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Abstract
Information reconciliation is a significant stage in continuous-variable quantum key distribution
(CV-QKD) systems as it directly affects the performance of the CV-QKD systems including secret
key rate and secure transmission distance. This paper proposes a multidimensional reconciliation
scheme using deep learning in CV-QKD systems. Firstly, different neural networks are constructed
to obtain the norm information. Secondly, a multidimensional reconciliation scheme with deep
learning assisted norm information is proposed which no longer needs to transmit the norm
information through the authenticated classical public channel. Finally, simulation results and
performance analysis show that, compared with the traditional multidimensional reconciliation
scheme, the multidimensional reconciliation scheme with deep learning assisted norm information
can decrease the communication traffic to a certain extent.

1. Introduction

Numerous cryptosystems ensure information security, which is becoming more and more crucial in the
modern information society. With the rapid development of quantum computers and quantum algorithms,
the computational complexity assumption based classical cryptography approach has been no longer
unconditionally secure [1–3]. Quantum key distribution (QKD) is unconditionally secure and has aroused
much attention as it can provide information theoretically secure keys exchange even in the era of quantum
computers [4–6]. The two primary types of QKD that encode information on discrete and continuous
variables, respectively, are discrete-variable (DV) QKD and continuous-variable (CV) QKD [7–11].
DV-QKD employs the single photon detection and has the advantages long transmission distance and
relatively simple data post processing [12, 13]. In contrast, CV-QKD encodes information on the quadratures
of quantized optical fields and can provide a high secret key rate over metropolitan areas. Furthermore, it has
good compatibility with the current coherent optical communication technology and has rapid progress in
recent years [14–17].

Currently, there are various representative CV-QKD schemes. e.g. coherent state CV-QKD ,
squeezed-states CV-QKD and rotation symmetric bosonic codes CV-QKD [18, 19]. Among these schemes,
the coherent state scheme [14, 20] stands out as it has been theoretically validated as secure against both
collective and coherent attacks. A typical CV-QKD system, which is shown in figure 1, mainly includes two
phases: quantum information transmission and post-processing. In the quantum information transmission
phase, Alice sends the prepared coherent states to Bob through a private quantum channel. Then Bob
measures the received coherent states by utilizing heterodyne or homodyne detection techniques. In order to
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Figure 1. Schematic of a CV-QKD system. Alice transmits Gaussian quantum states to Bob over the private quantum channel. In
the reverse multidimensional reconciliation scheme, Bob generates secret keys, and then both parties extract the secret keys over
the authenticated classical public channel. QRNG: quantum random number generator.

obtain the secret keys for both legitimate parties, Alice and Bob subsequently perform the post-processing
phase, which includes four stages: basis sifting, parameter estimation, information reconciliation [21] and
privacy amplification [22]. It is generally known that the reconciliation efficiency is directly related to the
secret key rate and the secure transmission distance of the involved CV-QKD system [23]. Therefore,
information reconciliation is a crucial stage in the CV-QKD system to distill symmetric secret keys from the
raw keys. To date, there have been mainly two information reconciliation schemes in CV-QKD systems: slice
error-correcting reconciliation (SEC) [24] and multidimensional reconciliation [25]. The secure
transmission distance of SEC reconciliation is limited by its poor quantization performance at the low
signal-to-noise (SNR) of long-distance CV-QKD [26]. However, the multidimensional reconciliation can
enhance the reconciliation efficiency, and therefore improve the secret key rate and secure transmission
distance in case of low SNRs [27].

There are two types of multidimensional reconciliation, direct multidimensional reconciliation and
reverse multidimensional reconciliation [28]. As the reverse multidimensional reconciliation can beat the
3 dB loss limit, it is optimum for CV-QKD systems [29]. In the reverse multidimensional reconciliation, a
virtual channel which is often regarded approximately as a binary input additive white Gaussian noise
(BI-AWGN) channel can be established [30]. Subsequently, the multidimensional reconciliation problem is
successfully transformed into a channel coding problem that can be solved by error-correcting codes,
theoretically extending the secure transmission distance from 30 to 50–100 km [31]. Afterward, to achieve
higher reconciliation efficiency, the multidimensional reconciliation scheme has been employed in a series of
works with different error-correcting codes [32–38].

