
Technische Universität München

Max-Planck-Institut für Physik
(Werner-Heisenberg-Institut)

Differential Equations and the Magnus
Exponential for multi-loop multi-scale

Feynman Integrals

Ulrich Schubert-Mielnik

Vollständiger Abdruck der von der Fakultät für Physik
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigten Dissertation.

Vorsitzender: Prof. Dr. St. Schönert
Prüfer der Dissertation: 1. Hon.-Prof. Dr. W. F. L. Hollik

2. Priv.-Doz. Dr. A. Vairo

Die Dissertation wurde am 05.07.2016
bei der Technischen Universität München eingereicht und

durch die Fakultät für Physik am 14.07.2016 angenommen.





This thesis is based on the author’s work conducted at the Max Planck Institute for
Physics (Werner-Heisenberg-Institute) in Munich. Parts of this work have already been
published in Refs. [1–8]

Articles

[1] M. Argeri, S. Di Vita, P. Mastrolia, E. Mirabella, J. Schlenk, U. Schubert, and L.
Tancredi, Magnus and Dyson Series for Master Integrals, JHEP 1403 (2014) 082,
arXiv:1401.2979

[2] S. Di Vita, P. Mastrolia, U. Schubert, and V. Yundin, Three-loop master integrals for
ladder-box diagrams with one massive leg, JHEP 09 (2014) 148, [ arXiv:1408.3107 ]

[3] P. Mastrolia, A. Primo, U. Schubert, and W. J. Torres Bobadilla, Off-shell currents
and color-kinematics duality, Phys. Lett. B753 (2016) 242–262, [ arXiv:1507.0753 ]

[4] S. Borowka, N. Greiner, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk, U. Schubert,
and T. Zirke, Higgs boson pair production in gluon fusion at NLO with full top-quark
mass dependence, arXiv:1604.0644

[5] R. Bonciani, S. Di Vita, P. Mastrolia, and U. Schubert, Two-Loop Master Integrals for
the mixed EW-QCD virtual corrections to Drell-Yan scattering, arXiv:1604.0858

Proceedings

[6] H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, T. Peraro, and
U. Schubert, Multi-loop Integrand Reduction via Multivariate Polynomial Division,
PoS RADCOR2013 (2013) 012, [ arXiv:1312.1627 ]

[7] T. Peraro, H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, and
U. Schubert, Integrand reduction at NLO and beyond, PoS EPS-HEP2013 (2013)
449

[8] P. Mastrolia, M. Argeri, S. Di Vita, E. Mirabella, J. Schlenk, U. Schubert, and L. Tan-
credi, Magnus and Dyson Series for Master Integrals, PoS LL2014 (2014) 007





Abstract

The upcoming Run II of the Large Hadron Collider will measure scattering events at un-
charted luminosities and energy scales. In order to exploit the measurements to their full
potential it is essential to describe scattering processes at very high accuracy. The intended
accuracies require the computation of higher loop amplitudes including the mass effects
stemming form electroweak bosons and the top quark. The inclusion of mass effects does
not only pose a challenge due to the increased number of kinematic scales, but also because
of the absence of symmetries, which facilitated the computations in masslesss theories.
In this thesis we discuss the underlying algebraic structure of scattering amplitudes aiming
at the development of novel techniques for their efficient computation. The techniques we
will discuss can be applied to generic amplitudes including the aforementioned mass effects.
In particular we will examine the algebra of the relations obeyed by dimensional regulated
integrals allowing us to find a basis of integrals, called master integrals. By definition the
latter span the whole space of Feynman integrals for a given process, allowing us to de-
rive differential equations for the master integrals. The choice of master integrals is by
no means unique and some choices can simplify the form of the differential equation and
therefore their solution. A particular convenient choice is indicated by a so-called canonical
differential equation, where the dependence on the dimensional regularization parameter
is factorized from the kinematics. The solution of such a canonical form can be obtained
algebraically and its analytic structure is evidently inherited from the associated matrix.
In this work we will focus on systems having a linear dependence on the dimensional reg-
ularization parameter and exploit the Magnus theory for differential equations in order to
readily write down their solution as a kinematic evolution operator, describing the evolution
from a boundary point to any point in the kinematic space. The evolution operator is given
as a product of two Magnus exponentials, where the first exponential can be understood as a
rotation in the space of master integrals, transforming the linear differential equation into its
canonical form and where the second Magnus exponential solves the corresponding canon-
ical form. We embodied this strategy for the computation of the master integrals for the
ladder-box diagram with one massive leg, which enter the next-to-next-to-next-to-leading
order virtual corrections to processes like the three-jet production mediated by vector boson
decay, V ∗ → jjj, as well as the Higgs plus one-jet productions in gluon fusion, pp → Hj.
Furthermore we computed the master integrals for the mixed QCD-EW corrections to Drell-
Yan scattering.
Finally we presented the calculation of the cross section and invariant mass distribution
for Higgs boson pair production in gluon fusion at next-to-leading order (NLO) in QCD,
with the full top-mass dependence. The occurring integrals have been calculated numer-
ically using the program SecDec. Since our results include the full top-quark mass, we
are able to assess the validity of various approximations proposed in the literature, which
we also recalculate. We find substantial derivations between the NLO result and the differ-
ent approximations, which emphasizes the importance of including the full top-quark mass
dependence.





Zusammenfassung

Im bevorstehenden Run II am Large Hadron Collider(LHC) werden Streuprozesse von
unerreichter Luminosität und Energie gemessen. Um das volle Potential dieser Messun-
gen auszuschöpfen, müssen Streuprozesse mit großer Genauigkeit beschrieben werden. Die
angestrebten Genauigkeiten erfordern die Berechnung von höheren Ordnungen in der Störungs-
theorie inklusive der Masseneffekte von elektroschwachen Vektorbosonen und des Top-Quarks.
Die Berücksichtigung dieser Masseneffekte ist nicht nur wegen der erhöhten Anzahl der
Massenskalen kompliziert, sondern auch weil Symmetrien gebrochen werden, welche die
Berechnungen in masselosen Theorien vereinfacht haben.
In dieser Dissertation werden wir die zugrundeliegenden algebraischen Strukturen von Streuam-
plituden erkunden mit dem Ziel neue Methoden zu ihrer Berechnung zu entwickeln. Die hier
beschriebenen Methoden sind für alle Streuamplituden inklusive der vorher beschriebenen
Masseneffekte gültig. Insbesondere werden wir die Algebra der Relationen zwischen dimen-
sional regulierten Integralen diskutieren. Diese Relationen erlauben es uns eine Integralbasis,
die sogenannten Hauptintegrale, zu finden. Die Hauptintegrale spannen per Definition den
gesamten Raum der Feynman Integrale für einen bestimmten Streuprozess und erlauben uns
Differential Gleichungen für deren Bestimmung herzuleiten. Die Auswahl der Hauptintegrale
ist in keiner Hinsicht eindeutig und manche Auswahlmöglichkeiten können die dazugehörigen
Differentialgleichungen und deren Lösungen vereinfachen. Eine besonders gute Basis zeigt
sich durch eine sogenannte kanonische Differentialgleichung, bei der der dimensionale Reg-
ularisationsparameter von der Kinematik faktorisiert. Die Lösung einer kanonischen Form
kann algebraisch bestimmt werden und deren analytische Struktur folgt offensichtlich aus
der zugehörigen Matrix.
In dieser Arbeit werden wir uns auf Systeme fokussieren, die linear vom dimensionalem Reg-
ularisationsparameter abhängen und werden mit Hilfe der Magnus Theorie deren Lösung
direkt als einen kinematischen Entwicklungsoperator darstellen. Dieser Operator beschreibt
die Entwicklung von einem Randpunkt zu einem beliebigen Punkt im kinematischen Raum
und besteht aus dem Produkt zweier Magnus Exponentialfunktionen. Die erste Expo-
nentialfunktion kann als Rotation im Raum der Hauptintegrale, welche die Differential-
gleichung in ihre kanonische Form bringt, interpretiert werden. Die zweite Exponential-
funktion beschreibt die Lösung dieser kanonischen Form. Wir haben diese Strategie zur
Berechnung der Hauptintegrale des Leiterboxdiagramms mit einer massiven äußeren Linie
angewendet. Diese Integrale tragen zu den virtuellen Korrekturen in der dritten Ordnung
der Störungstheorie für Streuprozesse bei. Beispiele für solche Streuprozesse sind die drei
Teilchenjetproduktion vermittelt durch den Zerfall eines Vektorbosons V ∗ → jjj oder der
Produktion von einem Higgsteilchen mit einem Teilchenjet durch Gluonfusion, pp → Hj.
Zusätzlich haben wir noch die Hauptintegrale für die gemischten ES-QCD Korrekturen zur
Drell-Yan Streuung berechnet.
Zum Abschluss präsentieren wir die Berechnung des Wirkungsquerschnitts und der invari-
anten Massenverteilung für die Produktion eines Higgspaares durch die Fusion zweier Gluo-
nen in der ersten Ordnung der Störungstheorie unter voller Berücksichtigung der Topmassen-
effekte. Die auftretenden Hauptintegrale wurden numerisch mit der Hilfe des Programms



SecDec berechnet. Da unser Ergebnis die vollen Topmasseneffekte berückistigt, können wir
mehrere vorgeschlagene Approximationen untersuchen. Wir finden bedeutende Unterschiede
zwischen unserem Ergebnis und den verschiedenen Approximationen, was die Bedeutung der
Topmasseneffekte unterstreicht.
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1
Introduction

It is a great achievement of particle physics that the rich world of subatomic particles can be
described by a simple model, the so-called Standard Model(SM). Within the SM particles
are described as quantum excitations of physical fields and the forces between them are
generated by symmetries of the SM. In particular the SM is invariant under gauge trans-
formations generated by the group SU(3)C × SU(2)L × U(1)Y , where SU(3)C corresponds
to the strong force and SU(2)L × U(1)Y generates the electroweak force. The interactions
under the strong force define the theory of Quantum Chromodynamics(QCD), which is an
exact symmetry of nature. This is in contrast to the electroweak theory, where the sym-
metry is spontaneously broken by the Brout-Englert-Higgs mechanism at low energies. The
excitations of the corresponding Higgs field describe the famous Higgs boson, which is the
only spin zero particle within the SM and responsible for the masses of all other SM particles.

The SM was tested by an extensive series of experiments and it is therefore one of the
best confirmed models in physics. Some of the discoveries, which underlined the validity of
the SM were the W and Z bosons by the UA1 and UA2 experiment at the Super Proton
Synchrotron [9–11], the top quark by the CDF and DØ experiment at the Tevatron [12,13],
the τ neutrino by the DONUT experiment at the Tevatron [14] and the Higgs boson by
ATLAS and CMS experiment at the Large Hadron Collider(LHC) [15,16].

Despite this huge success we also know that the SM can not be a complete model of the
subatomic world. From the observed neutrino flavor oscillations [17,18], it can be concluded
that the neutrino must have a mass, which is not explained within the SM. In addition the
cosmic microwave background allows us to make estimations about the energy distribution in
the universe [19]. From this distribution we can conclude that the SM only describes around
five percent of the universe leaving the two most significant contributions dark energy and
dark matter unexplained. Furthermore the SM only allows for a slight derivation from the
otherwise symmetric production of matter and anti-matter, which is not able to account for
the current excess of matter in our universe. Additionally the SM does not describe the
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gravitational force and it remains an open question if gravity can be consistently described
by any quantum field theory at all.

Physics beyond the Standard Model(BSM) might provide answers to these open ques-
tions of particle physics and the search for BSM physics is one of the main goals of the
LHC. BSM physics might manifest itself at the LHC either by the direct production of new
heavy particles or by slight derivations from the precisely measured SM parameters. These
derivations might then be explained within an extension of the SM or even a complete new
theory. Currently the LHC is exploring the SM at previously unknown energy scales and
measures many of our SM parameters at an incredible precision. In order to fully exploit
this advancement and hopefully answer some of the remaining open questions, it is essential
that we vastly improve our theory predictions.

The nature of the LHC as an hadron collider provides several challenges for the theoretical
description of a scattering event, due to the strongly interacting hadrons. In fact our ability
to make any theoretical prediction for a hadron collision relies on the QCD factorization
theorem [20–22], which allows us to factor the short distance effects from the long distance
effects. This is essential, since only at short distances (high energies) the strong coupling
constant is small enough to justify the use of perturbation theory, whereas the long dis-
tance effects get non-perturbative contributions. The long distance effects encode the inner
structure of the hadron, which consists of valence and sea quarks. While the valence quarks
determine the quantum properties of the hadron, the sea quarks are virtual quark-antiquark
pairs, which are constantly created and destroyed within the hadron. All this structure can
be conveniently combined in the parton distribution functions(PDFs), which provide us with
the probability to find a certain parton, carrying a fraction of the hadron momentum, at a
specific energy. Due to their non-perturbative nature, they are determined by a global fit of
deep inelastic scattering data at lower energies and then evolved to higher energies through
the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [23–25].

The hadron scattering at the LHC happens at such high energies, that the asymptotic
freedom of QCD allows us to regard the partons of the hadrons as free particles. For this
reason we essentially have a hard scattering event between only two partons each carrying a
momentum fraction of the corresponding hadrons. The momentum fraction and the type of
parton is described by the PDFs, while the hard scattering event can be calculated within
the framework of perturbation theory. The resulting particles, provided they interact with
the strong force, radiate of virtual gluons which may radiate of gluons and quark-anitquark
pairs. This process is known as a parton shower and will continue until we reach the hadro-
nisation scale at around ΛQCD ∼ 1GeV. At this scale the partons will start to form hadrons,
which may decay into more stable particles before they are measured in the detector.

Within this framework it is important to describe the underlying hard scattering as pre-
cise as possible, since a deeper understanding of the hard scattering event may provide us
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with insight into BSM physics. The core ingredient for the description of the hard scatter-
ing process are scattering amplitudes, which give us the probability that our initial partons
scatter to a certain set of final state particles. A scattering amplitude can be computed by
Feynman diagrams, which encode every possibility for the particles to interact. Perturbation
theory allows us to expand the hard scattering event in the number of interactions, where
at each order we may either add an additional final state particle or a closed loop. With the
increasing number of loops and final state particles scattering amplitudes become harder
and harder to compute and therefore limit our precision with which we can describe the
hard scattering event.

Up to recent years most relevant processes for the LHC were only known up to leading
order(LO) precision. By now it is clear that these LO calculations are insufficient and may
get unexpected large corrections from the higher orders in the perturbation theory, which
in some cases exceeded the estimate error for the truncation of the series (see e.g. Higgs
production through gluon fusion [26]). For this reason we can only obtain reliable predic-
tions for our hard scattering event by including higher order corrections, which require the
computation of loop-level scattering amplitudes.

For most loop-level scattering amplitudes a direct integration of the appearing Feynman
integrals is prohibitive, due to their sheer number and complexity. It is fruitful to think about
this problem in the context of linear algebra. The loop-level scattering amplitude can be
thought of as a point in a space, which is spanned by the appearing Feynman integrals. But
it turns out that most of the Feynman integrals are not linearly independent and therefore
only a small subset of integrals, called master integrals (MI’s) is needed to span the space.
After projecting our amplitude on this new basis, the computation of the MI’s is still an
open problem, but it usually reduces the number of integrals by several orders of magnitude.

At one-loop level the basis of MI’s was first identified through the Passarino-Veltmann
reduction [27] as a set of scalar integrals with up to four loop propagators. This knowledge al-
lowed for the development of efficient projection techniques onto this basis, where especially
methods based on unitarity were extremely successful. The unitarity of the S-matrix follows
from the conservation of probability and directly implies the optical theorem, by which the
imaginary part of the forward scattering amplitude is proportional to the total cross section.
The former can only develop an imaginary part, if some of its propagators vanish (are cut),
such that their iε description becomes relevant. This idea was worked out by Cutkosky [28],
who showed that the imaginary part of the forward scattering amplitude can be computed
as the sum of all possible two propagator cuts. By definition a cut propagator is on-shell and
therefore our amplitude factorizes into a product of lower-loop amplitudes. By considering
complex kinematics it becomes possible to cut even more then two propagators at once,
as long as all cut conditions can be satisfied simultaneously by the loop momenta [29–32].
This framework is known as generalized unitarity and allows us to group the Feynman dia-
grams according to their multi-particle factorization channels. A scattering amplitude can
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be reconstructed by systematically considering all possible factorization channels. Further-
more we can completely circumvent the use of Feynman diagrams, by using the fact that
amplitudes factorize on each cut into a product of lower-loop amplitudes.
Although these techniques were originally developed to be used after integration, they

can also be applied at the integrand level at the cost of introducing spurious terms, which
vanish after integration [33, 34]. This decomposition of the integrand in its multi-particle
factorization channels, known as the OPP decomposition, is completely independent of the
kinematics of the process and therefore can be applied to any one-loop scattering amplitude.
The automation of this integrand decomposition [35–37] and the implementation within one-
loop generators [38–46] greatly boosted our ability to perform one-loop calculations.

Trying to generalize these techniques to the two-loop level and beyond provides us with
several challenges. Already at the level of Feynman diagrams we encounter a new type of di-
agrams, so-called non-planar diagrams. The latter can only be drawn with crossing internal
edges or having external edges end within the diagram. Even though this might seem like
a pettiness these diagrams and their corresponding integrals have a much richer singularity
structure then their planar counter parts, which can impede the calculation. In contrast to
one-loop a general integral basis is not known at the two-loop level and beyond, instead the
integral basis has to be determined process by process. Similarly the appearing MI’s are only
known for specific processes and their analytic expressions involve a variety of complicated
functions, making the corresponding amplitude much harder to handle analytically and slow
to evaluate numerically.

Even though these challenges have been overcome for a number of processes, keeping up
with the ever increasing experimental accuracy requires us to calculate numerous processes
at two-loop accuracy with an increasing number of external legs, which we can only be
achieved through automation. A first step in this direction was done by the extension of in-
tegrand reduction techniques to higher loops, which was first achieved in [47]. Later the OPP
decomposition was understood as the result of a polynomial division between the numerator
and the propagators, a concept which was then generalized to higher loops [48–50]. Through
a better understanding of the physical degrees of freedom for each multi particle factoriza-
tion channel and by a priori integrating them out the efficiency of this algorithm was greatly
improved [51]. In addition generalized unitarity has been extended to the two-loop level in
the form of the maximal unitarity approach [52–55], which aims to directly obtain the coeffi-
cients of the master integrals by choosing suitable integration contours in the complex plane.

After the coefficients of the MI’s are determined the question of their calculation arises.
We can achieve this either by direct or indirect integration. For the former we find a conve-
nient parametrization of the integrand, which allows us to directly integrate our Feynman
integral, e.g. Feynman parametrization and sector decomposition [56–64] or Mellin-Barnes
representation [65–68], whereas for the latter we derive a system of equations, whose solu-
tion will be the Feynman integrals; examples for this approach are the difference [69–71]
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and differential equations [72–74].

This thesis is dedicated to the calculation of master integrals, especially via the method of
differential equations. The idea to use differential equation was first introduced by Kotikov
for internal masses [72] and then extended to all external invariants by Remiddi [73] and
Gehrmann and Remiddi [74]. The solution of the differential equation provides us with an
evolution operator, which describes the kinematic evolution from the boundary point to any
point in the kinematic plane. The singularity structure of the evolution operator is in general
much richer than the singularity structure of the corresponding MI’s, therefore providing
the boundary point amounts to choosing the physical set of singularities, which corresponds
to our MI’s. In fact we can turn this argument around and fix the boundary constants by
demanding the absence of unphysical thresholds from our solution.

Recently an additional way to derive a differential equation was suggested in [75]. By
cleverly rescaling some of the external momenta, we can derive a differential equation in
respect to this rescaling parameter, which after a solution has been obtained is taken back
to one. This method has been recently used in the computation of the planar five-point
two-loop massless MI’s with one off-shell leg [76].

For any given process the set of master integrals is not unique and their choice is rather
arbitrary. Initially the master integrals are identified by the Laporta algorithm [69], but
then we may choose any convenient set. A proper set of MI’s can significantly simplify the
differential equation and therefore simplify the calculation of the MI’s. In fact a particu-
lar good choice of master integrals is characterized by the factorization of the dimensional
regularization parameter from the kinematics [77]. The canonical form does not only make
the singularity structure especially transparent, but it also simplifies the integration to a
completely algebraic procedure.

It remains an open question if a canonical form can be found for any process and the answer
to this question is tightly connected to the existence of a general algorithm that transforms
any set of MI’s to the corresponding canonical set of MI’s. Nevertheless the qualitative prop-
erties of canonical MI’s can be turned into quantitative tools like unit leading singularity
criterion and the dlog representation in terms of Feynman parameters [78–80]. Furthermore
we can attempt to find a rotation matrix in the space of master integrals, yielding a canon-
ical form, through an appropriate ansatz, which is based on the polynomial structure of
the dimensional regularization parameter in the initial differential equation [81]. In cases,
where we have several master integrals in one topology, we can identify canonical master
integrals by exploiting the structure of the higher order differential equation, which are in-
dependent from the choice of the other master integrals [82]. In addition there exists an
algorithm for processes depending only on two kinematic invariants based on the deflation
of eigenvalues [83]. This algorithm suggests that not all systems can be transformed into
a canonical form, since this is related to the 21st Hilbert problem, which has a negative
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answer [84]. Furthermore if we are able to choose an initial set of MI’s such that our differ-
ential equation is linear in ε, we can use the Magnus exponential to obtain a canonical set
of master integrals [1]. The latter two algorithms will be discussed in detail within this thesis.

We will first show how the algorithm based on the Magnus series can be used to recompute
known MI’s and then later used to compute the 85 MI’s of the three-loop ladder-box topol-
ogy with one massive leg [2]. These master integrals are part of the next-to-next-to-next-to
leading order(NNNLO) virtual correction to scattering processes like Higgs plus one-jet pro-
duction through gluon fusion in the heavy top limit. In addition we show how this algorithm
can be used to compute the MI’s for the mixed EW-QCD virtual corrections to Drell-Yan
scattering [5], which are approximately at the same order of accuracy as the NNNLO QCD
corrections.

Finally we will apply the algorithm based on the Magnus series to the computation of
the MI’s for Higgs production through gluon fusion, which previously have been computed
without the canonical basis [85]. The computed MI’s belong to a subset of integrals needed
for the computation of the NLO correction to Higgs boson pair production through gluon
fusion including the top mass effects, presented in [4]. Due to the expected appearance of
elliptic integrals we embodied a numerical approach for the computation of the remaining
MI’s. Nevertheless we computed the cross section and the invariant mass distribution for
this process, which will be important for the determination of the Higgs boson self coupling
in the upcoming Run II of the LHC. In addition the full result allows us to check various
approximations, which have been proposed in the literature [86–97].

This thesis is organized as follows: First we will describe how a scattering amplitude,
given by its Feynman diagram expansion, can be expressed as a linear combination of master
integrals. In the next chapter we will introduce the method of differential equations for the
computation of Feynman integrals and discuss two strategies for their solution one where
we solve the differential equation line by line and one based on the canonical form. After
this chapter we will discuss the Magnus theory for differential equations and then move to
the question how we can find a canonical differential equation. Here we will first discuss
some properties, which indicate a canonical master integral and then present an algorithm
based on the Magnus series and an algorithm based on eigenvalue deflation, which both
under certain assumptions allow us to find a canonical basis of MI’s. Afterwards we will
discuss the solution of differential equations in terms of iterated integrals. In particular
we will discuss Chen’s iterated integrals and its special case the Goncharov polylogarithm.
In the following chapter we will show some easy examples, where the algorithm based on
the Magnus expansion has been applied and later we discuss the calculation of the MI’s
belonging to the three-loop ladder-box with one off-shell leg as well as the calculation of
the master integrals for the mixed EW-QCD virtual corrections to Drell-Yan scattering.
Finally we will elaborate on the NLO correction to Higgs boson pair production through
gluon fusion including the full top-mass effects.
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2
From Feynman Diagrams to Master Integrals

During the calculation of quantum corrections to a given process via loop-level Feynman
diagrams, we encounter an abundance of difficult Feynman integrals, describing the gen-
eralization of averaging over non-observable degrees of freedom. The calculation of each
individual Feynman integral can be difficult and time consuming, therefore each identity,
relating different Feynman integrals, can greatly simplify the problem of their determination
and consequently the calculation of the quantum correction as a whole. In order to reduce
the number of Feynman integrals to a minimal set, we usually follow a three step procedure,
which will be described in the following sections.

2.1. Tensor Decomposition

In the first step we separate the Lorentz and Dirac structures in the Feynman diagrams from
the integrals. One efficient way in doing so is given by the method of tensor decomposition,
where we first expose all external polarization vectors

M = εµ11 . . . εµkk Mµ1...µk , (2.1)

and then write an ansatz for the tensorMµ1...µk in terms of the independent Lorentz vectors
and tensors1 and the possible Dirac structures

Mµ1...µk =
∑

i

Tµ1...µk;i fi . (2.2)

The size of the ansatz can be further reduced by imposing physical constraints like the
transversality condition and the Ward identity. After an adequate ansatz is obtained we can
compute the form factors fi directly from our Feynman diagrams by defining projectors,

1E.g. for four external gluons there are two Lorentz tensors: the metric gµν and the epsilon tensor εαβµν

and three independent Lorentz vectors namely three of the four external momenta
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which single out specific tensor structures in (2.2)

PiM = fi . (2.3)

Through the tensor decomposition the numerators of the Feynman integrals appearing in
the form factors fi may only include scalar products build from the external momenta and
the loop momenta.

2.2. Feynman Integral Classification

A typical L-loop Feynman integral within the form factor is given by2

∫ L∏

i=1

ddki
N (k, p)

Dα1
1 . . . D

αN′
N ′

. (2.4)

The number of different scalar products appearing in the numerator can be calculated as

Nsp = L(n− 1) +
L(L+ 1)

2
= L

(
n+

L

2
− 1

2

)
, (2.5)

where n is the number of external legs. Beyond one-loop the number of scalar products
is always bigger then the number of propagators, preventing us from writing every scalar
product as a combination of propagators and therefore from expressing the numerator in
terms of propagators. A way of dealing with these irreducible scalar products is to artificially
enlarge the set of propagators with so called auxiliary propagators, such that we are able
to write every scalar product in terms of propagators. Consequently we are able to express
each scalar product in the numerator completely in terms of the enlarged set of propagators

∫ L∏

i=1

ddki
1

Dα1
1 . . . DαN

N

. (2.6)

We should note that some of the αi might be negative, especially the ones related to the
auxiliary propagators are always non-positive. At this step we can define:

Definition 2.2.1 An integral family is given by a full set of propagators, which spans the
complete space of scalar products.

Definition 2.2.2 A topology is a subset of the integral family, where all powers of the prop-
agators are positive and which corresponds to a graph with momentum conservation at each
vertex.

Definition 2.2.3 A subtopology is a subset of a topology, which also can be drawn as a
graph with momentum conservation at each vertex.

2We promoted the integral to d = 4 − 2ε dimensions, in order to conveniently encode its UV and IR
divergences as poles in ε within the framework of dimensional regularization.
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Going back to our form factors we can now classify each set of propagators stemming from
a Feynman integral as either a topology or a subtopology. In general each topology may
generate an integral family, but it is convenient to choose the auxiliary propagators in a way
that we can group all topologies in as few integral families as possible. It is important to
note that some of the subtopologies may belong to several integral families which may lead
to over counting of master integrals and unnoticed cancellations. Partly we already resolved
these overlaps by grouping the maximal number of topologies into each integral family, but
nevertheless the remaining overlapping subtopologies still have to be identified and mapped
to each other.

2.3. Reduction to Master Integrals

It turns out that most of the Feynman integrals in a topology are actually related to each
other by symmetry relations, Lorentz invariance identities and integration-by-parts (IBP)
identities [98,99] , which are based on general properties of Feynman integrals, namely graph
symmetries, the Lorentz invariance and shift invariance of the loop momenta of the integral
respectively. By exploiting these relations we are able to express all integrals within our
topology in terms of a much smaller set of master integrals.

2.3.1. Symmetry Relations

The first set of relations between different integrals can be derived from discrete shifts of
the loop momenta, which leave the value of the integral unchanged or in other words, which
have a trivial Jacobian. From the whole set of shifts two are especially useful to us, ones
which map different topologies into each other and ones which map the topology onto itself.
The former allows us to decrease the number of independent topologies, whereas the latter
allows us to derive identities between integrals in our topologies. E.g. whenever we have
a bubble insertion we can shift the loop momenta, which runs in the bubble such that we
exchange the two bubble propagators. This will not only lead to the identity that we can
exchange the powers of the corresponding propagators, but also to more involved identities
especially if we consider non-trivial numerators.

2.3.2. Lorentz Invariance Identities

The Feynman integrals contained in the form factors in (2.2) are by construction only Lorentz
scalars, therefore they are invariant under all Lorentz transformations. Under an infinites-
imal shift of the external momenta pµi → pµi + wµνpi,ν , where wµν is some totally antisym-
metric tensor, our Feynman integral transforms in the following way

∫ L∏

i=1

ddki
1

Dα1
1 . . . DαN

N

→
(

1 + wµν
n∑

i

pi,ν
∂

∂pµi

)∫ L∏

i=1

ddki
1

Dα1
1 . . . DαN

N

. (2.7)
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The Lorentz invariance of the latter expression allows us to obtain relations of the form

n∑

i

(
pi,ν

∂

∂pµi
− pi,µ

∂

∂pνi

)∫ L∏

i=1

ddki
1

Dα1
1 . . . DαN

N

= 0 , (2.8)

which can be contracted with all possible antisymmetric tensors built from the external
momenta.

2.3.3. Integration-by-parts Identities

As it has been described in [100,101] a Feynman integral is invariant under shifts in the loop
momenta k1, . . . , kL by any combination of loop and external momenta p1, . . . , pn

ki → Aijkj +Bijpj , (2.9)

with Aij being an invertible L× L matrix and Bij an rectangular L× n matrix. This shift
symmetry actually forms a general linear group GL(n,R) of dimension L.
Considering the action of an infinitesimal shift of our loop momenta 3

kµi → kµi + βijq
µ
j , with qµj = {kµ1 , . . . , kµL, p

µ
1 , . . . , p

µ
n} , (2.10)

on to our Feynman integral

∫ L∏

i=1

ddki
1

Dα1
1 . . . DαN

N

→
∫ L∏

i=1

ddki

(
1 + βij

(
dδij + qµj

∂

∂qµ,i

))
1

Dα1
1 . . . DαN

N

(2.11)

=

∫ L∏

i=1

ddki βij

(
1 +

∂

∂qµ,i
qµj

)
1

Dα1
1 . . . DαN

N

, (2.12)

allows us to identify the generator of the Lie group

Oij =
∂

∂qµ,i
qµj , (2.13)

and its structure constants

[Oij , Okl] = δilOkj − δkjOil . (2.14)

The shift invariance of our Feynman integral can be formulated in a simple equation, which
generates all IBP identities for a given Feynman integral

∫ L∏

i=1

ddki
∂

∂kµ,i

(
qµj

Dα1
1 . . . DαN

N

)
= 0 . (2.15)

3In order to have a well defined shift we require that 1 + βi,j is invertible, where βi,j is the minor with
i = 1, . . . L and j = 1, . . . , L.
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The form of this equation also exposes another origin of the integration-by-parts identities
namely Stokes theorem, which states that integrating over a manifold of a total derivative
equals the integral over the boundary of the manifold, which given that our integrand van-
ishes sufficiently fast is zero.
We should also note that after differentiation we will get a sum of integrals with rational
integrands, where the numerators consists of scalar products involving the loop and the ex-
ternal momenta and denominator is build from the propagators. After expressing all scalar
products involving the loop momenta back in terms of our propagators, we obtain relations
between the different integrals. The rational coefficients of the integrals will be build from
the kinematic invariants and the space time dimensions d. Furthermore neither the deriva-
tive nor replacing the scalar products in the numerator will introduce propagators in the
denominator with positive powers αi, which were not already present in the corresponding
generating function. Therefore an IBP identity will only involve integrals from the same
topology or its subtopologies.

2.3.4. Finding Master Integrals

Since the exponents of the propagators are left arbitrary in the generating equation for the
IBP identities (2.15), we can generate an infinite number of equations for an infinite number
of integrals within a given topology. Fortunately the number of equations is growing faster
then the number of involved integrals indicating that most equations are redundant [102].
Indeed it has been shown that we can always solve these systems in terms of a finite number
of master integrals [103]. In addition the infinite set of equations also contains all informa-
tion from the Lorentz invariance identities relating them to the IBP identities.
In practice we will only generate equations up to a total power of propagators r =

∑
i αi,

where we only consider positive exponents αi and up to a total power of propagators in the
numerator s = −∑i αi, where we only consider negative exponents αi. It is important to
find a balance between a high enough s and t to find the correct number of master integrals,
but also a low enough s and t, such that we are able to solve the system with the available
computer resources. The resulting system can then be solved by the Laporta algorithm [69],
which introduces an ordering for each integral and then solves the system by Gauss substi-
tution.
In theory any increasing function based on the powers of the propagators αi can be used
for this ordering, but in practice some orderings may facilitate the solution of the system.
After an adequate ordering is chosen we can solve equation by equation with the Gauss
substitution rule, where we replace the integral with the highest weight, in terms of inte-
grals with lower weight. This step is repeated until only a very small subset of integrals
with the lowest possible weight are left, which are the master integral of our topology. We
may also encounter so-called reducible topologies which have no master integrals and can
be completely expressed in terms of their subtopologies.
We should note that restricting ourselves to some r and s, where we stop the generation
of the IBP system may also comes with some drawbacks. Firstly we can’t rule out that
an IBP identity with higher r and/or s may relate some master integrals, we thought were
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independent, therefore further reducing the number of master integrals. Secondly whereas
the Lorentz invariance identities were related to the IBP identities for the full system, this
might not be the case if we restrict ourselves to a system with a specific r and s, therefore
in many applications we still consider the Lorentz invariance identities, in order to reduce
the necessary algebra, which needs to be performed.
All in all the symmetry relations, IBP and Lorentz invariance identities are essential tools
for any multi-loop computation, since they reduce the number of Feynman integrals by sev-
eral orders of magnitude. For a typical two-loop problem they reduce the total number of
independent Feynman integrals from O(10000) down to O(100). With such huge simplifi-
cations it is no surprise, that there are several implementations of them in public computer
codes [104–107].
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3
Differential Equations for Feynman Integrals

Even after the reduction of the Feynman integrals to a small set of master integrals is
completed, the evaluation of the latter remains an open question. There are two different
approaches for their analytical computation. Either we attempt to integrate them directly
or we use a method, which performs the integration only indirectly. In the former method
we manipulate the integrand in a way that allows for a direct integration. Examples of such
methods are the Feynman parametrization of an integral and the Mellin-Barnes representa-
tion [65–68], which have been very successful at one-loop and even for lower scale problems
at the multi loop level. Two examples for indirect integration methods are given by dif-
ference [69–71] and differential equations [72–74], where the former are functional relations
between integrals, which are shifted by discrete values of e.g. the space time dimensions and
where the latter describe how Feynman integrals behave under continuous changes in the
kinematical invariants. The idea to use differential equations in order to calculate Feynman
integrals was first proposed for internal masses by Kotikov [72] and then latter extended to
all external invariants by Remiddi [73] and Gehrmann and Remiddi [74]. Since then differ-
ential equations have proven to be an essential tool for the analytic calculation of multi-loop
and multi-scale Feynman integrals.

3.1. Deriving Differential Equations

The first step to derive a differential equation is to find an integral basis for the process
under consideration, which can be done with the help of the symmetry relations, Lorentz
invariance identities and IBP identities. Solving these identities results in a set of master
integrals, which span the whole space of Feynman integrals for the given process. This will
be essential when we start taking derivatives of the kinematic invariants of our process. We
will fist consider only derivatives with respect to internal masses, which will already include
all main features of the method and only later we will extend the discussion to general
external invariants.
When we act with a derivative with respect to an internal mass on a master integral we
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essentially raise the power of the corresponding propagator by one

∂m2
i

∫ L∏

i=1

ddki
1

Dα1
1 . . . Dαi

i . . . DαN
N

= −αi
∫ L∏

i=1

ddki
1

Dα1
1 . . . Dαi+1

i . . . DαN
N

, (3.1)

where the propagators are defined as Di = K2
i − m2

i with Ki being a sum of loop and
external momenta. Since the latter integral still involves the same set of propagators, we
have not left the space of Feynman integrals, which was spanned by our master integrals.
Consequently there exists an IBP identity, which brings us back to a linear combination of
the original integral and other master integrals, which for simplicity we will omit for now

∂m2
i

∫ L∏

i=1

ddki
1

Dα1
1 . . . Dαi

i . . . DαN
N

= Am2
i

∫ L∏

i=1

ddki
1

Dα1
1 . . . Dαi

i . . . DαN
N

. (3.2)

This is a first example of a differential equation, which we will later solve in order to obtain
analytic expression for the master integrals. We should note that the prefactor Am2 is a
rational function of the space time dimensions and the kinematic invariants of our process,
since it inherits these properties directly from the IBP identities.
The previous steps show how a differential equation for each master integral can be derived.
It is convenient to group all differential equations together in one coupled system

∂m2
i
F = Am2

i
F , (3.3)

where F is a vector of master integrals and Am2
i
has been promoted to a matrix. If we

order our master integrals by the size of the topology, we also realize that the matrix Am2
i
is

block triangular, since both the derivative and the IBP identities will only involve integrals
from the same topology or its subtopology. In fact the only reason, why Am2

i
is only block

diagonal instead of diagonal is because there are topologies with several master integrals.
This concludes our discussion of differential equations for internal masses and we are now
ready to extend our discussion to general kinematic invariants.
First we should note that we can build n(n−1)

2 different scalar products from our n external
legs, which we will conveniently group together in one vector

~̂x = {x̂1, . . . , x̂n(n−1)
2

} = {s11, s12, . . . , sn(n−1)
2

n(n−1)
2

} with sij = pi · pj . (3.4)

Since the integrand of a Feynman integral depends on the external momenta instead of
the invariants we have to use the chain rule to obtain a differential operator involving the
external momenta

pµk
∂

∂pµ,i
=
∑

j

pµk
∂x̂j
∂pµ,i

∂

∂x̂j
, (3.5)

where we already multiplied our equation with another external momenta pk in order to
obtain a scalar differential operator which does not introduce uncontracted Lorentz indices.
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If we have more then two external legs the system of equations in (3.5) is overdetermined.
In detail we have (n− 1)2 equations in the over constraint system, which give us

(n− 1)2 − n(n− 1)

2
=

(n− 1)(n− 2)

2
, (3.6)

additional equations. These additional equations prevent us from solving our system in a
unique way. The different differential operators we get by solving different subsets of the
equations in (3.5), may at first look inconsistent, however there are exactly (n−1)(n−2)

2 Lorentz
invariance identities, which guarantee us that all differential operators are equivalent.
Including the internal masses into our vector of kinematic invariants ~̂x we arrive at the most
general form for our differential equation

∂~̂xF = A~̂xF , (3.7)

At this point we should make a couple of remarks.
As denoted by ~̂x we usually have a whole set of differential equations, namely one for each
kinematical invariant of our process. It is convenient to perform a change of variable in order
to have only one invariant with mass dimensions and a set of dimensionless invariants. The
differential equation of the dimensionful invariant can be trivially solved and just give us the
mass dimension of each integral, which we could have immediately accessed through power
counting. The remaining set of differential equations can then be solved sequentially, where
the integration constant at each step will only depend on a subset of kinematic invariants,
which correspond to the still unsolved differential equations. After all differential equations
have been solved the integration constant will be a constant in respect to all kinematic
invariants, which can be fixed by the boundary conditions. This algorithm must succeed,
since the integrability condition

∂xiAxj − ∂xjAxi + [Axj , Axi ] = 0 , (3.8)

which can be derived from the Schwarz integrability condition for F, ensures that non-
factorisable terms which depend on several kinematic invariants are common to all corre-
sponding differential equations. With this procedure in my mind we will mostly consider
only one of the differential equations, which is derived from a dimensionless variable, knowing
that we can solve the differential equations of the other dimensionless invariants sequentially.
In the case, where we only have one kinematic invariant, the differential equation gives us
only the mass dimensions for each integral. For that reason all the desired information is in
the boundary constants, which need to be provided independently. Nevertheless it has been
shown that by introducing an additional kinematical invariant, solving the now meaningful
differential equation and then carefully taking that kinematical invariant to zero one can
still solve integrals depending on one kinematical invariant with the method of differential
equations [108].
We should also note that the derivation of the differential operator was only based on the
structure of the external and internal kinematics and is therefore completely independent
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F

Figure 3.1.: The massless bubble F is shown.

of the loop order. The most limiting factor in the derivation of differential equations is in
fact the derivation of the IBP identities, which are needed to reduce the derivative of our
master integral back to the basis of master integrals. In fact deriving the IBP identities
for a difficult two-loop process can be already beyond the current technologies. But with
growing computing power and a better understanding of the underlying structure [109–111]
we might be able to push this threshold to even more scales/loops in the near future.

