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Abstract: We develop an Effective Field Theory (EFT) formalism to solve for the conser-
vative dynamics of binary systems in gravity via Post-Minkowskian (PM) scattering data.
Our framework combines a systematic EFT approach to compute the deflection angle
in the PM expansion, together with the ‘Boundary-to-Bound’ (B2B) dictionary intro-
duced in [1, 2]. Due to the nature of scattering processes, a remarkable reduction of
complexity occurs both in the number of Feynman diagrams and type of integrals, com-
pared to a direct EFT computation of the potential in a PM scheme. We provide two
illustrative examples. Firstly, we compute all the conservative gravitational observables for
bound orbits to 2PM, which follow from only one topology beyond leading order. The re-
sults agree with those in [1, 2], obtained through the ‘impetus formula’ applied to the
classical limit of the one loop amplitude in Cheung et al. [3]. For the sake of comparison
we reconstruct the conservative Hamiltonian to 2PM order, which is equivalent to the one
derived in [3] from a matching calculation. Secondly, we compute the scattering angle due
to tidal effects from the electric- and magnetic-type Love numbers at leading PM order.
Using the B2B dictionary we then obtain the tidal contribution to the periastron advance.
We also construct a Hamiltonian including tidal effects at leading PM order. Although
relying on (relativistic) Feynman diagrams, the EFT formalism developed here does not
involve taking the classical limit of a quantum amplitude, neither integrals with internal
massive fields, nor additional matching calculations, nor spurious (‘super-classical’) infrared
singularities. By construction, the EFT approach can be automatized to all PM orders.
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1 Introduction

The discovery potential in gravitational wave (GW) science1 [4] relies in our ability to make
precise theoretical predictions [5–7]. While the late stages of the binary dynamics require
numerical modeling, the majority of GW cycles occur during the inspiral regime where
perturbative approximations to Einstein’s equations, such as the Post-Newtonian (PN) ex-
pansion, remain of vital importance to provide a faithful reconstruction of the signal [5].

1https://www.gw-openscience.org.
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It is in this regime where the effective field theory (EFT) approach introduced in [8], aka
Non-Relativistic General Relativity (NRGR), has proven to be very successful to tackle the
binary problem in gravity, see e.g. [9–14] for various reviews. In addition to the systemati-
zation of the problem of motion into the computation of a series of Feynman diagrams, and
naturally incorporating finite-size effects via worldline terms beyond minimal coupling, one
of the main virtues of the EFT formalism is the use of the method of regions [15], which al-
lows us to disentangle the relevant physics involving both (off-shell) potential and (on-shell)
radiation modes. The EFT methodology not only allows us to separate the computation
of the relevant ingredients for waveform modeling into the ‘conservative’ and ‘radiative’
sectors, respectively, it also naturally handles the spurious infrared (IR) and ultraviolet
(UV) divergences that appear from simplifying the resulting integrals by splitting into re-
gions [16, 17], as well as the UV divergences due to the use of localized sources [8]. As a
result, joining an effort which involves also more ‘traditional’ methods [18–24], the present
state-of-the-art in NRGR is at the fourth PN (4PN) order of accuracy in the conservative
sector for non-spinning bodies [8, 17, 25–31], which includes also contributions induced
from (conservative) radiation-reaction effects [16, 17, 28].2 This represents the next-to-
next-to-next-to-next-to leading order (N4LO), or ‘four loops’, level of precision. Partial
results have also been computed in NRGR at higher orders, both in the static sector at
5PN [52, 53] and for hereditary effects at NLO [54, 55].

The method of regions is one of the trademarks of the EFT framework in a PN regime,
allowing us to expand integrals in the potential region (k0 � |k|) in powers of k0/|k|. At the
level of the computation of the gravitational potential, this is the reason for the (in)famous
IR divergences appearing at 4PN, that ultimately cancel out in NRGR once conservative
effects from radiation-reaction are incorporated [16, 17, 28, 31].3 Furthermore, all the ve-
locity (relativistic) corrections, both from vertex and propagator corrections, are truncated
depending on the factors of Newton’s constant (G) in each given contribution, rather than
incorporated to all orders from the onset. The reason being due to the virial theorem,
relating GM/r ∼ v2 for bound states, which implies that only terms scaling as G`v2(n−`)

(with ` ≤ n) are needed to nPN order. While some of the factors of k0, from the expansion
of the Green’s functions in NRGR, wound up producing acceleration-dependent contribu-
tions to the gravitational potential which can be traded for higher powers of G using lower
order equations of motion, an infinite series of velocity corrections is truncated. Therefore,
although the expansion in the potential region is extremely powerful, reducing complex
four- into three-dimensional massless integrals, e.g. [29], the natural expansion of field the-
ory in powers of the coupling, or the Post-Minkowskian (PM) expansion in this context,
begs us for a framework in which (special) relativistic effects are included to all orders.

2Radiation effects can be systematically incorporated in NRGR in terms of source and radiative mul-
tipoles, see e.g [32–36]. Moreover, spinning compact objects were introduced in [37] and also extensively
studied in the NRGR literature, see e.g. [38–51]. We will study both radiation and rotation in future work.

3The IR divergences led to the introduction of ambiguity-parameters in other approaches [20–23], yet to
be resolved within the PN regime in the ADM formalism of [19]. See [24] for an ambiguity-free derivation
following dimensional regularization, as advocated in [17, 28], including a re-derivation of the conservative
tail effect computed in [28].
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An obvious option to implement a PM expansion for bound orbits is to resum all the
velocity corrections in the NRGR computation of the potential to a given order in G, while
dropping terms depending on the accelerations. This, however, turns out to be unneces-
sarily cumbersome. (See [56] for an attempt at 1PM.) Moreover, since the potential is a
gauge-dependent quantity, many (many) different terms can be present depending on the
gauge, with Lorentz invariance only manifest in the final expressions. Another option is
to attempt to perform the much more difficult exact relativistic integration, keeping only
real contributions to the effective potential. As we shall see, however, a simpler procedure
can be adopted, in which rather than bringing the PM expansion to NRGR, we will bring
instead the EFT approach to the natural habitat of the PM framework. Inspired by the
study of relativistic scattering, in this paper we implement an EFT formalism to compute
the deflection angle perturbatively in G, but to all orders in the relative velocity. Even
though, in principle, it may seem like scattering processes are unrelated to bound orbits, a
remarkable connection has been recently uncovered in [1, 2], in the form of a ‘Boundary-to-
Bound’ (B2B) dictionary. The map put forward in [1, 2] relates scattering data directly to
dynamical invariants for binary systems, without using a Hamiltonian. Our goal in this pa-
per, as suggested also in [1, 2], is therefore to combine the virtues of the EFT formalism and
B2B dictionary [1, 2] to construct a systematic EFT approach to the conservative dynamics
of binary systems in the PM expansion, without ever resorting to gauge-dependent objects.

The idea of mapping (quantum) scattering information into the (classical) physics of
binary systems, dating back to early efforts in the 70’s, e.g. [57], has been reinvigorated by
the recent program to connect amplitudes techniques from high-energy physics [58–61] to
the derivation of the two-body gravitational dynamics in the classical regime, e.g. [3, 62–
91]. Furthermore, the connection between scattering data and binary dynamics has also
been emphasized in the context of the effective one body (EOB) approach [92], e.g. [93–
101]. However, in all these cases the derivation of a gauge-dependent and rather lengthy
Hamiltonian, or EOB equivalent, has played a central role. This feature was, after all, one of
the main reasons that motivated us in [1, 2] to construct the B2B map directly between the
(much simpler) gauge-invariant observables. The B2B dictionary was originally introduced
in [1], via the construction of a radial action depending on the analytic continuation of
scattering data. Although the radial action was first discussed in the context of the PN
expansion, see e.g. [102], the analysis in [1, 2] unveiled for the first time the astonishingly
simple structure in the PM framework instead. In its first incarnation, the B2B radial action
was built upon a remarkable connection between the analytic continuation of the scattering
amplitude in the classical limit and the momentum of the particles in the center-of-mass
frame, which we dubbed the ‘impetus formula’ [1]. We later extended the dictionary in [2],
unraveling an unexpected relationship between the deflection angle and periastron advance,
once again via analytic continuation, which allowed us to reconstruct the B2B map entirely
in terms of the scattering angle without invoking the impetus formula. The analysis in [1, 2]
has thus uncovered a surprisingly simple hidden structure of the radial action in the PM
conservative sector, readily mapping scattering (boundary) data to dynamical invariants for
generic (bound) orbits. While the B2B dictionary neatly translates all the gauge-invariant
scattering information into observables for binary systems, it has been implemented so
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far via the classical limit of the amplitude, either through the impetus formula or from
the scattering angle, computed in [63, 64] to 3PM order (or two loops). Motivated by
the prowesses of NRGR, in this paper we provide an alternative framework to collect the
necessary scattering data to input in the B2B dictionary, using instead an EFT approach
adapted to the computation of the impulse and scattering angle in the PM scheme.

The powerful formalism developed in [3, 63, 64] has demonstrated its ability to obtain
physical information from scattering amplitudes to high PM orders. Yet, in its present
form, it relies on taking the classical limit of a quantum amplitude, performing a matching
calculation to an effective theory built with a local potential interaction and, perhaps more
importantly, relativistic integrals involving internal massive propagators yielding spurious
IR divergences. The singular terms, due to so-called ‘super-classical’ contributions, ulti-
mately cancel out either during the matching calculation in [3, 63, 64] or equivalent after
including ‘Born iterations’ [68, 77, 86]. However, they signal a generic feature of compu-
tations involving the classical limit of quantum amplitudes.4 Hence, while the method of
generalized unitarity [103, 104] and the double copy technique [105, 106] allow to bypass the
need of a large set of Feynman diagrams [64],5 and the impetus formula [1] can sidestep
the need of a matching calculation to extract the Hamiltonian, it is still worthwhile to
develop an independent systematic framework to compute classical observables for bound
orbits from scattering data, without the type of integrals and subtle limits that appear in
the amplitude program.

In an EFT approach to gravity for extended objects, the bodies are treated as external
localized sources endowed with a series of (Wilson) coefficients that parameterize finite-
size effects [8]. Therefore, we do not include mass-dependent propagators, and as long as
loops of the gravitational field are avoided, we always remain in the classical realm. As
a result, the derivation of the scattering angle is reduced into two- and three-dimensional
integrals involving only massless propagators. Not only these are easier to compute, we
do not encounter spurious super-classical IR singularities, such as e.g. the box diagram at
one loop [3, 77].6 There are, however, various similarities between the approach developed
in [3, 63, 64] and the one introduced here. For instance, one of the key aspects of our
formalism consists on isolating the conservative contribution from the potential region.
This is achieved by providing a prescription to perform the energy integrals, which turns
out to be similar to the one in [3, 63, 64], except for the (lack of) ‘anti-matter’ poles and
massive internal fields. Moreover, as we shall see, cancelations also occur in our derivation
of the scattering angle. For example, the vanishing of a term which we may identify with
the crossed-box diagram in [64].

4This issue is present also when dealing directly with gauge-invariant quantities, as shown in [65, 66] for
the derivation of the scattering angle. In such case the cancelation occurs instead between two independent
contributions to the impulse, linear and quadratic in the amplitude.

5The gravitational scattering amplitude at two loops has been recently computed using standard Feyn-
man techniques in [107] and shown to agree with the results of [3, 63, 64].

6As we mentioned, other type of spurious divergences may appear when dealing with potential
modes [17, 28, 31]. However, we expect these to explicitly cancel out in a fully relativistic framework
that also incorporates conservative radiation-reaction effects. We will return to this in future work.
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An EFT approach for the PM expansion has many virtues, yet the disadvantage with
respect to the amplitudes program of [3, 63, 64] is the persistent reliance on the perturbative
machinery of Feynman diagrams, when it comes to purely classical computations. However,
because of the notorious simplifications of the scattering process, even at the classical level,
a comparatively small number of diagrams are needed, significantly reducing the amount of
combinatorial complexity. For instance, only two are required to 2PM, which we compute
in detail in this paper, whereas only an additional five enter in the derivation to 3PM
order, reported elsewhere [108]. Therefore, the EFT formalism in the PM scheme provides
an alternative systematic machinery to compute the PM conservative dynamics of binary
systems, potentially reaching the same level of success as NRGR in the PN expansion
— currently at N4LO (akin of 5PM accuracy) — using the existent technology in the
field [30, 31], and elsewhere [109]. Yet, since the number of diagrams and necessary steps
will at some point start to escalate quickly, it is expected that the double copy and other
on-shell techniques from the amplitude program may be able to reduce further the level
of complexity in the derivation of the scattering angle. (Another possibility is to recast
Einstein’s gravity as in [110], to simplify the number of Feynman diagrams.) Unfortunately,
at the moment, we have not found a simple way to incorporate these tools into the EFT
formalism, although ideas from the classical doubly copy, e.g. [111–121], may ultimately
provide a hybrid framework to march smoothly towards higher orders.

This paper is organized as follows. In section 2 we review the B2B map, emphasizing
the construction of the radial action from PM scattering data. In section 3 we introduce
the effective theory for conservative dynamics, the worldline and bulk action, as well as the
integration prescription for potential modes. We then show how to use the effective theory
to compute the impulse and deflection angle to all PM orders. In section 4 we demonstrate
the power of the effective theory by (re)deriving the impulse and scattering angle to 2PM
in a few simple steps, from which we obtain all the dynamical invariants for binary system
through the B2B dictionary. For the sake of comparison, we reconstruct a 2PM Hamiltonian
for the two-body dynamics, which we show is equivalent to the one computed in [3, 63, 64].
In section 5 we compute the leading PM contribution to the scattering angle from electric-
and magnetic-type tidal effects, which are obtained from insertions of higher dimensional
operators in the worldline action. Following the B2B map we then obtain the leading correc-
tion to the periastron advance due to (spin-independent) finite-size effects at leading PM or-
der. We also construct the associated Hamiltonian including tidal effects. We conclude with
a summary and the road ahead in section 6, and a few comment on the relationship between
the action & impulse versus the amplitude & eikonal in the classical limit, in appendix A.

Conventions. We use the mostly minus signature: ηµν = diag(+,−,−,−). The
Minkowski product between four-vectors is denoted as k · x = ηµνk

µxν , while we use
k · x = δijkixj for the Euclidean version, with bold letters representing 3-vectors. We use
k⊥ for vectors in the plane perpendicular to the direction of the scattering particles. We use
the shorthand notation

∫
k ≡

∫
d4k/(2π)4,

∫
k ≡

∫
d3k/(2π)3, and

∫
k⊥
≡
∫
d2k⊥/(2π)2. We

also absorb factors of 2π into the δ functions: δ̂(x) ≡ 2πδ(x). For divergent integrals we use
dimensional regularization, such that the number of dimensions is replaced by D = d− 2ε,
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with d either 4, 3 or 2. We use M−1
Pl ≡

√
32πG for the Planck mass in ~ = c = 1 units.

We denote M = m1 + m2 the total mass, µ = m1m2/M the reduced mass, and ν ≡ µ/M

the symmetric mass ratio.

2 Boundary-to-bound

In this section we briefly review the ingredients introduced in [1, 2] to compute gravitational
observables for binary systems using scattering data. For the sake of comparison, we also
illustrate the reconstruction of the Hamiltonian from the scattering angle.

2.1 From angles to action . . .

In this paper we will not use the impetus formula introduced in the B2B map of [1] to
construct the radial action. Instead, we use the representation discovered in [2] from the
relationship between the scattering angle and periastron advance, yielding

ir ≡
Sr

GMµ
= p̂∞√

−p̂2
∞
χ

(1)
j − j

1 + 2
π

∑
n=1

χ
(2n)
j

(1− 2n)j2n

 . (2.1)

The PM coefficients of the scattering angle are defined through

χ

2 =
∑
n=1

χ
(n)
j /jn , (2.2)

with j = J/(GMµ) the reduced angular momentum. The energy of the two-body system
can be written as

E = M + µE = M(1 + νE) , (2.3)

with the momentum at infinity (in the center-of-mass frame) given by

p∞ = µ

√
γ2 − 1

Γ = µ p̂∞ , (2.4)

with

γ ≡ p1 · p2
m1m2

= u1 · u2 = E2 −m2
1 −m2

2
2m1m2

= 1 + E + νE2

2 ,

Γ ≡ E/M =
√

1 + 2ν(γ − 1) .
(2.5)

The representation in angular-momentum space may be obtained from the expansion in
impact parameter,

χ

2 =
∑
n=1

χ
(n)
b

(
GM

b

)n
, (2.6)

by replacing j−1 = p̂−1
∞

GM
b in (2.2) such that χ(n)

j = p̂n∞χ
(n)
b .

