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1 Introduction

In the Allegory of the Cave[l], Plato describes an unfortunate group of people whose only information
about the world around them is obtained by viewing the shadows that objects cast on the wall of a
cave. Because they have remained in this state for so long, they regard the shadows as reality itself
and are not fully aware of the nature of the objects that cast the shadows. Although it would be
straight forward for them to measure the length of the shadow of, for example, a stick, it would be
difficult for them to reach a consensus on the true length of the stick if its orientation with respect
to the wall of the cave were unknown.

This allegory closely approximates the current status of experiments that have attempted to
obtain information about the polarization of J/¢ and T mesons produced at hadron colliders. So
far, experiments have only reported measurements[2, 3] of the angular distribution of the putu~
in the final state, projected onto the momentum vector of the heavy meson. These measurements
are not in direct agreement, but are also not contradictory given that different experiments apply
widely different acceptance corrections to different samples of events collected over different ranges
of kinematic variables.

This note describes a fitting procedure that determines the three parameters that completely
characterize the production polarization of vector mesons. If we act fast, it could be applied to
provide the first experimental measurements of these parameters in a form that could be directly
compared with other experiments, in particular those at the LHC.

2 Angular Distributions

In a specified reference frame, the angular distribution of the positive muon in the decay ¥ — pu* pu—
can be written

dr
9 x 14 \gcos?6+ Ay sin® 0 cos2p + Mg, sin 260 cos p +

)\i sin? 0 sin 2¢ + /\éw sin 260 sin ¢ (1)

however the coefficients )\f,; and )‘é_«o are not directly observable due to symmetries of the angular
distribution arising from parity invariance of the initial state. Thus, there are three observable
parameters that can be determined from the angular information in vector meson decays. Intuitively,



this number of degrees of freedom can deduced by considering two angles to describe the orientation
of the spin vector of a vector meson, and one parameter to describe the relative fraction of the spin
density that is in the longitudinal or transverse state.

The difficulty that arises in fitting this distribution to experimental data, is that it is significantly
modified by detector acceptance. This was addressed in previous analysis by forcing A, = Ag, = 0,
and calculating the observed distributions of cos?f that arise from the underlying distributions
dl'/dS) o< 1 & cos? 0 being subjected to a Monte Carlo simulation of the trigger and detector accep-
tance. The observed distribution of cos?# is then fit to a linear combination of these pure longitu-
dinal and transverse templates, from which the coefficient Ay can be obtained. Unfortunately, this
procedure does not generalize easily to higher dimensions.

The approach used in this analysis is to simulate the response of the detector acceptance to
an un-polarized angular distribution, and re-weight the two-dimensional distribution of (6, ¢) so
as to calculate the expected angular distribution, given polarization parameters Ag, A, and Ag,.
For realistic pp and 7 requirements on the muons in the final state, the acceptance is a strong
function of their invariant mass which must be taken into account when subtracting the effect of
the combinatorial background from the heavy quarkonium signal polarization. The polarization
of the background is assumed to vary continuously with invariant mass but is constrained by the
sidebands.

The fit is performed by maximizing a log-likelihood function constructed as follows. For a
particular range of kinematic variables, like pr and 7, the sample is divided into N bins based on
invariant mass. The bins are chosen so that the signal of interest is contained in one bin while others
are dominated by background. Within each bin of invariant mass, a two-dimensional histogram is
filled with the angular variables (6, ¢) such that in bin ¢ of this distribution, we observe z; events.
Furthermore, vector meson decays are generated uniformly in pr and rapidity over this range and
the kinematics of the decay to the p™p~ final state is calculated assuming an isotropic decay
distribution. The final state is then required to satisfy the same restrictions on py and 7 imposed
by the trigger used to collect the signal candidates and the un-polarized acceptance distributions in
(0, ) are filled. In practice, we keep track of the number, M;, of simulated signal events generated
in (6, ¢) bin ¢ and the number of events, m;, in that bin that satisfied the acceptance criteria. An
un-polarized background sample is also generated with a uniform distribution of invariant mass and
after imposing acceptance restrictions, the distribution of (6, ¢) is recorded. For these distributions
the number of events generated that populate bin ¢ is denoted NV; and the number accepted is n;.