The massless one-loop Bubble

Let us show the steps we described in the previous section with an easy one-loop example:
the one-loop massless bubble, with an off-shell external leg x̂ = p2 6= 0 1

F(ε, p2) =

∫
ddk

1

k2(k − p)2
, (3.9)

which is depicted in figure 3.1. In the first step we construct the differential operator

pµ
∂

∂pµ
= pµ

∂p2

∂pµ

∂

∂p2
= 2p2 ∂

∂p2
(3.10)

⇒ ∂

∂p2
=

1

2

pµ

p2

∂

∂pµ
, (3.11)

which in this case is solely done by the chain rule, since the system (3.5) is not overdeter-
mined. Applying the differential operator to our integral we find

∂

∂p2

∫
ddk

1

k2(k − p)2
=

pµ

2p2

∂

∂pµ

∫
ddk

1

k2(k − p)2
(3.12)

=
1

p2

∫
ddk

k · p− p2

k2(k − p)4
(3.13)

= − 1

2p2

∫
ddk

(
1

k2(k − p)2
− 1

(k − p)4
+

p2

k2(k − p)4

)
, (3.14)

where in the last step we replaced the scalar product in terms of our propagators k · p =
−1

2

(
(k − p)2 − k2 − p2

)
. We can perform a shift in the loop momenta k → k + p in the

1The massless bubble with an on-shell external leg is vanishing in dimensional regularization, since it does
not depend on any kinematic invariant
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second integral to realize that it does not depend on any kinematic invariant and therefore
vanishes in dimensional regularization

∂

∂p2

∫
ddk

1

k2(k − p)2
= − 1

2p2

∫
ddk

(
1

k2(k − p)2
+

p2

k2(k − p)4

)
. (3.15)

As it was advertised earlier the derivative of our integral is now expressed in terms of integrals
in the same topology or its subtopologies. In the next step we use an IBP identity in order to
express all integrals back in terms of our master integral. For this example we can actually
directly derive the IBP directly from its generating equation (2.15)

0 =

∫
ddk

∂

∂kµ

kµ

k2(k − p)2
, (3.16)

where we put the loop momenta kµ in the numerator. Taking the derivative we find a
relation between the bubble with a squared propagator and the scalar bubble

0 =

∫
ddk

D

k2(k − p)2
− 2

k2

k4(k − p)2
− 2k2 − 2k · p

k2(k − p)4
(3.17)

=

∫
ddk

D − 3

k2(k − p)2
+

p2

k2(k − p)4
(3.18)

⇒
∫
ddk

1

k2(k − p)4
= −d− 3

p2

∫
ddk

1

k2(k − p)2
. (3.19)

Going back to equation (3.15) and applying the IBP identity we just derived we are able to
find a differential equation for our master integral

∂

∂p2

∫
ddk

1

k2(k − p)2
= − 1

2p2

∫
ddk

(
1

k2(k − p)2
− d− 3

k2(k − p)4

)
(3.20)

=
d− 4

2p2

∫
ddk

1

k2(k − p)2
. (3.21)

In fact for this differential equation we can immediately write down the solution

F(ε, p2) = (p2)−2εF(ε, x0) , (3.22)

with the dimensional regularization parameter ε = 4−d
2 and boundary constant F(ε, x0). We

should note that we could have obtained this result directly from power counting the mass
dimensions of our integral, since we have only one scale with mass dimension in our prob-
lem. Therefore the most difficult part of calculation is actually to determine the boundary
constant, which at least in this case has to be provided as an independent input.

3.2. Solution

There are two main strategies to solve the system of coupled first ordered differential equation
(3.7). In the first way we make use of the block triangular form of the differential equation
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and solve each block individually. As we progress through the blocks we will notice that
the integrals, we solved in previous blocks, enter as the inhomogeneous part of the later
blocks, which step-by-step increases their complexity. In the second way we first bring our
differential equation into a special form, where the dependence on the dimensional regulator
ε factorizes [77], called the canonical form and then integrate it. In fact here the integration
can be performed simply by matrix multiplication, but this comes at the cost that finding
such a canonical form can be a formidable task. Let us first discuss how we can solve a
differential equation block by block and then later we will elaborate more on the canonical
form.
Each topology in our vector of master integrals defines a block in the otherwise already
triangular differential equation, therefore our differential equation is already factorized up
to blocks of the form,

∂xFi =
i+k∑

j=1

Ax;i,jFj

...

∂xFi+k =

i+k∑

j=1

Ax;i+k,jFj ,

(3.23)

where k is the size of the block and equivalently the number of master integrals in this
topology. Furthermore it is convenient to split the differential equation into the homogeneous
part C and the inhomogeneous part D

∂xFi =
i−1∑

j=1

Dx;i,jFj +
i+k∑

j=i

Cx;i,jFj

...

∂xFi+k =

i−1∑

j=1

Dx;i+k,jFj +

i+k∑

j=i

Cx;i+k,jFj .

(3.24)

Solving such coupled systems is a difficult task, especially since all entries in the homogeneous
part C might be non-zero, therefore we will first consider a system with trivial block size
k = 1 and later discuss strategies for solving systems with non trivial block sizes k > 1.
For a trivial block size

∂xFi =
∑i−1

j=1Dx;i,jFj + Cx;i,iFi , (3.25)

we can formally write down the solution to the differential equation as

Fi(ε, x) = H(ε, x)


1 +

∫ x

x0


dx

i−1∑

j=1

Dx,i,jFj(ε, x)

H(ε, x)




Fi(ε, x0) , (3.26)
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with the integrating factor

H(ε, x) = exp

(∫ x

x0

dxCx;i,i

)
, (3.27)

which can be obtained by solving the homogeneous part of the differential equation. We
should note the formal solution in (3.26) can be interpreted as an kinematical evolution op-
erator, which takes our solution from a boundary point x0 to some other point x. Especially
in the case where our end point x = x0 we see that all integrals vanish and we are only left
with our boundary constant Fi(ε, x0) as we would expect. Let us mention one more time
that in the case where we have several dimensionless variables this boundary constant would
depend on the remaining variables and could be fixed up to a true constant by sequentially
solving the other differential equations.

In the case where we have a non trivial block size k > 1 we can not write down a meaningful
solution of the form (3.26), because the integrating factor of the solution would involve other
integrals from the same block which we consider still unknown to us. Furthermore there is
no general algorithm how such a system can be solved at all. However in some cases we can
obtain a solution to such coupled system by first transforming the system of k coupled first
order differential equations into an equivalent kth order differential equation

∂xFi =
i+k∑

j=1

Ax;i,jFj

...

∂xFi+k =
i+k∑

j=1

Ax;i+k,jFj

⇒
k∑

j=0

Âx;j ∂
j
x Fi +

i−1∑

j=1

Âx;j Fj = 0 , (3.28)

and then recognizing the higher order differential equation as a differential equation of some
well studied function like hyper-geometric functions, which allows us to immediately write
down the solution of our integrals in terms of these functions.
Another way of solving such a coupled system is to find a special form, where the system tri-
angularizes in the limit d→ 4 or equivalently ε→ 0. For most systems this can be achieved
by finding a suitable rotation of our master integrals build from IBP identities, Lorentz
invariance identities and sector symmetries, which is equivalent to considering different sets
of master integrals from the same topology. Once such a set is found the non-trivial block
decouples into trivial blocks at each order in ε. For that reason we can solve each ε-order of
the integrals just as if they would belong to a trivial block.

3.3. Canonical Form

In this section we take the idea that a system triangularizes in the limit ε → 0 to the next
level. We are going back to our full differential equation and search for a system, where the
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dimensional regularization parameter ε has completely factorized from our kinematics

∂xI = εAxI , (3.29)

where the matrix Ax is now independent of ε. Let us delay the discussion on how such a
canonical form can be found to chapter 5 and first investigate the advantage of having a
system in this form.
For most applications we are actually interested in the Laurent series around ε = 0 of our
master integrals

F =
∑

k

F(k)εk . (3.30)

Expanding a general differential equation in ε, we obtain separate differential equations for
each coefficient of the Laurent series e.g. at order k we have

∂xF(k) =
∑

j

Ax,k−jF(j) , (3.31)

where Ax,k−j is the (k − j)th coefficient of the Laurent series in ε of the matrix Ax. Even
though the expanded differential equations are simpler, since we traded the dependence on
ε for a larger set of easier differential equations, their solution is still highly non trivial. Es-
pecially we might still encounter non-trivial unfactorized blocks. If we consider the Laurent
expansion around ε = 0 for our canonical form instead

∂xI(k) = AxI(k−1) , (3.32)

we immediately notice that the solution of the kth order only depends on integrals of order
k − 1. For convenience in the following discussion let us multiply all integrals by an appro-
priate factor of ε in order to turn their Laurent expansion into a Taylor expansion. Then
the zeroth order differential equation is particular simple since all integrals are now finite in
ε

∂xI(0) = 0 , (3.33)

which implies that the zeroth order of all our integrals is a constant.
In addition for a canonical differential equation it is convenient to employ a different strat-
egy for solution of multi scale problems. Instead of considering the differential equations
sequentially we will combine them in a total differential

dI = ε dA I , (3.34)

which would have been also possible for a non-canonical differential equation, but only in
this form we avoid the resummation of logarithms into rational factors. Empirically the
matrix dA is composed of constant rational matrices multiplied by a d log(η), where the
latter encode all the kinematic information. Therefore the arguments η allow us to identify
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all physical and unphysical thresholds and their set defines the so-called alphabet of our
process. Formally the solution to such a d log form is given by Chen’s iterated integrals

I(ε, ~x) =

(
1 + ε

∫

γ
dA+ ε2

∫

γ
dAdA+ . . .

)
I(ε, ~x0) , (3.35)

which we will further discuss in chapter 6. For now let us just notice that the solution is
expressed as iterated path integrals over different d logs and their coefficients can be simply
obtained by matrix multiplication. Also at each order in ε we have the same number of
integrations over a d log or in other words all terms at each order in ε have the same weight,
which is the defining criteria for a function of uniform weight. Furthermore all integrals in
the canonical form trivially satisfy a conjecture made about all Feynman integrals.

Conjecture 3.3.1 In d = 4 − 2ε dimensions, the Laurent coefficient of εk of an L-loop
amplitude contains at most terms of weight 2L+ k

In fact the integrals in this form will have only terms of weight 2L+ k in the εk coefficient.
We should also note that our solution is free of rational factors in the kinematical invariants,
since all kinematical information is encoded in the arguments of the d logs. This will be
helpful when we compute the boundary conditions of our integrals, since it separates possible
logarithmic divergences from power divergences.

3.4. Boundary Conditions

The solution of a differential equation describes the kinematical evolution from a boundary
point x0 to the point of interest x. In this section we will present two strategies how we
can determine this boundary point. Firstly we can try to compute the integral in a specific
kinematical limit by either direct integration or by using an asymptotic expansion [112–114].
Secondly the differential equation itself can at least minimize the number of boundary con-
stants that have to be provided. For that we need to investigate the divergent behavior of
our differential equation. Already the non-canonical form allows us to identify the physi-
cal and unphysical thresholds of our solution as poles in the differential equation. We can
remove the unphysical poles from our differential equation and therefore the corresponding
thresholds from our solution by an appropriate choice of boundary constants. In particu-
lar we can derive a relation between different integrals by demanding that the coefficients
of the corresponding poles in the differential equation vanish, whenever the pole diverges.
After solving the differential equations we can demand that our solutions satisfy these all
order relations, which will imply relations between the boundary constants of the involved
integrals. These relations may greatly reduce the number of boundary constants that have
to otherwise be provided independently. We will illustrate this procedure on a small toy
example.
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F1 F2

Figure 3.2.: The masters F1 and F2 are shown, where the thick line represent massive prop-
agators.

The massive one-loop Bubble

Let us consider the differential equation of the massive one-loop bubble with an off-shell leg
p2 6= 0

∂p2F2 = − d− 2

p2(p2 + 4m2)
F1 +

1

2

(
d− 3

p2 + 4m2
− 1

p2

)
F2 , (3.36)

where the massive tadpole F1 and the massive bubble F2, which are shown in figure 3.2, are
given by

F1 =

∫
ddk

1

k2 −m2
F2 =

∫
ddk

1

(k2 −m2)((k − p)2 −m2)
. (3.37)

For both the tadpole and the bubble the divergence at p2 → 0 is unphysical, due to the
massive propagators. Therefore we can multiply both sides of the differential equation by
p2

p2∂p2F2 = − d− 2

(p2 + 4m2)
F1 +

1

2

(
(d− 3)p2

p2 + 4m2
− 1

)
F2 , (3.38)

and then take the limit p2 → 0

lim
p2→0

p2∂p2F2 = lim
p2→0

[
− d− 2

(p2 + 4m2)
F1 +

1

2

(
(d− 3)p2

p2 + 4m2
− 1

)
F2

]
(3.39)

⇒ 0 = −d− 2

4m2
lim
p2→0

F1 −
1

2
lim
p2→0

F2 (3.40)

⇒ lim
p2→0

F2 = −d− 2

2m2
lim
p2→0

F1 , (3.41)

where in the second line we used that the integrals F1 and F2 and their derivatives are finite
in the limit p2 → 0. Together with the solution of our differential equation, (3.41) connects
the boundary constant of the massive bubble to the one of the tadpole, which can be easily
obtained by direct integration.
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Boundary Conditions for a Canonical Form

The procedure we described for a non canonical system becomes even easier if we were able
to obtain a canonical differential equation

dI = ε dA I , (3.42)

where dA is a d log-form with

dA =

n∑

i=1

Mi d log ηi . (3.43)

Here we can obtain the all order relation for the finiteness of our solution at the unphysical
threshold ηi by demanding that the product of the corresponding coefficient matrix times
the vector of master integrals vanishes in the limit where the unphysical threshold diverges

lim
ηi→0

MiI = 0 . (3.44)

We can prove that this equation implies the finiteness of our solution at the unphysical
threshold ηi by induction.
Before we start the prove let us rewrite the formal solution to our canonical differential
equation (3.35) in a form that will be more suitable for the prove. If we are just interested
in the kth coefficient of the Taylor expansion we can easily write down its solution as

I(k)(x) =

∫

γ
dA . . . dA =

∫

γ
dA I(k−1) , (3.45)

where we recognized the first k − 1 integration as the k − 1 Taylor coefficient I(k−1). With
this relation we are now ready to prove that equation (3.44) implies the finiteness of the
solution at the unphysical threshold.
At order zero our solution is simply given by a constant and therefore finite under any limit.
The first non-trivial step is at the first order in ε, where our solution is given by

I(1)(x) =

∫

γ
dA I(0) . (3.46)

Taking the limit ηi → 0 introduces a possible end point singularity of our path integral

lim
ηi→0

I(1)(x) = lim
ηi→0

∫

γ
d log(ηi)MiI(0) + finite , (3.47)

where all other terms were finite because both the arguments of the d logs and the zeroth
order of our integrals I(0) are finite. The only way for this divergence to be absent and
therefore for our integrals to be finite is if its coefficient vanishes in the limit limηi→0 MiI(0) =
0, which is exactly the ε0 term of equation (3.44).
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Assuming that I(k−1) is finite we can prove our inductive step by considering the solution at
kth order in ε

I(k)(x) =

∫

γ
dA I(k−1) , (3.48)

and taking the limit where the unphysical threshold diverges ηi → 0

lim
ηi→0

I(k)(x) = lim
ηi→0

∫

γ
d log(ηi)MiI(k−1) + finite . (3.49)

We see that our solution is only finite if the coefficient of the divergence vanishes in the limit
limηi→0 MiI(k−1) = 0.
By this inductive prove we see that each order in ε our condition has to be satisfied and
therefore we can conclude that the condition has to be correct also for the whole Taylor
series.
In addition to this simpler derivation of the all order relations also solving them becomes
easier, since first of all at each order in ε we only deal with functions of uniform weight and
second of all we only encounter log divergences, whereas in general a Feynman integral can
also have power divergences. In fact we can obtain another set of all order relations if we
investigate the canonical master integral further. A canonical master integral is typically
given as a linear combination of different integrals each with a kinematical prefactor. If there
is a limit, where all the kinematical prefactors vanish, while the integrals remain finite, also
our canonical master integral will vanish in this limit. This provides us with an easy all
order relation, which can be use to fix the boundary of our canonical master integral.
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4
The Magnus Method for Differential Equations

The Magnus theorem was first described in a paper by Willhelm Magnus [115] in 1954
and generalizes the exponential solution of a homogeneous differential equation to systems
of coupled homogeneous differential equations. The work by Magnus was stimulated by
developments in theoretical physics at the time, especially by the theory of linear operators
in quantum mechanics [116] and by work of Feynamn in quantum electrodynamics [117].
This shows that from the very beginning the work by Magnus was closely related to physics
and it has still impact today.
Let us consider the initial value problem related to a linear differential equation

∂xY (x) = A(x)Y (x) , Y (x0) = Y0 , (4.1)

depending on the form of Y (x) and A(x) we can distinguish four different cases of increasing
complexity:

• a) Y (x) : R→ C and A(x) : R→ C
In this case both Y (x) and A(x) are complex scalar functions, therefore we have an
uncoupled first order differential equation, which can be solved by quadrature

Y (x) = exp

(∫ x

x0

dτA(τ)

)
Y0 . (4.2)

• b) Y (x) : R→ Cn and A(x) : R→ Mn(C)
Now Y (x) is a complex vector valued function and A(x) is a n× n matrix of complex
functions resulting in a coupled system of differential equations. Only in very special
cases, where the commutator [A(τ1), A(τ2)] vanishes, are we still able to solve the
system by quadrature and obtain a solution of the form (4.2). In the more general
cases we will get corrections to the exponential, which are described by the Magnus
expansion.
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• c) Y (x) : R→ Mn(C) and A(x) : R→ Mn(C)
Here both Y (x) and A(x) are complex matrix valued functions, but the discussion of
the previous case applies as well and in fact both cases can be solved with the Magnus
exponential. One example of such a case is when Y (x) is an element of a Lie group
and A(x) is its corresponding Lie algebra, which underlines the importance for physics
applications.

• d) Y (x) and A(x) are operators
In the most general case both Y (x) and A(x) are operators which map one vector space
into another without any restrictions. One example for such a differential equation is
the time dependent Schrödinger equation.

For our purposes we will consider cases b) and c), which can be treated equivalently.
The basic idea is to write down a exponential solution to our differential equation, which is
similar to (4.2), but in general we get corrections to the exponential, because the matrices
A(τ) may be non-commuting. These corrections are given by the Magnus expansion and
come in the form of commutators between the matrices A(τ). Especially in the case, where
we have an underlying Lie algebra, this is advantageous, since the Lie algebra structure is
preserved at each order of the Magnus expansion.

4.1. The Magnus Theorem

Consider a generic linear matrix differential equation [118]

∂xY (x) = A(x)Y (x) , Y (x0) = Y0 . (4.3)

If A(x) commutes with its integral
∫ x
x0
dτA(τ), e.g. in the scalar case, the solution can be

written as

Y (x) = e
∫ x
x0
dτA(τ)

Y0 . (4.4)

In the general non-commutative case, one can use the Magnus theorem [115] to write the
solution as,

Y (x) = eΩ(x,x0) Y (x0) ≡ eΩ(x) Y0 , (4.5)

where Ω(x) is written as a series expansion, called Magnus expansion,

Ω(x) =

∞∑

n=1

Ωn(x) . (4.6)
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The first three terms of the expansion (4.6) read as follows:

Ω1(x) =

∫ x

x0

dτ1A(τ1) ,

Ω2(x) =
1

2

∫ x

x0

dτ1

∫ τ1

x0

dτ2 [A(τ1), A(τ2)] ,

Ω3(x) =
1

6

∫ t

x0

dτ1

∫ τ1

x0

dτ2

∫ τ2

x0

dτ3 [A(τ1), [A(τ2), A(τ3)]] + [A(τ3), [A(τ2), A(τ1)]] . (4.7)

We remark that if A and its integral commute, the series (4.6) is truncated at the first order,
Ω = Ω1, and we recover the solution (4.4). As a notational aside, in the following we will
use the symbol Ω[A](x) to denote the Magnus expansion obtained using A as kernel.

4.2. Proof of the Magnus Theorem

We closely follow the discussion of ref. [119]. Given an operator, Ω, we define the derivative
of Ωk w.r.t. Ω by its action on a generic operator H:

(
d

dΩ
Ωk

)
H ≡ HΩk−1 + ΩHΩk−2 + . . .+ Ωk−1H . (4.8)

This definition guarantees that, when Ω = Ω(x) and H = ∂xΩ,

∂xΩk =

(
d

dΩ
Ωk

)
∂xΩ. (4.9)

The definition (4.8) reduces to kHΩk−1 when [Ω, H] = 0, therefore it is natural to write
it as kHΩk−1 plus correction terms involving (iterated) commutators. Using the adjoint
operator

adΩ(H) ≡ [Ω, H], (4.10)

and its iterated application ad i
Ω we obtain

(
d

dΩ
Ω2

)
H = HΩ + ΩH = 2HΩ + adΩ(H)

(
d

dΩ
Ω3

)
H = HΩ2 + ΩHΩ + Ω2H = 3HΩ2 + 3[Ω, H]Ω + ad 2

Ω(H)

...
...

(
d

dΩ
Ωk

)
H =

k−1∑

i=0

(
k

i+ 1

)
ad iΩ(H) Ωk−i−1 . (4.11)

The last equation can be obtained by induction using the relation

Ω ad iΩ(H) = ad iΩ(H) Ω + ad i+1
Ω (H) (4.12)
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The exponential of a matrix Ω is defined via a series expansion:

eΩ ≡
∑

k≥0

1

k!
Ωk . (4.13)

The derivative and the inverse of the exponential of a matrix can be straightforwardly
obtained by using the previous results:

Lemma 4.2.1 (Derivative of the exponential) The derivative of the matrix exponen-
tial can be derived from its action on a generic operator H and reads as follows

(
d

dΩ
eΩ

)
H = d expΩ(H) eΩ , d expΩ(H) ≡

∑

k≥0

1

(k + 1)!
ad iΩ(H) . (4.14)

Lemma 4.2.2 (Inverse of the exponential) If the eigenvalues of adΩ are different from
2`πi with ` ∈ {±1,±2, . . .}, then d expΩ is invertible, and

d exp−1
Ω (H) =

∑

k≥0

βk
k!

ad iΩ(H) , (4.15)

where βk are the Bernoulli numbers, whose generating function is

t

et − 1
=
∞∑

k=0

βk
k!

tk . (4.16)

We have now all the ingredients to prove the following [115]

Theorem 4.2.1 (Magnus) The solution of a generic linear matrix differential equation

∂xY = A(x)Y , Y (x0) = Y0 (4.17)

can be written as

Y (x) = eΩ(x,x0) Y (x0) ≡ eΩ(x) Y0 (4.18)

where Ω(x) can be computed by solving the differential equation,

∂xΩ = d exp−1
Ω

(
A(x)

)
, Ω(x0) = 0 . (4.19)
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Proof Let us consider the derivative of (4.18). Using the definition (4.13) and the prop-
erty (4.9) we have

∂xY =

(
d

dΩ
eΩ

)
∂xΩ Y0 = d expΩ(∂xΩ) eΩ Y0 = d expΩ(∂xΩ)Y (x) .

The r.h.s. is equal to A(x)Y (x) when

d expΩ(∂xΩ) = A(x) . (4.20)

The relation (4.19) is thus proven by applying the operator d exp−1
Ω to both sides of (4.20).

�

The differential equation for Ω explicitly reads,

∂xΩ = A(x)− 1

2
[Ω, A(x)] +

1

12
[Ω, [Ω, A(x)]] + . . . , (4.21)

and the solution can be written as a series, called Magnus expansion,

Ω =
∞∑

n=1

Ωn(x) , Ωn(x) =
n−1∑

j=1

βj
j!

∫ x

x0

S(j)
n (τ)dτ . (4.22)

The coefficients βj are the Bernoulli numbers while the integrands S(j)
n can be computed

recursively,

S(1)
n = [Ωn−1, A] ,

S(j)
n =

n−j∑

m=j−1

[
Ωm, S

(j−1)
n−m

]
2 ≤ j ≤ n− 2 ,

S(n−1)
n = [Ω1, A] . (4.23)

4.3. Graphical Representation of the Magnus Expansion

An alternative way of representing the Magnus Expansion is given by full rooted binary
trees as it was worked out in [120]. A full rooted binary tree starts out from a root vertex,
which has either zero or two children. In the latter case each of the children are vertices
themselves, which again may have zero or two children. A good example of such a tree is
the ancestry chart of a person. In fact this is even a special so-called perfect rooted binary
tree, since each person has exactly two parents.
Let us now formulate the above rules within a mathematical framework. First we define a
single rooted tree with one vertex

T0 = { s} (4.24)
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and then all other trees are defined recursively with

Tm =

{

@�

τ1
τ2 : τ1 ∈ Tk1 , τ2 ∈ Tk2 , k1 + k2 = m− 1

}
. (4.25)

These trees can be mapped to the corresponding terms in the Magnus expansion through a
simple set of rules. The single rooted tree with one vertex can be identified with our matrix
A(τ) s  A(τ) (4.26)

and a vertex τ with two children τ1 and τ2 defines a commutator of the form

Hτ (x) =

[∫ x

x0

Hτ1(ξ)dξ,Hτ2(x)

]
with τ = @�

τ1
τ2

, (4.27)

where Hτi(ξ) corresponds to an expression stemming from another tree τi, e.g. in the case
where τi ∈ T0 we have Hτi(ξ) = A(ξ). With the help of these rules we can map each binary
rooted tree τ into an expression involving iterated integrals and their commutators, which
in return allows us to map the Magnus expansion to a sum of binary trees

Ω(x) =
∞∑

m=0

∑

τ∈Tm
α(τ)

∫ x

x0

Hτ (ξ)dξ, (4.28)

with the numerical factor α( s) = 1 and, in general

α(τ) =
βs
s!

s∏

l=1

α(τl). (4.29)

Here βs are the Bernoulli numbers and s is as well as α(τl) with l = 1 . . . s best defined
graphically as

τ = @�

τ1

@�

τ2

@

τ3

@�
sτs

..
..

, (4.30)

where each τi might be a rooted tree itself.
From equation (4.28) we can see that the first orders of the Magnus expansion are given by
sums over the sets of rooted graphs Tm. In order to write down the Magnus expansion in
terms of binary trees let us first examine the first three orders for these sets. The zeroth
order set T0 was already defined in (4.24) and has only one element

T0 = { s} . (4.31)
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For the first order set T1 we will use the recursive definition (4.25) and the fact that both
children have to be zeroth order sets k1 = k2 = 0

τ1 = s , τ2 = s , ⇒ τ = @�

s s
α(τ) = −1

2
, (4.32)

where we calculated the numerical factor α(τ) according to formula (4.29) by using that the
graph τ has s = 1.
For the second order either k1 or k2 have to be a zeroth order set, while the other one is a
first order set.

τ1 = s , τ2 = @�

s s
⇒ τ = @�

@�
s s s

, α(τ) = 1
12 ,

τ1 = @�

s s
, τ2 = s ⇒ τ = @�

@�

s s s
α(τ) = 1

4 .

(4.33)

The factor α(τ) for the first graph is calculated with

α(τ) =
β2

2

2∏

l=1

α(τl) =
1

12
α( s)α( s) =

1

12
(4.34)

and for the second graph we have

α(τ) =
β1

1

1∏

l=1

α(τl) = −1

2
α

(
@�

s s)
=

1

4
. (4.35)

Collecting all the information above we can write out the first terms in the Magnus expansion
in terms of our binary trees

Ω(t) =
s
− 1

2

@�

s s
+

1

4

@�

@�

s s s
+

1

12

@�
@�

s s s
+ · · · . (4.36)

As a last little exercise let us show that this expansion is indeed equivalent to the expressions
we wrote down in (4.7). The first term is easily transformeds

=

∫ x

x0

dξH s(ξ) =

∫ x

x0

dξA(ξ) = Ω1(x) . (4.37)
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For the second term we have to apply our recursion relation for the first time

− 1

2

@�

s s
= −1

2

∫ x

x0

dξ1H @�

s s(ξ1) (4.38)

= −1

2

∫ x

x0

dξ1

[∫ ξ1

x0

dξ2H s(ξ2) , H s(ξ1)

]
(4.39)

= −1

2

∫ x

x0

dξ1

[∫ ξ1

x0

dξ2A(ξ2) , A(ξ1)

]
(4.40)

=
1

2

∫ x

x0

dξ1

∫ ξ1

x0

dξ2 [A(ξ1) , A(ξ2)] (4.41)

= Ω2(x) , (4.42)

The third term

1

4

@�

@�

s s s
=

1

4

∫ x

x0

dξ1

∫ x

x0

dξ2 [H
@�

s s(ξ2) , H s(ξ1)] (4.43)

=
1

4

∫ x

x0

dξ1

∫ ξ1

x0

dξ2

∫ ξ2

x0

dξ3 [[A(ξ3) , A(ξ2)] , A(ξ1)] , (4.44)

together with the fourth term

1

12

@�
@�

s s s
=

1

12

∫ x

x0

dξ1

∫ ξ1

x0

dξ2 [H s(ξ2) , H
@�

s s(ξ1)] (4.45)

=
1

12

∫ x

x0

dξ1

∫ ξ1

x0

dξ2

∫ ξ1

x0

dξ3 [A(ξ2) , [A(ξ3) , A(ξ1)]] , (4.46)

can be rewritten as

1

4

@�

@�

s s s
+

1

12

@�
@�

s s s
=

1

4

∫ x

x0

dξ1

∫ ξ1

x0

dξ2

∫ ξ2

x0

dξ3 [[A(ξ3) , A(ξ2)] , A(ξ1)]

+
1

12

∫ x

x0

dξ1

∫ ξ1

x0

dξ2

∫ ξ1

x0

dξ3 [A(ξ2) , [A(ξ3) , A(ξ1)]]

(4.47)

=
1

6

∫ t

x0

dξ1

∫ ξ1

x0

dξ2

∫ ξ2

x0

dξ3 [A(ξ1), [A(ξ2), A(ξ3)]] + [A(ξ3), [A(ξ2), A(ξ1)]] , (4.48)
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where in the last line we used the formula
∫ x

x0

dξ1

∫ ξ1

x0

dξ2f(ξ1, ξ2) =

∫ x

x0

dξ2

∫ x

x0

dξ1f(ξ1, ξ2)−
∫ x

x0

dξ2

∫ ξ2

x0

dξ1f(ξ1, ξ2) , (4.49)

to rewrite the commutators in a more symmetric way.
Even though, as we have just shown, the graph approach and the recursion relation in (4.23)
are both valid ways to generate the Magnus expansion the latter seems to be more efficient
in the generation of high order terms. This can be explained by two reasons. Firstly the
number of terms, which is needed to generate a higher order term in the expansions is
very large and secondly the most of these graphs are redundant, calling for a careful graph
theoretical analysis.

4.4. Magnus and Dyson Series Expansion

The Magnus series is related to the Dyson series [118], and their connection can be obtained
starting from the Dyson expansion of the solution of the system (4.3),

Y (x) = Y0 +
∞∑

n=1

Yn(x) , Yn(x) ≡
∫ x

x0

dτ1 . . .

∫ τn−1

x0

dτn A(τ1)A(τ2) · · ·A(τn) , (4.50)

in terms of the time-ordered integrals Yn. Comparing Eq. (4.5) and (4.50) we have

∞∑

j=1

Ωj(x) = log

(
Y0 +

∞∑

n=1

Yn(x)

)
, (4.51)

and the following relations

Y1 = Ω1 ,

Y2 = Ω2 +
1

2!
Ω2

1 ,

Y3 = Ω3 +
1

2!
(Ω1Ω2 + Ω2Ω1) +

1

3!
Ω3

1 ,

...
...

Yn = Ωn +

n∑

j=2

1

j
Q(j)
n . (4.52)

The matrices Q(j)
n are defined as

Q(j)
n =

n−j+1∑

m=1

Q(1)
m Q

(j−1)
n−m , Q(1)

n ≡ Ωn , Q(n)
n ≡ Ωn

1 . (4.53)
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Similarly we can define the terms in our Magnus expansion in terms of coefficients of the
Dyson series

Ω1 = Y1 ,

Ω2 = Y2 −
1

2
Y 2

1 ,

Ω3 = Y3 −
1

2
(Y1Y2 + Y2Y1) +

1

3
Y 3

1 . (4.54)

In the following chapter, we will use both the Magnus and the Dyson series in order to
formulate an efficient algorithm to bring a differential equation into the canonical form.
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5
Differential Equations in Canonical Form

For any given scattering process the set of MI’s is not unique, and, in practice, their choice
is rather arbitrary. Usually MI’s are identified after applying the Laporta reduction algo-
rithm [69]. Afterward, convenient manipulations of the basis of MI’s may be performed.
Proper choices of MI’s can simplify the form of the systems of differential equations and,

hence, of their solution, although general criteria for determining such optimal sets are not
available. An important step in this direction has been taken in Ref. [77], where Henn
proposes to solve the systems of DE’s for MI’s with algebraic methods. The key observation
is that a good choice of MI’s allows one to cast the system of DE’s in a canonical form,
where the dependence on ε, is factorized from the kinematic. The integration of a system in
canonical form trivializes and the analytic properties of its general solution are manifestly
inherited from the matrix associated to the system, which is the kernel of the representation
of the solutions in terms of repeated integrations.
As pointed out in [77], finding an algorithmic procedure which, starting from a generic set

of MI’s, leads to a set MI’s fulfilling a canonical system of DE’s is a formidable task. In prac-
tice, the quest for the suitable basis of MI’s is determined by qualitative properties required
for the solution, such as finiteness in the ε → 0 limit, and homogeneous transcendentality,
which turn into quantitative tools like the unit leading singularity criterion and the dlog
representation in terms of Feynman parameters [78–80]. Furthermore we can also attempt
to find a rotation matrix in the space of master integrals, yielding a canonical form. This
rotation matrix can be build through appropriate ansatz, which is based on the polynomial
structure of ε in the original DE [81]. Especially in the case where we have several master
integrals in one topology finding a set of canonical master integrals can be difficult. In such
a case the structure of the higher order differential equation can be exploited in order to
identify a canonical master integral, independent from the choice of the other master inte-
grals in the same topology [82].

In this chapter we will first discuss pure functions of uniform weight and how we can
identify them without deriving the differential equations and then present two algorithms to
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transform a differential equation into a canonical form. For the first algorithm we suggest a
convenient form of the initial system of MI’s, which allows us to find the transformation ma-
trix yielding a canonical system. In particular, we choose a set of MI’s obeying to a system
of DE’s which has a linear ε-dependence, and we find a transformation which absorbs the
O(ε0) term and leads to a new system of DE’s where the ε-dependence is factorized. This
transformation is obtained by using Magnus and Dyson series expansions [115,118,121]. The
procedure we propose can be generalized to the case of systems that are polynomial in ε.
Nevertheless, for the cases, which have been considered so far [1,2,5], we have succeeded to
begin from a set of MI’s obeying a system that is linear in ε.

Second we will a consider system, which depends on one dimensionless variable and has
an arbitrary polynomial ε-dependence. We will present an algorithm, which is based on the
deflation of eigenvalues. First we will deflate the eigenvalues of the higher poles, reducing
each pole in our differential equation to a simple pole and second we shift all eigenvalues
of the pole matrices to be multiples of ε, which then allows us to find the canonical form
through a simple similarity transformation.

5.1. Pure Functions of Uniform Weight

Let us recall that the solution to a differential equation in canonical form

dI = ε dA I , (5.1)

where dA is a d log-form with

dA =

n∑

i=1

Mi d log ηi , (5.2)

is given by Chen’s iterated integrals of the form

I(ε, ~x) =

(
1 + ε

∫

γ
dA+ ε2

∫

γ
dAdA+ . . .

)
I(ε, ~x0) . (5.3)

Furthermore let us recall the definition of the weight of a function as the number of integra-
tions or equivalently the number of d logs, which appear under the integral sign. Expanding
the matrices dA as d logs in our formal solution we see that our solutions has the same
weight at each order in ε. In addition the Chen’s iterated integrals are also pure functions
in the sense that a derivative strictly lowers their weight by one, which can be easily seen
by expanding the differential equation in ε

∂xI(k) = AxI(k−1) , (5.4)

and observing that at each order in ε the weight is increased by one. For this reason it
is is convenient to assign a weight W (ε) = −1 to ε, such that our sum of Chen’s iterated
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integrals have a uniform weight of zero. The only term that can spoil this property for the
whole solution is the boundary constant I(ε, ~x0).
The most common constants that appear are π, ζ(n), γE , log(2), log(3), which have the fol-
lowing weight

W (γE) = 1 ,
log(−1 + iδ) = π ⇒ W (π) = 1 ,∫

γ d log(1− x) d log(x) . . . d log(x)︸ ︷︷ ︸
(k-1)-times

= (−1)kζ(k) ⇒ W (ζ(k)) = k ,

where the path γ in the last equation goes from x0 = 0 to x = 1 and γE is the Euler-
Mascheroni constant. We should note that the weight of a product of functions is given by
the sum of the weights of the factors

W (A ∗B) = W (A) +W (B) . (5.5)

With these rules in mind we can asses from the explicit expression if a functions is of uniform
weight or not. However what we really need to find are criteria, which allow us to asses a
function before we even evaluate it. There have been several conjectures, which properties
lead to pure functions of uniform weight, which we will discuss in the following.

