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Abstract

There is now a great deal of evidence in support of the existence of a large amount
of unseen gravitational mass, commonly called dark matter, from observations in
astrophysical systems of sizes ranging from that of dwarf galaxies to the scale of
the entire Universe. One of the most promising explanations for this unseen mass
is that it consists of a species of unobserved elementary particles. An expected
feature of particle dark matter is that it should form halos in the early Universe
that cannot collapse due to its weak interactions with itself and baryonic matter.
It is within these halos that galaxies, including the Milky Way, which is the galaxy
that we inhabit, are thought to be born.

Different methods to detect dark matter that originates from the galactic halo
have been devised and these generally fall into the categories of direct and indirect
detection. On Earth, direct detection experiments are employed to detect the
recoiling atoms that are generated through the occasional scattering between halo
dark matter particles with the detector material. The indirect search for dark
matter is conducted by attempting to detect the standard model particles that may
be produced as dark matter annihilates or decays and by looking for the effects that
dark matter may have on astrophysical bodies. The aim of this thesis is to study
the effects that dark matter may have in different astrophysical systems and how
its properties can be determined should an effect that is due to dark matter be
detected.

The Sun currently experiences the solar composition problem, which is a mis-
match between simulated and observed helioseismological properties of the Sun. A
large abundance of dark matter introduces a new heat transfer mechanism that has
been shown to offer a viable solution. This problem is discussed here in a particular
model of dark matter where the dark matter halo is made up of equal numbers of
particles and antiparticles. It is shown that dark matter arising from the thermal
freeze-out mechanism might alleviate the problem, whereas only asymmetric dark
matter models have previously been considered.

If a dark matter signal is seen in a direct detection experiment, the determi-
nation of the dark matter properties will be plagued by numerous uncertainties
related to the halo. It has been shown that many of these uncertainties can be
eliminated by comparing signals in different direct detection experiments in what
is called “halo-independent” methods. These methods can also be used to predict
the neutrino signal from dark matter annihilating in the Sun, further constraining
DM properties, if a direct detection experiment detects a signal. This framework
is here generalized to inelastic dark matter and the information concerning dark
matter properties in a direct detection signal is discussed.

When the Sun captures dark matter, thermalization is a process where dark
matter particles lose their remaining kinetic energy after being captured and sink
into the solar core. Evaporation due to collisions with high-energy solar atoms
is also possible. For inelastic dark matter, it is expected that the thermalization
process stops prematurely, which will have an effect on the expected neutrino signal
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from its annihilation. Moreover, evaporation may also be significant due transitions
from the heavier to the lighter state. Here, the thermalization problem is discussed,
and results from numerical simulations are presented that show the extent to which
inelastic dark matter thermalizes and if evaporation has to be taken into account.

A number of issues have been observed in dark matter halos at smaller scales
when compared to results from large simulations. Dark matter that interacts
strongly with itself has been proposed as a solution. There are a number of prob-
lems associated with these models that are excluded by other means. A particular
model of inelastic dark matter interacting via a light mediator is analyzed here and
shown to possible alleviate at least some of the problems associated with models of
this kind.

key words: dark matter, self-interactions, solar capture, helioseismology, in-
elastic dark matter, direct detection, indirect detection, thermalization.



Sammanfattning

Det finns nu m̊anga olika bevis som stödjer existensen av en stor mängd osynlig
gravitationell massa, ofta kallad mörk materia, fr̊an observationer av astrofysika-
liska system i storleksordningar fr̊an dvärggalaxer till hela Universum. En av de
mest lovande förklaringarna till denna osedda massa är att den best̊ar av ännu ej
observerade elementarpartiklar. En förväntad effekt av mörk materia best̊aende av
partiklar är att den skapar halos i tidiga universum som inte kollapsar p̊a grund
av dess svaga växelverkan med sig själv och baryonisk materia. Det är inuti dessa
halos som galaxer, inklusive Vintergatan som är den galax vi bor i, är tänkta att
skapas.

Metoder för att detektera mörk materia som kommer fr̊an den galaktiska ha-
lon har formulerats och faller generellt under tv̊a kategorier. P̊a jorden ämnar man
att i direkt-detektionsexperiment observera den rekyl som uppst̊ar hos atomer när
mörk materia fr̊an halon kolliderar med dessa inuti experimentets detektorvolym.
Indirekta sökningar sker genom att man försöker detektera partiklar i standard-
modellen som skapas när mörk materia annihilerar eller sönderfaller eller att man
letar efter de effekter som mörk materia kan ha i olika astrofysikaliska kroppar.
Syftet med denna avhandling är att studera de effekter som mörk materia kan ha i
olika astrofysikaliska system och hur dess egenskaper kan bestämmas om en effekt
skapad av mörk materia detekteras.

Solen upplever för närvarande ett sammansättningssproblem som uppst̊att p̊a
grund av att simuleringar och observerade helioseismologiska egenskaper är inkom-
patibla. En stor mängd mörk materia introducerar en ny mekanism för att trans-
portera värme som har visats kunna erbjuda en möjlig lösning. Detta problem
diskuteras här med en modell av mörk materia där mörk materia best̊ar av samma
antal partiklar och antipartiklar. Det visas att mörk materia som uppst̊ar via ter-
misk utfrysning kan förmildra problemet när det tidigare trots vara möjligt endast
för asymmetrisk mörk materia modeller.

Om mörk materia observeras i ett direkt-detektionsexperiment s̊a kommer de
parametrar man bestämmer att bero p̊a stora osäkerheter relaterade till halon. Det
har visats att m̊anga av dessa osäkerheter kan elimineras genom att jämföra signaler
i olika direkt detektionsexperiment i vad som kallas halo-oberoende metoder. Dessa
metoder kan ocks̊a användas för att förutsäga den neutrinosignal som ges upp-
hov till fr̊an mörk materia annihilation i solen vilket kan användas för att vidare
begränsa mörk materias egenskaper om en signal uppmäts i ett direkt detektions-
experiment. Detta ramverk vidareutvecklas här till att inkludera inelastisk mörk
materia tillsammans med en diskussion kring den information om mörk materia
som finns i signalen.

När solen f̊angar in mörk materia s̊a m̊aste termaliseringprocessen ske i vilken
mörk materia efter inf̊angning tappar sin kvarvarande kinetiska energi och sjun-
ker in i solens kärna. Avdunstning p̊a grund av kollisioner med högenergetiska
solpartiklar kan ocks̊a ske. För inelastisk mörk materia är det väntat att termalise-
ringsprocessen avslutas i förtid vilket har effekter p̊a den neutrinosignal som väntas
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av dess annihilation. Avdunstning kan ocks̊a p̊averkas avsevärt vid spridning fr̊an
det tyngre till det lättare tillst̊andet. Här diskuteras termaliseringsprocessen och
resultat fr̊an numeriska simuleringar presenteras som visar till vilken grad mörk
materia termaliserar och om avdunstning m̊aste tas hänsyn till.

Ett antal problem har stötts p̊a i mörk materia halos p̊a mindre skalor som när
dessa jämförs med resultatet fr̊an stora simuleringar. Mörk materia som växelverkar
starkt med sig själv har föreslagits som lösning. Det finns dock ett antal problem
associerade med dessa modeller som utesluter dessa av andra anledning. En modell
för intelastisk mörk materia som växelverkar via en lätt kraftbärare analyseras här
och visas möjligen lindra n̊agra av de problem som associeras med denna typ av
modell.

key words: mörk materia, självväxelverkan, solinf̊angning, helioseismologi, in-
elastisk mörk materia, direkt detektion, indirekt detektion, termalisering.
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problems of the standard model and the motivated dark matter particles that can
appear in its solutions. It describes how dark matter interactions are modelled and
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to the small scale structure problems. The early Universe, how dark matter halos
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Chapter 1

Introduction

One of the most pressing issues of cosmology and particle physics today is the
existence of dark matter (DM). In 1933, Fritz Zwicky made observations of the
Coma cluster and found that the large velocity dispersion of individual galaxies
required the presence of a significant amount of invisible matter in order to generate
gravitational forces that were strong enough to keep the cluster together [5]. He
called the invisible matter “dunkle materie” and thus coined the term DM. However,
it took several decades for the scientific community to take his observations into
account as being seriously problematic, when DM was observed in other types of
astrophysical systems with newly developed observational techniques. There is now
a wealth of data in support of the existence of DM [6].

In order to understand current efforts to explain DM, it is necessary to look at
the current framework that describes the fundamental behaviour of Nature. The ef-
forts to understand Nature at its fundamental level has culminated in two extremely
successful, yet incompatible, theories. On one hand, quantum field theory (QFT)
describes interactions between particles at the smallest scales imaginable and has
led to the standard model of particle physics (SM). On the other hand, the theory
of general relativity (GR) appears to accurately describe gravitational interactions
between objects at the largest of scales.

The SM describes many phenomena to an extreme accuracy while suffering
from a number of theoretical and phenomenological shortcomings. The most strik-
ing phenomenological problem is the observation of neutrino oscillations [7], which
require neutrinos to have masses whereas the SM postulates them to be massless.
Among many problems on the theoretical side, the strong CP problem states that
the strong force should be CP violating with a strength parametrized by a number
that would naturally be expected to be of the order 1, but is constrained to be less
than a billionth of this value [8]. Since this parameter is free to take on whatever
value Nature assigns it, the strong CP problem is not technically a problem of
inconsistency, but rather a problem of naturalness.
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Unlike the SM, GR appears to accommodate all observations made of gravita-
tional interactions, including weak gravitational effects, such as the geodetic and
frame-dragging effects as measured by gravity probe B [9], and strong gravitational
effects, such as gravitational lensing [10], the shape of gravitational waves created
by both colliding black holes [11] and neutron stars [12], and finally by direct ob-
servation of the accretion disk around a black hole [13]

Given the success of GR and the shortcomings of the SM, it is not difficult to
motivate extensions of the SM that contain additional particles that successfully
explain DM while simultaneously solving problems of the SM. It is thus not at all
surprising that a lot of effort in explaining DM has been based around postulating
new particles and the development of a number of experiments that can be used to
test the most well-motivated scenarios.

This thesis deals with observational aspects of particle DM. Two ways of search-
ing for particle DM is through direct detection (DD) and indirect detection (ID).
The idea with DD is to search for the collisions that may occur between DM par-
ticles and atoms inside the experiment while ID is based around searching for the
annihilation or decay products of DM particles, for example in the galactic center
or inside the Sun. Theories of strongly self-interacting DM that are proposed to
solve problems in small scale structure problems will also be discussed.

1.1 Outline

This thesis is organized as follows: In chapter 2, the observational evidence for
the existence of DM is presented. Chapter 3 contains a short description the SM,
its problems and solutions that motivate the existence of DM particles. There
is also an in-depth discussion regarding DM interactions with SM particles and
itself, and a simple inelastic DM model is presented. Chapter 4 discusses the
thermodynamics of the early Universe, leading to the Boltzmann equations that
govern the abundance of DM. Chapter 5 contains a summary of what is known
about dark matter halos, such as its phase-space distribution. It also discusses the
small scale structure problems and their possible solutions. In chapter 6, DD is
reviewed with a discussion of how to generalize the framework to inelastic DM.
Halo-independent methods is also discussed. Chapter 7 briefly reviews indirect
detection in general before turning to an overview of the effects of DM in the Sun
with a self-contained discussion of solar capture. Thermalization of inelastic DM
is also covered. Chapter 8 concludes part I of the thesis and briefly introduces the
four papers and their scientific contexts.



Chapter 2

Observational evidence for
dark matter

The evidence in support for the existence of DM has been accumulated over a long
time in a great number of observations [6, 14, 15]. A historical account of how DM
emerged as one of the biggest mysteries of nature is nicely described in Ref. [6].
As will be described here, the evidence for DM comes from four different kinds of
observations; galaxy clusters, galactic rotation curves, gravitational lensing, and
the cosmic microwave background, and its history spans almost a century.

2.1 The existence of galaxy clusters

The first evidence for DM came from the observations of the Coma cluster per-
formed by Fritz Zwicky in 1933 [5]. What he realized was that the velocity disper-
sion of galaxies in the cluster was much greater than the gravitational force of the
luminous matter would allow. The estimate Zwicky performed is simple and relies
on the virial theorem, which states that the time averaged total kinetic energy of
a system of particles interacting via a potential V (r) = rn and the time averaged
total potential energy are related by

〈T 〉 =
n

2
〈V 〉 . (2.1)

Dealing with a gravitational potential dictates that n = −1. The average kinetic
energy per object in the system can be approximated by T ∼ Mv2/2 where v2 is
the averaged squared velocity of the objects and M is the mass of the object in
question. The potential energy is approximately given by V ∼ −GMtotM/R where
Mtot is the total mass of the cluster and R is a radius that is representative for the

7



8 Chapter 2. Observational evidence for dark matter

distance between two galaxies within the cluster. Summing over all galaxies within
the cluster and plugging into the virial theorem yields

Mtotv2 =
GM2

tot

R
. (2.2)

Zwicky was able to estimate these parameters from his observations and found that
the mass of the Coma cluster had to be several hundred times larger than the mass
of all luminous matter in it. In fact, these large velocities implied that the galaxies
of the Coma cluster should not even be gravitationally bound in the first place,
but that the lifetime of the Coma cluster should be much shorter than the age of
the Universe. It would thus be remarkable that it existed in the first place. The
same observation was performed of the Virgo cluster a few years later and showed
a similar mass discrepancy [16]. Unfortunately, the results were widely regarded as
due to erroneous measurements and that these systems were not understood well
enough to draw the attention of the scientific community.

2.2 Flat rotation curves

Thirty years after Zwicky’s discovery, radio telescopes had been developed and were
used to accurately measure the rotation curves of galaxies. To estimate the mass of
a galaxy using rotation curves, it can be assumed that the visible mass of galaxies is
mainly concentrated to the core with a smaller density of stars in the outer regions.
This implies that the enclosed mass of a sphere at radii beyond the core should
be relatively constant. The rotational velocity in the less dense outer regions of
galaxies is then approximately given by the expression

v(r) ∼
√
GM(r)/r , (2.3)

where G is the gravitational constant and M(r) is the mass enclosed inside a sphere
of radius r. IfM(r) is constant, this tells us that the velocity of stars should decrease
as r−1/2 in the regions where r is so large that most of the galaxy’s mass is contained
within. In order for rotation curves to be flat, the mass in the outer regions must
grow approximately linearly, i.e.,

M(r) ≈M0r . (2.4)

In 1970, two famous studies were published that were important in this context.
Firstly, it was argued in the appendix of Ref. [17] that if the observations were
correct, at least half of the mass in the NGC 300 and M33 galaxies is in the form
of invisible matter. Secondly, the rotation curve of the Andromeda galaxy was
measured and presented in Ref. [18]. It clearly shows a flat rotation curve, albeit
without mention of its implication for the mass distribution within the galaxy. In
the next few years, a number of studies appeared that confirmed the observations of
flat rotation curves, ending with two publications stating that the mass of galaxies
had thus far been seriously underestimated [19, 20].
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2.3 Gravitational lensing

Gravitational lensing is the name of a phenomenon where a light ray that travels
past a very massive body gets deflected. In fact, and somewhat counter-intuitively,
even Newtonian mechanics predict the phenomenon even though gravity acts on
massive objects and photons are massless. General relativity explains the effect as
light travelling in straight lines in a curved spacetime and the effects predicted from
general relativity are stronger than those of Newtonian mechanics. Depending on
the gravitating body and the source of the light ray, strong, weak, and microlensing
can take place.

The strong gravitational lensing effects can be very dramatic and occur for
example when light is bent around very compact objects [21]. In this case, one can
see several images of the same object at different sides around the gravitating body.
One can also see significant distortions of the source or even so-called Einstein rings
where the lensed object is located behind the lens and is distorted into an entire
ring around it.

The effects of weak lensing are much more subtle, but can be used to determine
the mass distribution of large objects such as galaxy clusters [22, 23]. Behind
such a structure, there will be a very large number of galaxies. As the light from
these galaxies pass through the lens, the images of them that can be seen will be
slightly distorted and magnified. Individually, nothing can be said about the matter
distribution in the lens from the single lensed galaxy as it is almost impossible to
say exactly at which angle it is viewed at and at what distance it is observed.
However, the statistical properties of the distribution of galaxies is known and if
a large number of galaxies are lensed, their collective lensing will average out the
noise from each individual galaxy, leaving behind the lensing effect.

Currently, a very strong piece of evidence for DM comes from a weak lensing
analysis. The galaxy cluster 1E0657-558, more famously known as the “Bullet
Cluster”, is a system consisting of two galaxy clusters that have undergone collision.
Out of the total mass of an average galaxy cluster, about one percent will be in
the form of galaxies while about 5 − 15 percent will be in the form of interstellar
gas [24–26]. In the case of the Bullet Cluster, the interstellar hydrogen slowed
down due to the friction created in collisions while the collisionless galaxies did not
experience any slowing effects. Therefore, the expectation is that the overall mass
peak would coincide with the interstellar gas of the clusters . This was found not to
be the case but instead the mass peaks overlapped nicely with each set of galaxies
from the original clusters [27]. This observation would have been impossible to
explain without the existence of a very large fraction of unseen mass that appears
to be collisionless.

Gravitational microlensing is similar to the strong lensing case although the
effect is much weaker [28, 29]. When a massive object passes in front of a star, the
light is bent around it. This leads to a focusing effect such that the star appears
brighter.
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An early hypothesis to explain the mass discrepancies as indicated by the flat-
ness and galaxy cluster problems was that there existed a large population of MAs-
sive Compact Halo Objects, or MACHOs. The MACHO population was postulated
to consist of, for example, brown dwarfs, old white dwarves and neutron stars that
had cooled to the point of undetectability, and stellar mass black holes. It was
shown in the EROS-2 survey, which was a gravitational microlensing survey, that
a population of MACHOs is not sufficient to explain the missing mass of the Milky
Way [30]. This was done by monitoring some 33 million stars to look for the en-
hanced brightness that occur when a MACHO passes in front of them. The results
of the survey was that MACHOs in the mass range 0.6 · 10−7M� < M < 15M�
were ruled out as the source for the total DM density. This was later confirmed in a
larger mass range by another microlensing survey [31]. Gravitational microlensing
has therefore helped build a case for most of the DM being non-baryonic.

