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Abstract. In this paper, we show that the spaces of sections of the n-th dif-

ferential operator bundle DnE and the n-th skew-symmetric jet bundle JnE
of a vector bundle E are isomorphic to the spaces of linear n-vector fields

and linear n-forms on E∗ respectively. Consequently, the n-omni-Lie algebroid

DE⊕ JnE introduced by Bi-Vitagliano-Zhang can be explained as certain lin-
earization, which we call pseudo-linearization of the higher analogue of Courant

algebroids TE∗ ⊕ ∧nT ∗E∗. On the other hand, we show that the omni n-Lie
algebroid DE ⊕ ∧nJE can also be explained as certain linearization, which

we call Weinstein-linearization of the higher analogue of Courant algebroids

TE∗ ⊕ ∧nT ∗E∗. We also show that n-Lie algebroids, local n-Lie algebras
and Nambu-Jacobi structures can be characterized as integrable subbundles of

omni n-Lie algebroids.

1. Introduction. This paper aims to study linearization of the higher analogue of
Courant algebroids TE∗ ⊕ ∧nT ∗E∗.

1.1. Omni-Lie algebras and omni-Lie algebroids. Courant algebroids were
introduced by Liu, Weinstein and Xu in [32] and have been found many applications
in mathematical physics. See the survey article [28] for more details. The notion of
an omni-Lie algebra was introduced by Weinstein in [41] to study the linearization
of the standard Courant algebroid TM ⊕ T ∗M . Then it was further studied in
[27, 36, 37]. An omni-Lie algebra associated to a vector space V is a triple
(gl(V )⊕ V, (·, ·), {·, ·}), where (·, ·) is the V -valued pairing given by

(A+ u,B + v) = Av +Bu, ∀ A+ u,B + v ∈ gl(V )⊕ V,
and {·, ·} is the bilinear bracket operation given by

{A+ u,B + v} = [A,B] +Av.
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Note that (gl(V ) ⊕ V, {·, ·}) is not a Lie algebra, but a Leibniz algebra, which
provides a natural example of Leibniz algebras. Moreover, Dirac structures of the
omni-Lie algebra gl(V )⊕V characterize all Lie algebra structures on V , and this is
one of the most important properties of an omni-Lie algebra. Let M be the vector
space V ∗ in the standard Courant algebroid TM ⊕T ∗M , and consider linear vector
fields, which are in one-to-one correspondence with gl(V ), and constant 1-forms on
V ∗, which are in one-to-one correspondence with V . Then the Dorfman bracket in
the standard Courant algebroid TM ⊕T ∗M reduces to the bracket in the omni-Lie
algebra gl(V ) ⊕ V given above. We use the terminology “base-linearization” to
indicate this process. Different generalizations of an omni-Lie algebra have been
given recently with applications in different aspects.

The notion of an omni-Lie algebroid was introduced in [7], which can be viewed
as the geometric generalization of an omni-Lie algebra from a vector space to a
vector bundle. Lie algebroid structures on a vector bundle E (or local Lie algebra
structures when E is a line bundle) can be characterized as Dirac structures of the
omni-Lie algebroid DE⊕JE, where DE is the covariant differential operator bundle
and JE is the first jet bundle of E. Omni-Lie algebroids provide a general framework
to study Jacobi structures, contact structures and odd dimensional analogues of
generalized complex structures [9, 26, 30, 38, 39, 40]. Omni-Lie algebroids are also
natural examples of E-Courant algebroids introduced in [8]. Similar to the fact that
gl(V ) can be understood as linear vector fields on V ∗, it is well-known that DE
corresponds to linear vector fields on the dual bundle E∗. But there are different
explanations of JE:

• Sections of JE can be understood as constant 1-forms on E∗. This explanation
is supported by the fact that the pairing between DE and JE takes values
in E, whose sections are linear functions on E∗. On the other hand, when
E reduces to a vector space V , we have JV = V , which is understood as the
space of constant 1-forms on V ∗. Therefore, this point of view is consistent
with Weinstein’s original idea in the study of linearization of the standard
Courant algebroid TM ⊕ T ∗M.

• Sections of JE can also be understood as linear 1-forms on E∗. This expla-
nation is supported by the fact that JE corresponds to linear sections of the
double vector bundle (T ∗E∗;E,E∗;M).

When JE is understood as fiberwise constant 1-forms on E∗, we will say that the
omni-Lie algebroid DE⊕JE is the Weinstein-linearization of the standard Courant
algebroid TE∗⊕T ∗E∗; when JE is understood as linear 1-forms on E∗, we will say
that the omni-Lie algebroid DE ⊕ JE is the pseudo-linearization of the standard
Courant algebroid TE∗ ⊕ T ∗E∗. Even though Weinstein-linearization and pseudo-
linearization are the same in this situation, namely we both obtain the omni-Lie
algebroid DE ⊕ JE, in the sequel we will see that different geometric objects can
be obtained using different explanations of JE.

1.2. Omni n-Lie algebras and n-omni-Lie algebroids. Recently, the higher
analogues of the standard Courant algebroid TM ⊕ ∧nT ∗M are widely studied
due to applications in Nambu-Poisson structures, multisymplectic structures, L∞-
algebra theory and topological field theory [1, 4, 15, 19, 22]. In particular, Dirac
structures of the higher analogues of the standard Courant algebroid TM⊕∧nT ∗M
are deeply studied in [2, 6, 20, 42]. In [31], the authors introduced the notion of an
omni n-Lie algebra gl(V )⊕ ∧nV and proved that it is the base-linearization of the
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higher analogue of the standard Courant algebroid TM ⊕ ∧nT ∗M . Moreover, the
(n+ 1)-Lie algebra structures on V can be characterized as integrable subspaces of
the omni n-Lie algebra gl(V )⊕∧nV . n-Lie algebras (also called Filippov algebras)
are the underlying algebraic structures of Nambu-Poisson structures, and have many
applications in mathematical physics. See the review article [13] for more details.

To study the higher analogue of the omni-Lie algebroid, the notion of an n-omni-
Lie algebroid was introduced in [3], which is the direct sum of the covariant differ-
ential operator bundle DE and the n-th skew-symmetric jet bundle JnE together
with a pairing and a bracket operation. Multicontact structures can be character-
ized as integrable subbundles of n-omni-Lie algebroids. Note that when the vector
bundle E reduces to a vector space V , one can not obtain the aforementioned omni
n-Lie algebra since JnV = 0. On the other hand, (n + 1)-Lie algebroid structures
on E can not be characterized by integrable subbundles of the n-omni-Lie algebroid
DE ⊕ JnE.

1.3. Main results. In this paper, we give an alternative explanation of the n-
omni-Lie algebroid introduced in [3]. We find that linear n-vector fields and linear
n-forms on a vector bundle E are sections of the n-th differential operator bundle
DnE and the n-th skew-symmetric jet bundle JnE respectively. As a consequence,
the n-omni-Lie algebroid DE ⊕ JnE can be viewed as certain linearization, called
pseudo-linearization, of the higher analogue of Courant algebroids TE∗ ⊕∧nT ∗E∗.
On the other hand, if we understand JE as constant 1-forms on E∗, it is natural
to use constant n-forms, that is ∧nJE, to replace JnE that was used in [3]. Based
on this observation, we introduce the notion of an omni n-Lie algebroid. More
precisely, an omni n-Lie algebroid associated to a vector bundle E is the direct sum
bundle DE ⊕ ∧nJE together with an anchor, a pairing and a bracket operation
(see Definition 3.2). When E reduces to a vector space V , we obtain the omni
n-Lie algebra gl(V ) ⊕ ∧nV naturally. Moreover, we show that the omni n-Lie
algebroid DE⊕∧nJE can also be viewed as certain linearization, called Weinstein-
linearization, of TE∗ ⊕ ∧nT ∗E∗. When rankE ≥ 2 (resp. rankE = 1), (n+ 1)-Lie
algebroid structures (local (n+1)-Lie algebra structures) on E can be characterized
as integrable subbundles of the omni n-Lie algebroid DE ⊕ ∧nJE.

