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Abstract

In the quest for relativistic effects in large-scale structures, we use numerical relativity simulations to

describe the spacetime evolution during nonlinear structure formation. We explore how structures

decouple from the expanding universe to collapse, finding criteria from the Top-Hat model to be ro-

bust estimators. Additionally, we characterise spacetime with gravito-electromagnetism, describing

filaments as carrying a gravitational current, and the Petrov classification, invariantly identifying the

generation of gravitational waves during this collapse.

A new Einstein Toolkit thorn ICPertFLRW was developed to generate the initial conditions.

These are fully nonlinear based directly on the gauge invariant comoving curvature perturbation

Rc, commonly used to model early-universe fluctuations. Assigning a simple 3-dimensional sinu-

soidal structure toRc, we have a lattice of quasi-spherical over-densities representing idealised dark

matter halos connected through filaments and surrounded by voids. This is implemented in the

synchronous-comoving gauge, using a pressureless perfect fluid (dust) description of cold dark mat-

ter, set at an initial redshift z ≈ 300 and then fully evolved with Einstein Toolkit.

With the simulation results, we look into whether the Top-Hat spherical and homogeneous col-

lapse model provides a good description of the collapse of over-densities. We find that the Top-Hat is

an excellent approximation for the evolution of peaks, where we observe that the shear is negligible

and collapse occurs when the linear density contrast reaches the predicted critical value δ
(1)
C = 1.69.

Additionally, we characterise the turn-around boundary and show how its evolution depends on the

initial distribution of matter, finding that it grows fastest in denser directions.

While relativistic cosmology can be formulated covariantly, one concern with numerical rela-

tivity simulations is gauge variance; although observables should be gauge-invariant, simulations do

not necessarily focus on their computations. To address this issue, we consider invariants built from

the Weyl tensor, notably the electric and magnetic parts and the Weyl scalars (gauge-invariant at

first-order in cosmology), and invariants used for the Petrov classification. We then developed the

EBWeyl post-processing code, which has been thoroughly tested on five analytic metrics and can be

applied to any numerical spacetime in any gauge.

In the simulation data, we look at the distribution of the electric and magnetic parts of the Weyl

tensor, finding that they are stronger along and around the filaments respectively. We find that the

spacetime is of Petrov type I everywhere, so we introduce a method to dynamically classify different

regions at different times of the simulation box in leading order Petrov types. Along the filaments,

the leading order Petrov type is D, while the centre of the over-density remains conformally flat,

type O, in line with the Top-Hat model. The surrounding region demonstrates a sort of peeling-off

in action, with the spacetime transitioning between different Petrov types as non-linearities grow,

with the production of gravitational waves.
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Notation

The speed of light and the gravitational constant are taken to be one: c = G = 1.

Greek indices are used for spacetime components {0, 1, 2, 3},
while Latin indices are used for space components {1, 2, 3}.

General Relativity
Spacetime

τ Proper time,
da
dτ = ȧ . . . . . . . . . . . . . . . . . . . . . . Eq. (2.4)

δαβ Kronecker delta

gµν Spacetime metric . . . . . . . . . . . . . . . . . . . . . . . . . Eq. (2.3), {−, +, +, +}
A(µν) Symmetrisation of the tensorAµν . . . . . . . . . . Eq. (2.7)

A[µν] Anti-symmetrisation of the tensorAµν . . . . . Eq. (2.7)

¯̄Aα
β &

˜̃Aα
β Tensor density & pseudo-tensor respectively Eq. (2.8) & Eq. (2.9)

ϵαβµν Levi-Civita tensor . . . . . . . . . . . . . . . . . . . . . . . . Eq. (2.12)

∂α Partial derivative . . . . . . . . . . . . . . . . . . . . . . . . . ∂α = ∂
∂xα

∇α Covariant derivative w.r.t. gµν . . . . . . . . . . . . . Eq. (2.13)

Γα
µν Christoffel symbols . . . . . . . . . . . . . . . . . . . . . . . Eq. (2.14)

Rα
σµν Riemann tensor . . . . . . . . . . . . . . . . . . . . . . . . . . Eq. (2.19)

Rαβ &R Ricci tensor & Ricci scalar (also
(4)R) . . . . . . . Eq. (2.22) & Eq. (2.23)

Cαβµν Weyl tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eq. (2.24)

Projection along or orthogonally to a vector
The superscript {v} denotes a variable defined in the frame of said timelike vector vα.

The pre-superscript (3) applies for 3-dimensional quantities built from the spatial metric P
{v}
αβ .

For simplicity, quantities with (3) are not given the {v} superscript; instead, the relevant frame

should be determined based on context.

P
{v}
αβ Projection tensor of vα or Spatial metric . . . . Eq. (2.25), {+, +, +}
A

{v}
⟨µν⟩ Spatially projected, symmetric and tracefree

part ofAµν

Eq. (2.26)

Lv Lie derivative along the vector vα . . . . . . . . . . Eq. (2.27)

D
{v}
α Spatial covariant derivative w.r.t. P

{v}
αβ . . . . . . Eq. (2.32)

D{v}× Spatial curl operator . . . . . . . . . . . . . . . . . . . . . . Eq. (2.34)

ϵ
{v}
βµν Spatial Levi-Civita tensor . . . . . . . . . . . . . . . . . Eq. (2.35)

(3)Γα
µν Spatial Christoffel symbols

(3)Rα
σµν Spatial Riemann tensor . . . . . . . . . . . . . . . . . . . Eq. (2.36)

(3)Rσν &
(3)R Spatial Ricci tensor & scalar respectively

xvi



xvii

Einstein’s field equations
Λ Cosmological constant

Gαβ Einstein tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eq. (2.38)

κ Einstein’s gravitational constant . . . . . . . . . . . . . κ = 8πGc−4 = 8π

Tαβ Energy stress tensor . . . . . . . . . . . . . . . . . . . . . . . . Eq. (2.41)

T Trace of the energy stress tensor . . . . . . . . . . . . . Eq. (2.42)

Matter
ρ{v} Energy density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eq. (2.43)

q
{v}
α Energy flux or momentum density . . . . . . . . . . . Eq. (2.43)

S
{v}
αβ Stress tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eq. (2.43)

S{v}
Trace of the stress tensor . . . . . . . . . . . . . . . . . . . . Eq. (2.44)

p{v} Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eq. (2.44)

π
{v}
αβ Anisotropic pressure . . . . . . . . . . . . . . . . . . . . . . . Eq. (2.44)

ϱ{v} Rest mass energy density . . . . . . . . . . . . . . . . . . . . Eq. (2.45)

ε{v} Specific internal energy . . . . . . . . . . . . . . . . . . . . . Eq. (2.45)

h{v} Specific enthalpy . . . . . . . . . . . . . . . . . . . . . . . . . . . Eq. (2.46)

Kinematical rest-energy frame
All of the following are uniquely defined in the frame of the fluid flow uα.

uα Fluid 4-velocity

hαβ Projection tensor of uα or Spatial metric . . . . . . Eq. (2.49), {+, +, +}
Θαβ Expansion tensor . . . . . . . . . . . . . . . . . . . . . . . . . . Eq. (2.50)

ωαβ Vorticity tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eq. (2.50)

aα Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eq. (2.50)

Θ Expansion scalar . . . . . . . . . . . . . . . . . . . . . . . . . . . Eq. (2.51)

σαβ Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eq. (2.51)

Weyl tensor
E

{v}
αβ Electric part of the Weyl tensor in the frame vα Eq. (2.68)

B
{v}
αβ Magnetic part of theWeyl tensor in the frame vα Eq. (2.68)

Q
{v}
αβ Complex combination of E

{v}
αβ andB

{v}
αβ . . . . . Eq. (2.71)

Ψ0, Ψ1, Ψ2,

Ψ3,Ψ4

Weyl scalars in the frame of the null tetrad

lα, kα, mα, m̄α

Eq. (2.80)

