¼ ð1 þ xBDÞð2 þ
xBDÞ�1

and we have chosen units in which G ¼ c ¼ 1. This solution is obtained in a

post-Newtonian expansion (Blanchet 2014), where the ellipses represent higher-

order terms in va=c and ma=ra. From such an analysis, one can also show that

compact objects follow geodesics of such a spacetime, to leading order in the post-

Newtonian approximation (Eardley 1975), except that Newton’s constant in the
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coupling between matter and gravity is replaced by

G ! G12 ¼ 1 � ðs1 þ s2 � 2s1s2Þð2 þ xBDÞ�1
, in geometric units.

As is clear from the above analysis, black-hole and neutron-star solutions in this

theory generically depend on the quantities xBD and sa. The former characterizes

the coupling between the scalar and matter fields and determines the strength of the

correction, with the theory reducing to GR in the xBD ! 1 limit (Faraoni 1999).

The latter depends on the compact object that is being studied. For neutron stars,

this quantity can be computed as follows. First, neglecting scalar corrections to

neutron-star structure and using the Tolman–Oppenheimer–Volkoff equation, one

notes that the mass m / N / G�3=2, for a fixed equation of state and central density,

with N the total baryon number. Thus, using Eq. (153), one has that

sa 

3

2
1 � o lnma

o lnN

� �

G

� �

; ð158Þ

where the derivative is to be taken holding G fixed. In this way, given an equation of

state and central density, one can compute the gravitational mass as a function of

baryon number, and from this, obtain the neutron star sensitivities. Eardley (1975),

Will and Zaglauer (1989), and Zaglauer (1992) have shown that these sensitivities

are always in the range sa 2 ð0:19; 0:3Þ for a soft equation of state and sa 2
ð0:1; 0:14Þ for a stiff one, in both cases monotonically increasing with mass in

ma 2 ð1:1; 1:5ÞM�. Gralla (2010) has found a more general method to compute

sensitivities in generic modified gravity theories.

What is the sensitivity of black holes in generic scalar-tensor theories? Zaglauer

(1992) have argued that the no-hair theorems require sa ¼ 1=2 for all black holes,

no matter what their mass or spin is. As already explained in Sect. 2, stationary

black holes that are the byproduct of gravitational collapse (i.e., with matter that

satisfies the energy conditions) in a general class of scalar-tensor theories are

identical to their GR counterparts (Hawking 1972b; Thorne and Dykla 1971; Dykla

1972; Sotiriou and Faraoni 2012).14 This is because the scalar field satisfies a free

wave equation in vacuum, which forces the scalar field to be constant in the exterior

of a stationary, asymptotically-flat spacetime, provided one neglects a homoge-

neous, cosmological solution. If the scalar field is to be constant, then by Eq. (154),

sa ¼ 1=2 for a single black-hole spacetime.

Such an argument formally applies only to stationary scenarios, so one might

wonder whether a similar argument holds for binary systems that are in a quasi-

stationary arrangement. Zaglauer (1992) and Mirshekari and Will (2013) extended

this discussion to quasi-stationary spacetimes describing black-hole binaries to

higher post-Newtonian order. They argued that the only possible deviations from

w ¼ 0 are due to tidal deformations of the horizon due to the companion, which are

known to arise at very high order in post-Newtonian theory, w ¼ O½ðma=raÞ5�.
Yunes et al. (2012) extended this argument further by showing that to all orders in

14 One should note in passing that more general black-hole solutions in scalar-tensor theories have been

found (Kim 1999; Campanelli and Lousto 1993). However, these usually violate the weak-energy

condition, and sometimes they require unreasonably small values of xBD that have already been ruled out

by observation.
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post-Newtonian theory, but in the extreme mass-ratio limit, black holes cannot have

scalar hair in generic scalar-tensor theories. Finally, Healy et al. (2012) have carried

out a full numerical simulation of the non-linear field equations, confirming this

argument in the full non-linear regime.

The activation of dynamics in the scalar field for a vacuum spacetime requires

either a non-constant distribution of initial scalar field (violating the constant

cosmological scalar field condition at spatial infinity) or a pure geometrical source

to the scalar field evolution equation. The latter would lead to the quadratic modified

gravity theories discussed in Sect. 2.3.4. As for the former, Horbatsch and Burgess

(2011) have argued that if, for example, one lets w ¼ lt, which clearly satisfies

hw ¼ 0 in a Minkowski background,15 then a Schwarzschild black hole will

acquire modifications that are proportional to l. Alternatively, scalar hair could also

be induced by spatial gradients in the scalar field (Berti et al. 2013), possibly

anchored in matter at galactic scales. Such cosmological hair, however, is likely to

be suppressed by a long timescale; in the example above l must have units of

inverse time, and if it is to be associated with the expansion of the universe, then it

would be natural to assume l ¼ OðHÞ, where H is the Hubble parameter. Therefore,

although such cosmological hair might have an effect on black holes in the early

universe, it should not affect black hole observations at moderate to low redshifts.

Scalar field dynamics can be activated in non-vacuum spacetimes, even if

initially the stars are not scalarized provided one considers a more general scalar-

tensor theory, like the one introduced by Damour and Esposito-Farèse (1992),

Damour and Esposito-Farèse (1993). As discussed in Sect. 2.3.1, when the

conformal factor takes on a particular functional form, non-linear effects induced

when the gravitational energy exceeds a certain threshold can dynamically scalarize

merging neutron stars, as demonstrated by Barausse et al. (2013), Palenzuela et al.

(2014). Therefore, neutron stars in binaries are likely to have hair in generic scalar-

tensor theories, even if they start their inspiral unscalarized. One must be careful,

however, to make sure that the scalarized stars found are actually stable to

perturbations. This is the case in the standard model of Damour and Esposito-Farèse

(1992), Damour and Esposito-Farèse (1993) when b\0, but it is no longer true

when b[ 0 (Mendes 2015; Palenzuela and Liebling 2016; Mendes and Ortiz 2016).

Putting the issue of stability aside, what do gravitational waves look like in

(massless) Jordan–Fierz–Brans–Dicke theory? As described in Sect. 2.3.1, both the

scalar field perturbation w and the new metric perturbation hlm satisfy a sourced

wave equation [Eq. (20)], whose leading-order solution for a two-body inspiral is

(Will 1994)

15 The scalar field of Horbatsch and Burgess satisfies hw ¼ lglmCt
lm, and thus hw ¼ 0 for stationary and

axisymmetric spacetimes, since the metric is independent of time and azimuthal coordinate. However,

notice that is not necessarily needed for Jacobson’s construction (Jacobson 1999) to be possible.
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hij ¼ 2 1 þ cð Þ l
R

vij12 � G12m
xij

r3

� �

; ð159Þ

w
/0

¼ 1 � cð Þ l
R

C niv
i
12

� �2�G12C
m

r3
nix

i
� �2�m

r
G12Cþ 2Kð Þ � 2Sniv

i
12

h i

; ð160Þ

where R is the distance to the detector, ni is a unit vector pointing toward the

detector, r is the magnitude of relative position vector xi 
 xi1 � xi2, with xia the

trajectory of body a, l ¼ m1m2=m is the reduced mass and m ¼ m1 þ m2 is the total

mass, vi12 
 vi1 � vi2 is the relative velocity vector, and we have defined the

shorthands

C 
 1 � 2
m1s2 þ m2s1

m
; S 
 s2 � s1 ; ð161Þ

K 
 G12 1 � s1 � s2ð Þ � 2 þ xBDð Þ�1
1 � 2s1ð Þs02 þ 1 � 2s2ð Þs01

� �

: ð162Þ

We have also introduced multi-index notation here, such that Aij... ¼ AiA j. . .. Such a

solution is derived using the Lorenz gauge condition hlm;m ¼ 0 and in a post-New-

tonian expansion, where we have left out subleading terms of relative order v2
12 or m/

r. Lang and others (Mirshekari and Will 2013; Lang 2014, 2015; Sennett et al.

2016) have completed this calculation to second post-Newtonian order, which were

further extended by Bernard and others to find the equations of motion up to third

post-Newtonian (Bernard 2018, 2019), tidal effects (Bernard 2020; Bernard et al.

2024), and scalar modes and non-linear memory effects to 1.5 post-Newtonian order

(Bernard et al. 2022). Spin-orbit effects on orbital dynamics and gravitational waves

in scalar-tensor theories were studied in detail in Brax et al. (2021). Julié et al.

(2023) constructed the Hamiltonian of a binary system in scalar-tensor theories (and

scalar Gauss–Bonnet theory) within the effective-one-body formalism up to third

post-Newtonian order. Almeida (2024) derived the dynamics of binaries in scalar-

tensor theories up to 2 post-Newtonian order using effective field theory. Trestini

(2024) studied eccentric compact binaries in these theories at 2nd post-Newtonian

order within the post-Keplerian framework.

Given the new metric perturbation hij, one can reconstruct the gravitational wave

metric perturbation hij, and from this, the response function, associated with the

quasi-circular inspiral of compact binaries. After using Kepler’s third law to

simplify expressions [x ¼ ðG12m=r
3Þ1=2

, where x is the orbital angular frequency

and m is the total mass and r is the orbital separation], one finds for a ground-based

L-shaped detector (Chatziioannou et al. 2012):
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hðtÞ ¼ �M

R
u2e�2iU Fþ 1 þ cos2 i

� �

þ 2iF� cos i
� �

1 � 1 � c
2

1 þ 4

3
S2

� �� ��

� 1 � c
2

CFb sin2 i

�

� g1=5 M

R
ue�iUS 1 � cð ÞFb sin i

�M

R
u2 1 � c

2
Fb Cþ 2Kð Þ þ c:c: ;

ð163Þ

where we have defined u 
 ð2pMFÞ1=3
, g 
 l=m is the symmetric mass ratio,

M 
 g3=5m is the chirp mass, i is the inclination angle, c.c. stands for the complex

conjugate, and where we have used the beam-pattern functions in Eq. (86). In

Eq. (163) and henceforth, we linearize all expressions in 1 � c � 1. Jordan–Fierz–

Brans–Dicke theory predicts the generic excitation of three polarizations: the usual

plus and cross polarizations, and a breathing, scalar mode. We see that the latter

contributes to the response at two, one and zero times the orbital frequency. One

should note that all of these corrections arise during the generation of gravitational

waves, and not due to a propagation effect. In fact, gravitational waves travel at the

speed of light (and the graviton remains massless) in standard Jordan–Fierz–Brans–

Dicke theory.

The quantities U and F are the orbital phase and frequency respectively, which

are to be found by solving the differential equation

dF

dt
¼ 1 � cð ÞS2 g

2=5

p
M�2u9 þ 48

5p
M�2u11 1 � 1 � c

2
1 � C2

6
þ 4

3
S2

� �� �

. . .;

ð164Þ

where the ellipses stand for higher-order terms in the post-Newtonian approxima-

tion. In this expression, and henceforth, we have kept only the leading-order dipole

term and all known post-Newtonian, GR terms. If one wished to include higher

post-Newtonian–order Jordan–Fierz–Brans–Dicke terms, one would have to include

monopole contributions as well as post-Newtonian corrections to the dipole term.

The first term in Eq. (164) corresponds to dipole radiation, which is activated by the

scalar mode. That is, the scalar field carries energy away from the system modifying

the energy balance law to (Will 1994; Scharre and Will 2002; Will and Yunes 2004)

_EBD ¼ � 2

3
G2

12g
2 m

4

r4
1 � cð ÞS2 � 32

5
G2

12g
2 m

r

	 
5

1 � 1 � c
2

1 � C2

6

� �� �

þ . . .;

ð165Þ

where the ellipses stand again for higher-order terms in the post-Newtonian

approximation. Solving the frequency evolution equation perturbatively in

1=xBD � 1, one finds
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256

5

tc � t

M
¼ u�8 1 � 1

12
1 � cð ÞS2g2=5u�2 þ . . .

� �

; ð166Þ

U ¼ � 1

64p
256

5

tc � t

M

� �5=8

1 � 5

224
1 � cð ÞS2g2=5 256

5

tc � t

M

� �1=4

þ. . .

" #

:

ð167Þ

In deriving these equations, we have neglected the last term in Eq. (164), as this is a

constant that can be reabsorbed into the chirp mass. Notice that since the two

definitions of chirp mass differ only by a term of Oðx�1
BDÞ, the first term of Eq. (164)

is not modified.

One of the main ingredients that goes into parameter estimation is the Fourier

transform of the response function. This can be estimated in the stationary-phase
approximation, for a simple, non-spinning, quasi-circular inspiral. In this approx-

imation, one assumes the phase is changing much more rapidly than the amplitude

(Bender and Orszag 1999; Cutler and Flanagan 1994; Droz et al. 1999; Yunes et al.

2009). One finds (Chatziioannou et al. 2012)

~hðf Þ ¼ ABD pMfð Þ�7=6
1 � 5

96

S2

xBD

g2=5 pMfð Þ�2=3

� �

e�iWð2Þ
BD

þ cBD pMfð Þ�3=2e�iWð1Þ
BD

ð168Þ

where we have defined the amplitudes

ABD 
 5p
96

� �1=2
M2

R
F2
þ 1 þ cos2 i
� �2þ4F2

� cos2 i� FþFb 1 � cos4 i
� � C

xBD

� �1=2

;

ð169Þ

cBD 
 � 5p
48

� �1=2
M2

R
g1=5 S

xBD

Fb sin i ; ð170Þ

and the Fourier phase

Wð‘Þ
BD ¼ �2pftc þ ‘Uð‘Þ

c þ p
4

� 3‘

256

2pMf

‘

� ��5=3
X

7

n¼0

2pMf

‘

� �n=3

cPN
n þ lPN

n ln f
� �

þ 5‘

7168

S2

xBD

g2=5 2pMf

‘

� ��7=3

;

ð171Þ

where the Jordan–Fierz–Brans–Dicke correction is kept only to leading order in

x�1
BD and v, while ðcPN

n ; lPN
n Þ are post-Newtonian GR coefficients (see, e.g., Klein

123

Gravitational-wave tests of general relativity with ground-based… Page 83 of 233     3 



et al. 2013). In writing the Fourier response in this way, we had to redefine the

phase of coalescence via

Uð‘Þ
c ¼ Uc � d‘;2 arctan

2 cos i F�
1 þ cos2 ið ÞFþ

� �

þ C
xBD

cos i 1 � cos2 ið ÞF�Fb

1 þ cos2 ið Þ2F2
þ þ 4 cos2 iF2

�

( )

;

ð172Þ

where d‘;m is the Kronecker delta and Uc is the GR phase of coalescence (defined as

an integration constant when the frequency diverges). Of course, in this calculation

we have neglected amplitude corrections that arise purely in GR, if one were to

carry out the post-Newtonian approximation to higher order.

Many studies have been carried out to determine the level at which such

corrections to the waveform could be measured or constrained once a gravitational

wave from a non-vacuum system has been detected. The first such study was carried

out by Will (1994), who determined that given a LIGO detection at SNR q ¼ 10 of

a ð1:4; 3ÞM� black-hole/neutron-star non-spinning, quasi-circular inspiral, one

could constrain xBD [ 103. Scharre and Will (2002) carried out a similar analysis

but for a LISA detection with q ¼ 10 of a ð1:4; 103ÞM� intermediate-mass black-

hole/neutron-star, non-spinning, quasi-circular inspiral, and found that one could

constrain xBD [ 2:1 � 104. Such an analysis was then repeated by Will and Yunes

(2004) but as a function of the classic LISA instrument. They found that the bound

is independent of the LISA arm length, but inversely proportional to the LISA

position noise error, if the position error noise dominates over laser shot noise. All

such studies considered an angle-averaged signal that neglected the spin of either

body, assumptions that were relaxed by Berti et al. (2005a), Berti et al. (2005b).

They carried out Monte-Carlo simulations over all signal sky positions that included

spin-orbit precession to find that the projected bound with LISA deteriorates to

xBD [ 0:7 � 104 for the same system and SNR. This was confirmed and extended

by Yagi and Tanaka (2010a), who in addition to spin-orbit precession allowed for

non-circular (eccentric) inspirals. In fact, when eccentricity is included, the bound

deteriorates even further to xBD [ 0:5 � 104. The same authors also found that

similar gravitational-wave observations with the next-generation detector DECIGO

could constrain xBD [ 1:6 � 106. Similarly, for a non-spinning neutron-star/black-

hole binary, the future ground-based detector, the Einstein Telescope (ET) (Punturo

et al. 2010), could place constraints about 5 times stronger than the Cassini bound,

as shown in Arun and Pai (2013), and the bound will further improve by stacking

many events (Zhang et al. 2017b).

All such projected constraints are to be compared with the current solar system

bound of xBD [ 4 � 104 placed through the tracking of the Cassini spacecraft

(Bertotti et al. 2003), and current pulsar bound of xBD [ 1:4 � 105 placed through

the absence of the Nordtvedt effect in the pulsar triple system (Voisin et al. 2020).

Table 1 presents all such bounds for ease of comparison, normalized to an SNR of

10. As it should be clear, it is unlikely that LIGO observations will be able to

constrain xBD better than current bounds. In fact, even LISA would probably not be

able to do better than the Cassini bound. Table 1 also shows that the inclusion of
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more complexity in the waveform seems to dilute the level at which xBD can be

constrained. This is because the inclusion of eccentricity and spin forces one to

introduce more parameters in the waveform, without these modifications truly

adding enough waveform complexity to break the induced degeneracies. One would

then expect that the inclusion of amplitude modulation due to precession and higher

harmonics should break such degeneracies, at least partially, as was found for

massive black-hole binary (Lang and Hughes 2006; Lang et al. 2011). However,

even then it seems reasonable to expect that only third-generation detectors will be

able to constrain xBD beyond solar-system and pulsar levels, as shown in

Chamberlain and Yunes (2017).

The main reason that solar-system and pulsar constraints of Jordan–Fierz–Brans–

Dicke theory cannot be beaten with current gravitational-wave observations is that

the former are particularly well-suited to constrain weak-field deviations of GR. One

might have thought that scalar-tensor theories constitute extreme gravity tests of

Einstein’s theory, but this is not quite true, as argued in Sect. 2.3.1. One can see this

clearly by noting that scalar-tensor theory predicts dipolar radiation, which

dominates at low velocities over the GR prediction (precisely the opposite behavior

that one would expect from an extreme-gravity modification to Einstein’s theory).

Another interesting aspect of gravitational waves can be studied through

gravitational-wave memory, which is a permanent shift in the gravitational-wave

strain after the passage of a burst of gravitational waves. Gravitational memory is

related to asymptotic symmetries and conserved quantities. The phenomenology of

the memory effects in Jordan–Fierz–Brans–Dicke theory were recently studied in

Hou and Zhu (2021), Tahura et al. (2021a, b) (memory effects in Jordan–Fierz–

Brans–Dicke theory are also discussed in Lang 2014; Bernard et al. 2022). They

Table 1 Comparison of proposed tests of scalar-tensor theories. (All LISA bounds refer to the classic

LISA configuration)

References Binary mass xBD½104� Properties

Bertotti et al. (2003) x 4 Solar system

Voisin et al. (2020) (1.44, 0.198, 0.410) 14 Pulsar triple system

Will (1994) ð1:4; 3ÞM� 0.1 LIGO, Fisher, Ang. Ave. circular, non-

spinning

Scharre and Will

(2002)
ð1:4; 103ÞM� 24 LISA, Fisher, Ang. Ave. circular, non-

spinning

Will and Yunes

(2004)
ð1:4; 103ÞM� 20 LISA, Fisher, Ang. Ave. circular, non-

spinning

Berti et al. (2005a) ð1:4; 103ÞM� 0.7 LISA, Fisher, Monte-Carlo circular, w/spin-

orbit

Yagi and Tanaka

(2010a)
ð1:4; 103ÞM� 0.5 LISA, Fisher, Monte-Carlo eccentric, spin-

orbit

Yagi and Tanaka

(2010b)

ð1:4; 10ÞM� 160 DECIGO, Fisher, Monte-Carlo eccentric,

spin-orbit

Arun and Pai (2013) ð1:4; 10ÞM� 10 ET, Fisher, Ang. Ave. circular, non-spinning
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found that the asymptotic symmetry group is the same as the Bondi–Metzner–Sachs

group in GR. However, there are new memory effects due to the presence of the

scalar polarization mode (the breathing mode), and they are not related to

asymptotic symmetries nor conserved quantities (Hou and Zhu 2021; Tahura et al.

2021a). Gravitational waveforms due to memory in the tensor mode were derived in

Tahura et al. (2021b) up to the Newtonian order. Due to the scalar dipole radiation,

the waveform acquires a correction that has a log dependence. The waveform has a

different dependence on the inclination angle from the GR case, which may be used

to probe the theory (Yang and Martynov 2018). Heisenberg et al. (2023) recently

derived the gravitational wave memory in the most general scalar-vector-tensor

theory with second-order equations of motion and vanishing potentials. They also

proved a theorem stating that the structure of the memory equation remains

unchanged in any metric theories of gravity in which massless gravitational fields

satisfy decoupled wave equations to first order in perturbation theory.

However, one should note that all the above analysis considered only the inspiral

phase of coalescence, usually truncating the study at the innermost stable-circular

orbit. The merger and ringdown phases, where most of the gravitational wave power

resides, have so far been mostly neglected. One might expect that an increase in

power will be accompanied by an increase in SNR, thus allowing us to constrain

xBD further, as this scales with 1/SNR (Keppel and Ajith 2010). Moreover, during

merger and ringdown, extreme gravity effects in scalar-tensor theories could affect

neutron star parameters and their oscillations (Sotani and Kokkotas 2005), as well as

possibly induce dynamical scalarization (Barausse et al. 2013; Palenzuela et al.

2014). Sennett and Buonanno (2016) has attempted to construct an effective-one-

body type waveform model to 2PN order that accounts both for the merger-

ringdown, and scalarization. All of these non-linear effects could easily lead to a

strengthening of projected bounds. However, to date, no detailed analysis has

attempted to determine how well one could constrain scalar-tensor theories using

full information about the entire coalescence of a compact binary.

The subclass of scalar-tensor models described by (massless) Jordan–Fierz–

Brans–Dicke theory is not the only type of model that can be constrained with

gravitational-wave observations. In the extreme–mass-ratio limit, for binaries

consisting of a stellar-mass compact object spiraling into a supermassive black hole,

Yunes et al. (2012) have shown that generic scalar-tensor theories reduce to either

massless or massive Jordan–Fierz–Brans–Dicke theory. Of course, in this case, the

sensitivities need to be calculated from the equations of structure within the full

scalar-tensor theory. The inclusion of a scalar field mass leads to an interesting

possibility: floating orbits (Cardoso et al. 2011). Such orbits arise when the small

compact object experiences superradiance, leading to resonances in the scalar flux

that can momentarily counteract the gravitational-wave flux, leading to a

temporarily-stalled orbit that greatly modifies the orbital-phase evolution. These

authors showed that if an extreme mass-ratio inspiral is detected with a template

consistent with GR, this alone allows us to rule out a large region of ðms;xBDÞ phase

space, where ms is the mass of the scalar field (see Fig. 1 in Yunes et al. 2012). This

is because if such an inspiral had gone through a resonance, a GR template would be

grossly different from the signal. Such bounds are dramatically stronger than one of
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the current most stringent bounds xBD [ 4 � 104 and ms\2:5 � 10�20 eV obtained

from Cassini measurements of the Shapiro time-delay in the solar system (Alsing

et al. 2012). Even if resonances are not hit, Berti et al. (2012) have estimated that

second-generation ground-based interferometers could constrain the combination

ms=ðxBDÞ1=2
.10�15 eV with the observation of gravitational waves from neutron-

star/binary inspirals at an SNR of 10. These bounds can also be stronger than current

constraints, especially for large scalar mass. Numerical relativity simulations of

binary neutron star mergers in massive scalar-tensor theories have been carried out

in Kuan et al. (2023b), Lam et al. (2024).

Let us now mention possible gravitational-wave constraints on other types of

scalar tensor theories. Let us first consider Jordan–Fierz–Brans–Dicke type scalar-

tensor theories, where the coupling constant is allowed to vary. Will (1994) has

argued that the constraints described in Table 1 go through, with the change

2G1;2

2 þ xBD

! 2G1;2

2 þ xBD

1 þ 2x0
BD

ð3 þ 2xBDÞ2

" #2

; ð173Þ

where x0
BD 
 dxBD=d/. In the xBD � 1 limit, this implies the replacement

xBD ! xBD½1 þ x0
BD=ð2x2

BDÞ�
�2

. Of course, this assumes that there is neither a

potential nor a geometric source driving the evolution of the scalar field, and is not

applicable for theories where spontaneous scalarization is present (Damour and

Esposito-Farèse 1992). Regarding Horndeski theory, Figueras and França (2022)

carried out binary black hole merger simulations in cubic Horndeski theory and

found that the mismatch in gravitational waveforms in the theory and GR can be

Oð10%Þ for stellar-mass black hole binaries. Higashino and Tsujikawa (2023)

carried out a post-Newtonian analysis and derived corrections to the gravitational

waveforms in a class of Horndeski theory in which the speed of gravitational waves

is the same as that of light (see Quartin et al. 2023 for a follow-up analysis). f(R)

gravity is another class of modified gravity theories that can be mapped to scalar-

tensor theories, as discussed in Sect. 2.3.1. Gravitational waves in f(R) gravity were

studied, e.g. in Vilhena et al. (2021), where correction terms in the action are

proportional to R2 and RhR. Takeda et al. (2024) derived bounds on a subclass of

Horndeski theory with luminal GW propagation through the neutron star and black-

hole binary merger in the GW200115 event.

Another interesting scalar-tensor theory to consider is that studied by Damour

and Esposito-Farèse (1992), Damour and Esposito-Farèse (1993). As explained in

Sect. 2.3.1, this theory is defined by the action of Eq. (15) with the conformal factor

AðwÞ ¼ ebw
2

. In standard Jordan–Fierz–Brans–Dicke theory, only mixed binaries

composed of a black hole and a neutron star lead to large deviations from GR due to

dipolar emission. This is because dipole emission is proportional to the difference in

sensitivities of the binary components. For neutron–star binaries with similar

masses, this difference is close to zero, while for black holes it is identically zero

(see Eqs. (161) and (171)). Bounds on the theory with GW170817 were studied by

Zhao et al. (2019), though such gravitational-wave bounds are much weaker than

those from binary pulsars. This work was later improved by Niu et al. (2021) by
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considering several neutron star binaries and neutron star-black hole binaries found

by the LIGO/Virgo Collaborations and applied these events to Jordan–Fierz–Brans–

Dicke theory, Damour-Esposito-Farèse theory and screened modified gravity (that

can evade solar system constraints via various screening mechanisms). The authors

found that gravitational-wave observations can place bound comparable to binary

pulsar ones in Damour-Esposito-Farèse theory, but the constraints are much weaker

for Jordan–Fierz–Brans–Dicke and screened modified gravity. Forecasts on

projected bounds on these theories with future gravitational-wave observations

were made in Zhao et al. (2019), Carson et al. (2020). In the theory considered by

Damour and Esposito-Farèse, when the gravitational energy is large enough, as in

the very late inspiral, non-linear effects can lead to drastic modifications from the

GR expectation, such as dynamical and induced scalarization (Barausse et al. 2013;

Palenzuela et al. 2014). Unfortunately, most of this happens at rather high

frequency, and thus, they become observable only if the activation of the scalar field

occurs in the sensitivity band of detectors (Sampson et al. 2014b).

Although black holes do not acquire scalar charges in typical scalar-tensor

theories under stationary configuration, they can acquire these charges under time-

dependent situation. This was first pointed out by Jacobson (1999). Such a

‘‘miraculous scalar hair growth’’ in black holes can be probed with gravitational

waves from binary black hole mergers. For example, GW151226 places the bound

on the rate of the scalar field evolution as j _/j\1:09 � 104=sec (Tahura et al. 2019).

4.2.2 Bigravity

What has been studied in some detail in massive bigravity is the propagation of

gravitational waves in a Minkowski background (De Felice et al. 2014; Narikawa

et al. 2015). The propagation field equations in Sect. 2.3.2 can be solved for the two

eigenmodes

h1;þ=� ¼ cos hg hþ=� þ sin hg
ffiffiffi

j
p

nc ~hþ=� ; ð174Þ

h2;þ=� ¼ � sin hg hþ=� þ cos hg
ffiffiffi

j
p

nc ~hþ=� ; ð175Þ

where j is the ratio between the two gravitational constants for the two metrics,

while

hg ¼
1

2
cot�1 1 þ j n2

c

2
ffiffiffi

j
p

nc
xþ 1 � j n2

c

2
ffiffiffi

j
p

nc

� �

; ð176Þ

and

x ¼ 2

l2
ð2pf Þ2ð~c� 1Þ ; l2 ¼ k�2

l ¼ ð1 þ jn2
cÞCcm

2

jn2
c

; ð177Þ

with f the gravitational wave frequency and ~c the speed of light in the auxiliary

sector (De Felice et al. 2014). The latter is close to unity, with deviations propor-

tional to the matter energy density and pressure
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~c � 1 þ jn2
c qm þ pmð Þ
Ccm2 ~M

2

G

; ð178Þ

where qm and pm are the energy density and pressure and ~M
2

G ¼ M2
Gð1 þ jn2

cÞ with

M2
G ¼ 1=ð8pGÞ. The constant nc is the critical value of the ratio of the scale factor

n ¼ ~a=a between the two metrics, which is found by enforcing the conservation of

energy momentum (De Felice et al. 2014) and depends only on the coupling con-

stants of the theory ci. In turn, Cc is a function of the coupling constants ci and the

critical scale factor ratio nc, while m is the mass scaling parameter that enters the

bigravity action. What is remarkable about the eigenfunctions presented above is

that they are a linear combination of the metric perturbations associated with the

physical and auxiliary metrics (h and ~h). Thus, one finds that as gravitational waves

propagate in bigravity, they experience oscillations between the physical and aux-

iliary sectors (similar to neutrino oscillations), which from the standpoint of the

physical metric perturbation will look like artificial oscillations in the waveform

amplitude.

The propagation field equations in Sect. 2.3.2 can also be solved for the two

eigenfrequencies (De Felice et al. 2014)

k2
1;2 ¼ ð2pf Þ2 � l2

2
1 þ x	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ 2x
1 � j n2

c

1 þ j n2
c

þ x2

s

 !

: ð179Þ

Such a modification to the dispersion relation will then introduce the phase

correction

dU1;2 ¼ � lD
ffiffiffiffiffiffiffiffiffiffiffi

~c� 1
p

2
ffiffiffi

2
p

x
1 þ x	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ 2x
1 � j n2

c

1 þ j n2
c

þ x2

s

 !

: ð180Þ

Clearly then, the physical metric perturbation hþ=� will not only experience

amplitude oscillations, but also phase corrections as the wave propagates a distance

D.

But the response function that detectors would observe does not depend on the

eigenmodes of the problem, but rather on the reconstructed physical metric

perturbation. One can solve for these and construct the Fourier transform of the

response function using the stationary phase approximation to find (De Felice et al.

2014)

~hðf Þ ¼ Aðf ÞeiWðf Þ B1e
idU1ðf Þ þ B2e

idU2ðf Þ
h i

; ð181Þ

after averaging over all sky, where the amplitude coefficients are

Aðf Þ ¼
ffiffiffiffiffiffi

5p
24

r

M2

ð8pM2
GÞ

2D
y�7=6 ; ð182Þ
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B1 ¼ cos hg cos hg þ
ffiffiffi

j
p

nc sin hg
� �

; ð183Þ

B2 ¼ sin hg sin hg �
ffiffiffi

j
p

nc cos hg
� �

; ð184Þ

and the phases are

Wðf Þ ¼ 2pftc � /c �
p
4
þ 3

128
y�5=3 þ 5

96

743

336
þ 11

4
g

� �

g�2=5y�1 � 3p
8
g�3=5y�2=3 ;

ð185Þ

up to 1.5 post-Newtonian order, with y ¼ Mf=ð8 ~M
2

GÞ. Such a waveform assumes

the generation of gravitational waves is not modified in bigravity, which has been

justified based on an order-of-magnitude Vainshtein argument.

The bigravity modification to the waveform can be thought of as oscillations

between the physical and auxiliary sectors. Since detectors are only sensitive to the

physical metric, however, from our viewpoint we would see an unexplained

amplitude modulation, reminiscent to that induced by spin precession. The

magnitude of the oscillation depends on hg, which in turn depends on x. When

x � 1 and when x � 1, the oscillations are suppressed, as one can see by evaluating

the B1;2 amplitude functions. Only when x� 1 does one observe noticeable

oscillations between modes. The value of x, however, does not just depend on the

frequency and the mass l, but also on the speed of gravity in the auxiliary sector,

which in turn depends on the matter energy density and pressure. One can then

expect x to change significantly as the waves leave the environment in which they

were generated, where the density is large, and enter a regime of spacetime where

the energy density is much smaller.

This bigravity modified gravitational waveform can in principle be used to

constrain the theory given gravitational wave observations. Narikawa et al. (2015)

predicted that a gravitational wave observations consistent with GR with aLIGO at

design sensitivity would lead to a constraint on bigravity of l.10�17cm�1 when

~c� 1J10�19 when one neglects covariances between the bigravity parameters and

l.10�16:5cm�1 for jn2
cJ

ffiffiffiffiffi

10
p

in the full model, which would be stronger than all

other bounds imposed on bigravity at the time of Narikawa et al. (2015). These

projections were obtained by carrying out a Fisher analysis using non-spinning,

quasi-circular inspiral waveforms. Possible degeneracies between bigravity effects

and amplitude corrections due to post-Newtonian effects or amplitude modulation

due to spin-precession could potentially deteriorate these bounds.

4.2.3 Einstein-Æther theory and Khronometric gravity

Black holes and neutron stars exist in both of these theories, as briefly discussed in

Sect. 2.3.3 (Eling et al. 2007; Jacobson 2010; Blas and Sibiryakov 2011; Blas et al.

2011; Wang 2013; Barausse and Sotiriou 2012, 2013a, b; Adam et al. 2022; Ramos

and Barausse 2019; Yagi et al. 2014a, b; Barausse 2019; Gupta et al. 2021; Ajith

et al. 2022). These bodies have strong self-gravity, and thus, they do not follow a
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geodesic path in spacetime, but rather their motion is affected by their internal

structure. Such a modification is encoded through sensitivity parameters, which

control the difference between the bodies center of (baryonic) mass and its center of

energy, where the latter has contributions both from baryons and from the energy in

the vector fields of the theory. The calculation of the sensitivity of an isolated body

is difficult in these Lorentz-violating gravity theories because it requires that one

first solve the field equations for a compact object moving at a constant velocity, and

then that one match this solution to a post-Newtonian solution for a binary system

close to one of the objects. Foster (2007) calculated the sensitivity s of an isolated

body in Einstein-Æther theory in the weak field limit,

sEA=KG ¼ � appN;EA=KG
1 � 2

3
appN;EA=KG

2

� �

C�
2

; ð186Þ

where C� is the compactness of the star and appN;EA
1;2 are the ppN parameter of

Eqs. (40) and (41). The sensitivities of neutron stars, however, cannot be modeled

by the above formula, since they are not weak-field objects. Instead, one must

compute the sensitivities numerically, as done in Yagi et al. (2014a). Having said

this, analytic expressions for the neutron star sensitivities are now available in

Gupta et al. (2021) for the Tolman VII neutron star models. The sensitivities for

black holes have not yet been computed in Einstein-Æther theory. For khronometric

theory, Ramos and Barausse (2019) found that the black hole sensitivities vanish

when two of the coupling constants ða; bÞ (which have been constrained stringently

from current experiments and observations) are set to zero.

Neglecting radiation reaction, the leading-order modification in a post-Newto-

nian expansion to the motion of compact objects can be captured by a redefinition of

Newton’s gravitational constant. In Einstein-Æther theory, Foster (2007), Yagi et al.

(2014a) showed that the constant G in Kepler’s third law for a binary system is

different from the constant GN in Newton’s third law for a Cavendish-type

experiment, and these two are different from the bare constant GEA=KG that enters

the action. One can relate these constants via16

GEA=KG ¼ GN 1 � s
EA=KG
1

	 


1 � s
EA=KG
2

	 


; GN ¼ 2GEA

2 � c14

¼ 2GKG

2 � aKG

; ð187Þ

where si are the sensitivities of the bodies. At higher post-Newtonian order, these

theories introduce other corrections that cannot probably be absorbed via a redefi-

nition of constants. The conservative dynamics of binaries in these theories, how-

ever, has not yet been studied beyond Newtonian order.

Gravitational waves exist in both of these theories, but they are not the only

propagating degrees of freedom. In Einstein-Æther theory, Jacobson and Mattingly

(2004) showed that there are five propagating degrees of freedom: two tensor ones,

two vector ones and one scalar mode. In khronometric gravity, there are only three

propagating modes (the two tensor ones and the scalar mode), because the

16 These expressions follow e.g. Zhang et al. (2020) and correct typos in Hansen et al. (2015).
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hypersurface orthogonality condition eliminates the vector modes. The speed of

propagation of these modes is (Foster 2006)

wEA
0 ¼ ð2 � c14c123Þ

ð2 þ 3c2 þ cþÞð1 � cþÞc14

� �1=2

; ð188Þ

wEA
1 ¼ 2c1 � cþc�

2ð1 � cþÞc14

� �1=2

; ð189Þ

wEA
2 ¼ 1

1 � cþ

� �1=2

; ð190Þ

in Einstein-Æther theory and

wKG
0 ¼ ðaKG � 2ÞðbKG þ kKGÞ

aKGðbKG � 1Þð2 þ bKG þ 3kKGÞ

� �1=2

; ð191Þ

wKG
2 ¼ 1

1 � bKG

� �1=2

; ð192Þ

in khronometric gravity. Gravitational Cherenkov radiation can be evaded, and

energy positivity can be enforced if w
EA=KG
0 , w

EA=KG
1 and w

EA=KG
2 are all greater than

unity (Jacobson 2008b; Elliott et al. 2005).

Let us now consider binary systems in a quasi-circular orbit. In Einstein-Æther

theory, the response function in the time-domain is (Hansen et al. 2015)

hEAðtÞ ¼ AEA
2

M

r
u2 e�2iUþiH þ e2iU�iH
� �

þ AEA
1 �aEA M

r
g1=5u e�iU þ eþiU

� �

;

ð193Þ

where H ¼ tan�1½2F� cos i=Fþð1 þ cos2 iÞ�, and to leading post-Newtonian order,

AEA
2 ¼ GEA F2

þð1 þ cos2 iÞ2 þ 4F2
� cos2 i

h i1=2

; ð194Þ

AEA
1 ¼ 2GEAðs1 � s2Þ ; ð195Þ

�aEA 
 4cþ
2c1 � cþc�

Fl �
c2 þ 1

c123ðc14 � 2ÞwEA
0

�

� Fb þ 2Flð Þ þ 1

ðc14 � 2ÞcþwEA
0

Fb � 2Flð Þ
�

sin i

þ cþ
2c1 � cþc�

iFsn þ cos iFse½ � ;

ð196Þ

and where ðFþ;F�;Fb;Fl;Fse;FsnÞ are beam pattern functions. One can show that

the breathing and the longitudinal modes in the response function above are not
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linearly independent, leaving only 5 independent degrees of freedom. In khrono-

metric gravity, the time-domain response is

hðtÞKG ¼ AKG
2

M

r
u e�2iUþiH þ eþ2iU�iH
� �

þ AKG
1 �aKG M

r
g1=5u2ðe�iU þ eiUÞ ;

ð197Þ

where

AKG
2 ¼ AEA

2 ; AKG
1 ¼ 4 GEA ðsKG

1 � sKG
2 Þ ; ð198Þ

�aKG ¼
ffiffiffiffiffiffiffiffi

aKG
p

ðkKG þ 1Þ
bKG þ kKG

Fb þ 2Flð Þ þ 1
ffiffiffiffiffiffiffiffi

aKG
p Fb � 2Flð Þ

" #

: ð199Þ

Comparing these response functions, we note that although the two expressions for

A1;2 are very similar, the expressions for �a are quite different because of the absence

of vector modes in khronometric gravity.

The presence of scalar and vector modes enhances the energy and angular

momentum loss. Let us consider then again binary systems in a quasi-circular

inspiral. In both Lorentz-violating theories, the total rate of energy carried away by

all propagating degrees of freedom can be written as (Hansen et al. 2015)

_EEA=KGðuÞ ¼ _EGRðuÞ 1 þ 7

4
g2=5u�2

EA=KG
_E
EA=KG

�1PN þ _E
EA=KG

0PN

� �

; ð200Þ

where _EGRðuÞ 
 �ð32=5Þu10½1 þOðc�2Þ� is the leading post-Newtonian order

prediction, with uEA=KG ¼ ð2pGEA=KGMFÞ1=3
and F the orbital frequency, and

where

_E
EA

�1PN ¼ 5

84
Gðs1 � s2Þ2 ðc14 � 2ÞðwEA

0 Þ3 � ðwEA
1 Þ3

c14ðwEA
0 Þ3ðwEA

1 Þ3
; ð201Þ

_E
EA

0PN ¼ G 1 � c14

2

	 
 1

wEA
2

þ
2c14c

2
þ

ð2c1 � c�cþÞ2wEA
1

 

þ 3c14ðZEA � 1Þ2

2wEA
0 ð2 � c14Þ

þ SAEA
2 þ S2AEA

3

!

� 1 ;

ð202Þ

in Einstein-Æther theory and

_E
KG

�1PN ¼ 5

84
Gðs1 � s2Þ2

ffiffiffiffiffiffiffiffi

aKG
p ðbKG � 1Þð2 þ bKG þ 3kKGÞ

ðaKG � 2ÞðbKG þ kKGÞ

� �3=2

; ð203Þ
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_E
KG

0PN 
 ~b
KG

0PN ¼ G 1 � 2

bKG

� �

1

wKG
2

þ 3aKGðZKG � 1Þ2

2wKG
0 ð2 � aKGÞ

þ SAKG
2 þ S2AKG

3

 !

� 1 ;

ð204Þ

in khronometric gravity. In these expressions, S 
 ðs1m2 þ s2m1Þ=m is the sum of

the mass-weighted sensitivities, A
EA=KG
2;3 are functions of the coupling parameters

given explicitly in Yagi et al. (2014a), and

ZEA ¼ ðappN
1 � 2appN

2 Þð1 � cþÞ
3ð2cþ � c14Þ ; ZKG ¼ ðappN

1 � 2appN
2 Þð1 � bKGÞ

3ð2bKG � aKGÞ
: ð205Þ

With this in hand, we can compute the Fourier transform of the response function in

the stationary-phase approximation. Focusing again on quasi-circular binary system,

one finds (Hansen et al. 2015)

~hEA=KGðf Þ ¼ A
EA=KG

ð1Þ e
�iWð1Þ

EA=KG þA
EA=KG

ð2Þ e
�iWð2Þ

EA=KG ; ð206Þ

where

Wð‘Þ
EA ¼ 2pftc þ Uc �

p
4
� 3‘

256
u�5
‘;EA 1 þOðc�2Þ
� �

� 3‘

256
u�5
‘;EA

_E
EA

�1PNg
2=5u�2

‘;EA þ _E
EA

0PN þOðc�2Þ
h i

;

ð207Þ

AEA
ð1Þ ¼ � 5p

48

� �1=2

AEA
1 �aEA M2

r12

g1=5u
�9=2
1;EA ; AEA

ð2Þ ¼
5p
96

� �1=2

AEA
2

M2

r12

u
�7=2
2;EA ;

ð208Þ

in Einstein-Æther theory and

Wð‘Þ
KG ¼ 2pftc þ Uc �

p
4
� 3‘

256
u�5
‘ 1 þOðc�2Þ
� �

� 3‘

256
u�5
‘

_E
KG

�1PNg
2=5u�2

‘;KG þ _E
KG

0PN þOðc�2Þ
h i

;

ð209Þ

AKG
ð1Þ ¼

5p
48

� �1=2

AKG
1 �aKG M2

r12

g1=5u
�9=2
1;KG ; AKG

ð2Þ ¼
5p
96

� �1=2

AKG
2

M2

r12

u
�7=2
2;KG :

ð210Þ

in khronometric gravity. In these expressions, u‘;EA=KG 
 2pGEA=KGMf=‘
� �1=3

and

ðtc;/cÞ are constant time and phase offsets. One can of course keep higher order

terms in the post-Newtonian expansion in the GR sector easily.