2.4 Cosmic microwave background

Possibly the best evidence for non-baryonic DM comes from observations of the cos-
mic microwave background (CMB). When the Universe began, it was much more
cramped than it is today. At the earliest times, the temperature of the plasma
was so large that particles existed in chemical and thermal equilibrium. As the
Universe expanded, the wavelengths of photons would decrease, and thus so would
their energies. At some time, the average photon energy became so small that pro-
tons could bind electrons without photons having enough energy to scatter against
the resulting hydrogen and break the bond. When this occurred, the Universe be-
came electrically neutral and photons began to free stream. These photons can be
detected in any direction of the sky and they form the CMB.

Two cosmological models were primarily discussed before the CMB was mea-
sured. The first was the Big Bang hypothesis, in which the Universe was born from
a hot primordial plasma, and the second was that of an eternal static universe.
Einstein himself was a proponent of the static universe theory and even introduced
the cosmological constant to explain why the Universe would be static [32]. The
static eternal universe does not make any prediction of a CMB while it is required
in the Big Bang hypothesis as a remnant of an early hot period. Its existence was
predicted and its temperature estimated to be roughly 5 K today in a discussion
regarding the production of heavier elements during this time [33]. The detection
of the CMB tipped the scale heavily in favour of the Big Bang theory.

The CMB has been measured very accurately by a number of experiments such
as the space based observatories COBE [34], WMAP [35], and Planck [36]. Just as
expected, it follows a near perfect black body profile and its temperature has been
measured to roughly 2.726 K.

Another prediction is that the CMB temperature should fluctuate at the level
of a few tens of μK [37], which is precisely what was observed by Planck etc.
These fluctuations have turned out to be critical to our cosmological model as their
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precise measurement in combination with the Big Bang hypothesis allows for the
determination of the energy content of the Universe. The observation of these
fluctuations was probably the most important result of the COBE experiment [38]
and strongly motivated the launches of WMAP and Planck to measure the CMB
to an extreme accuracy.

The CMB is often analyzed by performing a spherical harmonic expansion of
the temperature fluctuations, which are then characterized by a number Cl. The
coefficients of the harmonics associated with smaller l correspond to very large
scale features of the CMB while larger values of l correspond to features at small
scales. These corresponding scales are distinctly different in regards to which type
of physics drive their temperature fluctuations.

The large scale features are due to overall denser or sparser abundances of mat-
ter. When photons are released in the pit of a gravitational well, they will redshift
and thus have less energy when detected. Photons released in underdense regions
will appear hotter than average as they suffer less from the redshift. Therefore,
regions of higher temperature in the CMB correspond to regions with lower density
than the regions that appear colder.

The small scale fluctuations are driven by baryon acoustic oscillations, which
are due to interactions between the charged baryons. Before the CMB was released,
regions with deeper gravitational pits would attract more mass. Since the baryons
interacted, pressure would build up inside gravitational wells as matter collapsed
into them. The pressure would eventually be large enough for the baryons to begin
expanding outwards. Once pressure was relieved, baryons could begin flowing back
into the pit. The cycle could occur once or several times before freezing out as the
overall temperature fell, which induces observable fluctuations in the CMB.

A very important consequence of the arguments above is that DM cannot be
baryonic and had to be cold (non-relativistic) at the time of recombination. Bary-
onic DM would suffer from pressure, which would prevent it from forming gravita-
tional wells. If it was relativistic, it could not collapse into gravitationally bound
objects in the first place.

The CMB also presents to us an excellent tool to determine cosmological pa-
rameters such as the density of baryons and dark matter in particular DM models.
Currently, the prevailing cosmological model is called ΛCDM and it will be dis-
cussed in Chapter 4. Within this framework, one can predict the anisotropies of
the CMB from the input of a number of parameters. By comparing simulations
to the measurements of the CMB, one can determine which set of parameters fits
the data best. This was most recently done with the Planck telescope data, which
informs us that only about 5 % of the energy in the Universe is due to baryons
while 25 % is made up of DM, the rest being in the form of dark energy [36].





Chapter 3

Particle dark matter

From the discussion of the observational evidence for DM in Chapter 2, it is clear
that all evidence is gravitational in nature, which does not necessarily imply that
DM is a particle. To find motivations for particle DM, one does not need to look
further than the flaws of the SM. As will be discussed here, there are several reasons
as to why the SM is not the final theory of particle physics. Various ideas to solve
these problems introduce particles that may well fulfil the requirements necessary
of a particle to make up the missing mass. Having established that it is not unlikely
that DM is particulate in nature, it is interesting to look at a few plausible ways of
generating interactions between DM and SM particles that allow for its detection.
Next, a particular model of DM that three of the papers of this thesis are based
around, called inelastic dark matter, is presented. Depending on the context, it
is convenient to use either quantum mechanics or QFT to calculate precisely with
what strength interactions take place. Thus, the quantum mechanical framework of
partial waves is described, which can be used to calculate scattering cross sections
in the presence of strong potentials that deform wavefunctions to the point where
the Born approximation is no longer applicable. The chapter ends with a discussion
on the differential cross section that is widely used in direct detection experiments.

3.1 The standard model of particle physics

The SM provides a complete model of all the known particles that we consider
elementary. Yet, it suffers from numerous shortcomings that motivate extensions
that introduce particles in the theory that may be DM candidates. Particle DM can
not only solve the problem of the missing mass in the Universe, but its existence
may also be dictated by remedies to flaws in our description of the elementary
particle physics as well.

The SM is a QFT in which the gauge group composition is SU(3)×SU(2)×U(1).
The SU(2) × U(1) combination is often referred to as the electroweak interaction
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and represents a unification of the electromagnetic interaction with the seemingly
unrelated phenomenon of nucleon decay, and was first speculated upon at a time
when the Higgs mechanism was still unknown [39]. Shortly thereafter, the Higgs
mechanism was first described [40–42], which was used to formulate the electroweak
theory as it stands today [43, 44]. The U(1) is the hypercharge group under which all
fermions and the Higgs doublet H are charged. The left-handed fermion doublets,
Qi and Li, and the Higgs doublet, which are arranged according to

Qi =

(
uiL
diL

)
, Li =

(
νiL
eiL

)
, H =

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
, (3.1)

where i refers to the family (of which there are three), and the subscript L refers to
the chirality, are SU(2) doublets. Due to the Higgs mechanism, the SU(2)× U(1)
gauge group is spontaneously broken into the U(1) of quantum electrondynamics,
which yields a massless photon and three very massive gauge bosons. Finally, each
individual quark field is in the fundamental representation of the SU(3) group,
which introduces the concept of colour in the theory of quantum chromodynamics
(QCD). The idea of this part of the SM began to take shape after an ever increas-
ing number of particles were detected in bubble chamber experiments, which was
explained by introducing the quarks that formed various combinations of bound
states that were observed [45, 46].

A peculiar feature of QCD is that its coupling constant depends strongly on the
energy scale at which the interaction is taking place. In the infrared regime, QCD is
extremely strong, which forces quarks to form bound states that are singlets under
SU(3). These combinations include mesons consisting of qq̄ and hadrons consisting
of qqq or q̄q̄q̄, where q denotes a quark and q̄ an antiquark. There is no reason
as to why larger systems such as qqq̄q̄ should not appear in Nature, but it is not
until recently that evidence for such systems have appeared at accelerators, see
e.g., Refs [47, 48]. On the other hand, QCD possesses asymptotic freedom [49, 50],
which implies that perturbation theory can be used to calculate cross sections with
quarks at high enough energy scales.

The full spectrum of particles in the SM was not known at the time when the
electroweak and QCD theories were developed, which is interesting as the Higgs
boson is the most recent elementary particle to be observed [51, 52], roughly 50
years after its prediction. The fermion sector of the SM consists of the three lepton
families (

νe
e

)
,

(
νµ
µ

)
,

(
ντ
τ

)
, (3.2)

and the three quark families (
u
b

)
,

(
c
s

)
,

(
t
b

)
. (3.3)

The particles in each family, going from the left, are heavier than those of the
previous one, apart from the neutrinos, which are all massless in the SM by design
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as there are no right-chiral neutrinos. In the vector boson sector, there are 8
massless gauge bosons called gluons in the QCD sector, four gauge bosons in the
electroweak sector, which upon symmetry breaking become the photon, the Z0,
and the W±. Finally, the only scalar in the theory is the Higgs boson.

3.1.1 Standard model problems and motivated dark matter
candidates

Neutrino oscillations

As mentioned above, the SM neutrinos are massless. However, Neutrinos undergo
neutrino oscillations [7], a process in which a neutrino that is created in the flavour
eigenstate να can be detected as a different flavour eigenstate νβ . The explanation
for this phenomena is that the flavour eigenstates are linear combinations of mass
eigenstates whose phases evolve differently during propagation. That is, neutrinos
must be massive for oscillations to occur, which is in direct conflict with the SM.
This phenomenon has been observed in a multitude of experiments [53, 54] and so
it appears that the neutrinos are massive.

At first glance, it might be tempting to consider the neutrinos as the DM since
they interact only via the weak gauge bosons, implying weak interactions. However,
the results published by the Planck experiment places a bound on the sum of
neutrino masses at

∑
νmν < 0.23 eV [36]. Therefore, neutrinos would be relativistic

in the early Universe at the time when structure formation was taking place, but for
this to occur, a non-relativistic DM species is required. It can thus be concluded
that the neutrinos do not make up the bulk of DM although they do make up
a fraction of it. The problem of neutrino oscillations can be avoided by adding
right-handed neutrinos to the theory, which allows for the generation of neutrino
masses via the Higgs mechanism. Furthermore, the right-handed neutrino is a
singlet under the SM gauge groups and would therefore interact very weakly with
the SM particles and is therefore to be considered a DM candidate [55].

Supersymmetry

Supersymmetry (SUSY) models are probably the most well-known and studied
extensions of the SM. In SUSY models, each field in the SM is complemented by a
SUSY field that differs by a half unit of spin [56].

One of the big problems of the SM that SUSY was shown to alleviate is the
hierarchy problem. In principle, there is no reason for the Higgs boson to have a
mass at the electroweak scale [56]. This stems from the fact that if there is new
physics at some scale that is coupled to the Higgs, loop corrections to the Higgs
mass should drive it up to this scale. As new physics is expected at the Planck scale,
where gravitational effects become important, the Higgs should gain contributions
that places its mass at the Planck scale. Therefore, a very precise cancellation must
take place for no apparent reason. In SUSY theories, it just so happens that the
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leading contribution to the Higgs mass from any particle at this scale is to a very
good degree cancelled by the contribution from the SUSY partner.

Naively invoking SUSY, one should expect interactions to take place through
which baryon and lepton numbers are not conserved. Since such effects have never
been observed, a quantity called R-parity is introduced to prohibit interactions of
this kind. Another consequence of R-parity being conserved is that the lightest
SUSY particle is automatically stable and would thus constitute a DM candidate
provided that it is electrically neutral. The SUSY framework contains several DM
candidates, such as the neutralino [57] and the gravitino [58].

Strong CP problem

The full SM Lagrangian contains the term

LSM ⊃ θ̄
αs
8π
GaµνG̃

a,µν . (3.4)

This is problematic due to the fact that it implies that QCD is strongly CP violating
unless θ̄ is very small, for which there is no apparent reason [8]. A non-zero value for
this parameter would induce a large electric dipole moment of the neutron, which
is constrained to . 10−26 e cm [59, 60], which translates into θ̄ . 10−10 [61].

The strong CP problem was shown to be solved if θ̄ is a dynamical field and
the SM is invariant under a U(1)PQ symmetry [62]. When this new symmetry is
broken, θ̄ can be reduced to an extremely small number. The cost of this procedure
is the introduction of a new particle called the axion [63, 64]. The interactions of
the axion are expected to be very weak and it has been shown that axions can be
produced efficiently in the early Universe making it a possible DM candidate [65].

Baryon-antibaryon asymmetry

The SM offers no way to account for the baryon to antibaryon asymmetry. The
famous Sakharov conditions [66] state that three conditions have to be fulfilled in
order for a baryon asymmetry to develop from a state where there is matter and
antimatter in equal abundances. These are, in order:

• Baryon number violating processes must take place.

• There must be C and CP violating processes.

• The processes that violate baryon number must take place outside of thermal
equilibrium.

The SM has baryon number violating processes called sphalerons [67], the weak
interaction is C and CP violating, and out of thermal equilibrium interactions take
place during, for example, the electroweak phase transition, although it seems that
these effects are not strong enough to produce the observed asymmetry of the Uni-
verse [68]. In asymmetric DM models, the baryon asymmetry can be explained by
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having an asymmetry that develops due to interactions connecting the SM sector to
the dark sector or that one sector develops an asymmetry that is then transferred
to the other [69]. It is plausible that if such an asymmetry develops, the two sectors
would have very similar number densities. Bearing in mind that the mass density
of DM in the Universe is about 5 times that of the baryons [36], equal number den-
sities leads immediately to the prediction that the DM mass satisfies mDM ∼ 5mp.
Leptogenesis is an alternative scenario where the original asymmetry is generated
in the lepton sector rather in the baryon sector [70].

3.2 Dark matter interactions

Any detection method for particle dark matter relies on its interactions with the SM
particles and the detectability of a given model will therefore rely on the relevant
interactions that appear in the Lagrangian. As DM that was produced in the early
Universe must be non-relativistic today, the energy scale of these interactions is
generally in the case of annihilating DM at, or in the case of DM scattering possibly
well below, the DM mass. On the other hand, accelerators are also used in the search
for DM, where energies can be much larger than the DM mass. Depending on the
scenario, one can use more or less simple models to calculate cross sections.

3.2.1 Effective operators and simplified models

When studying DM in an astrophysical context, effective operators are very com-
monly considered. An effective operator arises when a heavy degree of freedom,
living at the energy scale Λ, is integrated out. These types of models are generally
non-renormalizable and cannot be included in a complete theory where renormal-
izability is a requirement. Depending on the the type of DM, such an effective
operator could have the form

Lscalar,int =
c

Λ
φφψ̄ψ , (3.5)

where φ is a scalar DM particle and ψ is a SM fermion. Similarily, a vector DM
particle Xµ could interact through an effective operator of the type

Lvector,int =
c

Λ
XµX

µψ̄ψ . (3.6)

The energy scale Λ can be associated with the mass of whatever heavy degree of
freedom appears in the full theory and propagates in the tree level diagram for
the process. Therefore, the approximation would break down when the momentum
transfer becomes of the same order of magnitude as Λ. The constant c is a numerical
factor that includes the coupling constants in the Lagrangian terms that define the
interaction between the DM and SM fermions with the propagating heavy particle.
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The same type of operators can be written down for a fermionic DM species χ,

Lfermion,int =
c

Λ2
(χ̄ Γχ)(f̄ Γ′f), (3.7)

where Γ,Γ′ ∈ {1, γ5, γµ, γµγ5,Σµν} in such a way that the full term is Lorentz-
invariant.

Effective operators are generally suppressed by Λ−(D−4), where D denotes the
dimensionality of the operator, so that the the first two examples which are inversely
proportional to Λ are referred to as dimension five operators and the operator in
Eq. (3.7) is a dimension six operator. A large number of various effective operators
depending on the nature of the DM particle can be found in references such as
Refs. [71, 72].

The main motivation for discussing effective operators is that they are simple
to use when placing general bounds on scattering cross sections without the need
to specify the full theory. Having a particular model at hand, one may also im-
mediately write down cross sections in the low energy limit and compare with the
results from effective operator studies.

However, the story at colliders is not as simple as there is a large amount of
energy available in the scattering process. As a significant amount of energy is
involved in these collisions, the effective theory may break down. This was studied
in, e.g., Refs. [73, 74]. To avoid the problem of effective theories breaking down,
simplified models have been proposed as an alternative [75]. Generally, these are
models where DM interacts with the SM through defined mediators. Their use is
mainly in the fact that observable channels in larger models can be compared to
the simplified models, which may help when assessing the validity of the extended
model.

3.2.2 Portals

A very simple way of modelling DM interactions and to explain why they are so
weak is to assume that DM hides in a different sector and interacts with the SM
only through portals that connects the dark and the SM sector.

The Higgs portal is one option that introduces very weak couplings between a
DM species and the SM [76]. The full Lagrangian of a very simple theory involving
a complex scalar ϕ, which is a singlet under the SM, can be written down as [77]

L = ∂µϕ
†∂µϕ−m2ϕ†ϕ+ ε|H|2ϕ†ϕ . (3.8)

The field ϕ will now interact with the SM fermions via the Higgs field H and it will
be stable since the model has a global U(1) symmetry. Given an appropriate mass
range and value of the parameter ε, which sets the interaction strength, it can even
be a DM candidate. The dark sector may also contain other DM candidates that
would interact with the SM via the ϕ, and subsequently via the Higgs.