I , J , LB ,

M , S ,D
Frame independent invariants from Cαβµν . . . . Eq. (2.90, 2.93, 2.94, 2.95)

K , L,N Frame dependent invariants from Cαβµν . . . . . Eq. (2.96)



xviii NOTATION

Numerical Relativity
γij Projection tensor of nα or Spatial metric . . . . . . Eq. (3.1), {+, +, +}
α Lapse

βi Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eq. (3.2)

ni Timelike vector normal to γij . . . . . . . . . . . . . . . Eq. (3.3)

ai Acceleration of ni . . . . . . . . . . . . . . . . . . . . . . . . . . Eq. (3.4)

t Coordinate time . . . . . . . . . . . . . . . . . . . . . . . . . . . Eq. (3.8)

Kij Extrinsic curvature . . . . . . . . . . . . . . . . . . . . . . . . . Eq. (3.12)

K Trace of extrinsic curvature . . . . . . . . . . . . . . . . . Eq. (3.14)

Aij Traceless part of the extrinsic curvature . . . . . . Eq. (3.14)

Cosmology
Homogeneous & isotropic universe
The overhead bar identifies background quantities.

a Scale factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Section 4.1.4

η Conformal time,
dg
dη = g′ . . . . . . . . . . . . . . . . . . . Eq. (4.2)

H Hubble’s scalar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eq. (4.5)

H Conformal Hubble’s scalar . . . . . . . . . . . . . . . . . . Eq. (4.6)

z Redshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eq. (4.8)

Θ̄ FLRW expansion scalar . . . . . . . . . . . . . . . . . . . . . Eq. (4.15)

ρ̄ FLRW energy density in the uµ frame . . . . . . . . Eq. (4.17)

Ωk , Ωm, ΩΛ Dimensionless density parameters of curvature,

matter and dark energy

Eq. (4.19)

Perturbation theory & structure formation
The (1) superscript identifies a first-order perturbative term.

ϕ, ω, ψ, χ Scalar perturbations to the spacetime metric . . Eq. (4.30, 4.31, 4.32)

ωS
i , χ

S
i Vector perturbations to the spacetime metric . . Eq. (4.30, 4.31, 4.32)

χTT
ij Tensor perturbations to the spacetime metric . . Eq. (4.30, 4.32)

δ Density contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . Eq. (4.33)

δ
(1)
C Linear density contrast a collapse . . . . . . . . . . . . Eq. (4.75)

f1 Growth factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eq. (4.57)

ϑij Deformation tensor . . . . . . . . . . . . . . . . . . . . . . . . Eq. (4.34)

ϑ Deformation scalar, trace of ϑij . . . . . . . . . . . . . . Eq. (4.34)

□ij Traceless operator . . . . . . . . . . . . . . . . . . . . . . . . . . □ij = ∂i∂j − 1
3δijδ

kl∂k∂l

∇2
Laplacian operator . . . . . . . . . . . . . . . . . . . . . . . . . ∇2 = gαβ∇α∇β

Rc Comoving curvature perturbation . . . . . . . . . . . Eq. (4.50)

ζ Uniform-density curvature perturbation . . . . . . Eq. (4.50)

Φ,Ψ Bardeen potentials: Newtonian potential and

conformal Newtonian curvature perturbation

Eq. (4.54)

⟨ϕ⟩D{v} Average of ϕ on the domain D{v}
which is de-

fined on the P
{v}
αβ spatial hypersurface

Eq. (4.47)

QD{u} Backreaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eq. (4.49)



Acronym

ADM Arnowitt, Deser and Misner

BSSNOK Baumgarte, Shapiro, Shibata, Nakamura, Ookara and Kojima

CDM Cold Dark Matter

CMB Cosmic Microwave Background

EdS Einstein-de Sitter

FD Finite Difference

FLRW Friedmann Lemaître Robertson Walker

GR General Relativity

LSS Large-Scale Structure

LTB Lemaître Tolman Bondi

NP Newmann-Penrose

NR Numerical Relativity

OD Over Density

PDE Partial Differential Equation

TA Turn Around

UD Under Density

xix





1 - Introduction

Newton’s theory of Gravity describes it as a force (Newton, 1687), which to a certain extent, in our

everyday lives, is sufficient. However, when we look up to the stars and planets, we can start to

see that there’s more to it. Mercury’s orbit was the first clue; its perihelion precession has been a

mystery since ancient history, which was finally resolved once General Relativity was discovered.

General Relativity (GR) (Einstein, 1916) is currently the best theoretical description of Gravity; it

combines space, time and matter interwoven together through curvature.

The implications of GR are numerous, where all phenomena that the Newtonian theory of Grav-

ity could not explain are called relativistic effects. These add amazement and wonder as we explore

the universe, stimulating research and making the field of GR incredibly prolific in recent years. The

wide variety of relativistic effects come with wildly different challenges for their observation.

❖ Gravitational lensing

In GR, the trajectory of light is curved around gravitational objects, which act as lenses. The

first quest to observe this was during the solar eclipse of 1919, where the locations of stars

on the sky passing close to the sun were found to be slightly offset. Observing this requires

a light source to be behind a gravitational lens, like the sun or even galaxies. The likelihood

of perfectly aligned objects is quite low, yet the progress of observational methods has given

us the privilege of capturing images of this mesmerising effect. There are different lensing

magnitudes; in the strong case, the source image is completely warped around the lens, and

in the weak case, the source images show some form of alignment. A recent notable example

of the strong case was with the observation of a supernova lensed by another galaxy (Goobar

et al., 2023); such an object could be used to measure the universe’s expansion. On the other

hand, the weak case is typically seen when clusters of galaxies are the lens and all the galaxies

behind them appear aligned around the cluster (Tyson, Valdes, andWenk, 1990). All thematter

surrounding us has the capacity to warp light rays, including matter that does not emit light.

❖ Black holes

Some objects have such a strong gravitational field that they bend the trajectory of light so

much that it can’t escape, leaving what appears to be a black hole. They can then only be

seen with matter going around what appears to be nothing. This was first directly observed

with stars orbiting a black hole at the centre of our galaxy (Gillessen et al., 2009), and in more

recent years, with exemplary collaborativework, an accretion disk has been observed around a

black hole at the centre of theM87 galaxy and our ownMilkyWay galaxy (The Event Horizon

Telescope Collaboration, 2019a, 2022). These images were compared to simulations in full

1
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GR, which are called Numerical Relativity (NR) simulations, to know what accretion around

a black hole would look like.

❖ Gravitational waves

Any event that is not spherically symmetric creates ripples in the fabric of spacetime, called

gravitational waves or gravitational radiation. To observe these, we first consider the "loudest"

events, such as objects with strong gravitational fields (black holes or neutron stars) merging.

Through technological prowess, bringing together experts from various fields, gravitational

wave detectors were built and made their first detection of gravitational waves generated by

two black holes merging together (LIGO Scientific Collaboration and Virgo Collaboration,

2016). This was made possible as the predicted signal can be recognised within the noise of

the various detectors, where the theoretical signal is provided based on post-Newtonian the-

ory, NR simulations, and black hole perturbation theory. Nowadays, there have been enough

detections such that the sample is large enough to consider a statistical analysis that can in-

formon the universe’s expansion (Gair et al., 2023). Evenmore recently, considering a different

gravitational wave frequency range, with the ingenious method of monitoring the variation

in pulsar timings, the gravitational wave background has been detected (Agazie et al., 2023;

Antoniadis et al., 2023; Reardon et al., 2023; Xu et al., 2023). This could be generated by var-

ious sources, notably inspiralling supermassive black hole binaries, but also early universe

mechanisms and some dark matter models; disentangling this will provide key insight into

our universe.