However, to compute the initial iteration message, the multidimensional reconciliation scheme with
error-correcting code requires the encoder to send norm information to the decoder. As we all know, all of
the information shared during reconciliation must be authenticated using secure keys [39]. On the one hand,
the extra norm in traditional multidimensional reconciliation scheme results in heavy consumption of
communication traffic. On the other hand, when the repetition frequency of the quantum channel rapidly
increases, the storage resources of post-processing devices are facing new hurdles [40]. Namely, the
multidimensional reconciliation schemes which require the encoder providing norm information to the
decoder may not be appropriate for the practical high-speed CV-QKD systems.

Here, we propose a multidimensional reconciliation scheme using deep learning in CV-QKD systems.
Firstly, the decoding initialization formula for multidimensional reconciliation is analyzed. Based on deep
learning, the related factors, e.g. the noisy version of the secret key, the SNRs obtained from parameter
estimation, the Gaussian continuous variable of the decoder and the rotation matrix have been used to
construct deep neural networks. Secondly, a multidimensional reconciliation scheme with deep learning
assisted norm information is proposed, where the encoder no longer needs to transmit the norm information
to the decoder. Finally, simulation results and performance analysis show that, compared with the traditional
multidimensional reconciliation scheme, the multidimensional reconciliation scheme with deep learning
assisted norm information can decrease the communication traffic to a certain extent. Moreover, compared
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with the scheme proposed in [41], the proposed multidimensional reconciliation scheme with deep learning
assisted norm information can improve the reconciliation efficiency and secret key rate of CV-QKD systems.

This paper is organized as follows. In section 2, the technical preliminaries are briefly provided. In
section 3, different neural networks are constructed to obtain the norm information and the
multidimensional reconciliation scheme with deep learning assisted norm information is proposed. In
section 4, the network training strategy, related simulation, and analysis of the proposed multidimensional
reconciliation scheme with deep learning assisted norm information are provided. Finally, section 5
concludes the paper.

2. Preliminaries

In this section, we first briefly describe the multidimensional reconciliation in post-processing and then
present the multidimensional reconciliation with low-density parity-check (LDPC) codes.

2.1. Multidimensional reconciliation
In CV-QKD, inevitable inconsistencies arise in the raw keys acquired by the legitimate parties, stemming
from the inherent noises and attenuation within the quantum channel, as well as the intrinsic noise
associated with the quantum states themselves. Information reconciliation is used to correct errors in raw
keys, such that Alice and Bob can obtain the secret keys. However, the Gaussian distributed raw data that
resulted from the quantum information transmission is not uniformly distributed. The raw data
manipulations require the use of an authenticated classical public channel that only allows the transmission
of uniformly distributed data. To this end, the nonuniform Gaussian distributed variable space has to be
mapped into the uniform-distributed variable space in the multidimensional reconciliation stage.

To ensure security, Alice and Bob must partition the continuous variables with length N into successive
d-dimensional vectors in multidimensional reconciliation. Then they can combine each group with d
continuous variables in order and obtain x= (x1,x2, · · · ,xd) obeying Gaussian distributionN (0,σ2

x)
d,

y= x+ z, where each continuous variable of z obeyingN (0,σ2
z )

d is the noise of the private quantum
channel and d is the dimension of multidimensional reconciliation. The long distance CV-QKD systems
require reverse multidimensional reconciliation, which is characterized as follows:

• The corresponding Gaussian vectors of Alice and Bob are normalized into x ′ = x/||x|| and y ′ = y/||y|| for
each group with d continuous variables. Here, ||x|| and ||y|| are the Euclidean norms of Gaussian vectors x
and y, respectively. The normalized results x ′ and y ′ are uniform-distributed on the unit sphere Sd−1.