– 6 –
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2.2 . . . to binary observables

Once the radial action is reconstructed from scattering data, and after analytic continu-
ation to negative binding energies, E < 0, the gravitational observables are obtained via
differentiation. For instance, the periastron advance and periastron-to-periastron period
are given by [1, 2]

∆Φ(j, E)
2π = − ∂

∂j
(ir + j) = 1

π

∑
n=1

2χ(2n)
j (E)
j2n = 1

2π (χ(j, E) + χ(−j, E)) , (2.7)

and
Tp
2π = GM

∂

∂E
ir(j, E) = GE

∂

∂γ
ir(j, γ) , (2.8)

respectively. From here we can obtain the azimuthal and radial frequencies, defined through

Ωr(j, E) ≡ 2π
Tp

, Ωp(j, E) ≡ ∆Φ
Tp

, (2.9)

Ωφ ≡ Ωr + Ωp = 2π
Tp

(
1 + ∆Φ

2π

)
. (2.10)

We can also compute the redshift function, 〈za〉, using the first-law [122], yielding [2]

δSr(J, E ,ma) = −
(

1 + ∆Φ
2π

)
δJ + µ

Ωr
δE −

∑
a

1
Ωr

(
〈za〉 −

∂E(E ,ma)
∂ma

)
δma . (2.11)

2.3 Hamiltonian

The construction of the B2B radial action allows us to bypass the need of a Hamiltonian, or
the very equations of motion, to derive all the gravitational observables for the binary sys-
tem in the conservative sector. It is possible, however, to reconstruct a Hamiltonian from
which these observables may also be computed. The procedure was described in [1], and
relies on Firsov’s solution to the scattering problem [123]. It starts by solving for the fn co-
efficients in the PM expansion of the (square of the) momentum in the center-of-mass frame,

p2 = p2
∞

(
1 +

∑
n=1

fn

(
GM

r

)n)
, (2.12)

as a function of the scattering angle. The connection, as well as the inverse formula, was
unfolded in [1] to all orders in G. It reads

fn =
∑

σ∈P(n)
g(n)
σ

∏
`

(
χ̂

(σ`)
b

)σ`
, (2.13)

where
χ̂

(n)
b ≡ 2√

π

Γ(n2 )
Γ(n+1

2 )
χ

(n)
b , (2.14)

and P(n) is the set of all integer partitions of n. Each partition is described by n = σ`σ
`

(implicit summation) with mutually different σ`’s. Introducing the notation Σ` ≡
∑
` σ

`,
the coefficients are given by

g(n)
σ = 2(2− n)Σ`−1∏

`(2σ`)!!
. (2.15)

– 7 –



J
H
E
P
1
1
(
2
0
2
0
)
1
0
6

We can also invert the relation in (2.13), solving for the scattering angle as a function of
the momentum, yielding

χ
(n)
b =

√
π

2 Γ
(
n+ 1

2

) ∑
σ∈P(n)

1
Γ
(
1 + n

2 − Σ`
) ∏

`

fσ
`

σ`

σ`! . (2.16)

See [1] for more details. Once the fn’s are known, we can reconstruct a Hamiltonian as
follows. For convenience, we write the expressions in terms of Pn ≡ p2

∞M
nfn, which is

more suitable to define the gravitational potential. We begin with the equation for E as
a function of p2

∞,

E =
√
p2
∞ +m2

1 +
√
p2
∞ +m2

2 , (2.17)

which we then use to construct a Hamiltonian in ‘isotropic’ gauge, defined as

E = H(r,p2) =
∞∑
i=0

ci(p2)
i!

(
G

r

)i
, (2.18)

in the PM expansion. (Notice we use a slightly different normalization than [3, 63, 64] for
the ci coefficients.) Using (2.12) we have the condition

√√√√p2 −
∞∑
i=1

Pi(E)
(
G

r

)i
+m2

1 +

√√√√p2 −
∞∑
i=1

Pi(E)
(
G

r

)i
+m2

2 =
∞∑
i=0

ci(p2)
i!

(
G

r

)i
, (2.19)

that can be solved iteratively for the ci’s in terms of recursive relations. At zeroth order
we have:

c0(p2) = E(p2) = E1(p2) + E2(p2) ≡
√

p2 +m2
1 +

√
p2 +m2

2 , (2.20)

and up to 2PM order,

c1(p2) = − 1
2EξP1(E) = −ν

2M2

ξΓ2
(γ2 − 1)χ(1)

b (E)
Γ

c2(p2) = − 1
Eξ

P2(E) + (3ξ − 1)P 2
1 (E)

4E3ξ3 + P1(E)P ′1(E)
2E2ξ2

= −ν
2M3

ξΓ2

4(γ2 − 1)
π

χ
(2)
b (E)

Γ − (3ξ − 1)ν2

ξ2Γ3

(
(γ2 − 1)χ

(1)
b (E)

Γ

)2

− 2ν2(γ2 − 1)
Γξ

χ
(1)
b (E)

Γ
d

dE

(
E(γ2 − 1)χ(1)

b (E)
Γ3

))
(2.21)

where ξ(p) ≡ E1(p)E2(p)/E2(p). We have written the coefficients directly in terms
of the scattering angle as a function of the energy to 2PM. At the end of the day, all
the functions must be understood as defined in terms of the momentum through E(p)
in (2.20). General expressions to all orders can be found in [1].
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3 Post-Minkowskian effective theory

In this section we develop an EFT approach to obtain the impulse and scattering angle in
the PM framework. We provide a set of simplified Feynman rules for the Einstein-Hilbert
and worldline action and discuss the computation of the conservative contributions from
potential modes as well as the required integration procedure.

3.1 Point-particle sources

Following the EFT approach developed in [8], we construct a worldline action to describe
both constituents of the two-body problem,

Spp = −
∑
a

ma

∫
dσa

√
gµν(xαa (σ))vµa (σa)vνa(σa) + · · · , (3.1)

where vµ = dxµ

dσ , and the ellipses account for finite-size effects (as well as counter-terms).
For instance, using the proper time, τ , we have

· · ·=
∫

dτa
(
c

(a)
R R(xa)+c

(a)
V Rµν(xa)vµavνa +c

(a)
E2Eµν(xa)Eµν(xa)+c

(a)
B2Bµν(xa)Bµν(xa) . . .

)
,

(3.2)
and additional operators can be added to include spin effects [14]. The cR,V coefficients do
not contribute to physical quantities, since they can be removed by field redefinitions [8],
however they may be needed to properly renormalize the theory removing intermediate
UV poles [31]. The cE2 and cB2 operators, written in terms of the electric and magnetic
components of the Weyl tensor, represent the tidal Love number (which vanish for non-
rotating black holes [6]). We will study later on the leading contribution from these tidal
operators to the scattering angle in section 5. Other terms can be systematically included
in a derivative expansion [14]. Notice that the action is reparameterization invariant. This
allows us to fix the gauge, for instance with the coordinate time x0 = σ, which is useful in
the PN expansion.

In the PM scheme, instead of (3.1) it is convenient to work with the Polyakov action,7

Spp = −
∑
a=1,2

ma

2

∫
dσa ea

( 1
e2
a

gµν(xαa (σ))vµa (σa)vνa(σa) + 1
)
, (3.3)

such that variations with respect to ea give ea =
√
gµνv

µ
avνa , thus recovering (3.1). The

advantage of this action is that, in contrast to PN computations, the PM approximation is
suited for using the proper, rather than coordinate, time to parameterize the trajectories.
Therefore we will choose the gauge in which ea = 1, yielding σa = τa. The worldline action
becomes simply

Spp = −
∑
a

ma

2

∫
dτa gµν(xa(τa))vµa (τa)vνa(τa) . (3.4)

with the condition
e2
a = gµν(xa(τa))vµa (τa)vνa(τa) = 1 . (3.5)

7The Polyakov action may also be useful to study the high-energy limit of the self-force problem [67], as
well as to simplify PN computation [124] using the coordinate time.
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From (3.4) the geodesic equation may be written in compact form as

d

dτa

(
gαµ(xa(τa))vµa (τa)

)
= 1

2
∂gµν
∂xα

(xa(τa))vµa (τa)vνa(τa) , (3.6)

although in the EFT formalism we will work directly with the effective Lagrangian instead.
Notice that, expanding the metric in the weak field approximation,

gµν = ηµν + hµν
MPl

, (3.7)

the action in (3.4) only generates a one-point function. In turn, all the non-linear effects
are therefore encoded in the bulk action. We will work in Einstein’s gravity, described by
the Einstein-Hilbert action

SEH = −2M2
Pl

∫
d4x
√
−g R[g] . (3.8)

It is advantageous to optimize the Feynman rules given by this action to obtain the fewest
number of terms for each bulk vertex. For this purpose we use a generalized gauge-fixing
condition, as well as judiciously chosen total derivatives. In principle, one can also use field
redefinitions [125]. However, field redefinitions modify the worldline vertices introducing
more diagrams. In this paper we choose to keep the worldline coupling unmodified, as
in (3.4).

At quadratic order we retain the De-Donder gauge, and the two-point Lagrangian

Lhh = 1
2∂αh

µν∂αhµν −
1
4∂µh∂

µh , (3.9)

with h ≡ hαα. From here we find the propagator

〈hµν(x)hαβ(y)〉 = i

k2Pµναβe
ik·(x−y) , (3.10)

where (in D dimensions)

Pµναβ = 1
2

(
ηµαηνβ + ηναηµβ −

2
D − 2ηµνηαβ

)
. (3.11)

For the three-point function, the shortest expression that does not modify the worldline
coupling contains six terms,

MPlLhhh = −1
2h

µν∂µh
ρσ∂νhρσ + 1

2h
µν∂ρh∂

ρhµν −
1
8h∂ρh∂

ρh

+ hµν∂νhρσ∂
σhµ

ρ − hµν∂σhνρ∂σhµρ + 1
4h∂σhνρ∂

σhνρ .
(3.12)

There exist other inequivalent three-point Lagrangians of the same size. The given repre-
sentation was chosen such that i) it does not contain any double derivatives acting on the
same field and ii) the four-point Lagrangian has the least amount of terms which is found
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to be

M2
PlLhhhh = −1

4h
µνhρσ∂αhρσ∂

αhµν + 1
2h

µνhρσ∂αhνσ∂
αhµρ + hµ

ρhµν∂αhρσ∂
αhν

σ

− 1
2hh

νρ∂αhρσ∂
αhν

σ − 1
8hµνh

µν∂αhρσ∂
αhρσ + 1

16h
2∂αhρσ∂

αhρσ

− 3
4h

µνhρσ∂νhσα∂ρhµ
α − hµρhµν∂αhνσ∂ρhσα + 1

2hh
νρ∂αhν

σ∂ρhσα (3.13)

+ 1
2hµ

ρhµν∂νh
σα∂ρhσα −

1
4h

µ
µh

νρ∂νh
σα∂ρhσα −

1
2h

µνhρσ∂αhµρ∂σhνα

+ hµνhρσ∂ρhµ
α∂σhνα + 1

4hµ
ρhµν∂αhν

σ∂σhρα −
1
2hµ

ρhµν∂σh∂
σhνρ

+ 1
4hh

νρ∂σh∂
σhνρ + 1

8hµνh
µν∂αhσ

α∂σhρρ −
1
16h

2∂αhσ
α∂σh .

Also for the four-point function there exist other versions of the same length.
The three-point vertex is all we need to 2PM (while the four-point vertex enters at

3PM), and therefore we find these rules more convenient than adding more topologies from
non-linear couplings to the sources. However, at higher orders further simplifications can
be achieved by allowing for field redefinitions. For instance, keeping the same propagator,
the three- and four-point functions can be simplified to 3 and 12 terms respectively, at the
cost of worldline non-linearities. (The cubic coupling with only two terms is also possible,
resulting in three terms for the quadratic action and a modified propagator.) Other type of
simplifications are in principle possible, for instance by recasting Einstein’s gravity in terms
of only cubic couplings [110], which can reduce the number of diagrams at higher PM orders.

3.2 Conservative effective action

Given the bulk and worldline action, we can ‘integrate-out’ the graviton field, namely the
metric, to construct an effective two-body action. As in the original EFT approach [8, 14],
we compute

eiSeff [xa] =
∫
Dhµν eiSEH[h]+iSGF[h]+iSpp[xa,h] , (3.14)

where SGF is the gauge fixing term we alluded before and we have omitted total deriva-
tives we have used to simplify the Feynman rules. Field redefinitions of the metric field
are also allowed, although we have not used them in the present paper. Despite the path
integral representation, we use the saddle-point approximation keeping only the classical
contributions to the effective action. We thus treat the massive particles as non-propagating
external sources and include only connected tree level diagrams, i.e. without graviton loops.
In other words, the path integral and associated Feynman rules are a convenient and sys-
tematic way to encapsulate solutions to Einstein’s equations sourced by localized sources,
which are then plugged back into the action. This procedure is sometimes referred in the
literature as the construction of the ‘Fokker-action’, e.g. [18]. As in NRGR, the pertur-
bative expansion in terms of iterated Green’s functions will resemble loop-type integrals
in field theory. Yet, no quantum effects are ever computed, although they can be easily
incorporated [8]. The advantage of the EFT approach, in comparison with directly tack-
ling Einstein’s equations, is that we do not need to solve for the metric explicitly, which
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(a) (b)

Figure 1. Feynman diagrams which only yield singular integrals in the potential region. The
divergences can be set to zero in dimensional regularization, or absorbed into counter-terms.

is nonetheless unobservable in the conservative sector. Instead, we compute what is of-
ten described as the (connected) vacuum-to-vacuum amplitude in the presence of sources
(‘−i log〈0|0〉J ’) in the saddle-point approximation, simply steering away from closed quan-
tum loops. In doing so, evaluating the effective action on solutions to the classical equations
of motion, the power counting in Planck’s constant becomes trivial and ~ turns into nothing
but a conversion factor that drops out of the final answer.

In principle, the integrals that appear in the perturbative expansion of the path integral
in (3.14) include contributions from two regions: potential and radiation modes [8]. The
latter incorporate the propagating (on-shell) modes that travel to the gravitational wave
detector, while the (off-shell) potential modes are responsible for the conservative forces
that deflect the particles in a two-body encounter, and also bind the system together in a
binary. In this paper we will only consider conservative effects. Since the imaginary part
is due to cuts induced by radiation modes [8, 14], by concentrating in the conservative
sector the effective action will remain real at all stages. As in any EFT without a cutoff
in the momenta, UV divergent integrals appear. However, these are naturally handled
by dimensional regularization, and renormalized by counter-terms in a diffeomorphism
invariant fashion, see e.g. [31]. As it is also standard, we will set scaleless integrals to zero
in the conservative sector, unless otherwise noted. This means we do not keep contributions
in which propagators start and end on the same source (although in principle at a different
times), as depicted in figure 1, since these type of diagrams produce scaleless divergent
contributions for potential modes.8 Moreover, unlike in the PN expansion, these diagrams
cannot be connected to the second particle through worldline non-linearities using the
Polyakov action. In general, only bulk graviton self-interaction are required at higher
orders in G. Hence, for example, the entire set of diagrams that contribute to the effective
action to O(G3) are shown in figure 2 (plus mirror images). The diagrams (a) and (b) are
the only two required to O(G2). Furthermore, the one-point functions in diagrams (b), (c)
and (d) are responsible for the Schwarzschild background to O((Gm2)3), such that only
(e), (f) and (g) carry information beyond the test-particle limit.

As it turns out, many contributions to the effective action in the conservative sector
are naturally reduced to two- and three-dimensional integrals. That is the case, as we
shall see, due to the appearance of δ functions in the PM scheme that force the compo-

8As it is well known, hereditary radiative effects can also enter in the conservative sector [17, 28], which
requires a careful study of IR/UV divergences and scaleless integrals [31]. That is partially due to the fact
that radiation modes can generate non-zero contributions, e.g. (xi1

...
x j1)2

TF from the diagram figure 1a, and
a tail-type correction from figure 1b, in the long-wavelength expansion [33]. We will not consider these
contributions here and return to this issue in future work.
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(a) (b) (c) (d) (e) (f) (g)

Figure 2. Feynman topologies needed for the computation of the effective action to O(G3). The
wavy line represents the propagator (or Green’s function), while the black dots are the two worldlines
at particle’s 1 (bottom) and 2 (top), treated as external sources.

nent of the momentum to be orthogonal to the four velocities of the particles at infinity.
(Something similar occurs in the derivation of the classical impulse starting from the scat-
tering amplitude in [65].) However, for another class of diagrams isolating the conservative
contribution to the effective action entails a prescription to perform the various k0

1, . . . , k
0
n

energy integrals that may appear at nPM order. We discuss the procedure below.