All of the phenomena described above, and many more (Will, 2014), test GR’s accuracy, showing

that it remains robust so far. We can consider the impact of these effects on individual astronomical

systems, but as was gradually suggested, these impact the universe as a whole and how we perceive

it as studied by the field of Cosmology. See Chapter 4 for a historical introduction to Cosmology

and the current standard model. In understanding the universe, there are numerous open questions,

such as notably the origin of its dark content (Bull et al., 2016), and how relativistic effects impact

our universe and our observations of it (Macpherson and Heinesen, 2021; Umeh, 2022; Bonvin et al.,

2023; Umeh, 2023).

Simulations in NR have been a powerful tool in exploring GR in scenarios that escape our an-

alytical capacities. This has been demonstrated by their contribution to understanding black hole

observations and gravitational wave detection (Boyle, Hemberger, et al., 2019; The Event Horizon

Telescope Collaboration, 2019b). Thus, we seek to bring this machinery to the field of cosmology,

specifically considering cosmological structure formation. We explored initial conditions satisfying

Einstein’s field equations and how the resulting structure grows. One challenge with NR simulations

is gauge-variance; so extracted results should be interpreted based on invariants and, if possible ob-

servable invariants. Therefore, we consider invariants characterising spacetime constructed from

the Weyl tensor.
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1.1 Structure
The structure of this thesis is split in two, with background chapters being Chapter 2, 3 and 4, while

the original work contributed in this thesis is described in Chapter 5 and 6 that are based on Munoz

and Bruni (2023a) and Munoz and Bruni (2023b) respectively
1
.

The background chapters have been given a somewhat repetitive structure to simplify cross-

referencing. The spacetime, matter and constraint and evolution equations of GR are described in

Chapter 2 in their most general form, then made specific to NR in Chapter 3 and to cosmology both

in the homogeneous case in Section 4.1 and inhomogeneous case in Section 4.2. See each topic’s

spacetime, matter, and constraint and evolution equation sections below.

Spacetime Matter

Constraint and

evolution equations

General Relativity 2.1 2.3 2.4

Numerical Relativity 3.1 3.2 3.3

Homogeneous cosmology 4.1.1 4.1.2 4.1.3

Inhomogeneous cosmology 4.2.1 4.2.2 4.2.4

Another repeated structure can be found within each constraint and evolution equation section.

Indeed, three main equations govern the system: Einstein’s field equations, the Ricci identity and the

conservation equations; a subsection is then dedicated to each.

Once this system of equations is understood, it can be evolved with the numerical methods de-

scribed in Section 3.6. Then in the simulation analysis, two main axes are being pursued: studying

structure formation and invariantly characterising spacetime. For structure formation, Section 4.3

first describes the linear evolution based on perturbation theory, then the nonlinear evolution with

the Top-Hat homogeneous and spherical collapse model, which is used as a key point of comparison

in Chapter 6. We additionally describe the Top-Hat model from different perspectives, reinforcing

its versatile role and emphasising its relevance for the mass function.

In the second axis, we characterise the spacetime based on two different decompositions of the

Weyl tensor. The first is done covariantly, considering the electric and magnetic parts of the Weyl

tensor, also known as gravito-electromagnetism. This is generally presented in Section 2.5.1 and

in terms of NR in Section 3.5. In a homogeneous universe, the Weyl tensor is zero, but not in an

inhomogeneous one; see the form the electric and magnetic parts take for scalar perturbations at

first order in Section 4.2.4 making quantities are gauge invariant at first order, as discussed in Sec-

tion 4.2.6. The second decomposition is based on the Newmann-Penrose formalism leading to the

invariant classification of spacetime into Petrov types. Gravito-electromagnetism and the Petrov

classification are described in Section 2.5 where invariant scalars are defined, to be later extracted

from simulations.

All of these concepts were introduced to then be applied in Chapter 5 and Chapter 6, which

are based on Munoz and Bruni (2023a,b). Chapter 5 presents two post-processing codes that were

created to extract the electric and magnetic parts of the Weyl tensor, as well as various invariants.

1

Some parts of those papers dedicated to the theoretical background have been moved to the background chapters;

notably, Section 2.5, 3.1, 3.5, and 4.2.6 have been extracted from (Munoz and Bruni, 2023a) and extended, and Section 2.3.1,

2.4.4, 4.1.4.4, 4.1.4.5, 4.2.4, 4.3.4, and 4.3.5 have been extracted from (Munoz and Bruni, 2023b) and extended.
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Their application were demonstrated on a Λ-Szekeres spacetime, and the code tests concluded that

of the two, the code henceforth called EBWeyl shows the best performance; we then applied it to

simulation results.

Chapter 6 contains the main original contributions from this work, presenting the simulations

and their results. The initial conditions and the corresponding code ICPertFLRW are described in

Section 6.1, and the simulation analysis is described in Section 6.3.



2 - General Relativity

General Relativity (GR) is a gravitational theory (Einstein, 1916) that describes spacetime and matter

interwoven together such that matter curves spacetime and the shape of spacetime dictates the tra-

jectory of matter. Here we will then describe each of these, spacetime in Section 2.1 and matter in

Section 2.3, with the two related through Einstein’s field equations

Gαβ = κTαβ, (2.1)

elaborated upon in Section 2.2 see Eq. (2.39) with spacetime on the left and matter on the right.

Gαβ , in particular, is solely composed of local curvature information, in Section 2.5 we will see what

further non-local behaviour is contained in the spacetime namely in the Weyl tensor (Weyl, 1918).

GR was built on key expressions determining how spacetime and matter are defined as given by

the Ricci identity (Ricci and Levi-Civita, 1900), and the conservation equations

2∇[µ∇ν]u
α = Rα

βµνu
β, ∇αT

αβ = 0, (2.2)

see Eq. (2.18) and Eq. (2.40) respectively. What these three expressions imply for a perfect fluid is

described in Section 2.4 as these will become the backbone of how spacetime andmatter are evolved.

2.1 Spacetime

2.1.1 Coordinates & tensors

Spacetime combines the three dimensions of space, left/right, forward/backward and up/down, and

the one dimension of time, past/future. How to measure and describe these different dimen-

sional directions, in whatever geometrical shape they may take, is key to describe spacetime, see the

textbook references (Weinberg, 1972; Wald, 1984; D’Inverno, 1992; Misner, Thorne, and Wheeler,

2017) for more detail. To describe these dimensions, we work with coordinates x, for example

x = {t, x, y, z} for Cartesian coordinates, or x = {t, r, θ, ϕ} for spherical coordinates;

but in what observer frame are these coordinates defined? An inertial frame has a constant velocity

(Newton, 1687), therefore these are observer-dependent coordinates. Yet, these mathematical con-

structs have no bearing on the gravitational phenomena, meaning that should we go from one set of

observer-dependent coordinates to another the physical phenomena does not change, GR is invariant

under coordinate transformation (Einstein, 1916). Observer-independent quantities then need to be

constructed, using rods to measure intervals in space and clocks to measure intervals in time (Wald,

1984). Depending on the observers’ position in spacetime and their velocity, different observers may

5
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disagree on the time dt or space dx interval between two events. However, they will agree on the

spacetime interval, as measured by the infinitesimal squared distance between the two events

ds2 = gµνdx
µdxν , (2.3)

where Einstein’s summation convention is used from here on out (omitting the summation symbols

that sum each repeated index over the spacetime dimensions). Greek indices (α, β, µ, ν ...) go from 0

for time and 1, 2, and 3 for the spatial dimensions, while Latin indices (i, j, k...) go from 1 to 3 only

spanning spatial dimensions.

gµν is the spacetimemetric tensor that corresponds to the variation in the spacetime path asmea-

sured by the coordinates. It quantifies observer-independent properties of spacetime andmaps those

to the observer-dependent coordinates separation dxµ. We additionally define g the determinant of

gµν , g
µν

its inverse, and gαβ corresponding to the Kronecker delta gαµgµβ = gαβ = δαβ , mean-

ing that the contraction of the metric corresponds to the number of dimensions of the spacetime:

gαα = δαα = 4. With the notation convention used here, the metric signature is {−, +, +, +},
so g < 0 and the speed of light c is set to one c = 1. The simplest type of spacetime is provided by

the Minkowski metric where gαβ = ηαβ = diag(−1, 1, 1, 1) in Cartesian coordinates which is a

flat spacetime.