We summarize n-omni-Lie algebroids and omni n-Lie algebroids by the following
table:

omni n-Lie algebroids n-omni-Lie algebroids
DE ⊕ ∧nJE DE ⊕ JnE

Weinstein-linearization pseudo-linearization
(n+ 1)-Lie algebroid structures on E higher Dirac-Jacobi structures

Nambu-Jacobi structures on M exact multisymplectic structures
Leibniz algebroid structures on ∧nJE -

omni n-Lie algebra gl(V )⊕ ∧nV -

2. Pseudo-linearization of TE∗ ⊕ ∧nT ∗E∗ and n-omni-Lie algebroids. The
goal of this section is to give a geometric explanation of the n-omni-Lie algebroid
DE ⊕ JnE introduced in [3]. We understand it as a linearization of the higher
analogue of Courant algebroids TE∗⊕∧nT ∗E∗ in the sense that Γ(DE) and Γ(JnE)
are spaces of linear vector fields and linear n-forms ([5]) on the vector bundle E∗.

We first recall the n-th differential operator bundle DnE and the n-th skew-
symmetric jet bundle JnE of a vector bundle E.
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A covariant differential operator for a vector bundle E → M is a smooth map
d : Γ(E) → Γ(E), such that there is an element Xd ∈ X1(M), called the symbol,
satisfying

d(fu) = fd(u) +Xd(f)u, ∀ f ∈ C∞(M), u ∈ Γ(E).

The covariant differential operator bundle DE of a vector bundle E with the com-
mutator bracket [·, ·] is a Lie algebroid, which is indeed the gauge Lie algebroid of
the frame bundle F(E). The corresponding Atiyah sequence is as follows:

0→ End(E)
i−→ DE

j−→ TM → 0. (1)

The first jet bundle JE of a vector bundle E is the bundle whose fiber over a point
m ∈ M is the space of equivalence classes of sections of E, where [u]m = [v]m for
u, v ∈ Γ(E) if u(m) = v(m) and dm〈u, ξ〉 = dm〈v, ξ〉 for any ξ ∈ Γ(E∗). In [7], the
authors proved that the first jet bundle JE may be considered as an E-dual bundle
of DE, i.e.

JE ∼= {ν ∈ Hom(DE,E) | ν(Φ) = Φ ◦ ν(IdE), ∀ Φ ∈ End(E)}.
Associated to the jet bundle JE, there is a jet sequence of E given by:

0→ Hom(TM,E)
e−→ JE

p−→ E → 0. (2)

This sequence does not necessarily split, but on the section level, it does:

d : Γ(E)→ Γ(JE), du(d) := d(u), ∀ u ∈ Γ(E), d ∈ Γ(DE). (3)

A useful formula is

d(fu) = df ⊗ u+ fdu, ∀ u ∈ Γ(E), f ∈ C∞(M).

There is an E-valued pairing between JE and DE defined by

〈µ, d〉 := d(u), µ ∈ (JE)m, d ∈ (DE)m,

where u ∈ Γ(E) satisfies µ = [u]m. In particular, one has

〈µ,Φ〉 = Φ ◦ p(µ), ∀ Φ ∈ End(E), µ ∈ JE;

〈y, d〉 = y ◦ j(d), ∀ y ∈ Hom(TM,E), d ∈ DE.

The n-th differential operator bundle DnE is introduced in [10, 35] as

DnE := Hom(∧nJE,E)DE = {d ∈ Hom(∧nJE,E)|Im(d]) ⊂ DE}, n ≥ 2,

where d] : ∧n−1JE → Hom(JE,E) is defined by

d](µ1, · · · , µn−1)(µn) = d(µ1, · · · , µn), ∀ µ1, · · ·µn ∈ Γ(JE).

When rankE ≥ 2, it fits into the following exact sequence:

0→ Hom(∧nE,E)
f−→ DnE

q−→ Hom(∧n−1E, TM)→ 0. (4)

There is a graded Lie algebra structure on sections of D•E ([10]) given as follows:

[d1, d2] = (−1)(k+1)(l+1)d1 ◦ d2 − d2 ◦ d1 ∈ Γ(Dk+l−1E), (5)

for d1 ∈ Γ(DkE) and d2 ∈ Γ(DlE), where

d2 ◦ d1(du1, · · · ,duk+l−1)

=
∑

τ∈Sh(k,l−1)

(−1)τd2(d(d1(duτ1 , · · · ,duτk)),duτk+1
, · · · ,duτk+l−1

),

for ui ∈ Γ(E) and τ is taken over all (k, l − 1)-shuffles.
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In [8], the authors introduced the n-th skew-symmetric jet bundle

JnE := Hom(∧nDE,E)JE = {µ ∈ Hom(∧nDE,E)|Im(µ]) ⊂ JE}, n ≥ 2,

where µ] : ∧n−1DE → Hom(DE,E) is the induced bundle map

µ](d1, · · · dn−1)(dn) = µ(d1, · · · dn−1, dn), ∀ d1, · · · dn ∈ Γ(DE).

Moreover, the n-th skew-symmetric jet bundle also fits into an exact sequence

0→ Hom(∧nTM,E)
e−→ JnE

p−→ Hom(∧n−1TM,E)→ 0. (6)

There is a complex d : J•E → J•+1E. It is given as a subcomplex of the Chavelley-
Eilenberg complex of the Lie algebroid DE with the natural representation on the
vector bundle E, whose differential dCE : Hom(∧nDE,E) → Hom(∧n+1DE,E) is
defined by

dCEµ(d1, · · · , dn+1) =

n+1∑
i=1

(−1)i+1di
(
µ(d1, · · · , d̂i, · · · , dn+1)

)
+
∑
i<j

(−1)i+jµ([di, dj ], d1, · · · , d̂i, · · · , d̂j , · · · , dn+1),

(7)

for di ∈ Γ(DE). See [8, Lemma 3.6] for details.

2.1. Linear n-vector fields on a vector bundle. For a vector bundle pE : E →
M , identify Γ(E∗) with the space of functions on E which are linear along each
fiber. A section of the first differential operator bundle DE∗ maps a section of E∗

to a section of E∗, which can be viewed as a linear vector field on E. Denote by
X1
lin(E) the space of linear vector fields on E. We have Γ(DE∗) ∼= X1

lin(E). We
shall generalize this result to linear n-vector fields. Actually, linear n-vector fields
studied in [5, 25] are isomorphic to sections of the n-th differential operator bundle
DnE introduced in [10, 35].

An n-vector field π ∈ Xn(E) is called linear if π(dφ1, · · · , dφn) ∈ Γ(E∗) when
φ1, · · · , φn ∈ Γ(E∗) ([25]).

Linear multivector fields on a vector bundle can be described alternatively by
the homogeneity structure; see the details in [18, 29]. Let E → M be a vector
bundle. The monoid R≥0 of nonnegative real numbers acts on E by (fiberwise
scalar multiplication)

h : R≥0 × E → E, (λ, e) 7→ hλ(e) := λe.

This action is called the homogeneity structure on E. The homogeneity structure
fully characterizes the vector bundle structure. In particular, a function on E is
linear if it satisfies h∗λf = λf , i.e. f ∈ Γ(E∗).

Proposition 1. ([5, 29]) Let π ∈ Xn(E). The following statements are equivalent:

(1) π is linear;
(2) h∗λπ = λ1−nπ;
(3) Let {xi} be local coordinates on M and {uj} be local coordinates on the fiber

of E. Then π has the local expression

π =
1

n!
πi1···inj (x)uj

∂

∂ui1
∧ · · · ∧ ∂

∂uin

+
1

(n− 1)!
πi1···in−1,j(x)

∂

∂ui1
∧ · · · ∧ ∂

∂uin−1
∧ ∂

∂xj
.
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Denote by Xnlin(E) the space of linear n-vector fields on E. As explained in [25],
a linear n-vector field π for n ≥ 2 has the properties that

π(dφ1, · · · , dφn−1, dp
∗
Ef) = p∗Egφ1,··· ,φn−1,f (8)

for some gφ1,··· ,φn−1,f ∈ C∞(M) and

ιdp∗Ef1ιdp∗Ef2π = 0, ∀ φ1, · · ·φn−1 ∈ Γ(E∗), f, f1, f2 ∈ C∞(M).

As a consequence, from a linear n-vector field π, we obtain δ0 : C∞(M)→ Γ(∧n−1E)
and δ1 : Γ(E)→ Γ(∧nE) given by

δ0(f)(φ1, · · · , φn−1) := gφ1,··· ,φn−1,f ,

and

δ1(u)(φ1, · · · , φn) :=

n∑
i=1

(−1)i+ngφ1,··· ,φ̂i,··· ,φn,φi(u) − 〈π(dφ1, · · · , dφn), u〉,

for u ∈ Γ(E). This correspondence is actually one-to-one; see [25].
We are now at the position to state our main result in this section.