5.1.1. Unit Leading Singularity and Unitarity Cuts

Conjecture 5.1.1 Integrals with a constant leading singularity are pure functions [77,122,
123].

As an first example let us consider the massless box at one-loop. We can obtain the leading
singularity by replacing all four propagators with delta functions, which allow us to trivially
perform the integration and our result will only be the Jacobian (see Appendix A for a
detailed derivation)

=
1

2

1

s t
. (5.6)

Therefore multiplying the box by a factor of s t will result in a unit leading singularity, which
is conjectured to be a pure function. Indeed when we look at the first orders of the Taylor
series around ε = 0 we find1

ε2 s t

= 4− ε
(

2 log(−s) + 2 log(
t

s
)

)
+ ε2

(
2 log(−s)2 + 2 log(−s) log(

t

s
)− π2

)
+O(ε3) , (5.7)

1We normalized the result such that the massless bubble is 1 to all orders in ε.
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which is indeed a pure function of uniform weight. We should also note that for convenience
we multiplied this integral and the following ones with an appropriate factor of ε in order
to turn their Laurent series into a Taylor series.
As a second example let us consider the one-loop massless bubble with an off-shell leg p2 6= 0.
We derived the differential equation for this master integral already in equation (3.21)

∂p2 = − ε

p2
, (5.8)

which is already ε-factorized. But here we have a case where the boundary constant is not
a function of uniform weight and spoils this property for the whole expression

ε = (−p2)−ε
(

1− ε (2− γE) + ε2
(

4− 2γE +
γ2
E − ζ(2)

2

)
+O(ε3)

)
, (5.9)

where the kinematical factor, which corresponds to the solution of the differential equation
has an expansion of uniform weight

(−p2)−ε = 1− ε log(−p2) + ε2
log(−p2)

2
+O(ε3) . (5.10)

One way of finding a better master integral, where the boundary constant is also a function
of uniform weight, is given by our criteria of constant leading singularity. In two dimensions
we can obtain the leading singularity from by replacing all two propagators with delta
functions (see Appendix A for a detailed derivation)

D = 2

=
1

s
. (5.11)

With the help of the dimensional recurrence relations [124] we can shift our integral from
two dimensions back to the usual four dimensions

D = 2

= + = 2 . (5.12)

Putting all the steps together we find the following master integral

2 ε s = (−p2)−ε
(
−1

2
+ ε

γE
2
− ε2

(
γ2
E − ζ(2)

4

)
+O(ε3)

)
, (5.13)

which is indeed a pure function of uniform weight.
As a third example let us show how performing an unitarity cut in a sub-loop can help us
to determine potential master integrals, which are functions of uniform weight. One such
an example is the massless non-planar box at two-loop. If we cut only the non-planar part
of the diagram we obtain (see Appendix A)

=

∫
ddk1d

dk2
δ(k2

2)δ((k1 − k2)2)δ((k2 − p3)2)δ((k1 − k2 − p4)2)

k2
1(k1 + p1)2(k1 + p1 + p2)2

(5.14)

=
1

2

∫
ddk1

1

k2
1(k1 + p1)2(k1 + p1 + p2)2(k1 − p4)2(k1 − p3)2

, (5.15)
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a one-loop integral with five propagators. It can be shown that such an integral is not a
function of uniform weight, therefore we expect the non-planar box also to not be a function
of uniform weight. But we can choose the numerator of the non-planar box in a way that
it will cancel the propagators, which came from the Jacobian of the box cut. This gives us
two potential master integral of uniform weight

∫
ddk1d

dk2
(k1 − p3)2

k2
1k

2
2(k1 − k2)2(k1 + p1)2(k2 − p3)2(k1 + p1 + p2)2(k1 − k2 − p4)2

, (5.16)
∫
ddk1d

dk2
(k1 − p4)2

k2
1k

2
2(k1 − k2)2(k1 + p1)2(k2 − p3)2(k1 + p1 + p2)2(k1 − k2 − p4)2

, (5.17)

which together with the correct kinematical prefactor give us two pure functions of uniform
weight. This example also illustrates another important point. We are able to reuse the
information gained at one-loop for higher loop integrals.

5.1.2. Feynman Parameter Representation

Another way of seeing a priori if an integral is a function of uniform weight is to investigate
the Feynman parameter representation of that integral. As an example of how this can be
achieved we will consider the one-loop massless vertex with two legs on-shell p2

1 = p2
2 = 0

and one leg off-shell p2
3 = s. If we express our integral in terms of Feynman parameters and

integrate over the loop momentum we find

=

∫
ddk

1

k2(k + p1)2(k + p1 + p2)2
(5.18)

= −Γ(1− ε)
∫ ∞

0
dz1 dz2 dz3δ(1− z1 − z2 − z3)

(z1 + z2 + z3)−1+2ε

(−s z1 z3)1−ε . (5.19)

The idea is to transform this function into a form, from which we can see that the resulting
integral has uniform weight. To do this we first perform the integration over z3 with the
delta function

= −Γ(1− ε)
∫ 1

0
dz1

∫ 1−z1

0
dz2

1

(−s z1 (1− z1 − z2))1−ε , (5.20)

and then the integration over z2

=
Γ(1− ε)
ε s

∫ 1

0
dz1

1

z1

1

(s z1 (−1 + z1))ε
(5.21)

=
Γ(1− ε)
ε s

∫
d log(z1)

1

(s z1 (−1 + z1))ε
. (5.22)

Expanding the integrand around ε = 0 we see that it is a function with uniform weight 0
and therefore our integral will be a function of uniform weight one. In order to make our
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integral also a pure function we have to cancel the kinematic prefactor by multiplying the
integral by s. Putting everything together we conclude that the integral

s (5.23)

should be a pure functions of uniform weight. In fact we can confirm this statement by
using an IBP identity. The triangle graph we have just discussed is actually not a master
integral, since it can be connected to the massless bubble

s = −s
ε

, (5.24)

which is a pure function of uniform weight (5.13).
Even though the above mentioned ideas are mathematical quite appealing, the described
analysis can become quite cumbersome for processes with a lot of master integrals. For
that reason an approach, which can be automatized is more desirable. In the following two
sections we will describe two algorithms, which take steps in this directions.

5.2. Canonical Systems and Magnus Exponential Matrix

Before we present the algorithm to obtain the canonical form, let us first recall a quantum
mechanical example that inspired the study of the Magnus theorem.

5.2.1. Preface: On time-dependent Perturbation Theory

Given an Hamiltonian operator H, we consider the Schrödinger equation (∂t ≡ ∂/∂t)

i~ ∂t|Ψ(t)〉 = H(t)|Ψ(t)〉 . (5.25)

Let us assume that H can be split in two terms as

H(t) = H0(t) + εH1(t) , (5.26)

where H0 is a solvable Hamiltonian and ε� 1 is a small perturbation parameter. We may
move to the interaction picture by performing a transformation via a unitary operator B.
In this representation any operator A transforms according to

A(t) = B(t)AI(t)B
†(t) . (5.27)

In the interaction picture one imposes that only H1 (H0) enters the time evolution of the
states (of the operators), thus B is obtained by imposing

i~ ∂tUI(t) = εH1,I(t)UI(t) +
(
H0,I(t)− i~B†(t) ∂tB(t)

)
UI(t)

!
= εH1,I(t)UI(t), (5.28)
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so that B fulfills

i~ ∂tB(t) = H0(t)B(t) . (5.29)

In the interaction picture the Schrödinger equation can be cast in a canonical form,

i~ ∂t|ΨI(t)〉 = εH1,I(t)|ΨI(t)〉 , (5.30)

where the ε-dependence is factorized. If the Hamiltonian H0 at different times commute,
the solution of Eq. (5.29) is

B(t) = e
− i

~
∫ t
t0
dτH0(τ)

. (5.31)

The important remark in this derivation is that, as a consequence of the linear ε-dependence
of the original Hamiltonian Eq. (5.26), the states fulfill an equation in a canonical form by
means of a transformation matrix B that obeys the differential equation (5.29). This simple
quantum mechanical example contains the two main guiding principles for building canonical
systems of differential equations for Feynman integrals:

• choose a set of Master Integrals obeying a system of differential equations linear in ε;

• find the transformation matrix by solving a differential equation governed by the con-
stant term.

In this example H0(t) and B(t) commute. In the case of Feynman integrals, no assumption
can be made on the properties of the matrix associated to the systems of differential equations
built out of IBP identities. Therefore, in the following, we need to consider the generic case
of non-commutative operators.

5.2.2. Changing the Basis of Master Integrals

Let us now come back to our coupled system of first order differential equations

∂xF = Ax F , (5.32)

where F is a vector of master integrals, while x is the set of dimensionless variables depending
on kinematic invariants and masses. In general the matrix Ax admits a Laurent expansion
in ε

Ax =
n∑

i=−a
Ax,iε

i . (5.33)

A general change of basis can be described with the help of a rotation matrix B in the form

F = BH , (5.34)
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which results in a new differential equation of the form

∂xH = ÂxH with (5.35)
Âx = B−1AxB −B−1∂xB . (5.36)

Expanding the latter equation in ε and demanding that the new differential equation matrix
Â is proportional to ε allows us to reformulate the problem of finding a canonical basis in
terms of a differential equation for the rotation matrix B

∂xB = AxB − εBÂx,1 . (5.37)

Unfortunately solving this differential equation is in general as hard as the initial differential
equation for the master integrals.
Nevertheless under the assumption of a differential equation, which linear in ε

Ax = Ax,0 + εAx,1, (5.38)

the differential equation for the rotation matrix B simplifies significantly

∂xB = Ax,0B . (5.39)

This differential equation now falls into the class of differential equations, which can be
solved by the Magnus expansion.

5.2.3. An Algorithm based on the Magnus Expansion

The algorithm we describe in this section works for any number of dimensionless variables,
but for convenience we will restrict ourselves to two variables ~x = {x1, x2}, which already
exhibits all features of the multi variable case.
Our starting point are the two systems of first order differential equations

∂x1F = A[0]
x1 F (5.40)

∂x2F = A[0]
x2 F , (5.41)

with each matrix A[1]
xi being linear in ε. We will proceed by finding the change of basis for

the MI’s via the Magnus expansion obtained by using each A[1]
xi,0

as kernel.

1. First we decompose A[0]
x1,0

in a diagonal term D
[0]
x1,0

and a off-diagonal one N [0]
x1,0

,

A
[0]
x1,0

= D
[0]
x1,0

+N
[0]
x1,0

, (5.42)

and use only the diagonal part for the next basis change,

A[0]
xi → A[1]

xi , B[1] ≡ eΩ[D
[0]
x1,0

]
. (5.43)

Note that the Magnus expansion stops after the first term, since all diagonal matrices
commute.
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2. We repeat as before and split A[1]
x2,0

into its diagonal and off-diagonal parts,

A
[1]
x2,0

= D
[1]
x2,0

+N
[1]
x2,0

, (5.44)

and we build the Magnus exponential again using the diagonal part

A[1]
xi → A[2]

xi , B[2] ≡ eΩ[D
[1]
x2,0

]
. (5.45)

3. Now the matrix A[2]
x1,0

, has no diagonal term left,

A
[2]
x1,0

= N
[2]
x1,0

, (5.46)

therefore we build the Dyson series using the off-diagonal part N [2]
x1,0

as a kernel

A[2]
xi → A[3]

xi , B[3] ≡ eΩ[N
[2]
x1,0

]
= 1 +

n∑

i=1

Yn(x1) (5.47)

with Yn(x1) ≡
∫
dτ1 . . .

∫
dτn N

[2]
τ1,0

N
[2]
τ2,0
· · ·N [2]

τn,0
. (5.48)

The sum is guaranteed to stop if the matrix N [2]
x1,0

is nilpotent.

4. The matrix A[3]
x2,0

has no diagonal term as well,

A
[3]
x2,0

= N
[3]
x2,0

, (5.49)

so we can define the last basis change

A[3]
xi → A[4]

xi , B[4] ≡ eΩ[N
[3]
x2,0

]
= 1 +

n∑

i=1

Yn(x2) (5.50)

with Yn(x2) ≡
∫
dτ1 . . .

∫
dτn N

[3]
τ1,0

N
[3]
τ2,0
· · ·N [3]

τn,0
. (5.51)

After the last transformation we observe that

A
[4]
x1,0

= 0 = A
[4]
x2,0

. (5.52)

This means that the basis change which brings us to the canonical form with the matrix B
is given by

B ≡ B[1]B[1]B[2]B[3]B[4] = e
Ω[D

[1]
x1,0

]
e

Ω[D
[1]
x2,0

]
e

Ω[N
[2]
x1,0

]
e

Ω[N
[3]
x2,0

]
, (5.53)
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absorbs the constant terms of Ax1 and Ax2 in the ε-linear system (5.41) and transforms it
into

∂x1I = εÂx1 I (5.54)
∂x2I = εÂx2 I , (5.55)

with I = B−1 F.
Let us remark that the previously described algorithm is equivalent to solving, first, the

homogeneous system
∂xFH = Ax,0FH , (5.56)

whose solution reads,
FH(ε, x) = B0I(ε, x0) , (5.57)

and, then, to find the solution of the full system by Euler constants’ variation. In fact, by
promoting I(ε, x0) to be function of x,

FH(ε, x)→ F(ε, x) = B0I(ε, x) , (5.58)

and by requiring F to be solution of Eq. (5.41), one finds that I(ε, x) obeys the canonical
differential equation

∂xI = εAxI . (5.59)

Furthermore we should emphasis the fact that the described algorithm can easily be gen-
eralized to problems with more then two variables, by simply sequentially transforming all
diagonal diagonal parts first and then sequentially transforming all off-diagonal terms.

5.2.4. Extension to Polynomial ε Dependence

In the previous discussion we only considered cases, where an initial choice of master integrals
F obeyed a system of differential equations linear in ε. We cannot be sure that such a choice
exists for any scattering process in dimensional regularization. Nevertheless, the use of the
Magnus series enables us to generalize our algorithm to the case of systems of differential
equations whose matrix is a polynomial in ε. In fact, let us consider a system of equations
where A is of degree κ in ε,

∂xF = Ax F , Ax ≡
κ∑

k=0

εkAx,k . (5.60)

By iterating the algorithm described in the previous section, the solution of the differential
equation (5.60) can be expressed in terms of a chain of products of Magnus exponentials,

F(ε, x) = B0(x)B1(ε, x) · · ·Bκ(ε, x)fκ(ε) , Bk(ε, x) ≡ eΩ[εkÂx,k](x,x0) , (5.61)
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where the kernel Âx,k is defined as

Âx,k = Â
(k)
x,k ,

Â
(j)
x,k = B−1

j−1 · · ·B−1
1 B−1

0 Ax,k B0B1 · · ·Bj−1 . (5.62)

It is worth to observe that, within our construction, the solution F is given by repeated
transformations. Starting from

F(ε, x) = B0F(0)(ε, x) , (5.63)

we iteratively write F(k) as,

F(k)(ε, x) = Bk+1F(k+1)(ε, x) , (0 ≤ k ≤ κ− 1) , (5.64)

which obeys the system

∂xF(k) = εk
( κ−k∑

j=1

εjÂ
(k+1)
k+j,x

)
F(k) . (5.65)

The generalization of the canonical system is obtained at the last step of the iteration, when
k = κ− 1,

F(κ−1)(ε, x) = BκF(κ)(ε) , ∂xF(κ−1) = εκÂκ,x F(κ−1) . (5.66)

It is important to remark that the complete factorization of ε is achieved only if κ = 1,
i.e. if the system is linear in ε, because, although Â1,x is independent of ε, Âk,x acquires a
dependence on ε for k > 1, cfr. Eq. (5.62).

The algorithm described here has a wide range of applicability and can be used to com-
pute generic sets of MI’s, provided that the matrix associated to the system of differential
equations can be Taylor expanded around ε = 0. In this case, the MI’s are obtained perturba-
tively by truncating the ε expansion of the matrices associated to the systems of differential
equations.

5.3. Canonical Systems and Deflation

Before we describe the deflation algorithm to find a canonical form, let us first discuss how
we can deflate the Eigenvalues of a general matrix.

5.3.1. Eigenvalue Deflation

The right eigenvectors ui are non-zero vectors, which are only rescaled by the eigenvalue λi
under the linear transformation A

Aui = λiui . (5.67)
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Equivalently we can define a left eigenvector v†j through

v†jA = λjv
†
j . (5.68)

An important property of left and right eigenvectors is that they are either related to the
same eigenvalue or orthogonal to each other.

v†jui = δi,j (5.69)

Another important ingredient for the Eigenvalue deflation is the decomposition into the
Jordan form. Any complex matrix can be brought into a block diagonal form

J =



J1

. . .
JN


 with Ji =




λi 1

λi
. . .
. . . 1

λi




, (5.70)

where Ji are the Jordan blocks and the empty entries correspond to zeros. Each of the
Jordan blocks has a dimension Ki with

∑N
i Ki = n. In the case where we have non-trivial

Jordan blocks Ki > 1 it is useful to introduce generalized right eigenvectors satisfying

(A− λi)u(k)
i = u

(k−1)
i , (A− λi)u(1)

i = 0 with 1 ≤ k ≤ Ki , (5.71)

and generalized left eigenvectors satisfying

v
(k)†
i (A− λi) = v

(k−1)†
i , v

(1)†
i (A− λi) = 0 with 1 ≤ k ≤ Ki , (5.72)

which define the similarity transformation P to bring our matrix into the Jordan form

J = P−1AP with P =
(
u

(1)
1 , . . . , u

(K1)
1 , . . . , u

(1)
N , . . . , u

(KN )
N

)
. (5.73)

The generalized eigenvectors satisfy an orthogonality condition similar to the eigenvectors

v
(k)†
j u

(h)
i = δi,jδk+h,Ki . (5.74)

With these definitions we are now able to perform two operations on our matrix A. First
we can shift an eigenvalue λi by some number a through a transformation

Â = A+ a u
(1)
i x†i , (5.75)

build from the corresponding generalized right eigenvector u(1)
i and some vector x†i satisfying

x†i u
(1)
i = 1. This transformation will act only on the eigenvalue λi, while leaving all other

eigenvalues unchanged.
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Second we can deflate an eigenvalue λi, meaning that we will set it to zero by a transforma-
tion

Â =
(
1− u(1)

i x†i
)
A , (5.76)

using the same vectors as in the previous transformation (5.75). More over this trans-
formation also reduces the rank of A by one. Instead of performing this transformation
sequentially we can deflate each Jordan block simultaneously with the transformation

Â =

(
1−

N∑

i

u
(1)
i x†i

)
A , (5.77)

where u(1)
i are the generalized right eigenvectors and x†i are arbitrary vectors satisfying

x†i u
(1)
j = δi,j . (5.78)

With the help of this transformation we can write down an algorithm which reduces the
rank of any matrix A to zero:

• 1. Set

A0 ← A (5.79)

• 2. Construct the projector

P =
∑

i

u
(0)
i x†i (5.80)

from the generalized eigenvectors u(1)
i of A and the arbitrary vectors x†i satisfying

x†i u
(1)
j = δi,j

• 3. Transform the matrix with the complementary projector

A0 ← (1− P)A0 (5.81)

• 4. Repeat steps 2 through 4 until A0 has rank 0 and is therefore a null matrix.

This algorithm will succeed after max{rank(Ji), 1 ≤ i ≤ N} iterations, since at each step
we lower the rank of each Jordan block by one. These ideas we presented here will be the
underlining principle of finding a canonical basis with the help of the deflation algorithm.
First we will deflate the eigenvalues of all higher pole matrices in our differential equation
until we obtain a Fuchsian form. Second we will shift the eigenvalues of the simple pole
matrices to be multiples of ε, which brings us to the canonical form up to a constant similarity
transformation.
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Example

Let us consider an example where we apply the deflation we discussed above. The matrix

A =




5 4 2 1
0 1 −1 −1
−1 −1 3 0
1 1 −1 2


 , (5.82)

has the following Jordan decomposition

J =




1 0 0 0
0 2 0 0
0 0 4 1
0 0 0 4


 , (5.83)

from which we can see that we have three different eigenvalues λ1 = 1, λ2 = 2 and λ3 = 4,
where the latter appears twice and forms a non trivial Jordan block. We have four generalized
eigenvectors

u
(1)
1 =




−1
1
0
0


 , u

(1)
2 =




1
−1
0
1


 , u

(1)
3 =




1
0
−1
1


 , u

(2)
3 =




1
0
0
0


 , (5.84)

satisfying

Au
(1)
1 = λ1 u

(1)
1 , A u

(1)
2 = λ2 u

(1)
2 , A u

(1)
3 = λ3 u

(1)
3 , A u

(2)
3 = λ3 u

(2)
3 + u

(1)
3 , (5.85)

and defining the similarity transformation into the Jordan form

J = P−1AP with P =
(
u

(1)
1 , u

(1)
2 , u

(1)
3 , u

(2)
3

)
. (5.86)

First let us raise λ2 by one with the help of equation (5.75)

Â = A+ u
(1)
2 x†2 with x†2 = (1, 1, 2, 1) , (5.87)

where x†2 satisfies the normalization condition x†2 u
(1)
2 = 1. Indeed after bringing Â into its

Jordan form we find

P̂−1ÂP̂ = Ĵ =




1 0 0 0
0 3 0 0
0 0 4 1
0 0 0 4


 (5.88)

that λ2 was shifted by one, while all other eigenvalues remained the same.
If we use the transformation (5.76) to deflate the eigenvalue λ1

Â =
(
1− u(1)

1 x†1
)
A , with x†1 = (1, 2, 2, 1) , (5.89)
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and applying the Jordan decomposition we find

P̂−1ÂP̂ = Ĵ =




0 0 0 0
0 2 0 0
0 0 4 1
0 0 0 4


 , (5.90)

that λ1 was set to zero as we claimed.
Instead of deflating the eigenvalues sequentially let us use equation (5.77) to deflate each
Jordan block simultaneously

Â =
(
1− u(1)

1 x†1 − u
(1)
2 x†2 − u

(1)
3 x†3

)
A , with x†3 = (1, 1, 0, 0) . (5.91)

and the other x†i as defined previously. We should note that as required the x†i their defining
property

x†iu
(1)
j = δi,j . (5.92)

After the transformation (5.91) and the Jordan decomposition of Â we find

P̂−1ÂP̂ = Ĵ =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 4


 , (5.93)

where all Jordan blocks were deflated by one. We can now use a second transformation
similar to (5.91)

(
1− û(1)

2 x̂†2
)
Â =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 , (5.94)

with û(1)
2 =




0
0
−1
2


 and x̂†2 = (0, 0,−1, 0) to deflate the last non-zero eigenvalue.

5.3.2. An Algorithm based on Eigenvalue Deflation

A second algorithm for obtaining a canonical form was described by Lee [83]. Here we
consider a differential equation in only one dimensionless variable

∂xF = A[0]
x F , (5.95)
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which after performing a Laurent expansion in each of the poles xi=1...n of A[0]
x

A[0]
x =

∑

j=1+p1

S [0]
1,j

(x− x1)j
, A[0]

x =
∑

j=1+p2

S [0]
2,j

(x− x2)j
. . . (5.96)

exposes the pole’s Poincaré rank pi.
A three step algorithm allows us to transform this system into the canonical one.

1. Reduce all Poincaré ranks to zero by deflating the corresponding pole matrices in order
to cast the differential equation into a Fuchsian form

A[1]
x =

S [1]
1,1

x− x1
+
S [1]

2,1

x− x2
. . . (5.97)

In the following we will drop the pole order label on the matrices S [1]
i,1 ≡ S

[1]
i .

2. Shift all Eigenvalues of the matrices S [1]
i to be multiples of ε.

A[2]
x =

S [2]
1

x− x1
+
S [2]

2

x− x2
. . . (5.98)

3. Find a constant similarity transformation

T −1(ε)S [2]
1 (ε)T (ε) = εS [3]

1 , (5.99)

T −1(ε)S [2]
2 (ε) T (ε) = εS [3]

2 , (5.100)
. . . , (5.101)

which brings all matrices S [2]
i simultaneously into the canonical form

∂xI = εA[3]
x I with A[3]

x =
S [3]

1

x− x1
+
S [3]

2

x− x2
. . . , (5.102)

Step one in the context of a differential equation is a well covered problem in the mathe-
matical literature and is related to the 21st Hilbert problem. The latter was shown to have
a negative solution through an explicit counter example [84]. Therefore it is not always
possible to reduce all Poincaré ranks to zero. Nevertheless there exists a necessary and
sufficient condition for the reduction and an algorithm developed by Moser [125]. This algo-
rithm was later improved by Barkatou and Pflúgel [126,127], which generates a sequence of
rational transformations, minimizing the Poincaré ranks of all but one singularity (usually
chosen to be inf). Especially if all singularities are regular this algorithm allows us to reduce
the system to a Fuchsian form, except for maybe one point. The possibility of reducing
all points to a Fuchsian form would correspond to a positive solution to the 21st Hilbert
problem. In the following text we will assume that it is possible to reduce the given system
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to a Fuchsian form, since otherwise the application of the deflation algorithm is not possible.

The deflation algorithm uses a slight variation of the algorithm by Barkatou and Pflügel,
it is based on so-called balance transformations between points two points x1 and x2

B(P, x1, x2 | x) =





P̄ + x−x2
x−x1P if x1 6=∞ 6= x2

P̄ − (x− x2)P if x1 =∞ 6= x2

P̄ − 1
x−x1P if x1 6=∞ = x2

, (5.103)

where P and P̄ are complimentary projectors satisfying P2 = P and P̄P = 0.
In order to reduce our system to a Fuchsian form we can use the following algorithm:

• 1. Set

Mx ← A[0]
x (5.104)

T ← 1 (5.105)

• 2. Choose a singular point x1 with a positive Poincaré rank and the corresponding
leading pole matrix S1,j of Mx

• 3. If there is a second singular point x2 with a leading pole matrix, which has a left in-
variant space spanned by {v†1, . . . , v†N} and where the basis vectors satisfy v†iu

(1)
j = δi,j

with u(1)
j being the generalized right eigenvectors of S1,j

– Construct the Projector

P =

N∑

k=1

u
(1)
k v†k (5.106)

• Else Choose an arbitrary regular point x2

– Construct the Projector

P = u
(1)
k0
v

(K0)†
k0

+
∑

k∈trivial Jordan blocks

u
(1)
k v

(1)†
k (5.107)

where u(0)
k and v(j)

k are the generalized right and left eigenvectors of S1,j and k0

is the position corresponding to a non trivial Jordan block of size K0

• 4. Construct a balance transformation and transform the differential equation

T0 ← B(P, x1, x2 | x) (5.108)
Mx ← T−1

0 Mx T0 − T−1
0 ∂x T0 (5.109)

T ← T T0 (5.110)
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• 5. Repeat steps 2 through 5 until all Poincaré ranks are zero.

After completion this algorithm will provide us a transformation matrix T which removes
all non Fuchisan poles from our differential equation

A[1]
x = T−1A[0]

x T − T−1 ∂x T (5.111)

A[1]
x =

S [1]
1

x− x1
+
S [1]

2

x− x2
. . . . (5.112)

In step two we investigate the eigenvalues of the matrices S [1]
i sitting on top of the simple

poles. In addition we will consider the matrix of the residue at infinity, which is given as
the negative sum of all simple pole matrices

S [1]
∞ = −

n∑

i=1

S [1]
i . (5.113)

If all eigenvalues are not of the form λ = n+k ε n, k ∈ N , the system can not be transformed
into the canonical form at least in the current variables. But if this condition holds we can
use a second series of balance transformation in order to shift all eigenvalues to be multiples
of ε.

• 1. Set

Mx ← A[1]
x (5.114)

T ← 1 (5.115)

• 2. Derive all eigenvalues of the pole matrices of Mx including the pole at ∞.

• 3. Pick a pair of eigenvalues (λ1, λ2), which are not multiples of ε and where λ1 =
n1 + k1ε n1 > 0 and λ2 = n2 + k2ε n2 < 0.

• 4. Build the projector P

P = uv† (5.116)

from the generalized right eigenvector u of λ1 and the generalized left eigenvector v†

of λ2.

• 5. Transform the differential equation and save the transformation matrix

T0 ← B(P, x1, x2 | x) (5.117)
Mx ← T−1

0 MxT0 − T−1
0 ∂xT0 (5.118)

T ← T T0 (5.119)

• 6. Repeat steps 2. through 5. until all eigenvalues are multiples of ε.

63



The algorithm provides us a transformation T , which brings our differential equation in the
following form

A[2]
x = T−1A[1]

x T − T−1 ∂x T (5.120)

A[2]
x =

S [2]
1

x− x1
+
S [2]

2,j

x− x2
. . . , (5.121)

where all eigenvalues of the pole matrices S [2]
i are now multiples of ε.

If A[2]
x is not yet in the canonical form, we have to find a constant similarity transformation

T−1(ε)S [2]
i T (ε) = εS [3]

i , (5.122)

which transforms each of the pole matrices into the canonical ones. The easiest way to find
such a similarity transformation is to exploit the fact the the matrices S [3]

i are independent
of ε. Therefore if we replace ε with another variable µ we can derive a system of equations

T−1(ε)
S [2]
i

ε
T (ε) = S [3]

i = T−1(µ)
S [2]
i

µ
T (µ) (5.123)

⇒ S
[2]
i

ε
T̃ (ε, µ) = S [3]

i = T̃ (ε, µ)
S [2]
i

µ
(5.124)

where we defined T̃ (ε, µ) = T (ε)T−1(µ). We can solve the latter system of equations with
algebraic methods and set the remaining free parameters if there are any to some convenient
value, since we only need to obtain one specific transformation and not the whole class of
solutions. The resulting system is then by definition our canonical differential equation

A[3]
x =

εS [3]
1

x− x1
+

εS [3]
2,j

x− x2
. . . . (5.125)

Even though the steps of this algorithm might sound cumbersome, they can be easily be
implemented in a computer code, which can be applied to any problem with only one
dimensionless invariant.

5.4. The QED Sunrise

In this section we will consider an example, where both algorithms can be used to obtain
the canonical form. The differential equation for such an example has to be linear in ε and
depend on only one dimensionless invariant. One system that fulfills these requirements, is
given by the QED sunrise. The three master integrals in our system are depicted in figure
5.1, where the latter two master integrals actually belong to the same topology. Therefore
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F1 F2 F3

Figure 5.1.: The figure shows the three master integrals of the QED sunrise, where the thick
line represent massive propagators and dots squared propagators.

they form a non-trivial block, which is already triangularized by the choice of masters we
made. The differential equation for the three master integrals is given by

∂xF = AxF (5.126)

Ax =




0 0 0
− ε

2(1−x) − ε
2(1+x) −1+6ε

1+x + 1+3ε
x + 1

1−x − 1−2ε
2(1−x) − ε

x − 1−6ε
2(1+x)

0 2ε
x + 4ε

1−x
1
x + 2

1−x


 , (5.127)

where we choose our dimensionless variable x as − s
m2 = (1−x)2

x . This change of variables
removes square roots which occur in the differential equation in s and we will show how to
derive the variables in section 5.5.1.

5.4.1. Canonical Form with the Magnus Exponential

Following the algorithm described in section 5.2.3 we first split the ε0-part into a diagonal
and an off-diagonal part

Ax,0 = Dx,0 +Nx,0 , (5.128)

with

Dx,0 =




1 0 0
0 x

1−x2 0

0 0 x
(1−x)2


 Nx,0 =




0 0 0
0 0 − 1

2(1−x) − 1
2(1+x)

0 0 0


 , (5.129)

and then build the rotation matrix by the Magnus exponential of the diagonal part

B1 = e
∫
dxDx,0 =




1 0 0
0 x

1−x2 0

0 0 x
(1−x)2


 . (5.130)

This rotation matrix transforms our differential equation to

A[1]
x = B−1

1 AxB1 −B−1
1 ∂xB1 =




0 0 0
− ε
x

3ε
x − 6ε

1+x − 1−2ε
(x−1)2

− ε
x

0 2ε
x 0


 , (5.131)
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where now the diagonal part is ε-factorized. For the second transformation we build the
Dyson series from the ε0 part of our transformed differential equation A[1]

x

B2 = 1 +

∫
dxN [1]

x (5.132)

with

N [1]
x =




0 0 0
0 0 − 1

(x−1)2

0 0 0


 , (5.133)

where the Dyson series stopped after the first integral since N [1]
x is a nilpotent matrix of

degree two. The transformed differential equation is given by

A[2]
x = B−1

2 A[1]
x B2 −B−1

2 ∂xB2 =




0 0 0
− ε
x

2ε
1−x + 5ε

x − 6ε
1+x − 2ε

1−x − 6ε
x + 3ε

1+x

0 2ε
x − 2ε

1−x − 2ε
x


 , (5.134)

where the dependence on ε is completely factorized. The master integrals, which obey this
canonical equation can be obtained by multiplying the original master integrals by the two
rotation matrices

B1B2F =




F1
x

1−x2F2 − x
(1−x)(1−x2)

F3
x

(1−x)2
F3


 . (5.135)

5.4.2. Canonical Form with Eigenvalue Deflation

Since the contributions of the tadpole, which corresponds to the first line and column of the
differential equation (5.127), are already completely ε-factorized we will only focus on the
homogeneous part of the two master integrals belonging to the QED sunrise. The first thing
we should note is that the differential equation (5.127) is already in Fuchsian form

Cx =
S1

x− 1
+
S2

x
+
S3

1 + x
, (5.136)

with the pole matrices

S1 =

(
1 −1−2ε

2
4ε 2

)
S2 =

(
1 + 3ε −ε

2ε 1

)
S3 =

(
−1− 6ε −1−6ε

2
0 0

)
. (5.137)

Therefore we can immediately start with the second part of the algorithm, where we shift
all eigenvalues of the pole matrices

σ(S1) = {−1− 2ε,−2(1− ε)} σ(S2) = {1 + ε, 1 + 2ε} σ(S3) = {0,−1− 6ε}
σ(S∞) = {1 + ε, 1 + 2ε} , (5.138)
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to be multiple of ε. Here we also have to consider the pole matrix corresponding to the pole
at∞, which can be obtained by S∞ = −S1−S2−S3. Before we start shifting the eigenvalues
we should note that all our eigenvalues are of the form n+ kε with n, k ∈ Z and that their
sum vanishes, which were both requirements of the applicability of the algorithm2. In the
first step we will shift the Eigenvalue λ1 = −2(1− ε) of the first pole matrix S1 by plus one
and the Eigenvalue λ∞ = 1 + ε of the last pole matrix S∞ by minus one. The projector,
which we need for the shift, is build from the right generalized Eigenvector of λ1 and left
generalized Eigenvector of λ∞

P1 = u1 · v†∞ =

(
−1

2
1

)
·
(
−2

3
2
3

)
=

(
1
3 −1

3
−2

3
2
3

)
. (5.139)

With this projector we can obtain the corresponding balance transformation

B1(P1,−1,∞ | x) = P̄1 +
1

1− xP =

(
3−2x

3(1−x) − x
3(1−x)

− 2x
3(1−x)

3−x
3(1−x)

)
, (5.140)

which transforms the differential equation to

C [1]
x = B−1

1 AxB1 − B−1
1 ∂xB1 (5.141)

=

(
3+2ε

3(1−x) + 1+3ε
x − 4(1+4ε)

3(1+x)
4ε

3(1−x) − ε
x −

2(1−2ε)
3(1+x)

8ε
3(1−x) + 2ε

x + 2(1+4ε)
3(1+x)

1−2ε
3(1+x) + 3−2ε

3(1−x) + 1
x

)
. (5.142)

We see that the balance transformation did not alter the pole structure of our matrix, as
one would expect. In fact the only thing that changed are the eigenvalues of the first and
last pole matrices

σ(S [1]
1 ) = {−1− 2ε,−1 + 2ε} σ(S [1]

2 ) = {1 + ε, 1 + 2ε} σ(S [1]
3 ) = {0,−1− 6ε}

σ(S [1]
∞ ) = {ε, 1 + 2ε} , (5.143)

which got shifted by +1 and −1 respectively. All balance transformations, which have to
be performed in order to shift all eigenvalues to be multiples of ε have been summarized in
table 5.1. After four transformation we arrive at a differential equation of the form

C [4]
x =

( 2ε
1−x + 5ε

x − 6ε
1+x

2ε
1−x + 6ε

x − 3ε
1+x

−2ε
x − 2ε

1−x − 2ε
x

)
, (5.144)

which is already completely ε-factorized making the last step in the deflation algorithm
unnecessary. Embedding the obtained rotation matrices in an 3x3 unit matrix

BD =




1 0 0
0
0
B1B2B3B4


 =




1 0 0
0 x

1−x2
x

(1−x)2(1+x)

0 0 − x
(1−x)2


 , (5.145)

2The condition that the sum of all eigenvalues vanishes is trivially satisfied, but the condition that the
eigenvalues have to be integer valued is indeed a limitation. In the case where we have non integer
eigenvalues we usually need to perform a change of variables, since non integer eigenvalues point to the
appearance of non-rational factors in the differential equation
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Step λ shifted by +1 λ shifted by −1 Balance transformation

1 λ = 2(−1 + ε) of S1 λ = 1 + ε of S∞ B1 =

(
3−2x

3(1−x) − x
3(1−x)

− 2x
3(1−x)

3−x
3(1−x)

)

2 λ = −1− 2ε of S [1]
1 λ = 1 + 2ε of S [1]

∞ B2 =

(
3−x

3(1−x)
x

3(1−x)
2x

3(1−x)
3−2x

3(1−x)

)

3 λ = −1 + 2ε of S [2]
1 λ = 1 + ε of S [2]

2 B3 =

(
2−3x

3(1−x)
1

3(1−x)
2

3(1−x)
1−3x

3(1−x)

)

4 λ = −1− 6ε of S [3]
3 λ = 1 + 2ε of S [3]

2 B4 =

(
− 1−3x

3(1+x) − 2
3(1+x)

2
3(1+x)

4+3x
3(1+x)

)

Table 5.1.: We summarize the Balance transformations, which have to be performed in order
to shift all eigenvalues to be multiples of ε.

gives us the rotation matrix for the complete system including the tadpole

A[4]
x =




0 0 0
− ε
x

2ε
1−x + 5ε

x − 6ε
1+x

2ε
1−x + 6ε

x − 3ε
1+x

0 −2ε
x − 2ε

1−x − 2ε
x


 . (5.146)

The canonical master integrals, which were obtained with the deflation algorithm are given
by

BDF =




F1
x

1−x2F2 + x
(1−x)(1−x2)

F3

− x
(1−x)2

F3


 . (5.147)

Comparing the master integrals from Magnus (5.135) with the ones we obtained with the
deflation algorithm we see that both algorithms obtained the same master integrals up
to a simple redefinition of the third master integral F3 → −F3. This is of course not a
general feature, since both algorithms have completely different limitations. Nevertheless it
is interesting to observe that these two algorithms, which are based on completely different
ideas, deliver the same canonical master integrals.