2.1 Background only fit

The derivations of the expressions presented in this section are described in more detail elsewhere[4],
but the main results are motivated as follows. The likelihood function for a given mass bin, j,
containing only background is constructed thus:

Ll()gc)g = Hp(wi(xbkg)Z/Ai;xi;Miami) (2)

where p(Z,z, M, m) is the probability density function for observing = events to satisfy the accep-
tance criteria out of Z events present given that the Monte Carlo calculation found m out of M
events generated to satisfy the acceptance criteria. This probability density is constructed in such a
way that the estimator of the acceptance A = m/M is integrated over, assuming a binomial prob-
ability distribution for m with unknown parameter A. It is reasonable to approximate the Poisson
probability distribution for x; with a binomial distribution, in which case we can write

(M 4+ D)z +m)! Z! (Z+M—z—m)! 3)
m! (M —m)! | (Z—2x)! (Z+M+1)!

Except for the approximation of the Poisson distribution by the binomial distribution, this expression

is exact and applies even when bins in either distribution contain small numbers of entries. This

p(Z7 x? M7 m) =




is important because the boundaries of the accepted region in (6, ) consist of many such bins and
biases in the fit will arise if only bins with statistics greater than, say, 5 or 10, are considered in the
fit. In Equation 2, the yield of background events, Z, is weighted by the factors wl(X) calculated
using Equation 1, with parameters X = (Mg, Ay, Agy) to scale the number of events present in the
entire angular range by the number expected to fall within bin i. For an isotropic decay, wl(X) =1
and the expected number of events in bin ¢ would just be Z/A;, where 1/A; is the fraction the
un-polarized distribution expected to be contained in bin ¢. In the case of Ny and N, bins of equal
size, there are a total of NgN, bins and so A; = NgN,,.

2.2 Signal+background fit

When a region j of invariant mass contains both signal and background events, the likelihood
function is constructed as follows:

,C(j)

sig+bkg = H q(wl()‘Slg)Y/A“ wi()‘bkg)Z/Aiv Ly Mia my, Niv ni) (4)
i

where ¢(Y, Z,x, M, m, N,n) is the probability of observing x events to satisfy the acceptance re-

quirements when Y signal and Z background events were present and where m out of M signal

events and and n out of N background events in the Monte Carlo samples were accepted. In the

case when = < Z, this probability distribution is

gV, Z,x,...) = > p(Y,y, M,m)q(Z,x —y,N,n) (5)

y=0
(M+D(N+DZV(n+2)(N+Z —n—x)!
(N —n){(M —m)nlal(Z + N + 2)(Z — z)!
(M+Y—m)!F —z,-Ym+1,N+Z—-n—-x+1 1
(M+Y +1)! —-n—xzm-M-Y,Z—-xz+1

and when z > Z this is

x

Z p(Yavavm)p(va_yaN7n) (7)

y=x—272

M+DIN+D)m+z—2D)NZ+n)] YIV + M+ Z —m—z)!

{ Aml (M —m) (& — Z)(Z + N + 1)! }(M+Y+1)!(Y+Z—x)! X
F(—Z,x—Y—Z,m—!—x—Z—i—l,N—n—Fl ;1)

¢, Z,zx,...)

—n—Jx—Z+1m+rx—-—M-Y —-Z

The are expressed in terms of the hypergeometric function,

ag,at, - ap _\ _ x= (a0)k(a)k - (ap)k 2¥
F( bo, b1, -+~ by ’Z) _kZ:o (b0)k(D1)k -+ (bg)r k! (9)

in which (a) is the Pocchammer symbol,
(a)p=ala+1)(a+2)---(a+k—1). (10)

The distributions are normalized such that

Z—1 Y
gtz )+ d(e ) =1 (11)
=0 =7
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Figure 1: Invariant mass distribution of simulated T(nS) and background events. Vertical lines
indicate the boundaries of the invariant mass bins used in the analysis.