The above calculations in Einstein-Æther theory were later updated by a few

different groups. Zhang et al. (2020) derived the response function in both the time

and frequency domains. For the former, the ‘ ¼ 2 harmonic depends not only on the

tensor modes but also on the scalar and vector modes, even to leading post-
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Newtonian order, though such scalar and vector modes vanish when c14 ¼ 0 and

cþ ¼ 0, respectively. The expression for the ‘ ¼ 1 harmonic is also corrected. For

the response function in the frequency domain, the dominant ‘ ¼ 2 harmonic for the

tensor mode is given by

~hEAðf Þ ¼ �
ffiffiffiffiffiffi

5p
96

r

ðGNMÞ2

R
U

�7=2
2;EA Fþ 1 þ cos2 i

� �

þ 2iF� cos i
� �

� 1 � 1

2
ffiffiffiffiffi

j3
p g2=5�xU

�2
2;EA

� �

eiW
ð2Þ
EA ;

ð211Þ

with

Wð2Þ
EA ¼2pf tc þ

r

wEA
2

� �

� Uc �
p
4
þ 3

128
U�5

2;EA½1 þOðc�2Þ�

� 3

224

g2=5�x
j3

U�7
2;EA � 3

128
� 2

3
ðs1 þ s2Þ �

1

2
c14 þ j3 � 1

� �

U�5
2;EA½1 þOðc�2Þ� ;

ð212Þ

U2;EA ¼ðpGNMf Þ1=3 ; ð213Þ

while j3 and �x are given in Zhang et al. (2020). Taherasghari and Will (2023)

carried out a direct integration of the relaxed field equations up to 2.5 post-New-

tonian order, while Hou et al. (2024) studied the GW memory effect in Einstein-

Æther theory.

As one can see from the description above, the propagation speed of the tensor

modes is different from the speed of light by a constant factor, which makes this

effect difficult to measure with detections by a single instrument. However, the

detection of a single event by more than one instrument can be used to place a

bound on the speed of gravity. Given N detectors located at different places on

Earth, a gravitational wave will hit every detector at different times. The time

difference between the detection at each instrument (measured for example as the

time at which the amplitude of the wave reaches its maximum at the given

instrument) is then related to the speed of the wave and the distance between

detectors. A time difference that is consistent with waves traveling at the speed of

light can place a constraint on the speed of gravity of Oð1Þ in units of the speed of

light (Blas et al. 2016).

Einstein-Æther theory and khronometric gravity can also be constrained using

information about the precise functional form of the response function presented

above. Hansen et al. (2015) carried out the first analysis to investigate this

possibility with aLIGO at design sensitivity and with the Einstein Telescope.

Chamberlain and Yunes (2017) expanded this analysis by considering a wider range

of third-generation future ground-based detectors, as well as space-based detectors.

Both analysis first considered the quasi-circular inspiral of binary neutron stars,

because the sensitivities for these systems are known (Yagi et al. 2014a). For such

binaries, the �1PN order term in the phase of the response function (the one
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proportional to _E
EA=KG

�1PN in Eqs. (207) and (209)) is suppressed by the square of the

difference of the sensitivities as shown in Eqs. (201) and (203). This is both because

s1 � s2 for binary neutron stars because their masses are similar and because s1;2 �
1 for neutron stars to begin with. Thus, when considering binary neutron stars, the

bounds are weaker than one would have expected, since the phase modification is

dominated by a term of Newtonian order in the phase. Hansen et al. (2015) found

that aLIGO could not place constraints on ðcþ; c�Þ or ðkKG; bKGÞ that are better than

current binary pulsar constraints. However, both Hansen et al. (2015) and

Chamberlain and Yunes (2017) found that third-generation detectors will obtain

constraints comparable to binary pulsar ones in the future. Chamberlain and Yunes

(2017) also found that if binary black hole inspirals are considered and if the

sensitivities do not suppress the GR modification, then the bounds become roughly

an order of magnitude better, since then the modification enters at �1PN order.

These analyses assumed that the post-Newtonian parameters characterizing the

preferred-frame effect vanish, and probed only ðcþ; c�Þ or ðkKG; bKGÞ. However, the

multi-messenger observations of GW170817 have constrained the deviation in the

propagation speed of gravitational waves away from the speed of light to � 10�15 or

smaller (Abbott et al. 2017a). From Eqs. (190) and (192), this means cþ and bKG

have been constrained effectively to zero. Therefore, the bounds on these theories

with gravitational waves need to be reanalyzed by imposing cþ ¼ 0 or bKG ¼ 0 and

varying over the remaining parameters. Schumacher et al. (2023a) carried out such

an analysis for the GW170817 event in Einstein-AEther theory, and found that

current GW observations do not place bounds that are stronger than Solar System

experiments, or binary pulsar and cosmological observations.

4.2.4 Modified quadratic gravity

Gravitational waves are modified in quadratic modified gravity. In dynamical

Chern–Simons gravity, Garfinkle et al. (2010) have shown that the propagation of

such waves on a Minkowski background remains unaltered, and thus, all

modifications arise during the generation stage. In Einstein–dilaton–Gauss–Bonnet

theory, a similar analysis shows that gravitational waves can travel at phase

velocities different from that of light, but such effects become negligible in the very

far-away radiation zone (Ayzenberg et al. 2014). Yagi et al. (2012b) studied the

generation mechanism in both theories during the quasi-circular inspiral of

comparable-mass, spinning black holes in the post-Newtonian and small-coupling

approximations. They found that a standard post-Newtonian analysis fails for such

theories because the assumption that black holes can be described by a distributional

stress-energy tensor without any further structure fails. They also found that since

black holes acquire scalar hair in these theories, and this scalar field is anchored to

the curvature profiles, as black holes move, the scalar fields must follow the

singularities, leading to dipole scalar-field emission. Julié and Berti (2019) studied

the post-Newtonian dynamics of a two-body system in scalar Gauss–Bonnet gravity

through a ‘‘skeltonization’’ of black holes. That is, one approximates a black hole
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with a point-particle that has a mass that depends on the scalar field (Eardley 1975).

The scalar hair is related to the derivative of this mass through the scalar field.

During a quasi-circular inspiral of spinning black holes in dynamical Chern–

Simons gravity, the total gravitational wave energy flux carried out to spatial infinity

(equal to minus the rate of change of a binary’s binding energy by the balance law)

is modified from the GR expectation to leading order by (Yagi et al. 2012b)

d _E
CS

spin

_EGR

¼ 25

1236
f4 g�2 �D

2 þ 27h �D � v̂12ð Þ2i
h i

ð214Þ

due to scalar field radiation and corrections to the metric perturbation that are of

magnetic-type, quadrupole form. In this equation, _EGR ¼ ð32=5Þg2m2v4x2 is the

leading-order GR prediction for the total energy flux, f4 ¼ a2
4=ðbjm4Þ is the

dimensionless Chern–Simons coupling parameter, v̂i12 is the unit relative velocity

vector, �D
i ¼ ðm2=mÞða1=m1ÞŜi1 � ðm1=mÞða2=m2ÞŜi2, where aA is the Kerr spin

parameter of the Ath black hole and ŜiA is the unit vector in the direction of the spin

angular momentum, and the angle brackets stand for an average over several

gravitational wave wavelengths. If the black holes are not spinning, then the cor-

rection to the scalar energy flux is greatly suppressed (Yagi et al. 2012b)

d _E
CS

no�spin

_EGR

¼ 2

3
d2
mf4v

14
12;

ð215Þ

where we have defined the reduced mass difference dm 
 ðm1 � m2Þ=m. Notice that

this is a 7 post-Newtonian–order correction, instead of a 2 post-Newtonian cor-

rection as in Eq. (214). In the non-spinning limit, the dynamical Chern–Simons

correction to the metric tensor induces a 6 post-Newtonian–order correction to the

gravitational energy flux (Yagi et al. 2012b), which is consistent with the numerical

results of Pani et al. (2011b).

On the other hand, in Einstein–dilaton–Gauss–Bonnet gravity, the corrections to

the energy flux are (Yagi et al. 2012b)

d _E
EDGB

no�spin

_EGR

¼ 5

96
g�4d2

mf3v
�2
12 ;

ð216Þ

which is a �1 post-Newtonian correction. This is because the scalar field #EDGB

behaves like a monopole (see Eq. (54)), and when such a scalar monopole is

dragged by the black hole, it emits electric-type, dipole scalar radiation. Any hairy

black hole with monopole hair will thus emit dipolar radiation, leading to �1 post-

Newtonian corrections in the energy flux carried to spatial infinity.

Such modifications to the energy flux modify the rate of change of the binary’s

binding energy through the balance law, _E ¼ � _Eb, which in turn modify the rate of

change of the gravitational wave frequency and phase, _F ¼ � _E ðdEb=dFÞ�1
. For

dynamical Chern–Simons gravity (when the spins are aligned with the orbital

angular momentum) and for Einstein–dilaton–Gauss–Bonnet theory (in the non-

spinning case), the Fourier transform of the gravitational-wave response function in
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the stationary phase approximation for binary black holes becomes (Yagi et al.

2012b, c)

~hdCS;EDGB ¼ ~hGRð1 þ adCS;EDGBu
adCS;EDGBÞeibdCS;EDGBu

bdCS;EDGB
; ð217Þ

where ~hGR is the Fourier transform of the response in GR, u 
 ðpMf Þ1=3
with f the

gravitational wave frequency. For dynamical Chern–Simons theory, the phase

corrections are given by (Yagi et al. 2012c)

bdCS ¼� 507775

7340032

f4

g4=5

m2

m2
1

a2
1

m2
1

1 � 58833

20311
Ŝ1 � L̂
� �2

� �

þ 63625

1048576

f4

g9=5

a1

m1

a2

m2

Ŝ1 � Ŝ2

� �

� 1467

509
Ŝ1 � L̂
� �

Ŝ2 � L̂
� �

� �

þ 1 ! 2 ;

bdCS ¼ �1 ;

ð218Þ

where Ŝ1;2 and L̂ are the unit spin and orbital angular momenta respectively. For the

spin-aligned case, the above expression reduces to (Tahura and Yagi 2018)

bdCS ¼ 481525

3670016
g�14=5f4 �2dmvavs þ 1 � 4992g

19261

� �

v2
a þ 1 � 72052g

19261

� �

v2
s

� �

;

bdCS ¼ �1 ;

ð219Þ

where vs 
 ðv1 þ v2Þ=2, va 
 ðv1 � v2Þ=2 with vA 
 aA=mA, and the amplitude

correction is given by (Tahura and Yagi 2018)

adCS ¼ 57713

344064
g�14=5f4 �2dmvavs þ 1 � 14976g

57713

� �

v2
a þ 1 � 215876g

57713

� �

v2
s

� �

;

adCS ¼ þ4 :

ð220Þ

For Einstein–dilaton–Gauss–Bonnet theory, the phase and amplitude corrections are

given by

bEDGB ¼ � 5

7168
f3g

�18=5d2
m ; bEDGB ¼ �7 ; ð221Þ

aEDGB ¼ � 5

192
f3g

�18=5d2
m ; aEDGB ¼ �2 ; ð222Þ

We have included both deformations to the binding energy and Kepler’s third law,

in addition to changes in the energy flux, when computing the phase correction.

However, in Einstein–dilaton–Gauss–Bonnet theory the binding energy is modified

at higher post-Newtonian order, and thus, corrections to the energy flux control the

leading modifications to the gravitational-wave response function.
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Can we go beyond leading corrections to the waveforms in these theories? Higher

post-Newtonian corrections in Einstein–dilaton–Gauss–Bonnet gravity were derived

in Shiralilou et al. (2021), Shiralilou et al. (2022) to first post-Newtonian order

higher than the leading, tensor non-dipole and scalar dipole emission respectively.

This was later corrected and extended to second post-Newtonian order relative to

the leading tensor/scalar contribution by Lyu et al. (2022), which used the results in

Sennett et al. (2016) for scalar-tensor theories, but the corresponding scalar charges

for black holes in Einstein–dilaton–Gauss–Bonnet gravity. For spin-precessing

binaries, the precession equations are modified. Loutrel et al. (2018), Loutrel et al.

(2019), Loutrel and Yunes (2022) solved such equations and derived gravitational

waveforms in dynamical Chern–Simons gravity, including spin precession (see also

Li et al. 2023b for related work). Li et al. (2024b) studied gravitational waves from

eccentric compact binaries in dynamical Chern–Simons gravity. Going beyond the

inspiral, numerical relativity simulations have been carried out in quadratic gravity

to find gravitational waves and scalar waves during the merger-ringdown stage.

Okounkova et al. (2017), Okounkova et al. (2019), Okounkova et al. (2020) carried

out such simulations in dynamical Chern–Simons gravity within the small-coupling

approximation. Treating the theory as an effective field theory has the advantage

that the principal parts of the modified Einstein equations are the same as in GR, and

thus, are well-posed. In Einstein–dilaton–Gauss–Bonnet gravity, Witek et al. (2019)

derived the scalar dynamics, while Okounkova (2020) found merger-ringdown

gravitational waveforms within the small coupling approximation. Ripley and

Pretorius (2020), East and Ripley (2021b), Corman et al. (2023) performed similar

simulations by fully solving the field equations to find waveforms without using the

small-coupling approximation. Watarai et al. (2024) recently constructed a param-

eterized merger waveform via a principal component analysis, and applied their

formulation to Einstein–dilaton–Gauss–Bonnet gravity. The ringdown can also be

studied through black hole perturbation theory. Quasi-normal mode frequencies

were computed for slowly-rotating black holes in dynamical Chern–Simons gravity

to first order in spin in Wagle et al. (2022), Srivastava et al. (2021), while those in

Einstein–dilaton–Gauss–Bonnet gravity were derived to zeroth-order (Blázquez-

Salcedo et al. 2016; Bryant et al. 2021; Luna et al. 2024), first-order (Pierini and

Gualtieri 2021) and second-order (Pierini and Gualtieri 2022) in spin, as well as for

rapidly-rotating black holes for the first time in Chung and Yunes (2024a), which

was recently extended in Blázquez-Salcedo et al. (2024). East and Pretorius (2022)

performed numerical relativity simulations for binary neutron star mergers in (shift-

symmetric) Einstein–dilaton–Gauss–Bonnet gravity and found that, while the non-

GR corrections during the inspiral are small (because neutron stars do not possess

scalar charges in this theory), there can be strong scalar effects during the post-

merger phase. Kuan et al. (2023a) carried out numerical relativity simulations for

binary neutron star mergers in scalar-Gauss-Bonnet gravity with dynamical

scalarization and found a universal relation between the compactness of an isolated

neutron star and the critical coupling strength for scalarization.

From the above analysis, it should be clear that the corrections to the

gravitational-wave observable in quadratic modified gravity are always proportional

123

Gravitational-wave tests of general relativity with ground-based… Page 99 of 233     3 



to the quantity f3;4 
 n3;4=m
4 ¼ a2

3;4=ðbjm4Þ. Thus, any measurement that is

consistent with GR will allow a constraint of the form f3;4\Nd, where N is a

number of order unity, and d is the accuracy of the measurement. Solving for the

coupling constants of the theory, such a measurement would lead to n1=4
3;4 \ðNdÞ1=4m

(Sopuerta and Yunes 2009). Therefore, constraints on quadratic modified gravity

will weaken for systems with larger characteristic mass. This can be understood by

noticing that the corrections to the action scale with positive powers of the Riemann

tensor, while this scales inversely with the mass of the object, i.e., the smaller a

compact object is, the larger its curvature. Such an analysis then automatically

predicts that LIGO will be able to place stronger constraints than LISA-like

missions on such theories, because LIGO operates in the 100 Hz frequency band,

allowing for the detection of stellar-mass inspirals, while LISA-like missions

operate in the mHz band, and are limited to supermassive black-holes inspirals. This

reasoning is valid, except for extreme mass-ratio inspirals detectable with LISA,

which consist of a stellar mass black hole inspiraling into a supermassive one; in this

case, the constraints achievable with LISA can be comparable or in some cases

better than those that can be obtained with ground-based instruments (Chamberlain

and Yunes 2017; Perkins et al. 2021b; Maselli et al. 2020a, 2022; Barsanti et al.

2022).

How well can these modifications be measured with gravitational-wave

observations? Yagi et al. (2012b) predicted, based on the results of Cornish et al.

(2011), that a sky-averaged LIGO gravitational-wave observation with SNR of 10 of

the quasi-circular inspiral of non-spinning black holes with masses ð6; 12ÞM�

would allow a constraint of n1=4
3 .20 km, where we recall that n3 ¼ a2

3=ðbjÞ. A

similar sky-averaged, eLISA observation of a quasi-circular, spin-aligned black-

hole inspiral with masses ð106; 3 � 106 M�Þ would constrain n1=4
3 \107 km (Yagi

et al. 2012b). The loss in constraining power comes from the fact that the constraint

on n3 will scale with the total mass of the binary, which is six orders of magnitude

larger for equal-mass binaries detectable with space-borne sources. Similarly, the

observation of the ringdown part of the signal, instead of the inspiral, can also lead

to constraints on the theory, since the ringdown spectrum is shifted from the GR one

by n3. Blázquez-Salcedo et al. (2016) have argued that a ringdown observation with

ringdown SNR of 50 could allow for a constraint of n1=4
3 .30 km. More recently,

Chung and Yunes (2024a, b) updated this estimate through the calculation of the

ringdown frequencies for 10M� black holes of moderate spins, finding that an SNR

10 event should allow a constraint of n1=4
3 .30 km. As already discussed in

Sect. 2.3.4, existing gravitational-wave events from O1–O3 runs can place bounds

that are stronger than the above estimates because of the stacking of multiple events

(which leads to an enhancement of roughly 1=N1=2 after stacking N events of the

same SNR). Using inspiral-only waveforms, one arrives at the stacked bound

n1=4
3 .3 km (Nair et al. 2019; Perkins et al. 2021a; Wang et al. 2021a, 2023a; Lyu

et al. 2022). The most up-to-date stacked gravitational-wave bound is n1=4
3 .0:3 km,

which was found by Julié et al. (2025) through the construction of an inspiral-
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merger-ringdown waveform in scalar Gauss–Bonnet gravity via the effective-one-

body framework that was compared to O1-O3 events. This bound stronger than

other non-gravitational-wave bounds from the existence of compact objects (Pani

et al. 2011a) (n1=4
3 \26 km) and from the change in the orbital period of the low-

mass X-ray binary A0620–00 (n1=4
3 \1:9 km) (Yagi 2012a). Future gravitational-

wave detectors will be able to probe the theory even more stringently (Carson and

Yagi 2020b, c, e, f; Carson et al. 2020; Perkins et al. 2021b). For example, future

multiband observations with ground-based and space-based detectors (Sesana 2016;

Barausse et al. 2016; Liu et al. 2020) may probe the theory to n1=4
3 .10�1 km or

better (Carson et al. 2020; Perkins et al. 2021b), while a population of GW events

with third-generation gravitational-wave detectors can place the bound

n1=4
3 .10�3 � 10�2 km (Perkins et al. 2021b).

In dynamical Chern–Simons gravity, one expects similar projected gravitational-

wave constraints on n4, namely n1=4
4 \OðMÞ, where M is the total mass of the binary

system in kilometers. Therefore, for binaries detectable with ground-based

interferometers, one expects constraints of order n1=4
4 \10 km. In this case, such a

constraint would be roughly six orders of magnitude stronger than current LAGEOS

bounds (Ali-Haı̈moud and Chen 2011). Dynamical Chern–Simons gravity cannot be

constrained with binary pulsar observations, since the theory’s corrections to the

post-Keplerian observables are too high post-Newtonian order, given the current

observational uncertainties (Yagi et al. 2013). However, the gravitational wave

constraint is more difficult to achieve in the dynamical Chern–Simons case, because

the correction to the gravitational wave phase is degenerate with spin. However,

Yagi et al. (2012c) argued that precession should break this degeneracy, and if a

signal with sufficiently high SNR is observed, such bounds would be possible. One

must be careful, of course, to check that the small-coupling approximation is still

satisfied when saturating such a constraint (Yagi et al. 2012c). When using current

gravitational-wave observations, the bounds from the correction to the inspiral are

too weak and do not satisfy the small-coupling approximation (Nair et al. 2019;

Perkins et al. 2021a; Wang et al. 2021a), making such bounds unreliable. When

focusing on the correction to the ringdown, Silva et al. (2023) derived the bound as

n1=4
4 .100km, but this relies on a small spin expansion (which may not be accurate

for remnant black holes that spin fast). Similar to the Einstein–dilaton–Gauss–

Bonnet case, future gravitational-wave observations are expected to improve the

bound further (Yagi et al. 2012c; Carson and Yagi 2020b, c; Perkins et al. 2021b).

For example, a population of GW events with third-generation gravitational-wave

detectors can place the bound of n1=4
4 .10�2 � 10�1 km (Perkins et al. 2021b).

Although the main focus of this subsection is quadratic gravity theories, in which

the action is corrected at quadratic order in curvature, in principle, there are also

higher-order curvature corrections that one could study. Endlich et al. (2017)

constructed an effective field theory extension to GR that can be tested with

gravitational waves. This effective field theory does not involve additional fields, so

it does not reduce to Einstein–dilaton–Gauss–Bonnet or dynamical Chern–Simons
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gravity, even if one truncates the effective theory at quadratic order in curvature.

Sennett et al. (2020) included quartic order corrections and derived bounds on the

theory with existing gravitational-wave observations. Silva et al. (2023) derived

constraints on the characteristic length scale of the cubic (‘cEFT) and quartic (‘qEFT)

order effective field theory from ringdown observations of GW150914 and

GW200129, namely ‘cEFT � 38:2 km and ‘qEFT � 51:3km respectively, again

assuming a small spin expansion. Liu and Yunes (2024) constructed an approximate

inspiral-merger-ringdown waveform in cubic effective field theory of gravity and

derived a new bound from the GW170608 event that is 3.5 times stronger than

previous constraints. The curvature dependence of gravitational-wave tests of GR

has recently been carried out by Payne et al. (2024) in a model-independent

framework that is similar to the one developed by Stein and Yagi (2014), which

parameterizes scalar-interactions in the gravitational action.

4.2.5 Non-commutative geometry

As described in Sect. 2.3.6, there are two main approaches of non-commutative

geometry. We will review gravitational waves in each of these classes below:

(I) Spectral Geometry

Black holes exist in the spectral non-commutative geometry theories. What is more,

the usual Schwarzschild and Kerr solutions of GR persist in these theories. This is

not because such solutions have vanishing Weyl tensor, but because the quantity

rabClamb happens to vanish for such metrics. Similarly, one would expect that the

two-body, post-Newtonian metric that describes a black-hole–binary system should

also satisfy the non-commutative geometry field equations, although this has not

been proven explicitly. Moreover, although neutron-star spacetimes have not yet

been considered in non-commutative geometries, it is likely that if such spacetimes

are stationary and satisfy the Einstein equations, they will also satisfy the modified

field equations. Much more work on this is still needed to put all of these concepts

on a firmer basis.

Gravitational waves exist in non-commutative gravity. Their generation for a

compact binary system in a circular orbit was analyzed by in Nelson et al.

(2010a, b). They began by showing that a transverse-traceless gauge exists in this

theory, although the transverse-traceless operator is slightly different from that in

GR. They then proceeded to solve the modified field equations for the metric

perturbation [Eq. (69)] via a Green’s function approach:

hik ¼ 2b
Z

dt0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðt � t0Þ2 � jrj2
q

€I
ikðt0ÞJ 1ðb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðt � t0Þ2 � jrj2
q

Þ; ð223Þ

where recall that b2 ¼ ð�32pa0Þ�1
acts like a mass term, the integral is taken over

the entire past light cone, J 1ð�Þ is the Bessel function of the first kind, |r| is the

distance from the source to the observer and the quadrupole moment is defined as

usual:
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Iik ¼
Z

d3x T00
matx

ik; ð224Þ

where T00 is the time-time component of the matter stress-energy tensor. Of course,

this is only the first term in an infinite multipole expansion.

Although the integral in Eq. (223) has not yet been solved in the post-Newtonian

approximation, Nelson et al. (2010a, b) did solve for its time derivative to find

_h
xx ¼ � _h

yy ¼ 32blr2
12X

4 sin ð2/Þfc bjrj;X
b

� �

þ cos ð2/Þfs bjrj; 2X
b

� �� �

; ð225aÞ

_h
xy ¼ �32blr2

12X
4 sin 2/� p

2

	 


fc bjrj;X
b

� �

þ cos 2/� p
2

	 


fs bjrj; 2X
b

� �� �

;

ð225bÞ

where X ¼ 2pF is the orbital angular frequency, we have defined

fsðx; zÞ ¼
Z 1

0

ds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ x2
p J 1ðsÞ sin z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ x2
p

	 


; ð226Þ

fcðx; zÞ ¼
Z 1

0

ds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ x2
p J 1ðsÞ cos z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ x2
p

	 


; ð227Þ

and one has assumed that the binary is in the x-y plane and the observer is on the z-
axis. However, if one expands these expressions about b ¼ 1, one recovers the GR

solution to leading order, plus corrections that decay faster than 1/r. This then

automatically implies that such modifications to the generation mechanism will be

difficult to observe for sources at astronomical distances.

Given such a solution, one can compute the flux of energy carried by

gravitational waves to spatial infinity. Stein and Yunes (2011) have shown that in

quadratic gravity theories, this flux is still given by

_E ¼ j
2

Z

dXr2h _�hlm _�hlmi; ð228Þ

where �hlm is the trace-reversed metric perturbation, the integral is taken over a 2-

sphere at spatial infinity, and we recall that the angle brackets stand for an average

over several wavelengths. Given the solution in Eq. (225), one finds that the energy

flux is

_E ¼ 9

20
l2r2

12X
4b2 jrj2f 2

c bjrj; 2X
b

� �

þ jrj2f 2
s bjrj; 2X

b

� �� �

: ð229Þ

The asymptotic expansion of the term in between square brackets about b ¼ 1 is

jrj2 f 2
c bjrj; 2X

b

� �

þ f 2
s bjrj; 2X

b

� �� �

� jrj2 1

b2jrj2
1 þO

1

jrj

� �� �

( )

; ð230Þ

which then leads to an energy flux identical to that in GR, as any subdominant term
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goes to zero when the 2-sphere of integration is taken to spatial infinity. In that case,

there are no modifications to the rate of change of the orbital frequency. Of course,

if one were not to expand about b ¼ 1, then the energy flux would lead to certain

resonances at b ¼ 2X, but the energy flux is only well-defined at future null infinity.

The above analysis was used by Nelson et al. (2010a, b) to compute the rate of

change of the orbital period of binary pulsars, in the hopes of using this to constrain

b. Using data from the binary pulsar, they stipulated an order-of-magnitude

constraint of b� 10�13 m�1. However, such an analysis could be revisited to relax a

few assumptions used in Nelson et al. (2010b), Nelson et al. (2010a). First, binary

pulsar constraints on modified gravity theories require the use of at least three

observables. These observables can be, for example, the rate of change of the period
_P, the line of nodes _X and the perihelion shift _w. Any one observable depends on the

parameters ðm1;m2Þ in GR or ðm1;m2; bÞ in non-commutative geometries, where

m1;2 are the component masses. Therefore, each observable corresponds to a surface

of co-dimension one, i.e., a two-dimensional surface or sheet in the three-

dimensional space ðm1;m2; bÞ. If the binary pulsar observations are consistent with

Einstein’s theory, then all sheets will intersect at some point, within a certain

uncertainty volume given by the observational error. The simultaneous fitting of all

these observables is what allows one to place a bound on b. The analysis of Nelson

et al. (2010a, b) assumed that all binary pulsar observables were known, except for

b, but degeneracies between ðm1;m2; bÞ could potentially dilute constraints on these

quantities. Moreover, this analysis should be generalized to eccentric and inclined

binaries, since binary pulsars are known to not be on exactly circular orbits.

But perhaps the most important modification that ought to be made has to do with

the calculation of the energy flux itself. The expression for _E in Eq. (228) in terms

of derivatives of the metric perturbation derives from the effective gravitational-

wave stress-energy tensor, obtained by perturbatively expanding the action or the

field equations and averaging over several wavelengths (the Isaacson procedure, see

Isaacson 1968a, b). In modified gravity theories, the definition of the effective

stress-energy tensor in terms of the metric perturbation is usually modified, as found

for example in Stein and Yunes (2011). In the case of non-commutative geometries,

Stein and Yunes (2011) showed that Eq. (228) still holds, provided one considers

fluxes at spatial infinity. However, the analysis of Nelson et al. (2010a, b) evaluated

this energy flux at a fixed distance, instead of taking the r ! 1 limit.

The balance law relates the rate of change of a binary’s binding energy with the

gravitational wave flux emitted by the binary, but for it to hold, one must require the

following: (i) that the binary be isolated and possess a well-defined binding energy,

and (ii) that the total stress-energy of the spacetime satisfies a local covariant

conservation law. If (ii) holds, one can use this conservation law to relate the rate of

change of the volume integral of the energy density, i.e., the energy flux, to the

volume integral of the current density, which can be rewritten as an integral over the

boundary of the volume through Stokes’ theorem. Since in principle one can choose

any integration volume, any physically-meaningful result should be independent of

the surface of that volume. This is indeed the case in GR, provided one takes the

integration 2-sphere to spatial infinity. Presumably, if one included all the relevant
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terms in _E, without taking the limit to i0, one would still find a result that is

independent of the surface of this two-sphere. However, this has not yet been

verified. Therefore, the analysis of Nelson et al. (2010b), Nelson et al. (2010a)

should be taken as an interesting first step toward understanding possible changes in

the gravitational-wave metric perturbation in non-commutative geometries.

Not much beyond this has been done regarding non-commutative geometries and

gravitational waves. In particular, one lacks a study of what the final response

function would be if the gravitational-wave propagation were modified, which of

course depends on the time-evolution of all propagating gravitational-wave degrees

of freedom, and whether there are only the two usual dynamical degrees of freedom

in the metric perturbation.

(II) Moyal-type Non-commutative Geometry

Gravitational waves from compact binary inspirals in the Moyal-type non-

commutative geometry were first derived in Kobakhidze et al. (2016), and were

improved by Jenks et al. (2020) by relaxing some of the assumptions made in

Kobakhidze et al. (2016). Using the stress-energy tensor for a black hole in Eq. (72)

and orbital averaging, the binding energy of a binary is given by

E ¼ EGR � m4gð1 � 2gÞK2

16r3
½1 � 3ðL̂ � hÞ2�; ð231Þ

where EGR is the GR contribution, while L̂ is the unit orbital angular momentum.

We recall that K and h are defined in Eq. (73). The above correction to the binding

energy further modifies Kepler’s third law. The gravitational-wave luminosity is

still given through the quadrupole formula and is not modified from GR, modulo the

modifications coming from Kepler’s third law. To leading order in small deviations

from GR, the luminosity is given by

_E ¼ 32

5
g2x5 1 þ K2ð1 � 2gÞ

32
23 � 39ðL̂ � hÞ2
	 


x2

� �

; ð232Þ

with x 
 ðpmf Þ2=3
. From these expressions, we can compute _f ¼ ðdf=dEÞðdE=dtÞ

and the Fourier phase in the frequency domain becomes

Wðf Þ ¼ WGR � 75

2048

1 � 2g
g

K2½7 � 15ðL̂ � hÞ2�x�1=2: ð233Þ

Given that the GR phase WGR / x�5=2 to leading post-Newtonian order, the cor-

rection term enters at second post-Newtonian order relative to GR. When L̂ � h ¼ 1,

the waveform in the frequency domain is given by

~hNC ¼ ~hGRð1 þ aNCu
aNCÞeibNCu

bNC
; ð234Þ

with (Tahura and Yagi 2018)
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bNC ¼ � 75

256
g�4=5ð2g� 1ÞK2; bNC ¼ �1;

aNC ¼ � 3

8
g�4=5ð2g� 1ÞK2; aNC ¼ þ4;

ð235Þ

clearly mapping to the ppE framework.

Let us now discuss the bound on the Moyal-type non-commutative geometry.

Kobakhidze et al. (2016) used the bound on the second post-Newtonian order

correction from GW150914, obtained by the LIGO/Virgo Collaboration (Abbott

et al. 2016d), and found
ffiffiffiffi

K
p

.3:5. Jenks et al. (2020) rederived the bounds from the

posterior samples from several events in the GWTC-1 catalog, including the second

post-Newtonian, non-GR correction term, and found a probability distribution on

K2½7 � 15ðL̂ � hÞ2�. Finding 90%-credible limits, the authors then derived the bound

on
ffiffiffiffi

K
p

as a function of ðL̂ � hÞ. In most cases, the bound on
ffiffiffiffi

K
p

is of order unity and

is consistent with Kobakhidze et al. (2016). Jenks et al. (2020) also derived the non-

commutative correction to the pericenter precession of a binary and applied the

result to the double binary pulsar PSR J0737-3039. Using the measurements of

pericenter precession together with the measurements of the Shapiro delay, mass

ratio and mass functions for determining the masses of the pulsars, the authors

derived a bound on
ffiffiffiffi

K
p

that ended up being weaker than the gravitational-wave

bounds by roughly a factor of 5. Perkins et al. (2021b) gave a future forecast on

probing non-commutative gravity with gravitational waves. Through a population of

gravitational-wave events, the authors found that the theory can be probed to the
ffiffiffiffi

K
p

.10�3 level.

4.3 Generic tests

4.3.1 Massive graviton theories

Several massive graviton theories have been proposed to later be discarded due to

ghosts, non-linear or radiative instabilities. Thus, little work has gone into studying

whether black holes and neutron stars in these theories persist and are stable, and

how the generation of gravitational waves is modified. Such questions will depend

on the specific massive gravity model considered, and of course, if a Vainshtein

mechanism is active and effective, then there will not be any significant

modifications.

However, a few generic properties of such theories can still be stated. One of

them is that the non-dynamical (near-zone) gravitational field will be corrected,

leading to Yukawa-like modifications to the gravitational potential (Will 1998)

VMGðrÞ ¼
M

r
e�r=kg ; or VMGðrÞ ¼

M

r
1 þ cMGe

�r=kg
	 


; ð236Þ

where r is the distance from the source to a field point. For example, the latter

parameterization arises in gravitational theories with compactified extra dimensions

(Kehagias and Sfetsos 2000). Such corrections lead to a fifth force, which then in
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turn allows us to place constraints on mg through solar system observations (Tal-

madge et al. 1988). Nobody has yet considered how such modifications to the near-

zone metric could affect the binding energy of compact binaries and their associated

gravitational waves.

Another generic consequence of a graviton mass is the appearance of additional

propagating degrees of freedom in the gravitational wave metric perturbation. In

particular, one expects scalar, longitudinal modes to be excited (see, e.g., Dilkes

et al. 2001). This is, for example, the case if the action is of Pauli–Fierz type (Fierz

and Pauli 1939; Dilkes et al. 2001). Such longitudinal modes arise due to the non-

vanishing of the W2 and W3 Newman–Penrose scalars, and can be associated with

the presence of spin-0 particles, if the theory is of Type N in the E(2) classification

(Will 2014). The specific form of the scalar mode will depend on the structure of the

modified field equations, and thus, it is not possible to generically predict its

associated contribution to the response function.

A robust prediction of massive graviton theories relates to how the propagation of

gravitational waves is affected. If the graviton has a mass, its velocity of

propagation will differ from the speed of light, as given for example in Eq. (26).

Will (1998) showed that such a modification in the dispersion relation leads to a

correction in the relation between the difference in time of emission Dte and arrival

Dta of two gravitons:

Dta ¼ 1 þ zð Þ Dte þ
D

2k2
g

1

f 2
e

þ 1

f
02
e

� �

" #

; ð237Þ

where z is the redshift, kg is the graviton’s Compton wavelength, fe and f 0e are the

emission frequencies of the two gravitons and D is the distance measure

D ¼ 1 þ z

H0

Z z

0

dz0

ð1 þ z0Þ2½XMð1 þ z0Þ3 þ XK�1=2
; ð238Þ

where H0 is the present value of the Hubble parameter, XM is the matter energy

density and XK is the vacuum energy density (for a zero spatial-curvature universe).

Even if the gravitational wave at the source is unmodified, the graviton time

delay will leave an imprint on the Fourier transform of the response function by the

time it reaches the detector (Will 1998). This is because the Fourier phase is

proportional to

W / 2p
Z f

fc

½tðf Þ � tc�df 0; ð239Þ

where t is now not a constant but a function of frequency as given by Eq. (237).

Carrying out the integration, one finds that the Fourier transform of the response

function becomes
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~hMG ¼ ~hGRe
ibMGu

bMG
; ð240Þ

where ~hGR is the Fourier transform of the response function in GR, we recall that

u ¼ ðpMf Þ1=3
and we have defined

bMG ¼ � p2DM

k2
gð1 þ zÞ

; bMG ¼ �3: ð241Þ

Such a correction is of 1 post-Newtonian order relative to the leading-order,

Newtonian term in the Fourier phase. Notice also that there are no modifications to

the amplitude at all.

Numerous studies have considered possible bounds on kg. The most stringent

solar system constraint is kg [ 3:9 � 1013 km (Will 2018a; Bernus et al. 2020) and

it comes from observations of Kepler’s third law, which if the graviton had a mass

would be modified by the Yukawa factor in Eq. (236). Observations of the rate of

decay of the period in binary pulsars (Finn and Sutton 2002; Baskaran et al. 2008)

can also be used to place the more stringent constraint k[ 1:5 � 1014 km.

Similarly, studies of the stability of Kerr black holes in Pauli–Fierz theory (Fierz

and Pauli 1939) have yielded constraints of kg [ 2:4 � 1013 km (Brito et al.

2013b).

Gravitational-wave observations of binary systems can also be used to constrain

the mass of the graviton. One possible test is to compare the times of arrival of

coincident gravitational wave and electromagnetic signals, for example in white-

dwarf binary systems. Larson and Hiscock (2000) and Cutler et al. (2003) estimated

that one could constrain kg [ 3 � 1013 km with classic LISA. Will (1998) was the

first to consider constraints on kg from gravitational-wave observations only, a test

that was indeed carried out with the first aLIGO observations leading to the

constraint kg [ 1013 km at 90% confidence with GW150914 (Abbott et al. 2016d).

Using 43 gravitational-wave events in the catalog GWTC-3, the above bound has

been updated to kg [ 9:4 � 1013 km (Abbott et al. 2021c). Will considered sky-

averaged, quasi-circular inspirals and found that LIGO observations of 10M� equal-

mass black holes would lead to a constraint of kg [ 6 � 1012 km with a Fisher

analysis, a projection that was quite close to the bound that aLIGO obtained.

Constraints on the mass of the graviton can of course improve with future

observations. For example, constraints are improved to kg [ 6:9 � 1016 km with

classic LISA observations of 107 M�, equal-mass black holes because the massive

graviton correction accumulates with distance traveled (see Eq. (240)). Will’s study

was later generalized by Will and Yunes (2004) and by Chamberlain and Yunes

(2017), who considered how different detector characteristics affected the possible

bounds on kg. Will and Yunes found that the bound scales with the square-root of

the LISA arm length and inversely with the square root of the LISA acceleration

noise (Will and Yunes 2004). Chamberlain and Yunes (2017) found that the bound

can increase to kg [ 1015 km with single gravitational-wave observations with

third-generation ground-based detectors and up to kg [ 1018 km with certain
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gravitational-wave observations with space-based detectors. Carson and Yagi

(2020c) showed that multiband observations of GW150914-like events with ground-

based and space-based detectors can constrain the graviton Compton wavelength to

kgJ1014 km, while Perkins et al. (2021b) found that the bound can be as strong as

kgJ1016 � 1017 km with a population of gravitational-wave events detected by a

network of third-generation ground-based detectors.

The initial projections of Will have been refined by Berti et al. (2005a), Yagi and

Tanaka (2010a), Arun and Will (2009), Stavridis and Will (2010), Berti et al. (2011)

to allow for non–sky-averaged responses, spin-orbit and spin-spin coupling, higher

harmonics in the gravitational wave amplitude, eccentricity and multiple detections.

Although the bound deteriorates on average for sources that are not optimally

oriented relative to the detector, the bound improves when one includes spin

couplings, higher harmonics, eccentricity, and multiple detections as the additional

information and power encoded in the waveform increases, helping to break

parameter degeneracies. However, all of these studies neglected the merger and

ringdown phases of the coalescence, an assumption that was relaxed by Keppel and

Ajith (2010), leading to the strongest projected bounds kg [ 4 � 1017 km.

Moreover, all studies until then had computed bounds using a Fisher analysis

prescription, an assumption relaxed by Del Pozzo et al. (2011), who found that a

Bayesian analysis with priors consistent with solar system experiments leads to

bounds stronger than Fisher ones by roughly a factor of two. Perkins and Yunes

(2019) took into account the effect of screening inside the Milky Way and the host

galaxy of a source binary. They found that future gravitational-wave observations

can place constraints on kg and the screening radius of Oð1013Þ–Oð1017Þ km and

Oð102Þ–Oð104Þ Mpc respectively.

In summary, projected constraints on kg are generically stronger than current

solar system or binary pulsar constraints by several orders of magnitude, given a

LISA observation of massive black-hole mergers. Even aLIGO observations can

and have done better than current solar system constraints by factors between a few

(Del Pozzo et al. 2011) to an order of magnitude (Keppel and Ajith 2010; Abbott

et al. 2016d), depending on the source. All of these results are summarized in

Table 2, normalizing everything to an SNR of 10.

Before proceeding, we should note that the correction to the propagation of

gravitational waves due to a non-zero graviton mass are not exclusive to binary

systems. In fact, any gravitational wave that propagates a significant distance from

the source will suffer from the time delays described in this section. Binary inspirals

are particularly useful as probes of this effect because one knows the functional

form of the waveform, and thus, one can employ matched filtering to obtain a strong

constraint. But, in principle, one could use gravitational-wave bursts from

supernovae or other sources.