5.5. Irrational Terms within Differential Equations

In the process of obtaining a canonical form we might reveal non-rational terms, which
were hidden in the homogeneous part of the differential equation. These non-rational terms
impede the solution of the differential equation, since we can’t express the solution in terms
of the well known Goncharov’s polylogarithm. Instead we have to rely on the representation
in terms of Chen’s iterated integrals, which due to the lack of a dedicated code can not be
efficiently numerically evaluated at the moment. For this reason it is desirable to remove all
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non-rational terms from the differential equation. Unfortunately there is no general strategy
to do this, but we will present an algorithm here, which allows us to reformulate the problem
of removing non-rational terms from our differential equation in a well defined mathematical
framework.
For a system with k invariants and l non-rational terms we should first assign the variables
β1, . . . , βl to each non-rational term. Then we must be able to write down l − k equations
relating the different non-rational terms. Each of these relations defines a subspace of the l
dimensional space spanned by β1, . . . , βl. The problem can now be reformulated. We want
to find a rational parametrization of each subspace or in the case of overlapping subspaces
for the intersection region, which are only defined implicitly. If we are able to find such
a rational parametrization for the βi we can simply relate them back to our invariants, to
find a rational parametrization, which removes all square roots from our system. Let us
summarize the steps we described for a differential equation with k kinematic invariants and
l non-rational terms.

• 1. Assign the l non-rational terms a variable βi

• 2. Find the l − k relations between the βi

• 3. Find a rational parametrization of the βi, which solves all relations of step 2.

• 4. Using the definitions of βi relate the rational parametrization back to our kinematic
invariants

Without a doubt step 3. is the problematic part of the algorithm, but nevertheless for some
problems we encounter rather easy relations between the βi, for which we can find rational
parametrizations solve. Furthermore this procedure brings the problem into a well defined
mathematical framework, where we want to obtain a rational parametric representation of
a subspace, which is given implicitly by an equation. Let us illustrate how this algorithm
can be applied and derive the well known Landau variables.

5.5.1. Landau Variables

For the QED sunrise, which we discussed previously, we find two square roots
√−s = β1

and
√

4m2 − s = β2 in the differential equation. The arguments of the square roots are
connected through a simple relation

(
√

4m2 − s)2 − (
√
−s)2 = 4m2 , (5.148)

β2
2 − β2

1 = 4m2 . (5.149)

The equation above has two free parameters β1 and β2 and therefore describes a line in
a two dimensional plane. Our goal is to move from this implicit representation of our
subspace to a rational parametric representation. In our case we can achieve this by rewriting
equation (5.149) into a slightly different form

β2
2

4m2
− β2

1

4m2
= 1 , (5.150)
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and realizing that this equation describes a rectangular hyperbola which in general is given
by

x2

a2
− y2

a2
= 1 . (5.151)

The parametrization of this curve is well know

x = a sec(u) (5.152)
y = a tan(u) , (5.153)

and readily solves eq. (5.151). In order to find a rational parametrization we will use the
rational representation of the secant and the tangent

x = a sec(u) = a
1

cos(u)
= a

1 + t2

2t
(5.154)

y = a tan(u) = a
sin(u)

cos(u)
= a

1− t2
2t

. (5.155)

which are based on the rational representation of the sine and cosine

sin(u) =
1− t2
1 + t2

(5.156)

cos(u) =
2t

1 + t2
. (5.157)

From eq. (5.155) we can now find our variable transformation, which removes all square
roots

√
−s = y = a

1− t2
2t

(5.158)

⇒ −s = a2 (1− t2)2

4t2
(5.159)

⇒ −s
m2

=
(1− t2)2

t2
, (5.160)

In our case it is possible to send t → √v without introducing non-rational terms in our
variables, which simplifies our change of variables even further

−s
m2

=
(1− v)2

v
. (5.161)

Through this procedure we arrived at well known Landau variables, which we also used
in (5.127).
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6
Iterated Integrals

Our starting point is the differential equation in the canonical basis

dI = ε dA I , (6.1)

with

dA =

n∑

i=1

Mi d log ηi , (6.2)

where dA is the d log matrix written in terms of differentials d log ηi (that contain the kine-
matic dependence) and coefficient matrices Mi (with rational-number entries). The integra-
bility conditions for eq. (9.16) read

∂a∂bA− ∂b∂aA = 0 , [∂aA, ∂bA] = 0 . (6.3)

6.1. Chen’s Iterated Integrals

The general solution of the canonical system of differential equations (9.16) can be compactly
written at a point ~x = (x1, x2, . . . , xn) as

I(ε, ~x) = P exp

{
ε

∫

γ
dA

}
I(ε, ~x0) , (6.4)

where I(ε, ~x0) is a vector of arbitrary constants, depending on ε, while dA depends only on
the kinematic variables. In the above expression, the path-ordered exponential is a short
notation for the series

P exp

{
ε

∫

γ
dA

}
= 1 + ε

∫

γ
dA+ ε2

∫

γ
dAdA+ ε3

∫

γ
dAdAdA . . . , (6.5)
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in which the line integral of the product of k matrix-valued 1-forms dA is understood in the
sense of Chen’s iterated integrals [128] (see also [129] and the pedagogical lectures [130]) and
γ is a piecewise-smooth path

γ : [0, 1] 3 t 7→ γ(t) = (γ1(t), γ2(t), . . . , γn(t)) , (6.6)

such that γ(0) = ~x0 and γ(1) = ~x. It follows from Chen’s theorem that the iterated integrals
in eq. (6.5) do not depend on the actual choice of the path, provided the curve does not
contain any singularity of dA and it does not cross any of its branch cuts, but only on the
endpoints. In this sense, if one fixes ~x0 and lets ~x vary, eq. (6.4) can be thought of as a
function of ~x. In the limit ~x → ~x0, the line shrinks to a point and all the path integrals
in eq.(6.5) vanish, so that I(ε, ~x) → I(ε, ~x0), i.e. the integration constants have a natural
interpretation as initial values, and the path-ordered exponential as evolution operator. We
assume that the vector of MI’s at any point I(~x) is normalized in such a way that it admits
a Taylor series in ε:

I(ε, ~x) = I(0)(~x) + ε I(1)(~x) + ε2I(2)(~x) + . . . . (6.7)

The solution I(ε, ~x) is then in principle determined through (6.4) at any order of the ε-
expansion, and reads (up to the coefficient of ε4)

I(0)(~x) = I(0)(~x0) , (6.8)

I(1)(~x) = I(1)(~x0) +

∫

γ
dA I(0)(~x0) , (6.9)

I(2)(~x) = I(2)(~x0) +

∫

γ
dA I(1)(~x0) +

∫

γ
dA dA I(0)(~x0) , (6.10)

I(3)(~x) = I(3)(~x0) +

∫

γ
dA I(2)(~x0) ,+

∫

γ
dA dA I(1)(~x0)

+

∫

γ
dA dA dA I(0)(~x0) , (6.11)

I(4)(~x) = I(4)(~x0) +

∫

γ
dA I(3)(~x0) +

∫

γ
dA dA I(2)(~x0)

+

∫

γ
dA dA dA I(1)(~x0) +

∫

γ
dA dA dA dA I(0)(~x0) . (6.12)

The problem of solving (9.16), given a set of initial conditions I(~x0), reduces therefore to
the evaluation of matrices of the type

∫

γ
dA . . . dA︸ ︷︷ ︸

k times

, (6.13)

whose entries, due to (9.17), are linear combinations of Chen’s iterated integrals of the form
∫

γ
d log ηik . . . d log ηi1 ≡

∫

0≤t1≤...≤tk≤1
gγik(tk) . . . g

γ
i1

(t1) dt1 . . . dtk , (6.14)
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with

gγi (t) =
d

dt
log ηi(γ(t)) . (6.15)

We refer to the number of iterated integrations k as the weight of the path-integral. The
empty integral (eq. (6.14) for k = 0) is defined to be equal to 1. We stress that only the
matrices (6.13) do not depend on the explicit choice of the path. The individual summands
of the form in eq. (6.14), which contribute to their entries, in general depend on such a
choice. To keep the notation compact, we define

C [γ]
ik,...,i1

≡
∫

γ
d log ηik . . . d log ηi1 , (6.16)

which also emphasizes that the iterated integrals in (6.14) are in general functionals of the
path γ.

6.1.1. Properties of Chen’s iterated integrals

The general theory of iterated path integrals was developed by Chen [128]. Chen’s iterated
integrals satisfy a number of properties that we summarize for completeness:

• Invariance under path reparametrization. The integral C [γ]
ik,...,i1

does not depend on how
one chooses to parametrize the path γ.

• Reverse path formula. If the path γ−1 is the path γ traversed in the opposite direction,
then

C [γ−1]
ik,...,i1

= (−1)kC [γ]
ik,...,i1

. (6.17)

• Recursive structure. From (6.14) and (6.15) it follows that the line integral of one d log
is defined as usual

∫

γ
d log η ≡

∫

0≤t≤1

d log η(γ(t))

dt
dt , (6.18)

and only depends on the endpoints ~x0, ~x
∫

γ
d log η = log η(~x)− log η(~x0) . (6.19)

It is convenient to introduce the path integral “up to some point along γ”: given a
path γ and a parameter s ∈ [0, 1], one can define the 1-parameter family of paths

γs : [0, 1] 3 t 7→ ~x = (γ1(s t), γ2(s t), . . . , γn(s t)) . (6.20)

If s = 1, then trivially γs = γ. If s = 0 the image of the interval [0, 1] is just {~x0}.
If s ∈ (0, 1), then the curve γs([0, 1]) starts at γ(0) = ~x0 and overlaps with the curve
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γ([0, 1]) up to the point γ(s), where it ends. It is then easy to see that the path integral
along γs can be written as

C [γs]
ik,...,i1

=

∫

0≤t1≤...≤tk≤s
gγik(tk) . . . g

γ
i1

(t1) dt1 . . . dtk , (6.21)

which differs from eq. (6.14) by the fact that the outer integration (i.e. the one in dtk)
is performed over [0, s] instead of [0, 1]. Having introduced γs, we can rewrite (6.14)
in a recursive manner:

C [γ]
ik,...,i1

=

∫ 1

0
gγik(s) C [γs]

ik−1,...,i1
ds . (6.22)

From eq. (6.21) we can also immediately derive the following identity:

d

ds
C [γs]
ik,...,i1

= gγik(s) C [γs]
ik−1,...,i1

. (6.23)

• Shuffle algebra. Chen’s iterated integrals fulfil shuffle algebra relations: if ~m =
mM , . . . ,m1 and ~n = nN , . . . , n1 (with M and N natural numbers)

C [γ]
~m C

[γ]
~n =

∑

shuffles σ

C [γ]
σ(mM ),...,σ(m1),σ(nN ),...,σ(n1) , (6.24)

where the shuffles are all possible merges of ~m and ~n preserving their respective or-
derings. Because of shuffle relations, for a given alphabet and a given weight one can
identify a minimal basis of Chen’s iterated integrals. The number of basis elements
depending on the weight n and the alphabet size α is given by the Witt formula:

N(n, α) =
1

n

∑

d|n
µ(d)α

n
d , (6.25)

where µ denotes the Möbius function and the sum is done over all divisors of n. For
reference we give some values of N(n, α) in table 6.1.

• Path composition formula. If α, β : [0, 1]→M are such that α(0) = ~x0, α(1) = β(0),
and β(1) = ~x, then the composed path γ ≡ αβ is obtained by first traversing α and
then β. One can prove that the integral over such a composed path satisfies

C [αβ]
ik,...,i1

=

k∑

p=0

C [β]
ik,...,ip+1

C [α]
ip,...,i1

. (6.26)

The formula arises by splitting the integration regions of the full path αβ into several
pieces. As an example we show how the integration region is split for k = 2 in figure
6.1.
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weight α = 2 α = 3 α = 4

1 2 3 4
2 1 3 6
3 2 8 20
4 3 18 60
5 6 48 204
6 9 116 670

Table 6.1.: Size of a basis of Chen’s iterated integrals.

• Integration-by-parts formula. In order to compute the path ordered integral of k d log
forms using the definition, eq. (6.14) (or, equivalently, eq. (6.22)), in principle one
would have to perform k nested integrations. When a full analytical solution cannot
be achieved, numerical integration can as well be employed. Therefore one can use
an alternative form of the Chen’s iterated integral suitable for the combined use of
analytic and numerical integrations. In fact, we observe that the innermost integration
can always be performed analytically using (6.18), so that only k − 1 integrations are
left. For instance, in the case k = 2,

C [γ]
b,a =

∫ 1

0
gb(t) C [γt]

a dt

=

∫ 1

0
gb(t)(log ηa(~x(t))− log ηa(~x0)) dt . (6.27)

For k ≥ 3, one can proceed recursively using eq. (6.22), assuming that the numerical
evaluation up to the first k − 1 iterations is a solved problem. Using integration by
parts, one can show that the numerical integration over the outermost weight gk can
actually be avoided, leaving only k − 2 integrations to be performed

C [γ]
ik,...,i1

= log ηik(~x) C [γ]
ik−1,...,i1

−
∫ 1

0
log ηik(~x(t)) gik−1

(t) C [γt]
ik−2,...,i1

dt . (6.28)

6.1.2. Path Invariance

We should note that only a combination of Chen’s iterated integrals corresponding to a total
differential is path invariant. Such a combination is e.g. formed by each master integral
in our canonical differential equation, resulting in the path invariance of each individual
master integral. In order to illustrate this point let us consider two weight two Chen’s
iterated integrals

∫

γ
d log(x+ y) d log(1 + x) +

∫

γ
d log(1 + x) d log(x+ y) , (6.29)
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Figure 6.1.: A weight two Chen’s iterated integral, where for the full path the inner path
parameter t2 ranges form 0 to t1 and the outer path parameter t1 range from
0 to 1. Therefore the integration covers the full triangle, which is shown. If we
split the path in half, with α covering the first half and β the second half, the
path splitting formula produces three terms: one Chen’s iterated integral where
we integrate over path α, one where we integrate over path β and one where
the inner d log is integrated over α times another Chen’s iterated integral where
the outer d log is integrated over path β. The three terms are represented by
the sections in the triangle, namely α, β and α ∗ β respectively.

which together form a total differential. Choosing a linear path γ which is shown in figure
6.2 between the start point ~x0 = (x0, y0) = (1.23, 0.34) and end point ~x1 = (x1, y1) =
(0.435, 0.96)

γ : ~x(t) = (x0 + t(x1 − x0), y0 + t(y1 − y0)) (6.30)

we find the following numerical value for the first integral
∫

γ
d log(x+ y) d log(1 + x) =

∫ 1

0
dt1

∫ t1

0
dt2

d log(x0 + y0 + t1(x1 + y1 − x0 − y0)

dt1

× d log(1 + x0 + t2(x1 − x0))

dt2
= 0.0247 . (6.31)

Similarly the second integral evaluates to
∫

γ
d log(1 + x) d log(x+ y) = 0.0274 . (6.32)

If we combine both results we find a numerical value, which is completely independent of
the path choice we have made

∫

γ
d log(x+ y) d log(1 + x) +

∫

γ
d log(1 + x) d log(x+ y) = 0.0521 . (6.33)
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Figure 6.2.: The three paths γ, α and β are shown.

Let us verify this statement by choosing two linear paths α and β such that α(0) = γ(0) = ~x0,
α(1) = β(0) = ~x2 = (x2, y2) = (0.78, 0.76) and β(1) = γ(1) = ~x1

α : ~x(t) = (x0 + t(x2 − x0) , y0 + t(y2 − y0)) , (6.34)
β : ~x(t) = (x2 + t(x1 − x2) , y2 + t(y1 − y2)) , (6.35)

which are also depicted in figure 6.2. Using the path splitting formula in (6.26) we can
express our integral over the composed path αβ as path integrals over α and β, which we
can evaluate numerically
∫

αβ
d log(x+ y) d log(1 + y) =

∫

α
d log(x+ y) d log(1 + x)

+

∫

β
d log(x+ y) d log(1 + x) +

∫

β
d log(x+ y)

∫

α
d log(1 + x)

= 0.0348 . (6.36)

Comparing this value to (6.31) we confirm that the individual integral is not path invariant.
Repeating the steps for the second integral
∫

αβ
d log(1 + x) d log(x+ y) =

∫

α
d log(1 + x) d log(x+ y)

+

∫

β
d log(1 + x) d log(x+ y) +

∫

β
d log(1 + x)

∫

α
d log(x+ y)

= 0.0173 , (6.37)

and comparing it to equation (6.32) we confirm that also this integral is not path invariant.
But if we combine both results together

∫

αβ
d log(x+ y) d log(1 + x) +

∫

αβ
d log(1 + x) d log(x+ y) = 0.0521 , (6.38)
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we obtain the same numerical value as for path γ (6.33), therefore we have shown that our
combination of integrals is indeed path invariant.

6.2. Goncharov Polylogarithms

If the alphabet is rational we are able to express our solution in terms of Goncharov’s
multiple polylogarithms (GPL for short) [131–134],

G(~wn;x) ≡ G(w1, ~wn−1;x) ≡
∫ x

0
dt

1

t− w1
G(~wn−1; t), (6.39)

G(~0n;x) ≡ 1

n!
logn(x), (6.40)

with ~wn being a vector of n arguments. The number n is referred to as the weight of G(~wn;x)
and amounts to the number of iterated integrations needed to define it. Equivalently one
has

∂xG(~wn;x) = ∂xG(w1, ~wn−1;x) =
1

x− w1
G(~wn−1;x). (6.41)

GPLs inherit the shuffle algebra relations from the Chen’s iterated integrals

G(~m;x)G(~n;x) = G(~m;x)ttG(~n;x) =
∑

~p=~mtt~n
G(~p;x), (6.42)

where shuffle product ~mtt~n denotes all possible merges of ~m and ~n preserving their re-
spective orderings. In the limit, where the argument of the GPL approaches the value of
the leftmost weight, the GPL has a logarithmic divergence which we can make explicit with
the help of the shuffle algebra

lim
x→w1

G(w1, w2, . . . , wn;x) = lim
x→w1

(G(w1;x)G(w2, . . . , wn;x)

−G(w2, w1, w3, . . . , wn;x)− · · · −G(w2, w3, . . . , wn, w1;x)) , (6.43)

where all GPLs are now finite in the limit except for G(w1;x) = log(1 − x
w1

) which is
logarithmic divergent. In the case, where the first k weights are equal and diverge simulta-
neously, we can use the above formula recursively.
In the limit x → 0 we encounter a different behavior. Here only the trailing zeros may
develop a logarithmic divergence. But nevertheless we can use the shuffle algebra in the
same manner as we did for the previous divergence

lim
x→0

G(w1, . . . , wn, 0;x) = lim
x→0

(G(0;x)G(w1, . . . , wn;x)−G(w1, . . . , wn−1, 0, wn;x)

− · · · −G(0, w1, . . . , wn;x)) .
(6.44)

It is important to note that a divergent limit and higher powers of GPLs do not necessarily
commute

lim
x→w1

(G(w1;x))2 6=
(

lim
x→w1

G(w1;x)

)2

, (6.45)
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as it was described in [132].
If we have more then two dimensionless kinematic invariants at least one of them will appear
in the weights. In certain cases it might be useful to exchange an invariant appearing in the
weight with the one in the argument. This can be done by iteratively using the following
formula

G(~w(x2, . . . , xn), x1) =

G(~w(x2 = 0, x3, . . . , xn);x1) +

∫ x2

0
dt
d

dt
G(~w(x2 = t, x3, . . . , xn);x1) . (6.46)

As an example let us consider a GPL with two invariants x and y

G(1, 1− y;x) = G(1, 1;x) +

∫ y

0
dt
d

dt
G(1, 1− t;x)

= G(1, 1;x) +

∫ y

0
dt
d

dt

∫ x

0

dt1
t1 − 1

∫ t1

0

dt2
t2 − 1 + t

= G(1, 1;x)−
∫ y

0
dt

∫ x

0

dt1
t1 − 1

∫ t1

0

dt2
(t2 − 1 + t)2

= G(1, 1;x) +

∫ y

0
dt

∫ x

0

dt1
t1 − 1

(
1

t1 − 1 + t
− 1

t− 1

)

= G(1, 1;x) +

∫ y

0
dt

∫ x

0
dt1

[(
1

t
− 1

t− 1

)
1

t1 − 1
− 1

t

1

t1 − 1 + t

]

= G(1, 1;x) +

∫ y

0
dt

[(
1

t
− 1

t− 1

)
G(1;x)− 1

t
G(1− t;x)

]

= G(1, 1;x) +G(0; y)G(1;x)−G(1; y)G(1;x)

−
∫ y

0

dt

t
[G(1− x; t) +G(1;x)−G(1; t)]

= G(1, 1;x)−G(0, 1− x; y)−G(0, 1; y)−G(1; y)G(1;x) , (6.47)

where we expressed a GPL with y in the weight and x as the argument in terms of a GPL
with x in the weight and y as the argument plus GPLs with constant weights and either y
or x as the argument. We can use a very similar formula to compute limiting cases of GPLs

G(~w(x2, . . . , xn), x1(x2, . . . , xn)) = G(~w(x2 = 0, x3, . . . , xn);x1(x2 = 0, . . . , xn))

+

∫ x2

0
dt
d

dt
G(~w(x2 = t, x3, . . . , xn);x1(x2 = t, x3, . . . , xn))

, (6.48)
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where we took the limit of x1 going to some function of the other invariants x1 → x1(x2, . . . , xn).
As an example of how this formula can be used let us consider

G(1, 1− x; 1− x) = G(1, 0; 0) +

∫ x

1
dt
d

dt
G(1, 1− t; 1− t)

=

∫ x

1
dt
d

dt

∫ 1−t

0

dt1
t1 − 1

∫ t1

0

dt2
t2 − 1 + t

=

∫ x

1
dt

[
1

t

∫ 1−t

0

dt2
t2 − 1 + t

−
∫ 1−t

0

dt1
t1 − 1

∫ t1

0

dt2
(t2 − 1 + t)2

]

=

∫ x

1
dt

(
1

t
− 1

t− 1

)∫ 1−t

0

dt1
t1 − 1

=

∫ x

1
dt

(
1

t
− 1

t− 1

)
G(1; 1− t)

=

∫ x

1
dt

(
1

t
− 1

t− 1

)
G(0; t)

= G(0, 0;x)−G(1, 0;x) +G(1, 0; 1) . (6.49)

Here we also illustrated a subtlety when using formulas (6.48) and (6.46). We have to avoid
using a lower integration bound, which introduces a divergent boundary term G(~w(x2 =
0, x3, . . . , xn);x1(x2 = 0, . . . , xn)) or G(~w(x2 = 0, x3, . . . , xn);x1) respectively. A divergence
could either be introduced when the leftmost weight matches the argument as it would have
happened in the example above if we choose zero as a lower integration bound or when taking
the limit introduces an additional trailing zero, while the argument is different from zero. In
addition to the methods we discussed here we should also mention the symbol [129,135–137]
and coproduct formalism ( [135, 138, 139] and [140] for a pedagogical introduction), which
can be used to efficiently treat all relations between GPLs.
As a last point let us discuss how we can convert a given Chen’s iterated integral with
rational weights into GPLs. We can achieve this through a three step procedure

• 1) Split the path such that only one kinematic invariant varies linearly at a time using
the path splitting formula (6.26)

• 2) Factor all arguments of the d logs over C, such that the dependence on the varying
kinematic invariant is linear

• 3) Use the conversion formula
∫

γ
d log(xi + wn) . . . d log(xi + w1) = G(

xi,0 + wn
xi,0 − xi,1

, . . . ,
xi,0 + w1

xi,0 − xi,1
; 1) , (6.50)

where the path γ only affects the invariant xi and takes it from the start point xi,0 to
xi,1.
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Let us illustrate this procedure on an example. We can convert a weight two Chen’s iterated
integral depending on two invariants x and y into GPLs by splitting γ

γ : (x(t), y(t)) = (x0 + t (x1 − x0) , y0 + t (y1 − y0) ) , (6.51)

into a path γ1, which takes x from x0 to x1 and a path γ2, which takes y from y0 to y1,

γ1 : (x(t), y(t)) = (x0 + t (x1 − x0) , y0 ) (6.52)
γ2 : (x(t), y(t)) = (x1 , y0 + t (y1 − y0) ) , (6.53)

while leaving the other kinematic invariant constant. Using the path splitting formula we
find
∫

γ
d log(y + x2) d log(1 + x) =

∫

γ1

d log(y+x2) d log(1+x)+

∫

γ2

d log(y+x2) d log(1+x)+

∫

γ2

d log(y+x2)

∫

γ1

d log(1+x) ,

=

∫

γ1

d log(y + x2) d log(1 + x) +

∫

γ2

d log(y + x2)

∫

γ1

d log(1 + x) , (6.54)

where we used that the path integral
∫
γ2
d log(y + x2) d log(1 + x) vanishes, since path γ2

only varies y.
In the second step we need to factorize d log(y + x2), when we integrate over path γ1, since
it is not linear in x
∫

γ
d log(y + x2) d log(1 + x) =

∫

γ1

d log(x+i
√
y) d log(1+x)+

∫

γ1

d log(x−i√y) d log(1+x)+

∫

γ2

d log(y+x2)

∫

γ1

d log(1+x) .

(6.55)

Now we are ready to using the formula (6.50) to convert the Chen’s iterated integrals to
GPLs
∫

γ
d log(y + x2) d log(1 + x) =

G(
x0 + i

√
y0

x0 − x1
,
x0 + 1

x0 − x1
; 1) +G(

x0 − i√y0

x0 − x1
,
x0 + 1

x0 − x1
; 1) +G(

y0 + x2
1

y0 − y1
; 1)G(

x0 + 1

x0 − x1
; 1) .

(6.56)

The steps we outlined above allow us to convert any Chen’s iterated integral with rational
d log arguments to GPLs.
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6.3. Mixed Chen-Goncharov Representation

In principle eq. (6.4) completely determines the solution, which can be written in terms
of Chen’s iterated integrals along an arbitrary piecewise-smooth path (see the discussion
below eq. (6.4)). The initial conditions I(~x0) can be computed analytically, if possible, or
by means of numerical methods. The number of iterated integrals that have to be evaluated
numerically can be minimized by the use the of algebraic identities relating them. According
to the discussion in section 6.1.1, the evaluation of the solution up to weight 4 requires in
general 2 nested numerical integrations. But since numerical integrations can be rather
expensive in computing time it is desirable to convert as many Chen’s iterated integrals into
GPLs as possible. In cases, where we have non-rational elements in our alphabet this will
lead to a mixed representation, where the integrand is given as GPLs, but the integration
is done over a path in sense of Chen’s iterated integrals.
To reach this mixed representation, we have to exploit the property of path-independence

of the coefficients of the ε-expansion of the solution eq. (6.4). In particular, eqs. (6.9)-(6.12)
can be written in an equivalent alternative form using eq. (6.22):

I(k)(~x) = I(k)(~x0) +

∫ 1

0

[
dA(t)

dt
I(k−1)(~xt)

]
dt , (6.57)

where ~xt is the point (x(t), y(t)) along the curve identified by γ. We see that, in order to
build the weight-k coefficient, one must perform a path integration over the weight-(k − 1)
coefficient. The choice of such path is independent of the path used to compute the former
because, as we have already discussed, each coefficient is a function of the sole endpoints.
In other words, as far as the weight-k coefficient of the solution is concerned, we are free to
choose the integration path independently for each of the k integrations (for each component
of I(~x)).
To see how this can be useful in our computation, we note that the letters ηi (in suitable

variables, say ~x) can be grouped in two classes. The first contains the letters that are rational
in the components of ~x and the second is the class of letters that are non-rational functions
of the variables.
Starting from the weight-1 coefficient of the solution, we proceed as follows. As far as

the involved ηi’s belong to the first class of letters, we can express the solution in terms of
GPLs. We keep integrating in this manner until, at some weight k, the solution begins to
involve non-rational ηi’s. At this point we proceed with the path integration as in (6.57).
Within this approach, the weight k− 1 solution is not expressed in terms of Chen’s iterated
integrals over an arbitrary path, but in terms of GPLs. We should note that as soon as we
have more then two integrations over non-rational letters ηi, we can use the integration-by-
parts formula (6.28) again to reduce the number of integrations by 1.
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7
Magnus Series for Master Integrals

In this chapter we will shortly discuss the calculation of the master integrals for several
processes with the help of differential equation method. In particular we will consider cases,
where we used the algorithm based on the Magnus series to obtain a canonical basis for our
process. The canonical differential equation was then solved in terms of GPLs, since the
considered processes admitted a rational alphabet.

7.1. One-Loop Bhabha Scattering

As a first example let us consider the calculation of one-loop Bhabha scattering within the
DE’s method, which was already discussed in [141, 142], and more recently in Ref. [143].
A selection of the Feynman diagrams contributing to this process is depicted in Fig. 7.1.
In this section, we compute a set of MI’s with a slightly different definition from the ones
in [143].
The diagrams depend on the invariants s = (p1 + p2)2, t = (p1 + p3)2, u = (p2 + p3)2 and

on the fermion mass m. Momentum conservation and the on-shellness of the external legs
render these variables not independent as they are related by the condition s+ t+u = 4m2.
The integrals can be expressed in terms of the Landau auxiliary variables x and y, defined
as follows

s = −m
2(1− x)2

x
, t = −m

2(1− y)2

y
. (7.1)

We identify the following basis f of scalar integrals,

F1 = εT1 , F2 = εT2(t) , F3 = εT3(s) ,

F4 = ε2T4(t) , F5 = ε2T5(s, t) , (7.2)

in terms of the integrals T in Fig. 7.2. The basis F fulfills the following systems of differential
equations (σ = x, y)

∂σF(ε, x, y) = Aσ(ε, x, y)F(ε, x, y) , Aσ(ε, x, y) = Dσ,0(x, y) + εAσ,1(x, y) . (7.3)
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Figure 1: Selection of Feynman diagrams entering the Bhabha scattering at one loop.

5. One-Loop Bhabha scattering

The calculation of the one-loop Bhabha scattering within the DE’s method was discussed

in [28,29], and more recently in Ref. [14]. A selection of the Feynman diagrams contributing

to this process is depicted in Fig. 1. In this section, we compute a set of MI’s with a slightly

different definition from the ones in [14], which will be also adopted for the the one-loop

× one-loop subtopologies of the QED vertices in the next section.

The diagrams depend on the invariants s = (p1+p2)
2, t = (p1+p3)

2, u = (p2+p3)
2 and

on the fermion mass m. Momentum conservation and the on-shellness of the external legs

render these variables not independent as they are related by the condition s+t+u = 4m2.

The integrals can be expressed in terms of the Landau auxiliary variables x and y, defined

as follows

s = −m2(1 − x)2

x
, t = −m2(1 − y)2

y
. (5.1)

We identify the following basis f of scalar integrals,

f1 = ϵT1 , f2 = ϵT2(t) , f3 = ϵT3(s) ,

f4 = ϵ2T4(t) , f5 = ϵ2T5(s, t) , (5.2)

in terms of the integrals T in Fig. 2. The basis f fulfills the following systems of differential

equations (σ = x, y)

∂σf(ϵ, x, y) = Aσ(ϵ, x, y)f(ϵ, x, y) , Aσ(ϵ, x, y) = Dσ,0(x, y) + ϵAσ,1(x, y) . (5.3)

Both systems are linear in ϵ and in both cases the O(ϵ0) term, Dσ,0, is diagonal. The

systems can be brought in the canonical form by performing the transformation

f(ϵ, x, y) = B0(x, y)g(ϵ, x, y) B0(x, y) = e
∫ x

x0
dτDx,0(τ,y)

e
∫ y

y0
dτDy,0(x,τ)

. (5.4)

The new basis g,

g1 = f1 , g2 = t f2 , g3 =
√

(−s) (4m2 − s) f3

g4 =
√

(−t) (4m2 − t) f4 , g5 =
√

(−s) (4m2 − s) t f5 . (5.5)

fulfills the canonical systems

∂xg(ϵ, x, y) = ϵÂx,1(x, y) g(ϵ, x, y) , ∂yg(ϵ, x, y) = ϵÂy,1(x, y) g(ϵ, x, y) , (5.6)

– 8 –

Figure 7.1.: Selection of Feynman diagrams entering Bhabha scattering at one loop.

Both systems are linear in ε and in both cases the O(ε0) term, Dσ,0, is diagonal. The systems
can be brought in the canonical form by performing the transformation

F(ε, x, y) = B0I(ε, x, y) B0(x, y) = e
∫ x
x0
dτDx,0(τ,y)

e
∫ y
y0
dτDy,0(x,τ)

. (7.4)

The new basis I,

I1 = F1 , I2 = tF2 , I3 =
√

(−s) (4m2 − s)F3

I4 =
√

(−t) (4m2 − t)F4 , I5 =
√

(−s) (4m2 − s) tF5 . (7.5)

fulfills the canonical systems

∂xI(ε, x, y) = εÂx,1(x, y) I(ε, x, y) , ∂yI(ε, x, y) = εÂy,1(x, y) I(ε, x, y) , (7.6)

with

Âx,1(x, y) =




0 0 0 0 0
0 0 0 0 0
1
x 0 1−x

x(1+x) 0 0

0 0 0 0 0

0 2
x

2(1−x)(1−y)2

(1+x)(x+y)(1+xy) − 2(1−y)(1+y)
(x+y)(1+xy)

(1−x)(1−y)2

(1+x)(x+y)(1+xy)



,

Ây,1(x, y) =




0 0 0 0 0

0 1+y
(1−y)y 0 0 0

0 0 0 0 0
1
y

1
y 0 4

(1−y)(y+1) 0

0 0 − 2x(1−y)(1+y)
y(x+y)(1+xy) − 2(1−x)(1+x)

(x+y)(1+xy)
(1+x)2(1+y)

(1−y)(x+y)(1+xy)



. (7.7)

The two systems of DE’s in Eq.(7.6) can be combined in a full differential form, along the
lines of Ref. [143],

dI(ε, x, y) = ε dÂ1(x, y) I(ε, x, y) , (7.8)

where the matrix Â1(x, y) fulfills the relations,

∂xÂ1(x, y) = Âx,1(x, y) , ∂yÂ1(x, y) = Ây,1(x, y) . (7.9)
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T1

p1

p2

p3

p4

T2(t)

p1

p2

p3

p4

T3(s)

p1

p2

p3

p4

T4(t)

p1

p2

p3

p4

T5(s, t)

Figure 2: MI’s for the one-loop corrections to the Bhabha scattering. All the external momenta

are incoming. A dot denotes a squared propagator.

with

Âx,1(x, y) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0
1
x 0 1−x

x(1+x) 0 0

0 0 0 0 0

0 2
x

2(1−x)(1−y)2

(1+x)(x+y)(1+xy) − 2(1−y)(1+y)
(x+y)(1+xy)

(1−x)(1−y)2

(1+x)(x+y)(1+xy)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Ây,1(x, y) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 1+y
(1−y)y 0 0 0

0 0 0 0 0
1
y

1
y 0 4

(1−y)(y+1) 0

0 0 − 2x(1−y)(1+y)
y(x+y)(1+xy) − 2(1−x)(1+x)

(x+y)(1+xy)
(1+x)2(1+y)

(1−y)(x+y)(1+xy)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5.7)

The two systems of DE’s in Eq.(5.6) can be combined in a full differential form, along the

lines of Ref. [14],

dg(ϵ, x, y) = ϵ dÂ1(x, y) g(ϵ, x, y) , (5.8)

where the matrix Â1 fulfills the relations,

∂xÂ1(x, y) = Âx,1(x, y) , ∂yÂ1(x, y) = Ây,1(x, y) . (5.9)

and the integrability condition

ϵ
(
∂x∂yÂ1(x, y) − ∂y∂xÂ1(x, y)

)
+ ϵ2

[
∂xÂ1(x, y), ∂yÂ1(x, y)

]
= 0 . (5.10)

The matrix Â1 is logarithmic in the variables x and y,

Â1(x, y) = M1 log(x) + M2 log(1 + x) + M3 log(y) + M4 log(1 + y) +

+M5 log(1 − y) + M6 log(x + y) + M7 log(1 + xy) , (5.11)

with

M1 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

1 0 1 0 0

0 0 0 0 0

0 2 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

, M2 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

0 0 −2 0 0

0 0 0 0 0

0 0 −4 0 −2

⎞
⎟⎟⎟⎟⎟⎠

, M3 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

1 1 0 0 0

0 0 −2 0 0

⎞
⎟⎟⎟⎟⎟⎠

,

– 9 –

Figure 7.2.: MI’s for the one-loop corrections to Bhabha scattering. All the external mo-
menta are incoming. A dot denotes a squared propagator.

and the integrability condition

ε
(
∂x∂yÂ1(x, y)− ∂y∂xÂ1(x, y)

)
+ ε2

[
∂xÂ1(x, y), ∂yÂ1(x, y)

]
= 0 . (7.10)

The matrix Â1(x, y) is logarithmic in the variables x and y,

Â1(x, y) = M1 log(x) + M2 log(1 + x) + M3 log(y) + M4 log(1 + y) +

+M5 log(1− y) + M6 log(x+ y) + M7 log(1 + xy) , (7.11)

with

M1 =




0 0 0 0 0
0 0 0 0 0
1 0 1 0 0
0 0 0 0 0
0 2 0 0 0




, M2 =




0 0 0 0 0
0 0 0 0 0
0 0 −2 0 0
0 0 0 0 0
0 0 −4 0 −2




,

M3 =




0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
1 1 0 0 0
0 0 −2 0 0




, M4 =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 2 0
0 0 0 0 0




,

M5 =




0 0 0 0 0
0 −2 0 0 0
0 0 0 0 0
0 0 0 −2 0
0 0 0 0 2




, M6 =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 −2 −2 −1




,

M7 =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 2 2 1




. (7.12)
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p2

p1 − k1

−p2 − k2

Figure 3: Selection of Feynman diagrams entering the correction of the QED vertex at two loops.

The internal momenta in the first diagram are oriented according to the fermion flow, while the

external momenta are incoming.

M4 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 2 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

, M5 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 −2 0 0 0

0 0 0 0 0

0 0 0 −2 0

0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎠

, M6 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 −2 −2 −1

⎞
⎟⎟⎟⎟⎟⎠

,

M7 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 2 2 1

⎞
⎟⎟⎟⎟⎟⎠

. (5.12)

The position of the non-zero entries of the sparse matrices Mi agrees with the result ob-

tained in Ref. [14]. The actual value of the non-zero entries, however, are different, owing

to the different normalization of the elements of the basis of MI’s. The solution of the

system (5.8) can be computed along the lines of Ref. [14]. In particular, the solution is

computed in the Euclidean region 0 < x, y < 1 by using the analytic structures of the gi

and then extended in the physical region by analytic continuation [29].

6. Two-Loop QED Vertices

A basis of MI’s for the electron form factor at two loops in QED [20] was computed in

Ref. [19], for arbitrary kinematics and finite electron mass. The diagrams contributing to

such corrections are depicted in Fig. 3 and depend on s = (p1 + p2)
2 and p2

1 = p2
2 = m2. In

this example we start from an alternative set of MI’s,

f1 = ϵ2T1 , f2 = ϵ2T2 , f3 = ϵ2T3 , f4 = ϵ2T4 , f5 = ϵ2T5 ,

f6 = ϵ2T6 , f7 = ϵ2T7 , f8 = ϵ3T8 , f9 = ϵ3T9 , f10 = ϵ2T10 ,

f11 = ϵ3T11 , f12 = ϵ3T12 , f13 = ϵ2T13 , f14 = ϵ3T14 , f15 = ϵ4T15 ,

f16 = ϵ4T16 , f17 = ϵ4T17 , (6.1)

where the integrals Ti are collected in Fig. 4. The system of differential equation for f , in

– 10 –

Figure 7.3.: Selection of Feynman diagrams entering the correction of the QED vertex at
two loops. The internal momenta in the first diagram are oriented according to
the fermion flow, while the external momenta are incoming.