Theorem 2.1. For a vector bundle E, the space of linear multivector fields X•lin(E)
with the Schouten bracket [·, ·]S is a graded Lie algebra. Moreover, we have the
isomorphism

(Γ(D•E∗), [·, ·]) ∼= (X•lin(E), [·, ·]S), d 7→ d̂,

of graded Lie algebras, where d̂ is determined by

d̂(dφ1, · · · , dφn) := (−1)nd(dφ1, · · · ,dφn), φi ∈ Γ(E∗), (9)

where d : Γ(E)→ Γ(JE) is the natural map given by (3).

Proof. First, we prove that linear multivector fields on E are closed under the
Schouten bracket, namely,

[Xllin(E),Xklin(E)]S ⊂ Xk+l−1
lin (E).

In fact, for X ∈ Xllin(E) and Y ∈ Xklin(E), by the relation that

h∗λ[X,Y ]S = [h∗λX,h
∗
λY ]S = [λ1−lX,λ1−kY ]S = λ1−(k+l−1)[X,Y ]S ,

we have [X,Y ] ∈ Xk+l−1
lin (E).

Secondly, we check that d 7→ d̂ is an isomorphism of graded vector spaces. We
shall find its inverse. For X ∈ Xnlin(E), define X̌ ∈ Hom(∧nJE∗, E∗) by

X̌(dφ1, · · · ,dφn) := (−1)nX(dφ1, · · · , dφn) ∈ Γ(E∗), φi ∈ Γ(E∗).

The function linear property of X̌ requires that

X̌(dφ1, · · · ,dφn−1, df ⊗ φn) = (−1)nX(dφ1, · · · , dφn−1, dp
∗
E∗f)φn,

X̌(dφ1, · · · ,dφn−2, dg ⊗ φn−1, df ⊗ φn) = 0.

By (8), there exists a vector field j(X̌](dφ1, · · · , dφn−1)) ∈ X1(M) such that

X̌(dφ1, · · · ,dφn−1, df ⊗ φn) = j(X̌](dφ1, · · · , dφn−1))(f)φn

= (df ⊗ φn) ◦ j(X̌](dφ1, · · · ,dφn−1)).

Thus X̌ ∈ Γ(DnE∗). So we get a map Xnlin(E) → Dn(E∗), X → X̌, which is

actually the inverse of the map d 7→ d̂.
At last, we show that

[̂d, t] = [d̂, t̂]S , d ∈ Γ(DlE∗), t ∈ Γ(DkE∗).
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Actually, by (5), we have

[̂d, t](dφ1, · · · , dφk+l−1)

= (−1)k+l−1[d, t](dφ1, · · · ,dφk+l−1)

= (−1)kl
∑

σ∈Sh(k,l−1)

(−1)σd(d(t(dφσ1
, · · · ,dφσk

)),dφσk+1
, · · · ,dφσk+l−1

)

−(−1)k+l−1
∑

τ∈Sh(l,k−1)

(−1)τ t(d(d(dφτ1 , · · · ,dφτl)),dφτl+1
, · · · ,dφτk+l−1

)

= [d̂, t̂]S(dφ1, · · · , dφk+l−1).

We thus proved that d 7→ d̂ defines an isomorphism of graded Lie algebras.

By [10, 35], the exact sequence (4) always splits when rankE ≥ 2.

Corollary 1. If rankE ≥ 2, then we have

Xnlin(E) ∼= Γ(DnE∗) ∼= Γ(∧nE ⊗ E∗)⊕ Γ(∧n−1E ⊗ TM).

Example 1. When E = TM for a manifold M , we have

Xnlin(TM) ∼= Γ(DnT ∗M) ∼= Xn(M)⊗ Ω1(M)⊕ (Xn−1(M)⊗ X1(M)).

Example 2. When E = T ∗M for a manifold M , we have

Xnlin(T ∗M) ∼= Γ(DnTM) ∼= Ωn(M)⊗ X1(M)⊕ (Ωn−1(M)⊗ X1(M)).

Example 3. When E = V ∗ is a vector space, we have DV = gl(V ) and JV = V .
In this case,

Xnlin(V ∗) ∼= Γ(DnV ) = Hom(∧nV, V ).

When E = M × V ∗, we have D(M × V ) = TM ⊕ gl(V ) and J(M × V ) = (T ∗M ⊗
V )⊕ (M × V ). Furthermore, the space of linear n-vector fields on M × V ∗ is

Xnlin(M × V ∗) ∼= Γ(Dn(M × V )) ∼= Hom(∧nV, V )⊕ (X1(M)⊗ ∧n−1V ∗).

Example 4. Consider the case E = M ×R. Then we have DE = TM ×R and
JE = T ∗M ×R. By definitions, we obtain

Xnlin(M ×R) ∼= Γ(Dn(M ×R)) ∼= Xn(M)⊕ Xn−1(M), n ≥ 1.

2.2. Linear n-forms on a vector bundle. It is well known that linear 1-forms
on a vector bundle E can be viewed as sections of the first jet bundle JE∗. Here
we find that linear n-forms studied in [5] are sections of the n-th jet bundle JnE
introduced in [8].

Definition 2.2. ([5]) An n-form Λ on a vector bundle E is called linear if the
induced map Λ] : ⊕n−1

E TE → T ∗E:

⊕n−1
E TE T ∗E

⊕n−1TM E∗

Λ]

λ

,

is a morphism of vector bundles, where λ : ⊕n−1TM → E∗ is the covering map on
the base manifolds. The space of linear n-forms on E is denoted by Ωnlin(E).
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As the map λ is skew-symmetric, it is a bundle map ∧n−1TM → E∗. In par-
ticular, a linear 1-form is a section of T ∗E → E which induces a bundle map from
E → M to T ∗E → E∗. In other words, it is a linear section of T ∗E → E in the
double vector bundle (T ∗E;E,E∗;M), which is a section of JE∗.

A simpler description of linear n-forms is by using the homogeneity structure.
Similar to Proposition 1, we have the following results for linear n-forms, which are
based on results from [5, 18, 29].

Proposition 2. Let Λ ∈ Ωn(E). Then the following statements are equivalent:

(1) Λ is a linear n-form;
(2) h∗λΛ = λΛ;
(3) Choose a local coordinate {xi, uj} on E, where {xi} and {uj} are the coor-

dinate functions on M and the fiber respectively. Then Λ is locally of the
form

Λ =
1

n!
Λi1···in,j(x)ujdxi1 ∧ · · · ∧ dxin

+
1

(n− 1)!
λi1···in−1,j(x)dxi1 ∧ · · · dxin−1 ∧ duj .

(10)

It is obvious from (2) in the above proposition that linear forms are closed under
the de Rham differential.

We give another equivalent description of linear n-forms on E by use of the linear
vector fields on E.

Lemma 2.3. An n-form Λ ∈ Ωn(E) is linear if and only if there exists a bundle
map λ : ∧n−1TM → E∗, such that

Λ(X1, · · · , Xn) ∈ Γ(E∗), Λ(X1, · · · , Xn−1,Φ) = Φ ◦ λ(X1, · · · , Xn−1),

where Xi ∈ X1
lin(E) which determines Xi ∈ X1(M) and Φ ∈ X1

lin(E) satisfying
Φ(dp∗Ef) = 0 for any f ∈ C∞(M).

Proof. Taking a local coordinate (xi, uj) for E, a linear vector field X ∈ X1
lin(E)

has the form

X = fkj (x)uj
∂

∂uk
+ f i(x)

∂

∂xi
.

If Λ is linear, by the local formula (10), it is direct to see that Λ(X1, · · · , Xn) ∈
Γ(E∗) for Xi ∈ X1

lin(E). Then suppose

Xl = fkljl (x)ujl
∂

∂ukl
+ f il(x)

∂

∂xil
,

we have Xl = f il(x) ∂
∂xil
∈ X1(M). Assume Φ = fkj (x)uj ∂

∂uk , we have

Λ(X1, · · · , Xn−1,Φ) = Λ(f i1(x)
∂

∂xi1
, · · · , f in−1(x)

∂

∂xin−1
, fkj (x)uj

∂

∂uk
)

= Φ ◦ λ(X1, · · · , Xn−1).

It is similar for the converse.

The following theorem is a dual of Theorem 2.1.