The separation between two events ds2 is timelike if ds2 < 0, lightlike if ds2 = 0, and spacelike

if ds2 > 0meaning that to connect these events, the observer needs to have a speed slower, equal, and

faster than the speed of light respectively. This defines causally connected ds2 ⩽ 0 and unconnected

ds2 > 0 events. An observer that is at rest will measure on their clock their proper time such that

ds2 = −dτ2. Wewill use the symbol τ for proper time, and derivatives with respect to τ are denoted

with an overhead dot

ȧ =
da

dτ
(2.4)

Coordinates whose time is evolving according to each grid position’s proper time are synchronous

coordinates, and the metric tensor’s time components are g0µ = gµ0 = {−1, 0, 0, 0}.
As we discuss tensors, let us define them as a collection of functions applied to the coordinate

points that are transformed into a different set of coordinates according to the tensor transformation

law Eq. (2.6). A tensorial quantity, say A, is given indices in accordance with its rank, rank 0 for a

scalar A, rank 1 for a vector Aµ
, rank 2 Aµν

and so on with indices up being contravariant and

indices down covariant. The two are related through the spacetime metric, such that covariant and

contravariant indices can be raised and lowered with the spacetime metric:

Aµ = gµνA
ν , Aµ = gµνAν . (2.5)

Going from a set of coordinates xµ to another x̃µ, the rank 2 tensor Aα
β with one contravariant

index and one covariant index is transformed according to the tensor transformation law

Ãµ
ν =

∂x̃µ

∂xα
∂xβ

∂x̃ν
Aα

β, (2.6)

where ∂xβ/∂x̃ν is the Jacobian matrix of the coordinate change. With a rank of at least two, tensors

can be split into symmetric and anti-symmetric parts

Aµν = A(µν) +A[µν],

A(µν) =
1
2 (Aµν +Aνµ) , A[µν] =

1
2 (Aµν −Aνµ) ,

(2.7)
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where (...) and [...] respectively indicate a symmetrisation and anti-symmetrisation. A symmetric

tensor Aµν = A(µν) is identical under index permutation Aµν = Aνµ, while an antisymmetric

tensor Bµν = B[µν] has a sign change Bµν = −Bνµ. The contraction of a symmetric tensor with

an antisymmetric tensor cancels outA(µν)B[µν] = 0.

We can further define tensor densities
¯̄Aα

β and pseudo-tensors
˜̃Aα

β as quantities that transform

as (Plebański and Krasiński, 2006)

˜̄̄
Aµ

ν = det

Ç
∂x̃λ

∂xσ

åW
∂x̃µ

∂xα
∂xβ

∂x̃ν
¯̄Aα

β, (2.8)

and

˜̃̃
Aµ

ν = sign

Ç
det

Ç
∂x̃λ

∂xσ

åå
∂x̃µ

∂xα
∂xβ

∂x̃ν
˜̃Aα

β, (2.9)

respectively. In the first case, for tensor densities, the Jacobian determinant is in powers ofW , which

is the weight. A normal tensor has no weightW = 0.

An example of a pseudo-tensor is the Levi-Civita symbol which is completely anti-symmetric,

meaning that permuting any index will lead to a sign change. Should there be 4 dimensions, then it

is

˜̃εαβµν =


1 for even permutation of (0, 1, 2, 3)

−1 for odd permutation of (0, 1, 2, 3)

0 otherwise

= sign(β − α) sign(µ− α) sign(ν − α) sign(µ− β) sign(ν − β) sign(ν − µ)

(2.10)

while if there are 3 dimensions (where indices go from 1 to 3), then it is

˜̃εkij = sign(i− k) sign(j − k) sign(j − i), (2.11)

such that all temporal components of ˜̃εαµν are zero. To make this pseudo-tensor a tensor, the Levi-

Civita symbol is multiplied by the metric determinant

ϵαβµν =
»
|g|˜̃εαβµν (2.12)

which is the Levi-Civita tensor and has the same antisymmetric properties as the Levi-Civita symbol.

2.1.2 Covariant derivative

Having defined the spacetime coordinates and the properties of coordinate transformable functions,

one needs to define how to differentiate them such that the derivative of a tensor is also a tensor.

This is the role of the covariant derivative (Ricci and Levi-Civita, 1900), for a scalar, a contravariant

and a covariant tensor, this is applied as

∇σA = ∂σA

∇σA
α = ∂σA

α + Γα
λσA

λ

∇σAµ = ∂σAµ − Γλ
µσAλ

(2.13)
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where the first terms are simply the coordinate derivative of the tensor with ∂σ = ∂
∂xσ , and the other

terms depend on the Levi-Civita connectionΓα
µν that brings this expression back to being tensorial,

although the Levi-Civita connection itself is not a tensor.

Relating this expression to the metric gαβ , the components of this connection are found to be

the Christoffel symbols (Christoffel, 1869) expressed as

Γαµν =
1

2
(∂µgαν + ∂νgµα − ∂αgµν) , Γα

µν =
1

2
gαβ (∂µgβν + ∂νgµβ − ∂βgµν) , (2.14)

where the last two indices of Γα
µν are symmetric. In this case, the covariant derivative of the metric

is zero, ∇σgαβ = 0. While the covariant derivative does not necessarily commute, product and

additive rules apply.

2.1.2.1 Divergence & curl

The divergence of a vector or tensor corresponds to the contraction of its covariant derivative:

∇αA
α
or∇αA

αβ
. For a vector in particular, this can be expressed as (Weinberg, 1972)

∇µA
µ =

1√
|g|

∂

∂xµ

(»
|g|Aµ

)
. (2.15)

Then to compute the curl, one needs to define a vectorwith respect towhich the curl is calculated;

this is addressed in Section 2.1.4.3.

2.1.2.2 Geodesic

In a curved spacetime, geodesics are the lines that extremise the path providing the most direct tra-

jectory between two events. It can be timelike for the trajectories of massive particles, null for mass-

less particles or spacelike for causally disconnected events. In the timelike case, a generic timelike

4-velocity vα is considered

vα =
dxα

dτ
, vαvα = −1. (2.16)

−1 for a timelike normalisation, 0 for null and+1 for spacelike. Since the geodesic provides a path

of constant velocity, the geodesic equation is given by the 4-acceleration v̇α = vµ∇µv
α
being set to

zero

vµ∇µv
α =

d2xα

dτ2
+ Γα

µν
dxµ

dτ

dxν

dτ
= 0. (2.17)

Solving these equations will provide the particle trajectory.

2.1.3 Curvature

To quantify the curvature of spacetime, one considers the deviation experienced by a vector vα as

it is parallel transported around the spacetime in a closed loop. This defines the Riemann tensor,

Rα
σµν (Riemann, 1868), according to the Ricci identity (Ricci and Levi-Civita, 1900)

∇µ∇νv
α −∇ν∇µv

α = Rα
σµνv

σ. (2.18)

Rα
σµν essentially quantifies by how much the covariant derivative does not commute; it is then

found to have the form

Rα
σµν = ∂µΓ

α
σν − ∂νΓ

α
µσ + Γα

µλΓ
λ
σν − Γα

λνΓ
λ
µσ. (2.19)
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An N-dimensional tensor with 4 indices has N4
components. Thankfully, given the symmetries of

the Christoffel symbol, and the expression above, this tensor possesses certain symmetries, namely

pairwise symmetry, and the indices within each pair are anti-symmetric

Rαβµν = Rµναβ ,

Rαβµν = −Rαβνµ = −Rβαµν

(2.20)

andRα
σµν satisfies the Bianchi identities (Voss, 1880; Bianchi, 1902)

Rαβµν = Rαµβν +Rανµβ ,

∇σRαβµν = ∇µRαβσν +∇νRαβµσ.
(2.21)

All of these properties reduce the number of independent components in the Riemann tensor to

N2(N2 − 1)/12, so 20 for 4-dimensions. Rα
σµν can be split into the Ricci and Weyl tensors, each

possessing 10 degrees of freedom. The Ricci tensor is obtained from the trace of the Riemann tensor

Rαβ = Rµ
αµβ (2.22)

which is symmetric. And the further trace of this term is the Ricci scalar,

R = Rµ
µ = gµνRµν . (2.23)

Both quantify local curvature and are present in Einstein’s field equation Eq. (2.39).