• A random binary sequence c, which is considered as the secret key, with uniform distribution is generated
by the quantum random number generator (QRNG) on Bob’s side. Then, the secret key will be transformed
into a codeword c ′ through error-correcting codes, e.g. LDPC codes. Meanwhile, the codeword c ′ needs to
be converted into a binary spherical code u so as to guarantee the side information that will be transmitted
over the authenticated classical public channel will not give any relevant information to Eve. For a subgroup
of codeword denoted by (c ′1, c

′
2, · · · , c ′d), the corresponding spherical code is

u=

(
(−1)c

′
1

√
d

,
(−1)c

′
2

√
d

, · · · , (−1)c
′
d

√
d

)
. (1)

• Bob calculates the rotationmatrixM(y ′,u) according to the normalized result y ′ and the converted spherical
code u, where

M(y ′,u)y ′ = u. (2)

Subsequently, the norm information ||y||, syndrome S and the rotation matrixM(y ′,u) are sent from Bob
to Alice. In such a case, Alice can generate a close approximation to u by performing rotation operation
on x ′,

v=M(y ′,u)x ′

=
1

||x||
M(y ′,u)(y− z)

=
||y||
||x||

u− 1

||x||
M(y ′,u)z. (3)

Following the procedures above, a virtual channel with input u and output v is created. The Gaussian
variable reconciliation problem is then turned into an error-correcting problem for the BI-AWGN channel
[9]. To obtain the same key u as Bob’s, Alice has to correct errors in v with error-correcting codes.
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2.2. Multidimensional reconciliation with LDPC code
The meticulously designed LDPC codes, characterized by their well-crafted check matrices H, exhibit
performance levels that closely approximate the Shannon limit on BI-AWGN channels. By utilizing the belief
propagation (BP) algorithm, specifically its log-likelihood ratio BP (LLR-BP), the LDPC codes achieve a
substantial increase in decoding throughput. Consequently, we implement the LLR-BP algorithm in the
context of multidimensional reconciliation, aiming to significantly reduce the frame error rate (FER),
increase the secret key rate, and extend the secure transmission distance.

The LLR-BP algorithm stands as a highly efficient soft iterative decoding approach for LDPC codes. In
the framework of this algorithm, variable nodes and check nodes engage in an iterative exchange of messages.
Specifically, a check node receives messages from its adjacent variable nodes, processes them through a
defined methodology, and then relays the processed messages back to its neighboring variable nodes.
Similarly, a variable node receives messages emanating from its neighboring check nodes, processes these
incoming messages, and subsequently transmits processed messages back to its adjacent check nodes. The
iterative decoding procedure initiates at the variable nodes and terminates at the check nodes, marking a
complete cycle. Furthermore, the iterative function maintains a precise one-to-one mapping with the check
matrix H. Once the check matrix H is established, the iterative function becomes deterministic, meaning
that the decoding output is solely contingent upon the input information provided. Specifically, the decoding
result is intricately tied to the initial iteration message alone. Consequently, it is imperative to first compute
the initial iteration messagem0

i for the variable nodes, serving as the foundation for initiating the iterative
process.

To correct the errors between u and v, equation (3) can be transformed as

||x||v− ||y||u=−M(y ′,u)z. (4)

Therefore, the condition probability Pr(v|u(c ′)) is given by

Pr(v|u(c ′)) =K 1√
2πσ2

z

e
− (||x||v−||y||u)2

2σ2
z , (5)

where u(c ′) = (−1)c
′

√
d
, c ′ ∈ {0,1}, and K is a normalization factor to make Pr(v|u(0))+Pr(v|u(1)) = 1.