It should be emphasized that similar likelihood functions could be constructed by means of other
approximations, for example with estimates of the acceptance and its uncertainty in each bin, but
these may not necessarily provide efficient and unbiased estimates of the signal yield when bins with
small statistics are ignored in order to improve the quality of the approximation in the bins that
remain.

3 Example Fits

To illustrate the behavior of the fit we analyze toy Monte Carlo samples of T(1.5), T(25) and T(35)
decays superimposed on combinatorial background. The signal samples are generated as Gaussian
mass distributions with polarization in the Collins-Soper frame specified in terms of parameters Xns.
The background is uniformly distributed from 8.5 to 11.5 GeV/c? with polarization parameters,
kag (m), that could vary linearly with invariant mass. The momentum range considered was 9.5 <
pr(ptp~) < 10.5 GeV/c and the final state muons were required to satisfy pr > 4 GeV/c and
|p./pr| < 1, which roughly approximates the kinematic and geometric acceptance of the detector.
The toy Monte Carlo sample consisted of 1.5, 25, and 35 signal events in the proportion 4:2:1,
with mass splittings fixed to measured values and with their width set to 50 MeV /c2. These signals
and the level of simulated background is shown in Figure 1. In this figure, the background rises
slightly at higher masses because it was generated with a uniform distribution, but the acceptance
increases with invariant mass. Figure 2 illustrates how the background acceptance changes over the
range of invariant masses considered. The background rate and the three background polarization
parameters are treated in the fit as linear functions of the di-muon invariant mass and each signal
is fit with independent yield and polarization parameters. Thus, there are 20 parameters in the
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Figure 2: Angular distribution for un-polarized background events that pass the acceptance require-
ments for two different ranges of invariant mass.

fit. Signal samples used to calculate the acceptance each consisted of 500,000 events, while the
background sample had 5 x 105 events. For (pr) ~ 10 GeV /¢, the average acceptance is about 10%.

In this example, approximately 664 experiments were simulated in which there were 10, 5 x 104
and 2.5 x 10* events in the T(1S), Y(29) and Y(35) samples, respectively. Although only un-
polarized Y signals and background were generated, the polarization parameters were allowed to
vary freely in the fit, as were the parameters describing the background rate and polarization
parameters. Figure 3 shows the distribution of fitted yields and their pull distributions. At this
time, while the yield estimates appear to be more or less unbiased, their uncertainties seem to be
underestimated by about 50%. Figure 4 shows the distributions of the Ay parameter for the 1.5, 2S5
and 3S signals in the toy experiments. Although generated with A\g = 0, the fit returns estimates
for this polarization parameter that are biased towards slightly negative values, although the size
of this bias is less than half the estimated uncertainty. The uncertainty estimates appear to be
underestimated by about 20%.

To ensure that fit parameters are within the physical limits, the A, parameter is calculated from
a fit parameter xs:

1
Ap = 51+ Ag)aa (12)

where o € (—1,1). Figure 5 shows the distribution of the fitted values of z5. Although generally
unbiased, the uncertainty on x5 appears to be underestimated by about 50%. Figure 6 shows the
distribution of the fitted parameter Ag,, In this case the calculated uncertainty on g, appears is
to be underestimated by about 15%.

Figure 7 shows the two dimensional contours in (Mg, A,) resulting from several toy experi-
ments, with the same signal statistics as describe above but with the T(15) state generated with
different polarizations. Figure 8 shows a similar example, with fits to samples generated with
15 < pr(uTp~) < 20 GeV/c. The precision is better in this case because of the higher average
acceptance, but also because a greater range of angles is selected by the trigger cuts.
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Figure 3: Fitted T(nS) yields for 664 toy Monte Carlo experiments generated and analyzed in the
Collins-Soper frame. Arrows in the upper figures indicate the number of events generated.
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Figure 4: Fitted \p parameters from 664 toy experiments with un-polarized T (n.S) signal samples
generated and analyzed in the Collins-Soper frame.
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Figure 9: Background acceptance in the S-channel helicity frame.