Two different approaches, in which the introduction of a vector boson is made,
are those of kinetic mixing [78–80] and mass-mixing [81]. In the kinetic mixing
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scenario, one introduces a new vector boson, such that before electroweak symmetry
breaking, the relevant part of the Lagrangian under consideration is

L = −1

4
BµνB

µν − 1

4
F ′µνF

′µν − ε

2
BµνF

′µν +
1

2
m2
A′A

′
µA
′µ . (3.9)

In the above, Bµν is the field strength tensor of the hypercharge field, while A′µ

is the dark photon field and F ′µν is its field strength tensor. By making the shift
Bµ → Bµ − εA′µ, the Lagrangian reads

L = −1

4
BµνB

µν − 1 + ε2

4
F ′µνF

′µν +
1

2
m2
A′A

′
µA
′µ . (3.10)

At this point, the A′ must be rescaled such that its field strength tensor is nor-
malized at the cost of slightly changing its mass [82–84]. The interesting point to
make here is that, due to the shift in the Bµ field, any SM particle that couples
to hypercharge now also couples to the dark photon, albeit with a coupling that is
suppressed by ε. In the limit where mA′ is much smaller than the Z mass mZ , the
mixing of the dark photon with the Z behaves as (mA′/mZ)2, which implies that
the dark photon mixes predominately with the photon in this limit.

In the case of mass mixing, it is not the field strength tensor that mixes but
rather the fields themselves, i.e.,

L = −1

4
ZµνZ

µν − 1

4
F ′µνF

′µν − 1

2
m2
ZZµZ

µ − 1

2
m2
A′A

′
µA
′µ − δm2A′µZ

µ . (3.11)

A redefinition of fields is necessary to find the mass eigenstates and introduces
couplings between the A′ and SM fields that couple to the Z.

Finally, there is also the neutrino-portal which relies on the introduction of a
right-handed neutrino that couples to the left-handed lepton doublet L and the
Higgs doublet as [85]

L = λL̄HN . (3.12)

The DM enters the picture through a similar coupling to N . Interestingly, the
introduction of the right-handed neutrino and this operator can give the left-handed
neutrinos a very small mass when the Higgs takes a vacuum expectation value
through what is called the seesaw mechanism [86–88].

3.3 Inelastic dark matter

Inelastic DM is a framework in which DM is modelled as at least two different states
with masses m1 and m2 that satisfy

m2 −m1 = δ, |δ| � m2, m1. (3.13)

That is, the heavier species is only slightly heavier than the lighter species.
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There are many inelastic DM models of varying complexity [89–91], and it is
instructive to cover at least a simple case of these types of models to motivate the
naturalness. One of the simplest is that of a Dirac fermion whose left-handed and
right-handed components somehow pick up a Majorana mass term. The Lagrangian
under consideration is

L = −1

4
(F ′µν)2 − 1

2
mA′A

′
µA
′µ + ψ̄ (iγµ∂µ −M)ψ − gψ̄γµψA′µ , (3.14)

where ψ is the Dirac fermion, A′ is a massive dark photon, M is the Dirac mass,
and the last term is the interaction term between the DM and the dark photon. If
one now adds a Majorana mass term to the Lagrangian, which for simplicity set to
be identical for the left- and right-handed fields, and is required to satisfy δ �M ,
the mass part of the Lagrangian is given by

Lmass = −Mψψ − δ

4

(
ψc ψ + ψ ψc

)
. (3.15)

At this point, it is convenient to define the two left-handed spinors η and ξ and
write ψT = (ηT iξ†σ2). This breaks the original kinetic term in the Lagrangian
into

Lkinetic = ψ̄iγµ∂µψ = iη†σ̄µ∂µη + iξ†σ̄µ∂µξ , (3.16)

where σ̄ = (1,σσσ) and σσσ are the Pauli spin matrices. In matrix form, the mass term
can be written as

Lmass = − i
2

(
ηTσ2 ξTσ2

)( δ
2 M
M δ

2

)(
η
ξ

)
+ h.c. , (3.17)

where h.c. denotes the hermitian conjugate. In order to isolate the two Majorana
fermions, the fields η and ξ can be redefined according to(

η
ξ

)
= U

(
ϕ1

ϕ2

)
, U =

1√
2

(
i 1
−i 1

)
. (3.18)

The Lagrangian in terms of the new fields ϕ1 and ϕ2 reads

Lkinetic + Lmass =
∑
i=1,2

[
iϕ†i σ̄

µ∂µϕi −
i

2
mi(ϕ

T
i σ

2ϕi − ϕ†iσ
2ϕ∗i )

]
. (3.19)

This is precisely the Lagrangian of two Majorana fields where m1 = M − δ/2 and

m2 = M+δ/2. In four-component spinor notation, one can define χTi = (ϕTi iϕ†iσ
2)

in which case the full Lagrangian is

L = −1

4
(F ′µν)2 − 1

2
mA′A

′
µA
′µ +

∑
i=1,2

1

2
χi(iγ

µ∂µ −mi)χi + Lint (3.20)

with
Lint = igχ2γ

µχ1A
′
µ . (3.21)

It is now clear why this model is called inelastic. The tree level and first order loop
diagrams for a scattering process between an incoming χ1 and a quark are shown in
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q q q q

χ1 χ2
χ1χ1

Figure 3.1. Lowest order Feynman diagrams for a simple inelastic DM model which
scatters inelastically (left diagram) and elastically (right diagram) with a quark.

Fig. 3.1. The outgoing particle in the tree-level process is a χ2. Thus, some of the
kinetic energy in the center of momentum frame went into creating the additional
mass of the χ2 and so the total kinetic energy is not conserved. In this case, elastic
scattering enters as a loop-level process that is significantly suppressed relative to
the inelastic process. Now, this is a direct consequence of the assumption that the
Majorana mass terms of the left- and right-handed components of the initial Dirac
fermion were the same. Had they been different, one finds a term in the Lagrangian
that gives elastic tree-level processes [90]. These are however suppressed by m−/M
where m− is the difference between the left- and right-handed Majorana masses.
Thus, inelastic scattering will be dominant also in this case.

It is also possible to design effective models of inelastic DM [92]. It is enough
to start with the operator

Lint =
c

Λ2

(
ψ̄ΓDMψ

)
(q̄Γvisq) , (3.22)

where ψ is the fermion field and Λ is some higher energy scale where heavy degrees
of freedom were integrated out. One can then apply exactly the same procedure as
above to split ψ into two Majorana fields.

3.4 Cross sections

3.4.1 Non-relativistic scattering theory

Non-relativistic scattering is important for dark matter in an astrophysical setting.
It may here be more convenient to describe the scattering process in quantum
mechanics using a classical potential rather than through the exchange of mediator
particles in QFT. In this case, the wave function under consideration must satisfy
the Schrödinger equation, which in the case of two scattering particles, one located
at position xxx1 and the other at position xxx2, is given by[

− ∇
2
1

2m1
− ∇

2
2

2m2
+ V (xxx1 − xxx2)

]
Ψ(xxx1,xxx2) = EΨ(xxx1,xxx2). (3.23)
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In this expression, m1 and m2 are the particle masses, V (xxx1−xxx2) is the interaction
potential between the two particles, and E = (m1v

2
1 +m2v

2
2)/2 is the total kinetic

energy. Since only the relative motion of the particles matter, not the movement of
the system as a whole, it is appropriate to change frames to the center of momentum
frame by making the variable substitutions

xxx = xxx1 − xxx2, yyy =
µ

m2
xxx1 +

µ

m1
xxx2 . (3.24)

In this set of coordinates,

E =
1

2
(m1 +m2)ẏyy2 +

1

2
µẋxx2 =

1

2M
PPP 2 +

1

2µ
ppp2 . (3.25)

Here, PPP is the momentum of the system as a whole, while ppp is the momentum of
a particle in the center of momentum system. Since the translation of the system
is trivial, it can be factored out with the substitution Ψ(xxx,yyy) = ψ(xxx)e−iPPP ·yyy, which
leads to the differential equation[

−∇
2
x

2µ
+ V (xxx)

]
ψ(xxx) =

p2

2µ
ψ(xxx) . (3.26)

This is the fundamental equation that governs the scattering of two particles in
quantum mechanics. The two-body scattering problem in quantum mechanics is
equivalent to solving the single particle scattering against a fixed potential with
a mass equal to the reduced mass of the two particles in the two-body scattering
problem.

Discussing now the one-particle scattering process, the solution to the Schrödinger
equation at large distances from the center of the potential is [93]

ψ(r →∞) = eippp·xxx +
eipr

r
f(θ) . (3.27)

The first term on the right-hand side is nothing but a propagating plane wave
representing the incoming particle. The second term represents an outgoing particle
wave travelling in a radial direction at an angle θ relative to ppp. This term can thus
be identified as the scattered particle and f(θ) is called the scattering amplitude,
which relates to the differential cross section as

dσ

dΩ
= |f(θ)|2 . (3.28)

It is easy to modify the scattering formalism to include the case where inelastic
scattering between different states can occur, an example being atomic scattering
where the atom enters an excited state in the scattering event at the cost of some
initial kinetic energy, in which case the momentum of the outgoing wave function
is different from that of the incoming particle. In the two state case, which is of
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interest in the inelastic DM scenario, take an incoming particle of the lighter state to
have momentum ppp and the ground state energy level of the system to E = p2/2µ.
Infinitely far from the potential, the outgoing exited state particle will have the
energy

p2
χ∗

2µ2
=
p2

2µ
− 2δ , (3.29)

where terms suppressed by powers of δ/mχ have been neglected. The factor 2 in
front of the mass splitting is due to the outgoing state consisting of two particles
of the excited kind. The scattering system is given by the two coupled equations

−∇
2

2µ
ψ1(xxx) + V1j(xxx)ψj(xxx) =

p2

2µ
ψ1(xxx) , (3.30)

−∇
2

2µ
ψ2(xxx) + V2j(xxx)ψj(xxx) =

(
p2

2µ
− 2δ

)
ψ2(xxx) . (3.31)

The Schrödinger equation for this coupled system can then be written[
−∇

2

2µ
+ V (xxx)

]
ψψψ(xxx) = Eψψψ(xxx) , (3.32)

where ψψψ(xxx) = (ψ1(xxx) ψ2(xxx))T has been promoted to a two component vector, V (xxx)
is a 2 by 2 matrix, and E = p2/2µ is the energy. The mass splitting has been
absorbed into the potential, which takes the form

V (xxx) =

(
V11(xxx) V12(xxx)
V21(xxx) V22(xxx) + 2δ

)
. (3.33)

The asymptotic form of the wave function for channel i, where V (xxx) is negligible
and j is the incoming state, looks similar to the single particle case,

ψi(r →∞) = δije
ipppj ·xxx +

1

r
eipirfi(θ) . (3.34)

The cross section is found by requiring that the flux that enters the scattering region
through the area dσ is equal to the particle flux that leaves the region through the
area r2dΩ.

|jin|dσ = |jout|r2dΩ . (3.35)

From the form of the wave function at large radii r, the relations

|jin| =
pj
m
, |jout| =

|fi(θ)|2

r2
pi (3.36)

can be found. The form of the differential cross section becomes

dσ

dΩ
=
pi
pj
|fi(θ)|2 . (3.37)

This expression verifies Eq. (3.28) in the case of elastic scattering where pi = pj .
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q1 q2

Figure 3.2. Tree level diagrams for scattering of two fermions via a scalar boson
in the Yukawa theory. The left process indicates t-channel scattering while the right
depicts u-channel scattering.

There is a caveat in the case where the scattering is taking place between two
indistinguishable particles [93–96]. For example, if the two scattering particles are
fermionic, the spatial wave function is required to be symmetric or anti-symmetric
depending on whether the incoming particles form a singlet (symmetric) or a triplet
(anti-symmetric) state. In this case, the amplitude is calculated according to

ftot(θ) = f(θ)± f(π − θ) (3.38)

where + holds for the singlet and − holds for the triplet state. The cross section
will then be found by taking the spin-average of the possible spin configurations.

3.4.2 The Born approximation

The Born approximation is valid in the case where the interaction potential is weak
and that the scattering wave function deviates only very slightly from a plane wave
inside the potential. This is the same assumption that goes into calculating matrix
elements in perturbative QFT. Given that the same assumption is made in the two
cases, it is interesting to compare quantum mechanical scattering to non-relativistic
scattering taking place in QFT, as it gives an interesting connection between the
potential in quantum mechanics and the Lagrangian density in QFT. The idea can
be illustrated by considering scattering between two fermions ψ, as shown in the
Feynman diagrams in Fig. 3.2.

The T -matrix element for scattering in quantum mechanics is defined as [93]

TQM = −2πiδ(Ef − Ei)Tfi . (3.39)

In the Born approximation, the number Tfi is calculated as

Tfi = 〈kkkf |V |kkki〉 =

∫
d3xxxV (xxx)e−i(kikiki−kfkfkf ) = Ṽ (qqq) (3.40)

where kkki and kkkf denote the momenta of incoming the incoming and outgoing par-
ticle respectively. The last identity defines the Fourier transform of the potential
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in terms of the momentum transfer qqq = kkkf − kkki. The amplitude is then defined as

f(θ) = − µ

2π
Tfi . (3.41)

In QFT, the T -matrix element for scattering is defined as [97]

TQFT = (2π)4δ4(p1 + p2 − p3 − p4)iM(p1, p2 → p3, p4) , (3.42)

where p1, p2, p3, and p4 are the four-momenta of incoming (i = 1, 2) and outgoing
(i = 3, 4) particles. The last part, M, is usually just called the matrix element. A
couple of statements need to be made in order to relate M to the non-relativistic
theory. Firstly, momentum conservation in the cross section is enforced by the
integral of a δ function, which comes with a factor of (2π)−3. Secondly, one-particle
states in QFT are normalized as

|ppp, s〉 =
√

2Epppa
s †
ppp |0〉 . (3.43)

The matrix element in the non-relativistic limit will therefore contain a factor
4m1m2 relative to the QM system. By making the rearrangement

TQFT = (2π)3δ3(ppp1 + ppp2 − ppp3 − ppp4)(2π)δ(Ef − Ei)iM(p1, p2 → p3, p4) , (3.44)

and taking the considerations above into account, one can identify

Ṽ (qqq) = −M/4mimj . (3.45)

A careful derivation of this result can be found in Ref. [98].
As an example, in Yukawa theory, the Lagrangian contains the interaction term

Lint = −gψ̄ψφ . (3.46)

where ψ is an interacting fermion and φ is a scalar mediator particle. The full
matrix element for the scattering process ψψ → ψψ as shown in Fig. 3.2 is given
by

iM = ūk
′
(p3)uk(p1)

i(−ig)2

q2
1 −m2

φ

ūs
′
(p4)us(p2)− ūs

′
(p4)uk(p1)

i(−ig)2

q2
2 −m2

φ

ūk
′

4 u
s
2 , (3.47)

where mφ is the mass of the scalar boson, k and s are the spins of incoming particles,
and k′ and s′ are the spins of the outgoing particles. In the non-relativistic limit,
the spinor products reduce to

ūk
′
(p)uk(p′) = 2mδkk

′
, (3.48)

where δkk
′

is the Kronecker δ. The momentum transfers, evaluated in the center of
momentum frame, become

q2
1 = (p1 − p3)2 −→ qqq2

1 = 2ppp2(1− cos(θ)) , (3.49)

q2
2 = (p1 − p4)2 −→ qqq2

2 = 2ppp2(1− cos(π − θ)) . (3.50)
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The matrix element in the non-relativistic limit becomes

iM = ig2(2m)2

[
δksδk

′s′

qqq2
1 +m2

φ

− δks
′
δk
′s

qqq2
2 +m2

φ

]
. (3.51)

A first observation is that, if the particles are distinguishable, the u-channel
diagram disappears immediately and only the first term in the above contributes
to scattering. In this case, one can immediately make the identification

Ṽ = − g2

qqq2 +m2
φ

. (3.52)

By taking the inverse of the Fourier transform one finds that the potential describing
the scattering process in the quantum mechanical system is given by

Vyuk = − g2

4πr
e−mφr . (3.53)

This attractive potential was introduced by Yukawa to explain the force binding
protons and neutrons together in the atomic nucleus. Furthermore, since the po-
tential cuts off at r > 1/mφ, which Yukawa knew to be of the order fm, he could
estimate the mass of the exchanged particle, now known as the pion, to be roughly
200 times the electron mass [99].

Secondly, for indistinguishable particles, the momentum transfers in the t-
channel and u-channel matches precisely the behaviour as required in Eq. (3.38).
This is most easily observed for triplet state scattering, where all spins are aligned.

3.4.3 Partial wave decomposition

An alternative to the Born approximation when calculating f(θ) is to use partial
wave decomposition. As will be discussed in Sec. 5.3.2, this method is of interest in
DM models where self-interactions are strong enough for non-perturbative effects
to become relevant and the Born approximation breaks down. In this case, the
amplitude is calculated by making an expansion of the scattering wave function
in terms of spherical harmonics [93]. By aligning the coordinate system such that
ppp = pẑ, the wave function becomes

ψ(r, θ) =
∑
l

(2l + 1)Pl(cos θ)Rl(r) , (3.54)

where Pl(x) are Legendre polynomials. The scattering wave function of Eq. (3.27)
is now given by

ψ(r, θ) =
∑
l

(2l + 1)Pl(cos θ)

(
eikr − (−1)le−ikr

2ikr
+
fl
r
eikr

)
. (3.55)
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When substituting ψ(r, θ) into the Schrödinger equation, the linear independence
of the Legendre polynomials implies that each term in the series must satisfy[

1

r2

∂

∂r

(
r2 ∂

∂r

)
− l(l + 1)

r2
+ k2 − 2µV (r)

]
Rl(r) = 0 . (3.56)

The partial wave amplitudes fl can then be calculated by solving the Schrödinger
equation numerically and then map the solutions for each l onto a solution of the
form of Eq. (3.55). This can be done by writing down the solution as

ψ(r, θ) = Aeikr +Be−ikr (3.57)

and determine the coefficients A and B. Once all partial waves have been computed
up so some l = lmax, beyond which all remaining contributions are negligible, the
final solution will be given by

f(θ) =

lmax∑
l=0

(2l + 1)Pl(cos θ)fl . (3.58)

From a classical standpoint, such an lmax is expected. For a fixed speed, the distance
between particles increases as the angular momentum increases, which results in
less of an impact from the potential on the wave function and hence in a smaller
contribution to the scattering process. This is reflected by the l(l + 1)/r2 term in
Eq. (3.56) outgrowing the potential at large l for all r.