The position of the non-zero entries of the sparse matrices Mi agrees with the result obtained
in Ref. [143]. The actual value of the non-zero entries, however, are different, owing to the
different normalization of the elements of the basis of MI’s. The solution of the system (7.8)
can be computed along the lines of Ref. [143]. In particular, the solution is computed in the
Euclidean region 0 < x, y < 1 by using the analytic structures of the Ii and then extended
in the physical region by analytic continuation [142].

7.2. Two-Loop QED Vertices

A basis of MI’s for the electron form factor at two loops in QED [144] was computed in
Ref. [145], for arbitrary kinematics and finite electron mass. The diagrams contributing to
such corrections are depicted in Fig. 7.3 and depend on s = (p1 + p2)2 and p2

1 = p2
2 = m2.

In this example we start from an alternative set of MI’s,

F1 = ε2T1 , F2 = ε2T2 , F3 = ε2T3 , F4 = ε2T4 , F5 = ε2T5 ,

F6 = ε2T6 , F7 = ε2T7 , F8 = ε3T8 , F9 = ε3T9 , F10 = ε2T10 ,

F11 = ε3T11 , F12 = ε3T12 , F13 = ε2T13 , F14 = ε3T14 , F15 = ε4T15 ,

F16 = ε4T16 , F17 = ε4T17 , (7.13)

where the integrals Ti are collected in Fig. 7.4. The system of differential equation for f , in
the auxiliary variable x, defined through

s = −m
2(1− x)2

x
, (7.14)

is linear in ε,

∂xF(ε, x) = A(ε, x) F(ε, x) , A(ε, x) = A0(x) + εA1(x) . (7.15)

The canonical form can be obtained performing the transformation described in Section 5.2.3,

F(ε, x) = B0(x) I(ε, x), B0(x) = eΩ[A0](x) . (7.16)
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The new basis I is given by

I1 = F1 , g2 = λ1F2 ,

I3 = (−s)λ2F3 , g4 = m2F4 ,

I5 = λ1

(
F5 +

F6

2

)
− s

2
F6 , g6 = (−s)F6 ,

I7 = m2F7 , g8 = λ1F8 ,

I9 = λ1F9 , I10 = λ3 (2F5 + F6) +m2λ2F10 ,

I11 = λ1F11 , g12 = λ1F12 ,

I13 = 3
(
m2 − s

2

)
F7 − sλ2F13 , g14 = (−s)λ2F14 ,

I15 = λ1F15 , g16 = λ1F16 ,

I17 = (−s)λ2F17 , (7.17)

where

λ1 =
√
−s
√

4m2 − s , λ2 = (4m2 − s) , λ3 =
λ1 + λ2

4
. (7.18)

The new basis of MI’s obeys a system of DE’s in the canonical form,

∂xI(ε, x) = εÂ1(x)I(ε, x) , Â1(x) =
M1

x
+

M2

1 + x
+

M3

1− x , (7.19)

with

M1 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 5 −6 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 −2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 −4 0 −2 0 −2 0 0 0 0 0 0 0 0 0
0 0 0 −2 0 0 0 0 2 0 0 0 0 0 0 0 0
− 1

2
0 0 0 1 −2 −3 0 0 3 3 0 0 0 0 0 0

0 0 0 0 1 −1 2 0 0 −2 −2 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 −1 −1 0 0 0 0
0 −1 0 0 0 0 −3 0 0 0 0 3 3 0 0 0 0
0 −1 0 0 1 − 1

2
0 2 2 0 0 0 0 2 2 0 0

0 0 0 0 0 1
2

0 − 1
2

0 0 0 0 0 −1 −1 0 0

− 1
2

0 0 −2 −1 0 −2 1 0 2 0 −2 0 0 −2 −2 2

0 0 0 0 −1 1
2

0 3 −2 0 −6 −2 0 0 −4 −4 4




,
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Figure 4: MI’s for the two-loop corrections to the QED vertex. All the external momenta depicted

are incoming. In the integral T16 the loop momenta k1, k2 are fixed according to the first diagram

of Fig. 3 and a term (k1 +k2)
2 has to be included in the numerator of the integrand. A dot indicates

a squared propagator.

M2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −6 3 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0

0 0 0 0 −1 1
2

0 0 0 −4 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 −6 0 0 0 0 0 −2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

– 12 –

Figure 7.4.: MI’s for the two-loop corrections to the QED vertex. All the external momenta
depicted are incoming. In the integral T16 the loop momenta k1, k2 are fixed
according to the first diagram of Fig. 7.3 and a term (k1+k2)2 has to be included
in the numerator of the integrand. A dot indicates a squared propagator.

M2 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −6 3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0
0 0 0 0 −1 1

2
0 0 0 −4 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 −6 0 0 0 0 0 −2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4




,
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M3 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 −2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −6 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −12 0 0 0 0 0 4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 −4 0 0 −4 −2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4




. (7.20)

The solution of the system can be expressed as Dyson series, as well as Magnus series, in
terms of one-dimensional Harmonic Polylogarithms (HPL’s) [132], which are a special case
of the discussed GPL’s. The requirements that the MI’s are real-valued in the Euclidean
region and regular in x = 1 (s = 0), or simply the matching against the known integrals
at x = 1, fix all but three boundary conditions, corresponding to the constant MI’s I1,
I4 and I7 (that do not depend on x). The integrals I1 and I4 can be easily computed by
direct integration, while I7 can be determined from the results of Ref. [146]. Our results
were checked analytically, using the code HPL [147,148], against the results available in the
literature [145]. The expressions of the transcendentally homogenous MI’s I are shown in
Appendix B.

7.3. Massless 2→ 2 Scattering at Two-Loop

The evaluation of the two-loop MIs for 2→ 2 scattering has already been considered in the
literature [65, 66, 74, 149] and more recently a set of MI’s obeying a canonical differential
equations was presented in [1,77]. Here we will present a slightly different choice of master
integrals, which is motivated by the leading singularity of the non-planar box as described
in section 5.1.1.

The routings for planar and non-planar two-loop diagrams can be defined in terms of
the following sets of denominators Dn, where ki (i = 1, 2) are the loop momenta, and pi
(i = 1, . . . , 4) are the external momenta:

• For the planar topology (figure 7.5 a), we have:

D1 = k2
1, D2 = k2

2, D3 = (k1 + p1)2, D4 = (k1 − k2)2,

D5 = (k1 + p1 + p2)2, D6 = (k2 + p1 + p2)2, D7 = (k2 − p3)2,

D8 = (k2 + p1)2, D9 = (k1 − p3)2. (7.21)
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Figure 7.5.: The two parent topologies for massless 2→ 2 scattering.

• For the non-planar topology (figure 7.5 b), we have:

D1 = k2
1, D2 = k2

2, D3 = (k1 + p1)2, D4 = (k2 − p3)2,

D5 = (k1 − k2)2, D6 = (k1 + p1 + p2)2, D7 = (k1 − k2 − p4)2,

D8 = (k2 + p1)2, D9 = (k1 − p3)2. (7.22)

The integrals, in this case, are functions of the invariants s = (p1 + p2)2, t = (p1 + p3)2, and
u = (p2 + p3)2, with p2

i = 0, and s+ t+ u = 0.
We adopt the following initial choice of MI’s,

F1 = ε2 T1 , F2 = ε2 T2 , F3 = ε2 T3 ,

F4 = ε2 T4 , F5 = ε3 T5 , F6 = ε4 T6 ,

F7 = ε4 T7 , F8 = ε4 T8 , F9 = ε3 T9 ,

F10 = ε3 T10 , F11 = ε4 T11 , F12 = ε4 T12 ,

F13 = ε4 T13 , F14 = ε4 T14 , F15 = ε4 u T15 ,

(7.23)

where the integrals Ti correspond to the diagrams in Fig. 7.6. The set F of MI’s obeys a
system of differential equations the variable x, defined as,

x = − t
s
, (7.24)

which is linear in ε. According to the procedure in Section 5.2.3, we can build the matrix
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Figure 7.6.: MI’s for the two-loop 2→ 2 scattering. All the external momenta depicted are
incoming. A dot indicates a squared propagator.

B0(x) ruling the change of basis F(ε, x) = B0(x)I(ε, x), so that the new MI’s,

I1 = sF1 , I2 = −tF2 , I3 = uF3 ,

I4 = s2 F4 , I5 = sF5 , I6 = uF6 ,

I7 = −tF7 , I8 = sF8 , I9 = −s tF9 ,

I10 = s uF10 , I11 = s2 F11 , I12 = −s2 tF12 ,

I13 = s2 F13 , I14 = s uF14 , I15 = −s tF15 ,

(7.25)

obey the canonical system,

dI = εdAxI , dAx = M1 d log(x) + M2 d log(1− x) , (7.26)

with
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M1 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2

1
2 0 0 0 −2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
0 − 1

2
1
2 0 0 0 0 −2 0 0 0 0 0 0 0

0 − 3
2 0 0 0 0 0 0 −2 0 0 0 0 0 0

0 0 3
2 0 3 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 −3 0 0 0 −12 0 0 −4 0 0 −2 0 0 0
−3 9

2 0 −1 3 18 0 0 4 0 0 1 1 0 0
3 − 9

2 − 3
2 0 0 −12 0 6 −2 0 −1 0 0 1 −1

3 − 3
2

3
2 0 0 −12 0 −6 −2 0 0 0 0 0 −2




,

M2 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0
− 1

2 0 − 1
2 0 0 0 2 0 0 0 0 0 0 0 0

0 − 1
2

1
2 0 0 0 0 2 0 0 0 0 0 0 0

0 − 3
2 0 0 −3 0 0 0 −1 0 0 0 0 0 0

0 0 3
2 0 0 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 −3 0 −2 6 −12 0 0 −4 0 0 −2 −2 0 0
−3 9

2 0 1 3 18 0 0 4 0 0 1 1 0 0
−3 − 3

2
3
2 0 0 0 12 6 0 2 0 0 0 2 0

−3 3
2

9
2 0 0 0 12 −6 0 2 1 0 0 1 −1




. (7.27)

The solution of the system can be expressed as Dyson series, as well as Magnus series,
in terms of one-dimensional HPL’s [132]. All MI’s have been computed in the scattering
kinematics, i.e. s > 0, t < 0, u < 0 with |s| > |t|, which gives 0 < x < 1. As long
as the planar sub topologies are concerned, one can fix the boundary conditions using the
regularity properties of the integrals in some special kinematical points. On the other hand,
the analyticity structure of the crossed box is more complicated, since it involves at the same
time cuts in all three Mandelstam variables s, t, u. Nevertheless, in this particular case, the
boundaries can be fixed by direct comparison with the results presented in [66,149].
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8
Associated Higgs plus One Jet Production

8.1. Introduction

In this chapter, we apply Magnus exponential method to solve the system of differential
equations fulfilled by 85 MI’s required for the determination of the three-loop ladder box
integrals with one massive leg, shown in figure 8.2b, and of the tower of integrals associated
to their subtopologies, depicted in figures 8.7–8.9. All propagators are massless. The so-
lution of the system is finally determined after fixing the values of the otherwise arbitrary
constants that naturally arise from solving differential equations. In the considered case,
boundary conditions are obtained by imposing the regularity of the MI’s around unphysical
singularities, ruling out the divergent behavior of the general solution of the systems.
Among the evaluated 85 MI’s, there are 16 vertex-like integrals with two off-shell legs not

yet considered in the literature, and 10 one-scale vertex- and bubble-like integrals, which
had already been computed by means of Mellin-Barnes integral representation [150–153]. In
general, homogeneous differential equations for single scale integrals carry only information
on the scaling behavior of the solution. The determination of the boundary constants for
such differential equations amounts to the evaluation of the integrals themselves by other
means. Within a multi-scale problem, where integrals may depend on more than one external
invariant, single-scale integrals enter the regularity conditions (or equivalently could be the
limit) of the multi-scale ones [146, 154]. These relations, entangling single- and multi-scale
functions, can be exploited to determine the arbitrary constants of the single-scale integrals,
or at least to reduce the number of independent single-scale integrals that needs to be
computed by alternative methods, other than differential equations. Therefore, solving
multi-scale systems of differential equations yields the simultaneous determination of single-
and multi-scale MI’s, which are finally expressed in terms of a few single-scale MI’s, to be
independently provided. In fact, the considered case of 85 MI’s requires only 2 one-scale
integrals as external input.
The MI’s hereby computed can be considered the first contributions to the next-to-next-

to-next-to-leading order (N3LO) virtual corrections to scattering processes like the three-jet
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Figure 8.1.: This figure shows some Feynman diagrams, which contribute to the three-loop
virtual corrections to Higgs production associated with one jet in the heavy top
limit. solid lines represent massless quark propagators; curly lines stand for the
gluon propagators; dashed external lines represent the Higgs boson.

production from vector boson decay, V ∗ → jjj, as well as the Higgs plus one-jet production
in gluon fusion, pp → Hj, currently computed at NNLO accuracy in refs. [155–158] and
refs. [159,160] respectively. The collinear limits of the MI’s we present enter the computation
of the three-loop one-particle splitting amplitudes, currently known at two-loop order [161].
Such amplitudes also serve as an ingredient for the derivation, following the procedure of
ref. [162], of the N3LO Altarelli-Parisi splitting kernel.
The results of the considered box-type integrals and of the tower of vertex- and bubble-

type integrals associated to subtopologies are given as a Taylor series expansion in ε. The
coefficients of the series are expressed in terms of uniform weight combinations of transcen-
dental constants and generalised harmonic polylogarithms [132,133,163] up to weight 6.
We also present the calculation of the two-loop one-mass planar box diagram in figure 8.2a,

giving the result for the corresponding MI’s, whose topologies are depicted in figure 8.7. We
provide higher orders ε-expansions w.r.t. the expressions available in the literature [74,164].
We used the computer code Reduze 2 [106,165] for solving the system of integration-by-

parts relations and generating the system of differential equations. The analytic results of
the MI’s at two- and three-loop can be numerically evaluated by means of GiNaC [134, 166]
and are found in agreement with the outcome of the direct numerical integrations carried
out by FIESTA 3 [60, 167] (within per-mille level of accuracy).

8.2. Differential Equations and Magnus Exponential

All Feynman integrals belonging to the topologies which we consider for this process can be
defined in terms of the following sets of denominators Dn (ki are the loop momenta). For
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Figure 8.2.: The two-loop and three-loop ladder box diagram, with one off-shell leg: the solid
lines stand for massless particles; the dashed line represents a massive particle.
Momentum conservation is

∑4
i=1 pi = 0, with p2

i = 0 (i = 1, 2, 3) and p2
4 = m2.

the planar two-loop ladder diagram in figure 8.2a, one has

D1 = k2
1, D2 = k2

2, D3 = (k1 − k2)2, D4 = (k2 + p2)2,

D5 = (k1 + p2 + p3)2, D6 = (k2 + p2 + p3)2, D7 = (k1 + p1 + p2 + p3)2, (8.1)

supplemented by the auxiliary denominators

D8 = (k1 + p2)2, D9 = (k2 + p1 + p2 + p3)2 . (8.2)

For the first non-planar graph in figure 8.3a, we have

D1 = k2
1, D2 = k2

2, D3 = (k1 − k2)2, D4 = (k2 + p2)2,

D5 = (k1 + p1 + p2)2, D6 = (k1 − k2 + p1)2, D7 = (k1 + p1 + p2 + p3)2, (8.3)

supplemented by the auxiliary denominators

D8 = (k1 + p2)2, D9 = (k2 + p1 + p2 + p3)2 . (8.4)

For the second non-planar graph in figure 8.3b, we have

D1 = k2
1, D2 = k2

2, D3 = (k1 − k2)2, D4 = (k2 + p2)2,

D5 = (k1 − k2 + p3)2, D6 = (k2 + p1 + p2)2, D7 = (k1 + p1 + p2 + p3)2, (8.5)

supplemented by the auxiliary denominators

D8 = (k1 + p2)2, D9 = (k2 + p1 + p2 + p3)2 . (8.6)
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Figure 8.3.: The two non-planar topologies at two-loop, with one off-shell leg: the solid
lines stand for massless particles; the dashed line represents a massive particle.
Momentum conservation is

∑4
i=1 pi = 0, with p2

i = 0 (i = 1, 2, 3) and p2
4 = m2.

For the three-loop ladder diagram in figure 8.2b one has instead

D1 = k2
1, D2 = k2

2, D3 = k2
3, D4 = (k1 − k2)2,

D5 = (k2 − k3)2, D6 = (k3 + p2)2, D7 = (k1 + p2 + p3)2,

D8 = (k2 + p2 + p3)2, D9 = (k3 + p2 + p3)2, D10 = (k1 + p1 + p2 + p3)2, (8.7)

supplemented by the auxiliary denominators

D11 = (k1 + p2)2, D12 = (k2 + p2)2, D13 = (k2 + p1 + p2 + p3)2,

D14 = (k3 + p1 + p2 + p3)2, D15 = (k3 − k1)2. (8.8)

In the following we consider `-loop Feynman integrals built out of p of the above denomina-
tors, each raised to some integer power, of the form

∫
d̃dk1 . . . d̃dk`

1

Dn1
a1 . . .Dnpap

, (8.9)

where the integration measure is defined as

d̃dki ≡
ddki
(2π)d

(
i Sε

16π2

)−1

(−m2)ε, with Sε ≡ (4π)ε
Γ(1 + ε) Γ2(1− ε)

Γ(1− 2ε)
. (8.10)

The two- and three-loop MI’s, respectively depicted in figure 8.4–8.6 and figures. 8.7–8.9,
are functions of the kinematic variables

s = (p2 + p3)2, t = (p1 + p3)2, u = (p1 + p2)2, m2 = (p1 + p2 + p3)2, (8.11)

with p2
i = 0 (i = 1, 2, 3) and p2

4 = (p1 + p2 + p3)2, fulfilling s+ t+ u = m2. For convenience,
we define the dimensionless ratios

x ≡ s

m2
, y ≡ t

m2
, z ≡ u

m2
, with x+ y + z = 1. (8.12)
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For planar topologies, like the ones we consider, one can always choose the Euclidean kine-
matic region m2, s, t, u < 0 such that the MI’s are real. For definiteness, we work in the
region 0 < y < 1, 0 < x < 1 − y (or equivalently 0 < x < 1, 0 < y < 1 − x). The analytic
continuation of our results to regions of physical interests can be performed by generalizing
to higher weights the procedure of ref. [168].
The sets of MI’s we choose to work with (see sections 8.4 and 8.5) obey ε-linear systems

of first order differential equations in the kinematic variables (σ = x, y),

∂σ F(ε,m2, x, y) = Aσ(ε,m2, x, y)F(ε,m2, x, y), (8.13)

with Aσ(ε,m2, x, y) = Aσ,0(m2, x, y) + εAσ,1(m2, x, y). (8.14)

Given that m2 is the only dimensionful variable, the differential equation in m2 is related to
the scaling equation. A factor (−m2)−`ε is already included in integration measure (8.10),
therefore for each Fi we simply have

∂m2 Fi(m2, x, y, ε) = − ni
m2

Fi(ε,m2, x, y), (8.15)

where ni is the dimension of the integral Fi in units of a squared mass.

8.3. Canonical System

With the help of the Magnus expansion we can find a transformation, which rotates our
differential equation (8.14) into the canonical form

∂σ I(ε,m2, x, y) = εÂσ(m2, x, y) I(ε,m2, x, y) . (8.16)

This two partial-derivative systems satisfied by the new set of MI’s, I = B−1F, can be
conveniently combined in an exact differential form,

dI(ε, x, y) = ε dÂ(x, y) I(ε, x, y), dÂ ≡ Âxdx+ Âydy, (8.17)

where Â(x, y) is logarithmic in the variables x and y,

Â(x, y) = M1 log(x) + M2 log(1− x) + M3 log(y) + M4 log(1− y) +

+ M5 log

(
x+ y

x

)
+ M6 log

(
1− x− y

1− x

)
. (8.18)

The matrices Mi are n×n sparse matrices with purely rational entries, where n is the number
of MI’s. The value of n depends on the number of loops, and it amounts to n = 4, 18, 85,
respectively at one-, two- and three-loop. The arguments of the logarithms are defined as
letters, and the set of letters

{x, 1− x, y, 1− y, x+ y, 1− x− y} (8.19)
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constitutes the alphabet. We observe that this alphabet is common both to the two- and the
three loop cases. At one-loop [74], although not shown here, M5 is absent, while at two-loop
M5 has only one non-vanishing entry.
The solution of (8.16, 8.17) can be expressed as a Dyson series in ε,

I(x, y, ε) =

(
1 +

∞∑

n=1

εnYn(x, y)

)
I0(ε), (8.20)

where the (matrix) coefficients of the series can be written as the iterated line integral,

Yn(x, y) ≡
∫

γ
dÂ1 dÂ2 · · · dÂn , (8.21)

where dÂi ≡ dÂ(xi, yi). Equivalently, the solution admits a representation in terms of the
Magnus exponential

I(x, y, ε) = eΩ[ε dÂ](x,y) I0(ε), (8.22)

where the vector I0(ε) ≡ I(x0, y0, ε) corresponds to the boundary values of the MI’s. This
form is very suggestive, as Magnus exponential can be considered as an evolution operator,
like in the unitary formalism, that brings the MI’s g from their initial, boundary values to
the considered point in the (x, y)-plane.1

For definiteness, we integrate the exact differential form (8.17) from an arbitrary point
(x0, y0) to (x, y), along the broken path composed of the two segments in which one of
the variables is kept constant. The integration is performed order by order in ε, up to a
multiplicative vector of unknown constants. The latter are fixed by requiring the regularity
of g(x, y, ε) at the pseudothresholds (see section 8.6).

8.4. Two-Loop Master Integrals

8.4.1. Planar Topology

A set of 18 two-loop MI’s for the planar massless box integrals with one massive leg of
figure 8.2a was first computed in refs. [74,164]. We present the calculation of an alternative,

1In this case, the evolution has to be understood like the variation w.r.t. the kinematic invariants that are
the variables of the system of differential equations obeyed by MI’s, rather than the quantum-mechanical
time-evolution. Moreover, the matrices representing the systems of differential equations for MI’s are not
unitary.
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T1 T2 T3 T4

T5 T6 T7 T8

T9 T10 T11 T12 T13

T14 T15 T16 T17 T18

(k1 + p2)
2

Figure 8.4.: Two-loop Master Integrals {Ti}i=1,...,18. The solid lines stand for massless par-
ticles; the dashed line represents a massive particle; dots indicate squared prop-
agators; numerators may appear as indicated (pij ≡ pi + pj).

yet compatible set of MI’s. We begin by choosing the following basis

F1 = ε2 T1 F2 = ε2 T2 F3 = ε2 T3

F4 = ε2 T4 F5 = ε3 T5 F6 = ε2 T6

F7 = ε3 T7 F8 = ε3 T8 F9 = ε3 T9

F10 = ε4 T10 F11 = ε3 T11 F12 = ε4 T12

F13 = ε4 T13 F14 = ε3 T14 F15 = ε3 T15

F16 = ε4 T16 F17 = ε4 T17 F18 = ε4 T18 (8.23)

where the integrals Ti are depicted in figure 8.4. The set {F}i=1,...,18 is chosen to obey
a ε-linear system of differential equations in x and y, which, as previously described, can
be cast in canonical form by means of Magnus exponentials. In this case, the canonical
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transformation B, generically defined in (5.53), reduces to B ≡ eΩ[Am2,0] eΩ[D
[0]
x,0] eΩ[D

[1]
y,0],

because after the first three transformationsN [2]
x,0 = N

[2]
y,0 = 0. The canonical basis {I}i=1,...,18

reads,

I1 = sF1 I2 = tF2 I3 = m2 F3

I4 = s2 F4 I5 = sF5 I6 = m2 sF6

I7 = λs F7 I8 = λt F8 I9 = λs F9

I10 = λs F10 I11 = s tF11 I12 = uF12

I13 = λu F13 I14 = s tF14 I15 = s tF15

I16 = s λt F16 I17 = s2 tF17 I18 = s λs F18 (8.24)

where λa =
(
m2 − a

)
. The sparse matrices Mi (i = 1, . . . , 6) appearing in the corresponding

canonical system in (8.17) and (8.18) are given in appendix C.1.

8.4.2. Easy non-planar Topology

There are two non-planar topologies for our process at two-loop, which were both previously
computed in [169]. First let us consider the topology where the off-shell leg is attached to
the planar part of the diagram. In this computation we will consider and alternative set of
MI’s in respect to [169], which satisfies a canonical differential equation. Our starting point
is a set of MIs, which is depicted in figure 8.5 and which obeys a linear differential equation

F1 = ε2 T1 F2 = ε2 T2 F3 = ε2 T3

F4 = ε2 T4 F5 = ε3 T5 F6 = ε3 T6

F7 = ε3 T7 F8 = ε3 T8 F9 = ε3 T9

F10 = ε3 T10 F11 = ε4 T11 F12 = ε4 T12

F13 = ε4 T13 F14 = ε4 T14 F15 = ε3 T15

F16 = ε4 T16 F17 = ε3 T17 F18 = ε4 T18

F19 = ε4 T19 F20 = ε4 T20 F21 = ε4 T21

F22 = ε4 T22 . (8.25)
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Figure 8.5.: Two-loop Master Integrals {Ti}i=1,...,22. The solid lines stand for massless par-
ticles; the dashed line represents a massive particle; dots indicate squared prop-
agators.

After applying the Magnus transformation we obtain the following set of MIs

I1 = uF1 I2 = sF2 I3 = tF3

I4 = m2 F4 I5 = uF5 I6 = λt F6

I7 = λs F7 I8 = λu F8 I9 = u tF9

I10 = u sF10 I11 = sF11 I12 = tF12

I13 = uF13 I14 = λt F14 I15 = u sF15

I16 = λs F16 I17 = u tF17 I18 = um2 F18

I19 = −uF13 − λs (F13 − F19) I20 = u2 F20 I21 = u tF21

I22 = u sF22 (8.26)

which satisfy a canonical differential equation (8.17) with same alphabet as the planar
topology.
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Figure 8.6.: Two-loop Master Integrals {Ti}i=1,...,29. The solid lines stand for massless par-
ticles; the dashed line represents a massive particle; dots indicate squared prop-
agators.

8.4.3. Hard non-planar Topology

In the second non-planar topology the off-shell leg is attached to non-planar part of the
diagram. We start from a set of master integrals, which are shown in figure 8.6 and obey a
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linear differential equation

F1 = ε2 T1 F2 = ε2 T2 F3 = ε2 T3

F4 = ε2 T4 F5 = ε2 T5 F6 = ε3 T6

F7 = ε3 T7 F8 = ε3 T8 F9 = ε3 T9

F10 = ε3 T10 F11 = ε3 T11 F12 = ε4 T12

F13 = ε4 T13 F14 = ε3 T14 F15 = ε4 T15

F16 = ε3 T16 F17 = ε4 T17 F18 = ε3 T18

F19 = ε4 T19 F20 = ε4 T20 F21 = ε4 T21

F22 = ε4 T22 F23 = ε4 T23 F24 = ε4 T24

F25 = ε4 T25 F26 = ε4 T26 F27 = ε4 T27

F28 = ε4 T28 F29 = ε4 T29 . (8.27)

With the help of the Magnus expansion we are able to remove the constant part in respect
to ε and obtain a set of master integrals

I1 = uF1 I2 = sF2 I3 = tF3

I4 = m2 F4 I5 = um2 F5 I6 = λu F6

I7 = λt F7 I8 = λs F8 I9 = λu F9

I10 = u tF10 I11 = u sF11 I12 = λuF12

I13 = λs F13 I14 = u tF14 I15 = λt F15

I16 = u sF16 I17 = λu F17 I18 = s tF18

I19 = tF19 I20 = sF20 I21 = uλt F21

I22 = uλs F22 I23 = sm2 F23 I24 = −tF20 + λu F24

I25 = tm2 F25 I26 = −sF19 + λu F26 I27 = λ2
u F27

I28 = u tF28 I29 = u sF29 (8.28)

which satisfy a canonical differential equation of the form (8.17).

8.5. Three-Loop Master Integrals

After performing the automatic reduction by means of the computer code Reduze2 [106,
165], we identify a set of 85 MI’s,

F1 = ε3 T1 F2 = ε3 T2 F3 = ε3 T3

F4 = ε3 T4 F5 = ε3 (1 + 2ε) T5 F6 = ε4 T6

F7 = ε4 T7 F8 = ε4 T8 F9 = ε3 T9

F10 = ε3 T10 F11 = ε4 T11 F12 = ε4 T12
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T1 T2 T3 T4 T5 T6

T7 T8 T9 T10 T11 T12

T13 T14 T15 T16 T17 T18

T19 T20 T21 T22 T23 T24

T25 T26 T27 T28 T29 T30

]

Figure 8.7.: Three-loop Master Integrals {Ti}i=1,...,30. The solid lines stand for massless
particles; the dashed line represents a massive particle; dots indicate squared
propagators; numerators may appear as indicated (pij ≡ pi + pj). See also
figures 8.8 and 8.9.
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T31 T32 T33 T34 T35 T36

T37 T38 T39 T40 T41 T42

T43 T44 T45 T46 T47 T48

T49 T50 T51 T52 T53 T54

T55 T56 T57 T58 T59

(k1 + p23)
2

Figure 8.8.: Three-loop Master Integrals {Ti}i=31,...,59. The solid lines stand for massless
particles; the dashed line represents a massive particle; dots indicate squared
propagators; numerators may appear as indicated (pij ≡ pi + pj). See also
figures 8.7 and 8.9.
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Figure 8.9.: Three-loop Master Integrals {Ti}i=60,...,85. The solid lines stand for massless
particles; the dashed line represents a massive particle; dots indicate squared
propagators; numerators may appear as indicated (pij ≡ pi + pj). See also
figures 8.7 and 8.8.
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F13 = ε4 T13 F14 = ε3 T14 F15 = ε4 T15

F16 = ε4 T16 F17 = ε4 T17 F18 = ε3 T18

F19 = ε4 (1− 2ε) T19 F20 = ε4 T20 F21 = ε3 T21

F22 = ε4 T22 F23 = ε4 T23 F24 = ε5 T24

F25 = ε4 T25 F26 = ε5 T26 F27 = ε5 T27

F28 = ε3 (1 + 2ε) T28 F29 = ε5 T29 F30 = ε4 T30

F31 = ε4 T31 F32 = ε5 T32 F33 = ε5 T33

F34 = ε4 T34 F35 = ε4 T35 F36 = ε4 T36

F37 = ε4
(1− 2ε)

1− ε T37 F38 = ε5 T38 F39 = ε5 T39

F40 = ε5 T40 F41 = ε4 T41 F42 = ε5 T42

F43 = ε4 T43 F44 = ε4 T44 F45 = ε6 T45

F46 = ε6 T46 F47 = ε5 T47 F48 = ε6 T48

F49 = ε6 T49 F50 = ε4 (1 + ε) T50 F51 = ε5 T51

F52 = ε5 (1− 2ε) T52 F53 = ε6 T53 F54 = ε5 T54

F55 = ε5 T55 F56 = ε4 (1 + ε) T56 F57 = ε5 T57

F58 = ε6 T58 F59 = ε4 (1 + ε) T59 F60 = ε6 T60

F61 = ε5 T61 F62 = ε5 T62 F63 = ε5 T63

F64 = ε5 T64 F65 = ε5 (1− 2ε) T65 F66 = ε6 T66

F67 = ε5 T67 F68 = ε6 T68 F69 = ε5 T69

F70 = ε5 (1− 2ε) T70 F71 = ε5 T71 F72 = ε6 T72

F73 = ε5 T73 F74 = ε6 T74 F75 = ε5 T75

F76 = ε5 T76 F77 = ε5 T77 F78 = ε5 (1− 2ε) T78

F79 = ε5 T79 F80 = ε6 T80 F81 = ε5 (1− 2ε) T81

F82 = ε6 T82 F83 = ε6 T83 F84 = ε6 T84

F85 = ε6 T85 (8.29)

where the integrals Ti are depicted in figures 8.7–8.9. As before, the choice of {F}i=1,...,85 is
motivated by them obeying a ε-linear system of differential equations in x and y.
In this case, the canonical transformation B, generically defined in (5.53), reduces to

B ≡ eΩ[Am2,0] eΩ[D
[0]
x,0] eΩ[D

[1]
y,0] eΩ[N

[2]
x,0], yielding the canonical basis {I}i=1,...,85

I1 = sF1 I2 = tF2 I3 = m2 F3 I4 = s2 F4

I5 = sF5 I6 = sF6 I7 = sF7 I8 = sF8

I9 = m2 sF9 I10 = m2sF10 I11 = λs F11 I12 = λs F12
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I13 = λt F13 I14 = m2 (sF14 − 4F15) I15 = λs F15 I16 = λs F16

I17 = λt F17 I18 = s3 F18 I19 = sF19 I20 = s2 F20

I21 = m2 s2 F21 I22 = s λs F22 I23 = s λs F23 I24 = λs F24

I25 = m2λsF25 I26 = λs F26 I27 = λs F27 I28 = m2 (sF28 − 12F27)

I29 = λs F29 I30 = m2 sF30 I31 = s tF31 I32 = uF32

I33 = λu F33 I34 = s tF34 I35 = m2 sF35 I36 = s tF36

I37 = s (F37 − F17) I38 = uF38 I39 = uF39 I40 = λu F40

I41 = s tF41 I42 = λu F42 I43 = s tF43 I44 = s tF44

I45 = sF45 I46 = sF46 I47 = s λs F47 I48 = λs F48

I49 = λs F49 I50 = s λs F50 I51 = s λt F51 I52 = λs F52

I53 = λt F53 I54 = m2 sF54 I55 = s λs F55 I56 = s λt F56

I57 = s tF57 I58 = λu F58 I59 = m2 sF59 I60 = tF60

I61 = s λs F61 I62 = s λt F62 I63 = s λt F63 I64 = s2 tF64

I65 = s λs F65 I66 = s uF66 I67 = s2 tF67 I68 = s uF68

I69 = s2 tF69 I70 = s λs F70 I71 = s2 tF71 I72 = s uF72

I73 = s2 tF73 I74 = s λu F74 I75 = m2 s2 F75 I76 = m2 s tF76

I77 = s2 tF77 I78 = s2 F78 I79 = s2 tF79 I80 = s2 λt F80

I81 = m2
(
−2F24 − 3F26 + 4F27 − F29 + 2sF47 − 2F49 − 2

s t

m2
F74 +

s2

m2
F81 − 2sF82

)

I82 = s λs F82 I83 = s3 tF83 I84 = s2 λs F84 I85 = s2 λs F85 (8.30)

with λa defined below (8.28). The sparse matrices Mi (i = 1, . . . , 6) appearing in the corre-
sponding canonical system (8.17) and (8.18) are given in appendix C.2.

8.6. Boundary Conditions

The generic solutions (8.20) of the canonical systems at two- and three-loop are written in
terms of G-polylogarithms and constants to be fixed by boundary conditions. The alpha-
bet (8.19) determines the thresholds which appear in the final result. For the planar two-
and three-loop integrals only two out of the six thresholds are physical, since they correspond
to the production of massless particles in s- and t-channels at x = 0 and y = 0. Imposing
the regularity of the generic solutions at the unphysical thresholds, namely x = 1, y = 1,
y = −x, y = 1 − x, amounts to ruling out the terms that give rise to divergent behaviors,
hence enforcing conditions that unequivocally fix the arbitrary constants.
For the non-planar graphs we have y = 1 − x (u = 0) as an additional physical threshold.
Therefore we are left with more non-trivial boundary constants, which we fixed by match-
ing our results to the planar ones and by matching them against the known expressions
from [169].
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Relations for one-scale Integrals

In general, homogeneous differential equations for single scale integrals carry only infor-
mation on the scaling behaviour of the solution. Boundary constants for such differential
equations require the evaluation of the integrals themselves by independent methods. Within
a multi-scale problem, such as the one we are considering, integrals may depend on more
than one external invariant, and single-scale integrals participate in the regularity condi-
tions of the multi-scale ones. Therefore, these relations can be exploited to determine the
arbitrary constants of the single-scale integrals. Alternatively, they can reduce the number
of independent single-scale integrals that needs to be independently provided. Therefore,
solving multi-scale systems of differential equations yields the simultaneous determination of
single- and multi-scale MI’s, which are finally expressed in terms of a few single-scale MI’s,
to be considered as external input.
Let us discuss, as a pedagogical example, the systems of DE’s for the two-loop master

integrals I2, I5, I8 and I11, represented by the corresponding topologies in figure 8.4, which
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read,

∂x = 0 , (8.31)

∂x = − 2

x
, (8.32)

∂x = 0 , (8.33)

∂x = − 3

2

1

1− x + 3

(
− 1

1− x +
1

1− x− y

)

+3

(
1

1− x −
1

1− x− y

)
−
(

1

1− x +
2

x
+

1

1− x− y

)
,

(8.34)

∂y = − 2

y
, (8.35)

∂y = 0 , (8.36)

∂y = − 1

2y
+

1

1− y , (8.37)

∂y =
3

1− x− y + 3

(
1

1− y −
1

1− x− y

)

+

(
−2

y
− 1

1− x− y

)
.

(8.38)

From the regular behavior of (8.34) and (8.38) at (1−x)→ 0, (1−y)→ 0 and (1−x−y)→ 0,
the following relations can be established:

(
−3

2
− 3 + 3 −

)∣∣∣∣∣
x→1

= 0 (8.39)

∣∣∣∣∣
y→1

= 0 (8.40)

(
3 − 3 −

)∣∣∣∣∣
y→1−x

= 0 (8.41)
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The zeroth order term of the ε-expansion is independent of x and y. Therefore, we can
combine the equations above in order to find a relation between (the constant terms of) two
one-scale integrals,

∣∣∣∣∣
ε0, const.

= −1

4

∣∣∣∣∣
ε0, const.

(8.42)

At higher order in ε, these equations acquire a richer structure, because constants coming
from the limiting values of the G-polylogarithms appear. For the considered example, the
relation at the first order in ε is unaltered (the only constant which could appear being
imaginary, hence not allowed in the Euclidean region),

∣∣∣∣∣
ε1, const.

= −1

4

∣∣∣∣∣
ε1, const.

, (8.43)

but at the second order in ε the relation becomes,

∣∣∣∣∣
ε2, const.

= −1

4

∣∣∣∣∣
ε2, const.

− ζ2

2

∣∣∣∣∣
ε2, const.