4 Analysis in the S-channel Helicity Frame

4.1 Biases on yields and polarization estimates

The event generation described in the previous section was also performed in the S-channel helicity
frame. Figure 9 shows the resulting resulting acceptance for the background at the two extremes of
the mass distribution considered. This distribution is clearly quite different from the distribution
obtained from analysis in the Collins-Soper frame. Figure 10 shows the fitted yields when analyzed
in the S-channel helicity frame. When compared with Figure 3 it can be seen that the signal
yields obtained from this analysis are more biased than when analyzed in the Collins-Soper frame.
Similarly, Figures 11 to 13 indicate that although the polarization parameters are estimated with
about the same precision as in the Collins-Soper frame, the biases are larger.

4.2 Analysis in multiple reference frames

We do not know, a priori, which reference frame exhibits the strongest polarization and we can
analyze the same data in different reference frames. In general, the polarization parameters mea-
sured in one reference frame cannot be directly compared with those measured in another frame.
Nevertheless, there are frame invariant quantities that can be calculated and compared in different
frames. In particular, we consider the expression

(13)
which will be +1 for transverse polarization in any reference frame and —1 for longitudinal polar-
ization in any reference frame. To investigate this, two samples of events were generated in the

S-channel helicity frame: one purely transverse polarized, with A\g = —1/3 and A, = 1/3 and the
other purely longitudinally polarized with A\g = —1/3 and A, = —1/3.
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Figure 11: Fitted Ay parameters from toy experiments with un-polarized T(nS) signal samples
generated and analyzed in the S-channel helicity frame.

14



4
4
o
8
6;
|5
8
4,
S
8

Entries per 0.0

Entries per 0.25

E o E =} E
E < E < E
90f ggo E ggo 3
E <Y>=- E <Y>=| =
sof Y>=-0.0461 § asof Y>=0.00564 § sof <Y>=0.00691
F =0.0621 £ F RMS=0.0706 2 F RMS= 0.12
E w F w o
70F 70F 70F
60F 60F 60
s0f 50 50
20F 40F 40F
30F 30F 30F
20F 20F 20F
10F 10F 10F
P TP Y R R s I BTN TR S P [T I P e - WP PR PP P N I O P Y UL Y P e T
-1 -08-06-04-02 0 02 0406 08 1 - . 6 -04-02 0 02 04 06 08 1 -1 -08 -06-04-02 0 02 04 06 08 1
Fitted Y (1S) 2A/(1+Aq) Fitted Y (25) 2A/(1+Aq) Fitted Y (3S) 2 /(1+Aq)
50 10 50 10 50
E ST N
3 S f c
45F T 45F 3 4
F Q o a
ok u=-0.89+0.07 8.k u=0.12+0.06 8, 1=0.05+0.06
F 0=1.30+0.05 E F 0=1.10+£0.04 E 0=1.0040.04
35F 35F 35F
30fF 30F 30F
25 25F Py
20 20f 20F
15F 15F 15F
10F 10F 10F
33 sk s5F
0 ok ok
5 4 -3 2 -1 0 1 2 3 4 5 5 -4 -3 2 -1 0 1 2 3 4 5 5 4 -3 2 -1 0 1 2 3 4 5
Y (1S) 2 A J(1+A) pull Y(25) 2 A(1+X,) pull Y(3S) 2 A J(1+X) pull

Figure 12: Fitted zo = 2X,/(1 + Ag) parameters from toy experiments with un-polarized T (nS)
signal samples, generated and analyzed in the S-channel helicity frame.
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Figure 13: Fitted g, parameters from toy experiments with un-polarized Y(nS) signal samples
generated and analyzed in the S-channel helicity frame.
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Figure 14: Polarization parameters for purely transverse and longitudinally polarized Y (15) states
analyzed in the S-channel helicity (solid curves) and the Collins-Soper (dotted curves) frame. The
parameters used to generate the states in the S-channel helicity frame are indicated by the markers.
The measured values of the frame invariant quantity, A\, are indicated near each contour.

Each sample was analyzed in both the S-channel helicity frame, and the Collins-Soper frame,
resulting in the (Mg, A,) confidence intervals shown in Figure 14.
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pr(Y) [GeV/(] N(1S5) N(2S5) N(39) o [MeV/c? bkg [/MeV/c?]