Generalizing this procedure to the case with several scattering channels is straight
forward. For example, the scattering wave function in channel i at large r will be
given by

ψi(r, θ) =
∑
l

(2l + 1)Pl(cos θ)

[
δij
eipjr − (−1)le−ipjr

2ipjr
+
fi,l
r
eipir

]
, (3.59)

where j is the state to which the scattering particles belongs. In some cases, there
are kinematically forbidden channels that are characterized by negative energies
and can therefore not appear outside of the potential region. Forbidden channels
are characterized by outgoing wavefunctions that decrease exponentially, since the
associated wave number pi for any such channel is complex. The problem is that,
when solving the Schrödinger equation numerically, the solution contains both the
exponentially increasing and decreasing solutions. When the system is mapped onto
an exponential form, the exponentially increasing part must be cancelled by the
appropriate choice of constants. This is problematic as the exponentially decaying
solution is absolutely negligible in comparison to the exponentially increasing one,
leading to a system that appears linearly dependent and making it impossible to
extract a cross section. One of the main results of paper III was to circumvent this
problem for the case of a two-component inelastic DM scenario by rewriting the
wave function in terms of r-dependent coefficients and spherical Bessel and Hankel
functions of the first kind. This leads to a reformulation of the Schrödinger equation
that governs the behaviour of the coefficients, which is much more stable.
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3.4.4 Dark matter-nucleus scattering

The cross section of DM scattering against nuclei will be a very important quantity
later in this thesis. As the nucleus is an object composed of protons and neutrons,
which are in turn composed of quarks and gluons, calculating the cross section for
DM-nucleus scattering is not a simple matter. As will be seen, a DD experiment
measures the number of scattering events as a function of atomic recoil energies.
The differential cross section under consideration is therefore [57]

dσ

dER
=

mN

2µ2v2
σ0|F (ER)|2 , (3.60)

where mN is the mass of the nucleus, µ is the reduced mass of the nucleus-DM
system, v is the relative velocity between the two colliding particles, and σ0 is the
zero-momentum transfer cross section. The recoil energy picked up by the nucleus is
given by ER = q2/2mN , where q is the momentum transfer. When the wavelength
h/q becomes smaller than the nuclear radius, the structure of the nucleus becomes
resolved. This is usually the case considered in DD experiments and so the nuclear
structure is very important to understand. This information is encoded in the
form factor F (q) in the cross section. The overall factor is related to the fact that
setting |F (ER)| to unity and integrating over all allowed recoil energies, σ0 should
be recovered, i.e., ∫ 2µ2v2/mN

0

dσ

dER

∣∣∣
ER=0

dER = σ0 . (3.61)

By solving the non-relativistic energy and momentum conservation equations, it is
found that the upper limit of the integral corresponds to Emax = 2µ2v2/mN , which
is the largest possible recoil energy.

Scattering between a DM particle and a nucleus can be spin-dependent or spin-
independent. Examples of effective operators that give rise to scattering of these
two types are

LSI =
cq
Λ2
χ̄γµχq̄γµq and LSD =

dq
Λ2
χ̄γµγ5χ q̄γµγ

5q , (3.62)

where the former is an example of a spin-independent operator, while the latter is
an example of a spin-dependent operator.

To understand the form factor that appears when calculating the cross section,
it is instructive to calculate the matrix element, which is given by

M∼ 〈χf , N | Lint |χi, N〉 . (3.63)

where Lint is an interaction Lagrangian. The state |N〉 is a complicated multi-body
object that describes the overall state of the bound protons and neutrons.
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Focusing on the case where scattering is spin-independent, it is possible to write
down an expression for the matrix element at zero momentum transfer as

iM(qqq = 0) = 4mNmχ [Zfp + (A− Z)fn] , (3.64)

where Z and A are the number of protons and number of nucleons, respectively.
The coupling constants to protons fp and neutrons fn depend on the operator.
For example, the spin-independent vector mediated operator in Eq. (3.62) yields
fp = (2cu + cd)/Λ

2 and fn = (cu + 2cd)/Λ
2 [100]. In the scalar mediator case,

sea quarks and gluons have to be taken into account, resulting in very complex
expressions for the proton and neutron couplings, see e.g., Ref [101].

The form factor is now most easily understood by considering the scattering pro-
cess in the formalism of quantum mechanics. The nucleus consists of Z protons and
A− Z neutrons, which are distributed with probability densities ρp(xxx) and ρn(xxx).
Furthermore, let the coupling constants be given by fp and fn, respectively. The
full potential for the nucleus can then be written as

V (xxx) =
∑
p

fpρp(xxx) +
∑
n

fnρn(xxx) . (3.65)

According to the Born approximation in Eq. (3.40), the amplitude for a DM particle
having incoming and outgoing momenta pppi and pppf , respectively, to scatter against
the nucleus is given by

f(θ) = − µ

2π

∫
d3xxxe−ixxx·qqq V (xxx) = −µχN

2π
Ṽ (qqq) . (3.66)

One can immediately observe that, for zero-momentum transfer,

Tfi(q = 0) =

∫
d3xxx

(∑
p

fpρp(xxx) +
∑
n

fnρn(xxx)

)
= Zfp + (A− Z)fn , (3.67)

which, given Eq. (3.45), confirms the choice of potential strengths. The last identity
holds as the probability densities are normalized. The zero-momentum transfer
cross section becomes

σ0 =
µ2

π
[Zfp + (A− Z)fn]

2
= σχp

µ2

µ2
χp

[Z + (A− Z)κ]
2
. (3.68)

The last step defines σχp as the DM-proton cross section for which µ = µχp, Z = 1,
and A = 1. The cross section is said to be isospin violating when κ = fn/fp 6= 1.

For non-zero momentum transfer, the matrix element becomes

Tfi = ZfpFp(q) + (A− Z)fnFn(q) , (3.69)

where Fp(q) and Fn(q) are the Fourier transformed proton and neutron densities
and it has been assumed that all nucleons of the same species are described by the
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same probability distribution. It is very often assumed that Fp(q) = Fn(q). In fact,
calculating the differential cross section dσ/dΩ with the matrix element above and
using that qqq2 = 2ppp2

1(1− cos(θ)), Eq. (3.60) can be derived explicitly.
There are a couple of form factors that are commonly used in the literature for

the spin-independent part of the cross section. The simplest form factor is that of
the exponential [102, 103]

F (ER) = e−ER/2E0 , (3.70)

where E0 = 3/2mNR
2, and R is the radius of the nucleus. This form factor is

widely used when considering DM capture by the Sun. Another form factor, which
is very often used in the context of setting limits on the DM cross section in DD
experiments, is the Helm form factor [104–106],

F (q2) = 3
j1(qR)

qR
e−

(qs)2

2 , (3.71)

This form factor arises from the density profile

ρ(xxx) =

∫
ρ0θ(R− |xxx′|)e−|xxx−xxx

′|2/2s2d3xxx′ , (3.72)

where ρ0 is a normalization constant. It is evident from the convolution that R
parametrizes the effective radius and s parametrizes the skin thickness of the nu-
cleus. For large xenon nuclei, it is shown in Ref. [107] that the Helm form factor is
a decent approximation but generally overpredicts the magnitude of the form factor
at larger momentum transfers.

The case of spin-dependent scattering is significantly more complicated. This is
due to the fact that all nuclei of the same type do not contribute to the total angular
momentum of the nucleus in equal amounts. The cross section can be calculated
to have the form [57, 105, 108]

dσ

dER
=

16mN

πv2

J + 1

J
[ap 〈Sp〉+ an 〈Sn〉]2

S(q)

S(0)
, (3.73)

where J is the total nuclear angular momentum, 〈Sp〉 and 〈Sn〉 are the averages
of the total spin carried by the protons and neutrons, ap and an are the effective
DM-proton and DM-neutron coupling constants, and S(q)/S(0) is the squared mag-
nitude of the form factor. Importantly, it can here be seen that the cross section
has the same form as in the spin-independent case if σ0 is defined as

σ0 =
32µ2

π

J + 1

J
[ap 〈Sp〉+ an 〈Sn〉]2 . (3.74)

Form factors for the spin-dependent case for some isotopes common in DD experi-
ments can be found in Ref. [109]. As in the elastic case, it is also possible to write
σ0 in terms of the cross section on a single proton or neutron [57, 110].
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It should be pointed out that there is a significant difference between spin-
dependent and spin-independent scattering. In the case of spin-independent scat-
tering when κ > 0, such as in the case of iso-spin conserving scattering, there is
constructive interference between the proton and neutron contributions to the cross
section, which implies that the cross section grows as A2. For xenon, this factors
increases the cross section up by several orders of magnitude. Since all nucleons do
not contribute equally to the nuclear angular momentum, the spin-dependent cross
section does not change much between nuclei with very different sizes but simi-
lar angular momenta. Explicit models of DM that is isospin-violating have been
proposed and studied in, e.g., Ref. [111].

On a final note, a framework in which cross sections are calculated by using a
non-relativistic framework has recently been proposed [112, 113]. The idea is to
construct Hamiltonian operators that are invariant under Galilean transformations
and use these for the calculations of cross sections. The form factors are replaced by
response functions, which have been calculated for various nuclei in, e.g., Refs. [112,
114]. Any relativistic operator, such as those in Eq. (3.62), can then be mapped
onto non-relativistic operators by following the results of, e.g., Ref. [115], where an
analysis can be performed using the non-relativistic framework.





Chapter 4

The early Universe

The field of cosmology deals in part with studies of the observable effects that
specific models of DM give rise to. Since the Universe expands, one encounters very
interesting conditions looking back at the young Universe where particle physics
played a very important role. In this very dense and hot period, thermodynamics
can be used to describe various phenomena such as why the abundance of DM is
what it is.

4.1 The expanding Universe

In the theory of general relativity, the geometry of spacetime is described in terms
of the metric tensor gµν , which satisfies a set of differential equations called the
Einstein field equations [116–118],

Rµν −
1

2
Rgµν = 8πGTµν . (4.1)

In the above, Rµν is the Ricci curvature tensor, R = gµνR
µν is the Ricci scalar,

Tµν is the energy-momentum tensor, and G is the gravitational constant. The
cosmological constant Λ usually appear as a term Λgµν on the left-hand side. This
addition will be discussed later.

The most general metric that describes a homogeneous and isotropic universe
is the Robertson-Walker (RW) metric [117, 118], defined through the relation

ds2 = gµνdx
µdxµ = dt2 − a(t)2

[
1

1− kr2
dr2 + r2 dθ2 + r2 sin2θ dφ2

]
, (4.2)

where k describes the curvature of space and the scale factor a(t) parametrizes
the expansion of the Universe. In relation to a RW metric, the concept of cosmic
time and comoving coordinates can be introduced. The variables (r, θ, φ) in the
metric above are comoving coordinates because an observer placed at rest in a

33
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point (r0, θ0, φ0) will remain at these coordinates for all times t. However, due to
the appearance of a(t) in the metric, the physical distance between this point and
any other point, say (0, 0, 0), will not remain the same. In fact, Eq. (4.2) states that
the physical distance between two comoving observers will change proportionally
to a(t). The cosmic time is the time t that is measured by a comoving observer.

Now, it might not be obvious that we live in a homogeneous and isotropic
Universe simply due to the fact that there is structure in it. Being on Earth
is clearly different from being on the surface of the Sun or in the “vacuum” of
intergalactic space. On the other hand, the isotropy of the CMB shows that the
Universe was homogeneous at the redshift at which it was released. Substantial
inhomogeneities in the Universe from the time of the CMB release until now would,
via the integrated Sachs-Wolfe effect [119], induce inhomogeneities in the observed
CMB. Observations of the matter distribution in the Universe at cosmologically
recent times indicate that the Universe becomes homogeneous when scales of the
order 100 Mpc or larger are considered [120, 121].

A Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric is a metric as given
by Eq. (4.2), but in which the behaviour of the scale factor a(t) is governed by
Eq. (4.1) under the assumption that the contents of the Universe can be described
as perfect fluids. In a general frame, the energy-momentum tensor describing such
a fluid is given by

Tµν = (p+ ρ)UµUν − pgµν , (4.3)

where p is the fluid pressure and ρ is the energy density in the fluid rest frame, Uµ is
the four-velocity of the fluid and the sign convention of gµν is the one conventionally
used in particle physics, (+ − −−). The fluid is at rest in the comoving frame
such that U0 = 1 and U i = 0 for i = 1, 2, 3. In this frame, the non-zero elements
of the energy-momentum tensor are

T 00 = ρ+ p, T ij = −pgij , (4.4)

One can use the fact that the divergence of the energy-momentum tensor is zero to
derive the very useful equation

∇νT 0ν =
dρ

dt
+

3ȧ

a
(ρ+ p) = 0 . (4.5)

The Friedmann equations, which govern the behaviour of a(t), are then found
from the Einstein field equations using the energy-momentum tensor for a perfect
fluid. The two equations take the form(

ȧ

a

)2

= −k
2

a2
+

8πG

3
ρ = H2 , (4.6)

ä

a
= −4πG

3
(ρ+ 3p) . (4.7)

The second step in the first equation defines the hubble rate H in terms of a as well
as its behaviour depending on the curvature and the energy density. The second
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equation governs the acceleration of the scale factor depending on the energy density
and the pressure exerted by the components of the fluid.

In order to understand how the different forms of energy that contribute to
ρ in the Friedmann equations behave as the Universe expands, the kinematics of
individual particles that make up each form of energy density must be understood.
Any free particle, massless or not, travels along a geodesic, which is nothing but
a straight line in curved spacetime. The geodesic equation dictates that the four
coordinates xµ(λ), where µ ∈ {0, 1, 2, 3} and λ parametrizes the curve, are solutions
to the differential equations

d2xµ

dλ2
+ Γµαβ

dxα

dλ

dxβ

dλ
= 0 , (4.8)

where Γµαβ are Christoffel symbols. Now, as is widely known from Noether’s theo-
rem, symmetries in the action of a system imply that there exist conserved quan-
tities in the system. In general relativity, the geodesic equation can be found from
Hamilton’s principle that the action

S =

∫ √
gαβ ẋαẋβdσ , (4.9)

in which ẋα = dxα/dσ, is stationary. Un-dotted coordinates appear only in the
metric, which implies that if the metric remains unchanged by the shift in one of
the variables xγ → xγ + δxγ , then a symmetry exist. The corresponding conserved
quantity can be expressed through the relation

d

dσ

(
ξµ
dxµ

dσ

)
= 0 , (4.10)

where ξµ = δµγ is a Killing field. The concept of Killing fields is straightforwardly
generalized to higher order tensors. In particular, there is a Killing field associated
with the FLRW metric that can be expressed as

Kµν = a(t)2 (−gµν + UµUν) , (4.11)

where Uδ = (1, 0, 0, 0)δ is the four-velocity of a comoving observer. By direct
calculation, it can be shown that

∇α (KµνV
µV ν) = 0 , (4.12)

which means that KµνV
µV ν is constant along the geodesic curve that a particle

with four-momentum V α follows. This allows for the identification of how the kine-
matic properties of massive and massless particles will evolve when repeatedly being
measured by a comoving observer. For massless particles, it holds that VµV

µ = 0
and UµV

µ = V0, the latter of which is the energy, or equivalently the magnitude
of the physical momentum p, of the massless particle as measured by a comoving
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observer. For massive particles, VµV
µ = V 2

0 + gijV
iV j and UµV

µ = V0, and so the
conserved quantity is proportional to −a(t)2gijV

iV j , where a comoving observer
would measure the physical squared momentum p2 = −gijV iV j . Thus, if the mo-
mentum of a particle is measured twice, once at t = t0 when p = p0, and at some
later time t, regardless of whether the particle is relativistic or not, what is found
is

p = p0
a(t0)

a(t)
. (4.13)

The momentum will therefore decrease if the Universe is expanding, and the mo-
mentum will increase if the Universe is contracting. In a spatially flat FLRW
universe, the metric is a function only of t, which means that there are Killing
vectors associated with the spatial coordinates, which with Eq. (4.10) can be used
to derive Eq. (4.13).

As far as we are aware, the Universe consists of three types of energy densities.
The first type is non-relativistic non-interacting (in the sense that annihilation does
not take place) matter, such as baryons and cold dark matter, commonly called
“dust”. There is radiation, which is composed of relativistic particle species such
as photons, and finally there is dark energy. The equation of state for each of these
types of energy densities can be parametrized as p = wρ, in which case the solution
to Eq. (4.5) is

ρ ∝ a−3(1+w) . (4.14)

Given the discussion above, it is easy to understand the value of w for matter and
radiation. For matter, the energy density in kinetic energy is negligible and mass
per volume makes up the entire contribution to ρ. However, the volume within
which N particles with mass m are contained increases in physical size as a(t)3,
implying that ρ = mN/V ∝ a−3 which yields w = 0. For radiation, if the mean
energy of a photon is E, the energy density is E/V . Therefore, the redshift of
photons along with the box size increasing as the Universe expands gives an energy
density that behaves as a−4, i.e., w = 1/3.

Dark energy is a form of energy density whose contribution to the energy density
drives the scale factor to a positive acceleration. By Eq. (4.7), dark energy must
have w < −1/3 [122]. Einstein initially formulated the Einstein field equations as
in Eq. (4.1) [123]. However, motivated by constructing a static Universe, i.e., one
that does not expand or contract, he introduced the cosmological constant Λ [32]
by adding the quantity Λgµν on the left-hand side of his field equations. This term
can equally well be thought of as a contribution to Tµν for which

p = −ρ = − Λ

8πG
. (4.15)

As w = −1 for this type of energy density, the cosmological constant will give a
positive contribution to ä in Eq. (4.7), which counteracts the effects of the matter
density filling the Universe. This along with postulating that the the Universe has



4.2. Thermodynamics 37

curvature such that k in Eq. (4.6) is non-zero, both ȧ and ä can be made zero and
Einstein can have his static universe.