Pr(u(c ′)|v) is the posterior probability, which is given by

Pr(u(c ′) |v) = 1

1+ e
−2||x||||y||vu

σ2

. (6)

Therefore, the initial iteration message can be calculated as

m0
i = ln

Pr(ui (0) |vi)
Pr(ui (1) |vi)

=
2vi
σ2
z

||x||||y||√
d

, (7)

which can decide whether the multidimensional reconciliation succeeds or not.

Remark. It is evident from equation (7) that Alice needs to know the norm information including ||y|| and
||x|| when uses the traditional method to compute the initial iteration message. Since Alice does not have the
norm information ||y||, Bob needs to send ||y|| to Alice for every y. Furthermore, the norm information
constitutes a continuous variable, necessitating its storage in the buffer as a floating-point number during
implementation. Consequently, the transmission of norm information from the encoder to the decoder
incurs significant consumption of communication traffic, posing an additional burden on the overall
system.

3. Multidimensional reconciliation using deep learning

The better the decoding performance, the lower the FER and the higher the reconciliation efficiency. To
obtain a high accuracy and decrease the communication traffic, the powerful data processing capability of
the deep neural network can be used for multidimensional reconciliation in CV-QKD systems. Then, a
multidimensional reconciliation scheme with deep learning assisted norm information is proposed, in which
the encoder no longer needs to transmit the norm information through the authenticated classical public
channel. In what follows, we will simply refer to the multidimensional reconciliation scheme with deep
learning assisted norm information as the proposed deep learning scheme.
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Figure 2. The structure diagram of a single hidden layer neural network.

3.1. Norm information assisted by deep neural network
The decoding initial iteration message of reverse multidimensional reconciliation directly affects the
reconciliation performance. It can be inferred from equation (7) that Alice, as the decoder, requires ||x||, v,
σ2
z , and ||y|| to calculate the initial iteration message. The norm information ||x|| of continuous variable x

can be directly calculate by Alice. Then, the rotation functionM(y ′,u) and the norm information ||y|| can be
transmitted from Bob to Alice through an authenticated classic public channel. The quantum channel noise
variance σ2

z can be obtained from parameter estimation. By performing rotation operation on x ′, Alice
obtains the estimated information v= û. However, in the existing multidimensional reconciliation scheme,
the quantum information transmission model is y= x+ z. The norm information ||y|| of the continuous
variable y must be related to the continuous variable x transmitted by Alice and the SNR of the quantum
channel. What is more, Alice needs to store the norm information ||y|| in the buffer until the iterative
decoding finished. As the norm information is continuous variable, Alice needs much more storage resources
to store it than the binary bits. Fortunately, the norm information ||y|| is related to x, v, σ2

z andM(y ′,u).
Naturally, we can think of a neural network with inputs x, v, σ2

z andM(y ′,u), and the output ||y|| ′.
Deep learning refers to the method of training multi-layer neural networks, which includes the input

layer, the output layer, and multiple hidden layers [42, 43]. The simplest multiple hidden layers, a three-layer
network structure with only one-hidden layer is shown in figure 2. As illustrated in the figure, the layers of
the neural network are fully interconnected, implying that neurons across different layers are all linked.
Specifically, the neural network comprises e neurons in the input layer, q neurons in the hidden layer, and l
neurons in the output layer. The vector I represents the network’s inputs