Then the Weyl tensor (Weyl, 1918) is the traceless part of the Riemann tensor. It is constructed

by removing the Ricci tensor and scalar parts to the Riemann tensor,

Cαβµν = Rαβµν −
(
gα[µRν]β − gβ[µRν]α

)
+

1

3
gα[µgν]βR. (2.24)

This is not present in Einstein’s field equations Eq. (2.39) and it quantifies non-local gravitational

effects whose impact on the fluid evolution can only be quantified with the Ricci identity Eq. (2.18)

applied to the fluid 4-velocity, see Section 2.5.1. We also define the Weyl tensor’s dual C∗
αβµν =

1
2Cαβλσϵ

λσ
µν and its complex self-dual

‹Cαβµν = 1
4(Cαβµν − iC∗

αβµν), which by definition corre-

sponds to its own dual:
‹Cαβµν = i‹C∗

αβµν , see Stephani et al. (2003).

2.1.4 Projecting along or orthogonally to a vector

In relativity, special or general, the physical notions of the observers and that of the associated refer-

ence frames play a crucial role, where in practice, most often frame of reference is used interchange-

ably with the notion of coordinate system. However, it is sometimes useful, starting from a given

tensor, to define new tensors by projecting on one or more vectors. Therefore, for the sake of clarity

in this thesis, we use the word frame only in reference to a projection on a unit timelike vector, or on

a tetrad of basis vectors, never in reference to coordinate systems. This is made explicit with the use

of the notation {v} when a given quantity is defined by projecting along or orthogonally to a given

timelike vector vµ; that will define the quantity in the frame vµ.

This unit timelike 4-vector may have a corresponding spacelike hypersurface such that the two

are orthogonal. The spatial hypersurfaces are layered along time and connected to one another

through this projection vector vµ; in other words, this foliates space through time (Arnowitt, Deser,
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and Misner, 1959; Bruni, 1991; Alcubierre, 2008; Ellis, Maartens, and MacCallum, 2012). This con-

cept is relevant in describing fluid terms and is key to NR, so we give introductory notions here that

will be elaborated in Chapter 3.

Here we shall use vα as the normal timelike 4-vector, so vαvα = −1, and

P
{v}
αβ = gαβ + vαvβ P {v}α

β = δαβ + vαvβ (2.25)

as its projection tensor. P
{v}
αβ corresponds to the metric of this spatial hypersurface, its contraction

P {v}α
α = 3 shows that it describes a 3-dimensional space and so its determinant is positive,P {v} >

0, and by definition, it is orthogonal to vα: vαP
{v}
αβ = 0.

Any tensor, sayAαβ , can then be projected into this foliation such that:

❖ Aαβv
αvβ is its temporal part,

❖ P {v}β
αAβµv

µ
its time and space part, and

❖ P {v}µ
αP

{v}ν
βAµν its spatial part.

Since these new tensors depend on the choice of projection vector vα, this is made explicit with a

{v} superscript. So, for example, P {v}β
αAβµv

µ = B
{v}
α and P {v}µ

αP
{v}ν

βAµν = C
{v}
αβ where

B
{v}
α and C

{v}
αβ live on the P

{v}
αβ surface and as such their indices are to be raised or lowered with

P
{v}
αβ and by definition they are is automatically orthogonal to vα: vαB

{v}
α = 0 and vαC

{v}
αβ = 0.

A useful operator that takes the spatial traceless part ofAαβ is

A
{v}
⟨αβ⟩ = A

{v}
(αβ) −

1

3
P

{v}
αβ P

{v}
µν A

µν = P {v}µ
(αP

{v}ν
β)Aµν −

1

3
P

{v}
αβ P

{v}
µν A

µν . (2.26)

If the tensor is already on this hypersurface, this operator simply takes the traceless part.

With this projection approach, a derivative along and orthogonally to vα can be defined.

2.1.4.1 Lie derivative & Killing vectors

The Lie derivative (Lie, 1888) defines the derivative of a tensor along the vector vσ . This derivative

applied to a scalar, a contravariant, and a covariant tensor takes the form

LvA = vσ (∂σA)

LvA
α = vσ (∂σA

α)− (∂σv
α)Aσ

LvAµ = vσ (∂σAµ) + (∂µv
σ)Aσ

(2.27)

Considering a tensor density, an extra term is added (Alcubierre, 2008)

Lv
¯̄A =

î
Lv

¯̄A
ó
W=0

+W (∂σv
σ)

Lv
¯̄Aα =

î
Lv

¯̄Aα
ó
W=0

+W ¯̄Aα (∂σv
σ)

Lv
¯̄Aµ =

î
Lv

¯̄Aµ

ó
W=0

+W ¯̄Aµ (∂σv
σ)

(2.28)

where [Lv...]W=0 corresponds to the terms expressed in Eq. (2.27) andW is the weight of the tensor

density, see Eq. (2.8).



2.1. SPACETIME 11

Should the Lie derivative along a vector ξα of the spacetime metric tensor vanish, then the ξα

field is called a Killing vector field (Killing, 1892) and identifies a symmetry of the spacetime. This

field satisfies the Killing equation

Lξgαβ = 2∇(αξβ) = 0, (2.29)

meaning that ∇αξβ is antisymmetric. A vector field vα that follows the geodesic curve Eq. (2.17)

vµ∇µv
ν = 0 contracted with a Killing vector vanishes

vµ∇µ (ξνv
ν) = vµvν∇µξν = 0, (2.30)

indeed a symmetric tensor contracted with an antisymmetric tensor is zero. Therefore ξνv
ν
is a

conserved quantity along the geodesic curve.

2.1.4.2 Spatial covariant derivative

Projecting the covariant derivative of the spacetime metric ∇α, defines the covariant derivative of

the spatial metric D
{v}
α (Alcubierre, 2008; Ellis, Maartens, and MacCallum, 2012). Applying this to

the tensorA
{v}
β that lives on P

{v}
αβ , it is

D{v}
α A

{v}
β = P {v}µ

α∇µA
{v}
β = ∇αA

{v}
β + vαȦ

{v}
β , (2.31)

where Ȧα = vµ∇µA
α
is the derivative with respect to proper time τ . If Aβ does not live on P

{v}
αβ

then it needs to be projected and the spatial covariant derivative only applies to the projected part

D{v}
α Aβ = P {v}µ

αP
{v}ν

β∇µAν . (2.32)

By definition this is orthogonal to vα as vαD
{v}
α Aβ = vβD

{v}
α Aβ = 0. In practice, this is equivalent

to saying thatD
{v}
α is the covariant derivative associated with P

{v}
αβ where the Christoffel symbols,

Eq. (2.14), are computed with P
{v}
αβ instead of gαβ .

2.1.4.3 Spatial divergence and curl

The spatial divergence is the contraction of the spatial covariant derivativeD
{v}
α and the term being

differentiated

D{v}
α Aα = ∇αA

α + vαȦ
α

(2.33)

where this is composed of the spacetime divergence and the projected time derivative.