Going back to the actual energy content of the Universe, the current Hubble
rate H0 relates to the critical density as

ρ0,crit =
3H2

0

8πG
, (4.16)

It is called critical as the Friedmann equation dictates that the Universe is flat only
if it holds today that ρ = ρ0,crit. The quantities Ωm, ΩR and ΩΛ are usually intro-
duced using the relationship Ωi = ρ0,i/ρ0,crit. With the Hubble rate, normalized
to its current value and using the Ω definitions, it is possible to recast the second
equality in Eq. (4.6) on the form

H2(a)

H2
0

=

[
ΩΛ + Ωm

(a0

a

)3

+ ΩR

(a0

a

)4

+ ΩK

(a0

a

)2
]
. (4.17)

The evolution of each energy density as a function of a is explicitly incorporated
and a0 is the current scale factor (which can be chosen arbitrarily and is usually
set to unity). The energy density of the Universe in the three various forms have
been determined from the measurements of the CMB by the Planck satellite [36].
Accordingly, the fractional dark energy density is ΩΛ ≈ 0.69 and the fractional
matter density is Ωm ≈ 0.31. The Planck data also gives the matter-radiation
equality at aeq ≈ 1/3372. Setting ρm(aeq) = ρR(aeq) gives ΩR ≈ 9.16 · 10−5. This
gives rise to an interesting hierarchy in the evolution of H. Its evolution in the
early Universe was dominated by the radiation energy density until aeq, when its
evolution became governed by the matter density. The very late history has been
dominated by dark energy and, unless something unexpected happens, this will be
the case for all eternity.

4.2 Thermodynamics

In understanding how the Universe evolved, one has to derive a few identities that
hold for a gas in thermal equilibrium. A gas consisting of fermions or bosons will
in thermal equilibrium be described by the probability distributions

f(ppp, T, µ) =
g

(2π)3

1

e(
√
ppp2+m2−µ)/T ± 1

, (4.18)

where m is the particle mass and ppp its three-momentum, T is the temperature, µ
is the chemical potential, and g is the internal number of degrees of freedom such
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as spin. The positive sign in the denominator holds for bosons, which obey Bose-
Einstein statistics, while the minus sign holds for fermions, which obey Fermi-Dirac
statistics. The number density is by definition

n(T, µ) =
g

(2π)3

∫
d3pppf(ppp, T, µ) . (4.19)

The energy density and pressure of the particular state are given by

ρ(T, µ) =
g

(2π)3

∫
d3ppp
√
ppp2 +m2f(ppp, T, µ) (4.20)

and

p(T, µ) =
g

(2π)3

∫
d3ppp

ppp2

3
√
ppp2 +m2

f(ppp, T, µ) , (4.21)

respectively. It is possible to evaluate these for two cases of importance for the
cosmological evolution of the Universe. At very high temperatures, where T � m
and T � µ,

n(T ) =

{
Bosons : ζ(3)

π2 gT
3

Fermions : 3
4
ζ(3)
π2 gT

3
, (4.22)

ρ(T ) =

{
Bosons : π2

30 gT
4

Fermions : 7
8
π2

30 gT
4
, (4.23)

p(T ) = ρ(T )/3 , (4.24)

where ζ(x) is the Riemann zeta function. For low temperatures T � m, the
particles in the gas are non-relativistic and the expressions for fermions and bosons
are identical and given by

n(T ) = g

(
mT

2π

)3/2

e−(m−µ)/T , (4.25)

ρ(T ) = mn(T ) , (4.26)

p(T ) = Tn(T ) . (4.27)

Applying the second law of thermodynamics to the primordial plasma results
in that the entropy density in a comoving box is constant and given by [117]

s =
ρ+ p

T
. (4.28)

The entropy density in the Universe is therefore almost completely defined in terms
of the relativistic particles.

The redshift of particle momenta has interesting consequences for the evolution
of a particle species in thermal equilibrium that decouples from, i.e., stops inter-
acting with, the rest of the plasma. Suppose that this happens at a time when the
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particle distribution is described by the temperature Td and the magnitude of the
scale factor is ad. Since the momentum decreases inversely proportional to a after
it decouples, a distribution of relativistic particles will behave as

f(pppa(t)/ad, Td, µ) ∝
[
e

(p a
ad
−µ)/Td ± 1

]−1

=
[
e(p−µ′)/T ± 1

]−1

. (4.29)

In the last equality, a new temperature and chemical potential have been defined to
absorb the scale factors. The implication is that that the shape of the distribution
remains intact as the Universe expands, but that the temperature that describe
it will be inversely proportional to a. The same discussion for the non-relativistic
case leads to the conclusion that T ∝ a−2. Since the energy density of photons
is proportional to T 4, its evolution with a falls perfectly in line with how the the
energy density relates to the scale factor in the discussion around Eq. (4.14).

4.3 Dark matter abundances and Boltzmann
equations

One of the main reasons behind the popularity of the weak scale DM particles is
the thermal freeze-out scenario. A very important tool to be used to describe how
the number density of DM evolves is the Boltzmann equation. At the fundamental
level, the Boltzmann equation describes the evolution of the particle distribution
in phase-space. To understand DM freeze-out, the three-momentum of the phase-
space distribution can be integrated over, which allows us to write the Boltzmann
equation in an expanding Universe as [117]

dn

dt
+ 3Hn =

1

a3

d(a3n)

dt
=

g

(2π)2

∫
C[f ]

d3p

E
. (4.30)

Here, n is the number density of the species under consideration, H is the Hubble
rate, and g is the number of degrees of freedom. The collision operator on the
right-hand side is a complex object where C[f ] takes the particle physics of the
process into account. That is, it gives the rate at which particles are created and
the rate at which they annihilate. It is rather easy to interpret the terms on the
left hand side of the Boltzmann equation. The first term is the change in particle
number density per time, while the second term accounts for the dilution due to
the expansion of the Universe.

A very simple case that illuminates the important points of the Boltzmann
equation is a single self-annihilating DM particle ψ that, in thermal equilibrium,
is described by a Boltzmann distribution. The Boltzmann equation is in this case
given by [117]

dnψ
dt

+ 3Hnψ = −〈σv〉
[
n2
ψ − (nEQ

ψ )2
]
. (4.31)

Here, nψ is the DM number density while nEQ
ψ is the particle density at equilib-

rium. The quantity 〈σv〉 corresponds to the thermal average over the rate for two
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ψ particles to annihilate into some other particles. In this case, it is actually easy
to argue for the right hand side using detailed balance. The annihilation rate in a
gas of particles with number density nψ should behave as 〈σv〉n2

ψ, and the rate of
change, i.e., the right hand side, should disappear when the species is in thermal
equilibrium. In a scenario where the DM abundance is set by the freeze-out mecha-
nism, DM is thought to interact strongly enough to be in thermal equilibrium with
its surroundings in the early Universe. In the equation above, the right-hand side of
the Boltzmann equation vanishes since nψ = nEQ

ψ when T & mψ. The equilibrium
abundance of DM decreases exponentially according to Eq. (4.25) once the DM
mass is larger than the temperature of whatever gas that it is coupled to. This
exponential decrease can be understood as the efficient annihilation of DM while
the low temperature of the gas that it is coupled to results in insufficient kinetic
energies of gas particles to produce DM. At some point however, the expansion of
the Universe outgrows the annihilation rate of DM after which the DM abundance
in a comoving volume remains constant. Thermal freeze-out is successful when
the number density of DM that survives this process is just right to match with
observations.

Since the temperature and number densities were extremely large, it makes sense
to consider species in thermal equilibrium since any deviation from equilibrium will
be countered immediately due to the interaction term in the Boltzmann equation.
However, at some point the annihilation rate falls below the Hubble rate;

H & 〈σv〉nψ . (4.32)

When this occurs, the Universe expands faster than particles can find each other to
annihilate. At this point, the species has fallen out of thermal equilibrium. Due to
its simplicity, this condition is often considered as a guideline for when freeze-out
occurs rather than actually solving the Boltzmann equation.

One of the crucial points in paper III is to explain why there are, in an inelastic
DM model, no particles in the heavier state χ2 in the DM halo. The number
densities of χ1 and χ2 will depend on scattering processes such as χ1χ1 ↔ χ2χ2.
Since a model with a light mediator was considered and these collisions were taking
place in a non-relativistic setting, strong self-interactions were present. At some
point, the production of χ2 due to scattering of χ1 becomes kinematically forbidden
while χ2 is free to downscatter. Thus, the abundance of χ2 can be driven to
completely negligible numbers as long as the interaction is strong enough. The
cross section is very expensive to calculate numerically when many partial waves
plays a part, which is the case in this kind of scenario. Therefore, the abundance
of χ2 was estimated at the value when 〈σχ2χ2v〉nχ2 fell below the Hubble rate.

It is also interesting to mention that there are other variations of the genesis of
DM that have been proposed, such as the freeze-in mechanism [124–126]. In this
scenario, DM was never in thermal equilibrium but was generated gradually from
zero abundance without annihilation taking place. This scenario is somewhat of
an inverse to freeze-out. In freeze-out, a stronger coupling between DM and the
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particles it interacts with results in a longer period of equilibrium and consequently
a longer period of annihilation which drives the final abundance of DM down. In the
freeze-in mechanism, a stronger coupling will only increase the final abundance of
DM. Consequently, freeze-in generally require very small couplings while freeze-out
requires large couplings.





Chapter 5

Dark matter halos

The CMB informs us that structure appears to have formed much earlier than
the baryons had the possibility to clump up as the radiation pressure exerted by
the CMB photons would destroy any such clumps. At early times, the growth of
these overdensities can be described using linear perturbation theory [118]. Over
time, the overdense regions may attract enough matter such that the expansion
stops locally and gravitational collapse occurs [127, 128]. The non-linear regime,
which is entered when enough matter has accumulated, becomes very difficult to
describe. However, N -body simulations have become an invaluable tool to describe
the process. To this day, they have reached an impressive number of particles, going
into the billions [129, 130], and take into account effects such as baryonic physics
and the presence of black holes. From the results of these, it is thought that the
overdense regions will initially generate small dark matter halos that merge to form
larger halos. Many of the smaller halos partaking in the merging process survive,
resulting in a great deal of substructure. Since DM does not interact, the halos
are protected against complete gravitational collapse. The baryons within them
will however radiate energy in the form of photons in scattering processes, lose
energy, and form small compact clouds within which stars, and eventually galaxies,
are formed. The center of the larger halo can then form a large galaxy, while the
smaller, still intact, subhalos may host dwarf galaxies. The Milky Way halo is thus
thought to host not only the Milky Way but also the dwarf galaxies that appear
gravitationally bound to it [131].

5.1 Dark matter halo profiles

As both DD and ID methods use DM from the halo as the source for DM, it is
only natural that both depend crucially on the phase-space distribution of DM. The
phase-space consists of the spatial distribution as well as the velocity distribution

43
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of DM. Here is a summary of current knowledge and usual assumptions that are
made regarding these properties.

5.1.1 Density profiles

The actual behaviour of the density profile depends heavily on specifics such as
how the halo collapsed and if there were asymmetries in the initial distribution.
There may also be non-trivial effects such as feedback from black holes and super-
novae [132]. In larger halos, it is generally accepted that microscopic phenomena,
such as feedback, play a smaller role on how the halo is shaped but, as will be
discussed later, there are several issues in the halos of smaller galaxies that might
be addressed with such effects. Regardless, there are several interesting spherically
symmetric halo models that are used when describing the halos in the context of
ID.

The most famous profile is the Navarro-Frenk-White profile [133], which can be
parametrized as

ρ(r) =
ρc

(r/rs) (1 + r/rs)
2 . (5.1)

In the above, ρc is a characteristic density and rs is a characteristic radius. Orig-
inally, it is a fit to the density profile derived from N -body simulations and is
constructed to have the specific behaviour of ρ(r) ∼ r−1 at r < rs, while falling off
as r−3 when r > rs, and having a smooth transition between the two regimes.

Another notable profile is the Einasto profile [134]

ρ(r) = ρs exp
(
−c
[
(r/rs)

1/α − 1
])

, (5.2)

where rs is the radius in which half of the total halo mass is contained, ρs is
the density at this radius, α is a constant that describes the logarithmic slope,
dlnρ/dlnr ∝ r1/α, and c is a number to be fit.

There is also an isothermal distribution, which is more relevant phenomenolog-
ically than as an appropriate description of the distribution of DM [135],

ρ(r) =
ρ0

a2 + r2
, (5.3)

where ρ0 and a are constants. A profile of this kind make sense considering the
rotation curves of galaxies, as for r & a, the enclosed mass grows proportionally to
r, which yields exactly flat rotation curves.

For DD experiments, and certain ID methods, it is crucial to know what the
density of DM is in the galactic neighbourhood of the Sun. The profiles listed above
have been used in an attempt to determine this quantity, see e.g., Ref. [136]. A
number of other studies using various methods seem to indicate that a value lies in
the neighbourhood of [137–142].

ρlocal
χ = 0.3− 0.4 GeV/cm3 . (5.4)
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5.1.2 Velocity distribution

The velocity distribution of DM particles in the halo is also a very important quan-
tity. For a spherically symmetric DM halo, there is an explicit formula called the
Eddington formula, which immediately gives the velocity distribution as a function
of energy [143],

f(E) =
1√
8π2

[∫ E
0

dΨ√
E −Ψ

d2ρ

dΨ2
+

1√
E

(
dρ

dΨ

)
Ψ=0

]
, (5.5)

where E = Ψ(r)−Ekin, ρ(r) is the density profile, and Ψ(r) = −φ(r) +φ(∞) where
φ(r) is the gravitational potential energy.

The velocity distribution is very often assumed to be a Boltzmann distribu-
tion [144]

f(~v) =
nχ

(2π/3)3/2 σ3
exp

(
−3

2

~v 2

σ2

)
. (5.6)

Here, nχ is the local number density of DM, which is given by nχ = ρχ/mχ, and
σ is the velocity dispersion. The assumption of this profile corresponds to having
chosen a density profile as that given in Eq. (5.3), where a = 0 such that the density
profile behave as r−2.

Since the Sun moves around the galactic center with the velocity ~v�, the velocity
distribution as seen by an experiment in the rest frame of the Sun is shifted by
the amount fSun(v) = f(~v + ~v�). Integrating out the angular dependence of the
distribution, the speed distribution in the solar frame is obtained as

fSun(v) =
3nχv

2
√
πσ2

[
exp

(
−3

2

(v − v�)2

σ2

)
− exp

(
−3

2

(v + v�)2

σ2

)]
, (5.7)

where v� ≈ 220 km/s and σ =
√

3/2v�. The velocity of the Earth around the
Sun, ve(t), will also contribute to the shift in the velocity distribution, which is
now fEarth(v) = f(~v + ~v� + ~ve). This gives rise to a periodicity in the flux of
DM at Earth with implications for DD experiments [103, 145–147]. The velocity
profile presented here is somewhat unphysical in the sense that a galactic halo will
not contain particles with velocities that exceed the escape velocity of a galaxy.
At the radius of the Sun, this velocity is roughly 550 km/s [148–150], albeit with
fairly large uncertainties. This is sometimes incorporated by a hard cut-off at this
velocity in the speed distribution, which naturally changes the normalization of the
distribution slightly.

There are numerous studies of the velocity profile of the DM in Milky-Way-like
galaxies using N-body simulations [151–155]. The results generally show that the
Maxwell-Boltzmann assumption is a decent description, but that there is quite a
large spread in profiles on a halo to halo basis.
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5.2 Problems in small scale structures

While many of the ΛCDM predictions from DM only N -body simulations match up
beautifully with observations at large scales, there is worry of how the theory holds
up against observations of astrophysical objects on smaller scales [156]. There are
several issues, commonly referred to as the small scale structure problems of which
the three most prominent ones will now be discussed.

• The cusp-vs-core problem is the name of a mismatch related to the behaviour
of the density of DM in the central regions of smaller galaxies. N -body
simulations consistently predict cusps, where the behaviour of the DM density
follows a power law ρ ∼ r−γ , where γ ' 1 − 1.5, see, e.g., Refs. [133, 157–
163]. On the other hand, Observations of these smaller systems can be used
to deduce the actual behaviour of ρ. It is found that most smaller halos have
cores, where ρ seems to be constant at small radii, see, e.g., Refs. [164–178].
Although the mismatch between the cusps predicted by N -body simulations
and the cores favoured by observations appear mainly in dwarf galaxy halos,
there is also hints towards shallow cusps in galaxy cluster halos [179–181].

• The missing satellites problem is due to a discrepancy between the number of
predicted and observed number of dward galaxies. As discussed above, when
a large DM halo forms, it does so through the accumulation of many smaller
halos. In N -body simulations, a large number of these smaller halos survive
the gravitational tidal forces induced by the larger halos and their mutual
interactions. The result is a large number of subhalos that are massive enough
for efficient atomic cooling to take place such that star formation within them
is expected to occur. When comparing the number of expected dwarf galaxies
from N -body simulations to the actual number of dwarf galaxies of Milky Way
sized halos, a large discrepancy is found [182, 183].

• The too-big-to-fail-problem builds somewhat upon a proposed solution to the
missing satellites problem. The idea is that star formation is not efficient
enough to illuminate the smaller halos and that only the largest subhalos
should be inhabited by dwarf galaxies. However, the largest subhalos found in
N -body simulations are significantly more massive than the subhalos hosting
the Milky Way dwarves. Surely, if the smaller halos had no trouble forming
stars, the largest subhalos should definitely host dwarf galaxies but these are
nowhere to be found [184, 185]. This problem affects not only the Milky
Way halo, but also the halo hosting the Andromeda galaxy and isolated halos
appear to share the same defect [186, 187].