. (8.44)

Similar relations are systematically established, so that all MI’s can be finally determined
by providing few simple integrals as external inputs. At two-loop, the only external input
is I3 in (8.28), which can be independently computed and is given by,

I3 = ε2
Γ2(1− 2ε) Γ2(−ε) Γ(1 + 2ε)

Γ(1− 3ε) Γ3(1− ε) Γ2(1 + ε)
, (8.45)

while I3 and I9 in (8.30) are the input integrals for the three-loop MI’s, amounting to

I3 = ε3
Γ3(1− 2ε) Γ3(−ε) Γ(1 + 3ε)

Γ(1− 4ε) Γ5(1− ε) Γ3(1 + ε)
, (8.46)

I9 = ε3
Γ2(1− 2ε) Γ3(−ε) Γ(1 + 2ε)

Γ(1− 3ε) Γ4(1− ε) Γ2(1 + ε)
x−ε, (8.47)

where we omit the common normalization factors (8.10).
We would like to observe that the relations between single-scale integrals, coming from

the regularity conditions of multi-scale ones, seem not to belong to the set of IBP identities
needed to derive the considered systems of differential equations. In the future, it is worth
to investigate whether such relations are truly independent from IBP identities, or if they
would arise when considering larger sets of identities for increasing powers of denominators
and irreducible scalar products.
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8.7. Conclusions

In this chapter we presented the analytic expressions of the 85 master integrals (MI’s) of the
three-loop ladder-box topology with one massive leg. Their calculation was performed with
the method of differential equations, namely by solving a system of first order differential
equations fulfilled by the MI’s. The generic solution of the system was obtained in a purely
algebraic way, by means of Magnus exponential method, and cast in terms of repeated
integrations, according to Dyson series expansion, as recently proposed in ref. [1]. The
boundary conditions were provided by the regularity of the solutions at pseudothresholds.
The results of the considered four-leg integrals, as well as of the tower of three- and

two-leg master integrals associated to subtopologies (including previously unknown two-
scale vertex diagrams), were written as a Taylor expansion in the dimensional regulator
parameter ε = (4 − d)/2. The coefficients of the series are expressed in terms of uniform
weight combinations of multiple polylogarithms and transcendental constants up to weight
six.
The considered integrals contribute to the N3LO virtual corrections to scattering processes

like the three-jet production mediated by vector boson decay, V ∗ → jjj, as well as the Higgs
plus one-jet production in gluon fusion, pp→ Hj, and to the three-loop one-particle splitting
amplitudes.
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9
Mixed EW and QCD Corrections to Drell-Yan Scattering

9.1. Introduction

The Drell-Yan production of Z andW bosons [170] is one of the standard candles for physical
studies at the LHC. Due to the large cross section and clean experimental signature, Drell-
Yan processes can be measured with small experimental uncertainty and, therefore, allow
for very precise tests of the Standard Model of fundamental interactions (SM). They give
access to the determination of important parameters of the weak sector, as for instance the
sine of the weak mixing angle and the W boson mass, that together with the top and the
Higgs masses provides stringent constraints on the validity of the SM at the TeV energy
scale. Furthermore, Drell-Yan processes constitute the SM background in searches of New
Physics, involving for instance new vector boson resonances, Z ′ and W ′, originating from
GUT extensions of the SM. Finally, the Drell-Yan mechanism is used for constraining parton
distribution functions, for detector calibration and determination of the collider luminosity.
For all these reasons, an accurate and reliable experimental and theoretical control on Drell-
Yan processes would be of the maximum importance for future physics studies at colliders.
The theoretical description of Drell-Yan processes currently includes NNLO QCD and

NLO EW radiative corrections, implemented in flexible tools able to provide predictions
for inclusive observables as well as kinematic distributions. Current theoretical predictions
are in good agreement with the experimental measurements. However, higher theoretical
accuracy is needed in order to match the future experimental requirements, in particular
in view of the run II of the LHC. A consistent part of an increasing theoretical accuracy
regards higher-order perturbative corrections.
Very recently, NNNLO QCD corrections were calculated for the Higgs total production

cross section in gluon-gluon fusion [26, 171]. The residual factorization/renormalization
scales variation moved from about 10-15% of the NNLO calculation (supplemented by NNLL
resummation) to about 5% of the current result. These results will be applied to Drell-Yan
as well, since they involve the evaluation of the same topologies for the calculation of the
corresponding Feynman diagrams [150–153,172,173].
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Figure 9.1.: This figure shows some Feynman diagrams for the mixed EW-QCD correction
to Drell-Yan scattering. solid lines represent either the massless quark or lepton
propagators; curly lines stand for the gluon propagators; wavy lines represent
the vector boson propagators.

At the same order of accuracy (one can roughly think to exchange two powers of αS with
one power of α), the mixed QCD-EW corrections have to be taken into account. As in the
case of QCD NNLO with EW NLO perturbative corrections, the mixed QCD-EW correc-
tions are expected to become of similar size with respect to QCD NNNLO at high leptonic
invariant mass [174].

At LO, the partonic process in the SM is mediated by the exchange of a photon or a Z/W
vector boson, in the s annihilation channel: qq̄ → γ, Z → l−l+ and qq̄′ →W → lν.
At higher orders in the coupling constants, we can distinguish between QCD and elec-

troweak (EW) or mixed (EW-QCD) corrections to the LO process. In the first case, only
the initial state receives quantum corrections, since the leptonic final state does not couple
to gluons.
The NLO QCD corrections to the total cross section were calculated in [175, 176] and

revealed a sizable increase of the cross section with respect to the LO result. The NNLO
QCD corrections [177,178] stabilized, then, the convergence of the perturbative series.
QCD fixed-order corrections to the total production cross section are supplemented by

the resummation of soft-gluon logarithmically enhanced terms, up to NNNLL approximation
[179–182].
EW quantum corrections allow exchanges of quanta between initial and final states.

Therefore, already at the NLO, massive four-point functions have to be evaluated. Since the
bulk of the corrections for inclusive observables comes from the resonant region, in which the
exchanged vector boson is nearly on-shell, electroweak NLO corrections to the total cross
section were calculated for the W [183] and Z [184] in narrow-width approximation.
More exclusive observables are known in the literature. The Z and W production at

non-zero transverse momentum pT is known at the NLO in QCD [185–190] and in the full
SM [191]. The two-loop QCD helicity amplitudes for the production of a Z or a W with a
photon have also been calculated [192]. For small pT (pT � mW ,mZ) the convergence of
the fixed-order calculation is spoiled by the large logarithmic terms αnS logm (m2

W /p
2
T ) that
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have to be resummed [193–203]. Finally, the rapidity distribution of a vector boson is known
at the NNLO in QCD [204].
The NLO corrections are available in a fully differential description. They are implemented

in flexible NLO Monte Carlo programs, and merged with QCD parton shower in MC@NLO [205]
and POWHEG [206]. In [207], the NLO EW and the QED multiple photon corrections are
combined with NLO QCD corrections and parton shower. Pure QED generators are also
available [208–211]. Although these implementations provide an accurate description of the
process and allow for realistic phenomenological studies at the hadronic level, they are not
accurate enough for the performances of the run II at the LHC. The NNLO results mentioned
above, however, are widely inclusive and they cannot provide realistic descriptions, that
necessarily have to include experimental cuts. Therefore, a fully differential description of
the Drell-Yan process at the NNLO is needed. With this respect, the state of the art is
represented by the two programs FEWZ [212], that includes also EW NLO corrections [213],
and DYNNLO [214, 215]. In these two programs, the decay products of the vector boson, the
spin correlations and the finite-width effects are also taken into account. .
A sizable impact on the pp(p̄)→W → lν distributions, and therefore on the determination

of the W mass, comes from the QCD initial state radiation (ISR) with QED final state
radiation (FSR) or from the real-virtual (factorisable) corrections. However, at the level of
precision required (∆mW ∼ 10 MeV), the complete set of mixed QCD-EW corrections may
be important and have to be considered.
The NNLO mixed QCD-EW corrections to the production of a leptonic pair, i.e. order

ααS corrections to the LO partonic amplitude, consist on two-loop 2→ 2 processes, in which
the quark-antiquark initial state goes in the final leptonic pair (l+l− or lν), one-loop 2→ 3
processes, in which the final leptonic pair is produced together with an unresolved photon
or gluon, and tree-level 2→ 4 processes in which the leptonic pair is produced together with
an unresolved photon and an unresolved gluon.
The QCD×QED perturbative corrections were considered in [216]. In [217], the mixed

two-loop corrections to the form factors for the production of a Z boson were calculated
analytically, expressing the result in terms of harmonic polylogarithms and related general-
izations. In [218], the authors calculated the mixed corrections in pole approximation near
the resonance region. It particular, they worked out contributions coming from the QCD
corrections to the production and soft-photon exchange between production and decay pro-
cess, which cause distortions in the shape of the distributions. In [219], the factorisable
mixed corrections were included in the analysis.

In this chapter, we present the calculation of the master integrals (MIs) needed for the
virtual corrections to the two-loop 2→ 2 processes:

q + q̄ → l− + l+ , and q + q̄′ → l− + ν ,

for massless external particles. The masses of the W and Z bosons are numerically close
to each other, in fact ∆m2 ≡ m2

Z − m2
W � m2

Z . Therefore, in the diagrams containing
both Z and W propagators at the same time, one can perform a series expansion in ξ ≡
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∆m2/m2
Z ∼ 0.25. Within this approximation, all topologies appearing in the two-loop

QCD×EW virtual corrections to Drell-Yan scattering shall contain either no internal massive
line, or one massive propagator with mass mW , or two massive propagators with the same
mass mW [220]. Should they be needed for achieving higher accuracy within the virtual
amplitudes, the coefficients of the series in ξ correspond to scalar integrals with higher
powers of the denominators.
Using the code Reduze 2 [106,165], the dimensionally regulated integrals involved in the

calculation are reduced to a set of 49 MIs, which are later determined by means of the
differential equations method [72–74], reviewed in [80,221]. Of those 49 MIs, 8 contain only
massless internal lines, 24 involve one massive line and 17 involve two massive lines. The
system of differential equations obeyed by the MIs is cast in a canonical form [77], following
the algorithm based on the use of the Magnus exponential, introduced in [1,2] 1. Boundary
conditions are retrieved either from the knowledge of simpler integrals emerging from the
limiting kinematics, or by requiring the regularity of the solution at pseudo-thresholds.
Finally, the canonical MIs are given as Taylor series in ε (= (4 − d)/2), up to order ε4,

being d the dimensional regularization parameter. The coefficients of the series are pure
functions, represented as iterated integrals with rational and irrational kernels, up to weight
four. The solution could be expressed in terms of Chen’s iterated integrals. Alternatively,
we adopt a mixed representation, where, when possible, we make explicit the presence of
Goncharov polylogarithms (GPLs) [131, 138], also within the nested integration structure.
This representation is suitable for the numerical evaluation of our solution.
While the two-loop four-point integrals with massless internal lines are well known in the

literature [65, 66, 74, 149], the four point integrals with one and two massive internal lines
considered here are new and represent the main result of this communication.
We verified the numerical agreement of the MI’s in the unphysical region against the results
of SecDec [61–63]. In particular, because of the presence of irreducible irrational weight
functions, we found it convenient to cast 5 of the 17 MI’s with two massive internal lines as
one-dimensional integral formulas [222], involving GPLs in the integrands. The numerical
evaluation of our solutions can, therefore, be performed with the help of the GiNaC library
[134] for the evaluation of GPLs.

9.2. Notations and Conventions

In this chapter we study the two-loop corrections to the following partonic scattering pro-
cesses:

q(p1) + q̄(p2) → l−(p3) + l+(p4) , (9.1)
q(p1) + q̄′(p2) → l−(p3) + ν(p4) . (9.2)

1Other related studies can be found in [81,83,154]
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The external particles are considered mass-less and they are on their mass-shell, p2
1 = p2

2 =
p2

3 = p2
4 = 0. The scattering can be described in terms of the Mandelstam variables

s = (p1 + p2)2 , t = (p1 − p3)2 , u = (p1 − p4)2 , (9.3)

in such a way that, for momentum conservation, we have s+ t+ u = 0. The physical region
is defined by

s > 0 , t = −s
2

(1− cos(θ)) , (9.4)

where θ is the scattering angle in the partonic center of mass frame, lying in the range
0 < θ < π. Therefore, while s > 0, t is always negative and −s < t < 0.
The quantum corrections to the processes (9.1) and (9.2) can be expanded in power series

of the coupling constants. At one loop, the QCD corrections consist on the exchange of a
virtual gluon between the initial-state quarks. The final state is not affected, and at most
mass-less three-point functions have to be evaluated. The EW corrections, instead, consist
on the exchange of photons, Z and W bosons. Moreover, these quanta can be exchanged
between the quarks in the initial state as well as the leptons in the final state, but they
can also be exchanged between a quark in the initial state and a lepton in the final state.
Consequently, in the calculation of the one-loop corrections one has to evaluate massive box
and vertex diagrams. In the process of qq̄ → lν one has to evaluate diagrams in which a
Z and a W bosons are exchanged simultaneously. In order to reduce the number of scales
present in the calculation, we expand the Z propagators around mW :

1

p2 −m2
Z

=
1

p2 −m2
W −∆m2

≈ 1

p2 −m2
W

+
m2
Z

(p2 −m2
W )2

ξ + ... (9.5)

where

ξ =
∆m2

m2
Z

=
m2
Z −m2

W

m2
Z

∼ 1

4
(9.6)

is the effective parameter of the expansion. The coefficients of the series in ξ are Feynman
diagrams with the same masses, and eventually with increased powers in the expanded
denominator. Such diagrams depend only on s, t, and one mass m = mW .
However, this does not cause any problem in the calculation, since diagrams with higher

powers of the propagators are in any case reduced to the same set of MI’s. For phenomeno-
logical purposes the first order in ξ might be sufficient, but in principle any order in ξ can
be calculated without effort, just relying on the reduction procedure. We apply the same
approximation to the two-loop diagrams as well.
We calculate the quantum corrections to the processes (9.1,9.2) using a Feynman diagrams

approach. After considering the interference with the leading order, and summing over
the spins and colors, we express the squared absolute value of the amplitude in terms of
dimensionally regularized scalar integrals. These integrals are reduced to a set of MI’s
by means of integration-by-parts identities [98, 223] and Lorentz-invariance identities [74],
implemented in the computer program2 Reduze 2 [106,165].

2Other public programs are available for the reduction to the MI’s [104,105,107,224–226].
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(a) (b) (c)

Figure 9.2.: One-loop topologies. Thin lines represent massless external particles and prop-
agators, while thick lines represent massive propagators.

At one-loop, the topologies involved in the QCD and EW corrections are shown in fig-
ure 9.2, where we distinguish: a) the mass-less case; b) the exchange of one massive particle;
and c) the exchange of two massive particles.
At two-loop, the topologies required by the O(ααS) corrections are only planar. They

are shown in figure 9.3. As for the one-loop case, we consider three classes of diagrams,
according to the presence of massive particles.
Topologies a1) and a2) belong to the same 9-denominators mass-less topology. They

reduce to 8 MIs, that were already known in the literature [65, 66, 74, 149]. Topologies
b1)–b3) have one massive propagator. They reduce to 31 MI’s out of which 24 contain
one massive propagator and 7 are part of the MI’s for topologies a1) and a2). The three-
point functions were already known in the literature [227–229]. The four-point functions are
calculated and presented here for the first time. Topologies c1) and c2) have two massive
propagators and they reduce to 36 MI’s, out of which 17 contain two massive propagators,
15 contain one massive propagator (and they are included in the set of MI’s for topologies
b1)–b3)) and 4 contain only massless propagators. The three-point functions were known in
the literature [230,231] and the four-point functions are presented here for the first time.
The routings for one- and two-mass topologies, at the one- and two-loop level, can be

defined in terms of the following sets of denominators Dn, where ki (i = 1, 2) are the loop
momenta, and pi (i = 1, . . . , 4) are the external momenta:

• One-mass topologies. For the one-loop one-mass integrals (figure 9.2 b), we have:

D1 = k2
1, D2 = (k1 − p1)2, D3 = (k1 + p2)2 −m2, D4 = (k1 − p1 + p3)2.

At two loops (figure 9.3 b1–b3), instead, we have:

D1 = k2
1, D2 = k2

2, D3 = (k1 + k2)2, D4 = (k1 − p1)2,

D5 = (k1 + p2)2, D6 = (k1 + k2 − p1)2 −m2, D7 = (k1 + k2 + p2)2,

D8 = (k1 + k2 − p1 + p3)2, D9 = (k1 − p1 + p3)2. (9.7)

• Two-mass topologies. For the one-loop two-mass integrals (figure 9.2 c), we have:

D1 = k2
1, D2 = (k1 − p1)2 −m2, D3 = (k1 + p2)2 −m2, D4 = (k1 − p1 + p3)2.
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(a1) (a2)

(b1) (b2) (b3)

(c1) (c2)

Figure 9.3.: Two-loop topologies. Thin lines represent massless external particles and prop-
agators, while thick lines represent massive propagators.

At two loops (figure 9.3 c1 and c2), instead, we have:

D1 = k2
1, D2 = k2

2, D3 = (k1 + k2)2, D4 = (k1 − p1)2,

D5 = (k1 + p2)2, D6 = (k1 + k2 − p1)2 −m2, D7 = (k1 + k2 + p2)2 −m2,

D8 = (k1 + k2 − p1 + p3)2, D9 = (k1 − p1 + p3)2. (9.8)

In the following we consider `-loop Feynman integrals in d dimensions, built out of p of the
above denominators, each raised to some integer power, of the form

∫
d̃dk1 . . . d̃dk`

1

Dn1
a1 . . . D

np
ap

, (9.9)

where the integration measure is defined as

d̃dki ≡
ddki
(2π)d

(
i Sε

16π2

)−1(m2

µ2

)ε
, (9.10)

with µ the ’t Hooft scale of dimensional regularization, and

Sε ≡ (4π)ε
Γ(1 + ε) Γ2(1− ε)

Γ(1− 2ε)
. (9.11)

In eqs. (9.10), (9.11) we used ε = (4− d)/2.
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9.3. System of Differential Equations for Master Integrals

In this section, we describe the general structure of the systems of differential equations
obeyed by the MI’s, and the corresponding solutions. Sections dedicated to the one-mass
and two-mass MIs will follow, where the details of their complete determination will be
provided.
The b- and c-type MI’s are functions of the Mandelstam invariants defined in eq. (9.3)

and of the mass m. For their evaluation it is convenient to define the dimensionless ratios

x ≡ − s

m2
, y ≡ − t

m2
, z ≡ − u

m2
, with x+ y + z = 0. (9.12)

In the unphysical region s < 0, x is real and positive. Correspondingly, y can be either
positive or negative.
The analytic continuation to the physical region requires the Feynman prescription on the

invariants. There, s becomes positive, with a positive vanishing imaginary part, s + i0+.
Accordingly, x is negative:

x→ −x′ − i0+ , (9.13)

with
x′ =

s

m2
> 0 . (9.14)

On the other hand, t is negative (with a positive vanishing imaginary part) and ranges
between 0 and −s, −s < t < 0.
The numeric evaluation of the MI’s expressed in terms of GPLs of the variables x and

y can be done in the whole s, t plain using the routines in [134] expressing our analytic
formulas in terms of GPLs evaluated in 1 and giving the explicit imaginary part to the
Mandelstam variables (see for instance [232]).

The b-type and c-type MI’s obey systems of partial differential equations in x and y, which
can be combined into matrix equations for their total differentials. In general, the vector of
MIs F is solution of the following system of differential equation,

dF = dKF , (9.15)

where the matrix K depends both on the kinematic variables and on the spacetime dimension
d = 4− 2ε.
By means of a suitable basis transformation, built with the help of the Magnus exponen-

tial [1, 115] following the procedure outlined in Sec. 2 of [2], we obtain a canonical set of
MIs [77]. Such a basis obeys a system of differential equation where the dependence on ε
is factorized from the kinematics. Moreover, the coefficient matrices can be assembled in
a (logarithmic) differential form, referred to as canonical d log-form. Hence, the canonical
basis I obeys the following system of equations,

dI = ε dA I , (9.16)
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with

dA =

n∑

i=1

Mi d log ηi , (9.17)

where dA is the d log matrix written in terms of differentials d log ηi (that contain the kine-
matic dependence) and coefficient matrices Mi (with rational-number entries). The integra-
bility conditions for eq. (9.16) read

∂a∂bA− ∂b∂aA = 0 , [∂aA, ∂bA] = 0 . (9.18)

9.3.1. Constant GPLs

In the determination of the boundary values of the MI’s we encountered constant GPLs of
argument 1 with weights drawn from three sets. For the one-mass MI’s there is only one
relevant set, with four weights,

• {−1, 0, 1
2 , 1} .

For the two-mass MI’s we encountered the following two sets, with seven weights each

• {−1, 0,−i, i, 1, (−1)
1
3 ,−(−1)

2
3 },

• {−1, 0,−i, i, 1,−(−1)
1
6 ,−(−1)

5
6 },

where the former includes the third roots of −1 and the latter involves a subset of the sixth
roots of −1. With the help of GiNaC, we verified that, at order εk, the Taylor coefficient of
each MI I(k)

i contains a combinations of constant GPLs that turns out to be proportional
to ζk, namely amounting to qi,k ζk, with qi,k ∈ Q. The resulting identities were verified at
high numerical accuracy. As examples, we show,

0 = Gr +G−r2 , (9.19)
ζ2 = 3G0,−r2 + 4Gr,−r2 + 4G−r2,0 − 2G−r2,1 + 4G−r2,r

+ 4G−r2,−r2 + 3G0,r + 4Gr,0 − 2Gr,1 + 4Gr,r , (9.20)

−77

8
ζ3 = G−1,−1, 1

2
+G−1, 1

2
,−1 +G−1, 1

2
,1 + 3G0,0, 1

2
+ 3G0, 1

2
,1 +G 1

2
,−1,−1

+G 1
2
,−1,1 −G 1

2
,0, 1

2
+ 4G 1

2
,0,1 +G 1

2
,1,−1 +

3

2
ζ2G 1

2
, (9.21)

where for simplicity we omitted the argument (x = 1) of the GPLs and we defined the
weight r ≡ (−1)1/3. For related studies see also [233–236].

9.4. One-Mass Master Integrals

In this section we describe the computation of the MI’s with one internal massive line,
namely topology (b) of figure 9.2 and topologies (b1)-(b3) of figure 9.3.
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(T1) (T2) (T3) (T4) (T5)

Figure 9.4.: One-loop one-mass MI’s T1,...,5. Thin lines represent massless external particles
and propagators; thick lines stand for massive propagators; an horizontal (ver-
tical) dashed external line represents an off-shell leg with squared momentum
equal to s (t); dots indicate squared propagators.

9.4.1. One-Loop

The following set of MI’s for the one-loop one-mass box obeys a differential equation in x
and y, defined in eq. (9.12), which is linear in ε:

F1 = ε T1 , F2 = ε T2 , F3 = ε T3 ,

F4 = ε2 T4 , F5 = ε2 T5 . (9.22)

where the Ti are depicted in figure 9.4. By means of the Magnus exponential [1, 115],
according to the procedure outlined in Sec. 2 of [2], we obtain the canonical MI’s

I1 = F1 , I2 = −sF2 , I3 = −tF3 ,

I4 = −tF4 , I5 = (s−m2) tF5 . (9.23)

The alphabet of the corresponding d log-form, eq (9.17), is

η1 = x , η2 = 1 + x , η3 = y ,

η4 = 1− y , η5 = x+ y , (9.24)

and the coefficient matrices read

M1 =




0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 2 −1 −1 1



, M2 =




0 0 0 0 0
−1 −2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −2



, M3 =




0 0 0 0 0
0 0 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 −1



,

M4 =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−1 0 1 −1 0
−1 0 1 −1 0



, M5 =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 −2 −1 1 1



. (9.25)

If x > 0 and 0 < y < 1 all the letters ηi are positive. Since the alphabet is linear in x and
y, according to the discussion in section 6.3, the solution can be conveniently cast in terms
of GPLs.
Instead of choosing a particular basepoint ~x0, the integration constants of I2...5 can be

easily fixed by demanding regularity at the pseudothresholds t → −m2, u → 0, s → 0
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and their reality in the euclidean region. On the other hand, I1 is a constant and must be
determined by direct integration:

I1 =
Γ(1− 2ε)

Γ(1− ε)2
. (9.26)

(T1) (T2) (T3) (T4) (T5) (T6)

(T7) (T8) (T9) (T10) (T11) (T12)

(T13) (T14) (T15) (T16) (T17) (T18)

(T19) (T20) (T21) (T22) (T23) (T24)

(T25) (T26) (T27) (T28) (T29)

(T30) (T31)

(k1 − p1 + p3)
2

Figure 9.5.: Two-loop one-mass MI’s T1,...,31. The conventions are as in figure 9.4.
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9.4.2. Two-Loop

At the two-loop order, the following set of MI’s admits ε-linear differential equations in x
and y (defined in eq. (9.12)):

F1 = (1− ε)ε2 T1 , F2 = ε2 T2 , F3 = ε2 T3 ,

F4 = ε2 T4 , F5 = ε2 T5 , F6 = ε2 T6 ,

F7 = ε3 T7 , F8 = ε3 T8 , F9 = ε3 T9 ,

F10 = ε2 T10 , F11 = ε2 T11 , F12 = ε3 T12 ,

F13 = ε4 T13 , F14 = ε3 T14 , F15 = ε4 T15 ,

F16 = ε3 T16 , F17 = ε3 T17 , F18 = ε4 T18 ,

F19 = ε3 T19 , F20 = ε4 T20 , F21 = ε3 T21 ,

F22 = ε4 T22 , F23 = ε3 T23 , F24 = (1− 2ε)ε3 T24 ,

F25 = ε3 T25 , F26 = ε3 T26 , F27 = ε4 T27 ,

F28 = ε3 T28 , F29 = ε4 T29 , F30 = ε4 T30 ,

F31 = ε4 T31 , (9.27)

where the Ti are depicted in figure 9.5.
Once again, by means of Magnus exponentials, we are able to obtain a canonical basis:

I1 = F1 , I2 = −sF2 , I3 = 2m2 F2 + λ− F3 ,

I4 = −sF4 , I5 = −sF5 , I6 = −tF6 ,

I7 = −sF7 , I8 = −tF8 , I9 = −sF9 ,

I10 =
m2

2λ+
(2sλ− F10 − 2F1 − 3sF5) , I11 = s2 F11 , I12 = −tF12 ,

I13 = −sF13 , I14 = s2 F14 , I15 = −sF15 ,

I16 = s tF16 , I17 = s tF17 , I18 = −tF18 ,

I19 = −m2 tF19 , I20 = uF20 , I21 = −t λ− F21 ,

I22 = uF22 , I23 = −t λ− F23 , I24 = −tF24 ,

I25 = −t λ− F25 , I26 = −tm2 (F17 + λ− F26) , I27 = s tF27 ,

I28 = m2 s
(
(m2 + t)F28 − 2F27

)
, I29 = (s t+m2 u)F29 , I30 = s t λ−F30 ,

I31 = m2 sF29 − s λ− F31 , (9.28)

where λ± =
(
m2 ± s

)
. After combining the two differential equations into one total differ-

ential, we find a d log-form (9.17) with the alphabet

η1 = x , η2 = 1 + x , η3 = y ,

η4 = 1− y , η5 = x+ y , η6 = x+ y + xy , (9.29)
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which includes the additional letter η6 as compared to one-loop (9.24). If x > 0 and 0 < y <
1 all the letters ηi are positive. The coefficient matrices are given in the appendix (D.1).
Since the additional letter is multilinear in x and y, also at the two-loop order we are able
to obtain the solution in terms of GPLs (see the discussion in section 6.3).
We hereby list the conditions imposed to which integrals for determining their boundary

constants;

• regularity at t → −m2 and u → 0 and imposing reality on the resulting boundary
constants: I2,...,5,7...10,12,14...17,19...31 ,

• limit s→ 0: I11,13 ,

• limit t→ 0: I18 .

This leaves us with I1,6, to be determined by direct integration:

I1 = − 1

2

Γ(1− 2ε)2Γ(1 + 2ε)

Γ(1− ε)3Γ(1 + ε)
, (9.30)

I6 = − y−2ε

π

Γ
(

1
2 − ε

)
Γ
(

1
2 + ε

)
Γ(1− 2ε)

Γ(1− 3ε)Γ(1 + ε)
. (9.31)

Owing to the explicit representation in terms of GPLs, all the one-mass MI’s can be
computed in the whole (s, t) domain. Our results have been successfully checked against
SecDec.

9.5. Two-Mass Master Integrals

In this section we describe the computation of the MI’s with two internal massive lines,
namely topology (c) of figure 9.2 and topologies (c1)-(c2) of figure 9.3.

9.5.1. Variables for the two-mass Integrals

For the evaluation of the two-mass MI’s, we find it convenient to introduce the reduced
variables w and z defined by

− s

m2
=

(1− w)2

w
, − t

m2
=
w

z

(1 + z)2

(1 + w)2
. (9.32)

We note that the above mapping allows the evaluation of our results everywhere in the
(s, t) plane, with the exception of the value w = −1 (corresponding to s = 4m2). For that
specific value of w, the t dependence in z gets lost by construction, and z = −1 independently
on t.
The evaluation of the solution at s = 4m2 requires further investigations and it will be

addressed in a forthcoming publication.
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Range of values for w

For w, defined by the first of eqs. (9.32), we choose the following root:

w =

√
4m2 − s− i0+ −

√
−s− i0+

√
4m2 − s− i0+ +

√
−s− i0+

, (9.33)

where we explicitly used the Feynman prescription s+ i0+.

1. If s < 0, we have positive w and 0 < w < 1. In particular, when s → −∞, w → 0,
while for s→ 0, w → 1.

2. If 0 < s < 4m2, w becomes a phase. In fact

w =

√
4m2 − s+ i

√
s√

4m2 − s− i√s
= eiφ , (9.34)

where

φ = 2 arctan

√
s

4m2 − s (9.35)

and 0 < φ < π.

3. If s > 4m2, w becomes negative (with a positive vanishing imaginary part)

w = −
√
s−
√
s− 4m2

√
s+
√
s− 4m2

= −w′ + i0+ , (9.36)

and 1 > w′ > 0 when 4m2 < s < +∞.

Range of values for z

The variable z depends both on s and t. In order to study the different regimes, we define
the following function of s

t∗ ≡ −m2 w

(1 + w)2

= − m4

4m2 − s . (9.37)

where the second equality follows from eq. (9.33). We also define the ratio

K ≡ t

t∗
, (9.38)

so that the second of eqs. (9.32) reads

K =
(1 + z)2

z
. (9.39)

126



We choose the following root of the above equation

z =

√
K −

√
K − 4√

K +
√
K − 4

. (9.40)

Note that eq. (9.40) contains square-roots of K. Therefore, in order to compute z when K <
4, we have to keep track of the vanishing imaginary parts of the quantities entering eq. (9.38).
Region by region in the (s, t) plane, the correct sign of the vanishing imaginary part (if
present) is determined by the Feynman prescription on s, t, u, i.e. s+ i0+ when s > 0, and
likewise for t and u.
Depending on the value of K, we distinguish three cases (here we keep the prescription

for the vanishing imaginary part of K arbitrary):

1. K > 4

All the square roots in eq. (9.40) are real, so z is real with 0 < z < 1.

2. 0 < K < 4

For a given prescription K ± i0+, one obtains from eq. (9.40)

z =

√
K ∓ i

√
4−K√

K ± i
√

4−K
, (9.41)

which is solved by

z = e∓iψ , ψ = 2 arctan

√
4−K
K

, 0 < ψ < π . (9.42)

3. K < 0

For a given prescription K ± i0+, one obtains from eq. (9.40)

z =

√
−|K| ± i0+ −

√
−|K| − 4± i0+

√
−|K| ± i0+ +

√
−|K| − 4± i0+

=

√
|K| −

√
|K|+ 4√

|K|+
√
|K|+ 4

∓ i0+

≡ − z′ ∓ i0+ , (9.43)

with 0 < z′ < 1.

Note that, since K is a function of s and t, each case can arise from multiple regions in
the (s, t) plane. In table 9.1 we summarize the solution for z in the different regions of the
(s, t) plane, by displaying also the appropriate sign for the i0+ prescription (if a vanishing
imaginary part is present).
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t < −4|t∗| −4|t∗| < t < 0 0 < t < |t∗| |t∗| < t < 4|t∗| t > |4t∗|
s < 0 z e−iψ −z′ + i0+ −z′ + i0+ −z′ + i0+

0 < s < 4m2 z eiψ −z′ + i0+ −z′ − i0+ −z′ − i0+

s > 4m2 −z′ + i0+ −z′ + i0+ e−iψ e−iψ z

Table 9.1.: We show the solution for z in each region of the (s, t) plane, as in
eqs. (9.40), (9.42), and (9.43). The boldface entries are the solutions in the
regions that contain a part of the physical s-channel scattering region, s > 0
with −s < t < 0.

9.5.2. One-Loop

We choose the following set of MI’s, admitting a differential equation linear in ε

F1 = ε T1 , F2 = ε T2 , F3 = ε T3 ,

F4 = ε2 T4 , F5 = ε2 T5 , F6 = ε2 T6 , (9.44)

where the Ti are shown in figure 9.6. After applying the Magnus transformation we obtain
the following canonical basis

I1 = F1 , I2 = −s
√

1− 4m2

s
F2 , I3 = −tF3 ,

I4 = −sF4 , I5 = −tF5 , I6 = s t

√
1− 4

m2

s

(
1 +

m2

t

)
F6 , (9.45)

The alphabet of the corresponding canonical d log-form, (9.17), is non-rational in s, t and
m. In particular four square roots appear

√
−s,

√
4m2 − s,

√
−t, and

√
1− 4m2

s

(
1 +

m2

t

)
. (9.46)

We can rationalize the d log-form with the help of the variable transformation (9.32). In
terms of w and z, the alphabet reads

η1 = z , η2 = 1 + z , η3 = 1− z ,
η4 = w , η5 = 1 + w , η6 = 1− w ,
η7 = z − w , η8 = z + w2 , η9 = 1− w z ,
η10 = 1 + w2 z , (9.47)
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(T1) (T2) (T3) (T4) (T5) (T6)

Figure 9.6.: One-loop two-mass MIs T1,...,6. The conventions are as in figure 9.4.

and the coefficient matrices are

M1 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
1 0 −1 0 0 0
0 2 0 0 0 0



, M4 =




0 0 0 0 0 0
1 1 0 0 0 0
0 0 −1 0 0 0
0 −2 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1



, M5 =




0 0 0 0 0 0
0 −2 0 0 0 0
0 0 2 0 0 0
0 0 0 0 0 0
2 0 −2 0 0 0
0 0 0 0 0 −2



,

M7 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 1 0 −1 0
−2 0 2 0 −2 0



, M8 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 2 2 1



,

M9 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 1 0 −1 0
2 0 −2 0 2 0



, M10 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −2 −2 1



, (9.48)

and (M2)3,3 = −2 and (M2)5,5 = 2 are the only non-vanishing entries in M2, (M3)6,6 = −2 is
the only non-vanishing entry in M3, and (M6)4,4 = 2 is the only non-vanishing entry in M6.
In the region 0 < w < z < 1 all the letters ηi are positive. For a detailed discussion of how
the interesting regions in the s, t plane are mapped to the C×C space of the w, z variables.
The alphabet in (9.47) is linear in z but contains letters quadratic in w. As the latter can
be linearized by factorization over the complex numbers, we are once again able to express
the solution in terms of GPLs (see the discussion in section 6.3).
The integration constants of I4,5,6 can be fixed by requiring their regularity at the pseu-

dothresholds s → 0, t → −m2 and u → 0. The boundary constant of I2 can be fixed by
taking the s → 0 limit. This leaves us with two integrals, I1,3, to be determined by direct
integration:

I1 =
Γ(1− 2ε)

Γ(1− ε)2
, (9.49)

I3 =

[
z

w

(1 + w)2

(1 + z)2

]ε
. (9.50)
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9.5.3. Two-Loop

At the two-loop order we start with the set of MIs

F1 = (1− ε) ε2 T1 , F2 = ε2 T2 , F3 = ε2 T3 ,

F4 = ε2 T4 , F5 = ε2 T5 , F6 = ε3 T6 ,

F7 = ε3 T7 , F8 = ε3 T8 , F9 = ε2 T9 ,

F10 = (1− 2ε) ε2 T10 , F11 = ε2 T11 , F12 = ε3 T12 ,

F13 = ε4 T13 , F14 = ε3 T14 , F15 = ε4 T15 ,

F16 = ε3 T16 , F17 = (1− 2ε) ε3 T17 , F18 = ε3 T18 ,

F19 = ε3 T19 , F20 = ε4 T20 , F21 = ε3 T21 ,

F22 = ε4 T22 , F23 = ε3 T23 , F24 = (1− 2ε)ε3 T24 ,

F25 = ε3 T25 , F26 = (1− 2ε) ε3 T26 , F27 = ε3 T27 ,

F28 = ε3 T28 , F29 = ε4 T29 , F30 = ε4 T30 ,

F31 = ε3 T31 , F32 = ε4 T32 , F33 = ε4 T33 ,

F34 = ε4 T34 , F35 = ε4 T35 , F36 = ε4 T36 , (9.51)

where the Ti are shown in figure 9.7. The MIs F admit ε-linear differential equations, except
for one of them. We have indeed

dF = dKF, K = K0 + εK1 +
1

1− 2ε
K2 , (9.52)

where K0,K1 and K2 do not depend on ε, and K2 is non-vanishing only in the inhomogeneous
part of the differential equation for F36. In a first step we apply the Magnus algorithm on
K0 + εK1 in order to remove K0, and in a second step we apply an ad-hoc transformation in
order to remove the remaining non-linear piece.
The corresponding canonical basis reads

I1 = F1 , I2 = −sF2 , I3 = m2 (2F2 + F3)− sF3 , I4 = −sF4 ,

I5 = −tF5 , I6 = −sF6 , I7 = −tF7 , I8 = −sF8 ,

I9 = −
√

1− 4m2

s

(
3

2
F8 +m2 F9

)
− 3

2
sF8 ,

I10 =
1

4

(
1 +

√
−s

4m2 − s

)(
−2F1 + (m2 − s) (F2 + F3) +m2 F2

+sF10 − s
√

1− 4m2

s
(F2 + F10)

)
,

130



I11 = s2

√
1− 4m2

s
F11 , I12 = −tF12 , I13 = −sF13 ,

I14 = s2 F14 , I15 = −sF15 , I16 = −m2 sF16 ,

I17 = −sF17 , I18 = s2 F18 , I19 = s tF19 ,

I20 = −tF20 , I21 = −m2 tF21 , I22 = uF22 ,

I23 = (s−m2) tF23 , I24 = −tF24 , I25 = (s−m2) tF25 ,

I26 = −sF26 , I27 = s t

√
1− 4m2

s

(
1 +

m2

t

)
F27 ,

I28 = s t

√
1− 4m2

s

(
1 +

m2

t

)
(F25 +m2F28) + t (m2 − s)F25 ,

I29 = s2

√
1− 4m2

s
F29 , I30 = s tF30 ,

I31 = −m2 s (2F30 + (m2 + t)F31) , I32 = s t

√
1 +

m4

t2
− 2m2

s

(
1− u

t

)
F32 ,

I33 = −s2 t

√
1− 4m2

s

(
1 +

m2

t

)
F33 , I34 = s2 F34 ,

I35 = s

√
1− 4m2

s
(2 tF32 − s tF33 + sF35)− s2 t

√
1 +

4m2

s

(
1 +

m2

t

)
F33 ,

I36 =
s

2(1− 2ε)
F17 − s t

(
1−

√
1− 4m2

s

)
F32 − s tF18 − 2 tF22

− 2m2 s

2− s
m2 (1−

√
1− 4m2

s )
(F29 + tF33 − F35)− sF36 .