Theorem 2.4. For a vector bundle E, we have dΩnlin(E) ⊂ Ωn+1
lin (E). Moreover,

we have an isomorphism of cochain complexes:

(Γ(J•E
∗),d) ∼= (Ω•lin(E), d), µ 7→ µ̂,
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where µ̂ is defined by

µ̂(X1, · · · , Xn) = µ(X̌1, · · · , X̌n), Xi ∈ X1
lin(E)

and X̌i ∈ Γ(DE∗) is defined by X̌i(dφ) = Xi(dφ) for φ ∈ Γ(E∗).

Proof. By using the homogeneity, an n-form Λ ∈ Ωn(E) is linear if h∗λΛ = λΛ. It
is obvious that the de Rham differential dΛ is a linear (n+ 1)-form. This fact can
also be seen from the local expression (10) of linear forms. We get that dΩnlin(E) ⊂
Ωn+1
lin (E).
Then we check that µ 7→ µ̂ is well-defined. It is obvious that µ̂(X1, · · · , Xn) ∈

Γ(E∗), and

µ̂(X1, · · · , Xn−1,Φ) = µ(X̌1, · · · , X̌n−1,Φ) = Φ ◦ p(µ)(X1, · · · , Xn−1),

where p : JnE
∗ → Hom(∧n−1TM,E∗) is the map in (6). So µ̂ ∈ Ωnlin(E) and the

associated bundle map ∧n−1TM → E∗ is p(µ).
Then we define an inverse map of µ 7→ µ̂. For Λ ∈ Ωnlin(E), define

Λ̌(d1, · · · , dn) = Λ(d̂1, · · · , d̂n), di ∈ Γ(DE∗),

where d̂i ∈ X1
lin(E) is defined by d̂i(dφ) = di(dφ) for φ ∈ Γ(E∗). By Lemma 2.3,

we can check that Λ̌ ∈ Γ(JnE
∗). We get a map

Ωnlin(E)→ Γ(JnE
∗), Λ 7→ Λ̌,

and it is the inverse of the map µ 7→ µ̂. We get an isomorphism.
Now it is left to check µ 7→ µ̂ actually gives an isomorphism of cochain complexes,

namely

d̂µ = dµ̂, µ ∈ Γ(JnE
∗).

We have the following diagram:

(Γ(J•E
∗),d) (Hom(∧nDE∗, E∗), dCE)

(Ω•lin(E), d) (Hom(∧nX1
lin(E),Γ(E∗)), d),

⊂

⊂

where the left two complexes are subcomplexes of the right two complexes. We
note that the right vertical side is actually an isomorphism of cochain complexes.
As Γ(DE) ∼= X1

lin(E), comparing the Chavelley-Eilenberg differential (7) and the

de Rham differential, we have d̂µ = d̂CEµ = dµ̂ for µ ∈ Γ(JnE
∗).

The exact sequence (6) of JnE splits at the level of sections ([8]).

Corollary 2. We have

Ωnlin(E) ∼= Γ(JnE
∗) ∼= Γ(∧nT ∗M ⊗ E∗)⊕ Γ(∧n−1T ∗M ⊗ E∗).

Example 5. When E = TM for a manifold M , we have

Ωnlin(TM) ∼= Γ(JnT
∗M) ∼= Ωn(M)⊗ Ω1(M)⊕ (Ωn−1(M)⊗ Ω1(M)).

Example 6. When E = T ∗M for a manifold M , we have

Ωnlin(T ∗M) ∼= Γ(JnTM) ∼= Ωn(M)⊗ X1(M)⊕ (Ωn−1(M)⊗ X1(M)).

Comparing with Example 2, we see Xnlin(T ∗M) ∼= Ωnlin(T ∗M).
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Example 7. When E = V ∗ is a vector space, we have

Ωnlin(V ∗) ∼= Γ(JnV ) = 0, n ≥ 2.

Actually, for µ ∈ Γ(J2V ), as µ(A∧B) = Bµ(A∧ IdV ) = −BAµ(IdV ∧ IdV ) = 0 for
A,B ∈ gl(V ), we see µ = 0.

When E = M × V ∗, we get

Ωnlin(M × V ∗) ∼= Γ(Jn(M × V )) ∼= Ωn(M)⊗ V ⊕ Ωn−1(M)⊗ V.

Example 8. Consider the case E = M × R, the trivial line bundle. We have
DE = TM ×R and JE = T ∗M ×R. By definition, we obtain

Ωnlin(M ×R) ∼= Γ(JnE
∗) ∼= Ωn(M)⊕ Ωn−1(M).

2.3. Pseudo-linearization of higher analogues of Courant algebroids TE∗⊕
∧nT ∗E∗. In this section, as consequences of Theorems 2.1 and 2.4, we show that
the n-omni-Lie algebroid DE ⊕ JnE introduced in [3] is certain linearization of the
higher analogue of Courant algebroids TE∗ ⊕ ∧nT ∗E∗ ([1, 42]).

For a manifold M , on the vector bundle T n := TM ⊕ ∧nT ∗M, there exists a
natural non-degenerate symmetric pairing with values in ∧n−1T ∗M :

(X + α, Y + β) = ιXβ + ιY α, ∀ X,Y ∈ X1(M), α, β ∈ Ωn(M),

an anchor map
ρ : T n → TM, ρ(X + α) = X,

and a higher Dorfman bracket on Γ(T n):

{X + α, Y + β} = [X,Y ] + LXβ − ιY dα.
They satisfy some properties similar to that for a Courant algebroid. The quadruple
(T n, (·, ·), {·, ·}, ρ) is called a higher analogue of Courant algebroids in [1, 42].
See [11] for a similar structure on A ⊕ ∧nA∗ for any Lie algebroid A and relation
to the shifted cotangent bundle T ∗[n]A[1].

The n-omni-Lie algebroid of a vector bundle E ([3]) is the quadruple (DE ⊕
JnE, (·, ·), {·, ·}, ρ), where ρ : DE ⊕ JnE → DE is the projection to the first sum-
mand, (·, ·) is the Jn−1E-valued pairing

(d + µ, t + ν) = ιdν + ιtµ, ∀ d, t ∈ Γ(DE), µ, ν ∈ Γ(JnE),

and the bracket {·, ·} is

{d + µ, t + ν} = [d, t] + Ldν − ιtdµ.
Here Ld : Γ(JnE) → Γ(JnE) is defined in the following way: for ν ∈ Γ(JnE) ⊂
Hom(∧nDE,E), suppose ν = ω ⊗ u for ω ∈ Γ(∧n(DE)∗) and u ∈ Γ(E). Define

Ldν = (Ldω)⊗ u+ ω ⊗ d(u).

It is proved in [8, Proposition 3.2] that Ldν ∈ Γ(JnE).
By Theorems 2.1 and 2.4, linear vector fields and linear n-forms on E∗ can be

seen as sections of DE and JnE respectively. So linear sections of TE∗ ⊕ ∧nT ∗E∗
are sections of the vector bundle DE ⊕ JnE. Also, linear multivector fields and
linear forms on a vector bundle are closed under the Schouten bracket and the de
Rham differential respectively. The following lemma states that the linearity is also
preserved by the Lie derivative and the contraction.

Lemma 2.5. We have

ιX1
lin(E)Ω

n
lin(E) ⊂ Ωn−1

lin (E), LX1
lin(E)Ω

n
lin(E) ⊂ Ωnlin(E).
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Proof. For X ∈ X1
lin(E) and Λ ∈ Ωnlin(E), since h∗λX = X and h∗λΛ = λΛ, it is

obvious that h∗λ(ιXΛ) = λιXΛ and h∗λ(LXΛ) = λLXΛ. The conclusion follows
immediately.

Recall from Theorems 2.1 and 2.4 that we have the isomorphisms Γ(D•E) ∼=
X•lin(E∗), d 7→ d̂ and Γ(J•E) ∼= Ω•lin(E∗), µ 7→ µ̂.

Theorem 2.6. For a vector bundle E, the n-omni-Lie algebroid DE ⊕ JnE is in-
duced from the higher analogue of Courant algebroids (TE∗⊕∧nT ∗E∗, (·, ·), {·, ·}, ρ)
by restricting to X1

lin(E∗)⊕ Ωnlin(E∗). Precisely, we have

(̂d, µ) = (d̂, µ̂);

[̂d, t] = [d̂, t̂]S ;

L̂dµ = Ld̂µ̂;

ι̂ddµ = ιd̂dµ̂,

for d, t ∈ Γ(DE) and µ ∈ Γ(JnE).