3.3 Potential region

The potential modes are natural objects in the PN framework. Contributions from the po-
tential region in PN theory are obtained systematically by expanding the Feynman integrals
in powers of k0/|k|. This is exploited in the EFT approach to reduce the complexity of the
calculations, resorting to manifest power counting in the velocity expansion [8]. By splitting
the four dimensional integrals into regions, the EFT framework has already achieved a high
level of accuracy, at 4PN order [28, 30, 31] (and beyond [52, 53]). In this paper, however,
we will not perform a small velocity expansion, and use the effective action to compute the
scattering angle in relativistic two-body encounters instead. Therefore, our task here is to
obtain the contribution from each diagram to the conservative sector in the PM expansion.
Namely to incorporate the effects from potential modes at a given order in G, but to all
orders in velocity. That is to say, we must use the relativistic version of the integrands and
propagators, but only retain the contributions to the real part of the effective action which
correspond to the conservative poles. In principle, once a contour in the k0 complex plane
is chosen, various poles may contribute to a given Feynman diagram. Therefore, in order
to properly isolate the relevant (conservative) region of integration, we need a prescrip-
tion to account for each one of them. We will adapt to our framework the procedure first
introduced in [3], and later elaborated further in [63, 64, 90] to extend to higher PM orders.

In the EFT example we focus on in this paper, at 2PM, only one energy integral will
be needed. As it was discussed in [3], in this case the procedure boils down to evaluating
the k0 energy integral by an (oriented) average over poles in the upper/lower half complex
plane, that is ∫ dk0

2π (·) = i

2

 ∑
k0
?∈H+

Res
k0=k0

?

(·) −
∑

k0
?∈H−

Res
k0=k0

?

(·)

 , (3.15)

while retaining only conservative contributions. This means we only keep the poles in
the (potential) region k0 � |k|. For our purposes here, the prescription in (3.15) will be
sufficient. More generally, even though the poles in [3, 63, 64] are different, e.g. no massive
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lines appear in the EFT computation, a given prescription can in principle be applied to
any type of integral. Therefore, by adapting the rules from [64, 90] to our case we can
evaluate all the energy integrals in the EFT approach at any PM order. For instance, by
averaging over graviton permutations [126]. One of the basic tools is the identity [127]

δ

(
n∑
i

ωi

) ∑
Perms of ωi

1
ω1 − iε

· · · 1
ω1 + · · ·+ ωn−1 − iε

= (2πi)n−1
n∏
i

δ(ωi) , (3.16)

to compute the energy integrals. For example, at 3PM order we may find integrands
involving two energies, e.g.

1
k0

1 − iε
1

k0
1 + k0

2 − iε
. (3.17)

The idea is to re-write it using permutations of k0
1, k

0
2, k

0
3 and imposing the condition

k0
3 + k0

2 + k0
1 = 0, such that∫ dk0

1
2π

dk0
2

2π
1

k0
1 − iε

1
k0

1 + k0
2 − iε

= 1
3!(2πi)

2 = −2π2

3 . (3.18)

The derivation of the dynamics to O(G3) in the EFT approach is presented in [108].
Let us stress that, although the prescription to deal with energy integrals may turn out

to be equivalent to the one in the amplitude program, the origin of the different classical
contributions, as well as the associated integrals, will be quite different. For instance, we
will not have to deal with super-classical IR divergences, as in [3, 63–65, 77]. (We do have
UV poles, which are readily absorbed into counter-terms as we mentioned earlier.) We
find, nonetheless, similarities with the calculations in [3, 63–65]. Notably, the result for the
scattering angle to 2PM can be identified with a (classical) triangle integral, with vanishing
contribution from the crossed-box. Yet, unlike what occurs in [3, 65, 77], the box diagram
does not feature at all in the EFT computation. This is expected, since it would entail a
singularity for which we would have no subtraction scheme, e.g. no EFT matching [3], nor
‘cut diagram’ [65], nor Born iterations [68, 77], as in methods dealing with the scattering
amplitude. However, as we shall see in our example, the organization of the various terms
entering in the final answer turn out to be remarkably distinct, as it was already seen in [65].
While this supports the complete independence in methodologies, it also begs for a deeper
understanding of the nature of the different classical contributions at higher PM orders.

3.4 Impulse & deflection angle

Using the effective action we can then derive the equations of motion from which we can
compute the total momentum change, the impulse, as well as the scattering angle. Without
loss of generality, let us study the deflection for particle 1. In the PM expansion the effective
action takes the form,9

Seff =
∑
n

∫
dτ1 Ln[x1(τ1), x2(τ2)] , (3.19)

9At first glance, the resulting effective Lagrangian will appear to be non-local in time, involving an
integral over dτ2. However, as we shall see, the resulting impulse and scattering angle in the conservative
sector will be obtained from manifestly local interactions (as long as tail effects are ignored [28]).
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The Ln’s are the O(Gn) contributions to the effective Lagrangian obtained from the sum
of all Feynman diagrams. The leading order (kinetic) term is given by, see (3.4),

L0 = −m1
2 ηµνv

µ
1 (τ1)vν1 (τ1) . (3.20)

Performing the variation of the effective Lagrangian we obtain

− ηµν d
dτ1

(
∂L0
∂vν1

)
= m1

dvµ1
dτ1

= −ηµν
( ∞∑
n=1

∂Ln
∂xν1(τ1) −

d
dτ1

(
∂Ln
∂vν1

))
. (3.21)

From here, and assuming Ln≥1 → 0 at infinity, we find

∆pµ1 = m1∆vµ1 = −ηµν
∑
n

∫ +∞

−∞
dτ1

∂Ln
∂xν1

, (3.22)

for the total change of four-momentum; or in 3D space,

∆pi1 = −∆pi1 =
∑
n

∫ +∞

−∞
dτ1

∂Ln
∂xi1

. (3.23)

Similarly for particle 2, which can also be obtained from momentum conservation.
The computation of the impulse then follows iteratively, order by order in the PM

expansion. At leading order the trajectory is represented by a straight line, and higher PM
effects result in a series of corrections, which we parameterize in terms of the proper time
as follows [65, 93, 94]

vµa (τ1) = uµa +
∑
n

δ(n)vµa (τa) ,

xµa(τ1) = bµa + uµaτa +
∑
n

δ(n)xµa(τa) ,
(3.24)

where uµa is the incoming velocity at infinity and bµa = xµa,(0)−u
µ
a(xa,(0) ·ua), with x

µ
a,(0) the

initial position of each particle. For a scattering process we also have

gµν(xa(τa))→ ηµν ,
(
δ(n)xµa(τa), δ(n)vµa (τa)

)
→ 0 (τa → −∞) , (3.25)

such that the condition in (3.5) implies u2
a = 1, with u1 · u2 then identified with γ in (2.5).

Moreover, notice that ba · ua = 0, and the vector bµ ≡ bµ2 − bµ1 will be thus associated
with the impact parameter of the collision in the center-of-mass frame. In order to comply
with standard literature we will incur in some minor abuse of notation and sometimes use
b to represent

√
−bµbµ in the final results, as well as for the four-vector appearing in dot

products, e.g. k · b, during the intermediate computations.
Due to the PM expansion in (3.24), there are various contributions to the impulse

in (3.22), involving lower order terms evaluated on the deflected trajectories and expanded
to the desired order, i.e.

∆(n)pµa =
∑
k≤n

∆(n)
Lk p

µ
a , (3.26)

with

∆(n)
Lk p

µ
a ≡ −ηµν

∫ +∞

−∞
dτa

(
∂

∂xνa
Lk
[
ba + uaτa +

n−k∑
r=0

δ(r)xa

])
O(Gn)

. (3.27)
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In summary, in order to compute the impulse we first derive the effective Lagrangian to
n-th order via Feynman diagrams. We then extract the PM corrections to the equations
of motion using the standard Euler-Lagrangian procedure. Hence, we insert the resulting
trajectory into the time integral of the derivative of the effective Lagrangian with respect
to the position, while keeping contributions up to the desired order. Given that for the
impulse at nPM the deflection is needed to (n−1)PM, we can proceed iteratively in powers
of G, starting from the undeflected solution at O(G0) in (3.24). Once the impulse is known
we can then go to the center-of-mass frame and directly read off the scattering angle using,
see e.g. [93],

2 sin
(
χ

2

)
= χ− 1

24χ
3 +O(χ5) = |∆p1cm|

p∞
=

√
−∆p2

1

p∞
, (3.28)

where p∞ is given in (2.4). In the last equation we used that ∆p0
1 = 0 to re-write the

expression in a covariant fashion using our conventions.

4 Conservative binary dynamics to 2PM

In this section we compute all the dynamical invariants for bound orbits to 2PM order using
the B2B map. We begin with the derivation of the scattering angle in the EFT approach,
starting from the computation of the effective action. We obtain the (real part of the)
effective Lagrangian following the same procedure as in NRGR, by ‘integrating out’ the
metric degrees of freedom, while keeping the propagators fully relativistic. Therefore, unlike
NRGR, we will not expand the propagators in powers of k0/|k|. We will handle the potential
region as we described earlier in section 3.3. To perform the integrals we will often go to the
frame where one of the incoming particles is initially at rest, and align the x-axis with the
initial velocity of the companion. We will denote k⊥ the vectors in the orthogonal zy-plane.

4.1 Effective Lagrangian

4.1.1 Tree

The leading order contribution to the effective action comes from the ‘tree’ diagram in
figure 2(a). The computation is straightforward, and we obtain

L1 = −i−i2
−i
2

∫ +∞

−∞
dτ2

∫
k

iPαβµν
k2 vα1 (τ1)vβ1 (τ1)vµ2 (τ2)vν2 (τ2)eik·(x1(τ1)−x2(τ2)) (4.1)

= −m1m2
8M2

Pl

∫ +∞

−∞
dτ2

(
2(v1(τ1) · v2(τ2))2 − v2

1(τ1)v2
2(τ2)

) ∫
k

1
k2 e

ik·(x1(τ1)−x2(τ2)) .

We can then read off the contribution to the equations of motion from the tree level action:

dvµ1
dτ1

= m2
8M2

Pl

∫ ∞
−∞

dτ2
(
2(v1(τ1) ·v2(τ2))2−v2

1(τ1)v2
2(τ2)

)∫
k

ikµ

k2 e
ik·(x1(τ1)−x2(τ2)) (4.2)

− m2
4M2

Pl

∫ ∞
−∞

dτ2
(
2v1(τ1) ·v2(τ2)vµ2 (τ2)−v2

2(τ2)vµ1 (τ1)
)∫

k

ik ·v1(τ1)
k2 eik·(x1(τ1)−x2(τ2))

− m2
4M2

Pl

∫ ∞
−∞

dτ2

(
(2dv1(τ1)

dτ1
·v2(τ2)vµ2 (τ2)−v2

2(τ2)dvµ1 (τ1)
dτ1

)∫
k

1
k2 e

ik·(x1(τ1)−x2(τ2)) ,

– 16 –



J
H
E
P
1
1
(
2
0
2
0
)
1
0
6

which will be useful later on to compute the deflection angle to second order in G. No-
tice the third line includes a term proportional to the acceleration, which can be treated
systematically by replacing it with lower order equations of motion.

4.1.2 One loop

The effective action at O(G2) (or ‘one loop’) has only one contribution, shown in the
diagram in figure 2(b). Using the cubic vertex described earlier we find

L2 = −m1m
2
2

16M3
Pl
vα1 (τ1)vβ1 (τ1)

∫
dτ2

∫
dτ̃2v

γ
2 (τ2)vρ2(τ2)vσ2 (τ̃2)vκ2 (τ̃2)Pγργ̃ρ̃(k1)Pσκσ̃κ̃(k2)Pαβα̃β̃(k3)

×
∫
k1,2,3

eik1·x1(τ1)eik2·x2(τ2)eik3·x2(τ̃2)V
γ̃ρ̃σ̃κ̃α̃β̃
hhh (k1,k2,k3)

k2
1k

2
2k

2
3

δ4(k1+k2+k3)+(1↔2), (4.3)

where

iV abcdef
hhh (p1, p2, p3) = i

4MPl
×
[
4p1 · p2

(
ηafηbdηce + ηaeηbdηcf

)
+ 4p2 · p3

(
ηaeηbcηdf + ηacηbeηdf

)
+ 4p1 · p3

(
ηadηbfηce + ηacηbfηde

)
+ (p1 · p2 + p2 · p3 + p1 · p3)

(
ηabηcdηef − 2ηaeηbfηcd − 2ηabηceηdf − 2ηacηbdηef

)
− 4ηadηcepf1pb2 − 4ηaeηbcpd1p

f
2 + 2ηacηbd

(
pe1p

f
2 + pf1p

e
2

)
− 4ηacηdepf2pb3 − 4ηaeηcfpb2pd3 + 2ηceηdf

(
pa2p

b
3 + pb2p

a
3

)
− 4ηafηcepd1pb3 − 4ηacηbepf1pd3 + 2ηaeηbf

(
pc1p

d
3 + pd1p

c
3

) ]
(4.4)

Notice that, while a few terms are present at first, the orthogonality condition will drasti-
cally reduce the number of contributions once the diagram is evaluated on the undeflected
solution. This turns out to be one of the major advantages of working with the scattering
angle rather than computing the binding potential directly in a PM expansion.

4.1.3 Trajectories

To obtain the trajectories we must integrate the equations of motion using the expansion
in (3.24). Since we restrict ourselves here to the impulse to 2PM, we only need the first
correction to the unperturbed solution. This follows from (4.2), which yields

δ(1)vµ1 (τ1) = m2
4M2

Pl

(
2γ2−1

2 ηµα−(2γuµ2 −u
µ
1 )uα1

)∫ τ1

−∞
dτ̃1

∫
q
δ̂(q ·u2) iqα

q2 e
i(q·u1−iε)τ̃1eiq·b

= m2
4M2

Pl

(
2γ2−1

2 ηµα−(2γuµ2 −u
µ
1 )uα1

)∫
q
δ̂(q ·u2) iqα

q2 e
iq·b (−i)ei(q·u1−iε)τ1

(q ·u1− iε)
(4.5)

so that, after an additional time integration,

δ(1)xµ1 (τ1) = − m2
4M2

Pl

(
2γ2 − 1

2 ηµα − (2γuµ2 − u
µ
1 )uα1

)∫
q

iqαδ̂(q · u2)
q2(q · u1 − iε)2 e

iq·bei(q·u1−iε)τ1 .

(4.6)
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We have added a factor of −iε in all these expressions to ensure the convergence of the time
integral at τ̃ → −∞, see e.g. [65]. Notice the resulting factor of (q ·u− iε)−1 resembles the
propagator in the heavy-quark effective theory (HQET) [128]. This will play an important
role later on when we compute the impulse in the potential region, and is also directly
associated to the large-mass limit of the scattering amplitude in [3, 77].

The deflection for the second particle can be obtained following the same procedure,

δ(1)vµ2 (τ2) = m1
4M2

Pl

(
2γ2−1

2 ηµα−(2γuµ1−u
µ
2 )uα2

)∫ τ2

−∞
dτ̃2

∫
q
δ̂(q ·u1)−iqα

q2 e−i(q·u2+iε)τ̃2eiq·b

= m1
4M2

Pl

(
2γ2−1

2 ηµα−(2γuµ1−u
µ
2 )uα2

)∫
q
δ̂(q ·u1)−iqα

q2 eiq·b
(+i)e−i(q·u2+iε)τ2

(q ·u2+iε) (4.7)

and

δ(1)xµ2 (τ2) = m1
4M2

Pl

(
(2γ2 − 1)

2 ηµα − (2γuµ1 − u
µ
2 )uα2

)∫
q

iqαδ̂(q · u1)
q2(q · u2 + iε)2 e

iq·be−i(q·u2+iε)τ2 .

(4.8)
As expected, the PM shifts for particle 2 can be simply obtained from relabeling 1↔ 2 in
the corrections to particle 1, together with q → −q. Notice, however, that because of our
choice of signature, the factor of (q · u1 − iε) in (4.5) and (4.6) needed for the integral to
converge turned into (q · u2 + iε). As we shall see, this distinction in the position of the
poles will become relevant when combining all contributions to the impulse.

4.2 Scattering angle

We are now in position to compute the scattering angle for the two-body gravitational
encounter. For the computation of the impulse we will concentrate on particle 1. A similar
computation can be followed for particle 2.