Then the curl (Ellis, Maartens, andMacCallum, 2012) is given by this spatial covariant derivative

contracted with the Levi-Civita tensor on the hypersurface. For rank 1 and 2 tensors, this is

(D{v} ×A)α = ϵ{v}αµνD
{v}µAν , (D{v} ×A)αβ = ϵ{v}µν(αD

{v}µAβ)
ν . (2.34)

with ϵ{v}αβµ corresponding to the projected Levi-Civita tensor Eq. (2.12)

ϵ{v}αβµ = vσϵσαβµ. (2.35)

The anti-symmetric nature of this tensor means that ϵ{v}αβµ is only spatial vαϵ{v}αβµ = 0.

This is equivalent to saying ϵ{v}αβµ is the Levi-Civita tensor computed with P
{v}
αβ such that



12 CHAPTER 2. GENERAL RELATIVITY

ϵ{v}αβµ =
√
P {v} ˜̃εαβµ, with the 3-Levi-Civita symbol given by Eq. (2.11). Note that should the

vector be constructed from a scalar, sayAν = ∂νA, thenD
{v}µAν

would be symmetric which con-

tracted with the anti-symmetric Levi-Civita tensor would cancel out. Indeed the curl of a gradient

is zero, meaning that only purely vectorial and tensorial quantities have a curl. Then reminding an-

other vector calculus identity, the divergence of a curl is zero such that the result of a curl is purely

vectorial and tensorial.

2.1.4.4 Spatial curvature

Now as the covariant derivative defines the 4-dimensional Riemann tensorRα
σµν via the Ricci iden-

tity Eq. (2.18). With this new spatial covariant derivative, we can construct a new 3-dimensional

Riemann tensor
(3)Rα

σµν with:

D{v}
µ D{v}

ν wα −D{v}
ν D{v}

µ wα = (3)Rα
σµνw

σ
(2.36)

wherewα
is an arbitrary vector.

(3)Rα
σµν is the 3-Riemann tensor of the spatial hypersurface P

{v}
αβ ,

its contraction with P
{v}
αβ then further provides the 3-dimensional Ricci tensor

(3)Rαβ and scalar

(3)R. These can be obtained by using Eq. (2.14) and Eq. (2.19) where P
{v}
αβ is used instead of gαβ .

By their definition, they exclusively live on the P
{v}
αβ hypersurface. Following our notation, these

terms should then be given the {v} superscript however this is omitted for simplicity and we trust

the reader to establish which spatial hypersurface is discussed based on the context.

The transition from the 4-dimensional to 3-dimensional Ricci identity, Eq. (2.18) and Eq. (2.36),

applied to the projecting vector vµ provides the Gauss-Codazzi equations, Eq. (3.25) and Eq. (3.26),

that relateRα
σµν and

(3)Rα
σµν as discussed in Section 3.1.1.

2.2 Einstein’s field equations
The gravitational action of GR is provided by the Einstein-Hilbert action (Hilbert, 1915), which we

express here with the cosmological constantΛ (Einstein, 1917) and the Lagrangian of thematter field

LM as

S =

∫ ï
1

2κ
(R− 2Λ) + LM

ò√−gdx4. (2.37)

where R is the 4-dimensional Ricci scalar Eq. (2.23) of the metric gαβ whose determinant is g, and

κ = 8πG is Einstein’s gravitational constant, with G the gravitational constant that we set to one

G = 1. Varying Eq. (2.37), the stationary action principle, δS = 0, provides the equations of motion

called Einstein’s field equations Eq. (2.1) (Einstein, 1916). This relates the spacetime described with

Einstein’s tensor

Gαβ = Rαβ − 1

2
Rgαβ, (2.38)

to thematter field describedwith the energy-stress tensorTαβ addressed in Section 2.3, and including

the cosmological constant Λ, Einstein’s field equations are

Gαβ + Λgαβ = κTαβ,

⇔ Rαβ − 1

2
Rgαβ + Λgαβ = κTαβ,

⇔ Rαβ − Λgαβ = κ

Å
Tαβ − 1

2
Tgαβ

ã (2.39)
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also written with T = gαβTαβ the trace of the energy-stress tensor.

The second Bianchi identity, Eq. (2.21), contracted twice, and since Λ is a constant, provides the

conservation equation∇αG
α
β = 0, meaning that the matter has the conservation equations

∇αT
α
β = 0. (2.40)

As presented this may be perceived as a consequence of the definition of spacetime, however, the fact

that the energy-stress tensor is divergenceless is a well-known property that predates GR. Instead,

this conservation equation was a key property in the definition of curvature.

2.3 Matter
In general for an imperfect fluid without charge or viscosity, the energy-stress tensor is (Bruni, 1991)

Tαβ = ρ{v}vαvβ + 2q
{v}
(α vβ) + S

{v}
αβ , (2.41)

which is symmetric and has the trace

T = gαβTαβ = 3p{v} − ρ{v}. (2.42)

vα is an arbitrary timelike 4-vector chosen to describe the fluid with its projection tensor P
{v}
αβ

Eq. (2.25). Projecting Tαβ in the vα frame provides the energy density ρ{v}, energy flux q
{v}
α (also

called momentum density) and stress tensor S
{v}
αβ

ρ{v} = Tαβvαvβ,

q{v}α = −P {v}β
αTβµv

µ,

S
{v}
αβ = P {v}µ

αP
{v}ν

βTµν ,

(2.43)

such that the trace and traceless parts of the stress tensor are respectively given by the pressure p{v},

and anisotropic pressure π
{v}
αβ

p{v} =
1

3
S{v} =

1

3
P {v}αβS

{v}
αβ =

1

3
P {v}µνT {v}

µν =
1

3

Ä
T + ρ{v}

ä
,

π
{v}
αβ = S

{v}
⟨αβ⟩ = S

{v}
αβ − P

{v}
αβ p

{v}.
(2.44)

The energy density ρ{v} is distinguished from the rest mass energy density ϱ{v} and its specific

internal energy ε{v} as (Ellis, 2009)

ρ{v} = ϱ{v}
Ä
1 + ε{v}

ä
with ϱ{v} = n{v}m, (2.45)

where ϱ{v} is expressed in terms of the particle number density n{v} and the rest average mass

of the fluid particles m. The internal energy ε{v} and pressure p{v} together correspond to the

thermodynamical total energy doing mechanical work as measured by the specific enthalpy of the

fluid

h{v} = 1 + ε{v} +
p{v}

ϱ{v}
. (2.46)

While vµ is an arbitrary timelike vector, the fluid 4-velocity is denoted as uµ which is used to

define the particle flux (also called density current), Nα = ρ{u}uα, and entropy flux, Sα
. Both Nα
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and Sα
have their own conservation equations: the conservation of current∇αN

α = 0, also known

as the continuity equation

∇µ

Ä
ρ{u}uµ

ä
= 0 (2.47)

and the second law of thermodynamics ∇αS
α ⩾ 0. Should Nα

be chosen as the observer this

is called the particle frame. Another relevant frame that is always present and unique is the one

provided by a vector Eα
defined such that there is no energy flux q

{E}
α = 0. This implies that the

observer is at rest therefore this frame of reference is commonly called the energy or rest frame.

Should the fluid be a perfect fluid, the particle and energy frames are the same and are parallel

to the entropy flux Sα
(Bruni, Dunsby, and Ellis, 1992). In this case, the fluid flow has a unique

4-velocity uα with q
{u}
α = π

{u}
αβ = 0. The energy-stress tensor then only depends on the energy

density ρ{u} and pressure p{u} that can be related through the equation of state. Should this be a

barotropic fluid then it is expressed as

p{u} = wρ{u}, (2.48)

with w = 0 for dust, w = 1/3 for radiation, w = −1 for vacuum energy, and w = 1 for stiff

matter
1
. For dust the energy-stress tensor is Tµν = ρ{u}uµuν where uµ is its eigenvector with ρ{u}

the eigenvalue. Should the coordinates be comoving with the fluid then the fluid flow and metric are

related as uα = g0α/
√
|g00|.