5.2.1 A baryon solution?

There are various proposals for solving the small scale structure problems. A pop-
ular explanation is that baryonic feedback effects from supernovae will induce a
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time dependence in the dark matter halo. Even though DM is modelled as colli-
sionless, a rapidly varying gravitational potential will affect the energy of the DM
particles, which can evacuate portions of DM from the center of dwarf galaxy halos
and induce cored profiles [188]. It has also been shown through simulations to be
effective [176, 189–196]. On the other hand, this solution only works if there is
enough star formation, which appears to be the case only in more massive dwarf
galaxies [197], leaving the cusp-vs-core and too-big-to-fail problems unexplained in
the lower mass dwarves. There are also other effects, such as tidal stripping of
the dwarf halo by the larger halo, that can reduce the central density of DM and
alleviate the small scale structure problems [198–202].

5.3 Self-interacting dark matter in halos

Taking the above discussion into account, it is not at all unlikely that the key to
resolving the small scale structure problems lie in the modelling of baryonic effects.
However, an alternative and very exciting way of solving the small scale structure
problems is to invoke models of DM where self-interactions take place [203, 204].

5.3.1 Bounds on self-scattering cross sections

Before discussing how self-interacting DM can be used to explain the small scale
structure problems, there are bounds from various astrophysical observations to be
taken into account. The first way of placing such bounds is through the observations
of colliding galaxy clusters. When galaxy clusters collide, DM particles in each of
the two halos may interact, which results in several observational effects. Firstly,
particles that scatter at angles transverse to the direction of the bulk of the DM halo
will likely become gravitationally unbound from the two clusters as a whole, leading
to evaporation of the DM halo. Thus, the survival of colliding halos indicate that
self-interactions may not be too large. Even if particles are not ejected, transverse
scattering events give rise to deceleration effects on the two halos. As was discussed
briefly in Sec. 2.3, galaxies behave in a collisionless manner while the majority of
visible mass, which is encapsulated in the free hydrogen, collides and slows down
due to the friction induced by self-interactions. The observation of mass peaks in
these objects that trail the galaxies rather than the bulk of the visible gas indicate
that DM must not self-interact too strongly. The separation of the mass peak of
the DM halo and galaxies in a colliding cluster scenario was studied numerically
in Ref. [205] for two different types of self-interactions. It was found that, while
the mass peaks of the DM generally overlap with the galaxies, the distribution is
overall distorted in manners different from the distribution of galaxies depending
on whether DM interactions are frequent or rare. The mass profiles deduced from
observations of various colliding galaxy clusters such as the Bullet Cluster have
been used to place bounds on the self-scattering cross section of DM [206–211].
Subsequent studies seem to call into question the method used to derive bounds on
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the self-interacting cross sections from colliding clusters [212]. It was here noted
that the method used to calculate the offset between different components of the
Bullet cluster gives rise to bounds may be too strong, and that using techniques
that are more closely related to observations are better suited for the job.

Constraints can also be placed based on the evaporation of DM halos of galaxies
inside galactic cluster halos. The velocity dispersion of DM that is bound to the
galaxy cluster halo exceeds the escape velocity of DM halos that host galaxies
within the clusters. The likelihood that DM from the cluster halo transfers enough
energy to eject DM from galaxy halos is therefore very large, which indicates that
galaxy hosting halos will evaporate over time [213]. The requirement that these
subhalos survive over a Hubble time leads to upper bounds on the self-interaction
cross section.

A third way of constraining self-interactions is possible by analysing the shape
of DM halos. Large DM self-interactions will tend to erase asymmetries in the DM
halo core, leading to spherically symmetric profiles. These effects can be studied
and initially placed very strong bounds on the self-scattering cross section [214]. On
the other hand, the uncertainties in this type of analysis are huge and later numer-
ical studies showed that the bounds are much weaker than initially thought [215].
Large self-interactions will also create cores in galaxy cluster halos which initially
seemed too large to be consistent with observations [216], but was later shown to
be overestimated as well [217].

Taking all constraints into account, self-interacting DM with cross sections of
the order

σχχ
mχ

& 1 cm2/g (5.8)

are generally considered to be incompatible with observations.

5.3.2 Solving the small scale structure problems with
self-interacting dark matter

The idea of solving the small scale structure problems are generally based on the
same principles that are used to place bounds on them. The generation of cores
by reducing the number of particles in the center of the subhalos of dwarf galaxies
might solve not only the cusp-vs-core problem, but also the too-big-to-fail problem
since this would necessarily reduce the rotational velocity of stars and thus imply
that the dwarf galaxies really do inhabit the largest subhalos. Self-interacting DM
is thought to solve the problem due to the evacuation of DM particles that make up
the cusp by scattering against particles that gain large amounts of kinetic energy
when falling into the core from the outer regions of the halo.

There have been numerous studies that incorporate various models of self-
interacting DM in studies where the evolution of halos is simulated [216–228].
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Overall, there seems to be support for the generation of cores in galaxy halos.
Accordingly, cross sections with magnitudes around

σχχ
mχ
∼ 1 cm2/g (5.9)

generate cores in dwarf galaxy halos that seem to agree with observations.
In order to explain the small scale structure problems with DM self-interactions

while avoiding the bounds that arise at cluster halo sizes, one can invoke a velocity
dependence in the cross section as proposed in Ref. [229]. It was here noted that the
self-scattering induced by DM that interacts via a Yukawa potential can naturally
have a velocity dependence that yields a large cross section at small velocities, while
falling off rapidly with increasing velocities. This fits perfectly with the requirement
that DM self-scattering cross sections are required to be large at velocities of the
order O(10) km/s, which is the natural velocity range relevant for solving the
small scale structure problems, while becoming small at velocities of the order
O(1000) km/s, which is the natural velocity range at which bounds from DM cluster
halos are derived. It has been verified in numerical simulations that the cross section
generated by such interactions do indeed reproduce the desired behaviour in dwarf
galaxy halos [222]. The appearance of Yukawa potentials in the non-relativistic
limit is a natural feature in extensions of the SM containing light mediators, see,
e.g., Refs. [230–236].

Models that contain light mediators, such as the ones listed above, are difficult
to reconcile with cosmology. If one tries to explain the abundance of DM through
the freeze-out mechanism, the mediators will be in thermal equilibrium in the early
Universe. This requires the mediators to be unstable to prevent them from making
up most of the DM mass, or even overclose the Universe [237]. If they are unstable,
they should decay before Big Bang nucleosynthesis occurs as their presence would
alter the primordial abundances of elements [238, 239]. If DM interacts via kinetic
mixing or the Higgs portal, it is difficult to explain their short lifetimes with the
very strong bounds on the mixing parameters from DD experiments [237, 240].

In paper III of this thesis, a scenario where DD experimental limits on the
mixing parameter is evaded entirely in a model of inelastic DM, as discussed in
Sec. 3.3, was considered. The idea was that if the mass splitting between the
two states is large enough and self-interactions are strong enough, only the lower
mass state will survive the early Universe. Due to the large mass splitting, it is
kinematically impossible for scattering of the DM in the Milky Way halo to occur
in DD experiments. Thus, issues associated with a light mediator in the early
Universe are evaded while a solution to the small scale structure problems was
provided. However, it was noted in Ref. [241] that the DM annihilation, which
is greatly increased due to the Sommerfeld enhancement effect associated with
strongly interacting light mediators, will produce a variety of observable signals
such as distortions of the CMB. In light of this, the simple model considered in
paper III might not be viable.





Chapter 6

Direct dark matter searches

Both DD and ID searches are based on the assumption that DM is a particle and
that galaxies are surrounded by giant DM halos. The idea of DD and what kind of
signal is expected in a DD experiment will be described here. DD searches will also
be generalized to cover the case of inelastic DM, which touches upon why inelastic
DM was proposed in the first place. It is also interesting to have a look at the
information that is contained within a signal, should one be measured, and how
this information can be used to compare results of different DD experiments in a
halo-independent way.

6.1 Direct detection experiments

The idea of DD was invented very shortly after the realization that DM could very
well be a weakly interacting particle [242]. There have been a very large number
of experiments that have attempted to or are currently attempting to detect DM
originating from the halo around the Milky Way. While their means of detection
may differ, the underlying physics is the same in the sense that the recoiling target
in the detector material can be detected as it is struck by a DM particle from the
halo.

The differential rate at which collisions occur between a DM particle with mass
mχ and nucleus with mass mA, where the recoil energy ER is transferred, is given
by [106]

R(ER, t) =
ρχ

mχmA

∫
|~v|>vm

f(~v, t)v
dσ

dER
d3v , (6.1)

which is measured in counts/kg/day/keV. In this formalism, the velocity distribu-
tion has been normalized to unity, which is why the local galactic DM density ρχ
appears explicitly. If the experiment contains several different isotopes, the total
differential rate will be given by the sum of the rates against all targets, weighed
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by the fraction of detector mass that is made up of each isotope. The DM veloc-
ity distribution enters as f(~v, t), where the time dependence is due to the Earth’s
motion around the Sun. The last quantity is the differential cross section, given
by Eq. (3.60). The speed vm that enters in the lower limit of the integral is the
lowest speed that the incoming particle can have in order to be capable of giving
the nucleus the recoil energy ER and is given by

vm =

√
mAER

2µ2
, (6.2)

where µ is the reduced mass of the DM-nucleus system.
By plugging in Eq. (3.60) into Eq. (6.1), the differential rate can be cast on the

form
R(ER, t) =

σ0ρχ
2mχµ2

|FA(ER)|2 η(vm, t) . (6.3)

The function η(vm, t) is defined here as

η(vm, t) =

∫ ∞
vm

vf̃(v)dv , v2f̃(v) = v2

∫
dΩ f(v,Ω) . (6.4)

At this point, one can use the fact that σ0 can be written in terms of cross sections
on individual nucleons. For example, the rate due to spin-independent scattering
will be given by

RSI(ER, t) = A2
effCη(vm, t) |FA(ER)|2 , (6.5)

where the effective number of nucleons Aeff and the constant C have been defined
as

Aeff = Z + (A− Z)κ, C =
σχpρχ

2mχµ2
χp

. (6.6)

Since the function η(vm, t) is an integral over a positive function, it will necessarily
decrease as vm increases. According to Eq. (6.2), a smaller fraction of the particles
in the DM halo contribute to larger recoils in a spectra. A similar expression to the
one above holds for spin-dependent scattering where Aeff does not appear and C
will be defined differently owing to the difference between Eq. (3.68) and Eq. (3.74).

6.1.1 Direct detection results

The DM-nucleus cross section can be constrained by DD experiments that over a
period of time do not observe a number of events that are consistent with DM-
nucleus scattering having that cross section. The procedure is generally straight
forward. The standard halo model with ρχ = 0.3 GeV as discussed in Sec. 5.1 is
very often considered in this context. In the spin-independent case, the Helm form
in Eq. (3.71) is also often used.

Recent results from DD experiments include those from large xenon-based ex-
periments such as XENON1T, PandaX-II, and LUX [243–245]. The number of nu-
cleons in natural xenon averages to about 130. Since bounds are generally reported
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assuming equal coupling to protons and neutrons such that κ = 1, A2
eff ∼ 104,

which gives extremely strong bounds on the DM-nucleon cross section σχp. Due to
their energy thresholds, these experiments are sensitive to nuclear recoils that are
larger than a couple of keV, which translates to sensitivity for DM masses above
a few GeV. Other notable bounds come Darkside-50 with constraints down to just
over one GeV [246] and from CRESST-III which constrains the spin-independent
cross section for masses down to about 0.4 GeV [247].

On the spin-dependent side, bounds are placed on the DM-proton and DM-
neutron cross section. Interestingly, natural xenon contains a lot of Xe129 and Xe131,
which have non-zero angular momentum. Since the unpaired nucleon is a neutron,
the xenon based experiments constrain mostly the DM-neutron cross section [248,
249]. On the other hand, the strongest bounds from DD experiments on the spin-
dependent DM-proton cross section comes from the PICO-60 experiment [250].

There have also been anomalies reported in some experiments. Most famously,
the series of DAMA experiments have continously measured a modulation signal
for well over a decade. Firstly, the DAMA/NaI measured a signal that was consis-
tent with DM scattering. Subsequently, the DAMA/LIBRA-phase1 [251] and its
upgrade DAMA/LIBRA-phase2 [252] show evidence of the same signal. The Co-
GeNT experiment has also seen a modulation signal that was consistent with DM
scattering [253–255], but with a much lower statistical significance. In addition,
this signal appeared to be difficult to explain with the standard halo model due to
an abnormally large amplitude. Assuming that the DM particle in question would
belong to one of the simpler models, numerous DD experiments have ruled out the
DAMA signal. Most notably, the experiment run by the COSINE-100 experiment,
using exactly the same detector material as DAMA (sodium and iodine) excludes
a spin-independent DM particle explanation [256]. Of course, there have been a
variety of DM models introduced to explain why a signal could appear in some
experiments but not in others, see, e.g., Ref. [257] for a discussion.

6.2 Direct detection of inelastic dark matter

Inelastic DM, as was introduced in Sec. 3.3, was initially introduced to explain
the DAMA signal as most of the preferred parameter region was ruled out by
CDMS [258]. In this model, the DM halo consist of only the lower mass state χ,
which upon scattering in the experiment creates the χ∗ in an inelastic scattering
event. If the mass splitting δ is of the same order of magnitude as the average
kinetic energy of DM particles in the halo, the event rate in a DD experiment will
be significantly affected, which might bring the experimental results into agreement.
More recently, the case where there is a significant amount of χ∗ in the halo has
also been studied, which is interesting as the scattering process in this case is
exothermic [259–261]. The scattering kinematics are significantly altered in both
cases, which will also play a major role in how the observed energy recoil spectrum
for each type of process is shaped.
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For endothermic scattering to occur, the energy required to produce the heavier
state must be provided as kinetic energy of the colliding particles. This requirement
can be formulated as

v >

√
2δ

µ
, (6.7)

where v is the relative velocity of the colliding particles and µ is the reduced mass.
For exothermic scattering, there is no such constraint.

In order for the target to pick up a recoil energy ER in the collision, the relative
velocity must exceed vm, which is now given by [262]

v2
m =

(√
mAER

2µ2
+

δ√
2µER

)2

. (6.8)

This reduces to the elastic case in Eq. (6.2) when δ → 0. In both cases, vm will be
minimal (and zero in the case of exothermic scattering) at a non-zero value of ER.
Specifically, this relation implies that the minimum of vm, and the recoil energy
that it corresponds to are given by

(vm)min =
√

2δ/µ, (ER)min = |δ|µ/mA , (6.9)

respectively. Since the rate is proportional to η(vm, t), the rate will be maximal
close to (ER)min, but shifted somewhat because of the form factor suppression.

The way that inelastic DM was introduced to reconcile the DAMA signal with
the CDMS signal was due to the fact that since for a suitable set of parameters,
vm will be significantly smaller for scattering on iodine than on germanium (as
was used in the CDMS experiment), which implied that particles in the halo could
up-scatter against the targets in DAMA but not in CDMS.

Results from other DD experiments have been used to place bounds on various
inelastic DM models [263–266] to the point where it is now difficult to reconcile the
DAMA results with the other DD experiments also for inelastic DM. Bounds have
also lately been extended to larger mass splittings than those that would necessarily
reconcile the DAMA signal with other results [267]. Nevertheless, inelastic DM may
still solve the problem if enough tuning is done to the model, see, e.g., Ref. [268].

6.3 Halo-independent methods

In the event that a differential rate is measured in a DD experiment, it is interesting
to understand the type of DM that gave rise to it. It has also been shown that
it is possible to use the information of one DD experiment to predict precisely
the signal that should appear in other experiments [269, 270]. This can help to
constrain various DM parameters.
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The idea as noted in Refs. [269, 270] is that from a measured recoil spectrum
R1(ER) in one experiment, Eq. (6.3) can be used to isolate

Cη1(vm) =
1

A2
eff |F (ER)|2

R1(ER) , (6.10)

where η1(vm) can be considered as a function of the recoil energy via Eq. (6.2). The
right-hand side contains everything related to the experiment, while the left-hand
side contains everything DM related, save for vm, which contains the target mass.
The rate in one experiment where R(ER) is measured in a range [E1

min, E
1
max] can

then be used to calculate Cη(vm) in the corresponding velocity range [vmin, vmax]
assuming only the DM mass. The quantity Cη(vm) is universally the same for
all experiments, but for different regions in ER. Therefore, the range in vm that
this quantity is measured in corresponds to some other range in ER in a second
experiment, where the rate can then be predicted.

Going one step further, by taking the derivative of both sides with respect to
vm one obtains

Cvmf̃extr(vm) = − 1

Aeff

d

dvm

(
R(ER)

|F (ER)|2

)
, (6.11)

where ER is now considered a function of vm. Therefore, one can actually probe
the velocity distribution in a range of vm that corresponds to the range in ER that
is found in the rate measured by the DD experiment. Of course, the lowest velocity
vm that can possibly be probed is set by ER = Ethr, the threshold energy of the
experiment.

The analysis above can be generalized to inelastic scattering, as was done in
paper II of this thesis. However, as indicated by Eq. (6.8), the relationship between
vm and ER is no longer a monotonic function. Some range in vm will now correspond
to one range in ER < (ER)min and one range in ER > (ER)min. If a signal
is measured, one must first use techniques such as those developed in Ref. [271]
to determine whether the signal is due to inelastic scattering or not. If inelastic
scattering is taking place and the recoil spectrum has a distinct maximum, parts of
the velocity distribution can be reconstructed from the derived spectrum on either
side of (ER)min as described above.