0-2 17072 £ 145 4532+ 85 2113+ 64 46.5+ 0.4 33.2
2-4 76497 £320 19946 £196 92444149  48.1+£0.2 201.6
4-6 65490 =293 204394190 11173+156 49.8+0.2 180.1
6-8 38000 £ 221 11365+139 5980+112  49.3+0.3 91.5
8-10 22780 £169 6998 £+ 105 3980 + 86 52.4+0.3 41.9
10-12 13413 £ 129 4461 £ 81 2570 £ 66 54.9+04 21.9
12-15 11216 £117 3895+ 75 2353 £ 62 58.5+0.5 16.7
15-20 7342 £ 95 2837+ 63 1840 £ 543 63.7+0.7 10.1
20-50 3183 £ 66 1461 £ 48 1039 =43 75.7+14 6.2

Table 1: Approximate Y(nS) signal yields, mass resolution and background level obtained from
CMUP+CMU and CMUP+CMX triggers up to period 25. The background level is evaluated at
m(putp~) = 8.5 GeV/c? and therefore overestimates the background under the T signals.

5 Projections for CDF data

The statistics available in the upsilon sample, collected with CMUP+CMU and CMUP+CMX
triggers, through period 25 is summarized in Table 1. Figure 15 shows an example of a fit to
the di-muon mass distribution from which the yields shown in this table are determined. These
events were selected by requiring that the CMUP muon have pr > 4 GeV/c and the other have
pr > 3 GeV/c. The sample was further purified using the following criteria.

o ot po)] < 60 cm
o [20(pt) — 20(p7)] < 0.25 cm
|do(p*)| < 0.25 cm

o Lig(p) >0.05
o Isopo(ptp~) > 0.15

where I'so, /5 is the ratio of the transverse momentum of the T candidate to the sum of the transverse
momenta of the candidate and all other charged tracks in the same hemisphere as the candidate.
These criteria were chosen after only a brief, and not particularly systematic study and are not
expected to be optimal for any specific measurement. Nevertheless, they illustrate the levels of
signal and background statistics that we have to work with in the current data. Requiring only the
CMUP+CMU trigger path reduces the signal yields by 50-60%.

In order to make more realistic projections, a model of the geometric acceptance of CMUP,
CMU and CMX muons was constructed. Figure 16 shows the ¢g and cot € of reconstructed CMUP
muons, selected to have |zg — 25 ecm| < 1 cm, compared to the acceptance simulated using the
model. Figure 17 shows the observed and simulated geometric acceptance of muons in CMX, which
is restricted by both the coverage of the muon chambers and the COT. The fiducial region of
CMU was approximated by a cylinder of radius 350 cm extending to z = +250 cm. The luminous
region was simulated using a Gaussian distribution centered at z = 0 with a width of 30 cm.
The UPSILON_CMUP_CMU trigger was simulated by requiring one muon to be fiducial in CMUP with
pr > 4 GeV/c and the other muon to be fiducial in CMU with pr > 3 GeV/c. If both muons were
on the same side of the detector, they were required to be separated in azimuth by at least 15°. The
UPSILON_CMUP_CMX trigger was simulated in the same way, but required fiduciality in CMX.

The pr spectra of the T signals were generated using a gamma distribution with parameters
fitted to the T (nS) differential cross section measurement made by CDF in Run I. Figure 18 shows
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Figure 15: Example di-muon mass distribution from CDF data obtained with CMUP+CMU and
CMUP+CMX triggers in the pr range 8 < pr(utp~) < 10 GeV/c. The signals are fit with a crystal
ball function.
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Figure 18: Differential cross section for T (nS) production from the Run I analysis fitted to gamma
distributions. Only statistical uncertainties are shown.

State ~y B [GeV/c] x2/d.o.f.
T(1S) 2.25240.062 2.131+0.064 8.4/11
Y(2S) 196+0.14  275+023  3.8/6
T(3S) 2144023 2434024  3.8/6

Table 2: Parameters in the gamma distribution used to fit the Run I T differential cross section
data.

the Run I data with fits to the gamma function and Table 2 lists the parameters determined from
the fits that are then used to generate the pr spectrum in the toy Monte Carlo.