4.2.1 Leading order impulse

The leading order impulse follows from (3.22) applied to the 1PM effective action in (4.1)
and evaluated in the undeflected trajectory in (3.24),

∆(1)
L1
pµ1 = m1m2

8M2
Pl

(
2γ2 − 1

) ∫
k
ikµ

δ̂(k · u1)δ̂(k · u2)
k2 eik·b . (4.9)

To perform the integral we choose the frame at which particle 1 is initially at rest, u1 =
(1, 0, 0, 0). In such coordinates, the companion has four-velocity u2 = (γ, βγ, 0, 0), with
β ≡

√
γ2 − 1/γ the incoming relative velocity. Hence, using∫ dDk

(2π)D
1

(k2)n
e−ik·x = 1

4nπD/2
Γ[D/2− n]

Γ[n] (x2)(−D/2+n) , (4.10)

for the Fourier transform in D = 2, we arrive at

∆(1)
L1
pµ1 = −m1m2

8M2
Pl

(
2γ2 − 1

)
γβ

∂

∂b⊥

∫
k⊥

e−ik⊥·b⊥

−k2
⊥

= −m1m2
8M2

Pl

(
2γ2 − 1

)
γβ

∂

∂b⊥

(
+log |b⊥|

2π

)
= −2m1m2G

(
2γ2 − 1

)√
γ2 − 1

bµ

|b2|
. (4.11)
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In the last line wrote the result in a covariant fashion using the impact parameter four-
vector, bµ, orthogonal to the velocities, which in the rest frame of particle 1 it has compo-
nents bµ = (0, b⊥), obeying b⊥ · u2 = 0. From here, and using (3.28), we find

χ
(1)
b

Γ = (2γ2 − 1)
(γ2 − 1) , (4.12)

for the scattering angle at 1PM in impact parameter space, as expected.

4.2.2 Next-to-leading order impulse

According to (3.26), we have two contributions at NLO. We start with the 1PM action
in (4.1) using the trajectory expanded to linear order in G. The two terms are due to the
shifted position and velocity at 1PM,

∆(2)
L1
pµ1 = m1m2

4M2
Pl

∫ ∞
−∞

dτ1dτ2

∫
k

ikµ

k2 e
ik·b+ik·(u1τ1−u2τ2)

[(2γ2−1
)

2 (ik)·
(
δ(1)x1(τ1)−δ(1)x2(τ2)

)
+(2γu2β−u1β)·δ(1)vβ1 (τ1)+(2γu1β−u2β)·δ(1)vβ2 (τ1)

]
, (4.13)

depending on both the deflection of particle 1 itself and the companion. Using an abuse of
language, we refer to the contributions from particle 2 also as ‘mirror images’. These terms
are straightforward to compute by a simple relabeling. There is, however, one subtle point
involving the factor of q ·u1−iε versus q ·u2 +iε that appears in the deflection for particle 2,
and the integration over q0. For for the sake of illustration, and simplicity, in what follows
we will only refer to the effects due to the PM corrections to the motion of particle 1 itself,
and deal with mirror images only when we combine all the intermediate results.

Inserting the values for the deflected velocity and position given in (4.5) and (4.6)
into (4.13), and massaging the final expression, we have

∆(2)
L1
pµ1 = i

m1m
2
2

128M4
Pl

∫
k,`

[(
2γ2−1

)2
`2−16γ2(k ·u1)2

] (`µ−kµ)δ̂(k ·u2)δ̂(` ·u2)δ̂(` ·u1)
k2(`−k)2(k ·u1− iε)2 ei`·b ,

(4.14)
where we have also discarded contributions which do not lead to a long-range interaction.
We next move to the contribution from L2, which entails using the unperturbed trajectories
in the result quoted in (4.3). As we discussed before, we will add the mirror image at
the end. After performing the contractions, and retaining only terms which lead to a
long-range interactions and do not vanish due to the δ functions, we arrive at the compact
expression:

∆(2)
L2
pµ1 = i

m1m
2
2

32M4
Pl

∫
k1,2

kµ1 δ̂(k1 · u1)δ̂(k2 · u2)δ̂(k1 · u2)
k2

1k
2
2(k1 + k2)2 eik1·b

×
(
γ2k2

1 + (k2 · u1)2 + (2γ2 − 1)(k1 · k2)
)
.

(4.15)

To compute the integral we start by replacing k1 · k2 = 1
2
(
(k1 + k2)2 − k2

1 − k2
2
)
→ −k2

1/2,
after noticing that is the only term leading to a long-range force. Furthermore, the k2-
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integral involving (k2 · u1)2 can be simplified, using

∫
k2

(k2 · u1)2δ̂(k2 · u2)
k2

2(k1 + k2)2 = 3
8

(
kµ1⊥k

ν
1⊥ −

1
3 (ηµν − uµ2uν2) k2

1⊥

)
uµ1u

ν
1(

1− (k1·u2)2

k2
1

)2

∫
k2

δ̂(k2 · u2)
k2

2(k1 + k2)2

= k2
1

8
(
γ2 − 1

) ∫
k2

δ̂(k2 · u2)
k2

2(k1 + k2)2 +O(k1 · ua) , (4.16)

with kµ1⊥ = kµ1 − u
µ
2 (k1 · u2), and ignoring k1 · ua factors due to the overall δ functions.

Hence, after the innocuous re-labeling of momentum k1 = ` and k2 = −k,

∆(2)
L2
pµ1 = i

m1m
2
2
(
γ2 + 3

)
256M2

Pl

∫
k,`

`µδ̂(` · u1)δ̂(` · u2)δ̂(k · u2)
k2(`− k)2 ei`·b . (4.17)

Before we evaluate the result, which entails adding these two contributions and mirror
images, it is instructive to split the two terms above into two other (more suggestive)
contributions. Notice that the (k · u1)2 in the numerator in (4.14) cancels out against the
denominator. This allows us to complete the squares and replace the vector integral by∫

k
δ(k2 · u2) kµ

k2(`− k)2 = `2

2`2⊥

∫
k
δ(k2 · u2) `µ⊥

k2(`− k)2 →
1
2

∫
k
δ(k2 · u2) `µ

k2(`− k)2 , (4.18)

where `µ⊥ ≡ `µ − uµ2 (u2 · `) → `µ, after setting ` · u2 = 0 due to the overall δ functions.
From here can then combine terms together and write the impulse at 2PM, modulo mirror
images,

∆(2) pµ1 = ∆(2)
4 pµ1 + ∆(2)

u pµ1 , (4.19)

with
∆(2)
4 pµ1 = −3m1m

2
2(5γ2 − 1)

256M4
Pl

∂

∂bµ

∫
k,`

δ̂(k · u2)δ̂(` · u2)δ̂(` · u1)
k2(`− k)2 ei`·b , (4.20)

and

∆(2)
u pµ1 = i

m1m
2
2

128M4
Pl

∫
k,`

(
2γ2 − 1

)2 (`µ − kµ)`2δ̂(k · u2)δ̂(` · u2)δ̂(` · u1)
k2(`− k)2(k · u1 − iε)2 ei`·b . (4.21)

Notice that the expression in (4.20) resembles the derivation of the impulse from the eikonal
phase, see appendix A. To compute the integral we go to the rest frame of particle 2 this
time, and using∫ dDk

(2π)D
1

((k − p)2)n1(k2)n2
= Γ[n1 + n2 −D/2]Γ[D/2− n1]Γ[D/2− n2]

Γ[n1]Γ[n2]Γ[D − n1 − n2]
(p2)D/2−n1−n2

(4π)D/2
,

(4.22)
together with the Fourier transform in (4.10), we obtain

∆(2)
4 pµ1 = 3π

4

(
5γ2 − 1

)√
γ2 − 1

∂

∂b⊥

(
G2m2

2m1
|b⊥|

)
= −3πm2

2m1
4

(
5γ2 − 1

)√
γ2 − 1

G2bµ

|b2|3/2
, (4.23)

where we wrote the result in a covariant fashion in terms of the impact parameter four-
vector, bµ, which in the rest frame of particle 2 has components bµ = (0, b⊥), with b⊥ ·u1 =
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0. The other term in (4.21) is a little more involved, also when it comes to adding the
contribution from the mirror image, as we show momentarily. It is convenient to first
tensor-reduce the integral. Let us concentrate in the

∫
q part,∫

q

(`µ − qµ) δ̂(q · u2)
(`− q)2q2(q · u1 − iε)2 = A`µ +B (γuµ2 − uµ1 ) , (4.24)

such that

∆(2)
u pµ1 = m1m

2
2
(
2γ2 − 1

)2
128M4

Pl

[∫
`
(iA(`, γ)`µ + iB(`, γ) (γuµ2 − u

µ
1 )) `2δ̂(` · u2)δ̂(` · u1)ei`·b

]
,

(4.25)
where we used that, because of all the δ functions involved, the result from dotting with
u2 must vanish. We multiply now by `µ, and use the same trick as before by writing
2` · q =

(
−(`− q)2 + `2 + q2) to cancel local terms, so that

A = 1
`2

∫
q

(`2 − (` · q))δ̂(q · u2)
(`− q)2q2(q · u1 − iε)2 = 1

2

∫
q

δ̂(q · u2)
(`− q)2q2(q · u1 − iε)2 . (4.26)

For the B coefficient we dot with u1 instead. Using that ` · ua = 0, we find

B = − 1
γ2 − 1

∫
q

δ̂(q · u2)
(`− q)2q2(q · u1 − iε)

. (4.27)

Notice that both these integrals, A and B, resemble the crossed-box and triangle
integrals in the large-mass limit of the one loop amplitude in [3, 63, 64]. To compute
them we use the prescription we described in section 3.3. First of all, since we do not
pick radiation poles, only the pole at q · u1 − iε = 0 contribute. Furthermore, notice
that the A integral converges, and that we have the two poles on the same side of the
complex plane. By simply closing the contour in the opposite direction we can thus set
A = 0. This fact, which is equivalent to the vanishing of the crossed-box contribution at
one loop [3, 63, 64], also explains why there is no (2γ2 − 1)2 term in the scattering angle
at 2PM.10 For the B integral we find it convenient to move to the rest frame of particle 1
(recall u1 = (1, 0, 0, 0) and u2 = (γ, γβ, 0, 0)). Then, using the prescription in (3.15) and
averaging over conservative poles in the upper and lower complex plane, we have

iB = − i

γ2 − 1

∫
q

dq0

2π
δ̂(q · u2)

(`− q)2q2(q0 − iε) = − i

(γ2 − 1)
i

2

∫
q

δ̂(q · u2)δ̂(q0)
(`− q)2q2

= 1
8πγβ(γ2 − 1)

1
(−`2⊥)

(1
ε̄

+ 2 log(−`2⊥)
)
,

(4.28)

where once again `µ⊥ = `µ− uµ2 (`·u2)
u2

2
, and we evaluated the integral in D = 4−2ε dimensions,

∫
q

δ̂(q · u2)δ̂(q0)
(`− q)2q2 = 1

4πγβ
1

(−`2⊥)

(1
ε̄

+ 2 log(−`2⊥)
)
, (4.29)

10Notice that in D > 4 the A integral will give a non-zero contribution to the scattering angle, as it
occurs also in the computation using the scattering amplitude [86].
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with some irrelevant factors absorbed into the definition of ε̄. As before, the δ functions
in (4.25) will ultimately set `2⊥ → `2, such that the contribution from the 1/ε̄ pole turns
into a contact interaction that can be readily discarded in the classical limit. Therefore,
only the logarithmic term survives as a long-range force. We expect this to be a generic
feature also at higher PM orders, with intermediate spurious divergences producing analytic
contributions, prior to the Fourier transform, which do not survive in the classical limit.
(This is reminiscent of the small transfer momentum expansion of the scattering amplitude
in [3, 63, 64].) Finally, using∫

`

`2

−`2
log(−`2)e−i`·bδ(` · u1)δ(` · u2) = + 1

πγβ

1
|b⊥|2

, (4.30)

we obtain

∆(2)
u pµ1 = 2m1m

2
2
(
2γ2 − 1

)2
(γ2 − 1)2

G2

|b2|
(γuµ2 − u

µ
1 ) , (4.31)

We now come to adding the contributions together and include also the mirror images.
For the triangle term in (4.20) this is straightforward. First of all, by construction the terms
from the total effective Lagrangian, prior to taking the partial derivative from (3.22), must
be symmetric under 1 ↔ 2. The same property translates to (4.20) before applying ∂bµ ,
the action of which ultimately changes the relative sign with respect to the mirror image.
The one associated with the term in (4.31) is a bit more subtle. It is easy to see that the
main actor in (4.31) is the contribution from the ηµα term in (4.6). Notice that keeping q
unchanged while relabeling 1 ↔ 2 results in an overall sign difference with respect to the
same term in (4.8), which is then compensated by the relative sign in (4.13). Following
similar steps we thus arrive at the same junctions, except that the deflected trajectory for
particle 2 leads to poles at q0 = −iε for the A and B integrals in (4.26) and (4.27). Hence,
while the A integral vanishes, when it comes to the B integral the pole is now shifted to the
lower complex half-plane, resulting in an overall minus sign. Therefore, the mirror image
also leads to an anti-symmetrization in 1↔ 2 in (4.31). At the end of the day, combining
the terms and adding the 1PM result, we obtain

∆ pµ1 = −Gm1m2 b
µ

|b2|

(
2
(
2γ2 − 1

)√
γ2 − 1

+ 3π
4

(
5γ2 − 1

)√
γ2 − 1

GM

|b2|1/2

)

+ 2m1m2
(
2γ2 − 1

)2
(γ2 − 1)2

G2

|b2|
((γm2 +m1)uµ2 − (γm1 +m2)uµ1 ) ,

(4.32)

for the total impulse to 2PM order in covariant form. As non-trivial check, notice that the
expression in (4.32) is consistent with the on-shell condition,

(p1 + ∆p1)2 = p2
1 , 2p1 ·∆p1 = −∆p2

1 . (4.33)

Moreover, because of the different PM orders involved, it is also straightforward to use the
above equation, together with ∆p1 = −∆p2, to obtain the second term in (4.32) directly
from the impulse in the bµ direction. Furthermore, while the term involving the velocities
was the most intricate of the two, because b · ua = 0, it does not enter in the derivation of
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the 2PM angle. As a consequence, only the correction due to (4.23) matters to this order,
yielding

χ
(2)
b

Γ = 3π
8

(5γ2 − 1)
γ2 − 1 , (4.34)

after using (3.28). The total impulse in (4.32) and resulting scattering angle are in agree-
ment with the result obtained in [129].

4.3 Adiabatic invariants

Once the scattering angle is known, and translated from impact parameter to angular
momentum space,

χ
(1)
j = (2γ2 − 1)√

γ2 − 1
, χ

(2)
j = 3π

8
(5γ2 − 1)

Γ , (4.35)

we can then use (2.1) to reconstruct the B2B radial action via analytic continuation to
E < 0,

i2PM
r (j, E) = p̂∞√

−p̂2
∞
χ

(1)
j (E)− j

1− 2
π

χ
(2)
j (E)
j2

 = −j+ (2γ2 − 1)√
1− γ2 + 3

4j
(5γ2 − 1)

Γ . (4.36)

From here, following the B2B dictionary reviewed in section 2, we arrive at the same 2PM
values for the gravitational observables for bound orbits derived in [1, 2] from the classical
limit of the scattering amplitude/angle, namely

∆Φ2PM
2π = 3

4j2
(5γ2 − 1)

Γ , (4.37)

for the periastron-advance, and

T 2PM
p

2πGM = γ(3− 2γ2)Γ
(1− γ2)3/2 + 3

4j
15γ2ν − 10γ(2ν − 1) + ν

Γ2 , (4.38)

for the periastron-to-periastron period. From here we obtain for the azimuthal frequency,

GMΩ2PM
φ =

(
T 2PM
p

2πGM

)−1 (
1 + ∆Φ2PM

2π

)

= − (1− γ2)3/2Γ(4j2Γ + 15γ2 − 3)
j
(
4jγ(2γ2 − 3)Γ3 − 3(1− γ2)3/2(ν + 5γ(2 + (3γ − 4)ν))

) . (4.39)

It is also useful to notice that keeping only up to the 1PM coefficient of the scattering angle
in the radial action leads to no periastron-advance, as expected, which implies [2]

x1PM ≡ (GMΩ1PM
φ )2/3 =

(
T 1PM
p

2πGM

)−2/3

= (1− γ2)
((3γ − 2γ3)Γ)2/3 . (4.40)
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We can also compute the redshift function, (re)obtaining at 2PM [2]

〈z1〉 − 〈z(0)
1 〉 = Γ

M(1 + ∆)ν
(
4jγ(3− 2γ2)Γ3 + 3(1− γ2)3/2(ν + 5γ(2 + (3γ − 4)ν))

)
×
[
8j2(1− γ2)3/2Γν + 4jγ(2γ2 − 3)Γ(1 + ∆ + 2(γ − 1)ν) (4.41)

+ 3(1− γ2)3/2(5γ2(∆− 1)ν − 10γ(1 + ∆− 2ν)− (3 + ∆)ν)
]
,

with
〈z(0)

1 〉 = 1 + (1 + Γ)(2ν + ∆− 1)
2ν , (4.42)

and ∆ ≡
√

1− 4ν. The expression for z2 results after replacing ∆→ −∆.
These PM corrections include a series of PN terms (inside the γ’s) at each order in G.