(
x;v;σ2

z ;M(y ′,u)
)
. w and µ are the

weight of hidden layers and the weight of output layers, respectively. g, h, and k represent the gth, hth, and
kth neuron in the input layer, hidden layer, and output layer, respectively. bh and ||yk|| ′ are the outputs of the
hth neuron in the hidden layer and the kth neuron in the output layer, respectively. Various types of
activation functions serve distinct purposes. In this paper, we employ the tansig function, a prominent and
frequently utilized activation function, within the hidden layers. The tansig function offers the advantage of
being computable with reduced dimensionality, thereby enhancing computational efficiency. The linear
activation function is frequently utilized in the output layer of neural networks tailored for regression tasks,
enabling the output to encompass any continuous value within the real number domain. Therefore, the
outputs corresponding to the hth neuron in the hidden layer and the kth neuron in the output layer are
respectively given by

bh= ftans

 e∑
g=1

wghIg − θh


=

exp
(∑e

g=1wghIg−θh

)
−exp

(
−
∑e

g=1wghIg+θh

)
exp
(∑e

g=1wghIg−θh

)
+exp

(
−
∑e

g=1wghIg+θh

) (8)
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Figure 3. Schematic diagram of the multidimensional reconciliation scheme with deep neural network in CV-QKD.

and

||yk||
′ = fline

(
q∑

h=1

µhkbh − θk

)
, (9)

where θh is the bias of the hth neuron in the hidden layer and θk is the bias of the kth neuron in the output
layer.

Backpropagation neural network is currently one of the most widely used neural networks, which uses
backpropagation algorithm to train the network [44]. The Levenberg–Marquardt (L–M) method is a
representative backpropagation algorithm that combines the steepest descent method and Gaussian Newton
method to quickly converge to the global optimal solution [45]. When the parameter estimation value of the
steepest descent method is far from the optimal value at the beginning of the iteration, the L–M method has
the advantage of stable descent. Additionally, the L–M method possesses the fast convergence speed
characteristic of the Gaussian Newton method. After iterations, the L–M method can avoid falling into local
extremes within the range of parameter estimation values close to the optimal value. The L–M method can
adjust the gradient size: If the gradient descent progresses too rapidly, a smaller step size should be employed
to approximate the Gaussian–Newton method; conversely, if the descent is too sluggish, a larger step size
should be adopted to resemble the gradient descent method more closely. This adjustment ensures that the
algorithm can promptly identify the appropriate direction and step size. Therefore, using the L–M method
can more accurately find the relationship between inputs

(
x;v;σ2

z ;M(y ′,u)
)
and the output ||y|| ′.

The mean square error (MSE) loss function is continuous and smooth at all points, making it convenient
for differentiation. It can give appropriate penalty weights to gradients instead of treating them equally,
which makes the direction of gradient updates more accurate and has a more stable solution. In light of the
advantages of MSE, it can be used to train the network. The MSE is defined as

S2 =
1

n

p∑
k=1

[||yk||
′ − ||yk||]

2
, (10)

where n is the number of samples.

3.2. Multidimensional reconciliation with deep learning assisted norm information
With the assistance of norm information derived from a deep neural network, the encoder, Bob, can refrain
from transmitting this norm information via the authenticated classical public channel to the decoder, Alice.
In what follows, the proposed deep learning scheme which makes the initial iteration message computation
free from the transmission of ||y|| is proposed. Considering the reverse multidimensional reconciliation
process, the schematic diagram of the proposed deep learning scheme is depicted in figure 3. In the process
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of the proposed deep learning scheme, legitimate users also need to normalize the continuous variables x and
y. Then, the secret key can be transformed into a codeword c ′ through LDPC and the syndrome S=Hc ′ will
be transmitted by Bob. Subsequently, Alice and Bob execute a spherical rotation on the normalized vectors x ′

and y ′. During this spherical rotation, Bob randomly generates a spherical code u drawn from the set{
−1√
d
, 1√

d

}
. Following this, Bob computes a rotation matrixM(y ′,u) such thatM(y ′,u)y ′ = u and transmits

the matrixM(y ′,u) to Alice. The result of the rotation operation is equation (3). To generate a close
approximation to u, Alice transforms equations (3) and (4). In order to be free from the transmission of ||y||
during calculating−M(y ′,u)z, Alice can obtain ||y|| ′ through the deep neural network. Then, the errors
between u and v ′ can be calculated as