Proof. By Theorems 2.1 and 2.4, we know that Γ(DE) ∼= X1
lin(E∗), Γ(JnE) ∼=

Ωnlin(E∗), and we have [̂d, t] = [d̂, t̂]S . We claim that

ιd̂µ̂ = ι̂dµ, d ∈ Γ(DE), µ ∈ Γ(JnE). (11)

Indeed, for X1, · · · , Xn−1 ∈ X1
lin(E∗), we have

ιd̂µ̂(X1, · · · , Xn−1) = µ̂(d̂, X1, · · · , Xn−1)

= µ(d, X̌1, · · · , ˇXn−1) = ι̂dµ(X1, · · · , Xn−1),

where X̌i ∈ Γ(DE) is defined by X̌i(du) = Xi(du) for u ∈ Γ(E). We thus have

(̂d, µ) = ι̂dµ = ιd̂µ̂ = (d̂, µ̂). By Theorem 2.4, we have

dµ̂ = d̂µ. (12)

By use of (11) and (12), we have

ι̂ddµ = ιd̂d̂µ = ιd̂dµ̂,

and
L̂dµ = ι̂ddµ+ d̂ιdµ = ιd̂d̂µ+ dι̂dµ = ιd̂dµ̂+ dιd̂µ̂ = Ld̂µ̂.

This completes the proof.

As a consequence, we call n-omni-Lie algebroids the pseudo-linearization of
higher analogues of Courant algebroids. As the linearization, n-omni-Lie algebroids
inherit many properties of the higher analogues of Courant algebroids. By [1, The-
orem 2.2, 2.5] and Theorem 2.6, we recover the following result in [3], where they
proved it by direct calculation. In preparation, we first recall the definition of
Leibniz algebroids.

A Leibniz algebroid ([16, 17, 23]) is a vector bundle E with a bracket {·, ·} on
Γ(E) and a bundle map ρ : E → TM , called the anchor map, satisfying that

{u, {v, w}} = {{u, v}, w}+ {v, {u,w}}, {u, fv} = f{u, v}+ ρ(u)(f)v,

for all u, v, w ∈ Γ(E) and f ∈ C∞(M).

Corollary 3. Let (DE ⊕ JnE, (·, ·), {·, ·}, ρ) be an n-omni-Lie algebroid. Then

(i) (DE⊕JnE, {·, ·}, j◦ρ) is a Leibniz algebroid, where j : DE → TM is the map
in (1);
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(ii) {e, e} = 1
2d(e, e);

(iii) ρ(e1)(e2, e3) = ({e1, e2}, e3) + (e2, {e1, e3}),
for all e, ei ∈ Γ(DE ⊕ JnE).

Remark 1. When E = V , a vector space, the n-omni-Lie algebroid for n ≥ 2 is
just gl(V ). So n-omni-Lie algebroids do not include omni n-Lie algebras studied in
[31] as special cases.

3. Weinstein-linearization of TE∗ ⊕ ∧nT ∗E∗ and omni n-Lie algebroids.
On the vector bundle DE ⊕ ∧nJE, we introduce an E ⊗ ∧n−1JE-valued pairing

(d + α, t + β) = ιdβ + ιtα, ∀ d, t ∈ Γ(DE), α, β ∈ Γ(∧nJE), (13)

and a bracket

{d + α, t + β} := [X,Y ] + Ldβ − ιtdα, (14)

where Ld : Γ(∧nJE)→ Γ(∧nJE) is defined by

Ld(α1 ∧ · · ·αn) =

n∑
i=1

α1 ∧ · · · ∧ Ldαi ∧ αi+1 ∧ · · · ∧ αn, αi ∈ Γ(JE),

and d : Γ(∧nJE)→ Γ(J2E ⊗ ∧n−1JE) is defined by

d(α1 ∧ · · · ∧ αn) =

n∑
i=1

(−1)i−1(dαi)⊗ α1 ∧ · · · ∧ α̂i ∧ · · · ∧ αn,

where α̂i means taking αi out. The contraction

ιt : Γ(J2E ⊗ ∧n−1JE) −→ Γ(∧nJE)

is defined by

ιt(ω ⊗ α1 ∧ · · · ∧ αn−1) := ω(t) ∧ α1 ∧ · · ·αn−1

+

n∑
i=1

(−1)iιtαi ⊗ ω ∧ α1 ∧ · · · ∧ α̂i ∧ · · · ∧ αn−1,
(15)

for ω ∈ Γ(J2E) and αi ∈ Γ(JE).
The following lemma makes sure that ιt is well-defined.

Lemma 3.1. For t ∈ Γ(DE) and ω⊗α1∧ · · ·∧αn−1 ∈ Γ(J2E⊗∧n−1JE), we have

ιt(ω ⊗ α1 ∧ · · · ∧ αn−1) ∈ Γ(∧nJE).

Proof. Let us prove this result by using Theorem 2.4. With respect to the relation
between Ω2

lin(E∗) and ∧2Ω1
lin(E∗), we have the following assertion:

Γ(E)⊗ Ω2
lin(E∗) ↪→ ∧2Ω1

lin(E∗). (16)

It is easily seen from the homogeneity structure on E∗. In fact, for f ∈ Γ(E) and
Λ ∈ Ω2

lin(E∗), we have h∗λf = λf and h∗λΛ = λΛ. Then, h∗λ(fΛ) = h∗λ(f)h∗λ(Λ) =
λ2fΛ, which implies that fΛ ∈ ∧2Ω1

lin(E∗). Thus we proved (16). By Theorem
2.4, we further get

Γ(E ⊗ J2E) ↪→ Γ(∧2JE). (17)

This implies that ιtαi⊗ω in (15) belongs to Γ(∧2JE). So both of the two terms in
the right hand side of (15) belong to Γ(∧nJE). We obtain ιt(ω⊗α1 ∧ · · · ∧αn−1) ∈
Γ(∧nJE).
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Based on this lemma, for t ∈ Γ(DE) and α ∈ Γ(∧nJE), we have ιtdα ∈ Γ(∧nJE).
Since Ltα ∈ Γ(∧nJE) by definition, we further get dιtα ∈ Γ(∧nJE).

Definition 3.2. The omni n-Lie algebroid1 associated to a vector bundle E is
a quadruple (DE ⊕ ∧nJE, (·, ·), {·, ·}, ρ), where ρ is the anchor map

ρ : DE ⊕ ∧nJE → DE, ρ(X + α) = X,

the E ⊗ ∧n−1JE-valued pairing (·, ·) and the bracket {·, ·} are given by (13) and
(14) respectively.

3.1. Weinstein-linearization of higher analogues of Courant algebroids
TE∗ ⊕ ∧nT ∗E∗. In this subsection, we show that the omni n-Lie algebroid given
in the last subsection is certain linearization of the higher analogue of Courant
algebroids TE∗ ⊕ ∧nT ∗E∗.

By Theorem 2.4, we have the isomorphism Γ(∧nJE) ∼= ∧nΩ1
lin(E∗), α 7→ α̂,

where
α̂ = α̂1 ∧ · · · ∧ α̂n (18)

if α = α1 ∧ · · · ∧ αn for αi ∈ Γ(JE). Here α̂i ∈ Ω1
lin(E∗).

Theorem 3.3. The embedding of sections of the omni n-Lie algebroid DE⊕∧nJE
into the higher analogue of Courant algebroids TE∗ ⊕ ∧nT ∗E∗ given by (9) and
(18) defines a sub-Leibniz algebroid satisfying

(̂d, α) = (d̂, α̂);

[̂d, t] = [d̂, t̂]S ;

L̂dα = Ld̂α̂;

ι̂ddα = ιd̂dα̂,

for d, t ∈ Γ(DE) and α ∈ Γ(∧nJE).

Proof. Based on Theorem 2.1 and 2.4, following the same manner as in Theorem
2.6, we could get this result. We omit the details here.

As a consequence, we call omni n-Lie algebroids the Weinstein-linearization
of higher analogues of Courant algebroids.

By Theorem 3.3 and the properties of higher analogues of Courant algebroids
TE∗ ⊕ ∧nT ∗E∗, we get the following relations.