Table 3 lists the parameters used to generate the toy Monte Carlo signal samples. The sample
sizes were chosen so as to reproduce the approximate signal yields, background levels and background
shapes after the CMUP+CMU/CMX trigger simulation. Figure 19 shows a comparison of the re-
constructed and simulated invariant mass distributions in the pr range 8 < pr(ptp™) < 10 GeV/ec.

5.1 Example analysis

Using the toy Monte Carlo samples generated with statistics equivalent to the event yields recon-
structed in CDF data, we consider a hypothetical scenario in which the T(1S) is always in a pure
transverse polarization state, but the orientation of the quantization axis rotates in the Collins-
Soper frame as pr increases. This is implemented by requiring A = +1 and generating samples with
Ap = (1 — Ag)/4, with —1/3 < Ag < 1. Figure 20 shows the evolution of the fitted 1o contours in
the Ag, A, plane for this hypothetical experiment.
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pr(Y) [GeV/e] N(1S) N(25) N(39) Nokg 0 [MeV/c?]

0-2 120,000 30,000 15,000 300, 000 46
2-4 700,000 150,000 70,000 1,500,000 46
4-6 700,000 180,000 90,000 1,800,000 47
6-8 380,000 110,000 58,000 1,000,000 47
8-10 220,000 70,000 40,000 450,000 47
10-12 120,000 40,000 22,000 220,000 48
12-15 75,000 30,000 20,000 75,000 o7
15-20 45,000 17,000 11,000 68, 000 62
20-50 15,000 7,000 5,000 30,000 68

Table 3: Generated Y (nS) sample sizes, number of background events distributed between 8.5 and
11.5 GeV/c? and the signal mass resolution.

Data - 8<pT<10 GeVic Toy MC - 8<pT<10 GeVic
~ 2500 ~ 2500
gt gt
> i > i
() ()
= - = -
o r o r
2000 2000}~
() - () -
o o
n B 7] B
2 - 2 -
{11500}~ (11500}
10001~ 1000~
5001 500
-IIIIIIIIIIIIIIIIIIIIIIIIIIIII -IIIIIIIIIIIIIIIIIIIIIIIIIIIII
85 9 95 10 105 11 115 85 9 95 10 105 11 115

m(pp) (Gevic?) m(up) (Gevic?)

Figure 19: Comparison of reconstructed and simulated di-muon invariant mass spectra selected
using the CMUP+CMU/CMX trigger paths.
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Figure 20: Fitted results from a hypothetical experiment in which the YT(15) is always in a pure
transverse polarization state, but where the quantization axis rotates as a function of pr. The red
contours indicate the results obtained by restricting the sample to the CMUP+CMU trigger path.
In that case, the fit did not converge for the three lowest pr points.
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6 Outlook

While this analysis provides polarization measurements on toy Monte Carlo samples, there are a
number of changes that are needed in order to apply it to a data sample. Some of these issues are
described below.

6.1 Monte Carlo samples

In general, it would be desirable to calculate the acceptance of the detector and trigger using the
full detector simulation. Given that the average acceptance is about 10% for generation of events
with y| < 2, it appears that suitable sample sizes would be approximately 100 times the size of the
observed yields in data. The feasibility of maintaining samples this large remains to be determined.

6.2 Momentum spectrum of acceptance templates

The background and signal templates should have the same momentum spectrum as that observe
in the data. This can be achieved either by re-weighting a flat distribution, or by iteratively gener-
ating samples with different distributions and iterating until the shape of the distribution after the
acceptance cuts matches the data. It may also be necessary to assume a smooth function describing
the evolution of the polarization parameters with pr in order to determine yields accurately in small
momentum slices.

6.3 Trigger efficiencies

The acceptance templates need to be re-weighted to account for the measured pr dependent trigger
efficiencies, or any other non-uniformity that is present in the data that is not included in the full
or fast simulation. However, this fitting procedure lends itself well to accommodating such effects
in this way.