As we discussed in [1, 2], the 2PM result for the periastron advance (and period) are one
loop exact, in the sense that all the PN contributions at 1/j2 (and 1/j) are encapsulated
in the above expressions, to all orders in velocities. Moreover, as we emphasized in [1],
the PN expansion of x1PM for circular orbits recovers the correct coefficient for all of the
O(Enνn) contributions at nPN order, for any value of n.

4.3.1 Circular orbits

To obtain the orbital frequency for circular orbits, we can proceed as explained in [1]
by identifying the orbital elements, and then imposing the vanishing of the eccentricity.
Or, equivalently, the simplicity of the radial action to 2PM allows us to also impose ir = 0,
and then solve for j as a function of γ (see e.g. footnote 19 in [1]). Notice, however, in that
case it is useful to use the 2PM-resummed version of the radial action [2],

i2PM-res
r =

(
B√
−A
−
√
−C

)
, (4.43)

with

−A = −p̂2
∞ = 1− γ2

Γ2 ,

B = p̂2
∞χ

(1)
b = 2γ2 − 1

Γ ,

−C = j2 − 4
π
p̂2
∞χ

(2)
b = j2

(
1− 3(5γ2 − 1)

2Γj2

)
,

(4.44)

yielding

i2PM-res
r = (2γ2 − 1)√

1− γ2 − j
√

1− 3(5γ2 − 1)
2Γj2 . (4.45)

Imposing the condition ir = 0 for a circular orbit, we then recover the value

j2
2PM = (2γ2 − 1)2

(1− γ2) + 3(5γ2 − 1)
2Γ , (4.46)
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for the angular momentum to 2PM [1]. We can then enter this expression in (4.39), resulting
in the orbital frequency as a function of γ, and ultimately the binding energy from (2.5).
A simpler route is to use the first law of black hole dynamics [122], and compute instead [1]

GMΩ2PM
circ =

(
Γdj2PM(γ)

dγ

)−1
= 2j2PM

Γ

(
dj2

2PM(γ)
dγ

)−1

(4.47)

= 2
Γ

√
(2γ2−1)2

(1−γ2) + 3(5γ2−1)
2Γ

(
3(−5γ2ν+10γΓ2 +ν)

2Γ3 − 2γ(4γ4−8γ2 +3)
(γ2−1)2

)−1

.

Notice that, keeping only the 1PM term, the variation in (2.8) that gives us the orbital
period, ∂γir, is the same we obtain after solving for j on orbits with ir = 0.

4.4 Hamiltonian

Due to the B2B map, we did not require a Hamiltonian in order to obtain all the gravita-
tional observables in the conservative sector. However, as described in section 2, we can
easily reconstruct it to derive also the equations of motion for bound orbits. Using the
values for χ(1)

b (E) and χ(2)
b (E) in (4.12) and (4.34), and the expression in (2.21), we find

c1(p2)
1! = ν2M2

Γ2ξ
(1− 2γ2) ,

c2(p2)
2! = ν2M3

Γ2ξ

[
3
4(1− 5γ2) + ν2(2γ2 − 1)2(3ξ − 1)

2Γ3ξ2

+(2γ2 − 1)(4γν + (1− 8γ + 6γ2)ν2)
Γ3ξ

]
,

(4.48)

for the PM coefficients of the Hamiltonian, which we wrote using the convention of [3, 63,
64]. It is straightforward to show that the Hamiltonian is equivalent to the one in [3, 63, 64],
e.g. eq. (10.10) of [64], written using a different combination for the two terms involving
products of 1PM coefficients. Notice, nonetheless, that only the first terms in c1 and c2
actually matter, as illustrated by the radial action. The other two in c2 are simply there to
cancel the unwanted contributions which appear when deriving the f1, f2 in (2.12) as a func-
tion of the energy. This feature is even more striking at higher PM orders, with the χ(2n)

j ’s
(and associated fn’s) carrying all the relevant information to compute dynamical invariants.

5 Leading tidal effects

In this section we provide an example of how finite-size effects are incorporated in our EFT
approach for the PM regime. For concreteness, we study the correction due to the electric-
and magnetic-type tidal operators in the effective action, see (3.1) and (3.2),∑

a

c
(a)
E2

∫
dτaEµν(xa(τa))Eµν(xa(τa)) + c

(a)
B2

∫
dτaBµν(xa(τa))Bµν(xa(τa)) , (5.1)

with Eµν = Rµανβv
αvβ and Bµν = R?µανβv

αvβ . In the weak field limit we have

Rabcd = 1
2 (∂b∂chad + ∂a∂dhbc − ∂a∂chbd − ∂b∂dhac) , (5.2)
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Figure 3. Feynman diagram with an insertion of a tidal operator represented by the square.

and therefore the contribution to the effective action is straightforward, and consists of
computing the diagram shown in figure 3, including the tidal operators and two mass
insertions. Since we are interested in the leading PM correction to the impulse, only the
undeflected worldlines in (3.24) are needed. The result for the effective action reads

∫
dτLE2

LO =
c

(1)
E2m

2
2

64M4
Pl

∫
p,`

δ̂(p ·u2)
p2(p−`)2

(
(1−2γ2)2(p ·`)2 +2(1−4γ2)(p ·`)(p ·u1)2 +2(p ·u1)4

)
×δ̂(` ·u1)δ̂(` ·u2)ei`·b+1↔ 2 , (5.3)

for the electric-type, whereas the magnetic term we find

∫
dτLB2

LO =
c

(1)
B2m

2
2

32M4
Pl

∫
p,`

δ̂(p ·u2)
p2(p−`)2

(
2γ2(γ2−1)(p ·`)2 +(1−4γ2)(p ·`)(p ·u1)2 +(p ·u1)4

)
×δ̂(` ·u1)δ̂(` ·u2)ei`·b+1↔ 2 . (5.4)

As before, we compute the integral in the rest frame of particle 2, which reduces the
integration in p to D = 3, and then use well-known results for the moments of the integral
in (4.22), see e.g. [109]. After performing the final (Fourier transform) integral in `, we find∫

dτLE2
LO = 9π

64
G2

|b2|5/2

(
35γ4 − 30γ2 + 11√

γ2 − 1

)(
c

(1)
E2m

2
2 + c

(2)
E2m

2
1

)
, (5.5)

∫
dτLB2

LO = 9π
64

G2

|b2|5/2

(
35γ4 − 30γ2 − 5√

γ2 − 1

)(
c

(1)
B2m

2
2 + c

(2)
B2m

2
1

)
, (5.6)

for the electric- and magnetic-type contributions to the effective action, respectively.
The impulse follows by taking a derivative with respect to the impact parameter. Using
eq. (3.28) we thus get, in terms of the reduced angular momentum (j = GMµJ),

χE
2

LO(j) = 45πλE2

64
(γ2 − 1)2 (35γ4 − 30γ2 + 11

)
Γ5

1
j6 , (5.7)

χB
2

LO(j) = 45πλB2

64
(γ2 − 1)2 (35γ4 − 30γ2 − 5

)
Γ5

1
j6 , (5.8)

from tidal effects at leading PM order, with

λE2 ≡
1

G4M5

(
c

(1)
E2
m2
m1

+ c
(2)
E2
m1
m2

)
, (5.9)

and similarly for λB2 . The expressions in (5.7) and (5.8) agree with the result in [101],
see e.g. eq. (6.2). Notice, as emphasised in [101], in the ‘high energy limit’ γ � 1
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the scattering angle receives the same relative contribution from both the electric- and
magnetic-type tidal effects. From (2.7) and (5.7) we obtain

∆ΦTidal
LO

2π = 45(1− γ2)2

64Γ5j6

(
λE2

(
35γ4 − 30γ2 + 11

)
+ λB2

(
35γ4 − 30γ2 − 5

) )
, (5.10)

for the periastron advance after analytic continuation in the binding energy to γ < 1.
This agrees with the Newtonian limit [101] (β =

√
1− γ2/γ � 1),

∆ΦTidal
LO

2π = 45β4

4j6

(
λE2 +O(β2)

)
. (5.11)

Once again, we can also reconstruct a Hamiltonian that includes tidal effect at leading
PM order, but to all orders in the velocity. The derivation is straightforward using the
recursion relation from [1], see section 2.3, and we find

c6
6! = −P6(E)

2Eξ + · · · = −
16M12ν6χ

(6)
j (E)

15πEp4
∞ν

6ξ
+ · · · = −

16M7Γ3ν2χ
(6)
j (E)

15πξ(1− γ2)2 + · · ·

= −3M7ν2

8Γ2ξ

(
λE2

(
35γ4 − 30γ2 + 11

)
+ λB2

(
35γ4 − 30γ2 − 5

))
+ · · · ,

(5.12)

such that

HTidal
LO (p2)
µ

= − 15ν
8Γ2ξ

(
λE2

(
7γ4 − 6γ2 + 11

5

)
+ λB2

(
7γ4 − 6γ2 − 1

))(GM
r

)6
, (5.13)

at leading order in the PM expansion. Higher order corrections can be easily computed
by including non-linear gravitational couplings as well as iterations from the modified
worldlines.

6 Discussion & outlook

Building upon NRGR [8] and the B2B map [1, 2], we developed a systematic framework
to compute dynamical invariants for binary system in a PM expansion, to all orders in
velocity. The two main ingredients in our formalism are: i) An EFT approach to compute
the gravitational scattering angle in perturbation theory, and ii) The B2B radial action,
constructed via analytic continuation from the scattering angle. We illustrated the pro-
cedure with two paradigmatic examples. First, we used the EFT formalism to compute
the impulse and scattering angle in the conservative sector to O(G2), and subsequently
(re-)derived all the associated gravitational observables for bound orbits. Secondly, we
computed the leading PM contribution due to tidal effects to the scattering angle and pe-
riastron advance. The results for the conservative dynamics to 2PM agree with the ones
obtained through the B2B dictionary using the impetus formula [1, 2], applied to the clas-
sical limit of the one loop amplitude in [3]. For the sake of completeness, we reconstructed
the Hamiltonian for the two-body dynamics from scattering data to NLO, which agrees
with the one obtained in [3] via a matching calculation. We also computed the leading
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PM contribution to the Hamiltonian due to tidal effects, which is equivalent to the EOB
approach discussed in [101].

One of the advantages of our formalism, in comparison with computing the (more in-
tricate and gauge-dependent) gravitational potential in a PM expansion, is the dependence
of the B2B radial action on the gauge-invariant, and much simpler, scattering angle in-
stead. This feature notoriously simplifies the type of diagrams and integrals involved in our
case; all the while incorporating the relativistic information that is lacking in a PN scheme
(when both are kept up to the same order in G). Furthermore, although still relying on
Feynman tools, the EFT approach circumvents somewhat the intermediate steps required,
thus far, in the program to obtain classical gravitational physics out of quantum ampli-
tudes [3, 62–91]. In particular, even though the impetus formula [1] removes the need of
the additional matching calculation performed in [3, 62–64], or the intricate Born iterations
of [68, 77], the mass-dependent loop integrals, and spurious IR super-classical divergences,
still remain in the amplitude program. On the other hand, only massless integrals (without
super-classical singularities) appear in the classical EFT framework. These differences are
also manifest when computing gauge-invariant quantities, such as the scattering angle, as
we demonstrated in the explicit example in this paper at 2PM order. Only two diagrams
are needed for the NLO impulse, shown in figures 2ab, and just the (Fourier transform of
the) following integral, ∫

q

1
q2(q − `)2 = 1

8|`| , (6.1)

was required when restricted to the scattering angle. Needless to say, the (super-classical)
IR divergent box diagram never shows up, as expected. This is due to the lack of
particle/anti-particle propagators yielding poles on opposite sides of the real axis. More-
over, the analogous to the crossed-box term, which appears here as a correction from the
deflected trajectory in the tree level action, readily vanishes in the potential region. In
practice, this means that the exact prescription to perform the energy integral(s) that we
used in (4.27) was not needed to compute observables for bound orbits to 2PM. (That is the
case because the extra term depending on the velocities in (4.32) is orthogonal to the im-
pact parameter.) In contrast, even after removing/ignoring the box diagram by whichever
method, the result using the scattering amplitude still requires the mass-dependent one
loop triangle integral, with a contour prescription [3, 63, 64, 76] together with the large-
mass and small momentum-transfer limits. At the end of the day, as illustrated in [3, 65],
the relevance of the integral in (6.1) emerges in the classical limit. (This is expected, since
the massive field then collapses to a non-propagating source as in HQET [128].) Yet, in our
approach, the resulting scattering angle and dynamical invariants to 2PM were obtained
directly from (6.1). Moreover, in a classical EFT framework the large-mass limit is im-
plicitly taken, and the small momentum-transfer expansion is equivalent to retaining only
non-analytic terms prior to the Fourier transform, which yield long-range interactions. No-
tice this implied the removal of intermediate divergences that produce only contact terms,
as in (4.27). The final answer for the scattering angle, however, emerged as a combination
between a 1PM correction to the trajectory, due to the tree level effective action in fig-
ure 2a, plus the leading one loop contribution from figure 2b evaluated on the undeflected
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solution. This combination, also noted in [65], illustrates how the amplitude and classical
derivations differ when it comes to the organization of all the relevant contributions. The
reordering of terms suggests a dual understanding for the origin of the different pieces
entering in the classical limit, which may ultimately help us also to incorporate powerful
on-shell methods in our approach.

The EFT procedure in the PM expansion described here can be straightforwardly
automatized to all orders. Since (for non-spinning bodies) worldline non-linearities are only
produced by finite-size effects, the number of Feynman diagrams is relatively small when
restricted to the monopole term, which notoriously simplifies the derivations. Moreover, for
a large fraction of the diagrams evaluated on a straight worldline, which produce factors
of δ(k · ua) after integration in the proper time, the calculation in the potential region
resembles the same type of three-dimensional massless integrals that we find in NRGR
with static propagators. The associated master integrals are known to four loops [29], akin
of 5PM order. However, for another set of diagrams the associated δ functions yield new
integrals which do not appear in the PN expansion. By replacing these δ’s by factors of
(q · u − iε)−1, these turn out to be equivalent to the ones resulting from the iterations
of the deflected worldlines in the computation of the impulse. As we emphasized, the
type of integrals from this procedure resemble instead those of HQET, as it is the case
for the NLO impulse in (4.27). Therefore, we expect the various powerful results in the
literature, e.g. [109], can be then translated to our framework when pursuing higher PM
orders. (Similar integrals appear in the soft expansion discussed in [90].) As we mentioned,
notice that the term proportional to (4.27) does not enter in the scattering angle at 2PM.
Furthermore, we can always resort to the on-shell condition in (4.33). This is remarkable
feature will further simplify the computations at higher orders, by allowing us to restrict
to derivation of the impulse to the bµ-direction.