Proposition 3. The omni n-Lie algebroid (DE⊕∧nJE, (·, ·), {·, ·}, ρ) has the prop-
erties:

• {e1, {e2, e3}} = {{e1, e2}, e3}+ {e2, {e1, e3}};
• ρ({e1, e2}) = [ρ(e1), ρ(e2)];
• {e1, fe2} = f{e1, e2}+ (j ◦ ρ)(e1)fe2;
• {e, e} = 1

2d(e, e);
• ρ(e1)(e2, e3) = ({e1, e2}, e3) + (e2, {e1, e3}),

for all e1, e2, e3 ∈ Γ(DE ⊕ ∧nJE), where j : DE → TM is the map in (1) and
d : Γ(E ⊗ ∧n−1JE)→ Γ(∧nJE) is defined by the map

d(u⊗α1∧· · ·∧αn−1) = du∧α1∧· · ·∧αn−1+

n−1∑
i=1

(−1)i−1u⊗dαi∧α1∧· · ·∧α̂i∧· · ·∧αn−1,

1By personal communication with Luca Vitagliano, we learned that this definition was also
given in their original version of [3], but not appeared in the published version.
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for u ∈ Γ(E) and αi ∈ Γ(JE), which is well-defined by (17).

Corollary 4. We have that (DE ⊕∧nJE, {·, ·}, j ◦ ρ) is a Leibniz algebroid, where
j : DE → TM is the map in (1).

When the vector bundle E is a vector space, denoted by V , we have DE = gl(V )
and JE = V . In this case, the Lie derivative of DE on ∧nJE and the contraction
of ∧nJE by DE are:

LX : ∧nV → ∧nV, LX(α1 ∧ · · · ∧ αn) =

n∑
i=1

α1 ∧ · · · ∧Xαi ∧ · · · ∧ αn, (19)

and ιX : ∧nV → V ⊗ ∧n−1V ,

ιX(α1 ∧ · · · ∧ αn) =

n∑
i=1

(−1)i−1Xαi ⊗ α1 ∧ · · · ∧ α̂i ∧ · · · ∧ αn, (20)

for X ∈ gl(V ) and αi ∈ V .
The omni n-Lie algebroid for a vector space V is

(gl(V )⊕ ∧nV, (·, ·), {·, ·}),

where the pairing (·, ·) takes values in V ⊗ ∧n−1V and is given by

(X + α, Y + β) = ιXβ + ιY α, ∀ X,Y ∈ gl(V ), α, β ∈ ∧nV,

and the bracket {·, ·} is defined by

{X + α, Y + β} = [X,Y ] + LXβ.

Here ιXβ and LXβ are defined by (20) and (19). This is the omni n-Lie algebra
introduced in [31], which is the base-linearization of the higher analogue of the
standard Courant algebroid TM ⊕ ∧nT ∗M .

3.2. Integrable subbundles of omni n-Lie algebroids and n-Lie algebroids.
The notion of n-Lie algebroids, also called Filippov algebroids, was introduced in
[17]. In this subsection, we show that the graph of Π] : ∧nJE → DE for Π ∈
Γ(Dn+1E) is an integrable subbundle of the omni n-Lie algebroid DE ⊕ ∧nJE if
and only if it defines an (n+ 1)-Lie algebroid structure on E.

Definition 3.4. ([17]) An n-Lie algebroid is a vector bundle E with a skew-
symmetric n-bracket on its sections

[·, · · · , ·] : Γ(E)× · · · × Γ(E)→ Γ(E)

satisfying the fundamental identity:

[u1, · · · , un−1, [v1, · · · , vn]] =

n∑
i=1

[v1, · · · , vi−1, [u1, · · · , un−1, vi], · · · , vn], (21)

for all ui, vi ∈ Γ(E), and a bundle map ρ : ∧n−1E → TM , called the anchor map,
such that the Leibniz rule holds:

[u1, · · · , fun] = f [u1, · · · , un] + ρ(u1, · · · , un−1)(f)un, ∀ ui ∈ Γ(E), f ∈ C∞(M).

When E is a vector space, this recovers the notion of an n-Lie algebra ([14]).
The section space Γ(E) of an n-Lie algebroid with the n-bracket [·, · · · , ·] is an n-Lie
algebra.
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Remark 2. An n-Lie algebra structure on V gives rise to a Leibniz algebra structure
on ∧n−1V ([12]). Applying this to the section space Γ(E) of an n-Lie algebroid E,
we obtain a Leibniz algebra structure on Γ(∧n−1E) given by

u ◦ v =

n−1∑
i=1

v1 ∧ · · · vi−1 ∧ [u1, · · · , un−1, vi] ∧ vi+1 ∧ · · · ∧ vn−1,

for u = u1 ∧ · · · ∧ un−1 and v = v1 ∧ · · · ∧ vn−1. Then we deduce that the anchor
map

ρ : (Γ(∧n−1E), ◦)→ (X1(M), [·, ·])
in the definition of n-Lie algebroids is a Leibniz algebra morphism. This can be
proved by replacing vn by fvn in the fundamental identity (21) and then using the
Leibniz rule. This condition was listed in the definition of Filippov algebroids in
[17], which is redundant.

Recall from [7, 9] that a Lie algebroid structure on a vector bundle E gives rise
to a bundle map from JE to DE whose graph is an integrable subbundle of the
omni-Lie algebroid DE⊕JE. Moreover, Lie algebroid structures on a vector bundle
E correspond to linear Poisson structures on E∗. We shall generalize these results
to n-Lie algebroids and linear Nambu-Poisson structures.

Let Π ∈ Γ(Dn+1E). By definition, it gives a bundle map Π] : ∧nJE → DE.
Conversely, a bundle map ∧nJE → DE gives a skew-symmetric map ∧n+1JE → E,
if and only if it is a section of Dn+1E.

Define the graph of Π] : ∧nJE → DE by

GΠ] = {Π](α) + α;α ∈ ∧nJE} ⊂ DE ⊕ ∧nJE. (22)

The following result needs the assumption rankE ≥ 2 to guarantee that the
anchor map is function linear.

Theorem 3.5. If E is a vector bundle with rankE ≥ 2, then there is a one-
one correspondence between (n + 1)-Lie algebroid structures (E, [·, · · · , ·], ρ) and
integrable subbundles GΠ] defined by (22) of the omni n-Lie algebroid DE ⊕ ∧nJE
coming from Π ∈ Γ(Dn+1E), which is given by

[u1, · · · , un+1] = Π(du1,du2, · · · ,dun+1), (23)

ρ(u1, · · · , un) = j(Π](du1, · · · ,dun)), (24)

where ui ∈ Γ(E) and j : DE → TM is the map in (1).

Proof. By Theorem 2.1, for Π ∈ Γ(Dn+1E), we have Π̂ ∈ Xn+1
lin (E∗). Recall that

a Nambu-Poisson structure of order n on a manifold M is an (n + 1)-vector field
Π ∈ Xn+1(M) such that

LΠ](df1∧···∧dfn)Π = 0, ∀f1, · · · , fn ∈ C∞(M).

It is from [1, Theorem 1] that Π̂ is a Nambu-Poisson structure on E∗ if and only if

the graph of Π̂] : ∧nT ∗E∗ → TE∗ is an integrable subbundle of the higher analogue
of Courant algebroids TE∗ ⊕ ∧nT ∗E∗.

By Theorem 3.3, if the graph GΠ] ⊂ DE ⊕ ∧nJE is integrable, then the graph

G(−1)n+1Π̂] ⊂ TE∗⊕∧nT ∗E∗ is also integrable, which is equivalent to that (−1)n+1Π̂

is a Nambu-Poisson structure on E∗. In particular, this Nambu-Poisson structure
is linear, meaning that

[u1, · · · , un+1] = (−1)n+1Π̂(du1, · · · , dun+1) = Π(du1, · · · ,dun+1) ∈ Γ(E).
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Therefore, we obtain an (n+1)-Lie algebra structure defined by (23) on Γ(E). Also,
we have

[u1, · · · , un, fun+1] = Π(du1, · · · , fdun+1 + df ⊗ un+1)

= f [u1, · · · , un+1] + j(Π](du1, · · · ,dun))(f)un+1

= f [u1, · · · , un+1] + ρ(u1, · · · , un)(f)un+1.

We claim that (E, [·, · · · , ·], ρ) is an (n + 1)-Lie algebroid. It suffices to check that
ρ : ∧nΓ(E) → X1(M) defined by (24) induces a bundle map from ∧nE to TM .
This is equivalent to

j(Π](df ⊗ u1,du2, · · · ,dun)) = 0, ∀ f ∈ C∞(M), ui ∈ Γ(E), (25)

as

ρ(fu1, · · · , un) = j(Π](df ⊗ u1,du2, · · · ,dun)) + fρ(u1, · · · , un).