4.3.2 Massive boson fields and superradiance

Black holes in the presence of massive boson fields are unstable to the superradiant

instability (Zeldovich and Starobinsky 1972; Misner 1972; Damour et al. 1976;
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Ternov et al. 1978) (see Brito et al. 2015 for a review). When the Compton

wavelength of the massive boson is comparable to the size of the black hole’s

horizon, the boson field gains energy (exponentially populating bound Bohr orbits

Table 2 Comparison of constraints and projected constraints on massive graviton theories

References Binary mass kg½1015 km� Properties

Will (2018a), Bernus et al. (2020),

Mariani et al. (2023)

x 0.039, 1.22 Solar-system dynamics

Finn and Sutton (2002) x 1:6 � 10�5 Binary pulsar orbital period in

Visser’s theory (Visser 1998)

Brito et al. (2013b) x 0.024 Stability of black holes in Pauli–

Fierz theory (Fierz and Pauli

1939)

Zakharov et al. (2016) x 0.00043 S2 orbit

Abbott et al. (2016d) ð32; 39ÞM� 0.01 GW150914 aLIGO observation

Abbott et al. (2021c) x 0.094 43 gravitational-wave events from

GWTC-3

Will (1998) ð10; 10ÞM� 0.006 LIGO, Fisher, Ang. Ave. circular,

non-spinning

Del Pozzo et al. (2011) ð13; 3ÞM� 0.006 –

0.014

LIGO, Bayesian, Ang. Ave. circular,

non-spinning

Chamberlain and Yunes (2017) ð30; 30ÞM� 1 third-generation ground-based,

Fisher, Ang. Ave., circular, non-

spinning

Larson and Hiscock (2000), Cutler

et al. (2003)

ð0:5; 0:5ÞM� 0.03 LISA, WD-WD, coincident with

electromagnetic signal

Will (1998), Will and Yunes

(2004), Chamberlain and Yunes

(2017)

ð107; 107ÞM� 50–70 LISA, Fisher, Ang. Ave. circular,

non-spinning

Berti et al. (2005a) ð106; 106ÞM� 10 LISA, Fisher, Monte-Carlo circular,

w/spin-orbit

Arun and Will (2009) ð105; 105ÞM� 10 LISA, Fisher, Ang. Ave. higher-

harmonics, circular, non-spinning

Yagi and Tanaka (2010a) ð106; 107ÞM� 22 LISA, Fisher, Monte-Carlo

eccentric, spin-orbit

Yagi and Tanaka (2010b) ð106; 107ÞM� 2.4 DECIGO, Fisher, Monte-Carlo

eccentric, spin-orbit

Stavridis and Will (2010) ð106; 106ÞM� 50 LISA, Fisher, Monte-Carlo circular,

w/spin modulations

Keppel and Ajith (2010) ð107; 107ÞM� 400 LISA, Fisher, Ang. Ave. circular,

non-spinning, w/merger

Berti et al. (2011) ð13; 3ÞM� 30 eLISA, Fisher, Monte-Carlo

multiple detections, circular, non-

spinning

Entries above the double line correspond to actual bounds, while those below correspond to projected

bounds with gravitational-wave observations (normalized to an SNR of 10). Ang. Ave. stands for an

angular average over all sky locations
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around the black hole; Arvanitaki and Dubovsky 2011; Arvanitaki et al. 2015) at the

expense of the black hole’s rotational energy, forming a Bose–Einstein condensate

cloud around it. For stellar mass black holes, this occurs if the boson field is

extremely light, with a mass in the range ð10�14; 10�10Þ eV. Bosons in this mass

range include the QCD axion (Weinberg 1978; Wilczek 1978; Peccei and Quinn

1977), string theory axions (Arvanitaki et al. 2010) and dark photons (Holdom

1986; Pani et al. 2012).

The discovery of superradiant instabilities would be a smoking gun for the

existence of some type of exotic physics, which has therefore prompted many

studies that investigate its signature in astrophysical environments. For example, if

superradiance is active, then rapidly rotating black holes should not exist, as the

black holes should be spun down and energy is dumped into the boson field. This

would appear as a drastic deficit in the spin-population of black holes, which could

be observed given a large enough catalog of gravitational wave observations from

compact binary coalescence (Arvanitaki et al. 2010; Arvanitaki and Dubovsky

2011; Arvanitaki et al. 2015). In fact, the measurement of spin from X-ray

observations from accretion disks around rotating black holes has been used to place

constraints on the mass of such light bosons (Brito et al. 2013b; Arvanitaki et al.

2015).

Superradiance and massive boson fields would also have an effect in the emission

of gravitational waves. The latter can produce gravitational waves in several ways.

One possibility is for the Bose-Einstein condensate cloud to completely collapse if

the attractive boson self-interactions become stronger than the gravitational binding

energy, producing a Bosenova. The resulting gravitational waves are expected to be

burst-like, although a quantitative dynamical analysis has not yet been carried out.

Another way for the massive bosons to generate gravitational waves is through

transitions between energy levels and via bosonic annihilation. In both cases, the

emitted gravitational waves are coherent, monochromatic and long-lasting,

producing signals that could be observed by ground-based detectors through

continuous searches (Arvanitaki et al. 2017). These waves would also produce a

stochastic background that could also be detected with ground-based instruments

(Brito et al. 2017b). Recent works on probing ultralight bosons with gravitational-

wave observations include Brito et al. (2017a, b), Tsukada et al. (2019), East

(2018), Ikeda et al. (2019), Dergachev and Papa (2019), Ng et al. (2021a), Chen

et al. (2020), Palomba et al. (2019), Brito et al. (2020), Dergachev and Papa (2020),

Zhu et al. (2020a), Tsukada et al. (2021), Ng et al. (2021b), Yuan et al. (2021), Guo

et al. (2022b), Kalogera et al. (2021), Abbott et al. (2022), Zhang et al. (2021),

Yuan et al. (2022). For example, Tsukada et al. (2019) carried out the first search of

a stochastic gravitational-wave background from boson clouds with the first

observing run of LIGO/Virgo and excluded scalar bosons with masses

½2:0; 3:8� � 10�13 eV, while Yuan et al. (2022) updated the results to rule out the

mass range ½1:5; 15� � 10�13 eV with the first and third observing runs.
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4.3.3 Lorentz-violating gravity

We have so far concentrated on massive graviton theories, but, as discussed in

Sect. 2.3.2, there is a strong connection between such theories and Lorentz

violation. Modifications to the dispersion relation are usually a result of a

modification of the Lorentz group or its action in real or momentum space. For this

reason, it is interesting to consider generic Lorentz-violating-inspired, modified

dispersion relations of the form of Eq. (27), or more precisely (Mirshekari et al.

2012)

v2
g

c2
¼ 1 � AEaLV�2; ð242Þ

where aLV controls the structure of the modification and A its amplitude.

A plethora of models that violate Lorentz symmetry in the gravitational sector

can be modeled with the generic modified dispersion relation presented above.

Clearly, when aLV ¼ 0 and A ¼ m2
gc

2 one recovers the standard modified dispersion

relation of Eq. (26). On the other hand, one can reproduce the predictions of the

SME when A ¼ �2�k
ðdÞ
ðIÞ for even d� 4 and A ¼ 
2�k

ðdÞ
ðVÞ for odd d� 5 with a ¼ d � 2

in the rotation-invariant limit to linear order in �k
ðdÞ
ðVÞ. Here, �k

ðdÞ
ðIÞ and �k

ðdÞ
ðVÞ are constant

coefficients to quantify the degree of Lorentz violation. In the rotational invariant

case, the modified dispersion relation in the SME is given in Eq. (5) of Kostelecky

and Mewes (2016). The mapping between Eq. (242) and other modified gravity

models is given in Table 3. Niu et al. (2022) constrained anisotropy, birefringence

and dispersion in gravitational-wave propagation within the context of the SME

with GWTC-3. Gong et al. (2023) derived similar constraints on non-birefringent

dispersions with GWTC-3.

Such a modification to the propagation of gravitational waves introduces a

generalized time delay between subsequent gravitons of the form (Mirshekari et al.

2012)

Dta ¼ ð1 þ zÞ Dte þ
DaLV

2k2�aLV

a

1

f 2�aLV
e

� 1

f 0e
2�aLV

� �

" #

; ð243Þ

where we have defined kA 
 hpA
1=ðaLV�2Þ, with hp Planck’s constant, and the gen-

eralized distance measure (Mirshekari et al. 2012)

DaLV
¼ ð1 þ zÞ1�aLV

H0

Z z

0

ð1 þ z0ÞaLV�2

XMð1 þ z0Þ3 þ XK

h i1=2
dz0: ð244Þ

Such a modification then leads to the following correction to the Fourier transform

of the response function (Mirshekari et al. 2012)
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~hLV ¼ ~hGRe
ibLVu

bLV
; ð245Þ

where ~hGR is the Fourier transform of the response function in GR, and we have

defined (Mirshekari et al. 2012)

baLV 6¼1
LV ¼ � p2�aLV

1 � aLV

DaLV

k2�aLV

A

M1�aLV

ð1 þ zÞ1�aLV
; baLV 6¼1

LV ¼ 3ðaLV � 1Þ: ð246Þ

The case aLV ¼ 1 is special leading to the Fourier phase correction (Mirshekari

et al. 2012)

dWaLV¼1 ¼ 3pD1

kA
ln u: ð247Þ

The reason for this is that when aLV ¼ 1 the Fourier phase is proportional to the

integral of 1/f, which then leads to a natural logarithm.

The constraints one can place on Lorentz-violating gravity depend on the

particular value of aLV. Of course, when aLV ¼ 0, one recovers the standard massive

graviton result with the mapping k�2
g ! k�2

g þ k�2
A . When aLV ¼ 2, the dispersion

relation is identical to that in Eq. (26), but with a redefinition of the speed of light,

and should thus be unobservable. Indeed, in this limit the correction to the Fourier

phase in Eq. (245) becomes linear in frequency, and this is 100% degenerate with

the time of coalescence parameter in the standard GR Fourier phase. Finally,

relative to the standard GR terms that arise in the post-Newtonian expansion of the

Table 3 Mapping between different modified gravity models and the modified dispersion relation of

Eq. (242)

Theory A aLV

Double Special Relativity (Amelino-Camelia 2001; Magueijo and

Smolin 2002; Amelino-Camelia 2002, 2010)

gdsrt 3

Extra-Dimensional Theories (Sefiedgar et al. 2011b) �aedt 4

Hořava–Lifshitz Gravity (Hořava 2009a, b; Vacaru 2012; Blas and

Sanctuary 2011)
j4

hll
2
hl=16 4

Massive Graviton (Will 1998; Rubakov and Tinyakov 2008;

Hinterbichler 2012; de Rham 2014)
m2

gc
4 0

Multifractional Spacetime Theory (timelike) (Calcagni

2010, 2012b, a, 2017)
2E2�a

� =ð3 � aÞ 2 � 3

Multifractional Spacetime Theory (spacelike) (Calcagni

2010, 2012b, a, 2017)
�2 � 31�a=2E2�a

� =ð3 � aÞ 2 � 3

Even SME (Kostelecky and Mewes 2016) �2�k
ðdÞ
ðIÞ

d � 2

Odd SME (Kostelecky and Mewes 2016) 
2�k
ðdÞ
ðVÞ

d � 2

In double special relativity, gdsrt characterizes an observer-independent length scale. In extra-dimensional

theories, aedt represents the square of the Planck length. In Hořava–Lifshitz gravity, jhl is related to the

bare gravitational constant, while lhl is related to the deformation in the ‘‘detailed balance’’ condition. In

multifractional spacetimes, E� is the characteristic length scale above which spacetime is discrete
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Fourier phase, the new corrections are of ð1 þ 3aLV=2Þ post-Newtonian order. Then,

if LIGO gravitational-wave observations were incapable of discerning between a 4

post-Newtonian and a 5 post-Newtonian waveform, then such observations would

not be able to see the modified dispersion effect if aLV [ 2. Mirshekari et al. (2012)

confirmed this expectation with a Fisher analysis of non-spinning, comparable-mass

quasi-circular inspirals. They found that for aLV ¼ 3, one can place very weak

bounds on kA, namely A\10�7 eV�1 with a LIGO observation of a ð1:4; 1:4ÞM�
neutron star inspiral, A\0:2 eV�1 with an enhanced-LISA or NGO observation of a

ð105; 105ÞM� black-hole inspiral, assuming a SNR of 10 and 100 respectively. A

word of caution is due here, though, as these analyses neglect any Lorentz-violating

correction to the generation of gravitational waves, including the excitation of

additional polarization modes. One would expect that the inclusion of such effects

would only strengthen the bounds one could place on Lorentz-violating theories, but

this must be done on a theory by theory basis. Bounds on the modified dispersion

relation parameter A have been derived with GW150914 and GW151226 by Yunes

et al. (2016) and with catalogs of binary black hole merger events by the LIGO/

Virgo Collaboration (Abbott et al. 2019c, 2021b, c). Regarding the Standard Model

Extension, one can consider not only isotropic dispersion, but also anisotropic and

birefringent ones. Kostelecky and Mewes (2016) derived the first bounds on

gravitational Lorentz violation within the Standard Model Extension. This analysis

was later improved by Wang et al. (2021c), Niu et al. (2022), Haegel et al. (2023)

for gravitational-wave events in GWTC-1, 2 and 3. Gong et al. (2022) derived

bounds on Lorentz (and parity) violation effects in the Standard Model Extension

due to fifth and sixth spatial derivatives in the action, motivated by Hořava-Lifshitz

gravity, using gravitational-wave events from GWTC-1 and 2.

The modified dispersion relation in Eq. (242) can be further generalized. For

example, a generic evolution equation for a single tensor perturbation under a

cosmological background spacetime is given by (Saltas et al. 2014; Nishizawa

2018)

h00ij þ ð2 þ mÞHh0ij þ ðc2
Tk

2 þ a2m2
gÞhij ¼ a2cij; ð248Þ

where a is the scale factor, a prime represents the conformal time derivative, m is the

Planck mass run rate, and cT is the gravitational-wave propagation speed. When cT
is a function of E, the group velocity of the graviton vg can be mapped to Eq. (242),

after expanding the former about the GR case. Equation (248) can be mapped to

various example theories, including theories with extra dimension, Horndeski the-

ory, f(R) gravity and Einstein-Æther theory. The parameter m modifies the Hubble

friction rate and changes the amplitude of gravitational waves. Thus, this parameter

effectively modifies the luminosity distance measured by gravitational waves d
ðGWÞ
L

relative to that measured by electromagnetic observations d
ðEMÞ
L . For example, a

generic modification to d
ðGWÞ
L can be parameterized as (Belgacem et al. 2018)
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d
ðGWÞ
L

d
ðEMÞ
L

¼ N0 þ
1 � N0

ð1 þ zÞn ; ð249Þ

where z is the redshift, N0 corresponds to the ratio at z ! 1, and n shows the

redshift dependence of the ratio. GR is recovered when N0 ! 1, which is the case

when z ! 0. This parameterization has been tested with the GW170817 event and

studied with future events (Belgacem et al. 2018; Mukherjee et al. 2021; Finke

et al. 2021a; Jiang and Yagi 2021; Mancarella et al. 2022; Finke et al.

2022, 2021b). If there are multiple fields that couple to each other, the evolution

equation in Eq. (248) can be further generalized. For example, when there are two

tensor perturbations, h and s (omitting the tensor indices for simplicity), the evo-

lution equations can be expressed as (Beltrán Jiménez et al. 2020; Ezquiaga et al.

2021)

Î
d2

dg2
þ m̂ðgÞ d

dg
þ ĈðgÞk2 þ P̂ðgÞk þ M̂ðgÞ

� �

h

s

� �

¼ 0: ð250Þ

Here Î is the identity matrix while m̂, Ĉ, P̂ and M̂ are the friction, velocity, chiral and

mass mixing matrices respectively. This mixing induces echoes, distortions, oscil-

lations and birefringence in gravitational waves. For example, the gravitational

wave oscillation in bigravity, described in Sect. 4.2.2, corresponds to having non-

vanishing off-diagonal components in M̂.

4.3.4 Variable G theories and large extra dimensions

The lack of a particular Lagrangian associated with variable G theories, excluding

scalar-tensor theories and theories with large extra dimensions, makes it difficult to

ascertain whether black-hole or neutron-star binaries exist in such theories. Whether

this is so will depend on the particular variable G model considered. In spite of this,

if such binaries do exist, the gravitational waves emitted by such systems will carry

some generic modifications relative to the GR expectation.

Most current tests of the variability of Newton’s gravitational constant rely on

electromagnetic observations of massive bodies, such as neutron stars. As discussed

in Sect. 2.3.5, scalar-tensor theories can be interpreted as variable-G theories, where

the variability of G is really a scalar-field-induced variation in the coupling between

gravity and matter. However, Newton’s constant serves the more fundamental role

of defining the relationship between geometry or length and energy, and such a

relationship is not altered in most scalar-tensor theories, unless the scalar fields are

allowed to vary on a cosmological scale (background, homogeneous scalar

solution).

For this reason, one might wish to consider a possible temporal variation of

Newton’s constant in pure vacuum spacetimes, such as in black-hole–binary

inspirals. Such temporal variation would encode ð _G=GÞ at the time and location of

the merger event. Thus, once a sufficiently large number of gravitational wave

events has been observed and found consistent with GR, one could reconstruct a
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constraint map that bounds ð _G=GÞ along our past light cone (as a function of

redshift and sky position). Since our past-light cone with gravitational waves will

extend to roughly redshift 10 with LISA (limited by the existence of merger events

at such high redshifts), such a constraint map will be more complete than what one

can achieve with current tests at redshifts of almost zero. Big Bang nucleosynthesis

constraints also allow us to bound a linear drift in ð _G=GÞ from z� 103 to zero, but

these become degenerate with limits on the number of relativistic species.

Moreover, these bounds exploit the huge lever-arm provided by integrating over

cosmic time, but they are insensitive to local, oscillatory variations of G with

periods much less than the cosmic observation time. Thus, gravitational-wave

constraint maps would test one of the pillars of GR: local position invariance. This

principle (encoded in the equivalence principle) states that the laws of physics (and

thus the fundamental constants of nature) are the same everywhere in the universe.

Let us then promote G to a function of time of the form (Yunes et al. 2010c)

Gðt; x; y; zÞ � Gc þ _Gc tc � tð Þ; ð251Þ

where Gc ¼ Gðtc; xc; yc; zcÞ and _Gc ¼ ðoG=otÞðtc; xc; yc; zcÞ are constants, and the

sub-index c means that these quantities are evaluated at coalescence. Clearly, this is

a Taylor expansion to first order in time and position about the coalescence event

ðtc; xicÞ, which is valid provided the spatial variation of G is much smaller than its

temporal variation, i.e., jriGj � _G, and the characteristic period of the temporal

variation is longer than the observation window (at most, Tobs � 3 years for LISA),

so that _GcTobs � Gc. Similar parameterization of G(t) have been used to study

deviations from Newton’s second law in the solar system (Dirac 1937; Wetterich

1988; Weinberg 1989; Uzan 2003). Thus, one can think of this modification as the

consequence of some effective theory that could represent the predictions of several

different alternative theories.

The promotion of Newton’s constant to a function of time changes the rate of

change of the orbital frequency, which then directly impacts the gravitational-wave

phase evolution. To leading order, Yunes et al. (2010c) find

_F ¼ _FGR þ 195

256p
M�2x3g3=5ð _GcMÞ; ð252Þ

where _FGR is the rate of change of the orbital frequency in GR, due to the emission

of gravitational waves and x ¼ ð2pMFÞ1=3
. Such a modification to the orbital fre-

quency evolution leads to the following modification (Yunes et al. 2010c) to the

Fourier transform of the response function in the stationary-phase approximation

(Bender and Orszag 1999; Cutler and Flanagan 1994; Droz et al. 1999; Yunes et al.

2009)

~h ¼ ~hGR 1 þ a _Gu
a _G

� �

eib _Gu
b _G
; ð253Þ

where we recall again that u ¼ ðpMf Þ1=3
and have defined the constant parameters

(Yunes et al. 2010c; Tahura and Yagi 2018)
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a _G ¼ � 35

512

_Gc

Gc
GcMzð Þ; b _G ¼ � 275

851968

_Gc

Gc
GcMzð Þ; a ¼ �8; b ¼ �13;

ð254Þ

to leading order in the post-Newtonian approximation. Tahura and Yagi (2018)

generalized the above corrections by allowing the gravitational constant in the

conservative and dissipative sectors to be different (which is the case for example in

Jordan–Fierz–Brans–Dicke theory with a time-varying scalar field) and including

sensitivities as the gravitational self-energy of a body is a function of the gravita-

tional constant. We note that this corresponds to a correction of �4 post-Newtonian

order in the phase, relative to the leading-order term, and that the corrections are

independent of the symmetric mass ratio, scaling only with the redshifted chirp

mass Mz. Due to this, one expects the strongest effects to be seen in low-frequency

gravitational waves, such as those one could detect with LISA or DECIGO/BBO.

Given such corrections to the gravitational-wave response function, one can

investigate the level to which a gravitational-wave observation consistent with GR

would allow us to constrain _Gc. Yunes et al. (2016) and Tahura et al. (2019) used

the first two gravitational-wave events and derived the constraint of _Gc=Gc � 2:2 �
104 yr�1. Yunes et al. (2010c) carried out a study for future detectors and found that

for comparable-mass black-hole inspirals of total redshifted mass mz ¼ 106 M� with

LISA, one could constrain ð _Gc=GcÞ.10�9 yr�1 or better to redshift 10, assuming an

SNR of 103 (see also Carson and Yagi 2020c and Perkins et al. 2021b for similar

bounds). The constraint is strengthened when one considers intermediate-mass

black-hole inspirals and extreme mass-ratio inspirals, where one would be able to

achieve a bound of ð _Gc=GcÞ.10�11 yr�1 and ð _Gc=GcÞ.10�16 yr�1 respectively

(Chamberlain and Yunes 2017). Although this is not as stringent as the strongest

constraints from other observations (see Sect. 2.3.5), we recall that gravitational-

wave constraints would measure local variations at the source, as opposed to local

variations at zero redshift or integrated variations from the very early universe.

There are other interesting ways to measure the time variation of G with gravitational

waves. For example, Zhao et al. (2018) proposed a method that combines the

gravitational-wave standard siren and supernova standard candle measurements as

follows. Through gravitational waves from a binary neutron star with associated

electromagnetic counterparts, one can determine the luminosity distance and redshift of

the source independently (as was the case for GW170817). If there is a known type Ia

supernova with a similar redshift, one can identify the luminosity distance of this

supernova to be roughly the same as the binary neutron star, which leads one to

determine the peak luminosity of the supernova. This peak luminosity depends on the

Chandrasekhar mass, and thus, it is proportional to G�3=2, so the combination of the

gravitational-wave and supernova observations allows one to measure G at a certain

redshift. For example, if a future third-generation gravitational-wave interferometer

detects a signal at z ¼ 0:4 and a supernova is known at a similar redshift, the time

variation in G can be constrained to _G=G.3 � 10�12 yr�1. Another interesting method

was proposed by Vijaykumar et al. (2021) and it relies on the measurement of the
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minimum and maximum mass of neutron stars, which depends on G at a particular

cosmic epoch. From GW170817, the authors derived the bound

�7 � 10�9yr�1\ _G=G\5 � 10�8yr�1. An et al. (2023); Sun et al. (2024) further

studied the effect of time variation in G in GW propagation.

The effect of promoting Newton’s constant to a function of time is degenerate

with several different effects. One such effect is a temporal variability of the black

hole masses, i.e., if _m 6¼ 0. Such time-variation could be induced by gravitational

leakage into the bulk in certain brane-world scenarios (Johannsen et al. 2009), as

explained in Sect. 2.3.5. For a single black hole of mass M, the rate of black hole

evaporation is given by

dM

dt
¼ �2:8 � 10�7 1M�

M

� �2 ‘

10 lm

� �2

M� yr�1; ð255Þ

where ‘ is the size of the large extra dimension. As expected, such a modification to

a black-hole–binary inspiral will lead to a correction to the Fourier transform of the

response function that is identical in structure to that of Eq. (253), but the param-

eters ðb _G; b _GÞ ! ðbED; bEDÞ with (Yagi et al. 2011; Chamberlain and Yunes 2017)

bED ¼� 1:3 � 10�24 M�
m1

� �2

þ M�
m2

� �2
" #

‘

10lm

� �2
3 � 26gþ 34g2

g2=5ð1 � 2gÞ

� �

;

bED ¼ �13:

ð256Þ

A similar expression is found for a neutron-star/black-hole inspiral, except that the

g-dependent factor in between parenthesis is corrected.

Given a gravitational-wave detection consistent with GR, one could then, in

principle, place an upper bound on ‘. Yunes et al. (2016) showed that the two first

gravitational wave observations by aLIGO require ‘.109lm, a constraint that is

many orders of magnitude weaker than current table-top bounds (Adelberger et al.

2007). Chamberlain and Yunes (2017) predicted that this constraint would only

improve by three orders of magnitude with future ground-based detectors. Yagi

et al. (2011), however, predicted that this bound could be improved to ‘� 103 lm

with a one-year LISA observation of a ð10; 105ÞM� binary inspiral at an SNR of

100. A similar observation with the third generation, space-based detector

DECIGO/BBO should be able to beat current constraints by roughly one order of

magnitude. All of these constraints could be strengthened by roughly one order of

magnitude further, if one included the statistical enhancement in parameter

estimation due to detection of order 105 sources by DECIGO/BBO. Care must be

taken, however, since the constraints described above weaken somewhat for more

generic inspirals, due to degeneracies between ‘ and eccentricity and spin. Carson

and Yagi (2020c) and Perkins et al. (2021b) derived projected bounds on the black

hole evaporation rate _M and found that future space-based detectors can constrain

such a rate as _M.ð10�8 � 10�7ÞM�=yr.

Another way to place a constraint on ‘ is to consider the effect of mass loss in the

orbital dynamics (McWilliams 2010). When a system loses mass, the evolution of
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its semi-major axis a will acquire a correction of the form _a ¼ �ð _M=MÞa, due to

conservation of specific orbital angular momentum. There is then a critical semi-

major axis ac at which this correction balances the semi-major decay rate due to

gravitational wave emission. McWilliams (2010) argues that systems with a\ac are

then gravitational-wave dominated and will thus inspiral, while systems with a[ ac
will be mass-loss dominated and will thus outspiral. If a gravitational wave arising

from an inspiraling binary is detected at a given semi-major axis, then ‘ can be

automatically constrained. Yagi et al. (2011) extended this analysis to find that such

a constraint is weaker than what one could achieve via matched filtering with a

waveform in the form of Eq. (253), using the DECIGO detector.

There are other ways to constrain the extra dimension models with gravitational

waves. For example, if there are non-compact additional spatial dimensions,

gravitational waves can leak into such dimensions, while electromagnetic waves are

constrained to four dimensions. Therefore, the amplitude of gravitational waves are

smaller than when spacetime is four dimensional, which effectively enhances the

luminosity distance compared to that measured from electromagnetic waves. Using

the multimessenger observations of GW170817, Pardo et al. (2018) placed a bound

on the number of spacetime dimensions, namely D ¼ 3:98þ0:07
�0:09, which is consistent

with a similar analysis by the LIGO/Virgo Collaboration (Abbott et al. 2019b).

Hernandez Magana Hernandez (2023) carried out a similar analysis but using

binary black hole mergers. Using some theoretical features on the pair instability

mass gap, the authors were able to break the degeneracy between the mass and

redshift of binary black holes. Using gravitational-wave events in GWTC-3, the

authors placed the bound D ¼ 3:95þ0:07
�0:09, which is comparable to the one from

GW170817 mentioned above. Corman et al. (2022) improved these analyses by

taking into account the effect of redshift for cosmological sources. One can also

probe extra dimensions by counting the number of gravitational-wave sources and

studying the distribution of their SNRs (Calabrese et al. 2016; Garcı́a-Bellido et al.

2016). Du et al. (2021) studied gravitational waves in simple compactified extra

dimension models and showed that such models are inconsistent with GW150914.

For brane-world models, paths for gravitational waves are considered to be different

from those for electromagnetic waves, so one can constrain the models through

multimessenger observations of binary neutron stars. For example, assuming the

bulk spacetime is anti-de Sitter, Visinelli et al. (2018) derived a bound on ‘ using

GW170817, namely ‘\0:535 Mpc, which is much weaker than that from table-top

experiments (see Yu et al. 2019 for a short review on this topic). Extra dimensions

can also be probed through quasinormal modes (Chakraborty et al. 2018; Mishra

et al. 2022). Du et al. (2024) derived the stress-energy tensor for GWs without

imposing the standard, Isaacson’s short-wavelength approximation. This could be

useful for deriving GWs in higher-dimensional theories, where the size of extra

dimensions is typically constrained tolm level from table-top experiments, which is

much shorter than the typical GW wavelength.

The _G correction to the gravitational-wave phase evolution is also degenerate

with cosmological acceleration. That is, if a gravitational wave is generated at high-

redshift, its phase will be affected by the acceleration of the universe. To zeroth-
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order, the correction is a simple redshift of all physical scales. However, if one

allows the redshift to be a function of time

z� zc þ _zcðt � tcÞ� zc þ H0 1 þ zcð Þ2� 1 þ zcð Þ5=2X1=2
M

h i

ðt � tcÞ; ð257Þ

then the observed waveform at the detector becomes structurally identical to

Eq. (253) but with the parameters Seto et al. (2001), Takahashi and Nakamura

(2005), Yagi et al. (2012a), Nishizawa et al. (2012), Bonvin et al. (2017), Yunes

et al. (2010c)

b _z ¼
25

32768
_zcMz; b _z ¼ �13: ð258Þ

Using the measured values of the cosmological parameters from the WMAP

analysis (Komatsu et al. 2009; Dunkley et al. 2009), one finds that this effect is

roughly 10�3 times smaller than that of a possible _G correction at the level of the

possible bounds quoted above (Yunes et al. 2010c). Of course, as one begins to

consider observations with space-based detectors, which allow for fairly stringent

constraints on _G, one must then also account for possible degeneracies with _z.
A final possible degeneracy arises with modifications to the gravitational waves

due to the presence of a third body (Yunes et al. 2011b; Robson et al. 2018; Kuntz

and Leyde 2023; Xuan et al. 2023), due to migration if the binary is in an accretion

disk (Kocsis et al. 2011; Yunes et al. 2011c), and due to the interaction of a binary

with a circumbinary accretion disk (Hayasaki et al. 2013). All of these effects

introduce corrections to the gravitational-wave phase at negative post-Newtonian

order, just like the effect of a variable gravitational constant. However, degeneracies

of this type are only expected to affect a small subset of black-hole–binary

observations, namely those with a third body sufficiently close to the binary, or a

sufficiently massive accretion disk.

4.3.5 Parity violation

As discussed in Sect. 2.3.7 the simplest action to model parity violation in the

gravitational interaction is given in Eq. (74). Black holes and neutron stars exist in

this theory. A generic feature of this theory is that parity violation imprints onto the

propagation of gravitational waves, an effect that has been dubbed amplitude
birefringence. Such birefringence is not to be confused with optical or electromag-

netic birefringence, in which the gauge boson interacts with a medium and is

doubly-refracted into two separate rays. In amplitude birefringence, right- (left)-

circularly polarized gravitational waves are enhanced or suppressed (suppressed or

enhanced) relative to the GR expectation as they propagate (Jackiw and Pi 2003;

Lue et al. 1999; Alexander et al. 2008; Yunes and Finn 2009; Alexander and Yunes

2009; Yunes et al. 2010b).

One can understand amplitude birefringence in gravitational wave propagation as

a result of the non-commutativity of the parity operator and the Hamiltonian. The
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Hamiltonian is the generator of time evolution, and thus, one can write (Yunes et al.

2010b)

hþ;kðtÞ
h�;kðtÞ

� �

¼ e�ift uc �iv

iv uc

� �

hþ;kð0Þ
h�;kð0Þ

� �

; ð259Þ

where f is the gravitational-wave angular frequency, t is time, and hþ;�;k are the

gravitational wave Fourier components with wavenumber k. The quantity uc models

possible background curvature effects, with uc ¼ 1 for propagation on a Minkowski

metric, and uc proportional to redshift for propagation on a Friedman–Robertson–

Walker metric (Laguna et al. 2009). The quantity v models possible parity-violating

effects, with v ¼ 0 in GR. One can rewrite the above equation in terms of right and

left-circular polarizations, hR;L ¼ ðhþ 	 ih�Þ=
ffiffiffi

2
p

to find

hR;kðtÞ
hL;kðtÞ

� �

¼ e�ift uc þ v 0

0 uc � v

� �

hR;kð0Þ
hL;kð0Þ

� �

: ð260Þ

Amplitude birefringence has the effect of modifying the eigenvalues of the diagonal

propagator matrix for right- and left-polarized waves, with right modes amplified or

suppressed and left modes suppressed or amplified relative to GR, depending on the

sign of v. In addition to these parity-violating propagation effects, parity violation

should also leave an imprint in the generation of gravitational waves. However, such

effects need to be analyzed on a theory by theory basis. Moreover, the propagation-

distance–independent nature of generation effects should make them easily distin-

guishable from the propagation effects we consider here.

The degree of parity violation, v, can be expressed entirely in terms of the

waveform observables via (Yunes et al. 2010b)

v ¼ 1

2

hR

hGR
R

� hL

hGR
L

� �

¼ i

2
d/L � d/Rð Þ; ð261Þ

where hGR
R;L is the GR expectation for a right or left-polarized gravitational wave. In

the last equality we have also introduced the notation d/ 
 /� /GR, where /GR is

the GR gravitational-wave phase and

hR;L ¼ h0;R;Le
�i /ðgÞ�jivi½ �; ð262Þ

where h0;R;L is a constant factor, j is the conformal wave number and ðg; viÞ are

conformal coordinates for propagation in a Friedmann–Robertson–Walker universe.

The precise form of v will depend on the particular theory under consideration. For

example, in non-dynamical Chern–Simons gravity with a field # ¼ #ðtÞ, and in an

expansion about z � 1, one finds17 (Yunes et al. 2010b)

17 We have here explicitly pulled out a factor of a=j to make the continuous GR limit explicit.
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v ¼ a
j
pfz _#0 �

€#0

H0

 !

¼ a
j
pfD H0

_#0 � €#0

� �

; ð263Þ

where #0 is the Chern–Simons scalar field at the detector, with a the Chern–Simons

coupling constant [see, e.g., Eq. (74)], z is redshift, D is the comoving distance and

H0 is the value of the Hubble parameter today and f is the observed gravitational-

wave frequency. When considering propagation on a Minkowski background, one

obtains the above equation in the limit as _a ! 0, so the second term dominates,

where a is the scale factor. To leading-order in a curvature expansion, the parity-

violating coefficient v will always be linear in frequency, as shown in Eq. (263). For

more general parity violation and flat-spacetime propagation, v will be proportional

to ðfDÞf na, where a is a coupling constant of the theory (or a certain derivative of a

coupling field) with units of ½Length�n (in the previous case, n ¼ 0, so the correction

was simply proportional to fDa, where a / €#).

How does such parity violation affect the waveform? By using Eq. (260) one can

easily show that the Fourier transform of the response function becomes (Alexander

et al. 2008; Yunes and Finn 2009; Yunes et al. 2010b; Yagi and Yang 2018)

~hPV ¼ Fþ þ i v F�ð Þ ~hþ þ F� � i v Fþð Þ ~h�: ð264Þ

Of course, one can rewrite this in terms of a real amplitude correction and a real

phase correction. Expanding in v � 1 to leading order, we find (Yunes et al. 2010b;

Yagi and Yang 2018)

~hPV ¼ ~h
GR

1 þ v dQPVð ÞeivdwPV ; ð265Þ

where ~hGR is the Fourier transform of the response function in GR and we have

defined

QGR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2
þ 1 þ cos2 ið Þ2þ4 cos2 iF2

�

q

; ð266Þ

dQPV ¼
2 cos i 1 þ cos2 ið Þ F2

þ þ F2
�

� �

Q2
GR

; ð267Þ

dwPV ¼ 1 � cos2 ið Þ2
FþF�

Q2
GR

: ð268Þ

We see then that amplitude birefringence modifies both the amplitude and the phase

of the response function. Using the non-dynamical Chern–Simons expression for v
in Eq. (263), we can rewrite Eq. (265) as (Yunes et al. 2010b)

~hPV ¼ ~h
GR

1 þ aPVu
aPVð ÞeibPVu

bPV
; ð269Þ

where we have defined the coefficients
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aPV ¼ D

M

� �

2 cos i 1 þ cos2 ið Þ F2
þ þ F2

�
� �

Q2
GR

� �

a
j

	 


H0
_#0 � €#0

� �

; aPV ¼ 3 ;

ð270Þ

bPV ¼ D

M

� �

1 � cos2 ið Þ2
FþF�

Q2
GR

" #

a
j

	 


H0
_#0 � €#0

� �2
; bPV ¼ 3 ; ð271Þ

where we recall that u ¼ ðpMf Þ1=3
. The phase correction corresponds to a term of 4

post-Newtonian order relative to the Newtonian contribution, and it scales

quadratically with the Chern–Simons coupling field #, which is why it was left out

in Yunes et al. (2010b). The amplitude correction, on the other hand, is of 1.5 post-

Newtonian order relative to the Newtonian contribution. Since both of these appear

as positive-order, post-Newtonian corrections, there is a possibility of degeneracy

between them and standard waveform template parameters.

Given such a modification to the response function, one can ask whether parity

violation is observable with current detectors. Yagi and Yang (2018) carried out a

Fisher analysis on GW150914 and found that the SNR is too small and one cannot

place any meaningful bound within the weak parity-violation approximation.

Okounkova et al. (2022) used gravitational-wave events in GWTC-2 and placed a

constraint on amplitude birefringence, in particular the opacity parameter

�j.0:74Gpc�1. Here �j is defined through

hR
hL

¼ e�dc �jð1 þ cos iÞ2

edc �jð1 � cos iÞ2
; ð272Þ

where dc is the comoving distance to the source. The bound was derived assuming

that all events in the catalog have the same distance and using a phenomenological

model for parity violation. Ng et al. (2023) further derived the updated constraint on

amplitude birefringence with GWTC-3 that is � 25 times more stringent than the

constraint in Okounkova et al. (2022). The effect of parity violation has also been

studied in Calderón Bustillo et al. (2025), where the authors measured the emission

of net circular polarization across 47 binary black-hole mergers and found that the

average is consistent with zero. A future prospect of how well this can be con-

strained is given in Califano et al. (2024).

Yagi and Yang (2018), Callister et al. (2023) also considered the possibility of

probing the parity-violating polarization mode (V-mode) (Seto 2006, 2007; Seto and

Taruya 2007, 2008; Crowder et al. 2013; Smith and Caldwell 2017) in stochastic

gravitational-wave background from binary black hole mergers. Martinovic et al.

(2021) proposed a method to search for parity violation in the stochastic

gravitational-wave background and applied it to LIGO/Virgo O3 data.

For future prospects on probing amplitude birefringence with gravitational

waves, Alexander et al. (2008), Yunes and Finn (2009) argued that a gravitational

wave observation with LISA would be able to constrain an integrated measure of v,

because LISA can observe massive–black-hole mergers to cosmological distances,

while amplitude birefringence accumulates with distance traveled. For such an
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analysis, one cannot Taylor expand # about its present value, and instead, one finds

that

1 þ v

1 � v
¼ e2pf fðzÞ; ð273Þ

where we have defined

fðzÞ ¼ aH0

j

Z z

0

dz 1 þ zð Þ5=2 7

2

d#

dz
þ 1 þ zð Þ d

2#

dz2

� �

: ð274Þ

We can solve the above equation to find

v ¼ e2pf fðzÞ � 1

1 þ e2pf fðzÞ � pf fðzÞ; ð275Þ

where in the second equality we have linearized about v � 1 and f f � 1.

Alexander et al. (2008), Yunes and Finn (2009) realized that this induces a time-

dependent change in the inclination angle (i.e., the apparent orientation of the

binary’s orbital angular momentum with respect to the observer’s line-of-sight),

since the latter can be defined by the ratio hR=hL. They then carried out a simplified

Fisher analysis and found that a LISA observation of the inspiral of two massive

black holes with component masses 106 M�ð1 þ zÞ�1
at redshift z ¼ 15 would allow

us to constrain the integrated dimensionless measure f\10�19 to 1r. One might

worry that such an effect would be degenerate with other standard GR processes that

induce similar time-dependencies, such as spin-orbit coupling. However, this time-

dependence is very different from that of the parity-violating effect, and thus,

Alexander et al. (2008), Yunes and Finn (2009) argued that these effects would be

weakly correlated.

Another test of parity violation was proposed by Yunes et al. (2010b), who

considered the coincident detection of a gravitational wave and a gamma-ray burst

with the SWIFT (Gehrels 2004) and GLAST/Fermi (Carson 2007) gamma-ray

satellites, and the ground-based LIGO (Abbott et al. 2009) and Virgo (Acernese

et al. 2007) gravitational wave detectors. If the progenitor of the gamma-ray burst is

a neutron-star/neutron-star or neutron-star/black-hole merger, the gamma-ray jet is

expected to be collimated. Therefore, an electromagnetic observation of such an

event implies that the binary’s orbital angular momentum at merger must be

pointing along the line of sight to Earth, leading to a strongly–circularly-polarized

gravitational-wave signal and to maximal parity violation. If an afterglow from the

gamma-ray burst observation were to provide an accurate sky location via galaxy

identification, one would be able to obtain an accurate distance measurement from

the gravitational wave signal alone. Moreover, since GLAST/Fermi observations of

gamma-ray bursts occur at low redshift, one would also possess a purely

electromagnetic measurement of the distance to the source. Amplitude birefringence

would manifest as a discrepancy between these two distance measurements.

Therefore, if no discrepancy is found, the error ellipse on the distance measurement

would allow us to place an upper limit on any possible gravitational parity violation.

Because of the nature of such a test, one is constraining generic parity violation over
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distances of hundreds of Mpc, along the light cone on which the gravitational waves

propagate.

The coincident gamma-ray burst/gravitational-wave test compares favorably to

the pure LISA test, with the sensitivity to parity violation being about 2 – 3 orders

of magnitude better in the former case. This is because, although the fractional error

in the gravitational-wave distance measurement is much smaller for LISA than for

LIGO, since it is inversely proportional to the SNR, the parity violating effect also

depends on the gravitational-wave frequency, which is much larger for neutron-star

inspirals than massive black-hole coalescences. Mathematically, the simplest

models of gravitational parity violation will lead to a signature in the response

function that is proportional to the gravitational-wave wavelength18 kGW / Df .
Although the coincident test requires small distances and low SNRs (by roughly

1 – 2 orders of magnitude), the frequency is also larger by a factor of 5 – 6 orders of

magnitude for the LIGO-Virgo network.

The coincident gamma-ray burst/gravitational-wave test also compares favorably

to current solar system constraints. Using the motion of the LAGEOS satellites,

Smith et al. (2008) have placed the 1r bound _#0\2000 km assuming €#0 ¼ 0. A

similar assumption leads to a 2r bound of _#0\200 km with a coincident gamma-

ray burst/gravitational-wave observation. Moreover, the latter test also allows us to

constrain the second time-derivative of the scalar field. Finally, a LISA observation

would constrain the integrated history of # along the past light cone on which the

gravitational wave propagated. However, these tests are not as stringent as the

recently proposed test by Dyda et al. (2012), _#0\10�7 km, assuming the effective

theory cut-off scale is less than 10 eV and obtained by demanding that the energy

density in photons created by vacuum decay over the lifetime of the universe not

violate observational bounds.

The coincident test is somewhat idealistic in that there are certain astrophysical

uncertainties that could hamper the degree to which we could constrain parity

violation. One of the most important uncertainties relates to our knowledge of the

inclination angle, as gamma-ray burst jets are not perfectly aligned with the line of

sight (which was indeed the case for GW170817). If the inclination angle is not

known a priori, it will become degenerate with the distance in the waveform

template, decreasing the accuracy to which the luminosity could be extracted from a

pure gravitational wave observation by at least a factor of two. Even after taking

such uncertainties into account, Yunes et al. (2010b) found that _#0 could be

constrained much better with gravitational waves than with current solar system

observations.