6.4 Background description

The evolution of the background with invariant mass, both in yield and polarization, may be more
complex than the linear functions considered here. However, with sufficient statistics in the side
bands, it should be possible to compare the results with those obtained using higher order polyno-
mials to describe these effects.

6.5 Angular distribution of background

The background might be more complex than the assumed spin-1 distributions considered here.
Although we expect Drell-Yan processes to dominate, it may be necessary to examine the possibility
of a spin-2 component in the background, at least as a cross check.
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7 Summary

The fitter described in this note represents the first attempt at CDF to construct simultaneous
estimates of the three polarization parameters in vector meson decays. It appears that we have
already accumulated enough data to make meaningful measurements of the polarization as a function
of pr, which would be the first such measurement ever performed and may resolve some of the current
experimental discrepancies.

After examining the extent of the information that we can obtain by analyzing vector meson
decays using the full three dimensional angular distribution, it is worthwile reading further in Plato’s
Allegory of the Cave. The parallels between the allegory and the current state of experimental
measurements are interesting, as are some of the outcomes that Plato explores.
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Appendix A Helicity amplitude analysis

A1l ¢ — ptp~ decay

A pure state describing a heavy vector meson can be written in terms of the basis states in which
its spin is projected along a quantization axis:

[¥) = a_1]|1,—1) + ag|1,0) + a41]1,+1) (14)
where the coefficients satisfy the normalization condition:
la—1[* +aol® + |a1* = 1. (15)

We wish to calculate the probability of observing a final state with particles oriented with angles 6,
@ with respect to the quantization axis. That is, we wish to evaluate

LA, )7 ~ [{0lt))? (16)

suitably summed over the unobserved spins of the final state particles.
The matrix representation of the rotation operator is defined

Dl (s Byy) = e 0d],  (B)e™ ™. (17)
For a spin-1 system, the Wigner little-d matrices can be expressed
dyo(0) = cos (18)
14 cosé
ae) = (19)
in 6
dl 0 _ _sm 20
10(0) 7 (20)
1 —cosé
d(0) = —5— (21)
along with
&, (0) = (0)mmd 0y =d(0). (22)

The helicity amplitude for a pure state described by Equation 14 to make a transition to the
pt T state is

AA1A2 (05 (P) = <0 ®3 /\1/\2|¢> (23)
/ 3 * * *
= EAM A2 (a‘*lplfl)\(sa 0, _50) + aoDéA(@? 0, _50) + a“JrlD%)\((p’ 9; _90) )
(24)

where A = A\; — A2. From parity conservation, A7%% = A%ﬁ% and A% 1= A7% _1 = 0 because
the ¥ decay does not couple strongly to final states in which both muons fave equal faelicity. Thus,
the angular distribution is obtained by squaring this amplitude and summing over the two possible
helicity combinations of the final state:

314

— 11]?
A0, 0)? = —22— <1 + |ao* 4 (1 — 3lao|?) cos? 6 + 2Re (a’ ;a_1) sin® 6 cos 2o+

8m
V2Re (a (a1 — a_1)sin 26 cos p + 2Im (a®ya_1)sin® fsin 2+

—V/2Im (ajj(ay1 + a_1))sin 20sin <p) (25)
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which can be more conveniently written

_ 3JA_11]?
, P = + |ag + Ag cos” 0 + A, sin” 0 cos 2 + Mg, s1n 20 cos p+
A0, 0))? |8“| 1 2) [ 1+ Agcos® 0 + A, sin? 0 cos 2¢ + g, sin 20
)\i sin? @ sin 2¢ + )\é;p sin 26 sin <p> (26)
where
1-— 3|a0|2
Ao = ——= 2
0 1+ |ao|? (27)
2Re (a* a,l)
A\, = =l 28
® ]. + |a0|2 ( )
)\9@ _ \/iRe (a(*) (a’+1 — a“*l)) (29)
1+ Jaol?
2Im (a* a_l)
)\J_ —_ +1 30
® 1+ |a0|2 ( )
AL _ _\/ilm (a(*)(a+1 + a‘—l)) (31)
0 1+ |ag|?