The derivation of the 3PM impulse using the EFT formalism is reported in [108].
Notice, however, that the natural power counting in 1/j of the B2B radial action in (2.1)
requires the 4PM value as well. As we studied in [1, 2], one can include all the contributions
to χ(4)

j from lower order terms in (2.16), i.e. using the impetus formula together with the
results from [63, 64] to read off the value of the fn≤3’s, thus yielding a 2PN truncation to
the radial action. Yet, as we emphasized [1, 2], from the PM standpoint this truncation
does not account for all the velocity contributions at O(1/j3), contrary to what happens at
O(1/j) with f2 alone.11 Therefore, the scattering angle at 4PM remains a key ingredient
to complete the next order in the B2B map that is yet to be calculated. The missing
piece may be obtained from the classical limit of the three loop amplitude and/or the 4PM
impulse; using the tools from [3, 63–65, 76, 77], the EFT framework developed here, or

11Regarding this point, in a recent paper [98] the authors claim that the radial action in [1, 2] truncated to
2PM, re-derived here in (4.36), is a “PN-incomplete 2PM truncation.” It is straightforward to show that the
expression given in [98] to 2PM, I loc

r = −j + IS0 + IS1 (γ)/(hj) with h = Γ and IS0 , IS1 in their eqs. (9.3) and
(9.5), coincides with (4.36). The derivation in [98] thus reproduces the 2PM result in [1, 2]. We think the
authors of [98] perhaps meant the truncation with only the fn≤3 contributions to χ(4)

j . As we emphasized
in [1, 2], indeed this misses the (so far unknown) f4 term. However, it is a consistent truncation as we showed
explicitly by deriving all the observables to 3PM/2PN in [2], including PN-exact terms controlled by (4.36).
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some hybrid approach between the two (plausibly in combination with the classical double
copy [111–121], on-shell methods [103, 104], soft limits [90], and simplifications of the
Einstein-Hilbert action [110]). In either case, the B2B dictionary [1, 2] provides a direct
(analytic) connection between scattering data and bound states, neatly demonstrating the
need to push the computations to (even) higher orders, to fully incorporate the power of
the PM expansion in the dynamics of binary systems.
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A Action & impulse vs. amplitude & eikonal

In our derivation of the total impulse in (4.32) we found two contributions. One of them
along the bµ direction, reproduced here for the reader’s convenience (with mirror image),

3(1− 5γ2)
256M4

Pl

∂

∂bµ

[
m1m

2
2

∫
k,`

δ̂(k · u2)δ̂(` · u2)δ̂(` · u1)
k2(`− k)2 ei`·b + 1↔ 2

]
, (A.1)

and another one proportional to the velocities. By inspection, the reader will notice the
resemblance of the above equation with the eikonal approximation for the scattering am-
plitude, see e.g. [89]. Indeed, in the center-of-mass we have

∆(2) p⊥ = 1
256M4

Pl

3(5γ2 − 1)√
γ2 − 1

∂

∂b⊥

[
m1m

2
2

∫
k,`⊥

1
k2(`⊥ − k)2 e

−i`⊥·b⊥ + 1↔ 2
]

= ∂

∂b⊥
θ

(2)
eik ,

(A.2)
with

θ
(2)
eik ≡

µM2

256M4
Pl

3(5γ2 − 1)√
γ2 − 1

∫
k,`⊥

1
k2(`⊥ − k)2 e

−i`⊥·b⊥ = 3π(5γ2 − 1)
4
√
γ2 − 1

µ(GM)2

|b⊥|
. (A.3)

It is then straightforward to extract the (IR-finite part of the) classical limit of the ampli-
tude. Using the relationship,

θ
(2)
eik(b⊥) = 1

4µM
√
γ2 − 1

∫
q⊥

M(2)
cl (q⊥)e−iq⊥·b⊥ , (A.4)
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we find

M(2)
cl (q) = (5γ2 − 1)6π2G2µ2M3

|q|
, (A.5)

which agrees with the classical limit in [3, 63, 64] (see e.g. first line of eq. 5.43 in [89]). In
general, for contributions in the conservative sector, the impulse in the bµ direction in the
center-of-mass frame can always be written as

∆pµ⊥ =
∫
`
M(`)δ(` · u1)δ(` · u2)(i`µ)ei`·b . (A.6)

The numerator, M(`), results from ‘loop-type’ two-point functions with external (transfer)
momentum `, as in (A.2). This expression suggest the definition

Seik(|b⊥|, γ,m1,m2) ≡
∫

`⊥

M(`⊥)e−i`⊥·b⊥ , (A.7)

such that
∆p⊥ = ∂

∂b⊥
Seik(|b⊥|, γ,m1,m2) . (A.8)

The reader will immediately inquire whether the Seik, which coincides with the eikonal
phase to 2PM, S(2)

eik = θ
(2)
eik , is related to the classical action evaluated on the trajectories.

This would not be entirely surprising, after all we can think of the scattering matrix in
the classical limit as the exponential of the action on the classical solution, which would
be captured by the eikonal approximation. As we know already, the Fourier transform
of the amplitude encodes the value of the square of the momenta, through the impetus
formula [1]. At the same time, from the radial action we have

χ+ π

2 = − 1
p∞

∂

∂b

∫ ∞
rmin

pr(r, b, E)dr , (A.9)

which combined with (A.8) and (3.28) implies

Seik = 2
(
b
π

2 +
∫ ∞
rmin

pr(r, b, E)dr
)
, (A.10)

to one loop order. It is straightforward to show that Seik then coincides with (twice)
the phase shift in the WKB/classical approximation, which in turn gives us the eikonal
phase as we just discovered to 2PM order. At higher orders, however, the relationship
is a bit more subtle, among other things because of the mismatch between the impact
parameter entering in (A.8) and the one in the stationary phase approximation in the
eikonal approach, e.g. [90].

We can, on the other hand, attempt to connect directly the impulse rather than the
scattering angle. For instance, we know that on solution to the equations of motion, the
derivative of the action w.r.t. the end point gives us the momenta at that point in time

pa(τa) = ∂S[xa]
∂xa(τa)

. (A.11)
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Since at τa → −∞ we have pa · b⊥ = 0, the impulse along bµ is determined by the limit

∆pa⊥ = lim
τa→∞

∂S[xa]
∂xa⊥(τa)

. (A.12)

Of course, on the undeflected trajectory, xa = ba + uaτa, we find

∆(1)pa⊥ = ∂S1[xa]
∂ba

. (A.13)

This tells us that, indeed, the function in (A.8) is the action at 1PM evaluated on the
undeflected trajectory: S

(1)
eik = S1. On the other hand, the solution is shifted at 2PM,

ba → ba+δ(1)xa, with δ(1)xa ·ba 6= 0, which implies that the derivative in (A.8) and (A.12)
are not the same, so that S 6= Seik beyond leading order. This can be seen explicitly
in e.g. (4.13), where one notices that we can pull out the derivative w.r.t. the impact
parameter, but only at the cost of adding a subtraction involving ∂

∂bδ
(1)xa (and also for the

velocities). Hence, while from Lorentz invariance and the condition b ·ua = 0 we can always
construct the function Seik in the conservative sector, the connection to the action evaluated
on the solution is less direct. We will explore the properties of Seik in more detail elsewhere.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] G. Kälin and R.A. Porto, From boundary data to bound states, JHEP 01 (2020) 072
[arXiv:1910.03008] [INSPIRE].

[2] G. Kälin and R.A. Porto, From boundary data to bound states. Part II. Scattering angle to
dynamical invariants (with twist), JHEP 02 (2020) 120 [arXiv:1911.09130] [INSPIRE].

[3] C. Cheung, I.Z. Rothstein and M.P. Solon, From scattering amplitudes to classical
potentials in the post-Minkowskian expansion, Phys. Rev. Lett. 121 (2018) 251101
[arXiv:1808.02489] [INSPIRE].

[4] LIGO Scientific and Virgo collaborations, Open data from the first and second
observing runs of advanced LIGO and advanced Virgo, arXiv:1912.11716 [INSPIRE].

[5] A. Buonanno and B.S. Sathyaprakash, Sources of gravitational waves: theory and
observations, in General relativity and gravitation: a centennial perspective, Cambridge
University Press, Cambridge, U.K. (2014), pg. 287 [arXiv:1410.7832] [INSPIRE].

[6] R.A. Porto, The tune of love and the nature(ness) of spacetime, Fortsch. Phys. 64 (2016)
723 [arXiv:1606.08895] [INSPIRE].

[7] R.A. Porto, The music of the spheres: the dawn of gravitational wave science,
arXiv:1703.06440 [INSPIRE].

[8] W.D. Goldberger and I.Z. Rothstein, An effective field theory of gravity for extended
objects, Phys. Rev. D 73 (2006) 104029 [hep-th/0409156] [INSPIRE].

[9] W.D. Goldberger, Les Houches lectures on effective field theories and gravitational
radiation, in Les Houches summer school — Session 86. Particle physics and cosmology:
the fabric of spacetime, (2007) [hep-ph/0701129] [INSPIRE].

– 32 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP01(2020)072
https://arxiv.org/abs/1910.03008
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.03008
https://doi.org/10.1007/JHEP02(2020)120
https://arxiv.org/abs/1911.09130
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.09130
https://doi.org/10.1103/PhysRevLett.121.251101
https://arxiv.org/abs/1808.02489
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.02489
https://arxiv.org/abs/1912.11716
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.11716
https://doi.org/10.1017/CBO9781139583961.009
https://doi.org/10.1017/CBO9781139583961.009
https://arxiv.org/abs/1410.7832
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.7832
https://doi.org/10.1002/prop.201600064
https://doi.org/10.1002/prop.201600064
https://arxiv.org/abs/1606.08895
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.08895
https://arxiv.org/abs/1703.06440
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.06440
https://doi.org/10.1103/PhysRevD.73.104029
https://arxiv.org/abs/hep-th/0409156
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0409156
https://arxiv.org/abs/hep-ph/0701129
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0701129


J
H
E
P
1
1
(
2
0
2
0
)
1
0
6

[10] R.A. Porto and R. Sturani, Scalar gravity: post-Newtonian corrections via an effective field
theory approach, in Les Houches summer school — session 86. Particle physics and
cosmology: the fabric of spacetime, (2007) [gr-qc/0701105] [INSPIRE].

[11] S. Foffa and R. Sturani, Effective field theory methods to model compact binaries, Class.
Quant. Grav. 31 (2014) 043001 [arXiv:1309.3474] [INSPIRE].

[12] I.Z. Rothstein, Progress in effective field theory approach to the binary inspiral problem,
Gen. Rel. Grav. 46 (2014) 1726 [INSPIRE].

[13] V. Cardoso and R.A. Porto, Analytic approximations, perturbation theory, effective field
theory methods and their applications, Gen. Rel. Grav. 46 (2014) 1682 [arXiv:1401.2193]
[INSPIRE].

[14] R.A. Porto, The effective field theorist’s approach to gravitational dynamics, Phys. Rept.
633 (2016) 1 [arXiv:1601.04914] [INSPIRE].

[15] M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold,
Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].

[16] R.A. Porto, Lamb shift and the gravitational binding energy for binary black holes, Phys.
Rev. D 96 (2017) 024063 [arXiv:1703.06434] [INSPIRE].

[17] R.A. Porto and I.Z. Rothstein, Apparent ambiguities in the post-Newtonian expansion for
binary systems, Phys. Rev. D 96 (2017) 024062 [arXiv:1703.06433] [INSPIRE].

[18] L. Blanchet, Gravitational radiation from post-Newtonian sources and inspiralling compact
binaries, Living Rev. Rel. 17 (2014) 2 [arXiv:1310.1528] [INSPIRE].

[19] G. Schäfer and P. Jaranowski, Hamiltonian formulation of general relativity and
post-Newtonian dynamics of compact binaries, Living Rev. Rel. 21 (2018) 7
[arXiv:1805.07240] [INSPIRE].

[20] T. Damour, P. Jaranowski and G. Schäfer, Nonlocal-in-time action for the fourth
post-Newtonian conservative dynamics of two-body systems, Phys. Rev. D 89 (2014) 064058
[arXiv:1401.4548] [INSPIRE].

[21] P. Jaranowski and G. Schäfer, Derivation of local-in-time fourth post-Newtonian ADM
Hamiltonian for spinless compact binaries, Phys. Rev. D 92 (2015) 124043
[arXiv:1508.01016] [INSPIRE].

[22] L. Bernard, L. Blanchet, A. Bohé, G. Faye and S. Marsat, Fokker action of nonspinning
compact binaries at the fourth post-Newtonian approximation, Phys. Rev. D 93 (2016)
084037 [arXiv:1512.02876] [INSPIRE].

[23] L. Bernard, L. Blanchet, A. Bohé, G. Faye and S. Marsat, Dimensional regularization of the
IR divergences in the Fokker action of point-particle binaries at the fourth post-Newtonian
order, Phys. Rev. D 96 (2017) 104043 [arXiv:1706.08480] [INSPIRE].

[24] T. Marchand, L. Bernard, L. Blanchet and G. Faye, Ambiguity-free completion of the
equations of motion of compact binary systems at the fourth post-Newtonian order, Phys.
Rev. D 97 (2018) 044023 [arXiv:1707.09289] [INSPIRE].

[25] J.B. Gilmore and A. Ross, Effective field theory calculation of second post-Newtonian binary
dynamics, Phys. Rev. D 78 (2008) 124021 [arXiv:0810.1328] [INSPIRE].

[26] S. Foffa and R. Sturani, Effective field theory calculation of conservative binary dynamics at
third post-Newtonian order, Phys. Rev. D 84 (2011) 044031 [arXiv:1104.1122] [INSPIRE].

– 33 –

https://arxiv.org/abs/gr-qc/0701105
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0701105
https://doi.org/10.1088/0264-9381/31/4/043001
https://doi.org/10.1088/0264-9381/31/4/043001
https://arxiv.org/abs/1309.3474
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1309.3474
https://doi.org/10.1007/s10714-014-1726-y
https://inspirehep.net/search?p=find+J%20%22Gen.Rel.Grav.%2C46%2C1726%22
https://doi.org/10.1007/s10714-014-1682-6
https://arxiv.org/abs/1401.2193
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.2193
https://doi.org/10.1016/j.physrep.2016.04.003
https://doi.org/10.1016/j.physrep.2016.04.003
https://arxiv.org/abs/1601.04914
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.04914
https://doi.org/10.1016/S0550-3213(98)00138-2
https://arxiv.org/abs/hep-ph/9711391
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9711391
https://doi.org/10.1103/PhysRevD.96.024063
https://doi.org/10.1103/PhysRevD.96.024063
https://arxiv.org/abs/1703.06434
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.06434
https://doi.org/10.1103/PhysRevD.96.024062
https://arxiv.org/abs/1703.06433
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.06433
https://doi.org/10.12942/lrr-2014-2
https://arxiv.org/abs/1310.1528
https://inspirehep.net/search?p=find+J%20%22Living%20Rev.Relativ.%2C17%2C2%22
https://doi.org/10.1007/s41114-018-0016-5
https://arxiv.org/abs/1805.07240
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.07240
https://doi.org/10.1103/PhysRevD.89.064058
https://arxiv.org/abs/1401.4548
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.4548
https://doi.org/10.1103/PhysRevD.92.124043
https://arxiv.org/abs/1508.01016
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1508.01016
https://doi.org/10.1103/PhysRevD.93.084037
https://doi.org/10.1103/PhysRevD.93.084037
https://arxiv.org/abs/1512.02876
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.02876
https://doi.org/10.1103/PhysRevD.96.104043
https://arxiv.org/abs/1706.08480
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.08480
https://doi.org/10.1103/PhysRevD.97.044023
https://doi.org/10.1103/PhysRevD.97.044023
https://arxiv.org/abs/1707.09289
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.09289
https://doi.org/10.1103/PhysRevD.78.124021
https://arxiv.org/abs/0810.1328
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0810.1328
https://doi.org/10.1103/PhysRevD.84.044031
https://arxiv.org/abs/1104.1122
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1104.1122


J
H
E
P
1
1
(
2
0
2
0
)
1
0
6

[27] S. Foffa and R. Sturani, Dynamics of the gravitational two-body problem at fourth
post-Newtonian order and at quadratic order in the Newton constant, Phys. Rev. D 87
(2013) 064011 [arXiv:1206.7087] [INSPIRE].

[28] C.R. Galley, A.K. Leibovich, R.A. Porto and A. Ross, Tail effect in gravitational radiation
reaction: time nonlocality and renormalization group evolution, Phys. Rev. D 93 (2016)
124010 [arXiv:1511.07379] [INSPIRE].

[29] S. Foffa, P. Mastrolia, R. Sturani and C. Sturm, Effective field theory approach to the
gravitational two-body dynamics, at fourth post-Newtonian order and quintic in the Newton
constant, Phys. Rev. D 95 (2017) 104009 [arXiv:1612.00482] [INSPIRE].

[30] S. Foffa and R. Sturani, Conservative dynamics of binary systems to fourth post-Newtonian
order in the EFT approach I: regularized Lagrangian, Phys. Rev. D 100 (2019) 024047
[arXiv:1903.05113] [INSPIRE].

[31] S. Foffa, R.A. Porto, I. Rothstein and R. Sturani, Conservative dynamics of binary systems
to fourth post-Newtonian order in the EFT approach II: renormalized Lagrangian, Phys.
Rev. D 100 (2019) 024048 [arXiv:1903.05118] [INSPIRE].

[32] W.D. Goldberger and I.Z. Rothstein, Dissipative effects in the worldline approach to black
hole dynamics, Phys. Rev. D 73 (2006) 104030 [hep-th/0511133] [INSPIRE].

[33] W.D. Goldberger and A. Ross, Gravitational radiative corrections from effective field
theory, Phys. Rev. D 81 (2010) 124015 [arXiv:0912.4254] [INSPIRE].