So far, we have focused on amplitude birefringence, though there is another

possible type of birefringence: velocity birefringence. In a general parity-violating

gravitational theory, circular polarizations of tensor perturbations in a flat

Friedmann-Robertson-Walker spacetime satisfy the following equation (Wang

et al. 2013; Zhu et al. 2013):

18 Even if it is not linear, the effect should scale with positive powers of kGW. It is difficult to think of any

parity-violating theory that would lead to an inversely proportional relation.
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~h
00
A þ 2 þ mAð ÞH ~h

0
A þ 1 þ lAð Þk2 ~hA ¼ 0; ðA ¼ R;LÞ: ð276Þ

Here primes represent derivatives with respect to conformal time and H ¼ a0=a.

The parameters mA and lA characterize the parity violation in the amplitude and

velocity respectively. In particular, the latter can be further parameterized as (Zhao

et al. 2022b)

lA ¼ �akA
k

aMPV

� ��b

; ð277Þ

where kR ¼ þ1, kL ¼ �1 and the parameters �a and �b depend on specific theories of

gravitational parity violation. Bounds on velocity birefringence with current grav-

itational-wave observations can be found in Wang and Zhao (2020), Wang et al.

(2021b, 2022), Zhao et al. (2022b). For example, Wang et al. (2022) used the 4th-

Open Gravitational-wave Catalog and derived a constraint on the energy scale of

parity violation MPV [ 0:05GeV for �b ¼ 1 and assuming �a ¼ Oð1Þ. This bound

improves the previous one by a factor of 5. The authors also found that the two most

massive events in the catalog (GW190521 and GW191109) showed some evidence

for birefringence, with a false alarm rate of a few per 100 observations. However,

further analysis is needed because GW190521 may not be a standard, quasi-circular

binary (Romero-Shaw et al. 2020; Gayathri et al. 2022; Gamba et al. 2023). Lagos

et al. (2024) carried out a multi-messenger tests of birefringence with GW170817

and its associated radio observations. The authors derived a new bound on ampli-

tude birefringence, while velocity birefringence remained unconstrained. They also

revealed that such velocity birefringence effects are in general difficult to constrain

with dark binary mergers even with future-generation detectors.

Parity violation has also been studied in theory-agnostic, parameterized ways.

Jenks et al. (2023) developed a parameterized framework (similar to the param-

eterized post-Einsteinian waveform to be discussed in Sect. 4.3.6) to study

amplitude and velocity birefringence in GW propagation, which was further

extended in Daniel et al. (2024) to account for the presence of the Gauss-Bonnet

term in the action. Califano et al. (2024) further applied this framework to study

future prospects of probing a few different parity-violating theories of gravity with

future GW detectors. Yamada and Tanaka (2020) constructed a parameterized

gravitational-waveform in parity-violating gravity (also similar to the parameterized

post-Einsteinian waveform) by deriving gravitational waveforms from an evolution

equation of the tensor perturbations similar to Eq. (276). The authors then derived

bounds on the generic parity-violating parameter at different post-Newtonian orders

from gravitational-wave events in GWTC-1.

4.3.6 Parameterized post-Einsteinian framework

One of the biggest disadvantages of a top-down or direct approach toward testing

GR is that one must pick a particular theory from the beginning of the analysis.

However, given the large number of possible modifications to Einstein’s theory and

the lack of a particularly compelling alternative, it is entirely possible that none of
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these will represent the correct gravitational theory in the extreme gravity regime.

Thus, if one carries out a top-down approach, one will be forced to make the

assumption that we, as physicists, know which modifications of gravity are possible

and which are not (Yunes and Pretorius 2009b). The parameterized post-Einsteinian

(ppE) approach is a framework developed specifically to alleviate such a bias by

allowing the data to select the correct theory of nature through the systematic study

of statistically significant anomalies.

For detection purposes, one usually expects to use match filters that are consistent

with GR. But if GR happened to be wrong in the extreme gravity regime, it is

possible that a GR template would still extract the signal, but with the wrong

parameters. That is, the best fit parameters obtained from a matched filtering

analysis with GR templates will be biased by the assumption that GR is sufficiently

accurate to model the entire coalescence. This fundamental bias could lead to a

highly distorted image of the gravitational-wave universe. In fact, recent work by

Vallisneri and Yunes (2013) indicates that such fundamental bias could indeed be

present in observations of neutron star inspirals, if GR is not quite the right theory in

the extreme gravity regime.

One of the primary motivations for the development of the ppE scheme was to

alleviate fundamental bias, and one of its most dangerous incarnations: stealth-bias
(Cornish et al. 2011). If GR is not the right theory of nature, yet all our future

detections are of low SNR, we may estimate the wrong parameters from a matched-

filtering analysis, yet without being able to identify that there is a non-GR anomaly

in the data. Thus, stealth bias is nothing but fundamental bias hidden by our limited

SNR observations. Vallisneri and Yunes (2013) have found that such stealth-bias is

indeed possible in a certain sector of parameter space, inducing errors in parameter

estimation that could be larger than statistical ones, without us being able to identify

the presence of a non-GR anomaly.

4.3.6.1 Historical development The ppE scheme was designed in close analogy

with the parameterized post-Newtonian (ppN) framework, developed in the 1970 s

to test GR with solar system observations (see, e.g., Will 2014 for a review). In the

solar system, all direct observables depend on a single quantity, the metric, which

can be obtained by a small-velocity/weak-field post-Newtonian expansion of the

field equations of whatever theory one is considering. Thus, Nordtvedt Jr (1968b),

Will (1971), Will and Nordtvedt Jr (1972), Nordtvedt Jr and Will (1972), Will

(1973) proposed the generalization of the solar system metric into a meta-metric that

could effectively interpolate between the predictions of many different alternative

theories. This meta-metric depends on the product of certain Green function

potentials and ppN parameters. For example, the spatial-spatial components of the

meta-metric take the form

gij ¼ dij 1 þ 2cU þ . . .ð Þ; ð278Þ

where dij is the Kronecker delta, U is the Newtonian potential and c is one of the

ppN parameters, which acquires different values in different theories: c ¼ 1 in GR,

c ¼ ð1 þ xBDÞð2 þ xBDÞ�1 � 1 � x�1
BD þOðx�2

BDÞ in Jordan–Fierz–Brans–Dicke
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theory, etc. Therefore, any solar system observable could then be written in terms of

system parameters, such as the masses of the planets, and the ppN parameters. An

observation consistent with GR allows for a bound on these parameters, thus

simultaneously constraining a large class of modified gravity theories.

The idea behind the ppE framework was to develop a formalism that allowed for

similar generic tests but with gravitational waves instead of solar system

observations. The first pre-ppE attempts were by Arun et al. (2006), Mishra et al.

(2010), who considered the quasi-circular inspiral of compact objects. They

suggested the waveform template family

~hPNT ¼ ~h
GR

eibPNTu
bPN

: ð279Þ

This waveform depends on the standard system parameters that are always present

in GR waveforms, plus one theory parameter bPNT that is to be constrained. The

quantity bPN is a number chosen by the data analyst and is restricted to be equal to

one of the post-Newtonian predictions for the phase frequency exponents, i.e.,

bPN ¼ ð�5;�3;�2;�1; . . .Þ.
The template family in Eq. (279) allows for post-Newtonian tests of GR, i.e.,

consistency checks of the signal with the post-Newtonian expansion. For example,

let us imagine that a gravitational wave has been detected with sufficient SNR that

the chirp mass and mass ratio have been measured from the Newtonian and 1 post-

Newtonian terms in the waveform phase. One can then ask whether the 1.5 post-

Newtonian term in the phase is consistent with these values of chirp mass and mass

ratio. Put another way, each term in the phase can be thought of as a curve in ðM; gÞ
space. If GR is correct, all these curves should intersect inside some uncertainty

box, just like when one tests GR with binary pulsar observations. From that

standpoint, these tests can be thought of as null-tests of GR and one can ask: given

an event, is the data consistent with the hypothesis bPNT ¼ 0 for the restricted set of

frequency exponents bPN?

A Fisher and a Bayesian data analysis study of how well bPNT could be

constrained given a certain bPN was carried out in Mishra et al. (2010), Huwyler

et al. (2012), Li et al. (2012a). Mishra et al. (2010) considered the quasi-circular

inspiral of non-spinning compact objects and showed that aLIGO observations

would allow one to constrain bPNT to 6% up to the 1.5 post-Newtonian order

correction (bPN ¼ �2). Third-generation detectors, such as ET, should allow for

better constraints on all post-Newtonian coefficients to roughly 2%. Clearly, the

higher the value of bPN, the worse the bound on bPNT because the signal power

contained in higher frequency exponent terms decreases, i.e., the number of useful

additional cycles induced by the bPNTu
bPN term decreases as bPN increases. Huwyler

et al. (2012) repeated this analysis but for LISA observations of the quasi-circular

inspiral of black hole binaries with spin precession. They found that the inclusion of

precessing spins forces one to introduce more parameters into the waveform, which

dilutes information and weakens constraints on bPNT by as much as a factor of 5. Li

et al. (2012a) carried out a Bayesian analysis of the odds-ratio between GR and

these templates given a non-spinning, quasi-circular compact binary inspiral

observation with aLIGO and advanced Virgo. They calculated the odds ratio for
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each value of bPN listed above and then combined all of this into a single probability

measure that allows one to quantify how likely the data is to be consistent with GR.

4.3.6.2 The simplest ppE model One of the main disadvantages of the post-

Newtonian template family in Eq. (279) is that it is not rooted on a theoretical

understanding of modified gravity theories. To alleviate this problem, Yunes and

Pretorius (2009b) re-considered the quasi-circular inspiral of compact objects. They

proposed a more general, ppE template family through generic deformations of the

‘ ¼ 2 harmonic of the response function in Fourier space:

~h
ð‘¼2Þ
ppE;insp;1 ¼ ~h

GR
1 þ appEu

appE
� �

eibppEu
bppE

; ð280Þ

where now ðappE; appE; bppE; bppEÞ are all free parameters to be fitted by the data, in

addition to the usual system parameters. This waveform family reproduces all

predictions from known modified gravity theories: when ðappE;bppEÞ ¼ ð0; 0Þ, the

waveform reduces exactly to GR, while for other parameters one reproduces the

modified gravity predictions of Table 4.

In Table 4, recall the following definitions of constants: S is the difference in the

square of the sensitivities, xBD is the Jordan–Fierz–Brans–Dicke coupling

parameter (see Sect. 4.2.1; we have here neglected the scalar mode) and g is the

symmetric mass ratio; f3 is the coupling parameter in Einstein–dilaton–Gauss–

Bonnet theory (see Sect. 4.2.4), where we have here included both the dissipative

and the conservative corrections and dm is the normalized mass difference

parameter; D is a certain distance measure, z is the cosmological redshift factor and

kg is the Compton wavelength of the graviton (see Sect. 4.3.1); kLV is a distance

Table 4 Parameters that define the deformation of the response function in a variety of modified gravity

theories

Theory appE appE bppE bppE

Jordan–Fierz–Brans–Dicke � 5
96

S2

xBD
g2=5 �2 � 5

3584
S2

xBD
g2=5 �7

Dissipative Einstein–dilaton–Gauss–

Bonnet Gravity
� 5

192
f3g

�18=5d2
m

�2 � 5
7168

f3g
�18=5d2

m
�7

Massive Graviton 0 � � p2DM
k2
gð1þzÞ

�3

Lorentz Violation 0 � � p2�cLV

ð1�cLVÞ
DcLV

k
2�cLV
LV

M1�cLV

ð1þzÞ1�cLV
�3cLV � 3

G(t) Theory � 35
512

_GcM �8 � 275
851968

_GcM �13

Extra Dimensions � � bED �13

Non-Dynamical Chern–Simons Gravity aPV 3 bPV 3

Dynamical Chern–Simons Gravity adCS þ4 bdCS �1

Non-commutative Gravity aNC þ4 � 75
256

g�4=5ð2g� 1ÞK2 �1

Einstein-Æther Theory � 1
2
ffiffiffiffi

j3
p g2=5�x �1 � 3

224
g2=5�x
j3

�7

Khronometric Gravity � � 3
128

_E
KG

�1PNg
2=5 �7

The notation � means that a value for this parameter is either irrelevant, as its amplitude is zero, or it has

not yet been calculated

123

Gravitational-wave tests of general relativity with ground-based… Page 129 of 233     3 



scale at which Lorentz-violation becomes important and cLV is the graviton

momentum exponent in the deformation of the dispersion relation (see Sect. 4.3.1);
_Gc is the value of the time derivative of Newton’s constant at coalescence (see

Sect. 4.3.4); bED is given in Eq. (256); bdCS is given in Eq. (218); ðaPV; bPVÞ are

given in Eqs. (270) and (271) of Sect. 4.3.5; _E
EA=KG

0;1PN is given in Eqs. (201)–(204) of

Sect. 4.2.3.

Although there are only a few modified gravity theories where the leading-order

post-Newtonian correction to the Fourier transform of the response function can be

parameterized by post-Newtonian waveforms of Eq. (279), all such predictions can

be modeled with the ppE templates of Eq. (280). In fact, only massive graviton

theories, certain classes of Lorentz-violating theories and dynamical Chern–Simons

gravity lead to waveform corrections that can be parameterized via Eq. (279). For

example, the lack of amplitude corrections in Eq. (279) does not allow for tests of

gravitational parity violation or non-dynamical Chern–Simons gravity.

However, this does not imply that Eq. (280) can parameterize all possible

deformations of GR. First, Eq. (280) can be understood as a single-parameter

deformation away from Einstein’s theory. If the correct theory of nature happens to

be a deformation of GR with several parameters (e.g., several coupling constants,

mass terms, potentials, etc.), then Eq. (280) will only be able to parameterize the

one that leads to the most useful cycles. This was recently verified by Sampson et al.

(2013a). Second, Eq. (280) assumes that the modification can be represented as a

power series in velocity, with possibly non-integer values. Such an assumption does

not allow for possible logarithmic terms, which are known to arise due to non-linear

hereditary interactions at sufficiently-high post-Newtonian order. It also does not

allow for interactions that are screened, e.g., in theories with massive degrees of

freedom. Nonetheless, the parameterization in Eq. (280) will still be able to signal

that the detection is not a pure Einstein event, at the cost of biasing their true value

(Sampson et al. 2014a).

The inspiral ppE model of Eq. (280) is motivated not only from examples of

modified gravity predictions, but from generic modifications to the physical

quantities that drive the inspiral: the reduced effective potential and the radiation-

reaction force or the fluxes of the constants of the motion. Yunes and Pretorius

(2009b) and Chatziioannou et al. (2012) considered generic modifications of the

form

Veff ¼ �m

r
þ

L2
z

2r2

� �

1 þ AppE

m

r

	 
pppE
h i

; _E ¼ _EGR 1 þ BppE

m

r

	 
qppE
h i

;

ð281Þ

where Lz is the z-component of the orbital angular momentum, _EGR / v2ðm=rÞ4

with v and r being the relative velocity and orbital separation, ðpppE; qppEÞ 2 Z, since

otherwise one would lose analytically in the limit of zero velocities for circular

inspirals, and where ðAppE;BppEÞ are parameters that depend on the modified gravity

theory and, in principle, could depend on dimensionless quantities like the sym-

metric mass ratio. Such modifications lead to the following corrections to the SPA
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Fourier transform of the ‘ ¼ 2 time-domain response function for a quasi-circular

binary inspiral template (to leading order in the deformations and in post-Newtonian

theory)

~h ¼ A pMfð Þ�7=6e�iWGR 1 � BppE

2
g�2qppE=5 pMfð Þ2qppE

�

þ AppE

6
3 þ 4pppE � 2p2

ppE

	 


g�2pppE=5 pMfð Þ2pppE

�

e�idWppE ;

ð282Þ

dWppE ¼ 5

32
AppE

2p2
ppE � 2pppE � 3

ð4 � pppEÞð5 � 2pppEÞ
g�2pppE=5 pMfð Þ2pppE�5

þ 15

32

BppE

ð4 � qppEÞð5 � 2qppEÞ
g�2qppE=5 pMfð Þ2qppE�5 :

ð283Þ

Of course, usually one of these two modifications dominates over the other,

depending on whether qppE [ pppE or pppE\qppE. In Jordan–Fierz–Brans–Dicke

theory, for example, the radiation-reaction correction dominates as qppE\pppE. If, in

addition to these modifications in the generation of gravitational waves, one also

allows for modifications in the propagation, one is then led to the following template

family (Chatziioannou et al. 2012)

~h
ð‘¼2Þ
ppE;insp;2 ¼ A pMfð Þ�7=6e�iWGR 1 þ cbppE pMfð ÞbppE=3þ5=3

h i

e2ibppEu
bppE

eijppEu
kppE

:

ð284Þ

Here ðbppE; bppEÞ and ðkppE; jppEÞ are ppE parameters induced by modifications to

the generation and propagation of gravitational waves respectively, where still

ðbppE; kppEÞ 2 Z, while c is fully determined by the former set via

ccons ¼ � 8

15

bppEð3 � bppEÞðb2
ppE þ 6bppE � 1Þ

b2
ppE þ 8bppE þ 9

; ð285Þ

if the modifications to the binding energy dominate,

cdiss ¼ � 16

15
ð3 � bppEÞbppE; ð286Þ

if the modifications to the energy flux dominate, or

cboth ¼ � 16

15

bppEð3 � bppEÞðb2
ppE þ 7bppE þ 4Þ

b2
ppE þ 8bppE þ 9

: ð287Þ

if both corrections enter at the same post-Newtonian order. Noticing again that if

only a single term in the phase correction dominates in the post-Newtonian

approximation (or both will enter at the same post-Newtonian order), one can map

Eq. (282) to Eq. (280) by a suitable redefinition of constants.

The model presented above contains modifications to the propagation of

gravitational waves, which enter through frequency-dependent changes in the
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dispersion relation. The first generic analysis of such effects was in fact carried out

by Mirshekari et al. (2012), which was then adopted in the model of Chatziioannou

et al. (2012). One could, however, be more general than this and allow for

propagation direction-dependent modifications to the dispersion relation. This was

indeed considered by Tso et al. (2017), who found the modified waveform does

indeed take the form of Eq. (284), but where the ppE amplitude parameters now

also depend on a unit vector that points in the direction of wave propagation. See

Zhu et al. (2024), Romano and Sakellariadou (2023) other related works.

4.3.6.3 More complex ppE models Of course, one can introduce more ppE

parameters to increase the complexity of the waveform family, and thus, Eq. (280)

should be thought of as a minimal choice. In fact, one expects any modified theory

of gravity to introduce not just a single parametric modification to the amplitude and

the phase of the signal, but two new functional degrees of freedom:

appEu
appE ! dAppEðka; ha; uÞ; bppEu

bppE ! dWppEðka; ha; uÞ; ð288Þ

where these functions will depend on the frequency u, as well as on system

parameters ka and theory parameters ha. In a post-Newtonian expansion, one

expects these functions to reduce to leading-order on the left-hand sides of

Eqs. (288), but also to acquire post-Newtonian corrections of the form

dAppEðka; ha; uÞ ¼ appEðka; haÞuappE

X

n

an;ppEðka; haÞun ; ð289Þ

dWppEðka; ha; uÞ ¼ bppEðka; haÞubppE

X

n

bn;ppEðka; haÞun ; ð290Þ

where here the structure of the series is assumed to be of the form un with u[ 0.

Such a model, also suggested by Yunes and Pretorius (2009b), would introduce too

many new parameters that would dilute the information content of the waveform

model. Sampson et al. (2013a) demonstrated that the simplest ppE model of

Eq. (280) suffices to signal a deviation from GR, even if the injection contains three

terms in the phase. Indeed, this simple ppE model was the one used in the first

aLIGO detections to test for parametric deformations of GR (Abbott et al. 2016d),

albeit in a restricted regime of ppE space, as Yunes et al. (2016) recently proved

explicitly.

The number of parameters that can be included in the model is precisely one of

the most important differences between the ppE and ppN frameworks. In ppN, it

does not matter how many ppN parameters are introduced, because the observations

are of very high SNR, and thus, templates are not needed to extract the signal from

the noise. On the other hand, in gravitational wave astrophysics, templates are

essential to make detections and do parameter estimation. Spurious parameters in

these templates that are not needed to match the signal will deteriorate the accuracy

to which all parameters can be measured because of an Occam penalty. Thus, in

gravitational wave astrophysics and data analysis one wishes to minimize the

number of theory parameters when testing GR (Cornish et al. 2011; Sampson et al.
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2013a). One must then find a balance between the number of additional theory

parameters to introduce and the amount of bias contained in the templates.

A curious fact of the generalizations proposed above is that the frequency

exponents in the amplitude and phase correction were assumed to be integers, i.e.,

ðappE; bppE; nÞ 2 Z. This must be the case if these corrections arise due to

modifications that can be represented as integer powers of the momenta or velocity.

We are not aware of any theory that predicts corrections proportional to fractional

powers of the velocity for circular inspirals. Moreover, one can show that theories

that introduce non-integer powers of the velocity into the equations of motion will

lead to issues with analyticity at zero velocity and a breakdown of uniqueness of

solutions (Chatziioannou et al. 2012). In spite of this, modified theories can

introduce logarithmic terms, that for example enter at high post-Newtonian order in

GR due to non-linear propagation effects (see, e.g., Blanchet 2024 and references

therein). Moreover, certain modified gravity theories introduce screened modifica-

tions that become ‘‘active’’ only above a certain frequency due to certain non-

linearities. Such effects could be modeled through a Heaviside function, which is for

example needed when dealing with massive Jordan–Fierz–Brans–Dicke gravity

(Detweiler 1980b; Cardoso et al. 2011; Alsing et al. 2012; Yunes et al. 2012).

However, even these non-polynomial injections would be detectable with the

simplest ppE model. In essence, one finds similar results as if one were trying to fit a

3-parameter injection with the simplest 1-parameter ppE model (Sampson et al.

2013a). One weakness of the ppE framework is that one can only test non-GR

deviations that follow a post-Newtonian series representation in the inspiral.

Moreover, one needs to test modifications at different post-Newtonian orders one at

a time, making the analysis inefficient and time-consuming. To overcome these

issues, Xie et al. (2024) recently proposed a novel neural post-Einstein framework.

Using deep-learning neural network, the new framework allows one to test many

different theories simultaneously and identify the best theory in a single run,

allowing for the search of deviations that are not power-series in velocity.

Of course, one can also generalize the inspiral ppE waveform families to more

general orbits, for example through the inclusion of spins aligned or counter-aligned

with the orbital angular momentum. More general inspirals would still lead to

waveform families of the form of Eq. (280) or (284), but where the parameters

ðappE; bppEÞ would now depend on the mass ratio, mass difference, and the spin

parameters of the black holes. With a single detection, one cannot break the

degeneracy in the ppE parameters and separately fit for its system parameter

dependencies. However, given multiple detections one should be able to break such

a degeneracy, at least to a certain degree (Cornish et al. 2011). Such breaking of

degeneracies begins to become possible when the number of detections exceeds the

number of additional parameters required to capture the physical parameter

dependencies of ðappE; bppEÞ. The ppE framework was also recently extended to

include spin precession (Loutrel et al. 2023) and higher harmonics (Mezzasoma and

Yunes 2022) (see also Mehta et al. 2023 for a related work to the latter extension).

Bonilla et al. (2023) extended the simplest ppE waveform that includes a leading

non-GR parameter in the inspiral by introducing an additional non-GR parameter in
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the post-inspiral phase. Maggio et al. (2023) recently constructed a parameterized

waveform during plunge-merger-ringdown based on the effective-one-body

formulation.

PpE waveforms can be extended to account for the merger and ringdown phases

of coalescence. Yunes and Pretorius have suggested the following template family

to account for this as well (Yunes and Pretorius 2009b)

~h
ð‘¼2Þ
ppE;full ¼

~hppE f\fIM;

cuceiðdþ�uÞ fIM\f\fMRD;

f
s

1 þ 4p2s2j f � fRDð Þd
f [ fMRD;

8

>

>

>

<

>

>

>

:

ð291Þ

where the subscripts IM and MRD stand for inspiral merger and merger ringdown,

respectively. The merger phase (fIM\f\fMRD) is modeled here as an interpolating

region between the inspiral and ringdown, where the merger parameters ðc; dÞ are

set by continuity and differentiability, and the ppE merger parameters ðc; �Þ should

be fit for. In the ringdown phase (f [ fMRD), the response function is modeled as a

single-mode generalized Lorentzian, with real and imaginary dominant frequencies

fRD and s, ringdown parameter f also set by continuity and differentiability, and the

ppE ringdown parameters ðj; dÞ are to be fit for. The transition frequencies

ðfIM; fMRDÞ can either be treated as ppE parameters or set via some physical criteria,

such as at the light-ring frequency and the fundamental ringdown frequency,

respectively.

Another generalization of the ppE model that includes merger and ringdown is

the hybridization of the so-called IMRPhenom models (Ajith et al. 2007, 2011;

Santamaria et al. 2010; Husa et al. 2016; Khan et al. 2016; Schmidt et al. 2012).

The latter is given by

~hgIMRðf Þ ¼
AIðf ÞeiUIðf ÞeidUI;gIMR f � fInt;

AIntðf ÞeiUIntðf Þ fInt � f � fMR;

AMRðf ÞeiUMRðf Þ fMR � f ;

8

>

<

>

:

ð292Þ

where

dUI;gIMR ¼ 3

128g

X

7

i¼0

/i d/i ðpmf Þ
ði�5Þ=3: ð293Þ

Here /i are the phase coefficients in GR while d/i are their fractional non-GR

corrections. fInt and fMR are transition frequencies from the inspiral to an interme-

diate phase, and from the latter to merger and ringdown. The Fourier phases above

are continuous and differentiable at the transitions. This generalized ppE model is

identical to that of Eq. (280) in the inspiral, with modifications in the merger and

ringdown phases only (Yunes et al. 2016).

There has also been effort to generalize the ppE templates to allow for the

excitation of non-GR gravitational-wave polarizations. Modifications to only the

two GR polarizations map to corrections to terms in the time-domain Fourier
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transform that are proportional to the ‘ ¼ 2 harmonic of the orbital phase. However,

Arun suggested that if additional polarizations are present, other terms proportional

to the ‘ ¼ 0 and ‘ ¼ 1 harmonic will also arise (Arun 2012). Chatziioannou et al.

(2012) have found that the presence of such harmonics can be captured through the

more complete single-detector template family

~h
all ‘

ppE;inspðf Þ ¼ A pMfð Þ�7=6e�iWð2ÞGR
1 þ c bppE pMfð ÞbppE=3þ5=3
h i

e2ibppEu
bppE

2 e2ikppEu
jppE

2

þ cppE u
�9=2
1 e�iWð1ÞGR

eibppEu
bppE

1 e2ikppEu
jppE

1 ;

ð294Þ

Wð‘Þ
GR ¼ �2pftc þ ‘Uð‘Þ

c þ p
4
� 3‘

256u5
‘

X

7

n¼0

u
n=3
‘ cPN

n þ lPN
n ln u‘

� �

; ð295Þ

where we have defined u‘ ¼ ð2pMf=‘Þ1=3
. The ppE theory parameters are now

h~¼ ðbppE; bppE; kppE; jppE; cppE;U
ð1Þ
c Þ. Of course, one may ignore ðkppE; jppEÞ alto-

gether, if one wishes to ignore propagation effects. Such a parameterization recovers

the predictions of Jordan–Fierz–Brans–Dicke theory for a single-detector response

function (Chatziioannou et al. 2012), as well as Arun’s analysis for generic dipole

radiation (Arun 2012). The above framework was recently extended by Schumacher

et al. (2023b) to account for gravitational-wave polarizations with different prop-

agation speeds.

One might worry that the corrections introduced by the ‘ ¼ 1 harmonic, i.e.,

terms proportional to cppE in Eq. (294), will be degenerate with post-Newtonian

corrections to the amplitude of the ‘ ¼ 2 mode (not displayed in Eq. (294)).

However, this is clearly not the case, as the latter scale as ðpMf Þ�7=6þn=3
with n an

integer greater than 0, while the ‘ ¼ 1 mode is proportional to ðpMf Þ�3=2
, which

would correspond to a ð�0:5Þ post-Newtonian order correction, i.e., n ¼ �1. On the

other hand, the ppE amplitude corrections to the ‘ ¼ 2 mode, i.e., terms proportional

to bppE in the amplitude of Eq. (294), can be degenerate with such post-Newtonian

corrections when bppE is an integer greater than �4.

4.3.6.4 Applications of the ppE formalism The different models presented above

answer different questions. For example, the model of Eq. (284) contains a stronger

prior (that ppE frequency exponents be integers) than that of Eq. (280), and thus, it

is ideal for fitting a particular set of theoretical models. On the other hand, the model

of Eq. (280) with continuous ppE frequency exponents allows one to search for

generic deviations that are statistically significant, without imposing such theoret-

ical priors. That is, if a deviation from GR is present, then Eq. (280) is more likely

to be able to fit it, than Eq. (284). If one prioritizes the introduction of the least

number of new parameters, Eq. (280) with ðappE; bppEÞ 2 R can still recover

deviations from GR, even if the latter cannot be represented as a correction

proportional to an integer power of velocity.
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Given these ppE waveforms, how should they be used in a data analysis pipeline?

The main idea behind the ppE framework is to match-filter or perform Bayesian

statistics with ppE enhanced template banks to allow the data to select the best-fit

values of ha. As discussed in Yunes and Pretorius (2009b), Cornish et al. (2011) and

then later in Li et al. (2012a), one might wish to first run detection searches with GR

template banks, and then, once a signal has been found, do a Bayesian model

selection analysis with ppE templates. The first study to carry out such a Bayesian

analysis was by Cornish et al. (2011), who concluded that an aLIGO detection at

SNR of 20 for a quasi-circular, non-spinning black-hole inspiral would allow us to

constrain appE and bppE much better than existent constraints for sufficiently strong-

field corrections, e.g., bppE [ � 5. This is because for lower values of the frequency

exponents, the corrections to the waveform are weak-field and better constrained

with Solar System (Sampson et al. 2013b) and binary pulsar observations (Yunes

and Hughes 2010). These predictions were shown to be very accurate with the first

aLIGO observations (Abbott et al. 2016d; Yunes et al. 2016). The large statistical

study of Li et al. (2012a) used a reduced set of ppE waveforms and investigated our

ability to detect deviations of GR when considering a future catalog of aLIGO/

advanced Virgo detections. The LIGO/Virgo Collaboration derived bounds on non-

GR parameters in a generalized inspiral-merger-ringdown formalism with

GW150914 (Abbott et al. 2016d), GW170817 (Abbott et al. 2019b), and gravita-

tional-wave events in the GWTC catalogs (Abbott et al. 2016a, 2019c, 2021b, c),

mostly on corrections entering at positive post-Newtonian orders. Yunes et al.

(2016) derived the bounds on the ppE parameters from GW150914 and GW151226

including negative post-Newtonian corrections (see Fig. 5). The bounds from

gravitational-wave observations are much stronger than those from solar system or

binary pulsar observations for non-GR effects entering first at positive post-

Newtonian orders. Perkins et al. (2021b) gave a forecast on constraining ppE

parameters with a population of events for future observations, while a future

forecast with multiband observations is discussed in Carson and Yagi (2020b, c),

Perkins et al. (2021b), Gupta et al. (2020), Datta et al. (2021). In general, phase

corrections are more important than amplitude corrections (Tahura et al. 2019), but

the latter can be important e.g. when testing GR with astrophysical stochastic

gravitational wave backgrounds (Maselli et al. 2016b; Saffer and Yagi 2020; Chen

et al. 2024). When searching over multiple ppE parameters simultaneously, it is

more efficient to apply a principal component decomposition to break degeneracies

among these ppE parameters (Saleem et al. 2022; Datta et al. 2024; Shoom et al.

2023).

Let us now review the parameterized tests of gravity carried out by the LIGO/

Virgo Collaboration in more detail.19 The first analysis was done on GW150914

(Abbott et al. 2016d). On top of the GR parameters, they added an extra non-GR

parameter d/i in Eq. (293) in the inspiral waveform to search over and derived

posterior distributions on this parameter assuming it entered at positive post-

Newtonian orders. The collaboration repeated the analysis for similar non-GR

19 KAGRA joined the collaboration for tests of GR with gravitational waves with the GWTC-3 data set

(Abbott et al. 2021c).
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parameters entering the intermediate and merger-ringdown portions of the

waveform. They also carried out an analysis with multiple d/i varied simultane-

ously. In this case, the constraint was much weaker than when a single d/i

parameter is included due to the huge degeneracies among different non-GR

parameters. Later, the LIGO/Virgo Collaboration derived bounds on d/�2 (the

correction at �1 post-Newtonian order) with gravitational-wave events in the

catalogs (Abbott et al. 2019b, c, 2021b, c). The most stringent bound on this

parameter comes from GW170817 (Abbott et al. 2019b). This is because the total

mass of the binary is smaller than that of binary black holes, leading to smaller

relative velocity of binary constituents at a fixed frequency and making the �1 post-

Newtonian term relatively larger. Figure 5 shows the bound on the parameterized

post-Einsteinian parameters b with GW150914, GW170817, and combined binary

black hole merger events in the GWTC-3 catalog.20 The Collaboration further

derived combined bounds using multiple events in the gravitational-wave catalogs

(Abbott et al. 2019b, c, 2021b, c). They considered two ways to obtain such

combined bounds. The first way was to simply multiply together the posterior

distribution from each event. This is meaningful if the d/i parameters are common

to all sources. The second way was a hierarchical analysis, where one assumes that

the d/i parameters are drawn from a common underlying distribution and tries to

constrain the latter (Zimmerman et al. 2019; Isi et al. 2019a). The LIGO/Virgo
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Fig. 5 90%-confidence constraints on the ppE parameter jbj at nth post-Newtonian order. The red solid
lines are those from GW150914 (Yunes et al. 2016) (that is consistent with the analysis at positive post-
Newtonian orders by the LIGO/Virgo Collaboration (Abbott et al. 2016a, d). The green dotted line are
bounds from GW170817 (Abbott et al. 2019b), while the blue dotted-dashed line are those obtained by
combining binary black hole merger events in the GWTC-3 catalog (Abbott et al. 2021c). We also
present the bounds from Solar system experiments (cyan star) (Sampson et al. 2013b) and binary pulsar
observations (black line) (Yunes and Hughes 2010)

20 For the latter two, we assumed all the binaries are equal-mass systems to convert the bounds on d/i to

b.
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Collaboration assumed such a distribution to be Gaussian and derived posterior

distributions on the mean and standard deviation of the distribution (Abbott et al.

2021b, c). A Gaussian parameterization is reasonable as it is the least informative

distribution, and it has been shown to work efficiently, even when the true

distribution is non-Gaussian (Isi et al. 2019a).

A built-in problem with the ppE and the ppN formalisms is that if a non-zero ppE

or ppN parameter is detected, then one cannot necessarily map it back to a particular

modified gravity action. On the contrary, as suggested in Table 4, there can be more

than one theory that predicts structurally-similar corrections to the Fourier transform

of the response function. For example, both Jordan–Fierz–Brans–Dicke theory and

the dissipative sector of Einstein–dilaton–Gauss–Bonnet theory predict the same

type of leading-order correction to the waveform phase. However, if a given ppE

parameter is measured to be non-zero, this could provide very useful information as

to the type of correction that should be investigated further at the level of the action.

The information that could be extracted is presented in Table 5, which is derived

from knowledge of the type of corrections that lead to Table 4 (Yunes et al. 2016).

Moreover, if a follow-up search is done with the ppE model in Eq. (284), one could

infer whether the correction is due to modifications to the generation or the

propagation of gravitational waves. In this way, a non-zero ppE detection could

inform theories of what type of GR modification is preferred by nature.

4.3.6.5 Degeneracies Much care must be taken to avoid confusing a ppE theory

modification with some other systematic, such as an astrophysical, a mismodeling or

an instrumental effect. Instrumental effects can be easily remedied by requiring that

several instruments, with presumably unrelated instrumental systematics, indepen-

dently derive a posterior probability for ðappE; bppEÞ that peaks away from zero.

Astrophysical uncertainties can also be alleviated by requiring that different

astrophysical events lead to the same posteriors for ppE parameters (after breaking

degeneracies with system parameters). However, astrophysically there are a limited

number of scenarios that could lead to corrections in the waveforms that are large

enough to interfere with these tests. For comparable-mass–ratio inspirals, this is

usually not a problem as the inertia of each binary component is too large for any

astrophysical environment to affect the orbital trajectory (Hayasaki et al. 2013).

Magnetohydrodynamic effects could affect the merger of neutron-star binaries, but

Table 5 Interpretation of non-zero ppE parameters

appE bppE Interpretation

1 �1 Gravitational parity violation by activation of pseudo-scalar field, non-

commutative geometry

�8 �13 Anomalous acceleration, large extra dimensions, mass leakage, violation of

position invariance

� �7 Dipole gravitational radiation by activation of scalar field, black hole hair

� ð�7;�5Þ Gravitational Lorentz violation by activation of dynamical vector field

� ð�3;þ3;þ6;þ9Þ Massive graviton propagation, modified dispersion relations
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this usually does not affect the inspiral. In extreme–mass-ratio inspirals, however,

the small compact object can be easily nudged away by astrophysical effects, such

as the presence of an accretion disk (Yunes et al. 2011c; Kocsis et al. 2011) or a

third supermassive black hole (Yunes et al. 2011b). These astrophysical effects

present the interesting feature that they correct the waveform in a form similar to

Eq. (280) but with bppE\� 5. This is because the larger the orbital separation, the

stronger the perturbations of the astrophysical environment, either because the

compact object gets closer to the third body or because it leaves the inner edge of

the accretion disk and the disk density increases with separation. Such effects are

not likely to be present in all sources observed, as few extreme–mass-ratio inspirals

are expected to be embedded in an accretion disk or sufficiently close to a third body

(. 0.1 pc) for the latter to have an effect on the waveform.

Perhaps the most dangerous systematic is mismodeling, which is due to the use of

approximation schemes when constructing waveform templates. For example, in the

inspiral one builds models using the post-Newtonian approximation, which expands

and truncates the waveform at a given power of orbital velocity. These models are

typically calibrated to numerical relativity simulations in the late inspiral, so that

they can be joined smoothly to ringdown waves. Thus, inspiral-merger-ringdown

models can have uncertainties that originate in either the truncation of the post-

Newtonian approximation, numerical error or calibration error. Moreover, neutron

stars are usually modeled as test-particles (with a Dirac distributional density

profile), when in reality they have a finite radius, which will depend on its equation

of state. Such finite-size effects enter at 5 post-Newtonian order (due to the

effacement principle, see Hawking and Israel 1987; Damour 1988), but with a post-

Newtonian coefficient that can be rather large (Mora and Will 2004; Berti et al.

2008; Flanagan and Hinderer 2008). Ignorance of the post-Newtonian series beyond

3 post-Newtonian order can lead to systematics in the determination of physical

parameters and possibly also to confusion when carrying out ppE-like tests. Moore

et al. (2021) estimated the amount of systematic errors in tests of GR due to

waveform mismodeling and found that such errors may be evident when stacking as

few as 10–30 gravitational events. This result shows how important the accurate

modeling of the waveform in GR is.

In spite of these problems with the modeling of signals, recent work indicates that

current waveforms are accurate enough to allow for robust tests of GR in a large

region of parameter space with aLIGO observations. In particular, if one is

interested in constraining GR deformations that enter below 2nd post-Newtonian

order, then ppE-type models, which include deformations only in the inspiral, are

sufficient to place conservative constraints with events of modest signal-to-noise

ratio (Yunes et al. 2016; Perkins and Yunes 2022). Better constraints could of

course be obtained if one could also include deformations in the merger and

ringdown phases, but doing so would only strengthen ppE-type constraints in all

cases investigated thus far. This situation holds for current ground-based observa-

tions, since signal-to-noise ratios are not too large. Third generation ground-based

detectors, as well as space-based detectors are expected to detect much louder

signals. For such events, precise tests of GR will require an improvement in the
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accuracy of the GR modeling. The importance of including eccentricity in

parameterized test of GR has been pointed out in Narayan et al. (2023), Saini et al.

(2024). Payne et al. (2023) proposed a framework to simultaneously infer non-GR

deviations, as well as the astrophysical population, to avoid bias from prior

assumptions on the latter, while Magee et al. (2024) addressed the issue of selection

biases on parameterized tests of GR with gravitational waves.

4.3.7 Searching for non-tensorial gravitational-wave polarizations

Another way to search for generic deviations from GR is to ask whether any

gravitational-wave signal detected contains more than the two traditional polariza-

tions expected in GR. Indeed, this is expected in theories with degrees of freedom in

addition to the metric tensor, since these tend to source non-tensorial modes in the

metric perturbation. For example, the merger of compact objects, as well as

supernova explosion, tend to activate a scalar mode in the metric perturbation of

scalar-tensor theories (Gerosa et al. 2016). A general approach to answer this

question is through null streams, as discussed in Sect. 3.5. This concept was first

studied by Gürsel and Tinto (1989) and later by Chatterji et al. (2006) with the aim

to separate false-alarm events from real detections. Chatziioannou et al. (2012)

proposed the extension of the idea of null streams to develop null tests of GR, which

had also been studied with stochastic gravitational wave backgrounds in Nishizawa

et al. (2009), Nishizawa et al. (2010) and implemented in Hayama and Nishizawa

(2013) to reconstruct the independent polarization modes in time-series data of a

ground-based detector network.

Given a gravitational-wave detection, one can ask whether the data is consistent

with two polarizations by constructing a null stream through the combination of data

streams from 3 or more detectors. As explained in Sect. 3.5, such a null stream

should be consistent with noise in GR, while it would present a systematic deviation

from noise if the gravitational wave metric perturbation possessed more than two

polarizations. Notice that such a test would not require a template; if one were

parametrically constructed, such as in Chatziioannou et al. (2012), more powerful

null tests could be applied to such a null steam. In the future, as several gravitational

wave detectors go online (the two aLIGO ones in the United States, advanced Virgo

in Italy, LIGO-India in India, and KAGRA in Japan), gravitational-wave

observations from multiple detectors could be used to construct three enhanced

GR null streams, each with power in a signal null direction. Pang et al. (2020)

developed two methods for probing additional polarizations based on null streams

with electromagnetic counterparts and applied them to GW170817. The LIGO/

Virgo Collaboration has probed the existence of additional polarization modes with

GW150914 (Abbott et al. 2016d), GW170814 (Abbott et al. 2017b), GW170817

(Abbott et al. 2019b), and gravitational-wave events in the GWTC catalogs (Abbott

et al. 2016a, 2019c, 2021b, c). Similar analyses are done in Hagihara et al. (2019),

Takeda et al. (2021), while future prospects are given in Takeda et al. (2018),

Takeda et al. (2019), Philippoz et al. (2018), Hu et al. (2024), including multiband

observations with space- and ground-based detectors (Philippoz et al. 2018).

Chatziioannou et al. (2021) proposed a new method for constraining additional
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polarization modes on top of the GR tensor modes. The method is model

independent (does not rely on waveform templates), phase coherent and no prior-

information is needed for the sky location of a transient source. Isi et al. (2015), Isi

et al. (2017) and Kuwahara and Asada (2022) proposed the use of continuous

gravitational waves to probe extra polarizations. Nishizawa et al. (2009) studied the

detectability of various polarization modes with observations of stochastic

gravitational-wave backgrounds with a network of ground-based interferometers.