In fact, as Π is skew-symmetric, for df ⊗ u1, df
′ ⊗ u′1 ∈ Γ(T ∗M ⊗ E), we have

(Π](df ⊗ u1,du2, · · · ,dun), df ′ ⊗ u′1) = j(Π](df ⊗ u1,du2, · · · ,dun))(f ′)u′1

= −j(Π](df ′ ⊗ u′1,du2, · · · ,dun))(f)u1.

Since rankE ≥ 2, we choose u1 and u′1 to be independent. So the coefficients
of u1 and u′1 in the above formulas must be zero. Thus we proved (25). Hence
(E, [·, · · · , ·], ρ) is an (n+ 1)-Lie algebroid.

From the above verification, the converse direction also holds.

Recall that for a bivector field Π ∈ X2(M) on a manifold M , the graph of
Π] : T ∗M → TM in TM ⊕T ∗M is integrable with respect to the standard Courant
bracket if and only if Π][α, β]Π = [Π](α),Π](β)] for α, β ∈ Ω1(M), where [α, β]Π =
LΠ](α)β − LΠ](β)α + d(Π](β), α). That is, Π is a Poisson structure. Moreover,

(T ∗M, [·, ·]Π,Π]) is a Lie algebroid. Analogously, we have

Proposition 4. For Π ∈ Γ(Dn+1E), its graph GΠ] given by (22) is an integrable
subbundle of the omni n-Lie algebroid DE ⊕ ∧nJE if and only if

Π][α, β]Π = [Π](α),Π](β)], ∀ α, β ∈ Γ(∧nJE),

where the bracket [·, ·]Π on ∧nJE is defined as

[α, β]Π = LΠ](α)β − LΠ](β)α+ d(Π](β), α).

Moreover, such an integrable subbundle induces a Leibniz algebroid (∧nJE, [·, ·]Π, j◦
Π]), where j : DE → TM is the bundle map in (1).

Proof. By the calculation

{Π](α)+α,Π](β)+β} = [Π](α),Π](β)]+LΠ](α)β−ιΠ](β)dα, ∀ α, β ∈ Γ(∧nJE),

we see that GΠ] is closed with respect to the Dorfman bracket (14) if and only
if Π][α, β]Π = [Π](α),Π](β)]. This is equivalent to that [·, ·]Π satisfies the Jacobi
identity. It is left to check the Leibniz rule. For f ∈ C∞(M), we have

[α, fβ]Π = f [α, β]Π + (LΠ](α)f)β = f [α, β]Π + j(Π](α))(f)β.

So (∧nJE, [·, ·]Π, j ◦Π]) is a Leibniz algebroid.

For a Lie algebroid E, the first jet bundle JE has a natural Lie algebroid structure
with the bracket such that [du1,du2] = d[u1, u2]E . Similar to this, we have the
following result.
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Proposition 5. Let (E, [·, · · · , ·]E , ρE) be an (n+ 1)-Lie algebroid. Then

(1) there exists a unique (n+1)-Lie algebroid structure (JE, [·, · · · , ·], ρJE) on JE
such that

[du1, · · · ,dun+1] = d[u1, · · · , un]E , ρJE(du1, · · · ,dun) = ρE(u1, · · · , un);

(2) there exists a unique Leibniz algebroid structure (∧nJE, [·, ·], ρ) on ∧nJE such
that

[du1 ∧ · · · ∧ dun,dv1 ∧ · · · ∧ dvn] =

n∑
i=1

dv1 ∧ · · ·d[u1, · · · , un, vi]E ∧ · · · ∧ dvn,

and ρ(du1 ∧ · · · ∧ dun) = ρE(u1, · · · , un), for ui, vi ∈ Γ(E).

Proof. The proof is standard. We omit the details.

Applying Theorem 3.5 and Proposition 4 to the case when E is a vector space V ,
we get a Leibniz algebra gl(V ) ⊕ ∧nV . Let Π : ∧n+1V → V be a skew-symmetric
linear map. It induces a linear map Π] : ∧nV → gl(V ):

Π](α)(αn+1) = Π(α, αn+1), ∀ α ∈ ∧nV, αn+1 ∈ V.

Corollary 5. Let Π : ∧n+1V → V be a linear map. Then the following statements
are equivalent:

(1) the graph GΠ] ⊂ gl(V )⊕ ∧nV is a sub-Leibniz algebra;
(2) V with the bracket {α1, · · · , αn+1} = Π(α1, · · · , αn+1) is an (n+ 1)-Lie alge-

bra;
(3) ∧nV with the bracket [α, β]Π = LΠ](α)β is a Leibniz algebra;

(4) Π][α, β]Π = [Π](α),Π](β)], where [α, β]Π := LΠ](α)β for α, β ∈ ∧nV .

The equivalence of (1) and (2) is exactly [31, Theorem 3.4].

3.3. Integrable subbundles of omni n-Lie algebroids and Nambu-Jacobi
structures. We explored the integrable subbundles of omni n-Lie algebroids when
rank(E) ≥ 2 and found Theorem 3.5. Now we study the case when rank(E) = 1
and particularly when E is a trivial line bundle.

A local n-Lie algebra is a vector bundle E such that Γ(E) has an n-Lie algebra
structure with the property supp[u1, · · · , un] ⊂ suppu1∩· · ·∩suppun for ui ∈ Γ(E).
When E is the trivial line bundle M×R, it recovers the definition of Nambu-Jacobi
structures on a manifold.

Nambu-Jacobi structures are the generalization of both Jacobi structures and
Nambu-Poisson structures; see [20, 21, 33, 34].

Definition 3.6. A Nambu-Jacobi structure of order n on a manifold M (2 ≤
n ≤ dimM) is a linear skew-symmetric n-bracket [·, · · · , ·] : C∞(M)×· · ·×C∞(M)→
C∞(M), which is a first order differential operator, i.e.

[g1g2, f1, · · · , fn−1] = g1[g2, f1, · · · , fn−1]+g2[g1, f1, · · · , fn−1]−g1g2[1, f1, · · · , fn−1],

and satisfies the fundamental identity (21), i.e.

[f1, · · · , fn−1, [g1, · · · , gn]] =

n∑
i=1

[g1, · · · , gi−1, [f1, · · · , fn−1, gi], gi+1, · · · , gn],

for fi, gi ∈ C∞(M).
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A manifold with such a bracket on its function space is called a Nambu-Jacobi
manifold of order n. A Jacobi manifold is a Nambu-Jacobi manifold of order
2 and a Nambu-Poisson manifold is a Nambu-Jacobi manifold whose bracket
vanishes if one of the functions is constant. When n > 2, a Nambu-Jacobi struc-
ture of order n is equivalently determined by a compatible pair of Nambu-Poisson
structures Λ ∈ Xn(M) and Γ ∈ Xn−1(M); see [24, 33] for details.

Theorem 3.7. Assume that E is a line bundle. There is a one-one correspondence
between local (n+ 1)-Lie algebra structures [·, · · · , ·] on E and integrable subbundles
GΠ] ⊂ DE ⊕ ∧nJE for Π ∈ Γ(Dn+1E) satisfying that

[u1, · · · , un+1] = Π(du1, · · · ,dun+1), ∀ ui ∈ Γ(E).

Moreover, Π induces an (n + 1)-Lie algebroid structure on E if and only if j ◦
Π] ◦ e = 0, where j : DE → TM and e : T ∗M ⊗ E → JE are given in (1) and (2)
respectively.

Proof. The first part of the proof of Theorem 3.5 still holds until the assumption
rankE ≥ 2 is used. So we also get an (n+1)-Lie bracket on Γ(E) if the graph GΠ] is
integrable. This bracket is local. When rankE = 1, the map ρ : ∧nΓ(E)→ X1(M)
is not necessarily a bundle map. So in general, we obtain a local (n+ 1)-Lie algebra
on E, which is an (n+1)-Lie algebroid if and only if (25) holds, namely, j◦Π]◦e = 0.
The converse is easy to get.