(9.53)

As compared to the one-loop case (9.46) we encounter one additional square root in the
canonical d log-form √

1 +
m4

t2
− 2m2

s

(
1− u

t

)
, (9.54)

which is not rationalized by the change of variables in eq. (9.32). In terms of w and z, the

131



(T1) (T2) (T3) (T4) (T5) (T6)

(T7) (T8) (T9) (T10) (T11) (T12)

(T13) (T14) (T15) (T16) (T17) (T18)

(T19) (T20) (T21) (T22) (T23) (T24)

(T25) (T26) (T27) (T28) (T29) (T30)

(T31) (T32) (T33) (T34)

(k1 + k2)
2

(T35)

(k1 − p1 + p3)
2

(T36)

(k1 + k2)
2(k1 − p1 + p3)

2

Figure 9.7.: Two-loop two-mass MI’s T1,...,36. The conventions are as in figure 9.4.
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alphabet reads

η1 = z, η2 = 1 + z, η3 = 1− z,
η4 = w, η5 = 1 + w, η6 = 1− w,
η7 = 1− w + w2, η8 = 1− w z, η9 = z − w,

η10 = 1 + w2 z, η11 = z + w2,

η12 = 4(1 + z)4w3 + (1− w)2 κ2
+(w, z) , η13 = (1 + w)

√
ρ+ (1− w)κ−(w, z) ,

η14 = (1 + w)
√
ρ− (1− w)κ−(w, z) , η15 = (1 + w)

√
ρ+ (1− w)κ+(w, z) ,

η16 =
c1 + c2

√
ρ

c3 + c4
√
ρ
,

η17 = 2(1− w)2wz2 + κ2
−(−w, z) + (z + w) (1 + wz)

√
ρ , (9.55)

where

κ±(a, b) ≡ a (1 + b)2 ± b (1 + a)2 , (9.56)

the argument of the square root entering η13,...,17 is

ρ = 4wz2(1 + w)2 − κ+(w, z)κ+(−w,−z) , (9.57)

and the four coefficients in η16 are given by

c1 = (1 + w)2
(
1− 4w + w2

)
z2(1 + z)2

+ w2(1 + z)6 + 2w
(
1− w + w2

)
z(1 + z)4 − 2(1 + w)4z3 , (9.58)

c2 =
(
1− z2

)
κ+(w, z) , (9.59)

c3 = 2w8z4 + 2w7z3
(
z2 + 6z + 1

)
− w6(z − 1)2z2

(
z2 + 4z + 1

)

− 2w5z
(
z6 − z5 − 8z4 − 8z3 − 8z2 − z + 1

)

+ w4
(
z8 − 2z7 − 2z6 + 6z5 − 10z4 + 6z3 − 2z2 − 2z + 1

)

− 2w3z
(
z6 − z5 − 8z4 − 8z3 − 8z2 − z + 1

)

− w2(z − 1)2z2
(
z2 + 4z + 1

)
+ 2wz3

(
z2 + 6z + 1

)
+ 2z4 , (9.60)

c4 = − w(1− z2)(z − w)(1− wz)
(
κ−(−w,−z) + (1 + w)2 z

)
. (9.61)

In the region 0 < w < z < 1 all the letters ηi are positive.
As already stressed, the alphabet is not rational in w and z. This prevents us from

expressing the complete solution in terms of GPLs. In particular, the structure of the
coefficient matrices Mi is such that the solution for I(3)

32 and for I(4)
32,...,36, see eqs. (6.11),

(6.12), involves path integration over d log’s with non rational arguments. Nevertheless, the
MI’s I1,...,31 admit a representation in terms of GPLs which is convenient for their numerical
evaluation. As for the remaining MI’s, we followed the procedure outlined in section 6.3: we
express the solution up to weight 2 for I32 and up to weight 3 for I33,...,36 in terms of GPLs
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and then obtain an 1-fold integral representation for the higher weights (for I(4)
32,...,36 we use

eq. (6.28)).
We hereby list the conditions imposed to integrals I1,...,31 for determining their boundary

constants;

• independent input: I1,4,...,7,13,14,20,25 ,

• regularity at s→ 0: I24 ,

• regularity at t→ −m2: I12,21 ,

• regularity at u→ 0: I19,30,31 ,

• limit s→ 0: I2,3,6,...,10,15...18,29 ,

• limit t→ −m2 and s→ 0: I28 ,

• regularity at s→ 0 and matching to independent input: I22,23 .

For the MI’s I32,...,36 we observe that regularity at u = s = t = 0, corresponding to ~x0 =
(w0, z0) = (1,−1), implies

I32,...,36(ε, ~x0) = 0 , (9.62)

that we choose as initial condition of our solution in terms of iterated integrals.
The MI’s I1,...,31 are represented in terms of GPLs, and can be computed on the whole

(s, t) plane (except for the line s = 4m2).
The explicit evaluation of I32,...,36 requires a careful choice of the integration path, in

such a way that no branch cuts are crossed. We successfully checked our results in the
unphysical region s < 0 against the numerical values obtained with SecDec. The evaluation
of our analytic result relies on the use of GiNaC for the computation of the GPLs and on
a one-dimensional integration for the cases where non-rational weights appear in the most
external iteration, according to the eq. (6.28). As for the latter, we exploited the propriety
of path-independence to choose simple paths (that avoid the singularities on the way from
the basepoint to the chosen endpoints). Let us remark that in this work we did not focus on
the the computing performances of the numerical evaluation of the mixed Chen-Goncharov
iterated integrals appearing in our analytic expression. This aspect, together with a study
of the analytic properties of our solutions in the whole phase-space, requires a dedicated
future investigation.

9.6. Conclusions

In this chapter, we presented the calculation of the master integrals (MI’s) needed for the
virtual QCD×EW two-loop corrections to the Drell-Yan scattering processes,

q + q̄ → l− + l+ , q + q̄′ → l− + ν ,
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for massless external particles. Besides the exchange of massless gauge bosons, such as
gluons and photons, the relevant Feynman diagrams involve also the presence of W and Z
propagators. Given the small difference between the masses of the W and Z bosons, in the
diagrams containing both virtual particles at the same time, we performed a series expansion
in the difference of the squared masses. Owing to this approximation, we distinguished three
types of diagrams, according to the presence of massive internal lines: the no-mass type,
the one-mass type, and the two-mass type, where all massive propagators, when occurring,
contain the same mass value. The evaluations of the four point functions with one and two
internal massive propagators are the main novel results of this communication.
To achieve it, we identified a basis of 49 MI’s and evaluated them with the method of the

differential equations. With the help of the Magnus exponential, the MI’s were found to
obey a canonical system of differential equations. Boundary conditions were imposed either
by matching the solutions onto simpler integrals in special kinematic configurations, or by
requiring the regularity of the solution at pseudo-thresholds. The canonical MI’s were given
as Taylor series around d = 4 space-time dimensions, up to order four, whose coefficients
were given in terms of iterated integrals up to weight four. The solution could be expressed
in terms of Chen’s iterated integrals, yet, we adopted a mixed representation in terms of
Chen-Goncharov iterated integrals, suitable for their numerical evaluation. Further studies
concerning the analytic properties of the presented MI’s in the whole phase-space, and the
optimization of their numerical evaluation will be the subject of a forthcoming publication.
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10
Higgs Boson Pair Production in Gluon Fusion at NLO

10.1. Introduction

The couplings of the Higgs boson to electroweak bosons and heavy fermions are being es-
tablished as Standard-Model-like at an impressive rate. In contrast, the measurement of the
Higgs boson self-coupling, which is vital in order to confirm the mechanism of electroweak
symmetry breaking, is still outstanding, and will have to wait until the LHC high-luminosity
upgrade. However, the Higgs boson self-coupling(s) could be enhanced by physics Beyond
the Standard Model (BSM), and it is an important task to be able to distinguish BSM effects
from effects due to higher order corrections in perturbation theory.
Gluon fusion is the dominant production channel for Higgs boson pair production. How-

ever, as this process proceeds via a heavy quark loop already at the leading order (LO), the
next-to-leading order corrections involve two-loop four-point diagrams with two masses, mh

and mt, and the analytic calculation of two-loop four-point integrals with different internal
and external mass scales has not been achieved so far.
The leading order (one-loop) calculation of Higgs boson pair production in gluon fusion

has been performed in Refs. [88, 237]. NLO corrections in the mt → ∞ limit for both
the Standard Model and the MSSM have been performed in Ref. [89]. Finite top-quark
mass corrections to the NLO result have been calculated in Refs. [92–97]. The NNLO QCD
corrections in the mt →∞ effective field theory also have been computed [93,238,239], and
they have been supplemented by an expansion in 1/m2

t in Ref. [96]. In the effective field
theory, resummation at NLO+NNLL has been considered in Ref. [240], and recently, even
matched NNLO+NNLL resummed results became available [241]. The dominant uncertainty
therefore is given by the unknown top-quark mass effects at NLO.
The top-quark mass effects have been included in various approximations in the literature:

(i) The “Born-improved HEFT (Higgs Effective Field Theory)” approximation, which is
the one employed in the program Hpair [88, 89]. It uses the heavy top-quark limit
throughout the NLO calculation, in combination with a re-weighting factor B/BHEFT ,
where B denotes the leading order result in the full theory. In Hpair the re-weighting
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Figure 10.1.: This figure shows some Feynman diagrams, which contribute to the virtual
two-loop amplitude for Higgs pair production through gluon fusion at NLO.
solid lines represent massive top propagators; curly lines stand for the gluon
propagators; dashed external lines represent the Higgs bosons.

is done at matrix element level, but after the angular integration of the phase space,
while in Ref. [95] it is done on an event-by-event basis.

(ii) The “FTapprox” result of Refs. [94, 95] contains the full top-quark mass dependence
in the real radiation, while the virtual part is rescaled by the re-weighting factor
mentioned above.
It was found that (ii) leads to a total cross section which is about 10% smaller than
the one obtained using Born-improved HEFT.

(iii) The “FT′approx” result [95] is as in (ii) for the real radiation part, while it uses partial
NLO results for the virtual part, specifically, the exact results for the two-loop triangle
diagrams as far as they are known from single Higgs boson production [86,87,90,91].

(iv) HEFT results at NLO and NNLO have been improved by an expansion in 1/m2ρ
t in

Refs. [92, 93, 96, 97], where Ref. [96] contains corrections up to ρmax = 6 at NLO, and
ρmax = 2 for the soft-virtual part at NNLO. In Ref. [96] it is also demonstrated that
the sign of the finite top-quark mass corrections depends on whether the re-weighting
factor is applied at differential level, i.e. before the integration over the partonic center
of mass energy, or at total cross section level.

All these results suggest that the uncertainty on the cross section due to top-quark mass
effects is ±10% at NLO.
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a b c d e

Figure 10.2.: Examples of Feynman diagrams appearing in the two-loop amplitude for Higgs
production via gluon fusion. Thick lines represent massive propagators and
dashed external lines represent represent an off-shell leg with squared momen-
tum equal to s

10.2. Analytic Computation of Master Integrals

As a first step towards the two-loop virtual amplitude for double Higgs production we
recomputed the two-loop virtual amplitude for gluon fusion into a single Higgs [85]. The
amplitude was generated with Qgraf [242] and then parsed to Reduze [106] in order to
perform the IBP-reduction. The latter enabled us to express our amplitude in terms of 18
MI’s. The computation of these integrals will be discussed in the following.

10.2.1. Notations and Conventions

The process of gluon fusion into a single Higgs via a top-loop depends on two kinematic
invariants: the top mass m and the squared momentum of the Higgs, which we denote by
s. It is convenient to work with the dimensionless variable x defined as

− s

m2
=

(1− x)2

x
. (10.1)

This variable transformation is motivated by appearance of non-rational terms in the differ-
ential equations for s and m, which are absent in the differential equation for x (see section
5.5.1 for a derivation).

The Feynman integrals, which appear in our amplitude can be expressed in terms of
the following three integral families, where k1,2 are loop momenta and p1,2 are the gluon
momenta:

• full top-loop topologies. For the integrals with a full top-loop (figure 10.2 a, b), we have:

D1 = k2
1 −m2, D2 = k2

2 −m2, D3 = (k1 − k2)2, D4 = (k1 − p1)2 −m2,

D5 = (k2 − p1)2 −m2, D6 = (k1 − p1 − p2)2 −m2, D7 = (k2 − p1 − p2)2 −m2.
(10.2)
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T1 T2 T3 T4 T5

T6 T7 T8 T9 T10

T11 T12 T13 T14 T15

T16 T17 T18

Figure 10.3.: Two-loop MI’s for gluon fusion into Higgs T1,...,18.Thin lines represent massless
external particles and propagators; thick lines stand for massive propagators;
dashed external line represents an off-shell leg with squared momentum equal
to s; dots indicate squared propagators.

• partial top-loop topologies. For the integrals with a partial top-loop (figure 10.2 c, d),
we have:

D1 = k2
1, D2 = k2

2 −m2, D3 = (k1 − k2)2 −m2, D4 = (k1 − p1)2,

D5 = (k2 − p1)2 −m2, D6 = (k1 − p1 − p2)2, D7 = (k2 − p1 − p2)2 −m2. (10.3)
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• non-planar topology. For the non-planar integrals (figure 10.2 e), we have:

D1 = k2
1, D2 = k2

2, D3 = (k1 − k2)2 −m2, D4 = (k1 − p1)2 −m2,

D5 = (k2 − p1)2, D6 = (k1 − p1 − p2)2 −m2, D7 = (k1 − k2 − p1 − p2)2 −m2.
(10.4)

In the following we consider `-loop Feynman integrals in d dimensions, built out of p of
the above denominators, each raised to some integer power, of the form

∫
d̃dk1 . . . d̃dk`

1

Dn1
a1 . . . D

np
ap

, (10.5)

where the integration measure is defined as

d̃dki ≡
ddki

(π)
d
2

e−εγE
(
m2

µ2

)ε
, (10.6)

with µ the ’t Hooft scale of dimensional regularization, and ε = (4− d)/2.

10.2.2. Canonical System and Boundary Conditions

We consider the following set of master integrals, which admits an ε-linear differential equa-
tion in x:

F1 = ε2 T1 , F2 = ε2 T2 , F3 = ε2 T3 ,

F4 = ε2 T4 , F5 = ε2 T5 , F6 = ε3 T6 ,

F7 = ε3 T7 , F8 = ε3 T8 , F9 = ε2 T9 ,

F10 = ε2 T10 , F11 = ε2 T11 , F12 = ε2 T12 ,

F13 = ε4 T13 , F14 = ε4 T14 , F15 = ε3 T15 ,

F16 = ε4 T16 , F17 = ε4 T17 , F18 = ε4 T18 , (10.7)

where the Ti are depicted in figure 10.3. We can use the Magnus exponentials to find a rota-
tion matrix, which removes the ε0-part of our differential equation and therefore transforms
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our set of master integrals to the corresponding canonical set of master integrals

I1 = F1 , I2 = −
√
−s(4m2 − s)F2 ,

I3 = − sF3 , I4 = −
√
−s(4m2 − s)

(
F3 +

1

2
F4

)
− s

2
F4 ,

I5 = −sF5 , I6 = −sF6 , I7 = −sF7 ,

I8 = −sF8 , I9 = −sm2 F9 ,

I10 = −
√
−s(4m2 − s)

(
3

2m2
F8 +m2 F9 +m2 F10

)
− s

2m2

(
3F8 + 2m4 F9

)

I11 = −s
(
4m2 − s

)
F11 , I12 = −s

√
−s(4m2 − s)F12 , I13 = −sF13 ,

I14 = s
√
−s(4m2 − s)F14 , I15 = s

√
−s(4m2 − s)F15 , I16 = −sF16 ,

I17 = s2 F17 , I18 = s2 F18 .

These canonical master integrals satisfy a canonical differential equation

dI =

3∑

i

Mi d log(ηi)I , (10.8)

with the following alphabet

η1 = x , η2 = 1 + x , η3 = 1− x . (10.9)

Since the alphabet is completely linear in x we can express our solutions in terms of GPLs.
After the integration of the differential equations we have to fix the boundary constants of
our master integrals. We hereby list the conditions we have imposed on each integrals;

• regularity at s→ 0: I4,5,7...10 ,

• limit s→ 0: I2,6,11,14,15,16,18 ,

This leaves us with I1,3, which can be obtained by direct integration and I12,17, which we
fixed by comparing to the known expressions in [229]. Our results have been successfully
checked against SecDec.

10.2.3. Outlook for the Double Higgs Master Integrals

The master integrals we presented are a subset of the integrals needed for the full NLO cor-
rections to double Higgs production. Despite the additional subset of three-point integrals,
which has been computed in [243, 244] most integrals are out of reach for current analytic
computational methods. This is especially true for the integrals in the non-planar sector,
where we could not even obtain the IBP-ids needed for the derivation of the differential
equations. Even if this reduction could be achieved, we expect that at least one three-point
topology, depicted in 10.4, contains elliptic integrals. This suspicion was raised, since the

141



Figure 10.4.: This figure shows the presumably elliptic topology. Thin lines represent mass-
less external particles and propagators; thick lines stand for massive propaga-
tors; dashed external lines represent a massive external particle.

boundary point, where the mass of the Higgs is set to zero, contains elliptic integrals as
it was shown in [245]. Even for much simpler topologies like the two-loop massive sunrise
the computation of elliptic master integrals is still under thorough investigation [246–255],
putting our more involved topology beyond the current analytic technologies. In addition the
suspected elliptic integral will appear in the inhomogeneous part of the differential equation
of several other master integrals, impeding their computations as well. For these reasons
we concluded that the analytic computation of all master integrals is beyond the current
technology and therefore embody numerical techniques for their evaluation.

10.3. Numerical Integration via Sector Decomposition

In this section we will give an introduction to the method of sector decomposition for the
numerical integration of Feynman integrals, based on the discussion in [256].
The major obstruction for the numerical integration of a Feynman integral is its singularity
structure, which is best understood in the Feynman parameter representation of an integral.
A scalar L-loop Feynman integral in d dimensions can be written as

F =

∫ L∏

i=1

ddki
1

Dα1
1 . . . DαN

N

. (10.10)

We can bring all propagators under a common exponent by introducing additional integra-
tions over the Feynman parameters xi

F = Γ(Nα)

∫ N∏

i=1

dxix
αi−1
i δ

(
1−

N∑

i=1

xi

)∫ L∏

i=1

ddki




L∑

j,l

kj · klMjl − 2

L∑

j=1

kj ·Qj + J



−Nα

,(10.11)

where Nα =
∑N

i=1 αi. After completing the square for the loop momenta by a shift in the
loop momenta we can perform all loop integrals and are only left with the integrations over
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the Feynman parameters

F = (−1)Nα
Γ
(
Nα − Ld

2

)
∏N
i=1 Γ(αi)

∫ ∞

0

N∏

i=1

dxix
αi−1
i δ

(
1−

N∑

i=1

xi

)
UNα−(L+1)d/2

FNα−Ld/2 , (10.12)

where U and F are the first and second Symanzik polynomials and given by

U = det(M) F = det(M)




L∑

j,l=1

QjMj,lQl − J − iδ


 . (10.13)

We should note that the two Symanzik polynomials can also be directly obtained by con-
sidering all possible topological cuts of the corresponding Feynman integrals, where for the
first Symanzik polynomial U we cut L lines and for the second Symanzik polynomial F we
cut L+ 1 lines [59, 124,257].
In the euclidean region we have three possible singularities: The factor Γ

(
Nα − Ld

2

)
may

produce an overall UV divergence, the vanishing of the first Symanzik polynomial U indi-
cates a UV subdivergence and the vanishing of the second Symanzik polynomial may point
towards an infared singularity. In order to be able to numerically integrate over the Feyn-
man parameters xi we have to regularize the divergences of the two Symanzik polynomials.
This regularization requires that all singularities are of the form

F ∝
∫ 1

0

N−1∏

i=1

dxix
ai−bi ε
i

Ueu(ε)

Fef (ε)
, (10.14)

which for ai < 0 is singular as xi → 0 and where eu and ef are some functions of the
dimensional regularization parameter ε. Note we demanded that all singularities are explicit,
hence the two Symanzik polynomials have the form

U = 1 + u(x) (10.15)
F = −s0 + f(x) , (10.16)

where u(x) and f(x) are some polynomials in the Feynman parameters xi without a constant
term.
We can achieve this required form (10.14) by sector decomposition, which splits our inte-
gration regions such that all overlapping singularities are resolved. The basic idea of sector
decomposition is best illustrated through a simple example

∫ 1

0
dx1

∫ 1

0
dx2

1

(x1 + x2)2+ε
, (10.17)
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which has an overlapping singularity at x1, x2 → 0, but if we triangluarize the integration
region we can separate the two divergences

∫ 1

0
dx1

∫ 1

0
dx2

1

(x1 + x2)2+ε

=

∫ 1

0
dx1

∫ x1

0
dx2

1

(x1 + x2)2+ε
+

∫ 1

0
dx2

∫ x2

0
dx1

1

(x1 + x2)2+ε

=

∫ 1

0
dx1

∫ 1

0
dx̃2

x1

(x1 + x̃2x1)2+ε
+

∫ 1

0
dx2

∫ 1

0
dx̃1

x2

(x̃1x2 + x2)2+ε

=

∫ 1

0
dx1

∫ 1

0
dx̃2

1

x1+ε
1

1

(1 + x̃2)2+ε
+

∫ 1

0
dx2

∫ 1

0
dx̃1

1

x1+ε
2

1

(1 + x̃1)2+ε
, (10.18)

where we performed a change of variables in order to make the singularity explicit.
The sector decomposition algorithm will iteratively resolve all overlapping singularities until
we achieved the form (10.14), where all singularities are explicit. We can regularize these
singularities by a simple trick, which is best shown in a simple example

∫ 1

0
dxx−1−bεf(x) =

∫ 1

0
dxx−1+bε (f(x)− f(0) + f(0)) (10.19)

=

∫ 1

0
dx

f(0)

x1+bε
+

∫ 1

0
dxx−1−bε (f(x)− f(0)) (10.20)

=
f(0)

−bε +

∫ 1

0
dxx−bε

(f(x)− f(0))

x
, (10.21)

where the integral in the last line is now completely finite.
After all poles of the integral are regularized we can perform a series expansion around ε = 0
and integrate each order in ε numerically, since all integrands are now finite.

We should note that the sector decomposition in this form only works for integrals in the
euclidean region. In the physical region the Mandelstam invariants may have different signs
and therefore allow for additional singularities in the second Symanzik polynomial. Therefore
an integral in the physical region is usually first sector decomposed as it would be in the
euclidean region and later the additional poles are avoided by contour deformation [62]. The
strategies we discussed here have been implemented into the two computer codes SecDec [63]
and FIESTA [64], which allow for the numerical evaluation of any Feynman integral.

10.4. NLO Calculation

In the following I will give a short overview of the calculation of the Higgs pair production
at NLO, including the full top mass. For a more detailed description we refer to [4].

144



10.4.1. Amplitude Structure

At any loop order, the amplitude for the process g(p1) + g(p2) → h(p3) + h(p4) can be
decomposed into form factors as

Mab = δabε
µ
1 ε
ν
2Mµν (10.22)

Mµν = F1(ŝ, t̂,m2
h,m

2
t , D) Tµν1 + F2(ŝ, t̂,m2

h,m
2
t , D) Tµν2 ,

(10.23)

where εµ1 , ε
ν
2 are the gluon polarization vectors, a, b are color indices, and

ŝ = (p1 + p2)2, t̂ = (p1 − p3)2, û = (p2 − p3)2 . (10.24)

The decomposition into tensors carrying the Lorentz structure is not unique. With the
following definitions

Tµν1 = gµν − pν1 p
µ
2

p1 · p2
, (10.25)

Tµν2 = gµν +
1

p2
T (p1 · p2)

T̃µν2 ,

(10.26)
T̃µν2 =

{
m2
h p

ν
1 p

µ
2 − 2 (p1 · p3) pν3 p

µ
2 − 2 (p2 · p3) pµ3 p

ν
1

(10.27)
+2 (p1 · p2) pν3 p

µ
3} ,

(10.28)
where p2

T = (t̂û−m4
h)/ŝ ,

(10.29)
T1 · T2 = D − 4 , T1 · T1 = T2 · T2 = D − 2 ,

(10.30)

we have [237]

M++ =M−− = −F1 , M+− =M−+ = −F2 . (10.31)

At leading order, we can further split F1 into a triangle diagram and a box diagram contribu-
tion, F1 = F4+F�. As the form factor F4 only contains the triangle diagrams, which have
no angular momentum dependence, it can be attributed entirely to an s-wave contribution.
The form factor F2 contains only box contributions. At NLO in QCD, the feature persists
that only F1 contains diagrams involving the triple Higgs coupling. The form factors F1 and
F2 can be attributed to the spin-0 and spin-2 states of the scattering amplitude, respectively.

We construct projectors Pµνj such that

Pµν1 Mµν = F1(ŝ, t̂,m2
h,m

2
t , D) ,

Pµν2 Mµν = F2(ŝ, t̂,m2
h,m

2
t , D) .
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For the projectors in D dimensions we can use as a basis the tensors Tµνi defined in
Eqs. (10.25). The projectors can be written as

Pµν1 =
1

4

D − 2

D − 3
Tµν1 −

1

4

D − 4

D − 3
Tµν2 , (10.32)

Pµν2 = −1

4

D − 4

D − 3
Tµν1 +

1

4

D − 2

D − 3
Tµν2 . (10.33)

LO Cross Section

The partonic leading order cross section can be written as

σ̂LO =
1

29 π ŝ2

∫ t̂+

t̂−

dt̂
{
|F1|2 + |F2|2

}
, (10.34)

where

t̂± = m2
h −

ŝ

2
(1∓ βh) , β2

h = 1− 4
m2
h

ŝ
. (10.35)

The leading order form factors Fi with full mass dependence can be found e.g. in Refs. [88,
237].
For the total cross section, we also have to integrate over the parton distribution functions,

so we have

σLO =

∫ 1

τ0

dτ
dLgg
dτ

σ̂LO(ŝ = τs) . (10.36)

The luminosity function is defined as

dLij
dτ

=
∑

ij

∫ 1

τ

dx

x
fi(x, µF )fj

(
τ

x
, µF

)
, (10.37)

where s is the square of the hadronic center of mass energy, τ0 = 4m2
h/s, µF is the factor-

ization scale and fi are the parton distribution functions (PDFs) for parton type i.

NLO Cross Section

The NLO cross section is composed of various parts, which we will discuss separately in the
following:

σNLO(pp→ hh) = σLO + σvirt +
∑

i,j∈{g,q,q̄}
σreal
ij (10.38)
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10.4.2. The virtual two-loop Amplitude

For the virtual two-loop amplitude, we use the projectors defined in Eqs. (10.32),(10.33) to
express the amplitude in terms of the scalar form factors F1 and F2.
The virtual amplitude has been generated with an extension of the program GoSam [43,

258], where the diagrams are generated using Qgraf [242] and then further processed using
Form [259,260]. This leads to about 10000 integrals, before any symmetries are taken into
account. The two-loop extension of GoSam contains an interface to Reduze [106], which
we used for the reduction to master integrals. We have defined 8 integral families with 9
propagators each. For the 6 and 7 propagator non-planar topologies we could not achieve
a complete reduction with our available computing resources using the reduction programs
Reduze [106], Fire [105] or LiteRed [107]. In this case we evaluated the tensor integrals
directly, exploiting the fact that SecDec can calculate integrals with (contracted) loop
momenta in the numerator.
After the partial reduction, we end up with 145 planar master integrals plus 70 non-

planar integrals and a further 112 integrals that differ by a crossing. As the master integrals
contain up to four independent mass scales, ŝ, t̂, m2

t , m2
h, only a small subset is known

analytically. Therefore we have calculated all the integrals numerically using the program
SecDec-3.0 [63]. We partially used a finite basis [261] for the planar master integrals, as
far as it turned out to be beneficial for the numerical integration.
The interface to SecDec has been constructed such that the coefficients of the master

integrals as they occur in the amplitude are taken into account when evaluating the integrals
numerically. For each integral, once a relative accuracy of 0.2 is reached, the number of
sampling points is then set dynamically according to two criteria: (i) the contribution of
the integral including its coefficient to the error estimate of the amplitude and (ii) the
time per sampling point spent on the integral. The numerical integration is continued until
the desired precision for the full amplitude is reached. This procedure allows for a precise
evaluation of the amplitude, without spending an unnecessary amount of time on individual
integrals which are suppressed in the full amplitude.
We use conventional dimensional regularization (CDR) with D = 4− 2ε. The top-quark

mass is renormalized in the on-shell scheme and the QCD coupling in the MS scheme with
Nf = 5. The top-quark mass counterterm is obtained by insertion of the mass counterterm
into the heavy quark propagators. Alternatively, the mass counterterm can be calculated
by taking the derivative of the one-loop amplitude with respect to mt. We have used both
methods as a cross-check.

10.4.3. Real Radiation

The contributions from the real radiation, σreal
ij , can be divided into four channels, according

to the partonic subprocesses gg → hh+ g, gq → hh+ q, gq̄ → hh+ q̄, qq̄ → hh+ g. The qq̄
channel is infrared finite.
We have generated the one-loop amplitudes for all subprocesses with the program GoSam [43,

258]. For the subtraction of the infrared poles, we use the Catani-Seymour dipole formal-
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Figure 10.5.: Comparison of the NLO result to the LO result for the Higgs pair invariant
mass distribution.

ism [262]. We have retained the full top-quark mass dependence throughout the calculation
of the 2→ 3 matrix elements and IR subtraction terms. For the phase-space integration we
use the Vegas algorithm [263] as implemented in the Cuba library [264].
The infrared poles of the virtual contribution dσ̂virt cancel in the combination (dσ̂virt +

dσ̂LO ⊗ I), where the I-operator is given by

I =
αs
2π

(4π)ε

Γ(1− ε)

(
µ2

ŝ

)ε{
2CA
ε2

+
β0

ε
+ finite

}
. (10.39)

We have checked that for all calculated phase space points the numerical cancellations
of the poles in ε are within the numerical uncertainties. For a randomly chosen sample
of phase-space points we calculated the poles with higher accuracy and obtained a median
cancellation of five digits.

10.5. Numerical Results

In our numerical computation we set µR = µF = µ = mhh/2, where mhh is the invariant
mass of the Higgs boson pair. We use the PDF4LHC15_nlo_100_pdfas [265–268] parton
distribution functions, along with the corresponding value for αs. The masses have been
set to mh = 125GeV, mt = 173GeV, and the top-quark width has been set to zero. We
use a center-of-mass energy of

√
s = 14TeV and no cuts except a technical cut in the real

radiation of pmin
T = 10−4 ·

√
ŝ, which we varied in the range 10−2 ≤ pmin

T /
√
ŝ ≤ 10−6 to verify

that the contribution to the total cross section is stable and independent of the cut within
the numerical accuracy.
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Figure 10.6.: Comparison of the full calculation to various approximations for the Higgs pair
invariant mass distribution. “NLO HEFT” denotes the effective field theory
result, i.e approximation (i) above, while “FTapprox” stands for approximation
(ii), where the top-quark mass is taken into account in the real radiation part
only. The band results from scale variations by a factor of two around the
central scale µ = mhh/2.

Including the top-mass dependence, we obtain the total cross section

σNLO = 32.80+13%
−12% fb± 0.4% (stat.)± 0.1% (int.). (10.40)

In addition to the dependence of the result on the variation of the scales by a factor of
two around the central scale, we state the statistical error coming from the limited number
of phase-space points evaluated and the error stemming from the numerical integration of
the amplitude. The latter value has been obtained using error propagation and assuming
Gaussian distributed errors and no correlation between the amplitude-level results. The
value of the cross section is 14% smaller than the Born-improved HEFT result, σNLOHEFT =

38.32+18%
−15% fb.

In Fig. 10.5 we compare the LO result with the full NLO calculation. We observe that
the LO result gets rather large corrections, which even lay outside the estimated error band.
This underlines the importance of NLO calculations for a reliable prediction of an observable.
The results for the mhh distribution are shown in Fig. 10.6. We can see that for mhh

beyond ∼ 450GeV, the top-quark mass effects lead to a reduction of the mhh distribution
by about 20-30% as compared to the Born-improved HEFT approximation. We also ob-
serve that the central value of the Born-improved HEFT result lies outside the NLO scale
uncertainty band of the full result for mhh & 450GeV, while the FTapprox result, where the
real radiation contains the full mass dependence, lies outside the scale uncertainty band for
mhh beyond ∼ 550GeV. The scale uncertainty of the Born-improved HEFT and FTapprox
does not enclose the central value of the full result in the tail of the mhh distribution.
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10.6. Conclusions

In this chapter we have presented the analytic calculation for the master integrals of Higgs
production through gluon fusion at NLO. These MI’s are a subset of the MI’s needed for
the calculation of the virtual corrections to Higgs boson pair production in gluon fusion at
NLO. Due to the expected appearance of elliptic integrals a full analytic computation of the
complete set of master integrals is currently not feasible. Therefore we embodied a numerical
strategy for evaluation of the MI’s entering the virtual amplitude. This virtual amplitude
was used to compute the total cross section and the mhh distribution for Higgs boson pair
production in gluon fusion at NLO, including the full top-quark mass dependence. We
observe that the total cross section including the full top-quark mass dependence is about
14% smaller than the one obtained within the Born-improved HEFT approximation. The
mhh distribution shows that for mhh values beyond ∼ 500GeV, the top quark mass effects
lead to a reduction of the differential cross section by about 20-30% as compared to the
Born-improved HEFT approximation, and by about 10-20% as compared to the FTapprox
result. Our results demonstrate that the calculation of the full top-quark mass dependence
is vital in order to get reliable predictions for Higgs boson pair production over the full
invariant mass range.
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11
Conclusion

The close cooperation between Theory and Experiment has allowed for spectacular results
in Run I at the LHC, including competitive measurements of standard model parameters,
precision Higgs physics and stringent constraints on the parameter space of several BSM
physics models. The Run II at the LHC will provide us with even more precise measure-
ments, which have to be met with better theoretical predictions, in order to repeat the
success of the first Run. Higher order corrections to the underlying hard scattering event
are an important ingredient to improve the theoretical description, but their calculation
poses several theoretical challenges. We are approaching an accuracy level, where the mass
corrections stemming from electroweak bosons and top quarks becomes increasingly im-
portant. Including mass effects impede the calculation of virtual corrections, not only by
increasing the number of scales involved, but also due to the absence of symmetries, which
facilitated the calculations for massless theories.

In this work we focused on the development of novel techniques for the computation
of scattering amplitudes, by understanding their underlying algebraic structure. A special
emphasis was given to the generality of our techniques, which allow us to treat the aforemen-
tioned mass effects. We explored the wealth of relations obeyed by dimensional regulated
integrals, which allowed us to find a process dependent basis of integrals. The space of
integrals, spanned by these integrals, includes their derivative in respect to kinematical in-
variants, hence allowing us to derive a set of differential equations for the basis integrals.
The complexity of the latter varies significantly for different choices of basis integrals. A
particular well suited form seems to be reached, when the dimensional regularization param-
eter is factorized from the kinematics, which is known as the canonical form. A differential
equation in canonical form can be readily solved algebraically and the analytic structure is
evidently determined from the associated matrix.

We focused on master integrals, obeying a differential equation, which is linear in the
dimensional regularization parameter. The Magnus theory for differential equations allows
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us to readily solve such systems in terms of a kinematical evolution operator, which evolves
our integrals from some boundary point to any point in the kinematic space. The evolution
operator is most conveniently built by a product of two Magnus exponentials, where the first
exponential can be interpreted as a rotation in the space of master integrals transforming
the differential equation into a canonical form and where the second exponential describes
the solution of this canonical form. We embodied this strategy to compute MIs for a wide
range of processes.

Especially we have computed the three-loop ladder-box integrals with one off-shell leg,
which contribute to the N3LO virtual corrections to scattering processes like the three-jet
production mediated by vector boson decay, V ∗ → jjj, as well as Higgs plus one-jet pro-
duction in gluon fusion, pp → Hj, and to the three-loop one-particle splitting amplitudes.
Furthermore we computed the master integrals belonging to the mixed QCD-EW correc-
tions to Drell-Yan scattering, which are characterized by the exchange of two electroweak
vector bosons. After series expanding in the mass difference of the W and Z boson, we are
left with three types of diagrams, according to the presence of massive internal lines: the
no-mass type, the one-mass type and the two-mass type with equal masses. We obtained
the solution of the latter two as Chen’s iterated integrals, but whenever it was possible we
transformed them into GPLs, which are better suited for numerical evaluation.

Finally we presented the calculation of the cross section and invariant mass distribution for
Higgs boson pair production in gluon fusion at NLO. In contrast to the previous examples
the occurring MI’s were computed numerically using the sector decomposition algorithm
implemented in SecDec. This computation demonstrates for the first time that a cross
section can be obtained from a virtual correction, where the majority of master integrals
have been computed numerically. This approach opens a new direction for the computation
of virtual corrections and will help us to further push the limits of what is feasible and
possible.
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A
Computing Leading Singularities

In this appendix we will show explicitly how the leading singularity can be computed by
cutting the corresponding propagators. For convenience we will restrict ourselves to four
dimensional integrals.