[34] A. Ross, Multipole expansion at the level of the action, Phys. Rev. D 85 (2012) 125033
[arXiv:1202.4750] [INSPIRE].

[35] C.R. Galley and A.K. Leibovich, Radiation reaction at 3.5 post-Newtonian order in effective
field theory, Phys. Rev. D 86 (2012) 044029 [arXiv:1205.3842] [INSPIRE].

[36] A.K. Leibovich, N.T. Maia, I.Z. Rothstein and Z. Yang, Second post-Newtonian order
radiative dynamics of inspiralling compact binaries in the effective field theory approach,
Phys. Rev. D 101 (2020) 084058 [arXiv:1912.12546] [INSPIRE].

[37] R.A. Porto, Post-Newtonian corrections to the motion of spinning bodies in NRGR, Phys.
Rev. D 73 (2006) 104031 [gr-qc/0511061] [INSPIRE].

[38] R.A. Porto and I.Z. Rothstein, The hyperfine Einstein-Infeld-Hoffmann potential, Phys.
Rev. Lett. 97 (2006) 021101 [gr-qc/0604099] [INSPIRE].

[39] R.A. Porto, New results at 3PN via an effective field theory of gravity, in 11th Marcel
Grossmann Meeting on General Relativity, World Scientific, Singapore (2007), pg. 2493
[gr-qc/0701106] [INSPIRE].

[40] R.A. Porto and I.Z. Rothstein, Comment on ‘on the next-to-leading order gravitational
spin(1)-spin(2) dynamics’ by J. Steinhoff et al., arXiv:0712.2032 [INSPIRE].

[41] R.A. Porto, Absorption effects due to spin in the worldline approach to black hole dynamics,
Phys. Rev. D 77 (2008) 064026 [arXiv:0710.5150] [INSPIRE].

[42] R.A. Porto and I.Z. Rothstein, spin(1)spin(2) effects in the motion of inspiralling compact
binaries at third order in the post-Newtonian expansion, Phys. Rev. D 78 (2008) 044012
[Erratum ibid. 81 (2010) 029904] [arXiv:0802.0720] [INSPIRE].

– 34 –

https://doi.org/10.1103/PhysRevD.87.064011
https://doi.org/10.1103/PhysRevD.87.064011
https://arxiv.org/abs/1206.7087
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1206.7087
https://doi.org/10.1103/PhysRevD.93.124010
https://doi.org/10.1103/PhysRevD.93.124010
https://arxiv.org/abs/1511.07379
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.07379
https://doi.org/10.1103/PhysRevD.95.104009
https://arxiv.org/abs/1612.00482
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.00482
https://doi.org/10.1103/PhysRevD.100.024047
https://arxiv.org/abs/1903.05113
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.05113
https://doi.org/10.1103/PhysRevD.100.024048
https://doi.org/10.1103/PhysRevD.100.024048
https://arxiv.org/abs/1903.05118
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.05118
https://doi.org/10.1103/PhysRevD.73.104030
https://arxiv.org/abs/hep-th/0511133
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0511133
https://doi.org/10.1103/PhysRevD.81.124015
https://arxiv.org/abs/0912.4254
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0912.4254
https://doi.org/10.1103/PhysRevD.85.125033
https://arxiv.org/abs/1202.4750
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1202.4750
https://doi.org/10.1103/PhysRevD.86.044029
https://arxiv.org/abs/1205.3842
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1205.3842
https://doi.org/10.1103/PhysRevD.101.084058
https://arxiv.org/abs/1912.12546
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.12546
https://doi.org/10.1103/PhysRevD.73.104031
https://doi.org/10.1103/PhysRevD.73.104031
https://arxiv.org/abs/gr-qc/0511061
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0511061
https://doi.org/10.1103/PhysRevLett.97.021101
https://doi.org/10.1103/PhysRevLett.97.021101
https://arxiv.org/abs/gr-qc/0604099
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0604099
https://doi.org/10.1142/9789812834300_0442
https://arxiv.org/abs/gr-qc/0701106
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0701106
https://arxiv.org/abs/0712.2032
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0712.2032
https://doi.org/10.1103/PhysRevD.77.064026
https://arxiv.org/abs/0710.5150
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0710.5150
https://doi.org/10.1103/PhysRevD.78.044012
https://arxiv.org/abs/0802.0720
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0802.0720


J
H
E
P
1
1
(
2
0
2
0
)
1
0
6

[43] R.A. Porto and I.Z. Rothstein, Next to leading order spin(1)spin(1) effects in the motion of
inspiralling compact binaries, Phys. Rev. D 78 (2008) 044013 [Erratum ibid. 81 (2010)
029905] [arXiv:0804.0260] [INSPIRE].

[44] R.A. Porto, Next to leading order spin-orbit effects in the motion of inspiralling compact
binaries, Class. Quant. Grav. 27 (2010) 205001 [arXiv:1005.5730] [INSPIRE].

[45] R.A. Porto, A. Ross and I.Z. Rothstein, Spin induced multipole moments for the
gravitational wave flux from binary inspirals to third post-Newtonian order, JCAP 03
(2011) 009 [arXiv:1007.1312] [INSPIRE].

[46] R.A. Porto, A. Ross and I.Z. Rothstein, Spin induced multipole moments for the
gravitational wave amplitude from binary inspirals to 2.5 post-Newtonian order, JCAP 09
(2012) 028 [arXiv:1203.2962] [INSPIRE].

[47] N.T. Maia, C.R. Galley, A.K. Leibovich and R.A. Porto, Radiation reaction for spinning
bodies in effective field theory I: spin-orbit effects, Phys. Rev. D 96 (2017) 084064
[arXiv:1705.07934] [INSPIRE].

[48] N.T. Maia, C.R. Galley, A.K. Leibovich and R.A. Porto, Radiation reaction for spinning
bodies in effective field theory II: spin-spin effects, Phys. Rev. D 96 (2017) 084065
[arXiv:1705.07938] [INSPIRE].

[49] M. Levi and J. Steinhoff, Complete conservative dynamics for inspiralling compact binaries
with spins at fourth post-Newtonian order, arXiv:1607.04252 [INSPIRE].

[50] M. Levi, A.J. Mcleod and M. Von Hippel, N3LO gravitational spin-orbit coupling at order
G4, arXiv:2003.02827 [INSPIRE].

[51] M. Levi, A.J. Mcleod and M. Von Hippel, NNNLO gravitational quadratic-in-spin
interactions at the quartic order in G, arXiv:2003.07890 [INSPIRE].

[52] S. Foffa, P. Mastrolia, R. Sturani, C. Sturm and W.J. Torres Bobadilla, Static two-body
potential at fifth post-Newtonian order, Phys. Rev. Lett. 122 (2019) 241605
[arXiv:1902.10571] [INSPIRE].

[53] J. Blümlein, A. Maier and P. Marquard, Five-loop static contribution to the gravitational
interaction potential of two point masses, Phys. Lett. B 800 (2020) 135100
[arXiv:1902.11180] [INSPIRE].

[54] S. Foffa and R. Sturani, Hereditary terms at next-to-leading order in two-body gravitational
dynamics, Phys. Rev. D 101 (2020) 064033 [arXiv:1907.02869] [INSPIRE].

[55] L. Blanchet, S. Foffa, F. Larrouturou and R. Sturani, Logarithmic tail contributions to the
energy function of circular compact binaries, Phys. Rev. D 101 (2020) 084045
[arXiv:1912.12359] [INSPIRE].

[56] S. Foffa, Gravitating binaries at 5PN in the post-Minkowskian approximation, Phys. Rev. D
89 (2014) 024019 [arXiv:1309.3956] [INSPIRE].

[57] Y. Iwasaki, Quantum theory of gravitation vs. classical theory — fourth-order potential,
Prog. Theor. Phys. 46 (1971) 1587 [INSPIRE].

[58] J.J.M. Carrasco, Gauge and gravity amplitude relations, in Theoretical Advanced Study
Institute in Elementary Particle Physics. Journeys through the precision frontier:
amplitudes for colliders, World Scientific, Singapore (2015), pg. 477 [arXiv:1506.00974]
[INSPIRE].

– 35 –

https://doi.org/10.1103/PhysRevD.78.044013
https://arxiv.org/abs/0804.0260
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0804.0260
https://doi.org/10.1088/0264-9381/27/20/205001
https://arxiv.org/abs/1005.5730
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1005.5730
https://doi.org/10.1088/1475-7516/2011/03/009
https://doi.org/10.1088/1475-7516/2011/03/009
https://arxiv.org/abs/1007.1312
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1007.1312
https://doi.org/10.1088/1475-7516/2012/09/028
https://doi.org/10.1088/1475-7516/2012/09/028
https://arxiv.org/abs/1203.2962
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1203.2962
https://doi.org/10.1103/PhysRevD.96.084064
https://arxiv.org/abs/1705.07934
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.07934
https://doi.org/10.1103/PhysRevD.96.084065
https://arxiv.org/abs/1705.07938
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.07938
https://arxiv.org/abs/1607.04252
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.04252
https://arxiv.org/abs/2003.02827
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.02827
https://arxiv.org/abs/2003.07890
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.07890
https://doi.org/10.1103/PhysRevLett.122.241605
https://arxiv.org/abs/1902.10571
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.10571
https://doi.org/10.1016/j.physletb.2019.135100
https://arxiv.org/abs/1902.11180
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.11180
https://doi.org/10.1103/PhysRevD.101.064033
https://arxiv.org/abs/1907.02869
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.02869
https://doi.org/10.1103/PhysRevD.101.084045
https://arxiv.org/abs/1912.12359
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.12359
https://doi.org/10.1103/PhysRevD.89.024019
https://doi.org/10.1103/PhysRevD.89.024019
https://arxiv.org/abs/1309.3956
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1309.3956
https://doi.org/10.1143/PTP.46.1587
https://inspirehep.net/search?p=find+J%20%22Prog.Theor.Phys.%2C46%2C1587%22
https://doi.org/10.1142/9789814678766_0011
https://arxiv.org/abs/1506.00974
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.00974


J
H
E
P
1
1
(
2
0
2
0
)
1
0
6

[59] H. Elvang and Y.-T. Huang, Scattering amplitudes in gauge theory and gravity, Cambridge
University Press, Cambridge, U.K. (2015).

[60] C. Cheung, TASI lectures on scattering amplitudes, in Proceedings, Theoretical Advanced
Study Institute in Elementary Particle Physics: anticipating the next discoveries in particle
physics (TASI 2016), Boulder, CO, U.S.A., 6 June–1 July 2016, R. Essig and I. Low eds.,
World Scientific, Singapore (2018), pg. 571 [arXiv:1708.03872] [INSPIRE].

[61] Z. Bern, J.J. Carrasco, M. Chiodaroli, H. Johansson and R. Roiban, The duality between
color and kinematics and its applications, arXiv:1909.01358 [INSPIRE].

[62] D. Neill and I.Z. Rothstein, Classical space-times from the S matrix, Nucl. Phys. B 877
(2013) 177 [arXiv:1304.7263] [INSPIRE].

[63] Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M.P. Solon and M. Zeng, Scattering amplitudes
and the conservative Hamiltonian for binary systems at third post-Minkowskian order, Phys.
Rev. Lett. 122 (2019) 201603 [arXiv:1901.04424] [INSPIRE].

[64] Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M.P. Solon and M. Zeng, Black hole binary
dynamics from the double copy and effective theory, JHEP 10 (2019) 206
[arXiv:1908.01493] [INSPIRE].

[65] D.A. Kosower, B. Maybee and D. O’Connell, Amplitudes, observables, and classical
scattering, JHEP 02 (2019) 137 [arXiv:1811.10950] [INSPIRE].

[66] B. Maybee, D. O’Connell and J. Vines, Observables and amplitudes for spinning particles
and black holes, JHEP 12 (2019) 156 [arXiv:1906.09260] [INSPIRE].

[67] C.R. Galley and R.A. Porto, Gravitational self-force in the ultra-relativistic limit: the
“large-N” expansion, JHEP 11 (2013) 096 [arXiv:1302.4486] [INSPIRE].

[68] B.R. Holstein and A. Ross, Spin effects in long range gravitational scattering,
arXiv:0802.0716 [INSPIRE].

[69] N.E.J. Bjerrum-Bohr, J.F. Donoghue and P. Vanhove, On-shell techniques and universal
results in quantum gravity, JHEP 02 (2014) 111 [arXiv:1309.0804] [INSPIRE].

[70] V. Vaidya, Gravitational spin Hamiltonians from the S matrix, Phys. Rev. D 91 (2015)
024017 [arXiv:1410.5348] [INSPIRE].

[71] A. Guevara, Holomorphic classical limit for spin effects in gravitational and electromagnetic
scattering, JHEP 04 (2019) 033 [arXiv:1706.02314] [INSPIRE].

[72] M.-Z. Chung, Y.-T. Huang, J.-W. Kim and S. Lee, The simplest massive S-matrix: from
minimal coupling to black holes, JHEP 04 (2019) 156 [arXiv:1812.08752] [INSPIRE].

[73] A. Guevara, A. Ochirov and J. Vines, Scattering of spinning black holes from exponentiated
soft factors, JHEP 09 (2019) 056 [arXiv:1812.06895] [INSPIRE].

[74] S. Caron-Huot and Z. Zahraee, Integrability of black hole orbits in maximal supergravity,
JHEP 07 (2019) 179 [arXiv:1810.04694] [INSPIRE].

[75] A. Guevara, A. Ochirov and J. Vines, Black-hole scattering with general spin directions
from minimal-coupling amplitudes, Phys. Rev. D 100 (2019) 104024 [arXiv:1906.10071]
[INSPIRE].

[76] N.E.J. Bjerrum-Bohr, P.H. Damgaard, G. Festuccia, L. Planté and P. Vanhove, General
relativity from scattering amplitudes, Phys. Rev. Lett. 121 (2018) 171601
[arXiv:1806.04920] [INSPIRE].

– 36 –

https://doi.org/10.1142/9789813233348_0008
https://arxiv.org/abs/1708.03872
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1708.03872
https://arxiv.org/abs/1909.01358
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.01358
https://doi.org/10.1016/j.nuclphysb.2013.09.007
https://doi.org/10.1016/j.nuclphysb.2013.09.007
https://arxiv.org/abs/1304.7263
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1304.7263
https://doi.org/10.1103/PhysRevLett.122.201603
https://doi.org/10.1103/PhysRevLett.122.201603
https://arxiv.org/abs/1901.04424
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.04424
https://doi.org/10.1007/JHEP10(2019)206
https://arxiv.org/abs/1908.01493
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.01493
https://doi.org/10.1007/JHEP02(2019)137
https://arxiv.org/abs/1811.10950
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1902%2C137%22%20and%20year%3D2019
https://doi.org/10.1007/JHEP12(2019)156
https://arxiv.org/abs/1906.09260
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.09260
https://doi.org/10.1007/JHEP11(2013)096
https://arxiv.org/abs/1302.4486
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1302.4486
https://arxiv.org/abs/0802.0716
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0802.0716
https://doi.org/10.1007/JHEP02(2014)111
https://arxiv.org/abs/1309.0804
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1309.0804
https://doi.org/10.1103/PhysRevD.91.024017
https://doi.org/10.1103/PhysRevD.91.024017
https://arxiv.org/abs/1410.5348
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.5348
https://doi.org/10.1007/JHEP04(2019)033
https://arxiv.org/abs/1706.02314
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.02314
https://doi.org/10.1007/JHEP04(2019)156
https://arxiv.org/abs/1812.08752
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.08752
https://doi.org/10.1007/JHEP09(2019)056
https://arxiv.org/abs/1812.06895
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.06895
https://doi.org/10.1007/JHEP07(2019)179
https://arxiv.org/abs/1810.04694
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.04694
https://doi.org/10.1103/PhysRevD.100.104024
https://arxiv.org/abs/1906.10071
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.10071
https://doi.org/10.1103/PhysRevLett.121.171601
https://arxiv.org/abs/1806.04920
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.04920


J
H
E
P
1
1
(
2
0
2
0
)
1
0
6

[77] A. Cristofoli, N.E.J. Bjerrum-Bohr, P.H. Damgaard and P. Vanhove, Post-Minkowskian
Hamiltonians in general relativity, Phys. Rev. D 100 (2019) 084040 [arXiv:1906.01579]
[INSPIRE].

[78] N. Arkani-Hamed, Y.-T. Huang and D. O’Connell, Kerr black holes as elementary particles,
JHEP 01 (2020) 046 [arXiv:1906.10100] [INSPIRE].