−M(y ′,u)z= ||x||v ′ − ||y|| ′u. (11)

After the rotation, the output ||y|| ′ of the deep neural network can be obtained for decoding. DefineMj

as the set of neighboring variable nodes associated with the jth check node, andMj\i as the subset ofMj

excluding the variable node i. Similarly, let Ni represent the set of neighboring check nodes linked to the ith
variable node, with Ni \j denoting the subset of Ni that excludes the check node j. Next, Alice can compute
the posterior probability Pr(u|v ′ (c)) by equation (6) and computem ′0

i by equation (7). Then, Alice
implements the LLR-BP algorithm by substituting the received syndrome S and the initial messagem ′0

i into
the decoding iteration formulas as

rlji =2tanh−1

(1−2Sj
) ∏
i′∈Mj\i

tanh

(
ml−1

i′j

2

) (12)

and

ml
ij =m ′0

i +
∑

j′∈Ni\j

rlj′i. (13)

Here, rlj′i represents the feedback message conveyed from the check node j′ to the variable node i during the

lth iteration, whereasml
ij signifies the message passed from the variable node i to the check node j in the same

iteration. Additionally,m ′0
i represents the initial iteration message of the variable node i, which is computed

utilizing norm information assisted by deep learning techniques. Following the completion of these
iterations, each variable node decodes its associated bits by relying on all the information received from its
neighboring check nodes,

ml
i =m ′0

i +
∑
j∈Ni

rlji. (14)

The decoding result of c
′ ′

i is

c
′ ′

i =

{
0, ml

i ⩾ 0

1, ml
i < 0,

(15)

and the iteration process terminates when the decoding result c ′ ′ satisfies Hc ′ ′ = S or when the maximum
number of iterations has been reached.

4. Simulation and performance analysis

In this section, comparative simulation experiments are performed to analyze the performance of the
proposed deep learning scheme. First, the network training strategy of the proposed deep learning scheme is
provided. Subsequently, the performance analysis of the proposed deep learning scheme, including the
comparing communication traffic and FER of different schemes are carried out. Finally, the reconciliation
efficiency and secret key rate of the proposed deep learning scheme in CV-QKD systems are calculated and
compared with that of the traditional multidimensional reconciliation schemes and the scheme proposed in
[41]. In the simulations, we set d= 8 and apply the Advanced Television Systems Committee LDPC
(ATSC-LDPC) codes to multidimensional reconciliation.
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Table 1. Training samples.

Code rate R SNRs

2/15 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29
5/15 0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79

Table 2. The network training settings.

Items Settings

Epochs 1000
Network learning rate 0.01
Training goal 0.00 001
Data division Random
Training algorithm L–M

4.1. Network training strategy
In the existing schemes, Alice is required to store the norm information ||y|| of the continuous variable y in a
buffer throughout the entire iterative decoding process. Notably, the norm information, being a continuous
variable, occupies significantly more storage resources compared to binary bits. In our proposed deep
learning scheme, Bob is no longer needed to transmit the norm information ||y||, leading to a substantial
reduction in classical communication traffic and consequently, a notable savings in the secure key utilized for
authentication purposes. Furthermore, Alice can significantly conserve storage resources, which contributes
to the achievement of a high-speed CV-QKD system.

During the training iterations, the network continuously reduces the MSE value until the error reaches
the expected value or the training frequency reaches the set maximum training frequency before stopping
learning. Then, the trained neural network is saved for predicting the norm information in
multidimensional reconciliation. In the iterative learning process of backpropagation neural network, the
training data needs to be obtained first: the norm information of continuous variable x generated by Alice,
the noise variance of the quantum channel σ2

z , the rotation matrixM(y ′,u), and the noisy information v are
as feature attributes. The norm information of continuous variable y is the objective function. Since the
CV-QKD system operates in extremely low SNR environments, it is necessary to use error-correcting codes
with lower rates in multidimensional reconciliation to generate training data. In general, the rate of the
error-correcting code used is not greater than 1/3 [46]. In addition, as the diversity of training samples is
conducive to improving the universality of the neural network, the 16200 ATSC-LDPC codes under code
rates 2/15 and 5/15 are generated as sample data to meet the channel diversity. The SNRs for training
samples under code rates 2/15 and 5/15 are listed in table 1. Theoretically, several sets of different sample
inputs I and the corresponding sample labels ||y|| can be obtained through the sample data. Finally, the
samples are selected randomly from different SNRs to form a batch of samples.