2.3.1 Kinematical rest-energy frame

The fluid flow 4-velocity uα, corresponding to the energy frame/rest frame, is unique for perfect

fluids and always present for imperfect fluids where one can opt for either the energy frame or the

particle frame, see Bruni, Dunsby, and Ellis (1992) and Refs. therein. Physically, quantities that result

from projecting tensors in this frame are unique
2
, as they are rest-frame quantities, e.g. the energy

density ρ{u}. We, therefore, define a projection tensor specific to this fluid frame

hµν = P {u}
µν = gµν + uαuβ. (2.49)

The kinematics of the fluid flow can be established with the variation∇νuµ. That is (Ellis and Elst,

1999; Ellis, 2009; Ellis, Maartens, and MacCallum, 2012) we can decompose∇νuµ in its irreducible

parts Eq. (2.33) and Eq. (2.7)

∇νuµ = Θµν + ωµν − aµuν , with


Θµν ≡ D

{u}
(µ uν)

ωµν ≡ D
{u}
[µ uν]

aµ ≡ uα∇αu
µ = u̇µ

(2.50)

where Θµν is the symmetric expansion tensor, ωµν the anti-symmetric vorticity tensor and aµ the

4-acceleration sourced by pressure gradients. We also define ω2 = ωµνω
µν/2 as the vorticity mag-

nitude, and ωα = (D{u} × u)α/2 = ϵ{u}αµνω
µν/2 as the vorticity vector which is essentially the

1

Then of course, if there is no matter, only vacuum, Tαβ = 0.
2

The same uniqueness applies in the case where there are different matter fields (Dunsby, Bruni, and Ellis, 1992), each

with its own 4-velocity, as one can always define an average uµ
, say an average energy frame, or project tensorial quantities

with respect to a specific uµ
, for instance that of pressureless matter, i.e. dust.
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curl of the fluid velocity uµ. Note that should vorticity be present, then it is not possible to create a

smooth hypersurface orthogonal to the fluid flow hαβ , then u
α
in the expressions above would not

correspond to the fluid flow, see the Appendix in Ellis, Bruni, and Hwang (1990). While each point of

the spacetime may have its own local tangent space orthogonal to the vector field uµ, the collection

of these spaces only creates an integrable hypersurface if there is no vorticity. This can be avoided if

instead of the local fluid velocity, one considers its average to create a smooth hypersurface.

The expansion tensor can be decomposed into its trace Θ = hµνΘµν and traceless part σµν =

Θ⟨µν⟩ Eq. (2.26), with hαβ

Θµν =
1

3
hµνΘ+ σµν , (2.51)

i.e. the expansion scalar Θ = D
{u}
µ uµ = ∇µu

µ
, because uνa

ν = 0, and the shear tensor σµν with

its magnitude defined as

2σ2 = σµνσ
µν = ΘαβΘ

αβ − 1

3
Θ2. (2.52)

Considering Eq. (2.15) and h > 0 as the determinant of hαβ , the expansion scalar corresponds to the

rate of change of the local fluid volume element

Θ =
1√
h

∂

∂xµ

Ä√
huµ
ä
=
V̇

V
(2.53)

where V =
√
h. The expansion tensor used to quantify scale variations can also be expressed using

variations to a relative distance δl{e} in the direction of the vector eα:

˙δl{e}

δl{e}
=

1

3
Θ + σαβe

αeβ. (2.54)

2.4 Constraint & evolution equations of a perfect fluid
The constraint and evolution equations governing the fluid can all be derived from projecting key

equations along or orthogonally to the fluid flow. Namely the conservation equation Eq. (2.40), the

Ricci identity Eq. (2.18) applied to the fluid flow uα, and Einstein’s field equations Eq. (2.39) all pro-

jected in accordance to the description of Section 2.1.4. Here we will only express these equations

for a perfect fluid in the particle flow frame, omitting all terms that include energy flux q
{u}
α , and

anisotropic pressure π
{u}
αβ .

2.4.1 Conservation equations

The first set of evolution equations comes from the conservation equations Eq. (2.40) (Ellis, Maartens,

andMacCallum, 2012). One obtains the energy conservation and themomentum conservation equa-

tions by projecting Eq. (2.40) along and orthogonally to uµ, respectively. So the energy conservation

equation is obtained by expanding uβ∇αT
αβ = 0 and substituting with the fluid kinematical terms

ρ̇{u} +
Ä
ρ{u} + p{u}

ä
Θ = 0, (2.55)

which provides the evolution equation of the energy density ρ{u}. Then themomentumconservation

equation is similarly obtained from hµβ∇αT
αβ = 0Ä

ρ{u} + p{u}
ä
aµ +D{u}µp{u} = 0, (2.56)
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which provides the evolution equation of the pressure p{u} simply indicating that the fluid only

accelerates within the fluid frame if there is a pressure gradient, otherwise the fluid moves along

geodesics.

2.4.2 Ricci identity

The next set of equations comes from the Ricci identity, Eq. (2.18), applied to the fluid flow 4-velocity

uα. Projecting with uν and then contracting α and µ, Eq. (2.18) can be simplified to obtain the

Raychaudhuri equation (Raychaudhuri, 1955)

Θ̇ +
1

3
Θ2 + 2(σ2 − ω2)−∇αa

α +
κ

2

Ä
ρ{u} + 3p{u}

ä
− Λ = 0, (2.57)

which corresponds to the evolution equation of the expansion of the fluid. The Ricci tensorRαβ was

replaced with fluid terms from Einstein’s field equations Eq. (2.39). The presence of Einstein’s grav-

itational constant κ and the cosmological constant Λmakes it evident that Einstein’s field equations

were used in the derivation.

Again projecting Eq. (2.18) with uν , then taking its spatial part, i.e. projecting with hµωh
β
α, and

substituting the Riemann tensor with the Weyl and Ricci tensors and scalar Eq. (2.24), the resulting

expression can be split into a symmetric and anti-symmetric expression (Bruni, 1991; Ellis, Maartens,

and MacCallum, 2012). The traceless part of the symmetric expression provides the evolution equa-

tion of the shear

hµαh
ν
βσ̇µν −D

{u}
(α aβ) − aαaβ + ωαωβ + σαµσ

µ
β + 2

3Θσαβ

+1
3hαβ

(
∇µa

µ − 2σ2 − ω2
)
+ Cαµβνu

µuν = 0.
(2.58)

While the anti-symmetric part provides the evolution equation of the vorticity

hαµω̇
µ +

2

3
Θωα − σαµωµ − 1

2
ϵ{u}αµν∇µaν = 0, (2.59)

which can emerge only if there is acceleration.

2.4.3 Einstein’s field equations

The last set of equations comes from Einstein’s field equations Eq. (2.39). These require the 3-

dimensional Ricci tensor and scalar,
(3)Rαβ and

(3)R respectively, of the spatial hypersurface hµν

Eq. (2.49), see Section 2.1.4.4 and Section 3.1.1. If vorticity is present, it is not possible to create a

smooth hypersurface orthogonal to the fluid flow. So here expressions are given in the vorticity free

case, as well as perfect fluid, so ω
{u}
αβ = q

{u}
α = π

{u}
αβ = 0. While the spatial information from

Rαβ is retained in the intrinsic curvature
(3)Rαβ , the temporal information is kept in the extrin-

sic curvature, which in the case of this hypersurface orthonormal fluid corresponds to the expansion

tensorΘαβ = 1
2Luhαβ (with a sign change). The derivation of these expressions requires the Gauss-

Codazzi equations Eq. (3.25) and Eq. (3.26) that come from the Ricci identity and are introduced in

Section 3.1.1 so as an over-simplification, for now, let us consider Gαβ + Λgαβ − κTαβ = 0 and

project it with the three different types of projections along and orthogonally to the fluid flow
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❖ (Gαβ + Λgαβ − κTαβ)u
αuβ = 0 is the Hamiltonian constraint equation,

(3)R+
2

3
Θ2 − 2σ2 = 2κρ{u} + 2Λ (2.60)

❖ hβα (Gβµ + Λgβµ − κTβµ)u
µ = 0 are the Momentum constraint equations,

2

3
D{u}

α Θ−D
{u}
β σα

β = 0 (2.61)

❖ and hµαh
ν
β (Gµν + Λgµν − κTµν) = 0 are the evolution equations,

hµαh
ν
βΘ̇µν +ΘαβΘ+ (3)Rαβ = ∇αaβ + Λhαβ +

κ

2
hαβ
Ä
ρ{u} − p{u}

ä
. (2.62)

This naturally has a strong resemblance with the Raychaudhuri equation Eq. (2.57) without

vorticity (by taking the trace and replacing
(3)R with the Hamiltonian constraint) since Ein-

stein’s field equations are evolution equations for the spacetime and hαβ evolves according to

Luhαβ = 2Θαβ andΘαβ evolves according to Eq. (2.62).