Related to the discussion above, a curious observation is made in paper II. If a
spectrum that is compatible with that expected from inelastic DM is measured and
a distinct (ER)min = Eobs

min is seen in the spectrum, Eq. (6.9) gives a direct relation
between mχ and δ in terms of Eobs

min. If a second signal is seen in a DD experiment
with a different target, both mχ and δ can be uniquely determined. This is in
contrast with the elastic case where mass determination from DD is not so straight
forward [272].





Chapter 7

Indirect detection

7.1 Indirect detection methods

If DM is unstable or if it annihilates, an alternative way of searching for DM is via
SM particles that are produced in their decay or annihilations. These annihilations
may take place inside the halos of nearby galaxies, in the galactic center, or inside
astrophysical bodies such as the Sun, where DM may accumulate in extremely
large numbers over time. The general idea of indirect detection in various systems
is discussed here, although the focus will lie mainly on the study of DM in the Sun.

7.2 Halo signatures

As the DM halos consist of a very large number of DM particles, decays or anni-
hilations will occasionally take place and possibly produce SM particles. The end
product of any SM particles that are produced will be a flux of stable particles such
as protons, electrons, photons, and neutrinos. The searches for these SM particles
is collectively called indirect detection searches [273].

It is straight forward to calculate the flux of particles coming from a particular
direction in the sky, parametrized by ψ, provided that the annihilation rate is
velocity independent. The energy spectrum of SM particle species N that hits a
detector area dA per time is given by

dN

dAdE dt
=

[
〈σv〉

2(4)m2
χ

,
Γ

mχ

]
dN

dE

∫
dΩ

4π
J . (7.1)

The first and second term in the bracket holds for annihilation and decay, respec-
tively, in which 〈σv〉 is the annihilation rate and Γ is the decay rate. In the case of
annihilation, the 2 in the denominator holds for self-annihilating DM while the 4
holds in the case of particle-antiparticle pair annihilation if the DM density is the
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same for each species. The factor dN/dE is the energy spectrum of the species N
that is generated by the annihilation or decay event. The J factor is an integral
defined as

Jann =

∫
ρ2
χ(ψ, l) dl , Jdecay =

∫
ρχ(ψ, l) dl , (7.2)

where ρχ(ψ, l) is the DM density in the direction ψ at distance l, the first and the
second J factor hold for annihilation and decay, respectively.

It is clear that, due to dilution of flux over distance, the most probable objects to
search for signs of these particles are those that are closest to us, such as the Milky
Way center and the surrounding dwarf galaxies. It is also clear that the calculation
of J factors requires a very good understanding of the spatial density distribution
of DM. For velocity-dependent annihilation, which can arise in models with light
mediators and thus Sommerfeld enhanced cross sections, the J factor has to be
modified to take into account the thermally averaged Sommerfeld enhancement
factor [274], in which case the velocity distribution is also very important. At the
annihilation site, the energy spectrum of the particle that is searched for is given
by

dN

dE
=
∑
f

dNf
dE

Brf . (7.3)

In the above, it is assumed that DM annihilates or decays into a number of species f ,
which upon decaying generates the energy spectrum dNf/dE. If Nf can decay into
several species, the branching ratio Brf for annihilation or decay into the species
N must also be taken into account. These types of spectra have been calculated
for a large range of DM masses and can be looked up in tables [275].

There are some very interesting channels, including annihilation specifically into
γγ, Zγ, and hγ. The common denominator of these channels is the appearance of at
least one monochromatic photon, which would be detected as a line in the observed
spectrum. Provided that the energy is large enough, there is no SM process that
can generate such lines and this would therefore be a smoking gun for the indirect
detection of decaying or annihilating DM. Current experiments used in the search
for gamma rays due to DM annihilation or decay in various halos include Fermi-
LAT [276], H.E.S.S [277, 278], and MAGIC [279, 280]. There have also been signals
found in experimental data that could be interpreted as due to DM annihilation.
These include an excess in the spectrum of photons in the few GeV range [281] and
a line feature at 130 GeV [282]. While it is far from clear if the first signal can be
explained by other effects, it is unclear if the line at 130 GeV is even real [273].

High energy neutrinos is another important indirect detection signal. Much
like photons, DM may annihilate directly into neutrinos, producing a line fea-
ture, or generate a continuous spectra that could be observable in indirect detec-
tion experiments. Current experiments searching for high energy neutrinos due to
DM annihilation in the Milky Way halo include the IceCube experiment [283] and
ANTARES [284].
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Finally, DM annihilations may generate cosmic rays that can be searched for.
Several experiments have seen an anomalous number of cosmic ray positrons at
higher energies [285–287]. The significance is that positrons tend to annihilate,
and to explain the increase in the fraction of positrons to electrons, an unknown
mechanism to inject high-energy positrons is required. Apart from DM, pulsars
have also been proposed to solve the positron excess problem [273].

7.3 Effects of dark matter in the Sun

As the Sun revolves around the Milky Way, there will be a very large flux of DM
particles passing through it. If DM interacts, some particles will scatter against
the nuclei or electrons in the Sun and lose enough energy for its velocity to fall
below the local escape velocity of the Sun, in which case it is said to have been
captured. The accumulation of DM can after some time generate a very large
number of captured DM particles. A large abundance of DM can have significant
effects on the Sun. DM capture by stellar objects can significantly alter the transfer
of heat inside them [288–291]. It turns out that DM particles with a cross section
for scattering with nuclei in the ballpark of 10−36 cm2 will travel about one orbit
between each scattering event. When scattering occurs in the solar center, the
kinetic energy of nuclei that it scatters against is much higher than in the outer
regions of the Sun. Therefore, DM particles will scatter in the solar center and
gain a large amount of kinetic energy, travel into the outskirts of the Sun, dump
the energy by scattering against the colder targets, and fall back into the core
to repeat the process. It was found that the heat transfer for this mechanism
was extremely efficient relative to the conventional radiative and convective heat
transfer effects in the Sun [289, 291, 292]. The idea was initially introduced to
explain the solar neutrino problem, where only a third of the predicted flux of
neutrinos was experimentally observed. Since the flux of neutrinos is very sensitive
to the solar temperature, the slight cooling effect of DM could explain the deficit
in the flux. However, it was later found that neutrino oscillations were the culprit
when experiments became sensitive to neutral current processes such that muon
and tau neutrinos originating from the Sun could be observed [293].

Today, there is a different solar problem that can be alleviated by the intro-
duction of a large DM abundance. Detailed simulations of the solar atmosphere
required a substantial change in the abundance of different elements in the Sun from
previous values [294], which introduced a serious problem for helioseismology [295–
299]. Since DM had been shown to possibly solve the solar neutrino problem, a large
population of captured DM has naturally been proposed as a solution to the solar
composition problem as well [300]. By the argument of altered helioseismology, the
possibility of constraining DM via its effects has also been considered [301, 302].

If large amounts of DM are captured by the Sun and annihilate into SM particles,
it is also possible to use the Sun as a laboratory for indirect detection of DM.
Unfortunately, the only particles that is generated by such annihilation in most DM
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models will be neutrinos, as other particles will immediately scatter with particles
in the solar plasma and become lost. The flux of neutrinos in a detector will be
given by

dφ

dE
=

Γann

4πd2

∑
f

Brf
dNf
dE

, (7.4)

where Γann is the annihilation rate, d is the distance from the Sun to the detector,
and the sum yields the spectrum of neutrinos that is generated by DM annihilation
channel f . The spectrum per annihilation event is possible to calculate as has been
done in, e.g., Refs. [303, 304]. As the Sun is capable of capturing a very large
number of DM particles over its lifetime and its distance is very close to the Earth,
it is highly probable that the flux of neutrinos from annihilations in the Sun will
be much greater than that generated by DM annihilations in the Milky Way and
dwarf galaxy halos. Neutrinos that arise in the fusion processes in the Sun have
energies below 20 MeV [305] and so a flux of neutrinos well beyond this energy
range could be an indication that exotic physics such as DM annihilation is taking
place. An important background for these searches is the high-energy neutrinos
that are generated by high-energy cosmic rays that impact the Sun, producing a
flux of high-energy neutrinos [306].

7.4 The capture process

When a DM particle is captured, kinematics dictates that it will generally have
lost little energy in the initial scattering, or rather that it will be only loosely
bound. The exception is if DM and its target have very similar masses such that
the DM is able to transfer most of its kinetic energy. At this point, the process
of thermalization takes place, in which a great number of subsequent scatters with
the solar material takes place until the DM particle resides in the solar core. If the
thermalization process is efficient, the greatly enhanced density of DM in the core
will create a large annihilation rate.

The number of DM particles N that have been captured is governed by the
differential equation

Ṅ = C� + (Cself cap − Cevap)N − CannN
2 . (7.5)

As is apparent, several terms go into this equation. Firstly, the capture rate of DM
from the halo by solar nuclei enters as C�. In case of self-interacting DM, already
captured DM can capture incoming halo particles, which is given by Cself capN .
Since the Sun is a non-zero temperature body, solar nuclei can have very high
velocities. It is thus possible that a high velocity nucleus transfers so much energy
to the DM particle that its velocity becomes larger than the escape velocity, in
which case it leaves the Sun. This is called evaporation, and its rate is given by
CevapN . Finally, the annihilation rate Γann is given by CannN

2/2. The reason for



7.4. The capture process 61

the absence of the factor 1/2 is that each annihilation event will destroy two DM
particles.

When self-capture and evaporation is negligible, Ṅ = 0 indicates that equilib-
rium between capture and equilibrium occurs when

Γann =
1

2
C� . (7.6)

This very important observation is crucial for indirect detection experiments. Intu-
itively, and as will be seen shortly, the capture rate is directly proportional to the
DM-nucleus scattering cross section. Under this assumption, Eq. (7.4) indicates
that the generated neutrino flux is directly proportional to the the scattering cross
section. This has been used to place bounds on σχp by using the non-observation
of neutrinos in a number of neutrino experiments without the need for any other
assumption than DM mass, scattering cross section, and the branching ratio into
specific neutrino-generating channels [307–310].

The evolution formula is easily generalized to the case of multicomponent DM
such as the case where the halo consist of particles χ with total number N , and
anti-particles χ̄ with total number N̄ , as was considered in paper I. In this case,
the two coupled equations are

Ṅ = Cχ,� +
(
Cself − Cχevap

)
N + C̄selfN̄ − CannNN̄ , (7.7)

˙̄N = Cχ̄,� +
(
Cself − Cχ̄evap

)
N̄ + C̄selfN − CannNN̄ . (7.8)

The number evolution equation of each species contains an evaporation term and
an annihilation term just as in the single component DM case and their capture
rates may be different if they interact differently with the solar material. The new
pieces that relate to self-interactions are Cself and C̄self , which take into account
the contribution from self-capture of halo particles on already captured particles,
self-interactions leading to the target being ejected while the incoming particle
is captured, and self-interactions leading to the ejection of the target while the
incoming particle escapes. The individual contributions to these formulae will be
discussed later.

The capture of DM by SM particles will in the following also be generalized
to include the case where DM scatters inelastically, as this is the main theme of
paper II and paper IV of this thesis. The number of publications related to solar
capture and indirect detection using the Sun is far too numerous to point out here.
In the inelastic DM case, which is relevant to this thesis, there have been some
studies that consider the neutrino signal arising from inelastic DM capture [311–
315] and it is also the model under consideration in paper II, where captures due
to both endothermic and exothermic interactions was considered.

7.4.1 Solar capture, evaporation and annihilation

The capture rate of DM in the Sun by target i, being either free protons, electrons
or larger atoms, is derived in Refs. [316, 317]. The starting point for the calculation
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is to define the area of a sphere of radius R, where R is sufficiently large for the
gravitational potential of the Sun to be negligible, through which flux of halo DM
particles is given by

1

4
uf(u) du dcos2θ . (7.9)

Here, u is the velocity and f(u) is the galactic speed distribution, usually taken
to be the one given in Eq. (5.7), and θ is the angle between ~u and the negative
radial unit vector (pointing from R towards the solar center). Making the change
of variables J = ru sin θ, such that dJ2 = R2u2dcos2θ. The differential flux after
integrating over the area of the sphere is given by

π
f(u)

u
du dJ2 . (7.10)

When particles fall into the gravitational well, they accelerate to the velocity w =√
u2 + v2

esc(r), where vesc(r) is the local escape velocity at radius r. Considering a
shell of thickness dr, the scattering probability of a single DM particle against the
target i traversing the shell will be given by

Pscatter =
dσ

dER
dERni(r)w dt , (7.11)

where dσ/dER is the differential cross section as defined in Eq. (3.60) and the time
spent in the shell dt is given by

dt = 2
dr

w

√
1−

(
J
rw

)2 (7.12)

with a factor 2 due to twice passing the shell. This expression holds when the
probability of scattering is very small in the first passing of the shell and J < rw is
guaranteed for any particle that can traverse the shell. The differential scattering
rate is given by the differential flux multiplied by the scattering rate in a shell

dCi = 2πni(r)
f(u)

u

dσi
dER

1√
1−

(
J
rw

)2 dr du dJ2 dER . (7.13)

Making contact with traditional definitions, the total capture rate per volume ele-
ment is found by integration over u, ER, and J2 where the latter can be analytically
integrated over in the range 0 < J2 < r2w2, as

dCi
dV

=

∫ umax

umin

dv
f(u)

u
wΩi(r, w) , (7.14)

where

Ωi(r, w) = wni(r)

∫ Emax

Emin

dσi
dER

dER . (7.15)

It is very common to use the form factor defined in Eq. (3.70) to analytically
evaluate the integral over ER as well. The integral limits are rather complicated
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as Emin and Emax become difficult expressions in the case of inelastic DM. For
example, the smallest (−) and largest (+) recoil energies possible in a collision
with a nucleus of mass mA are given by

ER =
µ2

mA
w2

(
1±

√
1− δ

µw2/2

)
− µ

mA
δ , (7.16)

where δ is the mass splitting and µ is the reduced mass. Capture can only occur
if the recoil energy carried by the nucleus is large enough for the incoming DM
particle to become gravitationally bound,

Ecapt = mχu
2/2− δ . (7.17)

These expressions can then be used to figure out the range in u and ER for which
capture occurs [2]. They also hold in the case of elastic scattering by substituting
δ → 0.

To prepare for later discussion, the solar capture rate in the spin-independent
case can be cast on the form

CSun = 4π
∑
i

A2
eff,i

∫ R�

0

dr r2ρi(r)

∫ umax(r)

umin

duu Cf̃(u)

∫ Emax

Emin

|Fi(ER)|2 dER.

(7.18)
In reaching this expression, the velocity distribution f̃(u) as defined in Eq. (6.4) has
been plugged in as well as the the differential cross section in Eq. (3.60), where the
form factor is realized to be a target dependent object. This gives rise to the factors
Aeff,i and C as defined in Eq. (6.6). As in the DD case, a similar expression holds for
the spin-dependent case by removing the factor Aeff,i and redefining C to account
for the different definitions of σ0 in Eq. (3.74) relative to the spin-independent case
of Eq. (3.68).

Evaporation of DM will take place due to the fact that nuclei in the Sun have a
temperature. When scattering takes place, there may be enough energy transferred
to the DM particle for it to become gravitationally unbound. This phenomenon
has been studied both numerically and analytically for scattering with nuclei in
elastic [318–322] and in inelastic DM models [4], as well as for scattering against
electrons [323, 324]. The general conclusion is that DM evaporation is completely
irrelevant for mχ & 4 GeV for elastic scattering against nuclei and mχ & 2 GeV for
scattering against electrons. There is of course a mild dependence on the scattering
cross section, but its impact on the evaporation rate is surprisingly small compared
to the change in mass, which is the crucial parameter.

Once captured, DM is usually assumed to fall into a thermal distribution instan-
taneously. Simple estimates show that this is the case for DM cross sections well
below those that would generate DM abundances large enough for observable DM
signals [312], but has also been shown numerically [325]. Leaving the discussion on
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the thermalization process that drives particles into a distribution of captured DM
for later, the annihilation rate is calculated as

Γann =
〈σannv〉

2

∫
f(~x)2d3x =

1

2
CannN

2 , (7.19)

where f(~x) is the DM density distribution at the location ~x. The factor of 1/2
appears in order to avoid double counting as there are, in the large N limit, only
N2/2 pairs of DM particles that can annihilate.

7.4.2 Self-capture and ejection

The aim of paper I was to study the abundance of DM that can arise in the case
where the universal DM abundance is composed of DM and anti-DM whose capture
rates are different. DM with large self-scattering cross sections, as motivated by the
small scale structure problems, can become very relevant when an initial abundance
has grown sufficiently large, ultimately leading to a self-capture rate that exceeds
the rate of capture by solar material by orders of magnitude [326]. In principle,
there is little difference between solar capture and self-capture and the capture rate
is given by an expression identical to Eq. (7.14) except Ω(r, w) has to be redefined.

Considering the case where there are both particles and antiparticles in the DM
halo and inside the Sun, there are a few interesting cases that can happen in a
collision depending on how much kinetic energy the incoming DM particle has and
how much energy it transfers to the target particle. Assuming that the scattering
cross section is velocity and momentum independent, the probability of having a
particular recoil ER is uniformly distributed in the interval Emin < ER < Emax.
Therefore, the probability Pevent of a particular event to happen when a DM particle
scatters will simply be a ratio between an energy range of recoil energies ∆ER,
divided by the full range in possible recoil energies,

Pevent =
∆ER

mχw2/2
. (7.20)

The denominator is nothing but Emax − Emin, where Eq. (7.16) has been used,
setting δ = 0 and µ = mχ/2. Therefore, the relevant Ω(r, w) for a specific event is
given by

Ωevent(r, w) = σfχ(r)
∆ER
mχw/2

, (7.21)

where σ is the scattering cross section.
For self-capture, the largest allowed amount of energy to transfer ismχvesc(r)2/2,

or the target is ejected, while the smallest amount of energy required to trap the
incoming particle is mχu

2/2. Thus, ∆ER is the difference of the two and so

Ωsc(r, w) = σfT (r)
vesc(r)2 − u2

w
Θ(vesc(r)− u) , (7.22)

where σ is the scattering cross section, fT is the radial distribution of the target,
and Θ(x) is the Heaviside function, which must here be put in by hand as an
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incoming particle with u > vesc must eject the target in order to become captured.
The total rate for self-capture becomes

CscNT = nincσ

∫ R�

0

dr 4πr2 fT (r)

∫ vesc(r)

0

du
f(u)

u

(
v2

esc − u2
)
. (7.23)

Here, ninc is the local galactic abundance of the incoming particle, and NT the total
number of captured target particles.