Now we study in detail the case of E = M ×R, the trivial line bundle over M
and build the relation between omni n-Lie algebroids and Nambu-Jacobi structures.
For this, we first make some preparations. In this case, DE = TM × R and
JE = T ∗M ×R. Here DE is a Lie algebroid with the Lie bracket and the anchor
given by

[X+f, Y+g] = [X,Y ]+Xg−Y f, ρ(X+f) = X, ∀X,Y ∈ X1(M), f, g ∈ C∞(M).

The pairing between DE and JE is given by

(X + f, ξ + g) = ιXξ + fg, ξ ∈ Ω1(M). (26)

And the action of Γ(DE) on Γ(E) is

(X + g)f = Xf + gf. (27)

Before writing down the structures of the omni n-Lie algebroid DE⊕∧nJE when
E = M ×R for a general n, we first make clear of the differential d on J•E in this
case.

Lemma 3.8. When E = M × R, we have JnE = Ωn(M) ⊕ Ωn−1(M) and the
differential d : JnE → Jn+1E is given by

d(f) = df + f, ∀ f ∈ C∞(M);

d(αn + αn−1) = dαn + αn − dαn−1, ∀ αn ∈ Ωn(M), αn−1 ∈ Ωn−1(M), n ≥ 1.

Proof. By the pairing (26) and the action (27) for E = M ×R, we have

df(X+g) = (X+g)f = Xf+gf = (df+f,X+g), ∀f, g ∈ C∞(M), X ∈ X1(M).

Therefore, d : Γ(E) → Γ(JE) is given by df = df + f . To see the action of d on
Γ(JE), for α ∈ Ω1(M), we have

dα(X + f, Y + h) = (X + f)ιY α− (Y + h)ιXα− ι[X,Y ]α

= dα(X,Y ) + fιY α− hιXα.
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Hence we obtain dα = dα+α. Here α ∈ Ω1(M) is viewed as an element in J2E by
α(f, Y ) = fιY α and α(Y, f) = −fιY α.

Then, for g ∈ C∞(M) as a section of JE, we have

dg(X + f, Y + h) = (X + f)(gh)− (Y + h)(gf)− g(Xh− Y f)

= h(Xg)− f(Y g)

= dg(h,X)− dg(f, Y ),

thus we get dg = −dg ∈ Ω1(M), which is seen as a section of J2E. The higher
degrees are similar to get.

Lemma 3.9. The Lie derivative of DE = TM × R on JE = T ∗M × R and the
contraction of JE by DE for E = M ×R are given by

LX+f (ξ + g) = LXξ + fξ + gdf +Xg + fg; (28)

ιX+fd(ξ + g) = ιXdξ + fξ − fdg − ιXξ +Xg, (29)

where X ∈ X1(M), ξ ∈ Ω1(M), f, g ∈ C∞(M).

Proof. By the general formula for the Lie derivative and the contraction of an omni-
Lie algebroid, using (26), we have

(LX+f (ξ + g), Y + h) = (X + f)(ιY ξ + gh)− (ξ + g, [X,Y ] +Xh− Y f)

= X(ιY ξ + gh) + fιY ξ + fgh− ξ([X,Y ])− g(Xh− Y f)

= (LXξ + fξ + gdf +Xg + fg, Y + h).

So we get that

LX+f (ξ + g) = LXξ + fξ + gdf +Xg + fg.

By the fact that d(g) = dg + g for any g ∈ C∞(M) = Γ(E), we obtain

ιX+fd(ξ + g) = LX+f (ξ + g)− d(X + f, ξ + g)

= LXξ + fξ + gdf +Xg + fg − d(ιXξ + fg)− ιXξ − fg
= ιXdξ + fξ − fdg − ιXξ +Xg.

This is (29). We finishes the proof.

As a consequence, by using the Leibniz rule of the Lie derivative, the Lie deriv-
ative of DE on ∧nJE is also clear.

Proposition 6. For E = M×R, the omni n-Lie algebroid (DE⊕∧nJE, (·, ·), {·, ·}, ρ)
is defined as follows:

• DE ⊕ ∧nJE = TM ×R⊕
(
∧n T ∗M ⊕ ∧n−1T ∗M

)
,

• the (∧n−1T ∗M ⊕ ∧n−2T ∗M)-valued pairing is given by

(X + f, αn + αn−1) = ιXαn + fαn−1 − ιXαn−1, (30)

• the bracket is given by

{X + f, Y + g} = [X,Y ] +Xg − Y f ; (31)

{X + f, αn + αn−1} = LX+f (αn + αn−1)

= LXαn + fαn + df ∧ αn−1 + LXαn−1 + fαn−1; (32)

{αn + αn−1, X + f} = −ιX+fd(αn + αn−1)

= −ιXdαn − fαn + fdαn−1 + ιXαn − ιXdαn−1, (33)

where X,Y ∈ X1(M), f, g ∈ C∞(M), αn ∈ Ωn(M), αn−1 ∈ Ωn−1(M).
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Proof. By (26), we have

(X + f, α2) = ιXα2, (X + f, α1) = (X + f, 1 ∧ α1) = −ιXα1 + fα1,

for α2 ∈ Ω2(M) and α1 ∈ Ω1(M), treating as sections of ∧2JE. Based on this idea,
we get (30). (31) is clear. By (28) and the Leibniz rule, we get

{X+f, αn+αn−1} = LX+f (αn+αn−1) = LXαn+LXαn−1+fαn+df∧αn−1+fαn−1.

This is (32). Similarly we have

{αn + αn−1, X + f} = −LX+f (αn + αn−1) + d(αn + αn−1, X + f)

= −LX+f (αn + αn−1) + d(ιXαn + fαn−1 − ιXαn−1)

= −LXαn − fαn − df ∧ αn−1 − LXαn−1 − fαn−1

+d(ιXαn + fαn−1) + ιXαn + fαn−1 + dιXαn−1

= −ιXdαn − fαn + fdαn−1 + ιXαn − ιXdαn−1,

where the third identity follows from Lemma 3.8. Hence we get (33).

Remark 3. When n = 1, we obtain the structure of the omni-Lie algebroid for
E = M ×R:

DE ⊕ JE = (TM ×R)⊕ (T ∗M ×R),

where the Dorfman bracket is

{X + f, Y + g} = [X,Y ] +Xg − Y f ;

{X + f, ξ + g} = LXξ + fξ + gdf +Xg + fg;

{ξ + g,X + f} = −ιXdξ − fξ + fdg + ιXξ −Xg.
for all X,Y ∈ X1(M), f, g ∈ C∞(M) and ξ ∈ Ω1(M).

The skew-symmetrization of this bracket is

[X + f, Y + g] = [X,Y ] +Xg − Y f ;

[X + f, ξ + g] = LXξ −
1

2
dιXξ + fξ +

1

2
(gdf − fdg) +Xg − 1

2
ιXξ +

1

2
fg.

This is exactly the bracket given in [40] by Wade in the study of conformal Dirac
structures.

Also, the Lie derivative and contraction in Lemma 3.9 coincide with that in [26],
where they defined it directly.

Let E = M ×R and Π ∈ Γ(Dn+1E). The bundle map

Π : ∧n+1JE = ∧n+1T ∗M ⊕ ∧nT ∗M → E = M ×R
has two components

Π = Λ + Γ ∈ Xn+1(M)⊕ Xn(M).

As a consequence of Theorem 3.7, we have

Proposition 7. With the above notations, the graph of Π] = Λ] + Γ] defines an
integrable subbundle of the omni n-Lie algebroid TM ×R ⊕ (∧nT ∗M ×R) if and
only if it defines a Nambu-Jacobi structure of order n+ 1 on M whose Lie bracket
is

[f1, · · · , fn+1] = Λ(df1, · · · , dfn+1) +

n+1∑
i=1

(−1)i−1fiΓ(df1, · · · , d̂fi, · · · dfn+1),

for fi ∈ C∞(M).
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Proof. By definition, Nambu-Jacobi structures on M of order n+1 are local (n+1)-
Lie algebra structures on the trivial line bundle M × R. So by Theorem 3.7 and
Lemma 3.8, we obtain a Nambu-Jacobi structure on M with the bracket

[f1, · · · , fn+1] = (Λ + Γ)(df1, · · · ,dfn)

= (Λ + 1 ∧ Γ)(df1 + f1, · · · , dfn + fn)

= Λ(df1, · · · , dfn+1) +

n+1∑
i=1

(−1)i−1fiΓ(df1, · · · , d̂fi, · · · dfn+1),

which finishes the proof.

This Nambu-Jacobi structure also appeared in [21, 34] with a different sign con-
vention.
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