Omiya and Seto (2021), Omiya and Seto (2023) studied the overlap reduction

functions of even and odd-parity components of the tensor, vector and scalar

polarizations for isotropic stochastic gravitational-wave background observations

with ground-based detectors. If gravitational-wave signals are lensed, multiple

copies of the same signal effectively increase the number of detectors in a network

thanks to Earth’s rotation (Goyal et al. 2021), which can help separate different

polarization modes.

Let us review the polarization tests carried out by the LIGO/Virgo Collaboration

in more detail. The first test was performed on the GW150914 event (Abbott et al.

2016d), though the results were inconclusive because the number of GR tensorial

(plus and cross) modes are equal to the number of detectors that observed this event

(LIGO Hanford and Livingston). The first informative test of polarization asked

whether certain loud events supported the hypothesis that gravity contains only

tensorial polarizations versus the hypotheses that it contains only scalar or only

vectorial polarizations. Such a test should be understood as purely null test because

no viable theory currently exists that predicts purely scalar or purely vectorial

gravitational waves; such theories existed in the 1970 s, but they were stringently

constrained by solar system experiments over 50 years ago (Will 2018b).

Nonetheless, such a null test was performed on the GW170814 event (Abbott

et al. 2017b) and the collaboration found that the tensor modes are preferred over

pure-scalar or pure-vector modes with Bayes factors (BT
S and BT

V ) of more than 1000

and 200 respectively. This analysis was improved with the GW170817 event

(Abbott et al. 2019b), where the Bayes factors found were log10 B
T
S ¼ þ23:09 


0:08 and log10 B
T
V ¼ þ20:81 
 0:08. The improvement is due to (i) the sky position

of the binary neutron star source relative to the detectors, and (ii) the fact that the

sky position is measured precisely from the electromagnetic counterparts. The

asymmetry in the measurement of BT
S and BT

V is due to the intrinsic geometries of the

detector antenna patterns, making scalar modes easier to distinguish than vector

modes.

The null-stream technique mentioned earlier was applied to binary black hole

merger events in the GWTC-2 catalog (Abbott et al. 2021b). The Collaboration

found log10 B
T
S ¼ Oð1Þ, indicating that the pure-scalar hypothesis is disfavored over

the pure-tensorial one, while the pure-vector hypothesis could not be ruled out (in

fact, some binaries slightly preferred the pure-vector hypothesis over the pure-tensor

one). The Bayes factors with the null stream analysis are much smaller than those

obtained for the GW170814 and GW170817 events because the former relies on an

incoherent stacking of signal power and does not coherently track the phase over

time. The LIGO/Virgo Collaboration further applied the null stream analysis to test
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mixed polarization states of tensor, vector, and scalar modes with binary black hole

merger events in the GWTC-3 catalog (Abbott et al. 2021c). The method uses an

effective antenna pattern function constructed by choosing a subset L of polarization

modes and projecting the relevant polarization state to be tested into the chosen

basis in this subspace (Wong et al. 2021). Each polarization mode can then be

described by a linear combination of the basis modes plus an additional orthogonal

component. By choosing the dimension of the subset as L ¼ 1,21 the collaboration

found that the pure-scalar, pure-vector and vector-scalar mixed hypotheses are

strongly disfavored, while any mixed hypothesis containing tensor modes cannot be

ruled out. On the other hand, by choosing L ¼ 2, they found that mixed hypotheses

can be more strongly disfavored than the pure-vector hypothesis (the pure-scalar

hypothesis cannot be tested because the longitudinal and breathing modes for

interferometers are linearly dependent). This is because mixed hypotheses involve a

larger number of free parameters that leads to a larger Occam penalty. The bottom

line is that the population of events in GTWC-3 is consistent with the pure tensorial

hypothesis.

4.3.8 I-Love-Q tests

Neutron stars in the slow-rotation limit can be characterized by their mass and

radius (to zeroth-order in spin), by their moment of inertia (to first-order in spin),

and by their quadrupole moment and Love numbers (to second-order in spin). One

may expect these quantities to be quite sensitive to the neutron star’s internal

structure, which can be parameterized by its equation of state, i.e., the relation

between its internal pressure and its internal energy density. Since the equation of

state cannot be well-constrained in the laboratory at super-nuclear densities, one is

left with a variety of possibilities that predict different neutron-star mass-radius

relations.

Recently, however, Yagi and Yunes (2013a, b, 2017) have demonstrated that

there are relations between the moment of inertia (I), the Love numbers (kÞ, and the

quadrupole moment (Q), the I-Love-Q relations that are essentially insensitive to the

equation of state. Figure 6 shows two of these relations (the normalized I-Love and

Q-Love relations—see caption) for a variety of equations of state, including APR

(Akmal et al. 1998), SLy (Douchin and Haensel 2001; Shibata et al. 2005),

Lattimer–Swesty with nuclear incompressibility of 220 MeV (LS220) (Lattimer and

Swesty 1991; O’Connor and Ott 2010), Shen et al. (1998a), Shen et al. (1998b),

O’Connor and Ott (2010), the latter two with temperature of 0.01 MeV and an

electron fraction of 30%, and polytropic equations of state with indices of n ¼ 0:6,

0.8 and 122. The bottom panels show the difference between the numerical results

and the analytical, fitting curve. Observe that all equations of state lead to the same

21 A single basis is sufficient to capture the two tensorial polarizations. This is because, in the

quadrupolar approximation, the plus and cross modes only differ by a relative amplitude and phase that

can be marginalized over when computing the evidence.

22 Notice that these relations are independent of the polytropic constant K, where p ¼ Kqð1þ1=nÞ, as

shown in Yagi and Yunes (2013a).
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I-Love and Q-Love relations, with discrepancies smaller than 1% for realistic

neutron-star masses. These results have been verified by many groups: in Lattimer

and Lim (2013) to a wide range of equations of state, in Yagi and Yunes (2013a),

Chan et al. (2015), Chan et al. (2016) via a post-Minkowskian analysis, in Pappas

and Apostolatos (2014), Stein et al. (2014), Yagi et al. (2014c) to higher multiple

order, in Haskell et al. (2014), Zhu et al. (2020b) to weakly-magnetized neutron

stars, in Doneva et al. (2013), Pappas and Apostolatos (2014), Chakrabarti et al.

(2014), Yagi et al. (2014c) to rapidly rotating neutron stars, in Maselli et al. (2013)

to dynamical tides during coalescence (Ferrari et al. 2012; Maselli et al. 2012), in

Bretz et al. (2015) to differential rotation, in Majumder et al. (2015) for different

normalizations, in stellar oscillations (Chan et al. 2014; Benitez et al. 2021; Sotani

and Kumar 2021), in hybrid stars (Paschalidis et al. 2018; Tan et al. 2022). See

Yagi and Yunes (2017) for a review on universal relations for neutron stars. The

universal relations were revisited and improved in Carson et al. (2019) after

GW170817.

Given the independent measurement of any two members of the I-Love-Q trio,

Yagi and Yunes proposed that one could carry out a (null) model-independent and

equation-of-state-independent test of GR (Yagi and Yunes 2013b, a) (see Yagi and

Yunes 2017; Doneva and Pappas 2018 for reviews on tests of GR with neutron star

universal relations). For example, assume that electromagnetic observations of the

binary pulsar J0737–3039 have measured the moment of inertia to 10% accuracy

(Lattimer and Schutz 2005; Kramer and Wex 2009; Kramer et al. 2006). The slow-

rotation approximation is perfectly valid for this binary pulsar, due to its relatively

long spin period. Assume further that a gravitational-wave observation of a neutron-

star–binary inspiral, with individual masses similar to that of the primary in

J0737–3039, manages to measure the neutron star tidal Love number to 60%

accuracy (Yagi and Yunes 2013b, a). These observations then lead to an error box in

the I-Love plane, which must contain the curve in the left-panel of Fig. 6.

A similar test could be carried out by using data from only binary pulsar

observations or only gravitational wave detections. In the case of the latter, one

would have to simultaneously measure or constrain the value of the quadrupole

moment and the Love number, since the moment of inertia is not measurable with

gravitational wave observations. In the case of the former, one would have to extract

the moment of inertia and the quadrupole moment, the latter of which will be

difficult to measure. Therefore, the combination of electromagnetic and gravita-

tional wave observations would be the ideal way to carry out such tests.

b Fig. 6 Top: Fitting curves (solid curve) and numerical results (points) of the universal I-Love (left) and

Q-Love (right) relations for various equations of state, normalized as �I ¼ I=M3
NS, �k

ðtidÞ ¼ kðtidÞ=M5
NS and

�Q ¼ �QðrotÞ=½M3
NSðS=M2

NSÞ
2�, MNS is the neutron-star mass, kðtidÞ is the tidal Love number, QðrotÞ is the

rotation-induced quadrupole moment, and S is the magnitude of the neutron-star spin angular momentum.
The neutron-star central density is the parameter varied along each curve, or equivalently the neutron-star
compactness. The top axis shows the neutron star mass for the APR equation of state, with the vertical
dashed line showing MNS ¼ 1M�. Bottom: Relative fractional errors between the fitting curve and the
numerical results. Observe that these relations are essentially independent of the equation of state, with
loss of universality at the 1% level. Image reproduced by permission from Yagi and Yunes (2013a),
copyright by APS
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I-Love-Q tests of GR are powerful only as long as modified gravity theories

predict I-Love-Q relations that are not degenerate with the general relativistic ones.

Yagi and Yunes (2013a, b) investigated such a relation in dynamical Chern–Simons

gravity and found that such degeneracy is only present in the limit fCS ! 0 (see also

Gupta et al. (2018) for a related work). That is, for any finite value of fCS, the

dynamical Chern–Simons I-Love-Q relation differs from that of GR, with the

distance to the GR expectation increasing for larger fCS. Yagi and Yunes (2013a, b)

predicted that a test similar to the one described above could constrain dynamical

Chern–Simons gravity to roughly n1=4
CS \10MNS � 15 km, where recall that

nCS ¼ a2
CS=ðbjÞ. This has been demonstrated in Silva et al. (2021a), who combined

the tidal deformability measurement of GW170817 through gravitational waves and

the compactness measurement through X-ray observations with NICER and

converted the latter to that of moment of inertia using the universal relation

between the compactness and moment of inertia assuming the GR relation holds.

Silva et al. (2021a) also developed a parameterized I-Love relation that can capture

deviations from GR in the relation in a model-independent way and found the

mapping between phenomenological parameters and the coupling constant in dCS

gravity. Pan et al. (2023) studied the possibility of using fast radio burst emitters

(like magnetars) in binary neutron stars to measure the quadrupole moment from

radio observations and tidal deformability from gravitational wave observations.

The authors then pointed out that one can probe non-GR theories like dCS gravity

with the universal Q-Love relation. Pan et al. (2023) also constructed a parame-

terized Q-Love relation similar to the parameterized I-Love one in Silva et al.

(2021a). Universal relations for neutron stars have also been studied in Einstein–

dilaton–Gauss–Bonnet gravity (Kleihaus et al. 2014, 2016b; Yagi and Yunes 2017;

Saffer and Yagi 2021), massless and massive scalar-tensor theories (Doneva et al.

2014; Pani and Berti 2014; Doneva and Yazadjiev 2016; Yagi and Yunes 2017; Hu

et al. 2021), f(R) theories (Doneva et al. 2015; Staykov et al. 2015; Yagi and Yunes

2017), Eddington-inspired Born–Infeld gravity (Sham et al. 2014), higher-dimen-

sional theories (Chakravarti et al. 2020), Eistein-Æther theory (Vylet et al. 2024),

and Hoǎrava gravity (Ajith et al. 2022). Unlike dynamical Chern–Simons gravity,

however, these theories are very well-constrained from prior Solar System and

binary pulsar observations, and thus, the I-Love-Q relations are much closer to the

general-relativity ones.

The tests described above, of course, only hold provided the I-Love-Q relations

are valid in general relativity and in modified gravity theories. Establishing this

analytically is difficult in general, but possible when making some simplifying

assumptions and using approximations. In particular, Yagi and Yunes (2013b), Yagi

and Yunes (2013a) assumed that the neutron stars are uniformly and slowly rotating,

as well as only slightly tidally deformed by their rotational velocity or companion.

These assumptions have by now been relaxed and the I-Love-Q relations have been

seen to hold (Lattimer and Lim 2013; Yagi and Yunes 2013a; Chan et al.

2015, 2016; Pappas and Apostolatos 2014; Stein et al. 2014; Yagi et al. 2014c;

Haskell et al. 2014; Doneva et al. 2013; Pappas and Apostolatos 2014; Chakrabarti

et al. 2014; Yagi et al. 2014c; Maselli et al. 2013). However, the relations clearly
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do not hold for newly-born neutron stars, which are rapidly and differentially

rotating (Martinon et al. 2014), or for magnetars, which have strong magnetic fields

that contribute to the quadrupolar deformation (Haskell et al. 2014). Martinon et al.

(2014) have found that the I-Love-Q deviate from universality by roughly 20% in

proto-neutron stars, but this non-universality effaces away within 2 s of evolution,

as the stellar entropy relaxes and the star slowly settles down to a barotropic

equilibrium (see Lenka et al. 2019; Marques et al. 2017; Torres-Forné et al. 2019;

Raduta et al. 2020 for related works). Moreover, the radio waves and gravitational

waves emitted by millisecond pulsars and neutron-star inspirals are expected to have

binary components with normal magnetic fields, for which the magnetic

quadrupolar deformation will be small. Therefore, the universal relations should

still hold in the systems one would observe to carry out I-Love-Q tests.

4.3.9 Consistency tests

We now review two consistency tests of GR performed by the LIGO/Virgo

Collaboration: residual tests and inspiral-merger-ringdown consistency tests. Let us

first focus on the former. One can subtract the most probable binary black hole

waveform in GR from the signal and test whether the resulting residual is consistent

with noise. For the GW150914 event, the collaboration used the BayesWave

algorithm (Cornish and Littenberg 2015; Littenberg and Cornish 2015) to rank three

different hypotheses: the data contains (i) only Gaussian noise, (ii) Gaussian noise

plus uncorrelated noise transients, and (iii) Gaussian noise and an elliptically

polarized gravitational-wave signal (Abbott et al. 2016d). The collaboration

computed the signal-to-noise Bayes factor (a measure of significance for the excess

power in the data), and the signal-to-glitch Bayes factor (a measure of the coherence

of the excess power between Hanford and Livingston detectors). They found that the

GW150914 data prefers the first hypothesis over the second and third ones, leading

to the conclusion that all the measured power is consistent with the GR prediction.

The 95% upper bound on the residual signal-to-noise ratio was found to be 7.3. This

can be translated to a lower bound on the fitting factor of 0.96, which, in turn, means

that GR violations in the GW150914 data, if present, are limited to less than 4% for

effects that cannot be captured by redefinition of physical parameters.

The collaboration carried out residual tests for other events in the gravitational-

wave catalogs (Abbott et al. 2019c, 2021b, c). For example, using GWTC-3, they

compared the signal-to-noise ratios of the signals and residuals for various events

and found no correlation between these two signal-to-noise ratios. This indicates

that the data is consistent with the GR templates and the residual signal-to-noise

ratios depend purely on the detector noise. They also estimated the p-values of

residual signal-to-noise ratios for each event. This corresponds to the probability of

obtaining a background value of the residual signal-to-noise ratio higher than that of

the event. They found no significant deviation in the residual data from the expected

noise distribution in the individual interferometers.

The second type of consistency test is the inspiral-merger-ringdown one (Ghosh

et al. 2016, 2018). In this consistency test, one compares inferences on the final

mass and spin of the remnant black hole in a binary black hole merger obtained
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from the inspiral and from the post-inspiral parts of a waveform separately. This can

be realized as follows. First, one estimates the ‘‘inspiral’’ masses and spins of the

black hole binary components through a phenomenological inspiral-merger-

ringdown waveform. With this in hand, one then infers the final mass/spin of the

black hole remnant again, but this time through empirical relations between the

initial masses/spins and the final mass/spin, which are obtained through numerical

relativity simulations in GR (Healy and Lousto 2017; Hofmann et al. 2016;

Jiménez-Forteza et al. 2017). One then repeats this analysis for the ‘‘post-inspiral’’

signal to find another set of the final mass and spin measurement. Suppose there is

an overlap region in the posterior distributions for the final mass and spin from

inspiral and post-inspiral. In that case, this indicates that the procedure described

above (including that GR is correct) is consistent with the data. One can go one step

further and combine such posterior distributions to find a single posterior

distribution in DMf = �Mf and Dvf =�vf . Here, DMf and Dvf are the difference in the

final mass and dimensionless spin of the remnant black hole estimated with the post-

inspiral only and the inspiral plus numerical relativity fitting formula. The quantities
�Mf and �vf are either the best-fit value of the final mass and dimensionless spin

obtained through the best-fit inspiral-merger-ringdown template or the average of

the final mass and dimensionless spin between inspiral and post-inspiral methods.

Madekar et al. (2024) extended the original inspiral-merger-ringdown consistency

tests to a meta inspiral-merger-ringdown consistency tests that checks for the
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Fig. 7 Inspiral-merger-ringdown consistency tests of GR in the parameter space of the fractional
difference in the estimate of the final mass and spin of the remnant black hole between inspiral and post-
inspiral. We present 90% credible posterior distributions for GW150914 (Abbott et al. 2016d) and the
combined one for events in GWTC-3 (Abbott et al. 2021c). We also present future forecasts with Cosmic
Explorer and multiband observations of Cosmic Explorer plus LISA, both assuming they detect signals
from GW150914-like events (Carson and Yagi 2020b, g)
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inferred final mass and spin from two independent tests of GR and checks for

consistency.

We now show results obtained by applying this second consistency test to

existing gravitational-wave events. Such a result for GW150914 (Abbott et al.

2019c, 2016d) is shown in Fig. 7. Observe that the origin (corresponding to GR) is

within the 90% credible region, indicating that data is consistent with the GR

assumption. The two-dimensional GR quantile value (defined as the fraction of the

posterior enclosed by the isoprobability contour passing through the origin; smaller

values mean better consistency with GR) is 28%. The LIGO/Virgo Collaboration

also carried out this test for other events in the catalog (Abbott et al. 2021b, c). The

combined posterior distribution for selected events in GWTC-3 (assuming the

deviation is the same for all events) is also shown in Fig. 7, with DMf = �Mf ¼
�0:02þ0:07

�0:06 and Dvf =�vf ¼ �0:06þ0:10
�0:07 (Abbott et al. 2021c). The two-dimensional

GR quantile in this case is 79.6% (see also Zhong et al. (2024), who proposed

multidimensional hierarchical tests of GR and applied the framework to a two-

dimensional inspiral-merger-ringdown consistency tests with GW events in GWTC-

3). Figure 7 also presents results for future forecasts obtained through a Fisher

analysis computed in Carson and Yagi (2020b, g), who assumed that a signal from a

GW150914-like event is detected with Cosmic Explorer alone and with multiband

observations of Cosmic Explorer and LISA. All of these works assume binaries are

quasi-circular. Bhat et al. (2023) studied systematic errors on the inspiral-merger-

ringdown consistency tests due to ignoring the effect of eccentricities. They found

that the eccentricity e at 10 Hz can bring a significant bias in the inferred final mass

and spin when eJ0:1 for aLIGO and eJ0:015 for Cosmic Explorer. The effect of

eccentricity on consistency tests has been studied in Shaikh et al. (2024).

Although the inspiral-merger-ringdown tests were designed as consistency tests

of GR, one can tweak them to test specific theories and models. This has been

investigated by Carson and Yagi for Einstein–dilaton–Gauss–Bonnet gravity

(Carson and Yagi 2020f) and parameterized Kerr black holes (Carson and Yagi

2020d). They constructed gravitational waveforms including the leading corrections

to the inspiral and the ringdown frequency and damping time. They then injected

these signals and recovered them with GR templates to estimate systematic and

statistical errors on the final mass and spin of the remnant black hole. This allowed

them to find upper bounds on the theory and the model if observations are consistent

with GR. They found that constraints on Einstein–dilaton–Gauss–Bonnet gravity

can be improved by an order of magnitude from current bounds with future

multiband observations (Carson and Yagi 2020f), while those on the Johannsen–

Psaltis metric parameters can be improved by up to three orders of magnitude with

future LISA observations (Carson and Yagi 2020d).

4.4 Tests of the no-hair theorems

Another important class of generic tests of GR are those that concern the no-hair
theorems. Since much work has been done on this area, we have separated this topic

from the main generic tests section (4.3). In what follows, we describe what these
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theorems are and the possible tests one could carry out with gravitational-wave

observations emitted by black-hole–binary systems.

4.4.1 The no-hair theorems

The no-hair theorems state that the only stationary, vacuum solution to the Einstein

equations that is non-singular outside the event horizon is completely characterized

by three quantities: its mass M, its spin S and its charge Q. This conclusion is arrived

at by combining several different theorems. First, Hawking (1971, 1972a) proved

that a stationary black hole must have an event horizon with a spherical topology

and that it must be either static or axially symmetric. Israel (1967, 1968) then

proved that the exterior gravitational field of such static black holes is uniquely

determined by M and Q and it must be given by the Schwarzschild or the Reissner–

Nordström metrics. Carter (1971) constructed a similar proof for uncharged,

stationary, axially-symmetric black holes, where this time black holes fall into

disjoint families, not deformable into each other and with an exterior gravitational

field uniquely determined by M and S. Robinson (1975) and Mazur (1982) later

proved that such black holes must be described by either the Kerr or the Kerr–

Newman metric. See also Misner et al. (1973), Poisson (2004) for more details.

The no-hair theorems apply under a restrictive set of conditions (Cardoso and

Gualtieri 2016). First, the theorems only apply in stationary situations. Black-hole

horizons can be dynamically deformed in coalescing situations, and if so,

Hawking’s theorems (Hawking 1971, 1972a) about spherical horizon topologies

do not apply. This then implies that all other theorems described above also do not

apply. Second, the theorems only apply in electro-vacuum. Consider, for example,

an axially-symmetric black hole in the presence of a non-symmetrical matter

distribution outside the event horizon. One might naively think that this would

tidally distort the event horizon, leading to a rotating, stationary black hole that is

not axisymmetric. However, Hawking and Hartle (1972) showed that in such a case

the matter distribution torques the black hole forcing it to spin down, thus leading to

a non-stationary scenario. If the black hole is non-stationary, then again the no-hair

theorems do not apply by the arguments described at the beginning of this

paragraph, and thus non-isolated black holes can have hair. Third, the theorems only

apply within GR, i.e., through the use of the Einstein equations. Therefore, it is

plausible that black holes in modified gravity theories or in GR with singularities

outside any event horizons (naked singularities) will have hair.

The no-hair theorems imply that the exterior gravitational field of isolated,

stationary, uncharged and vacuum black holes (in GR and provided the spacetime is

regular outside all event horizons) can be written as an infinite sum of mass and

current multipole moments, where only two of them are independent: the mass

monopole moment M and the current dipole moment S. One can extend these

relations to include charge, but astrophysical black holes are expected to be

essentially neutral due to charge accretion. If the no-hair theorems hold, all other

multipole moments can be determined from (Geroch 1970a, b; Hansen 1974)

123

Gravitational-wave tests of general relativity with ground-based… Page 149 of 233     3 



M‘ þ iS‘ ¼ MðiaÞ‘; ð296Þ

where M‘ and S‘ are the ‘th mass and current multipole moments. Even if the black-

hole progenitor was not stationary or axisymmetric, the no-hair theorems guarantee

that any excess multipole moments will be shed-off during gravitational collapse

(Price 1972a, b). Eventually, after the black hole has settled down and reached an

equilibrium configuration, it will be described purely in terms of M0 ¼ M and

S1 ¼ S ¼ Ma2, where a is the Kerr spin parameter.

An astrophysical observation of a hairy black hole would not imply that the no-

hair theorems are wrong, but rather that one of the assumptions made in deriving

these theorems is not appropriate to describe nature. The three main assumptions are

stationarity, vacuum and that GR and the regularity condition hold. Astrophysical

black holes will generically be hairy due to a violation of the first two assumptions,

since they will neither be perfectly stationary, nor exist in a perfect vacuum.

Astrophysical black holes will always suffer small perturbations by other stars,

electromagnetic fields, other forms of matter, like dust, plasma or dark matter, etc.,

which will induce non-zero deviations from Eq. (296) and thus evade the no-hair

theorems. However, in all cases of interest such perturbations are expected to be too

small to be observable, which is why one argues that even astrophysical black holes

should obey the no-hair theorems if GR holds. Put another way, an observation of

the violation of the no-hair theorems would be more likely to indicate a failure of

GR in the extreme gravity regime, than an unreasonably large amount of

astrophysical hair.

Tests of the no-hair theorems come in two flavors: through electromagnetic

observations (Johannsen and Psaltis 2010a, b, 2011b, 2013; Qi et al. 2021; Alush

and Stone 2022) and through gravitational wave observations (Ryan 1995, 1997a;

Collins and Hughes 2004; Glampedakis and Babak 2006; Babak et al. 2007; Barack

and Cutler 2007; Li and Lovelace 2008; Sopuerta and Yunes 2009; Yunes and

Sopuerta 2010; Vigeland and Hughes 2010; Vigeland 2010; Gair and Yunes 2011;

Vigeland et al. 2011; Rodriguez et al. 2012). The former rely on radiation emitted

by accelerating particles in an accretion disk around black holes. However, such

tests are not clean as they require the modeling of complicated astrophysics

associated with accretion disks, matter and electromagnetic fields. Other electro-

magnetic tests of the no-hair theorems exist, for example through the observation of

close stellar orbits around Sgr A* (Merritt et al. 2010, 2011; Sadeghian and Will

2011; Ajith et al. 2020; Qi et al. 2021; Alush and Stone 2022) and pulsar–black-

hole binaries (Wex and Kopeikin 1999), and through direct images of black holes

(Johannsen and Psaltis 2010b; Broderick et al. 2014; Psaltis et al. 2016; Psaltis

2019; Akiyama et al. 2022b). See Psaltis (2008b) for reviews on these topics.

Unlike electromagnetic tests, gravitational wave tests are clean, without much

contamination from their astrophysical environment (Yunes et al. 2011b, c; Kocsis

et al. 2011; Barausse et al. 2014); little work, however, has gone into quantitatively

comparing electromagnetic and gravitational wave tests of the no-hair theorem

(Cardenas-Avendano et al. 2016). Gravitational wave tests of the no-hair theorem
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can be classified into those carried out with inspirals and with ringdown waves. We

will describe below both of these in some detail.

4.4.2 Inspiral tests of the no-hair theorem

Gravitational wave tests of the no-hair theorems can be performed with the

detection of either extreme or comparable mass-ratio inspirals and with the

ringdown of comparable-mass black-hole mergers with current ground-based

(Krishnendu et al. 2017, 2019a, b) and future space-borne gravitational-wave

detectors (Amaro-Seoane et al. 2013, 2012). Extreme mass-ratio inspirals consist of

a stellar-mass compact object spiraling into a supermassive black hole in a generic

orbit within astronomical units from the event horizon of the supermassive object

(Amaro-Seoane et al. 2007). These events outlive the observation time of future

detectors, emitting millions of gravitational wave cycles, with the stellar-mass

compact object essentially acting as a tracer of the supermassive black hole

spacetime (Sotiriou and Apostolatos 2005) (see Cárdenas-Avendaño and Sopuerta

2024 for a recent review on tests of GR with extreme mass-ratio inspirals.)

Ringdown gravitational waves are always emitted after black holes merge, as the

remnant settles down into its final configuration. During the ringdown, the highly-

distorted remnant radiates all excess degrees of freedom and this radiation carries a

signature of whether the no-hair theorems hold in its quasi-normal mode spectrum

(see, e.g., Berti et al. 2009 for a recent review).

Both electromagnetic and gravitational wave tests need a metric with which to

model accretion disks, quasi-periodic oscillations, or extreme mass-ratio inspirals.

One can classify these metrics as direct or generic, paralleling the discussion in

Sect. 4.2. Direct metrics are exact solutions to a specific set of field equations, with

which one can derive observables. Examples of such metrics are the Manko–

Novikov metric (Manko and Novikov 1992) and the slowly-spinning black-hole

metric in dynamical Chern–Simons gravity (Yunes and Pretorius 2009a; Konno

et al. 2009; Yagi et al. 2012d; Maselli et al. 2015a) and in Einstein–dilaton–Gauss–

Bonnet gravity (Yunes and Stein 2011; Pani et al. 2011c; Maselli et al. 2015a).

Generic metrics are those that parametrically modify the Kerr spacetime, such that

for certain parameter choices one recovers identically the Kerr metric, while for

others, one has a deformation of Kerr. Generic metrics can be further classified into

two subclasses, Ricci-flat versus non-Ricci-flat, depending on whether they satisfy

Rlm ¼ 0.

One might be concerned that such no-hair tests of GR cannot constrain modified

gravity theories, because Kerr black holes can also be solutions in the latter (Psaltis

et al. 2008). This is indeed true provided the modified field equations depend only

on the Ricci tensor or scalar. In Einstein–dilaton–Gauss–Bonnet or dynamical

Chern–Simons gravity, the modified field equations depend on the Riemann tensor,

and thus, Ricci-flat metric need not solve these modified set (Yunes and Stein 2011).

Moreover, just because the metric background is identically Kerr does not imply

that inspiral gravitational waves will be identical to those predicted in GR. Most

studies carried out to date, be it direct metric tests or generic metric tests, assume
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that the only quantity that is modified is the metric tensor, or equivalently, the

Hamiltonian or binding energy. Inspiral motion, of course, does not depend just on

this quantity, but also on the radiation-reaction force that pushes the small object

from geodesic to geodesic. Moreover, the gravitational waves generated during such

an inspiral depend on the field equations of the theory considered. Therefore, most

of metric tests should be considered as partial tests in this sense; in general,

modifications in extreme gravity will induce corrections to the Hamiltonian, the

radiation-reaction force and wave generation.

4.4.2.1 Direct metric tests of the no-hair theorem Let us first consider direct

metric tests of the no-hair theorem. The most studied direct metric is the Manko–

Novikov one, which although an exact, stationary and axisymmetric solution to the

vacuum Einstein equations, does not represent a black hole, as the event horizon is

broken along the equator by a ring singularity (Manko and Novikov 1992). Just like

the Kerr metric, the Manko–Novikov metric possesses an ergoregion, but unlike the

former, it also possesses regions of closed time-like curves that overlap the

ergoregion. Nonetheless, an appealing property of this metric is that it deviates

continuously from the Kerr metric through certain parameters that characterize the

higher multiple moments of the solution.

The first geodesic study of Manko–Novikov spacetimes was carried out by Gair

et al. (2008). They found that there are two ring-like regions of bound orbits: an

outer one where orbits look regular and integrable, as there exist four isolating

integrals of the motion; and an inner one where orbits are chaotic and thus ergodic.

Gair et al. (2008) suggested that orbits that transition from the integrable to the

chaotic region would leave a clear observable signature in the frequency spectrum

of the emitted gravitational waves. However, they also noted that chaotic regions

exist only very close to the central body and are probably not astrophysically

accessible. The study of Gair et al. (2008) was recently confirmed and followed up

by Contopoulos et al. (2011). They studied a wide range of geodesics and found

that, in addition to an inner chaotic region and an outer regular region, there are also

certain Birkhoff islands of stability. When an extreme mass-ratio inspiral traverses

such a region, the ratio of resonant fundamental frequencies would remain constant

in time, instead of increasing monotonically. Such a feature would impact the

gravitational waves emitted by such a system, and it would signal that the orbit

equations are non-integrable and the central object is not a Kerr black hole.

Destounis and Kokkotas (2021) also derived gravitational waveforms for extreme

mass ratio inspirals for Manko–Novikov spacetimes and found that fundamental

frequencies undergo sudden jumps when the companion crosses a resonant island.

The study of chaotic motion in geodesics of non-Kerr spacetimes is by no means

new. Chaos has also been found in geodesics of Zipoy–Voorhees–Weyl and Curzon

spacetimes with multiple singularities (Sota et al. 1996a, b) and in general for

Zipoy–Voorhees spacetimes in Lukes-Gerakopoulos (2012), of perturbed Sch-

warzschild spacetimes (Letelier and Vieira 1997b), of Schwarzschild spacetimes

with a dipolar halo (Letelier and Vieira 1997a, 1998; Guéron and Letelier 2001) of

Erez–Rosen spacetimes (Guéron and Letelier 2002), and of deformed
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generalizations of the Tomimatsy–Sato spacetime (Dubeibe et al. 2007). One might

worry that such chaotic orbits will depend on the particular spacetime considered,

but recently Apostolatos et al. (2009) and Lukes– Lukes-Gerakopoulos et al. (2010)

have argued that the Birkhoff islands of stability are a general feature. Although the

Kolmogorov, Arnold, and Moser theorem (Kolmogorov 1954; Arnold 1963; Moser

1962) states that phase orbit tori of an integrable system are only deformed if the

Hamiltonian is perturbed, the Poincare–Birkhoff theorem (Lichtenberg and

Lieberman 1992) states that resonant tori of integrable systems actually disintegrate,

leaving behind a chain of Birkhoff islands. These islands are only characterized by

the ratio of winding frequencies that equals a rational number, and thus, they

constitute a distinct and generic feature of non-integrable systems (Apostolatos

et al. 2009; Lukes-Gerakopoulos et al. 2010). Given an extreme mass-ratio

gravitational-wave detection, one can monitor the ratio of fundamental frequencies

and search for plateaus in their evolution, which would signal non-integrability. Of

course, whether detectors can resolve such plateaus depends on the initial conditions

of the orbits and the physical system under consideration (these determine the

thickness of the islands), as well as the mass ratio (this determines the radiation-

reaction timescale) and the distance and mass of the central black hole (this

determines the SNR).

Another example of a direct metric test of the no-hair theorem is through the use

of the slowly-rotating dynamical Chern–Simons black hole metric (Yunes and

Pretorius 2009a). Unlike the Manko–Novikov metric, the dynamical Chern–Simons

one does represent a black hole, i.e., it possesses an event horizon, but it evades the

no-hair theorems because it is not a solution to the Einstein equations. Sopuerta and

Yunes (2009) carried out the first extreme mass-ratio inspiral analysis when the

background supermassive black hole object is taken to be such a Chern–Simons

black hole. They used a semi-relativistic model (Ruffini and Sasaki 1981) to evolve

extreme mass-ratio inspirals and found that the leading-order modification comes

from a modification to the geodesic trajectories, induced by the non-Kerr

modifications of the background. Because the latter correspond to an extreme-

gravity modification to GR, modifications in the trajectories are most prominent for

zoom-whirl orbits, as the small compact object zooms around the supermassive

black hole in a region of unstable orbits, close to the event horizon. These

modifications were then found to propagate into the gravitational waves emitted,

leading to a dephasing that could be observed or ruled out with future gravitational-

wave observations to roughly the horizon scale of the supermassive black hole, as

has been recently confirmed by Canizares et al. (2012b), Canizares et al. (2012a).

However, these studies may be underestimates, given that they treat the black hole

background in dynamical Chern–Simons gravity only to first-order in spin and

neglect any scalar field charge on the small object. Chaotic orbits in quadratic

gravity were studied in Cárdenas-Avendaño et al. (2018), Deich et al. (2022), where

the effect of chaos was found to be greatly suppressed relative to that in Manko–

Novikov spacetimes. Similar to the dynamical Chern–Simons case, one can also

probe other quadratic gravity theories, such as Einstein–dilaton–Gauss–Bonnet

gravity, with extreme mass-ratio inspirals. In fact, one can consider the more

general setup of a smaller mass black hole endowed with a scalar charge, without
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choosing a particular theory of gravity and choosing the central black hole to be

Kerr (Maselli et al. 2020a, 2022; Guo et al. 2022a; Lestingi et al. 2024; Speri et al.

2024).

A final example of a direct metric test of the no-hair theorems is to consider black

holes that are not in vacuum. Barausse et al. (2007) studied extreme–mass-ratio

inspirals in a Kerr–black-hole background that is perturbed by a self-gravitating,

homogeneous torus that is compact, massive and close to the Kerr black hole. They

found that the presence of this torus impacts the gravitational waves emitted during

such inspirals, but only weakly, making it difficult to distinguish the presence of

matter. Yunes et al. (2011c) and Kocsis et al. (2011) carried out a similar study,

where this time they considered a small compact object inspiraling completely

within a geometrically thin, radiation-pressure dominated accretion disk. They

found that disk-induced migration can modify the radiation-reaction force

sufficiently to leave observable signatures in the waveform, provided the accretion

disk is sufficiently dense in the radiation-dominated regime and a gap opens up.

However, these tests of the no-hair theorem will be rather difficult as most extreme–

mass-ratio inspirals are not expected to be in an accretion disk.

4.4.2.2 Generic metric tests of the no-hair theorem Let us now consider generic

metric tests of the no-hair theorem. Generic Ricci-flat deformed metrics will lead to

Laplace-type equations for the deformation functions in the far-field since they must

satisfy Rlm ¼ 0 to linear order in the perturbations. The solution to such an equation

can be expanded in a sum of mass and current multipole moments, when expressed

in asymptotically Cartesian and mass-centered coordinates (Thorne 1980). These

multipoles can be expressed via (Collins and Hughes 2004; Vigeland and Hughes

2010; Vigeland 2010)

M‘ þ iS‘ ¼ MðiaÞ‘ þ dM‘ þ idS‘; ð297Þ

where dM‘ and dS‘ are mass and current multipole deformations. Ryan (1995), Ryan

(1997a) showed that the measurement of three or more multipole moments would

allow for a test of the no-hair theorem. Generic non-Ricci flat metrics, on the other

hand, will not necessarily lead to Laplace-type equations for the deformation

functions in the far field, and thus, the far-field solution and Eq. (297) will depend

on a sum of ‘ and m multipole moments. Barack and Cutler (2007) studied how well

one can measure the mass, spin and quadrupole moment of a black hole with

extreme mass ratio inspirals using LISA. Gravitational waveforms of inspiralling

compact objects with generic, non-axisymmetric quadrupole moments with spin-

precessing and eccentric orbits were constructed in Loutrel et al. (2022).

No-hair tests can also be performed with gravitational waves from stellar-mass

binary black holes using ground-based detectors (Krishnendu et al. 2017, 2019a, b).

In particular, one can constrain deviations of the quadrupole moment Q from Kerr.

In order to explain this idea, let us introduce the dimensionless quadrupole moment

j (same as �Q in Sect. 4.3.8) as Q ¼ �jm3v2 for the mass m and dimensionless spin

v of a black hole, where j ¼ 1 for a Kerr black hole. The gravitational waves

emitted during compact binary inspirals depend on js and ja which are symmetric
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and antisymmetric combinations of j1 and j2 for the dimensionless quadrupole

moments of binary components. Due to large degeneracies between js and ja, it

would be extremely challenging to independently measure both quadrupole

parameters simultaneously. Thus, one typically assumes ja ¼ 0 and measures

djs 
 js � 1, the deviation in the symmetric combination of the dimensionless

quadrupole moment from the Kerr expectation. This assumption corresponds to

having compact stars with identical spin-induced deformations in a binary. The

LIGO/Virgo Collaboration has derived bounds on djs with gravitational-wave

events in the catalogs collected (Abbott et al. 2021b, c). Multiplying the likelihood

of js of each signal in selected events in GWTC-3, the collaboration found djs ¼
�16:0þ13:6

�16:7 (Abbott et al. 2021c). On the other hand, with the hierarchical analysis

discussed in Sect. 4.3.6, the combined bound becomes djs ¼ �26:3þ45:8
�52:9 (Abbott

et al. 2021c). The bounds on the positive djs side are stronger because of how djs is

correlated with the effective inspiral spin parameter. Li et al. (2024a) carried out a

no-hair test with GW150914 and GW200129 and reported a significant deviation in

the quadrupole moment from the Kerr case for the latter event, though more events

and further analyses are necessary to validate the deviation. The no-hair test can be

extended to include the octupole moment (Saini and Krishnendu 2024). The

importance of precession on no-hair tests for the inspiral is discussed in Loutrel

et al. (2024). Mahapatra and Kastha (2024) studied the effect of amplitude

corrections to multipolar tests of GR with gravitational waves, as well as carrying

out multiparameter tests (Mahapatra et al. 2024).

Let us now return to tests of the no-hair relations from extreme mass-ratio

inspirals, which require the construction of a parametrically-deformed black hole

metric. The first attempt to construct a generic, Ricci-flat metric was by Collins and

Hughes (2004): the bumpy black-hole metric. In this approach, the metric is

assumed to be of the form

glm ¼ gðKerrÞ
lm þ � dglm; ð298Þ

where � � 1 is a bookkeeping parameter that enforces that dglm is a perturbation of

the Kerr background. This metric is then required to satisfy the Einstein equations

linearized in �, which then leads to differential equations for the metric deformation.

Collins and Hughes (2004) assumed a non-spinning, stationary spacetime, and thus

dglm only possessed two degrees of freedom, both of which were functions of radius

only: w1ðrÞ, which must be a harmonic function and which changes the Newtonian

part of the gravitational field at spatial infinity; and c1ðrÞ which is completely

determined through the linearized Einstein equations once w1 is specified. One then

has the freedom to choose how to prescribe w1 and Collins and Hughes (2004)

Hughes investigate two choices that correspond physically to point-like and ring-

like naked singularities, thus violating cosmic censorship (Penrose 1969). Vigeland

and Hughes (2010) and Vigeland (2010) then extend this analysis to stationary,

axisymmetric spacetimes via the Newman–Janis method (Newman and Janis 1965;

Drake and Szekeres 2000), showing how such metric deformations modify

Eq. (297), and computing how these bumps imprint themselves onto the orbital
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frequencies and thus the gravitational waves emitted during an extreme–mass-ratio

inspiral.

That the bumps represent unphysical matter should not be a surprise, since by the

no-hair theorems, if the bumps are to satisfy the vacuum Einstein equations they

must either break stationarity or violate the regularity condition. Naked singularities

are an example of the latter. A Lorentz-violating massive field coupled to the

Einstein tensor is another example (Dubovsky et al. 2007). Gravitational wave tests

with bumpy black holes must then be understood as null tests: one assumes the

default hypothesis that GR is correct and then sets out to test whether the data

rejects or fails to reject this hypothesis (a null hypothesis can never be proven).

Unfortunately, however, bumpy black hole metrics cannot parameterize spacetimes

in modified gravity theories that lead to corrections in the field equations that are not

proportional to the Ricci tensor, such as for example in dynamical Chern–Simons or

in Einstein–dilaton–Gauss–Bonnet modified gravity.

Other bumpy black hole metrics have also been proposed. Glampedakis and

Babak (2006) proposed a different type of stationary and axisymmetric bumpy black

hole through the Hartle–Thorne metric (Hartle and Thorne 1968), with modifica-

tions to the quadrupole moment. They then constructed a ‘‘kludge’’ extreme mass-

ratio inspiral waveform and estimated how well the quadrupole deformation could

be measured (Babak et al. 2007). However, this metric is valid only when the

supermassive black hole is slowly-rotating, as it derives from the Hartle–Thorne

ansatz. Johannsen and Psaltis (2011a) proposed yet another metric to represent

bumpy stationary and spherically-symmetric spacetimes. This metric introduces one

new degree of freedom, which is a function of radius only and assumed to be a

series in M/r. Johansen and Psaltis then rotated this metric via the Newman–Janis

method (Newman and Janis 1965; Drake and Szekeres 2000) to obtain a new bumpy

metric for axially-symmetric spacetimes. However, such a metric possesses a naked

ring singularity on the equator, and naked singularities on the poles. As before, none

of these bumpy metrics can be mapped to known modified gravity black hole

solutions, in the Glampedakis and Babak (2006) case because the Einstein equations

are assumed to hold to leading order in the spin, while in the Johannsen and Psaltis

(2011a) case because a single degree of freedom is not sufficient to model the three

degrees of freedom contained in stationary and axisymmetric spacetimes (Stephani

et al. 2003; Vigeland et al. 2011).

