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Abstract

Performance studies related to the RPC detector at the CMS experiment have been
done. The cluster size distribution of clusters sent to L1 Trigger before and after cleaning
the noisy hits has been studied. The angular distributions of the offline DT and CSC
segments, extrapolated to the RPC detector planes have been studied exploring different
data streams.
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1 Introduction

The main purpose of the CMS detector [1] design is to build a detector of moderate size
that measure the particles born in collisions, optimised for measuring muons. To measure
the particles momenta, CMS uses a solenoidal magnetic field of 3.8 T. The inner tracker and
calorimetry systems are installed inside the coil, while the muon system is outside it. During
Run 2 of LHC data taking, the CMS muon system was composed by four gaseous detector
technologies — Drift Tube chambers (DT'), Cathode Strip Chambers (CSC) and Resistive Plate
Chambers (RPC) . A trajectory of a muon passing through CMS is shown in Figure 1.

Figure 1: A muon trajectory in the transversal CMS plane (perpendicular to the LHC beams).

Resistive Plate Chambers (RPCs) [2] are fast gaseous detectors that provide a muon trigger
system parallel to those of the DTs and CSCs. RPC has been chosen in both the barrel
and endcap as dedicated trigger detectors. Because they have a fast response and good time
resolution (o < 1.5ns), they guarantee a precise bunch crossing assignment of the muon tracks.
RPCs consist of two parallel plates, both made of a very high resistivity plastic material and
separated by a thin gas volume as shown in Figure 2.

Figure 2: A schematic view of a resistive plate chamber

The CMS L1 trigger (Level 1 trigger) explores three different track finding algorithms to
trigger muons. The track finders act in different pseudorapidity regions [3]. These track finders
are: the Barrel Muon Track Finder (BMTF'), Overlap Muon Track Finder (OMTF), and Endcap
Muon Track Finder (EMTF). These track finders use Trigger Primitives (TP) from all muon
detectors and try to identify patterns compatible with muon tracks and assign a transverse
momentum to these candidates. This information is further processed on later stages to decide
whether the event is kept or not. The RPC TPs are clusters of fired strips as a response to
a single hit. RPC system participates in all the track finders since it covers both the barrel
and the endcap as shown in Figure 3 (right) and sends hits to the corresponding firmware —
TwinMux (in the barrel), CPPF (in the endcao), and OMTF (in the overlaped region) as shown
in Figure 3 (left).
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Figure 3: Left: Block diagram of the CMS Level-1 Muon Trigger architecture.
Right: One quadrant of the CMS detector, with the Muon detectors in color.

2 Performance studies

2.1 RPC timing studies

The first part of my task was to study the algorithm that build common RPC + DT trigger
primitives and in particular the part that cleans the RPC hits caused by eventual spurious
electronics noise or hits caused by the background radiation. Any background source could
affect the muon trigger performance and pattern recognition of muon tracks. In particular,
spurious hits due to noise or to radiation background could promote low transverse-momentum
muons to higher momentum. For this study we explored a dedicated algorithm, so called
RPCHitCleaner. The algorithm builds RPC clusters and cleans the ones that have larger
cluster size — more than 4 fired strips.

In Figure 4, we compared the clusters before and after cleaning. In the histogram We
excluded noisy events, with cluster size > 10 and representing a percentage of 1.79% of the
total number of events, because they refer to the rare very noisy events which are cleaned on
the trigger level. The BX window and cluster size for each of the clusters before and after
cleaning is shown in Figure 5.
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Figure 4: Comparison between RPC clusters before and after cleaning using the RPCHitCleaner algorithm.
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Figure 5: The BX window and cluster size for RPC clusters before and after cleaning.

2.2 Segment extrapolation studies

For the RPC detector performance studies, a particular problem with the offline analysis code
for the efficiency measurements was encountered for the endcap station 4. In order to spot
the problem, different directions of investigations have been taken into account. In particular,
the impact angles of the extrapolated segments carry very important information whether the
segments are really associated to the prompt particles coming from the interaction point or not.
That’s why such investigation has been done and here we present the results. The distribution
of the impact angles of the extrapolated segments is shown in Figures 6 and 7 for the monitoring
and express streams respectively.
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Figure 6: Impact angles of the extrapolated CSC segments to the RPC plains for all the endcap stations using
the monitoring stream fitted to a Gaussian.
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Figure 7: Impact angles of the extrapolated CSC segments to the RPC plains for all the endcap stations using
the express stream fitted to a Gaussian.

As shown in Figures 6 and 7, all the impact angles of the extrapolated segments are pointing
to the 90° angle which shows that here are prompt particles and because of this, obviously it
means that extrapolation works good.

In the end, we found that the problem is caused by a particular missing record in the
geometry data base and it is not caused by wrong extrapolations. After the relevant fix the
correct efficiency measurements have been restored. Figure 8 shows the efficiency measurement
of the endcap station 4 before and after solving the problem.
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Figure 8: Efficiency plot of the endcap station 4 before(left) and after(right) solving the problem.
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