A.1. One-Loop massless Box

Let us consider the one-loop massless box
∫
d4k

1

k2(k − p2)2(k + p1)2(k + p1 + p3)2
(A.1)

where all external momenta are massless p2
i = 0 and we have three Mandelstam invariants

s = (p1 + p2)2 = 2p1 · p2, t = (p1 + p3)2 = 2p1 · p3, u = (p2 + p3)2 = 2p2 · p3, (A.2)

satisfying

s+ t+ u = 0 (A.3)

In order to compute the leading singularity of the box we replace all propagators with delta
functions

=

∫
d4kδ(k2)δ((k − p2)2)δ((k + p1)2)δ((k + p1 + p3)2) . (A.4)

To solve these delta functions we will perform a variable change to a more convenient basis

kµ = α1p
µ
1 + α2p

µ
2 + α3ε

µ
12 + α4ε

µ
21 , (A.5)
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where αi are our new integration variables and εij is the polarization vector associated with
pi and with reference momenta pj . Note that here we will choose an unusual normalization,
namely

ε12 · ε21 = s . (A.6)

We can express our propagators in terms of our new basis

k2 = (α1α2 − α3α4) s (A.7)
(k − p2)2 = (α1α2 − α3α4 − α1) s (A.8)

(k + p1)2) = (α1α2 − α3α4 + α2) s (A.9)
(k + p1 + p3)2 = (α1α2 − α3α4) s+ (1 + α1 − α2) t+ α3ε12 · p3 + α4ε21 · p3 (A.10)

The delta functions set all propagators to zero, which will uniquely determine all parameters
αi. Setting the first three propagators to zero we arrive at the solution

α1α2 = α3α4, α1 = 0, α2 = 0, (A.11)

This means we have two solutions S1 and S2 where α3 = 0 or α4 = 0 respectively. After
taking into account also the last in order to fix the remaining parameter we find

S1 =





α1 = 0
α2 = 0
α3 = 0
α4 = − t

ε21·p3

, S2 =





α1 = 0
α2 = 0
α3 = − t

ε12·p3
α4 = 0

, (A.12)

Let us now consider the Jacobian, which is generated by the variable transformation (A.5)

J =

√∣∣∣∣det

(
∂kµ

∂αi

∂kµ
∂αj

)∣∣∣∣ . (A.13)

From

(
∂kµ

∂αi

∂kµ
∂αj

)
=




0 s
2 0 0

s
2 0 0 0
0 0 0 − s

2
0 0 − s

2 0


 , (A.14)

we find

J =
s2

4
. (A.15)

This allows us to write our integral (A.4) as

=

(
1

|detK(α)|S1

+
1

|detK(α)|S2

)
s2

4
, (A.16)
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with

K(α) =
∂Di

∂αj
=




α2s α1s −α4s −α3s
− (1− α2) s α1s −α4s −α3s

α2s (1 + α1) s −α4s −α3s
t+ α2s −t+ α1s −α4s+ ε12 · p3 −α3s+ ε21 · p3


 (A.17)

Evaluating this matrix at the two cut solutions we find

[K(α)]S1
=




0 0 t s
ε21·p3 0

−s 0 t s
ε21·p3 0

0 s t s
ε21·p3 0

t −t t s
ε21·p3 + ε12 · p3 ε21 · p3


 (A.18)

[K(α)]S2
=




0 0 0 t s
ε12·p3

−s 0 0 t s
ε12·p3

0 s 0 t s
ε12·p3

t −t ε12 · p3
t s

ε12·p3 + ε21 · p3


 (A.19)

[detK(α)]S1
= −s3t [detK(α)]S2

= s3t (A.20)

Putting all the pieces together we find the leading singularity of our massless box

=

(
1

s3t
+

1

s3t

)
s2

4
=

1

2

1

st
. (A.21)

A.2. One-Loop massless Bubble in two Dimensions

Let us now consider the one-loop massless bubble in two dimensions
∫
d2k

1

k2(k + p1 + p2)2
(A.22)

where traded the off-shell leg for two massless momenta p2
i = 0 with p2 = (p1 + p2)2 = s.

For convenience we will again perform a variable transformation

kµ = α1p
µ
1 + α2p

µ
2 (A.23)

We can express our propagators in terms of our new basis

k2 = α1α2s (A.24)
(k + p1 + p2)2 = (α1α2 + α1 + α2 + 1) s (A.25)

The delta functions set all propagators to zero, which will uniquely determine all parameters
αi.

S1 =

{
α1 = 0
α2 = −1

, S2 =

{
α1 = −1
α2 = 0

, (A.26)
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Next we will compute the Jacobian, which is generated by the variable transformation (A.23)

J =

√∣∣∣∣det

(
∂kµ

∂αi

∂kµ
∂αj

)∣∣∣∣ (A.27)

(
∂kµ

∂αi

∂kµ
∂αj

)
=

(
0 s

2
s
2 0

)
(A.28)

J =
s

2
. (A.29)

Using this we find the following expression for our cut two-dimensional massless bubble

D = 2

=

(
1

|detK(α)|S1

+
1

|detK(α)|S2

)
s

2
, (A.30)

with

K(α) =
∂Di

∂αj
=

(
α2s α1s

(1 + α2) s (1 + α1) s

)
(A.31)

Evaluating this matrix at the two cut solutions we find

[K(α)]S1
=

(
−s 0
0 s

)
(A.32)

[K(α)]S2
=

(
0 −s
s 0

)
(A.33)

[detK(α)]S1
= s2 [detK(α)]S2

= s2 (A.34)

Putting all the pieces together we find the leading singularity of our two-dimensional massless
bubble

D = 2

=

(
1

s2
+

1

s2

)
s

2
=

1

s
. (A.35)

A.3. Two-Loop non-planar massless Box

The two-loop non-planar box is a good example how we can make use of the one-loop result
at higher loops. If we cut only the non-planar diamond we have the following integral

=

∫
d4k1d

4k2
δ(k2

2)δ((k1 − k2)2)δ((k2 − p3)2)δ((k1 − k2 − p4)2)

k2
1(k1 + p1)2(k1 + p1 + p2)2

. (A.36)

We see that we can use the four delta functions to completely fix the value of the second loop
momenta k2. Instead of performing the full calculation we went through for the one-loop
box we will carefully recycle the result. In our case the external legs of the box will not only
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depend on the external legs but also the uncut loop momenta k1. In particular if we closer
investigate the cut box we can determine s and t from the momentum flow

k + p + p p

p k

1 1 2 3

4 1

=
1

2

1

st
=

1

2

1

(k1 − p3)2(k1 − p4)2
, (A.37)

Therefore cutting the non-planar part of the full two-loop integral leads to

=
1

2

∫
d4k1

1

k2
1(k1 + p1)2(k1 + p1 + p2)2(k1 − p4)2(k1 − p3)2

, (A.38)
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B
Master Integrals for the two-loop QED vertices

In this Appendix we collect the 17 MI’s of the two-loop QED vertices introduced in Eq. (7.17).
In Section 7.2, we have obtained them starting from the integrals Ti depicted in Fig. 7.4,
which are normalized according to the integration measure (Minkowskian metric is under-
stood) (

m2ε

Γ(1 + ε)

)2 ∫
dDk1

πD/2

∫
dDk2

πD/2
.

The MI’s exhibit uniform transcendentality. In the following we present the expression of
the coefficients of their expansion around ε = 0 up to O(ε4). The coefficients g(a)

i are defined
as follows:

gi =
4∑

a=0

εa g
(a)
i , i = 1, . . . , 17 .

g
(0)
1 = − 1 , (B.1a)

g
(1)
1 = 0 , (B.1b)

g
(2)
1 = 0 , (B.1c)

g
(3)
1 = 0 , (B.1d)

g
(4)
1 = 0 , (B.1e)
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g
(0)
2 = 0 , (B.2a)

g
(1)
2 = − H(0;x) , (B.2b)

g
(2)
2 = 2H(−1, 0;x)− H(0, 0;x) + ζ2 , (B.2c)

g
(3)
2 = − 4H(−1,−1, 0;x) + 2H(−1, 0, 0;x) + 2H(0,−1, 0;x)

− H(0, 0, 0;x) + ζ2(H(0;x)− 2H(−1;x)) + 2 ζ3 , (B.2d)

g
(4)
2 = 8H(−1,−1,−1, 0;x)− 4H(−1,−1, 0, 0;x)− 4H(−1, 0,−1, 0;x)

+ 2H(−1, 0, 0, 0;x)− 4H(0,−1,−1, 0;x) + 2H(0,−1, 0, 0;x)

+ 2H(0, 0,−1, 0;x)− H(0, 0, 0, 0;x) + ζ2(4H(−1,−1;x)

− 2H(−1, 0;x)− 2H(0,−1;x) + H(0, 0;x))

− 2 ζ3(2H(−1;x)− H(0;x)) +
9 ζ4

4
, (B.2e)

g
(0)
3 = 0 , (B.3a)

g
(1)
3 = 0 , (B.3b)

g
(2)
3 = − 2H(0, 0;x) , (B.3c)

g
(3)
3 = 8H(−1, 0, 0;x) + 4H(0,−1, 0;x)− 6H(0, 0, 0;x) + 2 ζ2 H(0;x) , (B.3d)

g
(4)
3 = − 32H(−1,−1, 0, 0;x)− 16H(−1, 0,−1, 0;x) + 24H(−1, 0, 0, 0;x)

− 8H(0,−1,−1, 0;x) + 20H(0,−1, 0, 0;x) + 12H(0, 0,−1, 0;x)

− 14H(0, 0, 0, 0;x)− 2 ζ2(4H(−1, 0;x) + 2H(0,−1;x)− 3H(0, 0;x))

+ 4 ζ3 H(0;x)− 5 ζ4

2
, (B.3e)

g
(0)
4 =

1

4
, (B.4a)

g
(1)
4 = 0 , (B.4b)

g
(2)
4 = ζ2 , (B.4c)

g
(3)
4 = 2 ζ3 , (B.4d)

g
(4)
4 = 16 ζ4 , (B.4e)
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g
(0)
5 = 0 , (B.5a)

g
(1)
5 = H(0;x) , (B.5b)

g
(2)
5 = − 6H(−1, 0;x) + 5H(0, 0;x) + 2H(1, 0;x)− ζ2 , (B.5c)

g
(3)
5 = 36H(−1,−1, 0;x)− 24H(−1, 0, 0;x)− 12H(−1, 1, 0;x)

− 30H(0,−1, 0;x) + 13H(0, 0, 0;x) + 10H(0, 1, 0;x)

− 12H(1,−1, 0;x) + 6H(1, 0, 0;x) + 4H(1, 1, 0;x)

+ ζ2(6H(−1;x)− 5H(0;x)− 2H(1;x))− 14 ζ3 , (B.5d)

g
(4)
5 = − 216H(−1,−1,−1, 0;x) + 144H(−1,−1, 0, 0;x)

+ 72H(−1,−1, 1, 0;x) + 144H(−1, 0,−1, 0;x)− 60H(−1, 0, 0, 0;x)

− 48H(−1, 0, 1, 0;x) + 72H(−1, 1,−1, 0;x)− 48H(−1, 1, 0, 0;x)

− 24H(−1, 1, 1, 0;x) + 180H(0,−1,−1, 0;x)− 120H(0,−1, 0, 0;x)

− 60H(0,−1, 1, 0;x)− 78H(0, 0,−1, 0;x) + 29H(0, 0, 0, 0;x)

+ 26H(0, 0, 1, 0;x)− 60H(0, 1,−1, 0;x) + 54H(0, 1, 0, 0;x)

+ 20H(0, 1, 1, 0;x) + 72H(1,−1,−1, 0;x)− 48H(1,−1, 0, 0;x)

− 24H(1,−1, 1, 0;x)− 36H(1, 0,−1, 0;x) + 14H(1, 0, 0, 0;x)

+ 12H(1, 0, 1, 0;x)− 24H(1, 1,−1, 0;x) + 20H(1, 1, 0, 0;x)

+ 8H(1, 1, 1, 0;x) + ζ2(−36H(−1,−1;x) + 24H(−1, 0;x)

+ 12H(−1, 1;x) + 30H(0,−1;x)− 13H(0, 0;x)− 10H(0, 1;x)

+ 12H(1,−1;x)− 6H(1, 0;x)− 4H(1, 1;x)) + 2 ζ3(33H(−1;x)

− 17H(0;x)− 8H(1;x))− 61 ζ4

4
, (B.5e)

162



g
(0)
6 = 0 , (B.6a)

g
(1)
6 = 0 , (B.6b)

g
(2)
6 = 2H(0, 0;x) , (B.6c)

g
(3)
6 = − 12H(0,−1, 0;x) + 6H(0, 0, 0;x) + 4H(0, 1, 0;x)− 4H(1, 0, 0;x)

− 2 ζ2 H(0;x)+

− 6 ζ3 , (B.6d)

g
(4)
6 = 72H(0,−1,−1, 0;x)− 48H(0,−1, 0, 0;x)− 24H(0,−1, 1, 0;x)

− 36H(0, 0,−1, 0;x) + 14H(0, 0, 0, 0;x) + 12H(0, 0, 1, 0;x)

− 24H(0, 1,−1, 0;x) + 20H(0, 1, 0, 0;x) + 8H(0, 1, 1, 0;x)

+ 24H(1, 0,−1, 0;x)− 12H(1, 0, 0, 0;x)− 8H(1, 0, 1, 0;x)

+ 8H(1, 1, 0, 0;x) + 2 ζ2(6H(0,−1;x)− 3H(0, 0;x)

− 2H(0, 1;x) + 2H(1, 0;x))− 4 ζ3(4H(0;x)− 3H(1;x))− 13 ζ4

2
, (B.6e)

g
(0)
7 = 0 , (B.7a)

g
(1)
7 = 0 , (B.7b)

g
(2)
7 =

ζ2

2
, (B.7c)

g
(3)
7 = − 3 ζ2 log 2 +

7 ζ3

4
, (B.7d)

g
(4)
7 =

1

2

(
24Li4

1

2
+ log4 2

)
+ 6 ζ2 log2 2− 31 ζ4

4
, (B.7e)

g
(0)
8 = 0 , (B.8a)

g
(1)
8 = 0 , (B.8b)

g
(2)
8 = 0 , (B.8c)

g
(3)
8 = − 4H(0, 0, 0;x)− 4 ζ2 H(0;x) , (B.8d)

g
(4)
8 = − 8H(−1, 0, 0, 0;x) + 24H(0, 0,−1, 0;x)− 4H(0, 0, 0, 0;x)

− 8H(0, 0, 1, 0;x) + 8H(0, 1, 0, 0;x) + 8H(1, 0, 0, 0;x)

− 4 ζ2(2H(−1, 0;x)− 3H(0, 0;x)− 2H(1, 0;x))

+ 4 ζ3 H(0;x) + 26 ζ4 , (B.8e)
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g
(0)
9 = 0 , (B.9a)

g
(1)
9 = − 1

2
H(0;x) , (B.9b)

g
(2)
9 = 2H(−1, 0;x)− H(0, 0;x) + ζ2 , (B.9c)

g
(3)
9 = − 8H(−1,−1, 0;x) + 4H(−1, 0, 0;x) + 4H(0,−1, 0;x)

− 2H(0, 0, 0;x)− 4 ζ2 H(−1;x) + 4 ζ3 , (B.9d)

g
(4)
9 = 32H(−1,−1,−1, 0;x)− 16H(−1,−1, 0, 0;x)− 16H(−1, 0,−1, 0;x)

+ 8H(−1, 0, 0, 0;x)− 16H(0,−1,−1, 0;x) + 8H(0,−1, 0, 0;x)

+ 8H(0, 0,−1, 0;x)− 4H(0, 0, 0, 0;x) + 8 ζ2(2H(−1,−1;x)

− H(0,−1;x))− 4 ζ3(4H(−1;x)− H(0;x)) + 19 ζ4 , (B.9e)
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g
(0)
10 = 0 , (B.10a)

g
(1)
10 =

1

2
H(0;x) , (B.10b)

g
(2)
10 = − 3H(−1, 0;x) +

5

2
H(0, 0;x) + H(1, 0;x) + ζ2 , (B.10c)

g
(3)
10 = 18H(−1,−1, 0;x)− 14H(−1, 0, 0;x)− 6H(−1, 1, 0;x)

− 15H(0,−1, 0;x) +
17

2
H(0, 0, 0;x) + 5H(0, 1, 0;x)

− 6H(1,−1, 0;x) + 5H(1, 0, 0;x) + 2H(1, 1, 0;x)

+
1

2
ζ2(−6H(−1;x) + H(0;x)− 2H(1;x)− 6 log 2)− 9 ζ3

4
, (B.10d)

g
(4)
10 = − 108H(−1,−1,−1, 0;x) + 80H(−1,−1, 0, 0;x)

+ 36H(−1,−1, 1, 0;x) + 84H(−1, 0,−1, 0;x)− 44H(−1, 0, 0, 0;x)

− 28H(−1, 0, 1, 0;x) + 36H(−1, 1,−1, 0;x)− 28H(−1, 1, 0, 0;x)

− 12H(−1, 1, 1, 0;x) + 90H(0,−1,−1, 0;x)− 66H(0,−1, 0, 0;x)

− 30H(0,−1, 1, 0;x)− 51H(0, 0,−1, 0;x) +
41

2
H(0, 0, 0, 0;x)

+ 17H(0, 0, 1, 0;x)− 30H(0, 1,−1, 0;x) + 29H(0, 1, 0, 0;x)

+ 10H(0, 1, 1, 0;x) + 36H(1,−1,−1, 0;x)− 28H(1,−1, 0, 0;x)

− 12H(1,−1, 1, 0;x)− 30H(1, 0,−1, 0;x) + 17H(1, 0, 0, 0;x)

+ 10H(1, 0, 1, 0;x)− 12H(1, 1,−1, 0;x) + 10H(1, 1, 0, 0;x)

+ 4H(1, 1, 1, 0;x) + 12Li4
1

2
+

log4 2

2
+

1

2
ζ2 (24 log 2H(−1;x)

+ 24 log 2H(1;x) + 12H(−1,−1;x) + 4H(−1, 0;x) + 12H(−1, 1;x)

− 6H(0,−1;x)− 11H(0, 0;x)− 10H(0, 1;x)− 12H(1,−1;x)

+ 2 H(1, 0;x)− 4H(1, 1;x) + 12 log2 2
)

+ ζ3(20H(−1;x)

− 14H(0;x)− 15H(1;x))− 95 ζ4

8
, (B.10e)
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g
(0)
11 = 0 , (B.11a)

g
(1)
11 = 0 , (B.11b)

g
(2)
11 = 0 , (B.11c)

g
(3)
11 = − 2H(0, 0, 0;x)− 2 ζ2 H(0;x) , (B.11d)

g
(4)
11 = − 4H(−1, 0, 0, 0;x) + 4H(0,−1, 0, 0;x) + 12H(0, 0,−1, 0;x)

− 6H(0, 0, 0, 0;x)− 4H(0, 0, 1, 0;x) + 4H(1, 0, 0, 0;x)

− 4 ζ2(H(−1, 0;x)− 3H(0,−1;x)− H(1, 0;x))− ζ4

2
, (B.11e)

g
(0)
12 = 0 , (B.12a)

g
(1)
12 = 0 , (B.12b)

g
(2)
12 = 0 , (B.12c)

g
(3)
12 = − H(0, 0, 0;x)− ζ2H(0;x) , (B.12d)

g
(4)
12 = − 2H(−1, 0, 0, 0;x) + 2H(0,−1, 0, 0;x) + 2H(0, 0,−1, 0;x)

− 3H(0, 0, 0, 0;x)− 4H(0, 1, 0, 0;x) + ζ2(−2H(−1, 0;x)

+ 6H(0,−1;x)− H(0, 0;x)) + 2 ζ3 H(0;x) +
ζ4

4
, (B.12e)
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g
(0)
13 = 0 , (B.13a)

g
(1)
13 = 0 , (B.13b)

g
(2)
13 = H(0, 0;x) +

3 ζ2

2
, (B.13c)

g
(3)
13 = − 2H(−1, 0, 0;x)− 2H(0,−1, 0;x) + 4H(0, 0, 0;x) + 4H(1, 0, 0;x)

+ ζ2(−6H(−1;x) + 2H(0;x)− 3 log 2)− ζ3

4
, (B.13d)

g
(4)
13 = 4H(−1,−1, 0, 0;x) + 4H(−1, 0,−1, 0;x)− 8H(−1, 0, 0, 0;x)

− 8H(−1, 1, 0, 0;x) + 4H(0,−1,−1, 0;x)− 8H(0,−1, 0, 0;x)

− 8H(0, 0,−1, 0;x) + 10H(0, 0, 0, 0;x) + 12H(0, 1, 0, 0;x)

− 8H(1,−1, 0, 0;x)− 8H(1, 0,−1, 0;x) + 16H(1, 0, 0, 0;x)

+ 16H(1, 1, 0, 0;x) + 12Li4
1

2
+

log4 2

2
+ 2 ζ2 (12 log 2H(−1;x)

+ 12 log 2H(1;x) + 6H(−1,−1;x)− 2H(−1, 0;x)− 8H(0,−1;x)

+H(0, 0;x)− 12H(1,−1;x) + 4H(1, 0;x) + 3 log2 2
)

− 2 ζ3(5H(−1;x) + 4H(0;x) + 11H(1;x))− 47 ζ4

4
, (B.13e)

g
(0)
14 = 0 , (B.14a)

g
(1)
14 = 0 , (B.14b)

g
(2)
14 = H(0, 0;x) , (B.14c)

g
(3)
14 = − 4H(−1, 0, 0;x)− 4H(0,−1, 0;x) + 5H(0, 0, 0;x)

+ 2H(0, 1, 0;x) + ζ3 , (B.14d)

g
(4)
14 = 16H(−1,−1, 0, 0;x) + 16H(−1, 0,−1, 0;x)− 20H(−1, 0, 0, 0;x)

− 8H(−1, 0, 1, 0;x) + 24H(0,−1,−1, 0;x)− 26H(0,−1, 0, 0;x)

− 12H(0,−1, 1, 0;x)− 26H(0, 0,−1, 0;x) + 9H(0, 0, 0, 0;x)

+ 12H(0, 0, 1, 0;x)− 12H(0, 1,−1, 0;x) + 8H(0, 1, 0, 0;x)

+ 4H(0, 1, 1, 0;x)− ζ2(13H(0, 0;x) + 2H(0, 1;x))

− ζ3(4H(−1;x) + 3H(0;x))− 7 ζ4

2
, (B.14e)
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g
(0)
15 = 0 , (B.15a)

g
(1)
15 = 0 , (B.15b)

g
(2)
15 = 0 , (B.15c)

g
(3)
15 = 0 , (B.15d)

g
(4)
15 = 4H(0,−1, 0, 0;x)− 2H(0, 0,−1, 0;x)− 2H(0, 1, 0, 0;x)

+ 4H(1, 0, 0, 0;x) + ζ2(H(0, 0;x) + 4H(1, 0;x))

− 4 ζ3 H(0;x) +
17 ζ4

4
, (B.15e)

g
(0)
16 = 0 , (B.16a)

g
(1)
16 = 0 , (B.16b)

g
(2)
16 = 0 , (B.16c)

g
(3)
16 = 0 , (B.16d)

g
(4)
16 = − 4H(0,−1, 0, 0;x) + 4H(0, 0,−1, 0;x)− 2H(0, 0, 0, 0;x)

− 4H(0, 0, 1, 0;x) + 4H(0, 1, 0, 0;x)− 4H(1, 0, 0, 0;x)

− 2 ζ2(6H(0,−1;x)− H(0, 0;x) + 2H(1, 0;x))− 2 ζ4 , (B.16e)

g
(0)
17 = 0 , (B.17a)

g
(1)
17 = 0 , (B.17b)

g
(2)
17 = 0 , (B.17c)

g
(3)
17 = 2 (H(0,−1, 0;x)− H(0, 0, 0;x)− H(0, 1, 0;x))− ζ2 H(0;x)− ζ3 , (B.17d)

g
(4)
17 = − 8H(−1, 0,−1, 0;x) + 8H(−1, 0, 0, 0;x) + 8H(−1, 0, 1, 0;x)

− 20H(0,−1,−1, 0;x) + 16H(0,−1, 0, 0;x) + 12H(0,−1, 1, 0;x)

+ 24H(0, 0,−1, 0;x)− 12H(0, 0, 0, 0;x)− 16H(0, 0, 1, 0;x)

+ 12H(0, 1,−1, 0;x)− 8H(0, 1, 0, 0;x)− 4H(0, 1, 1, 0;x)

+ 8H(1, 0,−1, 0;x)− 8H(1, 0, 0, 0;x)− 8H(1, 0, 1, 0;x)

+ 2 ζ2(2H(−1, 0;x) + H(0,−1;x) + H(0, 0;x) + H(0, 1;x)

− 2H(1, 0;x)) + ζ3(4H(−1;x)− H(0;x)− 4H(1;x))− 37 ζ4

4
, (B.17e)
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C
Matrices for Associated Higgs plus One Jet Production

C.1. Canonical Matrices at Two-Loop

Here we present the sparse matrices Mi (i = 1, . . . , 6) appearing in the canonical system
defined in (8.17) and (8.18) obeyed by the MI’s (8.28):

M1 =




−2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
−1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1

2 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
1
2 0 1

2 0 0 −1 −2 0 2 −2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0
0 −1

2
1
2 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0

1
2 −1

2 0 0 0 0 −2 2 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
−3

8
3
8 −3

4 0 0 1 5
2 −3

2 −2 1 0 0 3
2

1
4 0 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0
−3

8
3
8 −3

4 0 0 1 5
2 −3

2 −2 1 0 0 3
2

1
4 −1 1 0 −2




(C.1)
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M2 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
0 3

2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
1
2 0 −1

2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
−1

8 −1
8 0 0 0 0 −1

2 −1
2 0 0 0 0 −1

2 −1
4 0 0 0 0

3
4

3
4 0 0 0 0 −3 3 0 0 0 0 3 3

2 0 0 0 0
0 3

2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
3
8 −3

8
3
4 0 0 −1 −5

2
3
2 2 −1 0 0 −3

2 −1
4 0 1 0 0

3
2

3
2 −3

2 0 0 0 0 0 0 0 2 6 0 −1 2 0 2 0
−9

8 −15
8

3
2 −1 3 1 −3

2 −3
2 0 −3 −2 −9 3

2
5
4 −2 0 −1 −1




(C.2)

M3 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0
−1

2 0 1
2 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0

−1
2

1
2 0 0 0 0 2 −2 0 0 0 0 −2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0
3
8 −3

8
3
4 0 0 −1 −1

2
3
2 1 1 0 0 −3

2
3
4 −1 1 0 0

−3
2 −3

2
3
2 0 0 0 0 0 0 0 −2 −6 0 0 0 0 −2 0

9
8

15
8 −3

2 1 −3 −1 −1
2

3
2 1 1 2 9 −3

2 −5
4 2 0 1 1




(C.3)

M4 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0
0 1

2 −1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −6 0 0 0 0 0 0 0 0 0 0
0 −3

2
3
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




(C.4)

(M5)13,13 = 4 is the only non-vanishing entry of M5.
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M6 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −3 0 0 3 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
−1

8 −1
8 0 0 0 0 −1

2 −1
2 0 0 0 0 −1

2 −1
4 0 0 0 0

3
4

3
4 0 0 0 0 3 3 0 0 0 0 3 3

2 0 0 0 0
0 3

2 0 0 0 0 0 0 3 0 0 0 0 0 1 0 0 0
3
8 −3

8
3
4 0 0 −1 −5

2
3
2 2 −1 0 0 −3

2 −1
4 0 1 0 0

3 3
2 −3 −2 0 2 2 0 −4 2 2 6 0 −1 2 0 2 2

−9
8 −15

8
3
2 1 3 −1 1

2 −3
2 −1 −1 −2 −9 3

2
5
4 −2 0 −1 −1




(C.5)

C.2. Canonical Matrices at Three-Loop

Here we present the sparse matrices Mi (i = 1, . . . , 6) appearing in the canonical system
defined in (8.17) and (8.18) obeyed by the MI’s (8.30). We write each matrix in block form,

Mi =

(
Ma
i 043×42

M b
i M c

i

)
, (C.6)

where 043×42 is the null 43× 42 matrix.
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M
(a

)
1

=
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The matrix M5 is mainly composed of zeroes and we only list its non-vanishing en-
tries: (M5)59,58 = −12, (M5)68,42 = (M5)68,58 = −2, (M5)58,42 = −1, (M5)58,40 = (M5)60,42 =

(M5)68,40 = 1, (M5)74,74 = (M5)81,74 = 2, (M5)33,33 = (M5)58,58 = 4, (M5)42,42 = 5, (M5)40,40 =

(M5)59,40 = (M5)75,74 = (M5)76,74 = 6, (M5)35,33 = 8, (M5)59,42 = 12.
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2
−

6
1

2
0

0
1
−

1
0
−

4
−

2
1

2
−

2
−

1
−

2
−

3
3

3
2

0
2

−
1

2
−

6
4

−
8
−

4 3
1 3
−

8 3
0

1
−

8
2

3
0
−

3
9

−
6

1 2
−

6
1 2

9
−

3
0

1 2
4

1
−

2
1 2

1
−

1
2
−

1
−

2
−

1
−

1
0

                                                                                  

(C
.2
1)
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D
Two-Loop d log-forms

In this appendix we give explicitly the coefficient matrices of the d log-forms, eq. (9.17), for
the one-mass and the two-mass two-loop MIs, discussed respectively in sections 9.4 and 9.5.

D.1. One-mass

For the one-mass case at the two-loop order, the d log-form is

dA = M1 d log(1 + x) + M2 d log(x) + M3 d log(y)

+ M4 d log(1− y) + M5 d log(x+ y) + M6 d log(x+ y + xy) (D.1)

with
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M1 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 −3

2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1

2 −1 1
4 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 1

2 0 0 0 2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−3

4 −5
4

3
8 0 0 −1

8 0 0 0 0 0 −1
2 0 0 0 0 0 0 0 −1

2
1
4 0 0 0 0 0 0 0 0 0 0

−1
2

7
2

1
4 0 0 −3

4 0 0 0 0 0 −3 0 0 0 0 0 0 0 −3 3
2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1
2

1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 0 −3 0 0 −2 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
2 −1

2 0 0 0 0 0 0
0 0 0 0 0 0 0 3

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
2

3
2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 −1 0 0 0 0 0 0 1 0 0 0 0 0
−3

4 −3
4

3
8 0 0 1

8 0 0 0 0 0 1
2 0 1 0 0 0 −1 0 3

2 −1
4 0 0 0 0 0 −1 0 0 0 0

−3
2 −3

2
3
4 0 0 1

4 0 0 0 0 0 1 0 2 0 0 0 −2 0 3 −1
2 0 0 0 0 0 0 −1 0 0 0

−3 0 0 0 2 0 0 0 5 −3 0 1 0 0 −1 0 0 −1 0 0 0 3 −1 0 0 0 0 0 1 0 0
3 −1 −1

2 −1 0 3
2 0 0 −6 2 −2 0 0 0 0 −2 0 0 0 0 0 −6 0 0 0 0 −2 1 0 0 −2

9
8 −7

8 − 1
16

1
2 −3

2
1
16 −3

2 0 −3 1 2 1
4 0 1

2 0 1
2 0 −1

2 0 3
4 −1

8 0 0 0 0 0 1
2 −1

2 0 0 0




, (D.2)

M2 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −4 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 3

2 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 −1

2 1 0 0 −2 0 0 0 0 0 −2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 −2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 −1

2 1 0 0 −2 0 0 0 0 0 −2 −2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 −3

2 0 0 0 −3 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −2 0 0 0 0 0 0 −2 0
−2 0 0 0 3

2 0 0 0 3 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 −2




, (D.3)
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M3 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 3

2 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 −1

2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1

2 −1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5
4

5
4 −5

8 −1 0 1
8 1 0 0 0 0 1

2 −2 −1 0 −1 0 −1 0 3
2

3
4 0 0 0 0 0 −3 1 0 0 0

1 0 0 0 −1 0 0 0 −1 1 0 1 0 0 −1 0 0 −1 0 0 0 3 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0
0 1

2 0 0 1
4 0 −1 0 1 0 −1 −1 −1 −1 1 0 0 1 0 0 1

2 −3 0 0 0 0 0 0 0 1 1




, (D.4)

M4 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 1

2 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−2 0 0 0 0 1 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 1

2 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3
2 −1

2 0 0 0 0 0 0
0 0 0 0 0 0 0 −3

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
2

1
2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 −1 0 0 0




, (D.5)
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M5 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −3

2 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
2 −2 −1 0 0 −1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1

2 0 0 3 0 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
2

1
2 0 0 0 0 0 0

0 0 0 0 0 0 0 3
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3

2
3
2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
3
4

3
4 −3

8 0 0 −1
8 0 0 0 0 0 −1

2 0 −1 0 0 0 1 0 −3
2

1
4 0 0 0 0 0 1 0 0 0 0

1
2

3
2 −1

4 −1 0 −1
4 2 0 0 0 0 −1 2 0 0 0 0 2 0 −3 −1

2 0 0 0 0 0 0 1 0 0 0
1 0 0 0 −1

2 0 0 0 −2 1 0 −1 0 0 1 0 0 1 0 0 0 −3 0 0 0 0 0 0 1 0 0
−3 1 1

2 1 3
2 0 0 0 6 −2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 −1 2 2 2

0 −1
2 0 −1 −1

4 0 1 0 −1 0 −1 1 1 1 −1 0 0 −1 0 0 −1
2 3 0 0 0 0 −2 1 −2 −1 −1




, (D.6)

M6 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0




, (D.7)
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D.2. Two-mass

For the two-mass case, at the two-loop order, the d log-form is

dA = M1 d log(z) + M2 d log(1 + z) + M3 d log(1− z) + M4 d log(w)

+ M5 d log(1 + w) + M6 d log(1− w) + M7 d log(1− w + w2)

+ M8 d log(1− w z) + M9 d log(z − w) + M10 d log(1 + w2 z)

+ M11 d log(w2 + z) + M12 d log((1 + z)4w3 + (1− w)2 κ2
+(w, z))

+ M13 d log((1 + w)
√
ρ+ (1− w)κ−(w, z))

+ M14 d log((1 + w)
√
ρ− (1− w)κ−(w, z))

+ M15 d log((1 + w)
√
ρ+ (1− w)κ+(w, z))

+ M16 d log

(
c1 + c2

√
ρ

c3 + c4
√
ρ

)

+ M17 d log(2(1− w)2wz2 + κ2
−(−w, z) + (z + w) (1 + wz)

√
ρ) (D.8)

where we used the abbreviations introduced below eq. (9.55). The coefficient matrices are

M1 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 −1

2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 −1 1

2 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−3

4 −3
4

3
8 0 1

8 0 0 0 0 0 0 1
2 0 1 0 0 0 0 0 −1 0 3

2 −1
4 0 0 0 0 0 0 1 −1 0 0 0 0 0

−7
4 −11

4
7
8 2 1

8 −3 0 0 0 0 0 1
2 0 1 0 0 0 0 1 −1 0 3

2 −1
4 0 0 0 0 0 0 1 −1 0 0 0 0 0

1 −1 −1
2 0 0 0 0 −3 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0

−2 2 1 0 0 0 0 6 −4 −4 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 0 −2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−2 2 1 0 0 0 0 6 −4 −4 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 8 8 0 −4 0
−7

4 −7
4

7
8 1 1

8 −1 0 0 0 0 0 −3
2 0 1 0 0 −1 −1 1

3 −1 0 3
2 −1

4 0 0 1 1 0 0 1 −1 −2 −2 0 1 0




, (D.9)
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M2 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 −1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5
2

5
2 −5

4 −2 1
4 2 0 0 0 0 0 1 −4 −2 0 0 0 0 −2 −2 0 3 3

2 0 0 0 0 0 0 −6 2 0 0 0 0 0
−1 −5 1

2 0 −1
2 0 0 0 0 0 0 2 0 0 0 4 0 0 0 0 0 6 1 0 0 6 0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0
−7

2 −3
2

7
4 2 1

4 −2 0 2 0 0 0 1 4 2 0 −4 0 0 2
3 −2 0 −5 −1

2 0 0 −4 0 0 −2 2 −2 −8 −2 −2 2 4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 −4 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 2




, (D.10)

M3 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −6 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −6 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




, (D.11)
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M4 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−2 0 0 0 0 0 0 −6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 3

2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2 1 −1

4 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 1

2 −1 0 2 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 2 1 0 0 0 0 0 0 −2 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−2 0 1 0 0 0 0 0 0 −2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7
4

9
4 −7

8 0 1
8 0 0 0 0 0 0 3

2 0 0 0 0 0 0 0 0 0 −7
2 −1

4 0 0 0 0 0 0 0 0 0 0 0 0 0
−3

2 −3
2

3
4 0 7

4 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 3 −3
2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3
2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 −2 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
−3 −5 3

2 0 0 0 0 0 0 0 0 0 6 6 0 −2 −2 −2 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5
4

5
4 −5

8 −1 1
8 1 0 0 0 0 0 1

2 −2 −1 0 0 0 0 −1 −1 0 3
2

3
4 0 0 0 0 0 0 −3 1 0 0 0 0 0

−1
4 −17

4
1
8 0 −3

8 0 0 −3
2 1 1 0 3

2 0 0 0 3 0 0 0 0 0 9
2

3
4 0 0 9

2 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0
−3

2 −7
2

3
4 2 1

4 −2 0 −4 4 4 2 1 4 2 0 −4 0 0 2
3 −2 0 −5 −1

2 0 0 −4 0 0 −4 2 −2 −6 −4 −2 4 4
−5

4 −17
4

5
8 −1 −1

8 1 0 0 0 0 0 7
2 4 5 −2 0 0 −2 −1

3 −3 0 5
2

1
4 0 0 2 0 0 −4 −3 1 2 −4 0 2 4

−3
4 −3

4
3
8 1 1

8 −1 0 0 0 1 1 −7
2 2 1 2 −2 0 0 1

3 3 0 −5
2 −1

4 0 0 −2 0 0 −2 3 −1 −4 −2 0 2 0


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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 1 1

2 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 −1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −6 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−2 −2 1 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
−3

2 −3
2

3
4 0 1

4 0 0 0 0 0 0 1 0 2 0 0 0 0 0 −2 0 3 −1
2 0 0 0 0 0 0 2 −2 0 0 0 0 0

−7
2 −11

2
7
4 4 1

4 −6 0 0 0 0 0 1 0 2 0 0 0 0 2 −2 0 3 −1
2 0 0 0 0 0 0 2 −2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 −2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 −2 0
−7

2 −7
2

7
4 2 1

4 −2 0 0 0 0 0 −3 0 2 0 0 −2 −2 2
3 −2 0 3 −1

2 0 0 2 0 0 1 2 −2 0 −1 0 1 0
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
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 −2 1

2 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 −1 1

2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −6 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−3

2 −5
2

3
4 0 −1

4 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 −1 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 7 1
2 0 −3

2 0 0 0 0 0 0 −6 0 0 0 0 0 0 0 0 0 −6 3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
−3

2 −3
2

3
4 0 1

4 0 0 0 0 0 0 1 0 2 0 0 0 0 0 −2 0 3 −1
2 0 0 0 0 0 0 −2 0 0 0 0 0 0

−3 −3 3
2 0 1

2 0 0 0 0 0 0 2 0 4 0 0 0 0 0 −4 0 6 −1 0 0 0 0 0 0 0 −2 0 0 0 0 0
1 −1 −1

2 0 0 0 0 −3 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 −2 0

−11
4 −15

4
11
8 1 1

8 −1 0 0 0 0 0 1
2 −2 1 −2 2 −2 −2 1

3 −5 0 11
2 −1

4 0 0 4 0 0 1 −1 −1 −2 −1 0 1 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −4 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −2 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 −1

2 1 0 −2 0 0 0 0 0 0 −2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 −1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 −1

2 1 0 −2 0 0 0 0 0 0 −2 −2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 1

2 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1

2 1 1
4 0 1

4 0 0 1
2 0 0 0 0 0 0 −1 −1 0 0 0 −1 0 0 −1

2 0 0 −3
2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0




, (D.20)

M14 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2 −1 −1

4 0 −1
4 0 0 −1

2 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1
2 0 0 3

2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0



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M15 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2

5
2 −1

4 0 1
4 0 0 0 0 0 0 −1 0 0 0 −2 0 0 0 0 0 −3 −1

2 0 0 −3 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0




, (D.22)

M16 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



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M17 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1

2
1
2

1
4 0 0 0 0 3

2 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0




, (D.24)

and (M12)32,32 = −1 is the only non vanishing entry in M12.
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