The first generic non-Ricci-flat bumpy black-hole metric so far is that of

Vigeland et al. (2011), and its simplified extension by Johannsen (2013), which was

further extended by Carson and Yagi (2020a), Yagi et al. (2024) and a similar

black-hole metric with Kerr symmetry found by Papadopoulos and Kokkotas

(2018, 2021), Chen (2020) (breaking the Z2 symmetry of the spacetime), and

Delaporte et al. (2022) (breaking the circularity of spacetime). Vigeland et al.

(2011) allowed generic deformations in the metric tensor, only requiring that the

new metric perturbatively retained the Killing symmetries of the Kerr spacetime:

the existence of two Killing vectors associated with stationarity and axisymmetry,

as well as the perturbative existence of a Killing tensor (and thus a Carter-like

constant), at least to leading order in the metric deformation. Such requirements

imply that the geodesic equations in this new background are fully integrable, at
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least perturbatively in the metric deformation, which then allows one to solve for the

orbital motion of extreme–mass-ratio inspirals by adapting previously existing tools.

Brink (2008a, b, 2010a, b, 2011) studied the existence of such a second-order

Killing tensor in generic, vacuum, stationary and axisymmetric spacetimes in

Einstein’s theory and found that these are difficult to construct exactly. By relaxing

this exact requirement, Vigeland et al. (2011) found that the existence of a

perturbative Killing tensor poses simple differential conditions on the metric

perturbation that can be analytically solved. Moreover, they also showed how this

new bumpy metric can reproduce all known modified gravity black hole solutions in

the appropriate limits, provided these have an at least approximate Killing tensor;

thus, these metrics are still vacuum solutions even though R 6¼ 0, since they satisfy a

set of modified field equations. The imposition that the spacetime retains the Kerr

Killing symmetries also leads to a bumpy metric that is well-behaved everywhere

outside the event horizon (no singularities, no closed-time-like curves, no loss of

Lorentz signature). Gair and Yunes (2011) studied how the geodesic equations are

modified for a test-particle in a generic orbit in such a spacetime and showed that

the bumps are indeed encoded in the orbital motion, and thus, in the gravitational

waves emitted during an extreme-mass-ratio inspiral. This work was extended by

Moore et al. (2017) for probing a parameterized black hole spacetime preserving

Kerr symmetry with gravitational waves from extreme mass ratio inspirals.

Destounis et al. (2020) constructed a new metric that contains a parameter

characterizing the violation of the Kerr symmetry and studied how well one can

constrain this parameter with future gravitational-wave observations from extreme

mass-ratio inspirals. Carson and Yagi (2020d) derived the leading correction to the

inspiral waveform for a generic modification to non-Kerr spacetime. The authors

also derived corrections to ringdown following the post-Kerr formulation

(Glampedakis et al. 2017). They then provided a future forecast on tests of non-

Kerr spacetime with future gravitational-wave observations by performing param-

eterized tests and inspiral-merger-ringdown consistency tests of GR. Non-Kerr

corrections to the waveform found in Carson and Yagi (2020d) were used by Santos

et al. (2024) to place bounds on deviations from Kerr with GWTC-3 (see also Das

et al. 2024). Kumar et al. (2024) constructed gravitational waves from extreme-

mass-ratio inspirals with the central black hole represented by the parameterized

Kerr spacetime developed by Yagi et al. (2024), and studied the prospect for

probing such a spacetime with LISA.

Another approach to construct generic, non-Ricci-flat bumpy black hole-metrics

is that recently pursued by Rezzolla and Zhidenko (2014), Konoplya et al. (2016),

Konoplya et al. (2018), Konoplya and Zhidenko (2020), Ma and Rezzolla (2024). In

this approach, one models the bumpy metric with the most general, stationary and

axisymmetric line element, which is typically parametrized in terms of five free

metric functions. These functions are expressed in terms of a compact radial

coordinate (equivalent to the Schwarzschild factor in general relativity) and an

infinite continuous fraction. Rezzolla, Zhidenko and Konoplya have shown that this

metric is capable of reproducing the predictions of a large class of modified theories,

including Einstein–dilaton–Gauss–Bonnet black holes, dilatonic black holes and

Kerr black holes (Rezzolla and Zhidenko 2014; Konoplya et al. 2016). Moreover,
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this parametrized metric has also been used to model the shadows cast by the light-

ring of this metric on the light emitted by an accretion disk (Younsi et al. 2016).

Cardenas-Avendano et al. (2020) compared gravitational-wave versus X-ray

observations to test the parameterized spacetime of Rezzolla and Zhidenko. The

authors derived corrections to the gravitational waveforms and also simulated X-ray

observations for the parameterized spacetime. They found that current gravitational-

wave observations place stronger bounds on the spacetime than future X-ray

observations can. The gravitational-wave bounds will further improve with future

gravitational-wave detectors. The Konoplya–Rezzolla–Zhidenko metric was con-

strained with GWTC-2 by Shashank and Bambi (2022).

4.4.3 Ringdown tests of the no-hair theorem

Let us now consider tests of the no-hair theorems with gravitational waves emitted

by comparable-mass binaries during the ringdown phase. Gravitational waves

emitted during ringdown can be described by a superposition of exponentially-

damped sinusoids (Berti et al. 2006):

hþðtÞ þ i h�ðtÞ ¼
M

r

X

‘mn

A‘mne
iðx‘mntþ/‘mnÞe�t=s‘mnS‘mn

n

þA0
‘mne

ið�x‘mntþ/0
‘mnÞe�t=s‘mnS�‘mn

o

;

ð299Þ

where r is the distance from the source to the detector, the asterisk stands for

complex conjugation, the real mode amplitudes A‘mn and A0
‘mn and the real phases

/n‘m and /0
n‘m depend on the initial conditions, S‘mn are spheroidal functions

evaluated at the complex quasinormal ringdown frequencies

xn‘m ¼ 2pfn‘m þ i=sn‘m, and the real physical frequency fn‘m and the real damping

times sn‘m are both functions of the mass M and the Kerr spin parameter a only,

provided the no-hair theorems hold. These frequencies and damping times can be

computed numerically or semi-analytically, given a particular black-hole metric

(see Berti et al. 2009 for a review). The Fourier transform of a given ð‘;m; nÞ mode

is (Berti et al. 2006)

~h
ð‘;m;nÞ
þ ðxÞ ¼ M

r
Aþ

‘mn ei/
þ
‘mnS‘mnbþðxÞ þ e�i/þ

‘mnS�‘mnb�ðxÞ
h i

; ð300Þ

~h
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� ðxÞ ¼ M

r
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‘mn ei/
�
‘mnS‘mnbþðxÞ þ e�i/�

‘mnS�‘mnb�ðxÞ
h i
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where we have defined Aþ;�
‘mn e

i/þ;�
‘mn 
 A‘mne

i/‘mn 
A0e�i/0
‘mn as well as the Lor-

entzian functions

b
ðxÞ ¼
s‘mn

1 þ s2
‘mnðx
 x‘mnÞ2

: ð302Þ

Ringdown gravitational waves will all be of the form of Eq. (299) provided that the

characteristic nature of the differential equation that controls the evolution of
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ringdown modes is not modified, i.e., provided that one only modifies the potential

in the Teukolsky equation or other subdominant terms, which in turn depend on the

modified field equations.

Tests of the no-hair theorems through the observation of black-hole ringdown

date back to Detweiler (1980a), and it has been worked out in detail by Dreyer et al.

(2004). Let us first imagine that a single complex mode is detected x‘1m1n1
and one

measures separately its real and imaginary parts. Of course, from such a

measurement, one cannot extract the measured harmonic triplet ð‘1;m1; n1Þ, but

instead one only measures the complex frequency x‘1m1n1
. This information is not

sufficient to extract the mass and spin angular momentum of the black hole because

different quintuplets ðM; a; ‘;m; nÞ can lead to the same complex frequency x‘1m1n1
.

The best way to think of this is graphically: a given observation of xð1Þ
‘1m1n1

traces a

line in the complex X‘1m1n1
¼ Mxð1Þ

‘1m1n1
plane; a given ð‘;m; nÞ triplet defines a

complex frequency x‘mn that also traces a curve in the complex X‘mn plane; each

intersection of the measured line X‘1m1n1
with X‘mn defines a possible doublet

(M, a); since different ð‘;m; nÞ triplets lead to different x‘mn curves and thus

different intersections, one ends up with a set of doublets S1, out of which only one

represents the correct black-hole parameters. We thus conclude that a single mode

observation of ringdown gravitational waves is not sufficient to test the no-hair

theorem (Dreyer et al. 2004; Berti et al. 2006).

Let us then imagine that one has detected two complex modes, x‘1m1n1
and

x‘2m2n2
. Each detection leads to a separate line X‘1m1n1

and X‘2m2n2
in the complex

plane. As before, each ðn; ‘;mÞ triplet leads to separate curves X‘mn which will

intersect with both X‘1m1n1
and X‘2m2n2

in the complex plane. Each intersection

between X‘mn and X‘1m1n1
leads to a set of doublets S1, while each intersection

between X‘mn and X‘2m2n2
leads to another set of doublets S2. However, if the no-hair

theorems hold sets S1 and S2 must have at least one element in common. Therefore,

a two-mode detection allows for tests of the no-hair theorem (Dreyer et al. 2004;

Berti et al. 2006). However, when dealing with a quasi-circular black-hole–binary

inspiral within GR one knows that the dominant mode is ‘ ¼ 2 ¼ m. In such a case,

the observation of this complex mode by itself allows one to extract the mass and

spin angular momentum of the black hole. Then, the detection of the real frequency

in an additional mode, such as the ‘ ¼ 3 ¼ m, ‘ ¼ 4 ¼ m or ð‘;mÞ ¼ ð2; 1Þ modes

that are the next subleading modes (Bhagwat et al. 2016), can be used to test the no-

hair theorem (Berti et al. 2006, 2007; Kamaretsos et al. 2012). Generally, detecting

higher harmonic modes of ‘ 6¼ 2 or m 6¼ 2 is more promising than detecting

overtone modes of n[ 0 for unequal-mass binaries, while the latter is easier to

detect for nearly equal-mass systems (Jiménez Forteza et al. 2020; Ota and Chirenti

2022; Ota 2022). One can also perform a no-hair test by studying the consistency

between the mode amplitude ratio and the phase difference that can only be in

narrow regions in parameter space in GR (Jiménez Forteza et al. 2023). No-hair

tests through ringdown observations can probe non-Kerr black holes (Carson and

Yagi 2020d; Dey et al. 2023), as discussed in Sect. 4.4.2, through e.g. the post-Kerr

formalism (Glampedakis et al. 2017), and exotic compact objects (Westerweck

et al. 2021) (see Sect. 4.4.4 for more details).
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Although the logic behind these tests is clear, one must study them carefully to

determine whether all systematic and statistical errors are sufficiently under control

so that they are feasible. Berti et al. (2006, 2007) investigated such tests carefully

through a frequentist approach. First, they found that a matched-filtering type

analysis with two-mode ringdown templates would increase the volume of the

template manifold by roughly three orders of magnitude. A better strategy then is

perhaps to carry out a Bayesian analysis, like that of Gossan et al. (2012); through

such a study one can determine whether a given detection is consistent with a two-

mode or a one-mode hypothesis. Berti et al. (2006), Berti et al. (2007) also

calculated that a SNR of Oð102Þ in the ringdown part of the signal would be needed

to detect the presence of two ringdown modes in the signal and to resolve their

frequencies, so that no-hair tests would be possible. Although this is difficult to

imagine with single detections by aLIGO, such tests would be possible with third-

generation ground-based detectors, and they should be routine with space-based

GW detectors (Berti et al. 2016). Strong signals are necessary because one must be

able to distinguish at least two modes in the signal. Unfortunately, however,

whether the ringdown leads to such strong SNRs and whether the sub-dominant

ringdown modes are of a sufficiently large amplitude depends on a plethora of

conditions: the location of the source in the sky, the mass of the final black hole,

which depends on the rest mass fraction that is converted into ringdown

gravitational waves (the ringdown efficiency), the mass ratio of the progenitor,

the magnitude and direction of the spin angular momentum of the final remnant and

probably also of the progenitor and the initial conditions that lead to ringdown.

Thus, although such tests are possible, one would have to be quite fortunate to detect

a sufficiently loud signal with the right properties so that a two-mode extraction and

a test of the no-hair theorems is feasible. See Carullo et al. (2018), Baibhav and

Berti (2019), Bhagwat et al. (2020), Ota and Chirenti (2022), Pacilio and Bhagwat

(2023) for other works on future prospects for testing GR with ringdown.

Another approach is then to combine multiple events in the hopes to tease out

enough information to carry out a ringdown test Yang et al. (2017). Given a single

observation, one can construct the posterior of a parameter that quantifies

deformations away from the quasinormal frequencies predicted in GR, given a

remnant mass and spin. If the no-hair theorems hold, then this posterior would be

peaked at zero, with some width that can be used to compute a confidence region,

and thus, a constraint on deviations from black hole baldness. Meidam et al. (2014)

considered adding the posteriors from a catalog of N detections with the third-

generation Einstein Telescope (ET) detector to compute the odds-ratio between the

hypothesis that the no-hair theorems are satisfied and the hypothesis that they

deviate by a constant frequency factor. The authors found that when Oð10Þ ET

posteriors are stacked in this way, then one can test the no-hair theorem to a few

percent with the first sub-dominant ringdown modes. Yang et al. (2017) carried out

a different analysis: they still considered N inspiral-merger-ringdown detections, but

instead of adding the posteriors together, they (i) time- and phase-shifted the events

with respect to a fiducial one to align one of the sub-leading modes across the events

and (ii) coherently stacked the time- and phase-shifted signals to produce a single
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‘‘mega’’-signal that would boost the power in the sub-dominant mode. The time-

and phase-shifting requires knowledge of how the sub-dominant mode depends on

the remnant mass and spin, which Yang et al. (2017) modeled assuming GR,

making this a null test. They found that coherently stacking significantly boosts the

ability to test the no-hair theorem, allowing a null-test of GR with only Oð5Þ events

using aLIGO at designed sensitivity. They also showed that a significantly smaller

number of events are required to test the no-hair relations when coherently stacking

because the signal-to-noise ratio of the stacked signal scales as N1=4 instead of N1=2

(Yang et al. 2017; Kalmus et al. 2009) (see Da Silva Costa et al. 2018 for a related

work).

No-hair tests of black holes with ringdown observations have been carried out

with the existing gravitational-wave events. Carullo et al. (2019) performed a

Bayesian inference on the GW150914 data and found no evidence for more than one

quasinormal mode. Isi et al. (2019b) focused on the ‘ ¼ 2 ¼ m modes and found

evidence in the GW150914 data for both the fundamental mode ðn ¼ 0Þ and at least

one overtone mode ðn ¼ 1Þ (see Isi and Farr 2021 for a more comprehensive

analysis by the same authors). This allowed them to probe the no-hair property of

the remnant black hole to a � 10% level. On the other hand, Cotesta et al. (2022)

performed an independent study and found no evidence for the presence of the

overtone mode. They pointed out that the analysis for the existence of such a mode

is sensitive to the starting time of the ringdown (see Bhagwat et al. (2018) for the

importance of the choice of the starting time of the ringdown) and the claim for the

detection of the overtone in Isi et al. (2019b) is likely to be dominated by the noise.

Their claim was more thoroughly investigated in Baibhav et al. (2023). Isi and Farr

(2022) revisited their analysis and reported that they could not reproduce the results

in Cotesta et al. (2022) and their previous analysis in Isi et al. (2019b) should be

robust (see also Carullo et al. 2023; Baibhav et al. 2023; Isi and Farr 2023 for

further debate by the two groups.) Yet another independent analysis was carried out

by Finch and Moore (2022). They took a frequency-domain approach developed in

Finch and Moore (2021) by the same authors, as opposed to the time-domain one

that had been used previously, and marginalized over the source sky position and

the ringdown starting time. The authors found some tentative evidence for the

overtone mode but at a much weaker significance than previously reported by Isi

et al. (2019b), Isi and Farr (2022). Ma et al. (2023b), Ma et al. (2023a) developed a

‘‘rational filter’’, a method to clean a particular mode from a ringdown signal.

Applying this to GW150914, they removed the fundamental mode and found that

the remaining filtered data is consistent with the template that only includes the first

overtone. Calderón Bustillo et al. (2021) imposed the prior knowledge that the

ringdown of GW150914 is sourced by a binary black hole merger and found that the

hairy black hole hypothesis is disfavored over the Kerr black hole hypothesis with

an odds ratio of 1:600. Wang et al. (2023b) carried out an independent analysis in

frequency domain by removing contamination before ringdown. Their results

support the existence of the overtone mode and are more consistent with those of Isi

et al. (2019b). On the other hand, Correia et al. (2024) marginalized over merger

time and sky location uncertainties, and found that the evidence for the existence of
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the overtone mode is rather low. Regarding no-hair test with just the n ¼ 0

fundamental mode, Capano et al. (2023) found evidence for the existence of the

‘ ¼ 3 ¼ m mode in GW190521 with a Bayes factor of 56 (see Capano et al. 2024

for their follow-up analysis). The fractional deviation from GR on the subdominant

mode frequency was constrained to �0:01þ0:08
�0:09 to 90% confidence.

Recently, parameterized ringdown formulations have been developed to test the

assumptions of the no-hair theorem (Cardoso et al. 2019; McManus et al. 2019;

Maselli et al. 2020b; Carullo 2021; Franchini and Völkel 2023). Cardoso et al.

(2019) assumed a spherically-symmetric background black hole solution, that all

GR deviations are small, and that the perturbed equations decouple from each other.

The authors then parameterized deviations in the perturbation potential from GR,

where generic parameters are coefficients of the potential deviation expanded about

spatial infinity. One can then solve such perturbed equations and find ringdown

frequencies perturbatively. McManus et al. (2019) improved Cardoso et al. (2019)

by allowing the perturbed equations to couple to each other and by going to second

order in perturbation parameters. They showed that their framework can be applied

to various non-GR theories, including dynamical Chern–Simons gravity, Horndeski

theories and effective field theories. The original work by Cardoso et al. (2019) was

refined by Franchini and Völkel (2023) to include additional coefficients that have

some advantage when doing parameter estimation. The parameterized quasi-normal

mode framework was further extended to include overtones (Hirano et al. 2024) and

even to include tidal Love numbers of black holes (Katagiri et al. 2024). Maselli

et al. (2020b), Maselli et al. (2024) further extended these previous works by

including spin to the background black hole solution. The spin is here treated

perturbatively and the framework is known as the parametrized ringdown spin

expansion coefficients (PARSPEC). Carullo (2021) then applied this framework to

existing gravitational-wave events and derived bounds on the correction to the

ringdown frequency of the ð‘;m; nÞ ¼ ð2; 2; 0Þ mode and the length scales (for

various mass dimensions) at which new physics may arise. The parameterized

quasi-normal mode framework in Cardoso et al. (2019) has recently been extended

to include arbitrary spin of black holes by Cano et al. (2024). The authors

introduced a parameterized deviation to the potential in the radial Teukolsky

equation for the Kerr background. A parameterized waveform was also constructed

using the effective-one-body framework by leaving the complex quasinormal mode

frequencies to be free parameters (Brito et al. 2018). This is, thus, an inspiral-

merger-ringdown waveform, and one can correctly estimate the time at which the

signal starts to be dominated by the quasinormal modes, unlike the case where one

models the ringdown signal through a superposition of damped sinusoids.

The LIGO/Virgo Collaboration has carried out parameterized tests of ringdown

with GWTC-2 (Abbott et al. 2021b) and GWTC-3 (Abbott et al. 2021c) adopting

two different methods. The first method is the time-domain ringdown analysis

pyRing (Carullo et al. 2019; Isi et al. 2019b), which is based on damped sinusoids.

For example, the collaboration took the Kerr221 template (containing the

fundamental and first overtone modes for ð‘; jmjÞ ¼ ð2; 2Þ) and introduced

parameterized deviations from GR, df̂221 for the frequency and dŝ221 for the
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damping time of the overtone mode. Combining 21 gravitational events in GWTC-3

that pass certain criteria, the collaboration found the hierarchically combined bound

of df̂ 221 ¼ 0:01þ0:27
�0:28 (Abbott et al. 2021c) for the frequency deviation, while the

damping time deviation could not be constrained. The combined log odds ratio

between non-GR versus GR hypotheses was log10 O
modGR
GR ¼ �0:90 
 0:44 at 90%

uncertainty (Abbott et al. 2021c), indicating that the GR hypothesis is favored. The

second analysis uses the pSEOBNRv4HM waveform model (Cotesta et al. 2018;

Ghosh et al. 2021) (a spinning, non-precessing effective-one-body waveform model

with higher modes) in the time domain and the likelihood function in the frequency

domain. The frequency and damping time of the fundamental mode with ð‘; jmjÞ ¼
ð2; 2Þ is modified from the GR ones as f220 ¼ fGR

220 ð1 þ df̂ 220Þ and

s220 ¼ sGR
220ð1 þ dŝ220Þ. The GR values are predicted from the initial binary’s

masses and spins through numerical relativity fits (Taracchini et al. 2014; Hofmann

et al. 2016). By multiplying posteriors from multiple events in GWTC-3, the

collaboration found the bound df̂ 220 ¼ 0:02þ0:03
�0:03 and dŝ220 ¼ 0:13þ0:11

�0:11, while

hierarchically-combined bounds were df̂ 220 ¼ 0:02þ0:07
�0:07 and dŝ220 ¼ 0:13þ0:21

�0:22

(Abbott et al. 2021c). Notice that the bound on dŝ220 from multiplying posteriors

does not contain the GR value within the 90%-credible region. This may be due to

the asymmetric prior on ðdf̂ 220; dŝ220Þ, correlations among remnant parameters,

imperfect noise modelling, or statistical uncertainties of using only � 10 events

(Abbott et al. 2021c).

Recently, the problem of understanding the quasinormal frequency spectrum of

spinning perturbed black holes in theories beyond general relativity has begun to be

studied in detail. This problem is extremely difficult because the usual methods that

lead to the Teukolsky equation (Teukolsky 1973) break down outside general

relativity, either because the black hole background spacetime is not Petrov type D

or because the field equations are not Einstein’s. For example, spinning black holes

in dynamical Chern–Simons gravity (Yunes and Pretorius 2009a; Konno et al.

2009; Yagi et al. 2012d; Maselli et al. 2015a) and Einstein–dilaton–Gauss–Bonnet

gravity (Ayzenberg and Yunes 2014), computed in the slow-rotational approxima-

tion, remain Petrov Type D to linear order in spin Sopuerta and Yunes (2009), Yagi

et al. (2012d), Ayzenberg and Yunes (2014), but become Petrov Type I at second

and higher orders in spin Yagi et al. (2012d), Ayzenberg and Yunes (2014), Owen

et al. (2021). In order to overcome this problem, several groups have calculated the

quasinormal frequency spectrum of spinning perturbed black holes in the slow-

rotation approximation (Wagle et al. 2022; Blázquez-Salcedo et al. 2016; Pierini

and Gualtieri 2021, 2022) The problem with these analyses is that they are based on

a slow-rotation approximation, while black hole remnant generated in binary

coalescence are typically not rotating slowly. For this reason, a new effort has

recently been put underway to compute perturbations of arbitrarily-fast rotating

black holes outside general relativity. Li et al. (2023a) and Hussain and Zimmerman

(2022) have taken the first steps in this direction, deriving a modified Teukolsky

equation for a large class of theories outside Einstein’s, which holds irrespective of

the Petrov type (see also Cano et al. 2023 for related work). The left-hand side of
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this equation has the same structure as the original Teukolsky equation, but it is now

sourced (in the right-hand side) by terms that depend on derivatives of additional

fields that may be present in the theory and spin coefficients and other curvature

quantities that require metric reconstruction. Work is currently underway to separate

this modified equation in a couple of example theories and then to solve the

separated equations to find the eigenfrequencies without the slow-rotation

approximation. The application of this method to dynamical Chern–Simons gravity

for a slowly-spinning black hole has recently been completed by Wagle et al.

(2024). A different approach was taken by Chung et al. (2023), Chung et al. (2024),

Chung and Yunes (2024b), Petrov Type I at second and higher orders in

spinChung:2024vaf where one can use a spectral decomposition to solve black hole

perturbation equations that are coupled and are not separated into radial and angular

sectors. This novel framework was first developed for the Schwarzschild

background case (Chung et al. 2023), and then further extended to the Kerr

background (Chung et al. 2024), as well as to modified theories of gravity (Chung

and Yunes 2024b), such as scalar Gauss–Bonnet gravity (Chung and Yunes 2024a).

With the spectral method established, recent work has begun to implement it in

other theories of gravity, such as in scalar Gauss–Bonnet with strong coupling

(Blázquez-Salcedo et al. 2025).

4.4.4 The hairy search for exotica

Another way to test GR is to modify the matter sector of the theory through the

introduction of matter corrections to the Einstein–Hilbert action that violate the

assumptions made in the no-hair theorems. More precisely, one can study whether

gravitational waves emitted by binaries composed of strange stars, like quark stars,

or exotic compact objects that lack a horizon, such as boson stars or gravastars, are

different from waves emitted by more traditional neutron-star or black-hole

binaries. Horizonless compact objects have been proposed as a way to probe the

quantum nature of black holes (see e.g. Wang et al. 2020; Oshita et al. 2020; Abedi

et al. 2020; Addazi et al. 2022; Chakraborty et al. 2022). In what follows, we will

describe such hairy tests of the existence of compact exotica.

Boson stars are a classic example of an exotic compact object that is essentially

indistinguishable from a black hole in the weak field, but which differs drastically

from one in the strong field due to its lack of an event horizon. A boson star is a

coherent scalar-field configuration supported against gravitational collapse by its

self-interaction. One can construct several Lagrangian densities that would allow for

the existence of such an object, including mini-boson stars (Friedberg et al.

1987a, b), axially-symmetric solitons (Ryan 1997b), and nonsolitonic stars

supported by a non-canonical scalar potential energy (Colpi et al. 1986). Boson

stars are well-motivated from fundamental theory, since they are the gravitationally-

coupled limit of q-balls (Coleman 1985; Kusenko 1999), a coherent scalar

condensate that can be described classically as a non-topological soliton and that

arises unavoidably in viable supersymmetric extensions of the standard model

(Kusenko 1997). In all studies carried out to date, boson stars have been studied
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within GR, but they are also allowed in scalar-tensor theories (Balakrishna and

Shinkai 1998).

As before, two types of gravitational wave tests for boson stars have been

proposed: inspiral tests and ringdown tests. The first studies in the inspiral test class

were those that considered extreme–mass-ratio inspirals of a small compact object

into a supermassive boson star. Kesden et al. (2005) showed that stable circular

orbits exist both outside and inside the surface of the boson star, provided the small

compact object interacts with the background only gravitationally. This is because

the effective potential for geodesic motion in such a boson-star background lacks

the Schwarzschild-like singular behavior at small radius, instead turning over and

allowing for a new minimum. Gravitational waves emitted in such a system would

then stably continue beyond what one would expect if the background had been a

supermassive black hole; in the latter case the small compact object would simply

disappear into the horizon. Kesden et al. (2005) found that orbits inside the boson

star exhibit strong precession, exciting high frequency harmonics in the waveform,

and thus allowing one to easily distinguish between such boson stars from black-

hole backgrounds. Kesden et al. (2005) neglected accretion and dynamical friction,

and these effects are expected to be larger than those of radiation reaction inside the

boson star (Macedo et al. 2013b). Palenzuela, Bezares and their collaborators

derived gravitational waves from binary boson star mergers for compact solitonic

boson stars (Palenzuela et al. 2017) and dark boson stars (Bezares and Palenzuela

2018). Siemonsen and East (2023) carried out boson star merger simulations and

studied the properties of the remnant. They showed, for the first time, that a remnant

rotating boson star can form from a merger of two boson stars. Destounis et al.

(2023) studied non-integrability, chaos and resonances for extreme-mass-ratio

inspirals into rotating boson stars.

The late inspiral, merger and ringdown of boson stars is also quite different from

that of regular compact objects. and Maselli et al. (2016a), Cardoso et al. (2017)

suggested that one could use the effect of tidal deformability on the gravitational

waves to non-Kerr features of spacetime and to distinguish between boson stars and

black holes or neutron stars. Tidal effects modify the orbital dynamics, thus

imprinting onto the emitted gravitational waves, once the binary components are

close enough together that they deform each other and change the gravitational

potential. A class of massive boson stars has a minimum tidal deformability that can

be much larger than the typical deformability of neutron stars and black holes.

Sennett et al. (2017) argued that aLIGO at design sensitivity could distinguish

between such massive boson stars and neutron stars or black holes provided an

inspiral of a binary of sufficiently large mass or large mass ratio is observed.

Moreover, a few studies have found that the merger of boson stars leads to a

spinning bar configuration that either fragments or collapses into a Kerr black hole

(Palenzuela et al. 2007, 2008). Pacilio et al. (2020) constructed gravitational

waveforms from binary boson star inspirals by including both quadrupole moment

and tidal deformability, which was used in Vaglio et al. (2023) for a Bayesian

parameter estimation study. Of course, the gravitational waves emitted during such

a merger, and the subsequent ringdown will be drastically different from those

produced when black holes merge. Indeed, Berti and Cardoso (2006) calculated the
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quasi-normal mode spectrum of boson stars and found that it is different from that of

a Kerr black hole ; see also Macedo et al. (2013a) for a more detailed analysis.

Another exotic compact object that has been considered in the past are gravastars

(see e.g. Mottola 2023 for a review). Gravitational vacuum stars, or gravastars for

short, are compact objects that consist of a Schwarzschild exterior and a de Sitter

interior, separated by an infinitely thin shell with finite tension and anisotropic

pressure (Mazur and Mottola 2023; Chapline et al. 2003; Cattoen et al. 2005). The

Lagrangian density for a gravastar is simply the Einstein–Hilbert action, but with a

suitable stress-energy tensor that allow for a phase transition at or near where the

Schwarzschild event horizon would have been. Mazur and Mottola (2023) and later

Visser and Wiltshire (2004) were able to construct appropriate stress-energy tensors

such that the resulting object was thermodynamically and dynamically stable (see

also Chirenti and Rezzolla 2007), given a physically reasonable equation of state for

the matter degrees of freedom. The current motivation for the gravastar picture

comes from attempting to resolve the information loss problem, for example

through quantum phase transitions (Chapline et al. 2003).

As in the boson star case, the gravastar picture can also be tested with

gravitational waves emitted in their inspiral and merger. Pani et al. (2009), Pani

et al. (2010b) calculated the gravitational waves emitted by a small compact object

in a quasi-circular orbit around a supermassive gravastar, using a radiative-adiabatic

waveform generation model (Poisson 1993; Hughes 2000, 2001; Yunes et al.

2010a, 2011a; Yunes 2009), instead of the kludge scheme used by Barack and

Cutler (2004), Babak et al. (2007), Yunes (2009). They concluded that the waves

emitted during such inspirals are sufficiently different that they could be used to

discern between a Kerr black hole and a gravastar. The quasinormal ringdown of

gravastars has also been found to be drastically different from that of Kerr black

holes, opening the possibility of using such waves for a test of their existence

(Chirenti and Rezzolla 2007; Pani et al. 2009). Such quasinormal modes of

gravastars were tested against the GW150914 event by Chirenti and Rezzolla

(2016), who concluded it was unlikely that the remnant of GW150914 was a

gravastar.

Unfortunately, these exotic compact object alternatives typically encounter

theoretical difficulties, for example due to instabilities in their stellar evolution or

due to their own rotation. Cardoso et al. (2008a), Cardoso et al. (2008b) and Pani

et al. (2010a) have pointed out that all horizonless compact objects with

stable circular photon orbits, including boson stars and gravastars, are likely to be

unstable to ergoregion instabilities if spinning rapidly, unless their surface is

sufficiently absorbing (Maggio et al. 2017) (see Chirenti and Rezzolla 2008; Hod

2017; Maggio et al. 2019; Vicente et al. 2018; Zhong et al. 2023 for related works

on ergoregion instabilities). On top of these ergoregion instabilities, there are

nonlinear trapping instabilities even for non-rotating horizonless compact objects

(Keir 2016; Cardoso et al. 2014; Cunha et al. 2017). Moreover, the dynamical and

non-linear stability of these objects in coalescence events is not clear. For example,

in the case of an extreme mass-ratio inspiral into a supermassive boson star, the

small compact object will accrete scalar field once it has entered the boson star’s

surface, possibly forcing the boson star to collapse into a black hole. Linear stability
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analysis of boson stars are not sufficient to prove that such objects are also non-

linearly stable. Finally, horizonless objects typically encounter observational

difficulties when considering accreting systems. Broderick and Narayan (2007)

have argued that the heating of gravastars due to accretion should be enough to

stringently constrain them observationally.

What is worse, for entire classes of exotic compact objects the scenarios

discussed above cannot be even considered because of a lack of a definite

Lagrangian density from which to derive their dynamics. For example, the gravastar

model is sometimes referred to as a ‘‘cut-and-paste’’ spacetime, in that the interior

de Sitter metric is glued to an exterior BH metric through a boundary layer of exotic

matter. To date, nobody has yet shown that such objects arise naturally in dynamical

gravitational collapse in a given theory of gravity. Of course, nobody has studied

either how such objects would behave dynamically and what the associated

gravitational waves would look like in the highly non-linear regime of merger

(special cases of boson stars being the only exception). Efforts have been made to

consider such exotic objects as ‘‘straw-men’’ to rule out using gravitational wave

data. However, the use of such pathological objects as an even ‘‘in-principle’’ caveat

to the evidence of black holes in gravitational wave data is questionable (Yunes

et al. 2016).

When a merger remnant is a horizonless exotic compact object, gravitational

waves can get trapped between the potential barrier and the surface, reflecting back

and forth many times and producing gravitational-wave echoes (Cardoso et al.

2016a; Cardoso and Pani 2017; Cardoso et al. 2016b). Abedi et al. (2017) analyzed

the data for GW150914, GW151226 and LVT151012 (now GW151012) and found

some evidence for the presence of echoes in the data at a false alarm rate of 1%

(corresponding to a 2:5r detection). This analysis was later challenged by Ashton

et al. (2016), Westerweck et al. (2021) and Nielsen et al. (2019), who reanalyzed

the data and did not find such evidence for the echoes. Other groups conducted

independent analyses and also found no significant evidence of echoes (Lo et al.

2019; Uchikata et al. 2019; Wang and Piao 2020). On the other hand, Abedi and

Afshordi (2019) further claimed to find tentative evidence of echoes with

GW170817 one second after the merger at a 4:2r confidence level and mentioned

that the null results by other groups can be consistent with theirs if echoes contribute

the most at lower frequencies and/or in binary mergers with more extreme mass

ratio (Abedi and Afshordi 2020).

The LIGO/Virgo Collaboration also searched for echoes in signals of gravita-

tional-wave events in GWTC-2 (Abbott et al. 2021b) and GWTC-3 (Abbott et al.

2021c). For GWTC-2, the collaboration used a template-based search (Lo et al.

2019), using the model described in Abedi et al. (2017). The waveform model takes

and repeats the modified ringdown portion of the IMRPhenomPv2 waveform with 5

additional parameters: the relative amplitude of the echoes, the damping factor

between each echo, the start time of ringdown, the time of the first echo with respect

to the merger, and the time delay between each echo. The collaboration computed

the Bayes factor comparing the hypotheses with and without echoes and found no

statistically significant evidence of echoes. For GWTC-3, they carried out a

morphology-independent approach (Tsang et al. 2018, 2020) via BayesWave
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(Cornish and Littenberg 2015; Littenberg and Cornish 2015) that uses sine

Gaussians as basis functions for modeling gravitational waves. Once again, the

features of echoes are captured by introducing 5 extra parameters. The Collabo-

ration estimated the p-value for the log Bayes factors between hypotheses for signal

versus noise and found that the measurement is consistent with no echoes within

90% credibility.

5 Results of gravitational-wave tests with pulsar-timing data

Due to the nature of pulsar timing experiments, PTAs offer advantages over

interferometers for detecting new polarizations or constraining the polarization

content of GWs. For instance, each line of sight to a pulsar can be used to construct

an independent projection of the various GW polarizations, and since PTAs

typically observe tens of pulsars, linear combinations of the data can be formed to

measure or constrain each of the six polarization modes many times over. A number

of analyses of pulsar timing data have been performed searching for evidence of

additional polarization modes which arise in modified theories of gravity.

Additionally, PTAs have an enhanced response to the longitudinal polarization

modes (Chamberlin and Siemens 2012; Cornish et al. 2018; O’Beirne et al. 2019).

Indeed, the constraint on the energy density of longitudinal modes inferred from

recent NANOGrav data is about three orders of magnitude better than the constraint

for the transverse modes (Cornish et al. 2018). Robust searches for evidence of

modified gravity via non-Einsteinian modes are complex and, to illustrate this, it is

worth summarizing some of the work here.

To date the most comprehensive searches for non-Einsteinian polarization modes

in pulsar timing data have been performed by the NANOGrav collaboration on their

12.5-year data set (Arzoumanian et al. 2021) as well as using PPTA DR2 data (Wu

et al. 2022). We summarize the NANOGrav results here. In Arzoumanian et al.

(2021), the data were analyzed with a suite of Bayesian and frequentist techniques

assuming that the observed stochastic common red noise process found in

Arzoumanian et al. (2020) is due to various combinations of the possible modes

that can exist in metric theories of gravity. Interestingly, NANOGrav found a

monopolar correlation signature which was the origin of some claims of detection of

the scalar-transverse (ST) modes in the NANOGrav 12.5-year data set (Chen et al.

2021), favored with a Bayesian odds ratio of about 100 to 1 (these authors also

analyzed the IPTA Second Data release finding a Bayesian odds ratio in favor of

scalar transverse modes of about 30:1, see Chen et al. 2022). On theoretical

grounds, we expect the presence of ST correlations to be accompanied by the

standard quadrupolar þ- and �-modes of General Relativity: metric theories of

gravity have at least the þ- and �-modes and possibly additional modes.

A detailed analysis of the NANOGrav 12.5-year data set revealed that the

significance of non-quadrupolar correlations is reduced significantly (the Bayes

factor drops to about 20) when one of the pulsars, J0030?0451, is excluded from

the analyses. This pulsar has a history of being problematic in detection searches

(Hazboun et al. 2020), and the results point to the possibility of noise modeling
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issues involving this MSP. The apparent albeit weak presence of non-Einsteinian

modes of gravity is likely unphysical. Having found no statistically significant

evidence in favor of any correlations, NANOGrav placed upper limits on the

amplitudes of all possible subsets of polarization modes of gravity predicted by

metric spacetime theories.

More recently (Agazie et al. 2024), the NANOGrav 15-yr data were searched for

evidence of a gravitational-wave background with quadrupolar (HD) and ST

correlations, finding that HD correlations are the best fit to the data and no

significant evidence in favor of ST correlations. We discuss the details of this work

below.

5.1 Details of the analyses of the NANOGrav 12.5-yr dataset

Here we discuss some of the detailed results of the NANOGrav 12.5-yr dataset

search for additional polarization modes (Arzoumanian et al. 2021). We begin by

summarizing the naming convention used for the various models in their analyses.

The two general types of Bayesian models used in this paper are referred to as

M2A and M3A which were also used in Arzoumanian et al. (2020). The M2A model

includes various white noise terms for each pulsar, an intrinsic red noise term for

each pulsar, and an uncorrelated so-called common red noise process, which has the

same spectral index and amplitude across all pulsars. The M2A model does not

include correlations between pulsars so its full PTA covariance matrix is block-

diagonal. The M3A models include identical noise processes as M2A, with the

common red noise process correlated across pulsars. Therefore, for the M3A models

the full PTA covariance matrix has non-vanishing off-diagonal components. If the

spectral index of the common process is fixed, it is given in square brackets after

either M2A or M3A; and for M3A models, the type of correlations are given in

square brackets before M3A. For example, [HD]M3A[13/3] refers to a model where

the common process has Helligs–Downs (quadrupolar correlations) with a spectral

index of 13/3. When more than one type of common correlated red noise process is

included, it is indicated by more than one type of correlation in the square bracket

preceding the term ‘‘M3A’’ and additional spectral indices. For instance,

[HD,ST]M3A[13/3,5] means that the M3A contains two different correlated

common signals: a red noise process with spectral index of 13/3 and quadrupolar

Hellings–Downs correlations, and second red noise process with spectral index of 5

with scalar-transverse correlations.

NANOGrav calculated the results of several different Bayesian analyses shown

in Fig. 8 (Arzoumanian et al. 2021). The model with the highest odds is a GWB

with GW-like monopolar correlations (where the correlations between pulsars are

not angular separation dependent and fixed to 1/2, to be compared with a clock-error

monopole where the correlations between pulsars are unity). The odds of [GW-like

Monopole]M3A[5] are greater than 100 compared with a model with no correlations

and the same spectral index M2A[5]. NANOGrav was also able to reproduce the

results of Chen et al. (2021), where [ST]M3A[5] was compared to a model without

correlations and a spectral index of 13/3, M2A[13/3] finding odds of around 94:1 in

favor of [ST]M3A[5], which is consistent with the results in Chen et al. (2021). This
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results in part due to the difference in spectral index between the two models (the

NANOGrav 12.5-yr dataset prefer a steeper spectral index), and a degeneracy

between ST and HD correlations at low S/N. Finally, as we have mentioned, the

result is very sensitive to the inclusion of one MSP, J0030þ0451, which indicates a

problem with noise modeling for that pulsar. NANOGrav also examined the

problem using the frequentist optimal statistic and found consistent results.

From a theoretical perspective, some models shown in Fig. 8 are not viable.

Metric theories of gravity always contain the two Einsteinian þ- and �-modes so

that even when a model with ST-only correlations is found to have high odds, this

model does not correspond to a metric theory of gravity. However, models with

multiple spatial correlations that include the TT modes, such as [HD,ST]M3A[13/

3,5] are theoretically viable.

Having found no compelling evidence for gravitational waves, NANOGrav

proceeded to present upper limits on all possible polarization content in metric

theories of gravity. The naming convention they introduced for this model

classification is the letters MG (an abbreviation for metric theory of gravity),

followed by 4 digits which can be unity or zero depending on which polarization

modes (TT, ST, VL, SL) are present in any particular theory. For example, MG1000

is a metric theory of gravity with only the TT modes present, i.e. Einstein gravity;

MG1100 is a theory with TT and ST modes, e.g, Jordan–Fierz–Brans–Dicke

gravity, etc. In this classification there are only 8 families of metric theories of

gravity, since the TT mode is present in all metric theories of gravity.

The results for the upper limits are shown in Fig. 9. It is worth noting the higher

sensitivity of pulsar timing arrays to the longitudinal polarizations, VL and SL. This

results in upper limits that are about an order of magnitude smaller for VL modes

and about two orders of magnitude smaller for the SL mode compared with the TT

mode. These upper limits are theory agnostic, and can be used to constrain the

parameters of metric theories of gravity that couple to these modes.