Consider the spec1a1 cases where Ay = land ap =a_1 =0, or wherea;; =ap=0anda_; =1
whmhansewhen@—Oorwand¢—O In such a case, \g = 1, A\, = 0, Mgy, = 0, )\ = 0 and
. 9, = 0, which gives

_ 3JA_11]?
A1 (0, 0))? = —22— (1 + cos? 9). (32)
8

such that

/|Ai1 ©)[2dQ =2]|A_ %%P. (33)
Similarly, when a41 = a—1 = 0 and ag = 1, we have \yp = —1 with all other coefficients vanishing.
In this case,

_ 3lA_1 12

|Ao(0, )] = —22— (1 — cos? 0). (34)

47

so that again we find:

/|Ao Q)[PdQ =2|A_; 1% (35)

If, however, the initial state is not a pure state, then we must sum over its composite pure states
weighted by their relative probabilities. If the initial state had equal probability of being in each of
the basis states then the resulting angular distribution would be of the form shown in Equation 26
but with coefficients given by \g =1 —-24+1 =0, A\, = Agp, = )\i = )\é‘(p = 0 and the resulting
angular distribution is isotropic, as expected.

A.2 Symmetry properties

The angular distribution shown in Equation 26 has symmetry properties that can be exploited
in an analysis. In particular the first three terms in the distribution are symmetric under the
transformation (6, p) — (6, —p) as well as (0, ¢) — (7 — 0,7 — ), while the terms with coefficients
)\f,; and )‘é_«o are antisymmetric.
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A.3 Physical bounds on )y, A\, and Ay,

Consider a pure transverse state |¢7) in which a;1 =1 and ap = a—; = 0. A general rotation can
be represented by

2(1 + cos e —%eii‘z’ 2(1 — cos e~
R(0,0) = ¥ cos 6 — (36)

3(1 — cosf)e’® %ew $(1 + cosf)e’®

and will transform the state into [¢7) = a/ 1|1, +1) 4+ ag|1,0) +a’_;|1, —1) where

1+cosf _,
oy = —5 e (37)
, sin 6
- _ 38
Qg \/5 ( )
1—cosf ;
a, = %ﬁeem. (39)
and the polarization parameters will depend on 6 and ¢ as follows:
2 — 3sin?6
(o, = — 40
0.0 = S (10)
.2
sin” 0 cos 2¢
A(0,¢) = 2020 a1
0 (0:9) 2 + sin’0 (41)
2 sin @ cos 8 cos ¢
)\T 0 — 42
9“’( 9) 2 +sin?0 (42)
In this case, Ag(@, ®) can be expressed in terms of Al (6, ¢):
1
AL(0,¢) = 1 (1=X5(0,9)) cos2¢ (43)

and the allowed values for AT(6, ¢) lie between +1 (1= A (9,4)). Thus, when ] = —1, A e

(—%,+%) while when \] = +1, AL is constrained to be zero.

Similarly, a purely longitudinal state, |¢1) with ag = 1 and ay; = 0 will be transformed into a
state |¢7) = a/{ |1, +1) + ag|1,0) +a” |1, —1) where

sinf _,
al, = 5 ¢ (44)
ay = cosf (45)
sinf
al_/l = Weqb (46)
which gives
2 — 3sin 0
(6, = —— 47
boo) = -2 (47)
sin” 0 cos 2¢
AL(0,¢) = -SSP 48
o (0:9) 2 —sin® 0 (48)
2 sin @ cos 8 cos ¢
(6, = —-—— 49
£ 0.0) —— (49)
and X% (6, ¢) can be written in terms of Ay (6, ¢) thus:
1
A0, 0) = -5 (1+ A§ (0, ¢)) cos 2¢ (50)
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Therefore, /\5(0,@ is always constrained to lie between +1(1 4+ A}(6,¢). When \;(0,¢) = 1,
AL(0,¢) € (—1,1). While when A§ (6, ¢) = —1, AL(6, ¢) = 0.

Note that further constraints restrict the allowed range of Ag,. In general, however, the relations
are quite complicated.
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