In the proposed deep learning scheme, the length of each frame is set as 16200, and 10 frames of data are
generated for each SNR to train. Due to a total of 20 SNRs under two code rates, a total of 3240000 data are
generated for each feature attribute. In the simulation, we divide the total information into three parts: 70%
training sample, 15% validation sample, and 15% test sample. Therefore, the training sample size for each
feature input and output is 2268000, each test sample size is 486000, and each validation sample size is
486000.

Based on the analysis of the basic principles of neural networks in the L–M algorithm, a neural network
for predicting the norm ||y|| can be established. In terms of other settings for network training, the data
division is random. Table 2 illustrates the neural network training setting.

4.2. Performance analysis of the proposed deep learning scheme
For the correlated raw key with length N in multidimensional reconciliation, the code rate is R, the
dimension of the multidimensional reconciliation is d, and the size of the floating point number is f. In the
traditional multidimensional reconciliation scheme, Bob needs to send the syndrome with size (1−R)N,
rotation matrixM(y ′,u) with size dfN, and norm information with size Nf/d. When Alice and Bob perform
the multidimensional reconciliation once, the size of reconciliation data in the traditional multidimensional
reconciliation scheme is

Dt =m+
N

d
× d× d× f +

N

d
× f

= (1−R)N+ dfN+
Nf

d
, (16)

8



New J. Phys. 27 (2025) 053201 Y Feng et al

Table 3. The size of reconciliation data in the traditional multidimensional reconciliation scheme, the proposed deep learning scheme
and the scheme proposed in [41].

Code rates R Dt Ddeep D[41] Dt −Ddeep
Dt−Ddeep

Dt

2/15 4226040 4161240 4161240 64800 1.5334%
5/15 4222800 4158000 4158000 64800 1.5345%

while the size of reconciliation data in both the proposed deep learning scheme and the scheme proposed in
[41] is

Ddeep =m+
N

d
× d× d× f

= (1−R)N+ dfN. (17)

In comparison of equations (16) and (17), not only the traffic of the scheme proposed in [41] is Nf
d less than

the traditional multidimensional reconciliation scheme, but also our proposed deep learning scheme is Nf
d

less than the traditional multidimensional reconciliation scheme.
The length of each frame is set as 16200, and the size of a floating-point number is 32. Table 3 shows the

size of reconciliation data Dt and Ddeep in the traditional multidimensional reconciliation scheme and the
proposed deep learning scheme, respectively. Compared with the traditional multidimensional reconciliation
scheme, the proposed deep learning scheme can reduce 1.5334% and 1.5345% reconciliation data under
code rate 2/15 and 5/15, respectively.

As we all know, the expression for the realistic secret key rate of a CV-QKD system can be expressed as

K= (1− Pe)(βIAB −χBE) . (18)

where Pe is FER. If the error-correcting fails, the entire frame will be discarded. β is the reconciliation
efficiency, and it can be calculated by β = R/C. R and C are the code rate of the error-correcting code and
channel capacity, respectively. IAB represents the mutual information shared by Alice and Bob, while χBE is
the upper bound of the information and attacker Eve could have obtained (the so-called Holevo bound) [47,
48]. According to equation (18), FER is one of the main factors limiting the secret key rate [49].