If the transferred energy exceeds mχv
2
esc/2, the target becomes gravitationally

unbound and leaves the Sun, resulting in the ejection of a previously captured
particle. In this case, ∆ER = mχu

2/2 and

Ωeject(r, w) = σfT (r)
u2

w
. (7.24)

The ejection rate is then given by

CejectNT = nincσ

∫ R�

0

dr 4πr2 fT (r)

∫ ∞
0

du
f(u)

u
. (7.25)

One may also consider the case where the incoming particle ejects a target
particle without becoming captured. However, this process requires the velocity
of the incoming particle to be at least twice the escape velocity in the Sun, which
implies that its velocity is much greater than the galactic escape velocity. This
case was considered in paper I but shown to be negligible even if such high velocity
particles exist in the halo, at least using the standard halo model. One can also
define the exchange rate, which is the rate at which a particle ejects a target particle
and becoming trapped in the process. This process is only interesting when the
incoming and target particles are different. Again, it was shown in paper I that,
due to the low velocity of halo particles relative to the escape velocity, the ejection of
a target will certainly lead to capture of the incoming particle, and so the exchange
rate is given by

CexchNT = CejectNT . (7.26)

If ejection without capture occurs, the exchange rate is given by the above minus
the rate for ejection without capture.

The constants Cself and C̄self in Eq. (7.7) are calculated by choosing appropri-
ate targets and cross sections in the relations above. Neglecting ejection without
capture, the parameter C gets a positive contribution from Ωsc and a negative con-
tribution from Cexch, while C̄ gets only a positive contribution from Cexch. Scenarios
beyond the model of particles and antiparticles but rather where DM is made up of
two distinct particles with different masses where the two species interact strongly
has also been studied [327].
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7.5 Thermalization

As is apparent from the discussion regarding both the annihilation rate and self-
interaction related phenomena, the spatial distribution in the Sun is important to
understand. The shape of the distribution was first studied properly when attempts
were made to reconcile the solar neutrino problem with increased energy transport
by DM in the Sun [291, 319, 328]. In the simple elastic DM case, the radial distri-
bution depends on whether DM is in local thermal equilibrium or not. As discussed
in Ref. [291], this is (somewhat) decided by the Knudsen number, which measures
the length travelled between collisions and is given by

K =
l

rχ
, (7.27)

where l is the mean free path travelled and rχ is a number representative of the
size of the DM distribution. The caveat to this is that heavy DM travels much
slower than the surrounding nuclei with which it collides and will therefore scatter
many times more during one mean free path length. Nevertheless, it gives a good
indication on whether one is working in the local thermal equilibrium or isothermal
regime.

In the limit of small mean free paths, DM is in local thermal equilibrium at
each radius within the solar interior. The distribution has in this case been derived
to first order in a spherical harmonics expansion of the Boltzmann equation with a
collision operator where DM is coupled to the surrounding nuclei (but not to itself).
The distribution is in this limit given in Ref. [291] and is a quite complicated history
that depends on the temperature gradient. It is also useful only for DM with cross
sections greater than ∼ 10−36 cm2 or so, depending on whether scattering is spin-
independent or spin-dependent.

The usual case to consider is that of Knudsen numbers well beyond unity. The
distribution then becomes isothermal and it can be calculated under the assumption
of being a Boltzmann distribution as in, e.g., Ref. [318],

niso(~r) = n0e
−mχφ(~r)/Tc , (7.28)

where

φ(~r) =

∫ r

0

G
M(r)

r2
dr′ ≈ 2πGρcr

2

3
, (7.29)

is the gravitational potential assuming that the density is constant and equal to
that of the solar core. The constant G is the gravitational constant, while ρc and
Tc are the solar core density and temperature respectively. The above defines the
usual parametrization of the isothermal distribution as

nISO(~r) = n0e
−r2/r2χ , (7.30)

where n0 = π−3/2r−3
χ N and rχ = 3Tc/2πGρcmχ. For a DM particle with mass

mχ = 10 GeV, the radial distribution extends no more than a few percent of the
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solar radius from r = 0 and its size decreases with increasing DM mass, motivating
the approximation of setting the density and temperature to be equal to the solar
core values.

Given the above, thermalization in the elastic case is under control and is gen-
erally assumed, with well defined radial distributions in each case for the Knudsen
number. However, this is definitely not the case for inelastic DM. In the theory of
inelastic DM, the mass separation between the two states is generally considered
of the order tens to hundreds of keV while the solar core temperature is roughly
1.4 keV. The fraction of the excited DM particle χ2 to the lower state χ1 in thermal
equilibrium is exponentially suppressed by a factor e−δ/T , which is essentially zero
for interesting values of δ. This is due to the fact that the nuclei with velocities
large enough to collide against a χ1 and produce the χ2 live way off in the expo-
nentially suppressed region of the Boltzmann distribution, while the χ2 can scatter
against any nucleus, Boltzmann suppressed or not. When an inelastic DM particle
is captured by the Sun, it will however carry a significant amount of kinetic energy
itself. As long as it still retains some of this energy, it can scatter against at least
the heavier elements in the Sun until it has reached some threshold, at which point
it becomes stuck in an orbit out of which it will never scatter. Taking all of this
into account, it is only natural to expect that inelastic DM does not thermalize
in the Sun and that its distribution is significantly diluted relative to the case of
elastic DM, which has a strong impact on the annihilation rate.

Paper IV studies the thermalization process of inelastic DM using a method
with a similar approach to that of Ref. [319], which was later used to study also
the effective theory framework [321] and leptophilic DM models [324], all in the
context of finding when evaporation depletes the captured DM abundance. When
a DM particle is captured by the Sun, it will stay in an orbit characterized by a fixed
energy E and angular momentum L. The fact that a DM particle with a sufficiently
small scattering cross section completes many orbits between each scattering event
allows one to neglect precisely where the particle entered its orbit, as the statistical
time spent within a shell in the Sun is given by the fraction of the time it takes
to travel through the shell and the time it takes to complete half of an orbit. The
distribution can thus be defined in the phase-space defined by the variables E and
L by discretization into a number of states α, labelling the discrete distribution
fα. Given a distribution in this space, the radial distribution of particles in a given
orbit is found by the total number of particles multiplied by the fraction of time
spent at a particular radius. The full radial distribution is then found by summing
the radial distributions from each state.

The distribution for a DM species without self-interactions will evolve according
to

ḟα = Cα +
∑
β

Σβ→αfβ − fα
∑
β

(1 + δαβ)Γαβfβ , (7.31)

where ḟα is the change in the number of particles in state α. The first term on
the right-hand side corresponds to capture of halo particles into the state α, the
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second describes transitions between different states as DM particles scatter against
solar material, and the last term describes the annihilation of particles from states
α and β. The reason for a factor 2 in the case where β = α is due to the fact
that two particles are annihilated in the same state. For β 6= α, one particle is
removed from the state α while the second particle is removed in the equation
where α and β are interchanged. The annihilation term is dropped because it
induces non-linear effects that makes solving the system over a solar lifetime a very
computationally expensive task. There are then two ways one can go on about
calculating distributions. Firstly, one can use the Green’s function for the problem
and write the solution in matrix form as

~f(t) =

∫ t

0

eΓ(t−t′) ~C�dt
′ . (7.32)

Upon normalization, this will give the radial distribution taking into account parti-
cles that were continously added to the distribution. Secondly, it can be interesting
to follow a given initial distribution, in which case Cα is dropped and the final
distribution is given by

~f(t) = eΓt ~f(0) , (7.33)

where f(0) is the initial distribution. Although this looks simple, discretizing the
phase-space into N states implies that Γ is an N × N matrix, which leads to a
fairly time consuming matrix exponential to calculate. For inelastic DM, this is a
2N × 2N matrix since fα willl contain N states related to χ1 and N states related
to χ2.

In principle, the calculation of Cα can be done using Eq. (7.13). Straight for-
wardly performing this integral results in the loss of any information of the outgoing
DM particle except for the fact that it is gravitationally bound to the Sun. The
energy and angular momentum of the outgoing DM particle can however be de-
termined entirely in terms of the parameters that are integrated over. Therefore,
discretizing the integral allows for the calculation of exactly how many particles
will be captured into each state, which determines Cα. This is also simplified by
the fact that the kinetic energies of solar nuclei are negligible compared to that of
the incoming DM particle.

When calculating the scattering from β to α, the atomic target can no longer
be considered stationary and their distribution must therefore be integrated over.
The assumption that a particle travels many orbits between each scattering event
allows for the rate of transitions between states to be calculated by dividing the
Sun into a series of concentric shells of radii ri. The scattering rate between states
is then the product of the total scattering rate inside each shell R(ri), the fraction
of the time spent in each shell T (ri), and the probability that the particle enters
into the given α-state Pβ→α(ri), summed over all shells that the particle in state
β traverses. Therefore, the off-diagonal elements of Γβ→α are given by

Γβ→α =
∑
i

R(ri)T (ri)Pβ→α(ri) . (7.34)
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The diagonal elements of Γβ→α will be the negative of the sum of all off-diagonal
elements in the corresponding column. This corresponds to the total rate at which
particles scatter out of the state α into all other states.

An alternative way of sampling the Γβ→α matrix would be to randomly place
particles in an orbit with a given E and L and follow its orbit over some time and
take the average of final positions to sample the flow of particles. In hindsight,
it would probably have been easier to randomize starting points in E and L for
particles according to the fraction of particles that were captured into each state
and follow the particles until they end up in a state out of which they will never
scatter. This would be a much less computationally demanding way to study the
thermalization process, since particles getting stuck in regions where the scattering
rate exceeds the solar lifetime no longer need to be tracked, but can be distributed
according to the fractional time spent at each radius as discussed above.

On a final note, the study of inelastic DM was generalized to the case where
the scattering process on nuclei was governed by a light mediator and to the case
where the lifetime of the χ2 was short enough for it to not travel significantly before
it decayed into a χ1 and some light new particle that would escape the Sun [329].
The results indicated that there was a significant difference to the region in phase-
space where particles were captured. However, very little difference, if any at all,
was found in the final distribution of DM after the thermalization process had
commenced.

7.5.1 A lower bound on the solar capture rate of dark
matter

The way that the Sun captures DM depends on the galactic velocity distribution
can be seen in Eq. (7.18). One may realize that the quantity Cuf̃(u) enters both
in the direct detection rate and in the solar capture rate. As was noted in Sec. 6.3,
a positive signal in a DD experiment can give information on this quantity for a
range of velocities corresponding to the range in recoil energies that the signal is
measured in.

Armed with this knowledge, it is possible to plug the known part of the distri-
bution function into the solar capture rate and derive the capture rate [330]

CSun ≥ 4π
∑
i

A2
eff,i

∫ R�

0

dr r2ρi(r)

∫
uknown

du

(
−dη̃(u)

du

)∫ Emax(r,u)

Em(r,u)

|F (ER)|2 dER.

(7.35)
Here, uknown is the range in velocities in which the velocity distribution is known.
In the idealized case, this will be the full velocity range from vthr =

√
mAEthr/2µ2

to infinity where according to Eq. (6.2), vthr is the lowest velocity that can give rise
to a detectable recoil energy, the smallest of which is set by the threshold energy
ER = Ethr in the experiment. This fact alone implies that the capture rate will be
a lower bound on the capture rate as the total capture rate is found by integrating
over the full velocity distribution and the part belonging to the smallest velocities
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is not possible to probe in DD experiments since the recoil energies produced by
these particles fall below Ethr. The upper end of the integral will probably also be
cut short as there are very few particles capable of producing large enough recoils to
probe this region of the velocity distribution although this depends on the actual
speed distribution. Assuming equilibrium between capture and annihilation, the
lower bound on the capture rate is equivalent to a lower bound on the annihilation
rate, which can then be used to place bounds on the annihilation cross section in a
halo-independent fashion. However, it is important to point out that the underlying
assumption here is that the Earth and the Sun see the same velocity distribution,
which is not completely true since the earth revolves around the Sun. On the other
hand, it can be argued that this should affect the velocity distributions mildly and
mainly in the lowest velocity range.

The main idea of Paper II was to generalize this setting to the case of inelastic
DM. This is not straight forward because of different scattering kinematics. Re-
membering from the discussion in Sec. 6.3 that η(ER) will have a maximum at some
non-zero value (ER)min, some recoil energy below (ER)min and some recoil energy
above (ER)min correspond to the same value of η(vm). Therefore, this minimal
recoil energy should be observed and the signal determined to be due to inelastic
scattering. In a range in recoil energies either above or below (ER)min, Eq. (6.8)
does provide a unique relation between the recoil energy and vm, which allows for
some part of the velocity distribution to be derived using Eq. (6.11). Unfortunately,
for the case where the halo consists of only χ, the velocity must generally be large,
and increasing with larger δ, for scattering to possibly occur at all in a DD exper-
iment. Thus, if δ is large enough, most of the velocity distribution is hidden and
the lower bound on the capture rate is therefore small. For exothermic scattering
however, which will take place if the halo contains a significant fraction of χ∗, even
zero velocity DM will induce a large recoil energy in the DD experiment. In this
case, it is possible (at least kinematically) to probe the entire velocity distribu-
tion, but again one should keep in mind that at least the lowest velocity region in
the galactic DM velocity distribution can be significantly distorted by the Earth’s
orbital velocity around the Sun.



Chapter 8

Summary and conclusions

The discussion has to this point been centered around placing the papers of Part II
into context. First, various sources for evidence of the existence of DM were re-
viewed, followed by a short discussion on standard model problems, for which pos-
sible solutions involve new particles that may play the role of DM. Then, various
ways to introduce interactions between the SM and DM were discussed along with
the proper treatment of a particular model of inelastic DM and a discussion regard-
ing its peculiar scattering properties. The non-relativistic framework that is used
to describe scattering processes between DM and SM particles was then introduced.
The cosmological model was then presented, which ultimately leads to Boltzmann
equations that describe the time evolution of number densities of DM in an expand-
ing Universe. Next up was a discussion around the theory of DM halos and what is
known about their properties as well as a presentation of the small scale structure
problems and their possible solutions. Direct detection was then discussed, includ-
ing the different effects of DM scattering inelastically as well as halo-independent
methods. Finally, indirect detection was discussed with an extensive presentation
of the current knowledge of solar capture and the observables that can be probed
as DM is captured by the Sun. Each paper in Part II was also explicitly placed
into context wherever the discussion was directly related.

In Paper I, the solar capture process is discussed in a scenario where the total
abundance of DM in the Universe is made up in equal parts of particles and an-
tiparticles. The goal was to see whether a large enough abundance can develop due
to differences in capture rates of each species to solve the solar composition prob-
lem despite annihilation taking place. The importance of this setting is that only
asymmetric DM models had previously been considered, while it was here shown
that thermal relic DM can also do the job.

In paper II, the capture of inelastic DM by the Sun is considered. The goal was
primarily to extend a previous study to find a lower bound on the solar capture
rate, and through it a lower bound on the neutrino flux in neutrino experiments
on Earth, to cover the inelastic DM scenario. The paper also discusses capture
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via endothermic and exothermic reactions as well as the DM properties that can
be detected by signals in multiple direct detection experiments. It is found that a
direct detection signal due to exothermic DM can give information on essentially
all of the weighted DM halo velocity distribution, while only the very high velocity
part can be extracted for endothermic scattering, depending of course on the mass
splitting δ and the actual velocity distribution. A signal in one experiment with
a distinct minimum in the spectral function η as a function of ER can relate the
mass splitting to the DM mass, while signals with minima in two experiments
with different targets may be used to determine both the DM mass and the mass
splitting. Finally, the framework is demonstrated using the standard halo model
and reasonable assumptions on the DM halo. The effects of isospin violation on the
lower bound was also investigated.

In Paper III, self-interacting inelastic DM was considered in the context of solv-
ing the small scale structure problems. The set of differential equations necessary
to be solved in order to calculate scattering cross sections has been found extremely
numerically unstable. It is also difficult to reconcile models of this type with the
number of relativistic degrees of freedom in the early Universe, and direct detec-
tion bounds. Here, a method is developed that makes the system of equations much
less prone to numerical issues. The relative abundance of the heavier and lighter
states are also studied. It is found that the self-scattering cross section can be
large enough to solve the small scale structure problems. It is also found that it is
possible to design scenarios where the abundance of the heavier state is very small,
which avoids bounds from direct detection and allows the mediator to decay fast
enough to not spoil Big Bang nucleosynthesis.

In Paper IV, the thermalization process of inelastic DM is studied to investigate
whether the distribution of inelastic DM develops into a configuration where the
annihilation rate can be assumed to be in equilibrium with the capture rate, which is
a very important assumption for indirect detection experiments and to find whether
evaporation due to downscattering is important to take into account. It is found
that the distribution never really reaches a stationary state, but quickly reaches a
state that develops very slowly. While it is not shown explicitly, it is found that
in a large part of parameter space, there is good reason to believe that equilibrium
between capture and annihilation has occurred in a large part of parameter space.
It is also found that evaporation induced by downscattering has a very small effect
on the number density evolution.
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