[79] N.E.J. Bjerrum-Bohr, A. Cristofoli and P.H. Damgaard, Post-Minkowskian scattering angle
in Einstein gravity, JHEP 08 (2020) 038 [arXiv:1910.09366] [INSPIRE].

[80] M.-Z. Chung, Y.-T. Huang and J.-W. Kim, Classical potential for general spinning bodies,
JHEP 09 (2020) 074 [arXiv:1908.08463] [INSPIRE].

[81] Y.F. Bautista and A. Guevara, From scattering amplitudes to classical physics: universality,
double copy and soft theorems, arXiv:1903.12419 [INSPIRE].

[82] Y.F. Bautista and A. Guevara, On the double copy for spinning matter, arXiv:1908.11349
[INSPIRE].

[83] A. Koemans Collado, P. Di Vecchia and R. Russo, Revisiting the second post-Minkowskian
eikonal and the dynamics of binary black holes, Phys. Rev. D 100 (2019) 066028
[arXiv:1904.02667] [INSPIRE].

[84] H. Johansson and A. Ochirov, Double copy for massive quantum particles with spin, JHEP
09 (2019) 040 [arXiv:1906.12292] [INSPIRE].

[85] R. Aoude, K. Haddad and A. Helset, On-shell heavy particle effective theories, JHEP 05
(2020) 051 [arXiv:2001.09164] [INSPIRE].

[86] A. Cristofoli, P.H. Damgaard, P. Di Vecchia and C. Heissenberg, Second-order
post-Minkowskian scattering in arbitrary dimensions, JHEP 07 (2020) 122
[arXiv:2003.10274] [INSPIRE].

[87] M.-Z. Chung, Y.-T. Huang, J.-W. Kim and S. Lee, Complete Hamiltonian for spinning
binary systems at first post-Minkowskian order, JHEP 05 (2020) 105 [arXiv:2003.06600]
[INSPIRE].

[88] Z. Bern, H. Ita, J. Parra-Martinez and M.S. Ruf, Universality in the classical limit of
massless gravitational scattering, Phys. Rev. Lett. 125 (2020) 031601 [arXiv:2002.02459]
[INSPIRE].

[89] Z. Bern, A. Luna, R. Roiban, C.-H. Shen and M. Zeng, Spinning black hole binary
dynamics, scattering amplitudes and effective field theory, arXiv:2005.03071 [INSPIRE].

[90] J. Parra-Martinez, M.S. Ruf and M. Zeng, Extremal black hole scattering at O(G3):
graviton dominance, eikonal exponentiation, and differential equations, JHEP 11 (2020) 023
[arXiv:2005.04236] [INSPIRE].

[91] A. Antonelli, A. Buonanno, J. Steinhoff, M. van de Meent and J. Vines, Energetics of
two-body Hamiltonians in post-Minkowskian gravity, Phys. Rev. D 99 (2019) 104004
[arXiv:1901.07102] [INSPIRE].

[92] T. Damour and A. Nagar, The effective-one-body approach to the general relativistic two
body problem, Lect. Notes Phys. 905 (2016) 273 [INSPIRE].

[93] T. Damour, Gravitational scattering, post-Minkowskian approximation and effective
one-body theory, Phys. Rev. D 94 (2016) 104015 [arXiv:1609.00354] [INSPIRE].

– 37 –

https://doi.org/10.1103/PhysRevD.100.084040
https://arxiv.org/abs/1906.01579
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.01579
https://doi.org/10.1007/JHEP01(2020)046
https://arxiv.org/abs/1906.10100
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.10100
https://doi.org/10.1007/JHEP08(2020)038
https://arxiv.org/abs/1910.09366
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.09366
https://doi.org/10.1007/JHEP09(2020)074
https://arxiv.org/abs/1908.08463
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.08463
https://arxiv.org/abs/1903.12419
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.12419
https://arxiv.org/abs/1908.11349
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.11349
https://doi.org/10.1103/PhysRevD.100.066028
https://arxiv.org/abs/1904.02667
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.02667
https://doi.org/10.1007/JHEP09(2019)040
https://doi.org/10.1007/JHEP09(2019)040
https://arxiv.org/abs/1906.12292
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.12292
https://doi.org/10.1007/JHEP05(2020)051
https://doi.org/10.1007/JHEP05(2020)051
https://arxiv.org/abs/2001.09164
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.09164
https://doi.org/10.1007/JHEP07(2020)122
https://arxiv.org/abs/2003.10274
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.10274
https://doi.org/10.1007/JHEP05(2020)105
https://arxiv.org/abs/2003.06600
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.06600
https://doi.org/10.1103/PhysRevLett.125.031601
https://arxiv.org/abs/2002.02459
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.02459
https://arxiv.org/abs/2005.03071
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.03071
https://doi.org/10.1007/JHEP11(2020)023
https://arxiv.org/abs/2005.04236
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.04236
https://doi.org/10.1103/PhysRevD.99.104004
https://arxiv.org/abs/1901.07102
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.07102
https://doi.org/10.1007/978-3-319-19416-5_7
https://inspirehep.net/search?p=find+J%20%22Lect.Notes%20Phys.%2C905%2C273%22
https://doi.org/10.1103/PhysRevD.94.104015
https://arxiv.org/abs/1609.00354
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.00354


J
H
E
P
1
1
(
2
0
2
0
)
1
0
6

[94] T. Damour, High-energy gravitational scattering and the general relativistic two-body
problem, Phys. Rev. D 97 (2018) 044038 [arXiv:1710.10599] [INSPIRE].

[95] D. Bini, T. Damour and A. Geralico, Novel approach to binary dynamics: application to the
fifth post-Newtonian level, Phys. Rev. Lett. 123 (2019) 231104 [arXiv:1909.02375]
[INSPIRE].

[96] T. Damour, Classical and quantum scattering in post-Minkowskian gravity, Phys. Rev. D
102 (2020) 024060 [arXiv:1912.02139] [INSPIRE].

[97] D. Bini, T. Damour and A. Geralico, Binary dynamics at the fifth and fifth-and-a-half
post-Newtonian orders, Phys. Rev. D 102 (2020) 024062 [arXiv:2003.11891] [INSPIRE].

[98] D. Bini, T. Damour and A. Geralico, Sixth post-Newtonian local-in-time dynamics of binary
systems, Phys. Rev. D 102 (2020) 024061 [arXiv:2004.05407] [INSPIRE].

[99] J. Vines, J. Steinhoff and A. Buonanno, Spinning-black-hole scattering and the
test-black-hole limit at second post-Minkowskian order, Phys. Rev. D 99 (2019) 064054
[arXiv:1812.00956] [INSPIRE].

[100] N. Siemonsen and J. Vines, Test black holes, scattering amplitudes and perturbations of
Kerr spacetime, Phys. Rev. D 101 (2020) 064066 [arXiv:1909.07361] [INSPIRE].

[101] D. Bini, T. Damour and A. Geralico, Scattering of tidally interacting bodies in
post-Minkowskian gravity, Phys. Rev. D 101 (2020) 044039 [arXiv:2001.00352] [INSPIRE].

[102] T. Damour, P. Jaranowski and G. Schäfer, Dynamical invariants for general relativistic
two-body systems at the third post-Newtonian approximation, Phys. Rev. D 62 (2000)
044024 [gr-qc/9912092] [INSPIRE].

[103] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory
amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226]
[INSPIRE].

[104] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes
into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].

[105] Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes,
Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

[106] Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy
of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].

[107] C. Cheung and M.P. Solon, Classical gravitational scattering at O(G3) from Feynman
diagrams, JHEP 06 (2020) 144 [arXiv:2003.08351] [INSPIRE].

[108] G. Kälin, Z. Liu and R.A. Porto, Conservative dynamics of binary systems to third
post-Minkowskian order from the effective field theory approach, arXiv:2007.04977
[INSPIRE].

[109] V.A. Smirnov, Analytic tools for Feynman integrals, Springer Tracts Mod. Phys. 250 (2012)
[INSPIRE].

[110] C. Cheung and G.N. Remmen, Hidden simplicity of the gravity action, JHEP 09 (2017) 002
[arXiv:1705.00626] [INSPIRE].

[111] R. Monteiro, D. O’Connell and C.D. White, Black holes and the double copy, JHEP 12
(2014) 056 [arXiv:1410.0239] [INSPIRE].

– 38 –

https://doi.org/10.1103/PhysRevD.97.044038
https://arxiv.org/abs/1710.10599
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.10599
https://doi.org/10.1103/PhysRevLett.123.231104
https://arxiv.org/abs/1909.02375
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.02375
https://doi.org/10.1103/PhysRevD.102.024060
https://doi.org/10.1103/PhysRevD.102.024060
https://arxiv.org/abs/1912.02139
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.02139
https://doi.org/10.1103/PhysRevD.102.024062
https://arxiv.org/abs/2003.11891
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.11891
https://doi.org/10.1103/PhysRevD.102.024061
https://arxiv.org/abs/2004.05407
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.05407
https://doi.org/10.1103/PhysRevD.99.064054
https://arxiv.org/abs/1812.00956
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.00956
https://doi.org/10.1103/PhysRevD.101.064066
https://arxiv.org/abs/1909.07361
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.07361
https://doi.org/10.1103/PhysRevD.101.044039
https://arxiv.org/abs/2001.00352
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.00352
https://doi.org/10.1103/PhysRevD.62.044024
https://doi.org/10.1103/PhysRevD.62.044024
https://arxiv.org/abs/gr-qc/9912092
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD62%2C044024%22
https://doi.org/10.1016/0550-3213(94)90179-1
https://arxiv.org/abs/hep-ph/9403226
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB425%2C217%22
https://doi.org/10.1016/0550-3213(94)00488-Z
https://arxiv.org/abs/hep-ph/9409265
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB435%2C59%22
https://doi.org/10.1103/PhysRevD.78.085011
https://arxiv.org/abs/0805.3993
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD78%2C085011%22
https://doi.org/10.1103/PhysRevLett.105.061602
https://arxiv.org/abs/1004.0476
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C105%2C061602%22
https://doi.org/10.1007/JHEP06(2020)144
https://arxiv.org/abs/2003.08351
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.08351
https://arxiv.org/abs/2007.04977
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.04977
https://doi.org/10.1007/978-3-642-34886-0
https://inspirehep.net/search?p=find+doi%20%2210.1007%2F978-3-642-34886-0%22
https://doi.org/10.1007/JHEP09(2017)002
https://arxiv.org/abs/1705.00626
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.00626
https://doi.org/10.1007/JHEP12(2014)056
https://doi.org/10.1007/JHEP12(2014)056
https://arxiv.org/abs/1410.0239
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.0239


J
H
E
P
1
1
(
2
0
2
0
)
1
0
6

[112] A. Luna et al., Perturbative spacetimes from Yang-Mills theory, JHEP 04 (2017) 069
[arXiv:1611.07508] [INSPIRE].

[113] W.D. Goldberger and A.K. Ridgway, Radiation and the classical double copy for color
charges, Phys. Rev. D 95 (2017) 125010 [arXiv:1611.03493] [INSPIRE].

[114] W.D. Goldberger and A.K. Ridgway, Bound states and the classical double copy, Phys. Rev.
D 97 (2018) 085019 [arXiv:1711.09493] [INSPIRE].

[115] J. Li and S.G. Prabhu, Gravitational radiation from the classical spinning double copy,
Phys. Rev. D 97 (2018) 105019 [arXiv:1803.02405] [INSPIRE].

[116] C.-H. Shen, Gravitational radiation from color-kinematics duality, JHEP 11 (2018) 162
[arXiv:1806.07388] [INSPIRE].

[117] J. Plefka, J. Steinhoff and W. Wormsbecher, Effective action of dilaton gravity as the
classical double copy of Yang-Mills theory, Phys. Rev. D 99 (2019) 024021
[arXiv:1807.09859] [INSPIRE].

[118] J. Plefka, C. Shi, J. Steinhoff and T. Wang, Breakdown of the classical double copy for the
effective action of dilaton-gravity at NNLO, Phys. Rev. D 100 (2019) 086006
[arXiv:1906.05875] [INSPIRE].

[119] K. Kim, K. Lee, R. Monteiro, I. Nicholson and D. Peinador Veiga, The classical double copy
of a point charge, JHEP 02 (2020) 046 [arXiv:1912.02177] [INSPIRE].

[120] W.D. Goldberger and J. Li, Strings, extended objects, and the classical double copy, JHEP
02 (2020) 092 [arXiv:1912.01650] [INSPIRE].

[121] L. Alfonsi, C.D. White and S. Wikeley, Topology and Wilson lines: global aspects of the
double copy, JHEP 07 (2020) 091 [arXiv:2004.07181] [INSPIRE].

[122] A. Le Tiec, L. Blanchet and B.F. Whiting, The first law of binary black hole mechanics in
general relativity and post-Newtonian theory, Phys. Rev. D 85 (2012) 064039
[arXiv:1111.5378] [INSPIRE].

[123] O.B. Firsov, Determination of the forces acting between atoms using the differential
effective cross-section for elastic scattering, Zh. Eksp. Teor. Fiz. 24 (1953) 279.

[124] A. Kuntz, Half-solution to the two-body problem in general relativity, Phys. Rev. D 102
(2020) 064019 [arXiv:2003.03366] [INSPIRE].

[125] S. Rafie-Zinedine, Simplifying quantum gravity calculations, master’s thesis, Lund U., Lund,
Sweden (2018) [arXiv:1808.06086] [INSPIRE].

[126] R. Akhoury, R. Saotome and G. Sterman, High energy scattering in perturbative quantum
gravity at next to leading power, arXiv:1308.5204 [INSPIRE].

[127] R. Saotome and R. Akhoury, Relationship between gravity and gauge scattering in the high
energy limit, JHEP 01 (2013) 123 [arXiv:1210.8111] [INSPIRE].

[128] B. Grinstein, Lectures on heavy quark effective theory, in Workshop on high-energy
phenomenology (CINVESTAV), (1991), pg. 0161 [INSPIRE].

[129] K. Westpfahl, High-speed scattering of charged and uncharged particles in general relativity,
Fortsch. Phys. 33 (1985) 417 [INSPIRE].

– 39 –

https://doi.org/10.1007/JHEP04(2017)069
https://arxiv.org/abs/1611.07508
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.07508
https://doi.org/10.1103/PhysRevD.95.125010
https://arxiv.org/abs/1611.03493
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.03493
https://doi.org/10.1103/PhysRevD.97.085019
https://doi.org/10.1103/PhysRevD.97.085019
https://arxiv.org/abs/1711.09493
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.09493
https://doi.org/10.1103/PhysRevD.97.105019
https://arxiv.org/abs/1803.02405
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.02405
https://doi.org/10.1007/JHEP11(2018)162
https://arxiv.org/abs/1806.07388
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.07388
https://doi.org/10.1103/PhysRevD.99.024021
https://arxiv.org/abs/1807.09859
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.09859
https://doi.org/10.1103/PhysRevD.100.086006
https://arxiv.org/abs/1906.05875
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.05875
https://doi.org/10.1007/JHEP02(2020)046
https://arxiv.org/abs/1912.02177
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.02177
https://doi.org/10.1007/JHEP02(2020)092
https://doi.org/10.1007/JHEP02(2020)092
https://arxiv.org/abs/1912.01650
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.01650
https://doi.org/10.1007/JHEP07(2020)091
https://arxiv.org/abs/2004.07181
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.07181
https://doi.org/10.1103/PhysRevD.85.064039
https://arxiv.org/abs/1111.5378
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.5378
https://doi.org/10.1103/PhysRevD.102.064019
https://doi.org/10.1103/PhysRevD.102.064019
https://arxiv.org/abs/2003.03366
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.03366
http://lup.lub.lu.se/student-papers/record/8956258
https://arxiv.org/abs/1808.06086
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.06086
https://arxiv.org/abs/1308.5204
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1308.5204
https://doi.org/10.1007/JHEP01(2013)123
https://arxiv.org/abs/1210.8111
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1210.8111
https://inspirehep.net/search?p=find+322366
https://doi.org/10.1002/prop.2190330802
https://inspirehep.net/search?p=find+J%20%22Fortsch.Phys.%2C33%2C417%22

	Introduction
	Boundary-to-bound
	From angles to action ...
	... to binary observables
	Hamiltonian

	Post-Minkowskian effective theory
	Point-particle sources
	Conservative effective action
	Potential region
	Impulse & deflection angle

	Conservative binary dynamics to 2PM
	Effective Lagrangian
	Tree
	One loop
	Trajectories

	Scattering angle
	Leading order impulse
	Next-to-leading order impulse

	Adiabatic invariants
	Circular orbits

	Hamiltonian

	Leading tidal effects
	Discussion & outlook
	Action & impulse vs. amplitude & eikonal