Fig. 8 The table shows the odds ratios for comparisons of various models. Darker shades of blue
correspond to higher odds ratios. The model with the highest odds is the GW-like monopole, where the
correlations between pulsars are not angular separation dependent and fixed to 1/2 (to be compared with a
clock-error monopole where the correlations between pulsars are unity). Image reproduced with
permission from Arzoumanian et al. (2021), copyright by the author(s)
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5.2 Details of the searches in the NANOGrav 15-yr dataset

NANOGrav also recently searched their 15-year data set for evidence of a

gravitational wave background with all possible transverse modes: HD and ST

correlations (Agazie et al. 2024) (see left panel of Fig. 10). This analysis was

restricted to the transverse modes because their overlap reduction functions have no

frequency dependence and are more simple to model. Analyses that include the

remaining 3 modes (SL and VL), with frequency dependent overlap reduction

functions, are underway.

The right panel of Fig. 10 shows the odds ratios for a series of Bayesian runs on

NANOGrav’s 15-yr dataset. The base model is a stochastic common uncorrelated

red noise process (CURN), i.e., a stochastic process that has the same amplitude and

spectral index for all pulsars but no correlations among the different pulsars. The

HD model, which is the prediction of General Relativity, has odds of � 200:1

Fig. 9 95% upper limits on the amplitude of GWs for the eight families of metric theories of gravity. For
simplicity, the spectral index for gravitational waves was fixed at c ¼ 5, which corresponds to a flat
spectrum in XGW, the ratio of the energy density in GWs to the critical density. Image reproduced with
permission from Arzoumanian et al. (2021), copyright by the author(s)

Fig. 10 Left panel: Plot of the correlation signatures for the transverse modes as a function of angular
separation. The blue curve shows the Hellings and Downs curve, and the orange curve shows the
correlations produced by ST gravitational waves. These two types of correlations were searched for in
NANOGrav’s analysis of the 15-yr dataset in separate and combined analyses with Bayesian and
frequentist techniques. Right panel: Odds ratios for HD and ST models and HD?ST models compared to
one another along with an common uncorrelated red noise model (CURN). See the main text for details.
Images reproduced with permission from Agazie et al. (2024), copyright by the author(s)
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relative to the CURN model, and the ST model odds are � 90:1. Interestingly, the

odds ratios of standard Bayesian analyses of the data did not show a strong

preference for either correlation signature, with odds ratios � 2 in favor of HD

versus ST correlations, and � 1 for HD plus ST correlations versus HD correlations

alone, and further analyses were required to establish that HD correlations are

indeed the best fit to the data, with no significant evidence in favor of ST

correlations.

Looking at the posteriors for the amplitudes and spectral indices of the HD and

ST modes when searched for simultaneously, NANOGrav found that the posteriors

for the amplitude and spectral index of ST correlations are uninformative, with the

HD stochastic process accounting for the majority of the correlated signal. This is

shown in Fig. 11 where we plot the posteriors for the amplitudes and spectral

Fig. 11 Plot of the posteriors for the amplitudes (Ag) and spectral indices (cg) for HD (blue) and ST

(orange) from the combined HD?ST model and the CURN model (grey) (the models at the top and
bottom of the right panel of Fig. 10). Image reproduced with permission from Agazie et al. (2024),
copyright by the author(s)

Fig. 12 The left panel shows the recovered amplitudes from single-component noise marginalized
optimal statistic (SCOS), where the HD (blue) and ST (orange) correlations are searched for separately,
and the right panel shows the recovered aplitudes for the multi-component noise marginalized optimal
statistic (MCOS)(right) where the HD and ST correlations are fit for simultaneously. The CURN (gray) is
also shown to determine the consistency of the amplitude recovery of HD and ST with the common red
noise process. Images reproduced with permission from Agazie et al. (2024), copyright by the author(s)
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indices for the HD and ST stochastic processes as recovered from a combined

HD?ST model as well as the CURN model. These two models correspond to the

top and bottom of the right panel of Fig. 10. The amplitude and spectral index

recovery for ST is poor when modeled alongside HD. The posterior distribution for

ST is uninformative and HD adequately describes the total signal as recovered by

CURN.

In addition, using the optimal statistic, a frequentist detection technique that uses

only the correlation information (Anholm et al. 2009; Chamberlin et al. 2015;

Vigeland et al. 2018; Sardesai et al. 2023), NANOGrav found results consistent

with the Bayesian analyses, i.e., similar signal-to-noise-ratios for each of the

correlation, but inconsistent parameter estimation recovery for ST. Figure 12 shows

the optimal statistic amplitude recovery for the HD and ST amplitudes when

searched for separately (right panel) and jointly (left panel), compared with the

CURN model, and in both cases the HD amplitude is significantly more consistent

with the CURN process than ST.

6 Musings about the future

Gravitational waves hold the key to testing Einstein’s theory of general relativity

(GR) to new exciting levels in the previously unexplored extreme gravity regime.

Depending on the type of wave that is detected, e.g., compact binary inspirals,

mergers, ringdowns, continuous sources, supernovae, etc, different tests will be

possible. Irrespective of the type of wave detected, two research trends seem

currently to be arising: direct tests and generic tests. These trends aim at answering

different questions. With direct tests, one wishes to determine whether a certain

modified theory is consistent with the data. Generic tests, on the other hand, ask

whether the data is statistically consistent with our canonical beliefs, or put another

way, whether there are any statistically-significant deviations present in the data.

The approaches, however, are interconnected because once a generic test has

established that no statistically significant deviations from GR are present in the

data, then this information can be recast to draw inferences from the data on

constraints on specific GR deviations.

Gravitational waves have now been detected with ground-based detectors,

opening up an entire new area in experimental relativity. Many concrete efforts are

currently underway to develop and extend formalisms and implementation pipelines

to test Einstein’s theory in extreme gravity. Currently, the research groups separate

into two classes: theory and implementation. The theory part of the research load is

being carried out at a variety of institutions without a given focal point. The

implementation part is being done mostly within the LIGO Scientific Collaboration,

the Virgo Scientific collaboration, the KAGRA Scientific Collaboration, and the

pulsar timing consortia. Cross-communication between the theory and implemen-

tation groups has been flourishing in recent years and one expects the interdisci-

plinary work to continue and expand in the future.

So many accomplishments have been made in the past 50 years that it is almost

impossible to list them all here. From the implementation side, perhaps one of the
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most important is the actual construction and operation of the initial and advanced

ground-based instruments that have given us the first gravitational wave observa-

tions. This is a tremendously important engineering and physics accomplishment.

Similarly, the construction of impressive pulsar timing arrays, and the timing of

these pulses to nanosecond precision is an instrumental and data analysis feat to be

admired. Without these observatories, there would be no gravitational wave physics,

and of course, no tests of Einstein’s theory in extreme gravity. On the theory side,

perhaps the most important accomplishment has been the understanding of the

inspiral phase to extremely high post-Newtonian order and the merger phase with

numerical simulations. The latter, in particular, had been an unsolved problem for

over 50 years. It is these accomplishments that then allow us to postulate modified

inspiral template families and study mergers in modified gravity, since we

understand what the GR model is. This is particularly true if one is considering

small deformations away from Einstein’s theory, as it would be impossible to

perturb about an unknown solution.

The main questions that are currently at the forefront are the following. On the

theory side of things, one would wish to understand the inspiral, merger and

ringdown in extreme gravity modifications to GR. We have here discussed only a

few of them, such as dynamical Chern–Simons gravity, Einstein–dilaton-Gauss–

Bonnet theory and theories with preferred frames, such as Einstein–Aether theory or

Hořava–Lifshitz gravity. The first step in this direction is to develop higher post-

Newtonian order models for the inspiral phase. Such a task, of course, is very

difficult, given that the complexity of the calculation in GR alone is already

daunting. Simultaneously, the second step is to numerically simulate the merger in

modified gravity theories. This task is also very difficult because the characteristic

structure of the evolution equations in modified gravity is likely different from that

in GR, sometimes requires a reformulation of the standard evolution methods. Once

these two steps are complete, one then needs to construct an inspiral-merger-

ringdown model that smoothly connects these two phases of coalescence. This, in

turn, requires many numerical simulations of modified gravity mergers to properly

sample the parameter space, a task that is still not complete today in GR.

On the implementation side of things, there is also much work that remains to be

done. Currently, efforts are ongoing on the implementation and improvement of

Bayesian frameworks for hypothesis testing, one of the most promising approaches

to testing Einstein’s theory with gravitational waves. Present studies on future

prospects concentrate mostly on single-detectors, but by the beginning of the next

decade we expect four or five detectors to be online, and thus, one will have to

extend these implementations. The use of multiple detectors also opens the door to

the extraction of new information, such as multiple polarization modes, a precise

location of the source in the sky, etc. Moreover, the evidence for a given model

increases dramatically if the event is observed in several detectors. One therefore

expects that the strongest tests of GR will come from leveraging the data from all

detectors in a multiply-coincident event, perhaps also including information from

electromagnetic counterparts.

Research is moving toward the construction of robust techniques to test

Einstein’s theory, and in particular, testing the general principles that serve as
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foundations of GR. This allows one to answer general questions, such as: Does the

graviton have a mass? Are compact objects represented by the Kerr metric and the

no-hair theorems satisfied? Does the propagating metric perturbation possess only

two transverse-traceless polarization modes? What is the rate of change of a

binary’s binding energy? Do naked singularities exist in nature and are orbits

chaotic? Is Lorentz-violation present in the propagation of gravitons? The more

questions of this type that are generated and the more robust the methods to answer

them are, the more stringent the test of Einstein’s theories and the more information

we will obtain about the gravitational interaction in a previously unexplored regime.

Acknowledgements We would like to thank Emanuele Berti, Vitor Cardoso, William Nelson, Bangalore
Sathyaprakash, and Leo Stein for many discussions. We would also like to thank Laura Sampson and
Tyson Littenberg for helping us write parts of the data analysis sections. Finally, we would like to thank
Matt Adams, Katerina Chatziioannou, Tyson Littenberg, and Laura Sampson for proofreading earlier
versions of this manuscript.

Funding Nicolás Yunes would like to acknowledge support from the Simmons Foundation through
Award No. 896696, the NSF through award PHY-2207650, and NASA through Grant No.
80NSSC22K0806. Xavier Siemens would like to acknowledge support from the NSF CAREER award
number 0955929, the PIRE award number 0968126, and award number 0970074. K.Y. acknowledges
support from NSF Grant PHY-1806776, PHY-2207349, NASA Grant No. 80NSSC20K0523, a Sloan
Foundation Research Fellowship, and the Owens Family Foundation. LIGO Laboratory and Advanced
LIGO are funded by the United States National Science Foundation (NSF) as well as the Science and
Technology Facilities Council (STFC) of the United Kingdom, the Max Planck Society (MPS), and the
State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and
operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the
Australian Research Council. Virgo is funded, through the European Gravitational Observatory (EGO),
by the French Centre National de Recherche Scientifique (CNRS), the Italian Instituto Nazionale di Fisica
Nucleare (INFN) and the Dutch Nikhef, with contributions by institutions from Belgium, Germany,
Greece, Hungary, Ireland, Japan, Monaco, Poland, Portugal, Spain. The construction and operation of
KAGRA are funded by Ministry of Education, Culture, Sports, Science and Technology (MEXT), and
Japan Society for the Promotion of Science (JSPS), National Research Foundation (NRF) and Ministry of
Science and ICT (MSIT) in Korea, Academia Sinica (AS) and the Ministry of Science and Technology
(MoST) in Taiwan.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,

which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as

you give appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line

to the material. If material is not included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder. To view a copy of this licence, visit http://

creativecommons.org/licenses/by/4.0/.

References

Abadie J et al. (2010) Calibration of the LIGO gravitational wave detectors in the fifth science run. Nucl

Instrum Methods A 624:223–240. https://doi.org/10.1016/j.nima.2010.07.089. arXiv:1007.3973 [gr-

qc]

Abbott BP et al (2009) LIGO: the Laser Interferometer Gravitational-Wave Observatory. Rep Prog Phys

72:076901. https://doi.org/10.1088/0034-4885/72/7/076901. arXiv:0711.3041 [gr-qc]

123

Gravitational-wave tests of general relativity with ground-based… Page 175 of 233     3 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.nima.2010.07.089
http://arxiv.org/abs/1007.3973
https://doi.org/10.1088/0034-4885/72/7/076901
http://arxiv.org/abs/0711.3041


Abbott BP et al (2016a) Binary black hole mergers in the first Advanced LIGO observing run. Phys Rev

X6(4):041015. https://doi.org/10.1103/PhysRevX.6.041015. arXiv:1606.04856 [gr-qc]

Abbott BP et al (2016b) Observation of gravitational waves from a binary black hole merger. Phys Rev

Lett 116(6):061102. https://doi.org/10.1103/PhysRevLett.116.061102. arXiv:1602.03837 [gr-qc]

Abbott BP et al (2016c) Properties of the binary black hole merger GW150914. Phys Rev Lett

116(24):241102. https://doi.org/10.1103/PhysRevLett.116.241102. arXiv:1602.03840 [gr-qc]

Abbott BP et al (2016d) Tests of general relativity with GW150914. Phys Rev Lett 116(22):221101.

https://doi.org/10.1103/PhysRevLett.116.221101. arXiv:1602.03841 [gr-qc]

Abbott BP et al (2017a) Gravitational waves and gamma-rays from a binary neutron star merger:

GW170817 and GRB 170817A. Astrophys J Lett 848(2):L13. https://doi.org/10.3847/2041-8213/

aa920c. arXiv:1710.05834 [astro-ph.HE]

Abbott BP et al (2017b) GW170814: a three-detector observation of gravitational waves from a binary

black hole coalescence. Phys Rev Lett 119(14):141101. https://doi.org/10.1103/PhysRevLett.119.

141101. arXiv:1709.09660 [gr-qc]

Abbott BP et al (2017c) GW170817: observation of gravitational waves from a binary neutron star

inspiral. Phys Rev Lett 119(16):161101. https://doi.org/10.1103/PhysRevLett.119.161101. arXiv:

1710.05832 [gr-qc]

Abbott BP et al (2017d) Multi-messenger observations of a binary neutron star merger. Astrophys J Lett

848(2):L12. https://doi.org/10.3847/2041-8213/aa91c9. arXiv:1710.05833 [astro-ph.HE]

Abbott BP et al (2019a) GWTC-1: a gravitational-wave transient catalog of compact binary mergers

observed by LIGO and Virgo during the first and second observing runs. Phys Rev X 9(3):031040.

https://doi.org/10.1103/PhysRevX.9.031040. arXiv:1811.12907 [astro-ph.HE]

Abbott BP et al (2019b) Tests of general relativity with GW170817. Phys Rev Lett 123(1):011102.

https://doi.org/10.1103/PhysRevLett.123.011102. arXiv:1811.00364 [gr-qc]

Abbott BP et al (2019c) Tests of general relativity with the binary black hole signals from the LIGO-

Virgo catalog GWTC-1. Phys Rev D 100(10):104036. https://doi.org/10.1103/PhysRevD.100.

104036. arXiv:1903.04467 [gr-qc]

Abbott R et al (2021a) GWTC-2: compact binary coalescences observed by LIGO and Virgo during the

first half of the third observing run. Phys Rev X 11:021053. https://doi.org/10.1103/PhysRevX.11.

021053. arXiv:2010.14527 [gr-qc]

Abbott R et al (2021b) Tests of general relativity with binary black holes from the second LIGO-Virgo

gravitational-wave transient catalog. Phys Rev D 103(12):122002. https://doi.org/10.1103/

PhysRevD.103.122002. arXiv:2010.14529 [gr-qc]

Abbott R et al (2021c) Tests of general relativity with GWTC-3. arXiv e-prints arXiv:2112.06861 [gr-qc]

Abbott R et al (2022) All-sky search for gravitational wave emission from scalar boson clouds around

spinning black holes in LIGO O3 data. Phys Rev D 105(10):102001. https://doi.org/10.1103/

PhysRevD.105.102001. arXiv:2111.15507 [astro-ph.HE]

Abbott R et al (2023) GWTC-3: compact binary coalescences observed by LIGO and Virgo during the

second part of the third observing run. Phys Rev X 13(4):041039. https://doi.org/10.1103/

PhysRevX.13.041039. arXiv:2111.03606 [gr-qc]

Abedi J, Afshordi N (2019) Echoes from the abyss: a highly spinning black hole remnant for the binary

neutron star merger GW170817. JCAP 11:010. https://doi.org/10.1088/1475-7516/2019/11/010.

arXiv:1803.10454 [gr-qc]

Abedi J, Afshordi N (2020) Echoes from the abyss: a status update. arXiv e-prints arXiv:2001.00821 [gr-

qc]

Abedi J, Dykaar H, Afshordi N (2017) Echoes from the abyss: tentative evidence for Planck-scale

structure at black hole horizons. Phys Rev D 96(8):082004. https://doi.org/10.1103/PhysRevD.96.

082004. arXiv:1612.00266 [gr-qc]

Abedi J, Afshordi N, Oshita N, Wang Q (2020) Quantum black holes in the sky. Universe 6(3):43. https://

doi.org/10.3390/universe6030043. arXiv:2001.09553 [gr-qc]

Abramovici A, Althouse WE, Drever RWP, Gursel Y, Kawamura S, Raab FJ, Shoemaker D, Sievers L,

Spero RE, Thorne KS (1992) LIGO: The Laser Interferometer Gravitational-Wave Observatory.

Science 256:325–333. https://doi.org/10.1126/science.256.5055.325

Accadia T et al (2011) Calibration and sensitivity of the Virgo detector during its second science run.

Class Quantum Grav 28:025005. https://doi.org/10.1088/0264-9381/28/2/025005, Erratum: Class.

Quantum Grav. 28, 079501. arXiv:1009.5190 [gr-qc]

Acernese F et al (2005) The Virgo detector. In: Tricomi A, Albergo S, Chiorboli M (eds) IFAE 2005:

XVII Incontri de Fisica delle Alte Energie; 17th Italian meeting on high energy. AIP conference

123

    3 Page 176 of 233 N. Yunes et al.

https://doi.org/10.1103/PhysRevX.6.041015
http://arxiv.org/abs/1606.04856
https://doi.org/10.1103/PhysRevLett.116.061102
http://arxiv.org/abs/1602.03837
https://doi.org/10.1103/PhysRevLett.116.241102
http://arxiv.org/abs/1602.03840
https://doi.org/10.1103/PhysRevLett.116.221101
http://arxiv.org/abs/1602.03841
https://doi.org/10.3847/2041-8213/aa920c
https://doi.org/10.3847/2041-8213/aa920c
http://arxiv.org/abs/1710.05834
https://doi.org/10.1103/PhysRevLett.119.141101
https://doi.org/10.1103/PhysRevLett.119.141101
http://arxiv.org/abs/1709.09660
https://doi.org/10.1103/PhysRevLett.119.161101
http://arxiv.org/abs/1710.05832
http://arxiv.org/abs/1710.05832
https://doi.org/10.3847/2041-8213/aa91c9
http://arxiv.org/abs/1710.05833
https://doi.org/10.1103/PhysRevX.9.031040
http://arxiv.org/abs/1811.12907
https://doi.org/10.1103/PhysRevLett.123.011102
http://arxiv.org/abs/1811.00364
https://doi.org/10.1103/PhysRevD.100.104036
https://doi.org/10.1103/PhysRevD.100.104036
http://arxiv.org/abs/1903.04467
https://doi.org/10.1103/PhysRevX.11.021053
https://doi.org/10.1103/PhysRevX.11.021053
http://arxiv.org/abs/2010.14527
https://doi.org/10.1103/PhysRevD.103.122002
https://doi.org/10.1103/PhysRevD.103.122002
http://arxiv.org/abs/2010.14529
http://arxiv.org/abs/2112.06861
https://doi.org/10.1103/PhysRevD.105.102001
https://doi.org/10.1103/PhysRevD.105.102001
http://arxiv.org/abs/2111.15507
https://doi.org/10.1103/PhysRevX.13.041039
https://doi.org/10.1103/PhysRevX.13.041039
http://arxiv.org/abs/2111.03606
https://doi.org/10.1088/1475-7516/2019/11/010
http://arxiv.org/abs/1803.10454
http://arxiv.org/abs/2001.00821
https://doi.org/10.1103/PhysRevD.96.082004
https://doi.org/10.1103/PhysRevD.96.082004
http://arxiv.org/abs/1612.00266
https://doi.org/10.3390/universe6030043
https://doi.org/10.3390/universe6030043
http://arxiv.org/abs/2001.09553
https://doi.org/10.1126/science.256.5055.325
https://doi.org/10.1088/0264-9381/28/2/025005
http://arxiv.org/abs/1009.5190


proceedings, vol 794. American Institute of Physics, Melville, pp 307–310. https://doi.org/10.1063/

1.2125677

Acernese F et al (2007) Status of Virgo detector. Class Quantum Grav 24:S381–S388. https://doi.org/10.

1088/0264-9381/24/19/S01

Adam A, Figueras P, Jacobson T, Wiseman T (2022) Rotating black holes in Einstein-aether theory. Class

Quantum Grav 39(12):125001. https://doi.org/10.1088/1361-6382/ac5053. arXiv:2108.00005 [gr-

qc]

Addazi A et al (2022) Quantum gravity phenomenology at the dawn of the multi-messenger era—a

review. Prog Part Nucl Phys 125:103948. https://doi.org/10.1016/j.ppnp.2022.103948. arXiv:2111.

05659 [hep-ph]

Adelberger EG, Heckel BR, Hoedl S, Hoyle CD, Kapner DJ, Upadhye A (2007) Particle-physics

implications of a recent test of the gravitational inverse-square law. Phys Rev Lett 98:131104.

https://doi.org/10.1103/PhysRevLett.98.131104. arXiv:hep-ph/0611223

Adler SL (1969) Axial-vector vertex in spinor electrodynamics. Phys Rev 177:2426–2438. https://doi.org/

10.1103/PhysRev.177.2426

Agazie G et al (2023) The NANOGrav 15 yr data set: evidence for a gravitational-wave background.

Astrophys J Lett 951(1):L8. https://doi.org/10.3847/2041-8213/acdac6. arXiv:2306.16213 [astro-

ph.HE]

Agazie G et al (2024) The NANOGrav 15 yr data set: search for transverse polarization modes in the

gravitational-wave background. Astrophys J Lett 964(1):L14. https://doi.org/10.3847/2041-8213/

ad2a51. arXiv:2310.12138 [gr-qc]

Aharony O, Gubser SS, Maldacena JM, Ooguri H, Oz Y (2000) Large N field theories, string theory and

gravity. Phys Rep 323:183–386. https://doi.org/10.1016/S0370-1573(99)00083-6. arXiv:hep-th/

9905111

Ajith P et al (2007) Phenomenological template family for black-hole coalescence waveforms. Class

Quantum Grav 24:S689–S700. https://doi.org/10.1088/0264-9381/24/19/S31. arXiv:0704.3764 [gr-

qc]

Ajith P et al (2011) Inspiral-merger-ringdown waveforms for black-hole binaries with non-precessing

spins. Phys Rev Lett 106:241101. https://doi.org/10.1103/PhysRevLett.106.241101. arXiv:0909.

2867 [gr-qc]

Ajith S, Saffer A, Yagi K (2020) Rotating black holes in valid vector-tensor theories after GW170817.

Phys Rev D 102(6):064031. https://doi.org/10.1103/PhysRevD.102.064031. arXiv:2006.00634 [gr-

qc]

Ajith S, Yagi K, Yunes N (2022) I-Love-Q relations in Hořava-Lifshitz gravity. Phys Rev D
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Danzmann K, Dufaux JF, Gair J, Hinder I, Jennrich O, Jetzer P, Klein A, Lang RN, Lobo A,

Littenberg TB, McWilliams ST, Nelemans G, Petiteau A, Porter EK, Schutz BF, Sesana A, Stebbins

R, Sumner T, Vallisneri M, Vitale S, Volonteri M, Ward H, Wardell B (2013) eLISA: astrophysics

and cosmology in the millihertz regime. GW Notes 6:4–110. http://brownbag.lisascience.org/lisa-

gw-notes/. arXiv:1201.3621 [astro-ph.CO]

Amelino-Camelia G (2001) Testable scenario for relativity with minimum length. Phys Lett B

510:255–263. https://doi.org/10.1016/S0370-2693(01)00506-8. arXiv:hep-th/0012238 [hep-th]

123

    3 Page 178 of 233 N. Yunes et al.

https://doi.org/10.1103/PhysRevD.77.124040
http://arxiv.org/abs/0804.1797
https://doi.org/10.1016/j.physrep.2009.07.002
https://doi.org/10.1016/j.physrep.2009.07.002
http://arxiv.org/abs/0907.2562
https://doi.org/10.1103/PhysRevD.78.066005
http://arxiv.org/abs/0712.2542
https://doi.org/10.1103/PhysRevD.104.064033
http://arxiv.org/abs/2104.00019
https://doi.org/10.1103/PhysRevD.97.064033
http://arxiv.org/abs/1712.01853
http://arxiv.org/abs/1712.01853
https://doi.org/10.1103/PhysRevD.83.124050
http://arxiv.org/abs/1105.0009
https://doi.org/10.1103/PhysRevD.84.124033
http://arxiv.org/abs/1110.5329
https://doi.org/10.1088/1361-6382/ab0ee1
http://arxiv.org/abs/1808.07897
http://arxiv.org/abs/1808.07897
https://doi.org/10.1103/PhysRevD.109.084060
https://doi.org/10.1103/PhysRevD.109.084060
http://arxiv.org/abs/2402.13996
https://doi.org/10.1103/PhysRevD.85.064041
https://doi.org/10.1103/PhysRevD.85.064041
http://arxiv.org/abs/1112.4903
https://doi.org/10.1103/PhysRevD.106.123023
http://arxiv.org/abs/2207.02226
https://doi.org/10.1016/0550-3213(84)90066-X
https://doi.org/10.1016/0550-3213(84)90066-X
https://doi.org/10.1103/PhysRevD.83.123529
http://arxiv.org/abs/1102.4824
http://arxiv.org/abs/1102.4824
https://doi.org/10.1103/PhysRevD.107.044017
http://arxiv.org/abs/2206.13672
https://doi.org/10.1140/epjc/s10052-020-7727-y
http://arxiv.org/abs/1910.10730
https://doi.org/10.1088/0264-9381/24/17/R01
http://arxiv.org/abs/astro-ph/0703495
http://arxiv.org/abs/astro-ph/0703495
https://doi.org/10.1088/0264-9381/29/12/124016
http://arxiv.org/abs/1202.0839
http://brownbag.lisascience.org/lisa-gw-notes/
http://brownbag.lisascience.org/lisa-gw-notes/
http://arxiv.org/abs/1201.3621
https://doi.org/10.1016/S0370-2693(01)00506-8
http://arxiv.org/abs/hep-th/0012238


Amelino-Camelia G (2002) Doubly special relativity. Nature 418:34–35. https://doi.org/10.1038/

418034a. arXiv:gr-qc/0207049 [gr-qc]

Amelino-Camelia G (2010) Doubly-special relativity: facts, myths and some key open issues. Symmetry

2:230–271. https://doi.org/10.3390/sym2010230. arXiv:1003.3942 [gr-qc]

Amendola L, Charmousis C, Davis SC (2007) Solar system constraints on Gauss–Bonnet mediated dark

energy. J Cosmol Astropart Phys 10:004. https://doi.org/10.1088/1475-7516/2007/10/004. arXiv:

0704.0175 [astro-ph]

An J, Xue Y, Cao Z, He X, Sun B (2023) The effect of the gravitational constant variation on the

propagation of gravitational waves. Phys Lett B 844:138108. https://doi.org/10.1016/j.physletb.

2023.138108. arXiv:2307.15382 [gr-qc]

Anabalon A, Cisterna A, Oliva J (2014) Asymptotically locally AdS and flat black holes in Horndeski

theory. Phys Rev D 89:084050. https://doi.org/10.1103/PhysRevD.89.084050. arXiv:1312.3597 [gr-

qc]

Anderson D, Yunes N (2019) Scalar charges and scaling relations in massless scalar–tensor theories.

Class Quantum Grav 36(16):165003. https://doi.org/10.1088/1361-6382/ab2eda. arXiv:1901.00937

[gr-qc]

Anderson D, Yunes N, Barausse E (2016) The effect of cosmological evolution on solar system

constraints and on the scalarization of neutron stars in massless scalar–tensor theories. Phys Rev D

94(10):104064. https://doi.org/10.1103/PhysRevD.94.104064. arXiv:1607.08888 [gr-qc]

Anderson D, Freire P, Yunes N (2019) Binary pulsar constraints on massless scalar–tensor theories using

Bayesian statistics. Class Quantum Grav 36(22):225009. https://doi.org/10.1088/1361-6382/ab3a1c.

arXiv:1901.00938 [gr-qc]

Anholm M, Ballmer S, Creighton JDE, Price LR, Siemens X (2009) Optimal strategies for gravitational

wave stochastic background searches in pulsar timing data. Phys Rev D 79:084030. https://doi.org/

10.1103/PhysRevD.79.084030. arXiv:0809.0701 [gr-qc]

Anil Kumar N, Kamionkowski M (2024) Efficient computation of overlap reduction functions for pulsar

timing arrays. Phys Rev Lett 133(15):151401. https://doi.org/10.1103/PhysRevLett.133.151401.

arXiv:2311.14159 [astro-ph.CO]

Annulli L, Herdeiro CAR (2023) Non-linear tides and Gauss–Bonnet scalarization. Phys Lett B

845:138137. https://doi.org/10.1016/j.physletb.2023.138137. arXiv:2307.10368 [gr-qc]

Antoniadis J, Freire PC, Wex N, Tauris TM, Lynch RS et al (2013) A massive pulsar in a compact

relativistic binary. Science 340:6131. https://doi.org/10.1126/science.1233232. arXiv:1304.6875

[astro-ph.HE]

Aoki K, Ki Maeda, Tanabe M (2016) Relativistic stars in bigravity theory. Phys Rev D 93(6):064054.

https://doi.org/10.1103/PhysRevD.93.064054. arXiv:1602.02227 [gr-qc]

Apostolatos TA, Lukes-Gerakopoulos G, Contopoulos G (2009) How to observe a non-Kerr spacetime

using gravitational waves. Phys Rev Lett 103:111101. https://doi.org/10.1103/PhysRevLett.103.

111101. arXiv:0906.0093 [gr-qc]

Archibald AM, Gusinskaia NV, Hessels JWT, Deller AT, Kaplan DL, Lorimer DR, Lynch RS, Ransom

SM, Stairs IH (2018) Universality of free fall from the orbital motion of a pulsar in a stellar triple

system. Nature 559(7712):73–76. https://doi.org/10.1038/s41586-018-0265-1. arXiv:1807.02059

[astro-ph.HE]

Arkani-Hamed N, Dimopoulos S, Dvali GR (1998) The hierarchy problem and new dimensions at a

millimeter. Phys Lett B 429:263–272. https://doi.org/10.1016/S0370-2693(98)00466-3. arXiv:hep-

ph/9803315

Arkani-Hamed N, Dimopoulos S, Dvali G (1999) Phenomenology, astrophysics, and cosmology of

theories with submillimeter dimensions and TTeV scale quantum gravity. Phys Rev D 59:086004.

https://doi.org/10.1103/PhysRevD.59.086004. arXiv:hep-ph/9807344

Arkani-Hamed N, Georgi H, Schwartz MD (2003) Effective field theory for massive gravitons and

gravity in theory space. Ann Phys (NY) 305:96–118. https://doi.org/10.1016/S0003-4916(03)00068-

X. arXiv:hep-th/0210184 [hep-th]

Armendariz-Picon C, Mukhanov VF, Steinhardt PJ (2001) Essentials of k essence. Phys Rev D

63:103510. https://doi.org/10.1103/PhysRevD.63.103510. arXiv:astro-ph/0006373 [astro-ph]

Armendariz-Picon C, Diez-Tejedor A, Penco R (2010) Effective theory approach to the spontaneous

breakdown of Lorentz invariance. JHEP 1010:079. https://doi.org/10.1007/JHEP10(2010)079.

arXiv:1004.5596 [hep-ph]

123

Gravitational-wave tests of general relativity with ground-based… Page 179 of 233     3 

https://doi.org/10.1038/418034a
https://doi.org/10.1038/418034a
http://arxiv.org/abs/gr-qc/0207049
https://doi.org/10.3390/sym2010230
http://arxiv.org/abs/1003.3942
https://doi.org/10.1088/1475-7516/2007/10/004
http://arxiv.org/abs/0704.0175
http://arxiv.org/abs/0704.0175
https://doi.org/10.1016/j.physletb.2023.138108
https://doi.org/10.1016/j.physletb.2023.138108
http://arxiv.org/abs/2307.15382
https://doi.org/10.1103/PhysRevD.89.084050
http://arxiv.org/abs/1312.3597
https://doi.org/10.1088/1361-6382/ab2eda
http://arxiv.org/abs/1901.00937
https://doi.org/10.1103/PhysRevD.94.104064
http://arxiv.org/abs/1607.08888
https://doi.org/10.1088/1361-6382/ab3a1c
http://arxiv.org/abs/1901.00938
https://doi.org/10.1103/PhysRevD.79.084030
https://doi.org/10.1103/PhysRevD.79.084030
http://arxiv.org/abs/0809.0701
https://doi.org/10.1103/PhysRevLett.133.151401
http://arxiv.org/abs/2311.14159
https://doi.org/10.1016/j.physletb.2023.138137
http://arxiv.org/abs/2307.10368
https://doi.org/10.1126/science.1233232
http://arxiv.org/abs/1304.6875
https://doi.org/10.1103/PhysRevD.93.064054
http://arxiv.org/abs/1602.02227
https://doi.org/10.1103/PhysRevLett.103.111101
https://doi.org/10.1103/PhysRevLett.103.111101
http://arxiv.org/abs/0906.0093
https://doi.org/10.1038/s41586-018-0265-1
http://arxiv.org/abs/1807.02059
https://doi.org/10.1016/S0370-2693(98)00466-3
http://arxiv.org/abs/hep-ph/9803315
http://arxiv.org/abs/hep-ph/9803315
https://doi.org/10.1103/PhysRevD.59.086004
http://arxiv.org/abs/hep-ph/9807344
https://doi.org/10.1016/S0003-4916(03)00068-X
https://doi.org/10.1016/S0003-4916(03)00068-X
http://arxiv.org/abs/hep-th/0210184
https://doi.org/10.1103/PhysRevD.63.103510
http://arxiv.org/abs/astro-ph/0006373
https://doi.org/10.1007/JHEP10(2010)079
http://arxiv.org/abs/1004.5596


Arnold VI (1963) Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions

under small perturbations of the Hamiltonian. Russ Math Surv 18(5):9–36. https://doi.org/10.1070/

RM1963v018n05ABEH004130

Arun KG (2012) Generic bounds on dipolar gravitational radiation from inspiralling compact binaries.

Class Quantum Grav 29:075011. https://doi.org/10.1088/0264-9381/29/7/075011. arXiv:1202.5911

[gr-qc]

Arun KG, Pai A (2013) Tests of general relativity and alternative theories of gravity using gravitational

wave observations. Int J Mod Phys D 22:1341012. https://doi.org/10.1142/S0218271813410125.

arXiv:1302.2198 [gr-qc]

Arun KG, Will CM (2009) Bounding the mass of the graviton with gravitational waves: effect of higher

harmonics in gravitational waveform templates. Class Quantum Grav 26:155002. https://doi.org/10.

1088/0264-9381/26/15/155002. arXiv:0904.1190 [gr-qc]

Arun KG, Iyer BR, Qusailah MSS, Sathyaprakash BS (2006) Testing post-Newtonian theory with

gravitational wave observations. Class Quantum Grav 23:L37–L43. https://doi.org/10.1088/0264-

9381/23/9/L01. arXiv:gr-qc/0604018

Arun KG et al (2022) New horizons for fundamental physics with LISA. Living Rev Relativ 25:4. https://

doi.org/10.1007/s41114-022-00036-9. arXiv:2205.01597 [gr-qc]

Arvanitaki A, Dubovsky S (2011) Exploring the string axiverse with precision black hole physics. Phys

Rev D 83:044026. https://doi.org/10.1103/PhysRevD.83.044026. arXiv:1004.3558 [hep-th]

Arvanitaki A, Dimopoulos S, Dubovsky S, Kaloper N, March-Russell J (2010) String axiverse. Phys Rev

D 81:123530. https://doi.org/10.1103/PhysRevD.81.123530. arXiv:0905.4720 [hep-th]

Arvanitaki A, Baryakhtar M, Huang X (2015) Discovering the QCD axion with black holes and

gravitational waves. Phys Rev D 91(8):084011. https://doi.org/10.1103/PhysRevD.91.084011.

arXiv:1411.2263 [hep-ph]

Arvanitaki A, Baryakhtar M, Dimopoulos S, Dubovsky S, Lasenby R (2017) Black hole mergers and the

QCD axion at advanced LIGO. Phys Rev D 95(4):043001. https://doi.org/10.1103/PhysRevD.95.

043001. arXiv:1604.03958 [hep-ph]

Arzoumanian Z, et al (2020) The NANOGrav 12.5 yr data set: search for an isotropic stochastic

gravitational-wave background. Astrophys J Lett 905(2):L34. https://doi.org/10.3847/2041-8213/

abd401. arXiv:2009.04496 [astro-ph.HE]

Arzoumanian Z et al (2021) The NANOGrav 12.5-year data set: search for non-Einsteinian polarization

modes in the gravitational-wave background. Astrophys J Lett 923(2):L22. https://doi.org/10.3847/

2041-8213/ac401c. arXiv:2109.14706 [gr-qc]

Ashtekar A, Lewandowski J (2004) Background independent quantum gravity: a status report. Class

Quantum Grav 21:R53–R152. https://doi.org/10.1088/0264-9381/21/15/R01. arXiv:gr-qc/0404018

Ashtekar A, Balachandran AP, Jo S (1989) The CP problem in quantum gravity. Int J Mod Phys A

4:1493–1514. https://doi.org/10.1142/S0217751X89000649

Ashtekar A, Bojowald M, Lewandowski J (2003) Mathematical structure of loop quantum cosmology.

Adv Theor Math Phys 7:233–268 arXiv:gr-qc/0304074

Ashton G, Birnholtz O, Cabero M, Capano C, Dent T, Krishnan B, Meadors GD, Nielsen AB, Nitz A,

Westerweck J (2016) Comments on: echoes from the abyss: evidence for Planck-scale structure at

black hole horizons. arXiv e-prints arXiv:1612.05625 [gr-qc]

Audren B, Blas D, Lesgourgues J, Sibiryakov S (2013) Cosmological constraints on Lorentz violating

dark energy. JCAP 1308:039. https://doi.org/10.1088/1475-7516/2013/08/039. arXiv:1305.0009

[astro-ph.CO]

Ayón-Beato E, Higuita-Borja D, Méndez-Zavaleta JA (2016) Rotating (A)dS black holes in bigravity.

Phys Rev D 93(2):024049. https://doi.org/10.1103/PhysRevD.93.024049, [Addendum: Phys. Rev. D

96, 049901 (2017)]. arXiv:1511.01108 [hep-th]

Ayzenberg D, Yunes N (2014) Slowly-rotating black holes in Einstein-Dilaton-Gauss-Bonnet gravity:

quadratic order in spin solutions. Phys Rev D 90:044066. https://doi.org/10.1103/PhysRevD.90.

044066, [Erratum: Phys. Rev. D 91, 069905 (2015)]. arXiv:1405.2133 [gr-qc]

Ayzenberg D, Yagi K, Yunes N (2014) Linear stability analysis of dynamical quadratic gravity. Phys Rev

D 89(4):044023. https://doi.org/10.1103/PhysRevD.89.044023. arXiv:1310.6392 [gr-qc]

Babak S, Fang H, Gair JR, Glampedakis K, Hughes SA (2007) ‘Kludge’ gravitational waveforms for a

test-body orbiting a Kerr black hole. Phys Rev D 75:024005. https://doi.org/10.1103/PhysRevD.75.

024005, erratum: 10.1103/PhysRevD.77.049902. arXiv:gr-qc/0607007

Babichev E, Brito R (2015) Black holes in massive gravity. Class Quantum Grav 32:154001. https://doi.

org/10.1088/0264-9381/32/15/154001. arXiv:1503.07529 [gr-qc]

123

    3 Page 180 of 233 N. Yunes et al.

https://doi.org/10.1070/RM1963v018n05ABEH004130
https://doi.org/10.1070/RM1963v018n05ABEH004130
https://doi.org/10.1088/0264-9381/29/7/075011
http://arxiv.org/abs/1202.5911
https://doi.org/10.1142/S0218271813410125
http://arxiv.org/abs/1302.2198
https://doi.org/10.1088/0264-9381/26/15/155002
https://doi.org/10.1088/0264-9381/26/15/155002
http://arxiv.org/abs/0904.1190
https://doi.org/10.1088/0264-9381/23/9/L01
https://doi.org/10.1088/0264-9381/23/9/L01
http://arxiv.org/abs/gr-qc/0604018
https://doi.org/10.1007/s41114-022-00036-9
https://doi.org/10.1007/s41114-022-00036-9
http://arxiv.org/abs/2205.01597
https://doi.org/10.1103/PhysRevD.83.044026
http://arxiv.org/abs/1004.3558
https://doi.org/10.1103/PhysRevD.81.123530
http://arxiv.org/abs/0905.4720
https://doi.org/10.1103/PhysRevD.91.084011
http://arxiv.org/abs/1411.2263
https://doi.org/10.1103/PhysRevD.95.043001
https://doi.org/10.1103/PhysRevD.95.043001
http://arxiv.org/abs/1604.03958
https://doi.org/10.3847/2041-8213/abd401
https://doi.org/10.3847/2041-8213/abd401
http://arxiv.org/abs/2009.04496
https://doi.org/10.3847/2041-8213/ac401c
https://doi.org/10.3847/2041-8213/ac401c
http://arxiv.org/abs/2109.14706
https://doi.org/10.1088/0264-9381/21/15/R01
http://arxiv.org/abs/gr-qc/0404018
https://doi.org/10.1142/S0217751X89000649
http://arxiv.org/abs/gr-qc/0304074
http://arxiv.org/abs/1612.05625
https://doi.org/10.1088/1475-7516/2013/08/039
http://arxiv.org/abs/1305.0009
https://doi.org/10.1103/PhysRevD.93.024049
http://arxiv.org/abs/1511.01108
https://doi.org/10.1103/PhysRevD.90.044066
https://doi.org/10.1103/PhysRevD.90.044066
http://arxiv.org/abs/1405.2133
https://doi.org/10.1103/PhysRevD.89.044023
http://arxiv.org/abs/1310.6392
https://doi.org/10.1103/PhysRevD.75.024005
https://doi.org/10.1103/PhysRevD.75.024005
http://arxiv.org/abs/gr-qc/0607007
https://doi.org/10.1088/0264-9381/32/15/154001
https://doi.org/10.1088/0264-9381/32/15/154001
http://arxiv.org/abs/1503.07529


Babichev E, Charmousis C (2014) Dressing a black hole with a time-dependent Galileon. JHEP 08:106.

https://doi.org/10.1007/JHEP08(2014)106. arXiv:1312.3204 [gr-qc]

Babichev E, Deffayet C (2013) An introduction to the Vainshtein mechanism. Class Quantum Grav

30:184001. https://doi.org/10.1088/0264-9381/30/18/184001. arXiv:1304.7240 [gr-qc]

Babichev E, Fabbri A (2013) Instability of black holes in massive gravity. Class Quantum Grav

30:152001. https://doi.org/10.1088/0264-9381/30/15/152001. arXiv:1304.5992 [gr-qc]

Babichev E, Fabbri A (2014a) Rotating black holes in massive gravity. Phys Rev D 90:084019. https://

doi.org/10.1103/PhysRevD.90.084019. arXiv:1406.6096 [gr-qc]

Babichev E, Fabbri A (2014b) Stability analysis of black holes in massive gravity: a unified treatment.