We simulate the FERs of the traditional multidimensional reconciliation scheme [8], the proposed deep
learning scheme, and the scheme proposed in [41] under code rates 2/15 and 5/15. Figures 4 and 5 show the
FER of different multidimensional reconciliation schemes under code rates 2/15 and 5/15, respectively. It
can be observed that the performance of the proposed deep learning scheme is close to that of the traditional
multidimensional reconciliation scheme and better than the scheme proposed in [41]. The simulation results
demonstrates that the proposed deep learning scheme is feasible in CV-QKD. The reason for this result is
that a more accurate estimation of ||y|| leads to a more reliable initial message, which can improve the
convergence of the LLR-BP decoding algorithm. In turn, the improvement of LLR-BP decoding algorithm
reduces the likelihood of decoding errors and results in a lower FER. Furthermore, it has been proven that
the proposed deep learning scheme can be effectively applied to channels with varying SNRs, showcasing its
robust versatility and adaptability.

4.3. Reconciliation efficiency and secret key rate
From equation (18), it is evident that, for a specified FER, achieving a high secret key rate necessitates
maximizing the reconciliation efficiency. For a given FER= 0.9 [50], the reconciliation efficiency of different
schemes under code rates 2/15 and 5/15 are listed in table 4. Here, the subscripts t, deep, and [41] denote the
traditional multidimensional scheme, the proposed deep learning scheme, and the scheme proposed in [41],
respectively. The reconciliation efficiencies of the proposed deep learning scheme are higher than that of the
scheme proposed in [41].

Then, relationships between the secret key rate and the transmission distance with various reconciliation
efficiencies are shown in figures 6 and 7. Compared with the scheme proposed in [41] which also no longer
requires the norm information from Bob, the secret key rate and the transmission distance of the proposed
deep learning scheme are better.

In conclusion, the simulation results and their corresponding analyses demonstrate that the proposed
deep learning scheme can significantly reduce communication traffic and storage resources, while
maintaining nearly the same level of reconciliation efficiency as compared to the existing traditional
multidimensional reconciliation schemes. What is more, simulation results show that the FER, reconciliation
efficiency and secret key rate of the proposed deep learning scheme are superior to that of the scheme
proposed in [41].
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Figure 4. FER of different schemes under code rate 2/15.

Figure 5. FER of the different schemes under code rate 5/15.

Table 4. Reconciliation efficiencies of the traditional multidimensional reconciliation scheme, the proposed deep learning scheme and
the scheme proposed in [41] under different code rates.

FER= 0.9

R βt βdeep β [41]

2/15 86.9% 84.1% 70.2%
5/15 88.6% 87.0% 82.4%
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Figure 6. Secret key rate with respect to transmission distance under code rate 2/15. The parameters of the CV-QKD systems are
as follows: excess noise ξ=0.001, detection efficiency κ=0.9, electronic noise Vel=0.005, and the attenuation factor of the
quantum channel φ=0.2 dB km−1.

Figure 7. Secret key rate with respect to transmission distance under code rate 5/15. The parameters of the CV-QKD systems are
as follows: excess noise ξ=0.001, detection efficiency κ=0.9, electronic noise Vel=0.005, and the attenuation factor of the
quantum channel φ=0.2 dB km−1.

5. Conclusion

In this paper, the deep learning scheme was proposed to decrease the communication traffic and storage
resources of the CV-QKD system. Both theoretical analysis and simulation results have unequivocally shown
that the proposed deep learning scheme can substantially reduce communication traffic and storage
resources, while experiencing virtually no degradation in reconciliation efficiency when compared to existing
representative multidimensional reconciliation schemes. Compared with the scheme proposed in [41], which
similarly eliminates the need for norm information from Bob, the proposed deep learning scheme achieves
even higher reconciliation efficiency. Furthermore, by reducing the consumption of secure keys for
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authentication, the proposed deep learning scheme also enhances the secret key rate, thus facilitating the
implementation of high-speed CV-QKD systems.
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