Phys Rev D 89(8):081502. https://doi.org/10.1103/PhysRevD.89.081502. arXiv:1401.6871 [gr-qc]

Babichev E, Brito R, Pani P (2016) Linear stability of nonbidiagonal black holes in massive gravity. Phys

Rev D 93(4):044041. https://doi.org/10.1103/PhysRevD.93.044041. arXiv:1512.04058 [gr-qc]

Baibhav V, Berti E (2019) Multimode black hole spectroscopy. Phys Rev D 99(2):024005. https://doi.org/

10.1103/PhysRevD.99.024005. arXiv:1809.03500 [gr-qc]

Baibhav V, Cheung MHY, Berti E, Cardoso V, Carullo G, Cotesta R, Del Pozzo W, Duque F (2023)

Agnostic black hole spectroscopy: quasinormal mode content of numerical relativity waveforms and

limits of validity of linear perturbation theory. Phys Rev D 108(10):104020. https://doi.org/10.1103/

PhysRevD.108.104020. arXiv:2302.03050 [gr-qc]

Balakrishna J, Shinkai H (1998) Dynamical evolution of boson stars in Brans–Dicke theory. Phys Rev D

58:044016. https://doi.org/10.1103/PhysRevD.58.044016. arXiv:gr-qc/9712065

Bambi C, Giannotti M, Villante FL (2005) Response of primordial abundances to a general modification

of GN and/or of the early universe expansion rate. Phys Rev D 71:123524. https://doi.org/10.1103/

PhysRevD.71.123524. arXiv:astro-ph/0503502

Barack L, Cutler C (2004) LISA capture sources: approximate waveforms, signal-to-noise ratios, and

parameter estimation accuracy. Phys Rev D 69:082005. https://doi.org/10.1103/PhysRevD.69.

082005. arXiv:gr-qc/0310125

Barack L, Cutler C (2007) Using LISA extreme-mass-ratio inspiral sources to test off-Kerr deviations in

the geometry of massive black holes. Phys Rev D 75:042003. https://doi.org/10.1103/PhysRevD.75.

042003. arXiv:gr-qc/0612029

Barack L et al (2019) Black holes, gravitational waves and fundamental physics: a roadmap. Class

Quantum Grav 36(14):143001. https://doi.org/10.1088/1361-6382/ab0587. arXiv:1806.05195 [gr-

qc]

Barausse E (2019) Neutron star sensitivities in Hořava gravity after GW170817. Phys Rev D
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Cardoso V, Pani P, Cadoni M, Cavaglià M (2008b) Instability of hyper-compact Kerr-like objects. Class

Quantum Grav 25:195010. https://doi.org/10.1088/0264-9381/25/19/195010. arXiv:0808.1615 [gr-

qc]

Cardoso V, Chakrabarti S, Pani P, Berti E, Gualtieri L (2011) Floating and sinking: the Imprint of

massive scalars around rotating black holes. Phys Rev Lett 107:241101. https://doi.org/10.1103/

PhysRevLett.107.241101. arXiv:1109.6021 [gr-qc]

Cardoso V, Carucci IP, Pani P, Sotiriou TP (2013a) Black holes with surrounding matter in scalar-tensor

theories. Phys Rev Lett 111:111101. https://doi.org/10.1103/PhysRevLett.111.111101. arXiv:1308.

6587 [gr-qc]

Cardoso V, Carucci IP, Pani P, Sotiriou TP (2013b) Matter around Kerr black holes in scalar–tensor

theories: scalarization and superradiant instability. Phys Rev D 88:044056. https://doi.org/10.1103/

PhysRevD.88.044056. arXiv:1305.6936 [gr-qc]

Cardoso V, Crispino LCB, Macedo CFB, Okawa H, Pani P (2014) Light rings as observational evidence

for event horizons: long-lived modes, ergoregions and nonlinear instabilities of ultracompact

objects. Phys Rev D 90(4):044069. https://doi.org/10.1103/PhysRevD.90.044069. arXiv:1406.5510

[gr-qc]

123

Gravitational-wave tests of general relativity with ground-based… Page 187 of 233     3 

https://doi.org/10.1103/PhysRevD.86.044010
https://doi.org/10.1103/PhysRevD.86.044010
http://arxiv.org/abs/1205.1253
https://doi.org/10.1088/1742-6596/363/1/012019
https://doi.org/10.1088/1742-6596/363/1/012019
http://arxiv.org/abs/1206.0322
https://doi.org/10.1103/PhysRevD.105.044022
https://doi.org/10.1103/PhysRevD.105.044022
http://arxiv.org/abs/2111.04750
https://doi.org/10.1103/PhysRevD.108.024040
https://doi.org/10.1103/PhysRevD.108.024040
http://arxiv.org/abs/2304.02663
https://doi.org/10.1103/PhysRevD.110.104007
https://doi.org/10.1103/PhysRevD.110.104007
http://arxiv.org/abs/2407.15947
https://doi.org/10.1088/1361-6382/ad84ae
http://arxiv.org/abs/2209.00640
http://arxiv.org/abs/2209.00640
https://doi.org/10.1103/PhysRevLett.131.221402
http://arxiv.org/abs/2105.05238
https://doi.org/10.1088/1361-6382/aad06f
http://arxiv.org/abs/1804.04002
http://arxiv.org/abs/1804.04002
https://doi.org/10.1007/978-981-97-2871-8_8
http://arxiv.org/abs/2401.08085
https://doi.org/10.1016/j.physletb.2016.06.075
https://doi.org/10.1016/j.physletb.2016.06.075
http://arxiv.org/abs/1603.04720
https://doi.org/10.1088/1361-6382/ab8f64
http://arxiv.org/abs/1912.08062
http://arxiv.org/abs/1912.08062
https://doi.org/10.1088/0264-9381/33/17/174001
http://arxiv.org/abs/1607.03133
https://doi.org/10.1038/s41550-017-0225-y
http://arxiv.org/abs/1709.01525
https://doi.org/10.1103/PhysRevD.77.124044
http://arxiv.org/abs/0709.0532
https://doi.org/10.1088/0264-9381/25/19/195010
http://arxiv.org/abs/0808.1615
https://doi.org/10.1103/PhysRevLett.107.241101
https://doi.org/10.1103/PhysRevLett.107.241101
http://arxiv.org/abs/1109.6021
https://doi.org/10.1103/PhysRevLett.111.111101
http://arxiv.org/abs/1308.6587
http://arxiv.org/abs/1308.6587
https://doi.org/10.1103/PhysRevD.88.044056
https://doi.org/10.1103/PhysRevD.88.044056
http://arxiv.org/abs/1305.6936
https://doi.org/10.1103/PhysRevD.90.044069
http://arxiv.org/abs/1406.5510


Cardoso V, Franzin E, Pani P (2016a) Is the gravitational-wave ringdown a probe of the event horizon?

Phys Rev Lett 116(17):171101. https://doi.org/10.1103/PhysRevLett.116.171101, [Erratum: Phys.

Rev. Lett. 117, 089902 (2016)]. arXiv:1602.07309 [gr-qc]

Cardoso V, Hopper S, Macedo CFB, Palenzuela C, Pani P (2016b) Gravitational-wave signatures of

exotic compact objects and of quantum corrections at the horizon scale. Phys Rev D 94(8):084031.

https://doi.org/10.1103/PhysRevD.94.084031. arXiv:1608.08637 [gr-qc]

Cardoso V, Franzin E, Maselli A, Pani P, Raposo G (2017) Testing strong-field gravity with tidal Love

numbers. Phys Rev D 95(8):084014. https://doi.org/10.1103/PhysRevD.95.089901, https://doi.org/

10.1103/PhysRevD.95.084014, [Addendum: Phys. Rev. D95, no.8,089901(2017)]. arXiv:1701.

01116 [gr-qc]

Cardoso V, Kimura M, Maselli A, Berti E, Macedo CFB, McManus R (2019) Parametrized black hole

quasinormal ringdown: decoupled equations for nonrotating black holes. Phys Rev D

99(10):104077. https://doi.org/10.1103/PhysRevD.99.104077. arXiv:1901.01265 [gr-qc]

Carroll SM, Lim EA (2004) Lorentz-violating vector fields slow the universe down. Phys Rev D

70:123525. https://doi.org/10.1103/PhysRevD.70.123525. arXiv:hep-th/0407149 [hep-th]

Carson JE (2007) GLAST: physics goals and instrument status. J Phys Conf Ser 60:115–118. https://doi.

org/10.1088/1742-6596/60/1/020. arXiv:astro-ph/0610960

Carson Z, Yagi K (2020a) Asymptotically flat, parameterized black hole metric preserving Kerr

symmetries. Phys Rev D 101(8):084030. https://doi.org/10.1103/PhysRevD.101.084030. arXiv:

2002.01028 [gr-qc]

Carson Z, Yagi K (2020b) Multi-band gravitational wave tests of general relativity. Class Quantum Grav

37(2):02LT01. https://doi.org/10.1088/1361-6382/ab5c9a. arXiv:1905.13155 [gr-qc]

Carson Z, Yagi K (2020c) Parametrized and inspiral-merger-ringdown consistency tests of gravity with

multiband gravitational wave observations. Phys Rev D 101(4):044047. https://doi.org/10.1103/

PhysRevD.101.044047. arXiv:1911.05258 [gr-qc]

Carson Z, Yagi K (2020d) Probing beyond-Kerr spacetimes with inspiral-ringdown corrections to

gravitational waves. Phys Rev D 101:084050. https://doi.org/10.1103/PhysRevD.101.084050.

arXiv:2003.02374 [gr-qc]

Carson Z, Yagi K (2020e) Probing Einstein-dilaton Gauss–Bonnet gravity with the inspiral and ringdown

of gravitational waves. Phys Rev D 101(10):104030. https://doi.org/10.1103/PhysRevD.101.104030.

arXiv:2003.00286 [gr-qc]

Carson Z, Yagi K (2020f) Probing string-inspired gravity with the inspiral–merger–ringdown consistency

tests of gravitational waves. Class Quantum Grav 37(21):215007. https://doi.org/10.1088/1361-

6382/aba221. arXiv:2002.08559 [gr-qc]

Carson Z, Yagi K (2020g) Testing general relativity with gravitational waves. In: Bambi C, Katsanevas S,

Kokkotas KD (eds) Handbook of gravitational wave astronomy. Springer, Singapore. https://doi.org/

10.1007/978-981-15-4702-7_41-1. arXiv:2011.02938 [gr-qc]

Carson Z, Chatziioannou K, Haster CJ, Yagi K, Yunes N (2019) Equation-of-state insensitive relations

after GW170817. Phys Rev D 99(8):083016. https://doi.org/10.1103/PhysRevD.99.083016. arXiv:

1903.03909 [gr-qc]

Carson Z, Seymour BC, Yagi K (2020) Future prospects for probing scalar–tensor theories with

gravitational waves from mixed binaries. Class Quantum Grav 37(6):065008. https://doi.org/10.

1088/1361-6382/ab6a1f. arXiv:1907.03897 [gr-qc]

Carter B (1971) Axisymmetric black hole has only two degrees of freedom. Phys Rev Lett 26:331–333.

https://doi.org/10.1103/PhysRevLett.26.331

Carullo G (2021) Enhancing modified gravity detection from gravitational-wave observations using the

parametrized ringdown spin expansion coeffcients formalism. Phys Rev D 103(12):124043. https://

doi.org/10.1103/PhysRevD.103.124043. arXiv:2102.05939 [gr-qc]

Carullo G, Del Pozzo W, Veitch J (2019) Observational black hole spectroscopy: a time-domain

multimode analysis of GW150914. Phys Rev D 99(12):123029. https://doi.org/10.1103/PhysRevD.

99.123029, [Erratum: Phys. Rev. D 100, 089903 (2019)]. arXiv:1902.07527 [gr-qc]

Carullo G, Cotesta R, Berti E, Cardoso V (2023) Reply to comment on ‘‘analysis of ringdown overtones

in GW150914’’. Phys Rev Lett 131:169002. https://doi.org/10.1103/PhysRevLett.131.169002.

arXiv:2310.20625 [gr-qc]

Carullo G et al (2018) Empirical tests of the black hole no-hair conjecture using gravitational-wave

observations. Phys Rev D 98(10):104020. https://doi.org/10.1103/PhysRevD.98.104020. arXiv:

1805.04760 [gr-qc]

123

    3 Page 188 of 233 N. Yunes et al.

https://doi.org/10.1103/PhysRevLett.116.171101
http://arxiv.org/abs/1602.07309
https://doi.org/10.1103/PhysRevD.94.084031
http://arxiv.org/abs/1608.08637
https://doi.org/10.1103/PhysRevD.95.089901
https://doi.org/10.1103/PhysRevD.95.084014
https://doi.org/10.1103/PhysRevD.95.084014
http://arxiv.org/abs/1701.01116
http://arxiv.org/abs/1701.01116
https://doi.org/10.1103/PhysRevD.99.104077
http://arxiv.org/abs/1901.01265
https://doi.org/10.1103/PhysRevD.70.123525
http://arxiv.org/abs/hep-th/0407149
https://doi.org/10.1088/1742-6596/60/1/020
https://doi.org/10.1088/1742-6596/60/1/020
http://arxiv.org/abs/astro-ph/0610960
https://doi.org/10.1103/PhysRevD.101.084030
http://arxiv.org/abs/2002.01028
http://arxiv.org/abs/2002.01028
https://doi.org/10.1088/1361-6382/ab5c9a
http://arxiv.org/abs/1905.13155
https://doi.org/10.1103/PhysRevD.101.044047
https://doi.org/10.1103/PhysRevD.101.044047
http://arxiv.org/abs/1911.05258
https://doi.org/10.1103/PhysRevD.101.084050
http://arxiv.org/abs/2003.02374
https://doi.org/10.1103/PhysRevD.101.104030
http://arxiv.org/abs/2003.00286
https://doi.org/10.1088/1361-6382/aba221
https://doi.org/10.1088/1361-6382/aba221
http://arxiv.org/abs/2002.08559
https://doi.org/10.1007/978-981-15-4702-7_41-1
https://doi.org/10.1007/978-981-15-4702-7_41-1
http://arxiv.org/abs/2011.02938
https://doi.org/10.1103/PhysRevD.99.083016
http://arxiv.org/abs/1903.03909
http://arxiv.org/abs/1903.03909
https://doi.org/10.1088/1361-6382/ab6a1f
https://doi.org/10.1088/1361-6382/ab6a1f
http://arxiv.org/abs/1907.03897
https://doi.org/10.1103/PhysRevLett.26.331
https://doi.org/10.1103/PhysRevD.103.124043
https://doi.org/10.1103/PhysRevD.103.124043
http://arxiv.org/abs/2102.05939
https://doi.org/10.1103/PhysRevD.99.123029
https://doi.org/10.1103/PhysRevD.99.123029
http://arxiv.org/abs/1902.07527
https://doi.org/10.1103/PhysRevLett.131.169002
http://arxiv.org/abs/2310.20625
https://doi.org/10.1103/PhysRevD.98.104020
http://arxiv.org/abs/1805.04760
http://arxiv.org/abs/1805.04760


Cattoen C, Faber T, Visser M (2005) Gravastars must have anisotropic pressures. Class Quantum Grav

22:4189–4202. https://doi.org/10.1088/0264-9381/22/20/002. arXiv:gr-qc/0505137 [gr-qc]

Cayuso J, Ortiz N, Lehner L (2017) Fixing extensions to general relativity in the nonlinear regime. Phys

Rev D 96(8):084043. https://doi.org/10.1103/PhysRevD.96.084043. arXiv:1706.07421 [gr-qc]

Cayuso R, Lehner L (2020) Nonlinear, noniterative treatment of EFT-motivated gravity. Phys Rev D

102(8):084008. https://doi.org/10.1103/PhysRevD.102.084008. arXiv:2005.13720 [gr-qc]

Cayuso R, Figueras P, França T, Lehner L (2023) Modelling self-consistently beyond general relativity.

Phys Rev Lett 131:111403 arXiv:2303.07246 [gr-qc]

Chagoya J, Tasinato G (2018) Compact objects in scalar–tensor theories after GW170817. JCAP 08:006.

https://doi.org/10.1088/1475-7516/2018/08/006. arXiv:1803.07476 [gr-qc]

Chakrabarti S, Delsate T, Gurlebeck N, Steinhoff J (2014) I-Q relation for rapidly rotating neutron stars.

PhysRevLett 112:201102. https://doi.org/10.1103/PhysRevLett.112.201102. arXiv:1311.6509 [gr-

qc]

Chakraborty S, Chakravarti K, Bose S, SenGupta S (2018) Signatures of extra dimensions in gravitational

waves from black hole quasinormal modes. Phys Rev D 97(10):104053. https://doi.org/10.1103/

PhysRevD.97.104053. arXiv:1710.05188 [gr-qc]

Chakraborty S, Maggio E, Mazumdar A, Pani P (2022) Implications of the quantum nature of the black

hole horizon on the gravitational-wave ringdown. Phys Rev D 106(2):024041. https://doi.org/10.

1103/PhysRevD.106.024041. arXiv:2202.09111 [gr-qc]

Chakravarti K, Chakraborty S, Phukon KS, Bose S, SenGupta S (2020) Constraining extra-spatial

dimensions with observations of GW170817. Class Quantum Grav 37(10):105004. https://doi.org/

10.1088/1361-6382/ab8355. arXiv:1903.10159 [gr-qc]

Chamberlain K, Yunes N (2017) Theoretical Physics implications of gravitational wave observation with

future detectors. Phys Rev D 96(8):084039. https://doi.org/10.1103/PhysRevD.96.084039. arXiv:

1704.08268 [gr-qc]

Chamberlin SJ, Siemens X (2012) Stochastic backgrounds in alternative theories of gravity: overlap

reduction functions for pulsar timing arrays. Phys Rev D 85:082001. https://doi.org/10.1103/

PhysRevD.85.082001. arXiv:1111.5661 [astro-ph.HE]

Chamberlin SJ, Creighton JDE, Siemens X, Demorest P, Ellis J, Price LR, Romano JD (2015) Time-

domain implementation of the optimal cross-correlation statistic for stochastic gravitational-wave

background searches in pulsar timing data. Phys Rev D 91(4):044048. https://doi.org/10.1103/

PhysRevD.91.044048. arXiv:1410.8256 [astro-ph.IM]

Chan T, Chan AP, Leung P (2015) I-Love relations for incompressible stars and realistic stars. Phys Rev

D 91(4):044017. https://doi.org/10.1103/PhysRevD.91.044017. arXiv:1411.7141 [astro-ph.SR]

Chan TK, Sham YH, Leung PT, Lin LM (2014) Multipolar universal relations between f-mode frequency

and tidal deformability of compact stars. Phys Rev D 90(12):124023. https://doi.org/10.1103/

PhysRevD.90.124023. arXiv:1408.3789 [gr-qc]

Chan TK, Chan APO, Leung PT (2016) Universality and stationarity of the I-Love relation for self-bound

stars. Phys Rev D 93(2):024033. https://doi.org/10.1103/PhysRevD.93.024033. arXiv:1511.08566

[gr-qc]

Chapline G, Hohlfeld E, Laughlin RB, Santiago DI (2003) Quantum phase transitions and the breakdown

of classical general relativity. Int J Mod Phys A 18:3587–3590. https://doi.org/10.1142/

S0217751X03016380. arXiv:gr-qc/0012094 [gr-qc]

Charmousis C, Copeland EJ, Padilla A, Saffin PM (2012a) General second order scalar-tensor theory, self

tuning, and the Fab Four. Phys Rev Lett 108:051101. https://doi.org/10.1103/PhysRevLett.108.

051101. arXiv:1106.2000 [hep-th]

Charmousis C, Copeland EJ, Padilla A, Saffin PM (2012b) Self-tuning and the derivation of a class of

scalar–tensor theories. Phys Rev D 85:104040. https://doi.org/10.1103/PhysRevD.85.104040. arXiv:

1112.4866 [hep-th]

Chatterji S, Lazzarini A, Stein L, Sutton PJ, Searle A, Tinto M (2006) Coherent network analysis

technique for discriminating gravitational-wave bursts from instrumental noise. Phys Rev D

74:082005. https://doi.org/10.1103/PhysRevD.74.082005. arXiv:gr-qc/0605002

Chatziioannou K, Yunes N, Cornish N (2012) Model-independent test of general relativity: an extended

post-Einsteinian framework with complete polarization content. Phys Rev D 86:022004. https://doi.

org/10.1103/PhysRevD.86.022004. arXiv:1204.2585 [gr-qc]

Chatziioannou K, Isi M, Haster CJ, Littenberg TB (2021) Morphology-independent test of the mixed

polarization content of transient gravitational wave signals. Phys Rev D 104(4):044005. https://doi.

org/10.1103/PhysRevD.104.044005. arXiv:2105.01521 [gr-qc]

123

Gravitational-wave tests of general relativity with ground-based… Page 189 of 233     3 

https://doi.org/10.1088/0264-9381/22/20/002
http://arxiv.org/abs/gr-qc/0505137
https://doi.org/10.1103/PhysRevD.96.084043
http://arxiv.org/abs/1706.07421
https://doi.org/10.1103/PhysRevD.102.084008
http://arxiv.org/abs/2005.13720
http://arxiv.org/abs/2303.07246
https://doi.org/10.1088/1475-7516/2018/08/006
http://arxiv.org/abs/1803.07476
https://doi.org/10.1103/PhysRevLett.112.201102
http://arxiv.org/abs/1311.6509
https://doi.org/10.1103/PhysRevD.97.104053
https://doi.org/10.1103/PhysRevD.97.104053
http://arxiv.org/abs/1710.05188
https://doi.org/10.1103/PhysRevD.106.024041
https://doi.org/10.1103/PhysRevD.106.024041
http://arxiv.org/abs/2202.09111
https://doi.org/10.1088/1361-6382/ab8355
https://doi.org/10.1088/1361-6382/ab8355
http://arxiv.org/abs/1903.10159
https://doi.org/10.1103/PhysRevD.96.084039
http://arxiv.org/abs/1704.08268
http://arxiv.org/abs/1704.08268
https://doi.org/10.1103/PhysRevD.85.082001
https://doi.org/10.1103/PhysRevD.85.082001
http://arxiv.org/abs/1111.5661
https://doi.org/10.1103/PhysRevD.91.044048
https://doi.org/10.1103/PhysRevD.91.044048
http://arxiv.org/abs/1410.8256
https://doi.org/10.1103/PhysRevD.91.044017
http://arxiv.org/abs/1411.7141
https://doi.org/10.1103/PhysRevD.90.124023
https://doi.org/10.1103/PhysRevD.90.124023
http://arxiv.org/abs/1408.3789
https://doi.org/10.1103/PhysRevD.93.024033
http://arxiv.org/abs/1511.08566
https://doi.org/10.1142/S0217751X03016380
https://doi.org/10.1142/S0217751X03016380
http://arxiv.org/abs/gr-qc/0012094
https://doi.org/10.1103/PhysRevLett.108.051101
https://doi.org/10.1103/PhysRevLett.108.051101
http://arxiv.org/abs/1106.2000
https://doi.org/10.1103/PhysRevD.85.104040
http://arxiv.org/abs/1112.4866
http://arxiv.org/abs/1112.4866
https://doi.org/10.1103/PhysRevD.74.082005
http://arxiv.org/abs/gr-qc/0605002
https://doi.org/10.1103/PhysRevD.86.022004
https://doi.org/10.1103/PhysRevD.86.022004
http://arxiv.org/abs/1204.2585
https://doi.org/10.1103/PhysRevD.104.044005
https://doi.org/10.1103/PhysRevD.104.044005
http://arxiv.org/abs/2105.01521


Chen CY (2020) Rotating black holes without Z2 symmetry and their shadow images. JCAP 05:040.

https://doi.org/10.1088/1475-7516/2020/05/040. arXiv:2004.01440 [gr-qc]

Chen Y, Shu J, Xue X, Yuan Q, Zhao Y (2020) Probing axions with event horizon telescope polarimetric

measurements. Phys Rev Lett 124(6):061102. https://doi.org/10.1103/PhysRevLett.124.061102.

arXiv:1905.02213 [hep-ph]

Chen ZC, Yuan C, Huang QG (2021) Non-tensorial gravitational wave background in NANOGrav 12.5-

year data set. Sci China Phys Mech Astron 64(12):120412. https://doi.org/10.1007/s11433-021-

1797-y. arXiv:2101.06869 [astro-ph.CO]

Chen ZC, Wu YM, Huang QG (2022) Searching for isotropic stochastic gravitational-wave background

in the international pulsar timing array second data release. Commun Theor Phys 74(10):105402.

https://doi.org/10.1088/1572-9494/ac7cdf. arXiv:2109.00296 [astro-ph.CO]

Chen R, Li Z, Li YJ, Wang YY, Niu R, Zhao W, Fan YZ (2024) Forecast analysis of astrophysical

stochastic gravitational wave background beyond general relativity: a case study on Brans–Dicke

gravity. arXiv e-prints arXiv:2407.12328 [gr-qc]

Chernoff DF, Finn LS (1993) Gravitational radiation, inspiraling binaries, and cosmology. Astrophys J

411:L5–L8. https://doi.org/10.1086/186898. arXiv:gr-qc/9304020

Chiba T (2003) 1=R gravity and scalar-tensor gravity. Phys Lett B 575:1–3. https://doi.org/10.1016/j.

physletb.2003.09.033. arXiv:astro-ph/0307338

Chirenti CBMH, Rezzolla L (2007) How to tell a gravastar from a black hole. Class Quantum Grav

24:4191–4206. https://doi.org/10.1088/0264-9381/24/16/013. arXiv:0706.1513 [gr-qc]

Chirenti CBMH, Rezzolla L (2008) On the ergoregion instability in rotating gravastars. Phys Rev D

78:084011. https://doi.org/10.1103/PhysRevD.78.084011. arXiv:0808.4080 [gr-qc]

Chirenti C, Rezzolla L (2016) Did GW150914 produce a rotating gravastar? Phys Rev D 94(8):084016.

https://doi.org/10.1103/PhysRevD.94.084016. arXiv:1602.08759 [gr-qc]

Choudhury SR, Joshi GC, Mahajan S, McKellar BHJ (2004) Probing large distance higher dimensional

gravity from lensing data. Astropart Phys 21:559–563. https://doi.org/10.1016/j.astropartphys.2004.

04.001. arXiv:hep-ph/0204161

Chouha PR, Brandenberger RH (2005) T-duality and the spectrum of gravitational waves. arXiv e-prints

arXiv:hep-th/0508119

Chung AKW, Yunes N (2024a) Quasinormal mode frequencies and gravitational perturbations of black

holes with any subextremal spin in modified gravity through METRICS: the scalar-Gauss-Bonnet

gravity case. Phys Rev D 110(6):064019. https://doi.org/10.1103/PhysRevD.110.064019. arXiv:

2406.11986 [gr-qc]

Chung AKW, Yunes N (2024b) Ringing out general relativity: quasinormal mode frequencies for black

holes of any spin in modified gravity. Phys Rev Lett 133(18):181401. https://doi.org/10.1103/

PhysRevLett.133.181401. arXiv:2405.12280 [gr-qc]

Chung AKW, Wagle P, Yunes N (2023) Spectral method for the gravitational perturbations of black

holes: schwarzschild background case. Phys Rev D 107(12):124032. https://doi.org/10.1103/

PhysRevD.107.124032. arXiv:2302.11624 [gr-qc]

Chung AKW, Wagle P, Yunes N (2024) Spectral method for metric perturbations of black holes: Kerr

background case in general relativity. Phys Rev D 109(4):044072. https://doi.org/10.1103/

PhysRevD.109.044072. arXiv:2312.08435 [gr-qc]

Churilova MS (2020) Black holes in Einstein-aether theory: quasinormal modes and time-domain

evolution. Phys Rev D 102(2):024076. https://doi.org/10.1103/PhysRevD.102.024076. arXiv:2002.

03450 [gr-qc]

Cisterna A, Cruz M, Delsate T, Saavedra J (2015) Nonminimal derivative coupling scalar-tensor theories:

odd-parity perturbations and black hole stability. Phys Rev D 92(10):104018. https://doi.org/10.

1103/PhysRevD.92.104018. arXiv:1508.06413 [gr-qc]

Clifton T, Ferreira PG, Padilla A, Skordis C (2012) Modified gravity and cosmology. Phys Rept

513:1–189. https://doi.org/10.1016/j.physrep.2012.01.001. arXiv:1106.2476 [astro-ph.CO]

Coleman SR (1985) Q-balls. Nucl Phys B 262:263–283. https://doi.org/10.1016/0550-3213(85)90286-X

Coley AA, Leon G, Sandin P, Latta J (2015) Spherically symmetric Einstein-aether perfect fluid models.

JCAP 12:010. https://doi.org/10.1088/1475-7516/2015/12/010. arXiv:1508.00276 [gr-qc]
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Cutler C, Flanagan ÉÉ (1994) Gravitational waves from merging compact binaries: how accurately can

one extract the binary’s parameters from the inspiral wave form? Phys Rev D 49:2658–2697. https://

doi.org/10.1103/PhysRevD.49.2658. arXiv:gr-qc/9402014 [gr-qc]

Cutler C, Vallisneri M (2007) LISA detections of massive black hole inspirals: parameter extraction

errors due to inaccurate template waveforms. Phys Rev D 76:104018. https://doi.org/10.1103/

PhysRevD.76.104018. arXiv:0707.2982 [gr-qc]

Cutler C, Hiscock WA, Larson SL (2003) LISA, binary stars, and the mass of the graviton. Phys Rev D

67:024015. https://doi.org/10.1103/PhysRevD.67.024015. arXiv:gr-qc/0209101

Da Silva Costa CF, Tiwari S, Klimenko S, Salemi F (2018) Detection of (2,2) quasinormal mode from a

population of black holes with a constructive summation method. Phys Rev D 98(2):024052. https://

doi.org/10.1103/PhysRevD.98.024052. arXiv:1711.00551 [gr-qc]

Damour T (1988) The general relativistic problem of motion and binary pulsars. In: Iyer BR, Kembhavi

A, Narlikar JV, Vishveshwara CV (eds) Highlights in gravitation and cosmology. Cambridge

University Press, Cambridge, pp 393–401
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Doneva DD, Vañó Viñuales A, Yazadjiev SS (2022b) Dynamical descalarization with a jump during

black hole merger. Phys Rev D 106:L061502. https://doi.org/10.1103/PhysRevD.106.L061502.

arXiv:2204.05333 [gr-qc]

Douchin F, Haensel P (2001) A unified equation of state of dense matter and neutron star structure. Astron

Astrophys 380:151–167. https://doi.org/10.1051/0004-6361:20011402. arXiv:astro-ph/0111092

Drake SP, Szekeres P (2000) Uniqueness of the Newman–Janis Algorithm in generating the Kerr–

Newman metric. Gen Relativ Gravit 32:445–458. https://doi.org/10.1023/A:1001920232180. arXiv:

gr-qc/9807001

Dreyer O, Kelly BJ, Krishnan B, Finn LS, Garrison D, Lopez-Aleman R (2004) Black-hole spectroscopy:

testing general relativity through gravitational-wave observations. Class Quantum Grav 21:787–804.

https://doi.org/10.1088/0264-9381/21/4/003. arXiv:gr-qc/0309007

Droz S, Knapp DJ, Poisson E, Owen BJ (1999) Gravitational waves from inspiraling compact binaries:

validity of the stationary phase approximation to the Fourier transform. Phys Rev D 59:124016.

https://doi.org/10.1103/PhysRevD.59.124016. arXiv:gr-qc/9901076

Du Y, Tahura S, Vaman D, Yagi K (2021) Probing compactified extra dimensions with gravitational

waves. Phys Rev D 103(4):044031. https://doi.org/10.1103/PhysRevD.103.044031. arXiv:2004.

03051 [gr-qc]

Du Y, Vaman D, Yagi K (2024) Gravitational-wave energy-momentum tensor and radiated power in a

strongly curved background. Phys Rev D 109(2):024049. https://doi.org/10.1103/PhysRevD.109.

024049. arXiv:2301.11139 [gr-qc]
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Julié FL, Pompili L, Buonanno A (2025) Inspiral-merger-ringdown waveforms in Einstein-scalar-Gauss–

Bonnet gravity within the effective-one-body formalism. Phys Rev D 111:024016. https://doi.org/

10.1103/PhysRevD.111.024016. arXiv:2406.13654 [gr-qc]

Kalmus P, Cannon KC, Márka S, Owen BJ (2009) Stacking gravitational wave signals from soft gamma

repeater bursts. Phys Rev D 80(4):042001. https://doi.org/10.1103/PhysRevD.80.042001. arXiv:

0904.4906 [astro-ph.HE]

Kalogera V, et al (2021) The next generation global gravitational wave observatory: the science book.

arXiv e-prints arXiv:2111.06990 [gr-qc]

Kamaretsos I, Hannam M, Husa S, Sathyaprakash BS (2012) Black-hole hair loss: learning about binary

progenitors from ringdown signals. Phys Rev D 85:024018. https://doi.org/10.1103/PhysRevD.85.

024018. arXiv:1107.0854 [gr-qc]

Kanti P, Tamvakis K (1995) Classical moduli O (alpha-prime) hair. Phys Rev D 52:3506–3511. https://

doi.org/10.1103/PhysRevD.52.3506. arXiv:hep-th/9504031

Kanti P, Mavromatos NE, Rizos J, Tamvakis K, Winstanley E (1996) Dilatonic black holes in higher

curvature string gravity. Phys Rev D 54:5049–5058. https://doi.org/10.1103/PhysRevD.54.5049.

arXiv:hep-th/9511071

Kanti P, Mavromatos NE, Rizos J, Tamvakis K, Winstanley E (1998) Dilatonic black holes in higher

curvature string gravity: II. Linear stability. Phys Rev D 57:6255–6264. https://doi.org/10.1103/

PhysRevD.57.6255. arXiv:hep-th/9703192

Kapner DJ, Cook TS, Adelberger EG, Gundlach JH, Heckel BR, Hoyle CD, Swanson HE (2007) Tests of

the gravitational inverse-square law below the dark-energy length scale. Phys Rev Lett 98:021101.

https://doi.org/10.1103/PhysRevLett.98.021101. arXiv:hep-ph/0611184

Kaspi VM, Taylor JH, Ryba MF (1994) High-precision timing of millisecond pulsars. III. Long-term

monitoring of PSRs B1855?09 and B1937?21. Astrophys J 428:713. https://doi.org/10.1086/

174280

Katagiri T, Ikeda T, Cardoso V (2024) Parametrized Love numbers of nonrotating black holes. Phys Rev

D 109(4):044067. https://doi.org/10.1103/PhysRevD.109.044067. arXiv:2310.19705 [gr-qc]

Kato R, Soda J (2016) Probing circular polarization in stochastic gravitational wave background with

pulsar timing arrays. Phys Rev D 93(6):062003. https://doi.org/10.1103/PhysRevD.93.062003.

arXiv:1512.09139 [gr-qc]

Katsuragawa T, Nojiri S, Odintsov SD, Yamazaki M (2016) Relativistic stars in de Rham–Gabadadze–

Tolley massive gravity. Phys Rev D 93:124013. https://doi.org/10.1103/PhysRevD.93.124013.

arXiv:1512.00660 [gr-qc]

Kehagias A, Sfetsos K (2000) Deviations from the 1=r2 Newton law due to extra dimensions. Phys Lett B

472:39–44. https://doi.org/10.1016/S0370-2693(99)01421-5. arXiv:hep-ph/9905417

Keir J (2016) Slowly decaying waves on spherically symmetric spacetimes and ultracompact neutron

stars. Class Quantum Grav 33(13):135009. https://doi.org/10.1088/0264-9381/33/13/135009. arXiv:

1404.7036 [gr-qc]

Keppel D, Ajith P (2010) Constraining the mass of the graviton using coalescing black-hole binaries.

Phys Rev D 82:122001. https://doi.org/10.1103/PhysRevD.82.122001. arXiv:1004.0284 [gr-qc]

Kesden M, Gair JR, Kamionkowski M (2005) Gravitational-wave signature of an inspiral into a

supermassive horizonless object. Phys Rev D 71:044015. https://doi.org/10.1103/PhysRevD.71.

044015. arXiv:astro-ph/0411478

Khan S, Husa S, Hannam M, Ohme F, Pürrer M, Jiménez Forteza X, Bohé A (2016) Frequency-domain
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Reisenegger A, Jofré P, Fernández R (2009) Constraining a possible time-variation of the gravitational

constant through ‘gravitochemical heating’ of neutron stars. Mem Soc Astron Ital 80:829–832

arXiv:0911.0190 [astro-ph.HE]

Rezende DJ, Mohamed S (2015) Variational inference with normalizing flows. In: ICML’15. Proceedings

of the 32nd international conference on international conference on machine learning. PMLR,

vol 37. JMLR, pp 1530–1538. arXiv:1505.05770 [stat.ML]

Rezzolla L, Zhidenko A (2014) New parametrization for spherically symmetric black holes in metric

theories of gravity. Phys Rev D 90(8):084009. https://doi.org/10.1103/PhysRevD.90.084009. arXiv:

1407.3086 [gr-qc]

Rinaldi M (2012) Black holes with non-minimal derivative coupling. Phys Rev D 86:084048. https://doi.

org/10.1103/PhysRevD.86.084048. arXiv:1208.0103 [gr-qc]

Ripley JL, Pretorius F (2019) Gravitational collapse in Einstein dilaton-Gauss–Bonnet gravity. Class

Quantum Grav 36(13):134001. https://doi.org/10.1088/1361-6382/ab2416. arXiv:1903.07543 [gr-

qc]

Ripley JL, Pretorius F (2020) Scalarized black hole dynamics in Einstein dilaton Gauss–Bonnet gravity.

Phys Rev D 101(4):044015. https://doi.org/10.1103/PhysRevD.101.044015. arXiv:1911.11027 [gr-

qc]

Robinson DC (1975) Uniqueness of the Kerr black hole. Phys Rev Lett 34:905–906. https://doi.org/10.

1103/PhysRevLett.34.905

Robson T, Cornish NJ, Tamanini N, Toonen S (2018) Detecting hierarchical stellar systems with LISA.

Phys Rev D 98(6):064012. https://doi.org/10.1103/PhysRevD.98.064012. arXiv:1806.00500 [gr-qc]

Rodriguez CL, Mandel I, Gair JR (2012) Verifying the no-hair property of massive compact objects with

intermediate-mass-ratio inspirals in advanced gravitational-wave detectors. Phys Rev D 85:062002.

https://doi.org/10.1103/PhysRevD.85.062002. arXiv:1112.1404 [astro-ph.HE]

Rodriguez CL, Farr B, Farr WM, Mandel I (2013) Inadequacies of the fisher information matrix in

gravitational-wave parameter estimation. Phys Rev D 88(8):084013. https://doi.org/10.1103/

PhysRevD.88.084013. arXiv:1308.1397 [astro-ph.IM]

123

Gravitational-wave tests of general relativity with ground-based… Page 219 of 233     3 

https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1103/PhysRevD.103.084006
http://arxiv.org/abs/2011.02267
http://arxiv.org/abs/2011.02267
https://doi.org/10.1103/PhysRevD.103.024045
http://arxiv.org/abs/2007.11009
https://doi.org/10.1088/1475-7516/2023/08/049
http://arxiv.org/abs/2304.02535
https://doi.org/10.1093/mnras/staa2491
http://arxiv.org/abs/2008.00213
https://doi.org/10.1103/PhysRevD.93.064005
http://arxiv.org/abs/1601.07475
https://doi.org/10.1103/PhysRevD.99.024034
http://arxiv.org/abs/1811.07786
https://doi.org/10.1038/nature12917
https://doi.org/10.1038/nature12917
http://arxiv.org/abs/1401.0535
https://doi.org/10.1103/PhysRevD.37.3406
http://arxiv.org/abs/0911.0190
http://arxiv.org/abs/1505.05770
https://doi.org/10.1103/PhysRevD.90.084009
http://arxiv.org/abs/1407.3086
http://arxiv.org/abs/1407.3086
https://doi.org/10.1103/PhysRevD.86.084048
https://doi.org/10.1103/PhysRevD.86.084048
http://arxiv.org/abs/1208.0103
https://doi.org/10.1088/1361-6382/ab2416
http://arxiv.org/abs/1903.07543
https://doi.org/10.1103/PhysRevD.101.044015
http://arxiv.org/abs/1911.11027
https://doi.org/10.1103/PhysRevLett.34.905
https://doi.org/10.1103/PhysRevLett.34.905
https://doi.org/10.1103/PhysRevD.98.064012
http://arxiv.org/abs/1806.00500
https://doi.org/10.1103/PhysRevD.85.062002
http://arxiv.org/abs/1112.1404
https://doi.org/10.1103/PhysRevD.88.084013
https://doi.org/10.1103/PhysRevD.88.084013
http://arxiv.org/abs/1308.1397


Rogatko M (2013) Uniqueness of charged static asymptotically flat black holes in dynamical Chern–

Simons gravity. Phys Rev D 88:024051. https://doi.org/10.1103/PhysRevD.88.024051. arXiv:1307.

8260 [hep-th]

Roll P, Krotkov R, Dicke R (1964) The equivalence of inertial and passive gravitational mass. Ann Phys

(NY) 26:442–517. https://doi.org/10.1016/0003-4916(64)90259-3

Romano AE, Sakellariadou M (2023) Constraining the time evolution of the propagation speed of

gravitational waves with multimessenger astronomy. arXiv e-prints arXiv:2309.10903 [gr-qc]

Romano JD, Cornish NJ (2017) Detection methods for stochastic gravitational-wave backgrounds: a

unified treatment. Living Rev Relativ 20(1):2. https://doi.org/10.1007/s41114-017-0004-1. arXiv:

1608.06889 [gr-qc]

Romero-Shaw IM, Lasky PD, Thrane E, Calderón Bustillo J (2020) GW190521: orbital eccentricity and

signatures of dynamical formation in a binary black hole merger signal. Astrophys J Lett 903(1):L5.

https://doi.org/10.3847/2041-8213/abbe26. arXiv:2009.04771 [astro-ph.HE]

Rosen N (1974) A theory of gravitation. Ann Phys (NY) 84:455–473. https://doi.org/10.1016/0003-

4916(74)90311-X

Rovelli C (2004) Quantum gravity. Cambridge monographs on mathematical physics. Cambridge

University Press, Cambridge. https://doi.org/10.1017/CBO9780511755804

Rover C, Meyer R, Christensen N (2006) Bayesian inference on compact binary inspiral gravitational

radiation signals in interferometric data. Class Quantum Grav 23:4895–4906. https://doi.org/10.

1088/0264-9381/23/15/009. arXiv:gr-qc/0602067

Rubakov VA, Tinyakov PG (2008) Infrared-modified gravities and massive gravitons. Phys Usp

51:759–792. https://doi.org/10.1070/PU2008v051n08ABEH006600. arXiv:0802.4379 [hep-th]

Ruffini R, Sasaki M (1981) On a semi relativistic treatment of the gravitational radiation from a mass

thrusted into a black hole. Prog Theor Phys 66:1627–1638. https://doi.org/10.1143/PTP.66.1627
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