2.4.4 Irrotational dust perfect fluid

The type of fluid used in this thesis is an irrotational dust perfect fluid. This is described as pressure-

less matter and this means that p{u} = q
{u}
α = π

{u}
αβ = 0 simplifying the energy-momentum tensor

to Tαβ = ρ{u}uαuβ . Having no pressure the fluid has no acceleration a
µ = 0, fluid elements move

along geodesics, and choosing the fluid to have no initial vorticity, its evolution equation Eq. (2.59)

shows that it will not grow if it is not present. The constraint equations, Eq. (2.60) and Eq. (2.61),

are the same while the non-trivial evolution equations that remain are then the energy conservation

which coincides with the continuity equation Eq. (2.47)

ρ̇{u} + ρ{u}Θ = 0, (2.63)

and the evolution equations of the expansion Eq. (2.62)

hµαh
ν
βΘ̇µν +ΘαβΘ+ (3)Rαβ = Λhαβ +

κ

2
hαβρ

{u}. (2.64)

Which can be split into its trace, and traceless parts providing the Raychaudhuri equation Eq. (2.57)

Θ̇ +
1

3
Θ2 + 2σ2 +

κ

2
ρ{u} − Λ = 0, (2.65)

and the shear evolution equation Eq. (2.58)

hµαh
ν
βσ̇µν + σαµσ

µ
β +

2

3

(
Θσαβ − hαβσ

2
)
+ Cαµβνu

µuν = 0. (2.66)

Notice that the source term here depends on the Weyl tensor Cαµβν which is absent in Eq. (2.64)

which instead has the local curvature term
(3)Rαβ . This is because in this form it is derived from the

Ricci identity following the logic described in Section 2.4.2 and not Eq. (2.64).

The continuity equation Eq. (2.63) with Eq. (2.53) can simply be integrated to give the conserva-

tion of proper massM

ρ{u}V =M (2.67)

whereM is the proper mass of the local fluid element. An integral of this quantity in a given coor-

dinate domain will give the proper mass contained within that domain, see Appendix D.
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2.5 Weyl tensor
Now, let us focus on the information contained inCαβµν Eq. (2.24) (Weyl, 1918). This tensor is trace-

less and has the same symmetries as the Riemann tensor, Eq. (2.20) and Eq. (2.21), and so possesses

10 independent components. In this section, we will consider two methods of extracting informa-

tion from the Weyl tensor. The first is described in Section 2.5.1 and is based on projecting Cαβµν

along a chosen timelike vector by analogy to electromagnetism (Maxwell, 1865), this will be the

gravito-electromagnetic decomposition creating two rank 2 spatial symmetric and traceless tensors,

each with 5 independent components. The second, discussed in Section 2.5.2, is based on projecting

it along a null tetrad base according to the Newmann-Penrose (NP) formalism, providing the five

complex Weyl scalars.

By the nature of these decompositions, the resulting quantities will depend on the metric co-

ordinates and the projection frame used. We will see that in specific frames, the fluid frame for

gravito-electromagnetism and the principal null directions for the Weyl scalars, these quantities

will take particular physical meanings. While they remain coordinate-variant, and coordinate and

frame-dependent, they can be used to construct coordinate-invariant, and coordinate and frame-

independent quantities which will inform on the nature of the spacetime with the Petrov classifica-

tion.

2.5.1 Gravito-electromagnetism

By projecting the Weyl tensor with an arbitrary timelike unit vector, say vµ, the Weyl tensor can be

decomposed into its electric and magnetic parts (Matte, 1953; Jordan et al., 1964; Hawking, 1966):

E{v}
αµ = vβvνCαβµν , B{v}

αµ = vβvνC∗
αβµν , (2.68)

where C∗
αβµν = 1

2Cαβλσϵ
λσ

µν is the dual of the Weyl tensor. Note that these tensors depend on

the choice of projection vector vα and as such are frame dependent hence the {v} superscript, see

Section 2.1.4. We define their magnitude as E{v}2 ≡ E{v}αβE
{v}
αβ andB{v}2 ≡ B{v}αβB

{v}
αβ .

Since the Weyl tensor is traceless and based on the symmetries of the Riemann tensor Eq. (2.20),

E
{v}
αβ and B

{v}
αβ are then symmetric and traceless, and based on their definition Eq. (2.68), they are

covariantly purely spatial, i.e. they live on a 3-dimensional space orthonormal to the chosen timelike

vector:

vαE{v}
αµ = 0, vαB{v}

αµ = 0. (2.69)

In particular for B
{v}
αµ the trace vanishes due to the first Bianchi identity Eq. (2.21). In synchronous

coordinates (where g0µ = {−1, 0, 0, 0}), and with vµ = {1, 0, 0, 0} the specific expression is

R1023 −R2013 +R3012 = 0 (2.70)

we will use this explicitly in Section 5.3.2.3.

A useful complex linear combination of E
{v}
αβ andB

{v}
αβ and its complex conjugate are

Q
{v}
αβ = E

{v}
αβ + iB

{v}
αβ ,

Q
{v}
αβ = 4vβvν‹Cαβµν = E

{v}
αβ − iB

{v}
αβ ,

(2.71)
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where we use the complex self dual Weyl tensor
‹Cαβµν = 1

4(Cαβµν − iC∗
αβµν).

If one already has E
{v}
αβ and B

{v}
αβ but not the Weyl tensor Cαβµν itself and would rather have

E
{u}
αβ and B

{u}
αβ projected along the fluid flow uµ (a natural frame in cosmology), as will be the case

in Section 5.1.2, then Cαβµν can be constructed using (Alcubierre, 2008)

Cαβµν = 2
Ä
lα[µE

{v}
ν]β − lβ[µE

{v}
ν]α − v[µB

{v}
ν]λ ϵ

{v}λ
αβ − v[αB

{v}
β]λ ϵ

{v}λ
µν

ä
, (2.72)

with lµν = gµν + 2vµvν . Then, projecting along the fluid flow we get:

E{u}
αµ = uβuνCαβµν , B{u}

αµ = uβuνC∗
αβµν , (2.73)

and from these we obtain their magnitudes E{u}2
and B{u}2

in the fluid frame, c.f. (King and Ellis,

1973; Bruni, Dunsby, and Ellis, 1992; Bini, Carini, and Jantzen, 1995).

E
{u}
αβ and B

{u}
αβ represent the non-local gravitational tidal effects: if we think of the Riemann

curvature tensor as made up of the Ricci andWeyl parts, as in Eq. (2.24), then the Ricci part is directly

determined locally by the matter distribution through Einstein’s field equations, Eq. (2.39), while the

Weyl part can only be determined once the field equations are solved for the metric. E
{u}
αβ andB

{u}
αβ

can then later be expressed in terms of the matter field with their divergence and curl presented in

a Maxwell-like
3
form by using the second Bianchi identity, Eq. (2.21), the Ricci identity, Eq. (2.18)

(applied to uα), and Einstein’s field equations, Eq. (2.39), to substitute for the Ricci tensor (Hawking,

1966; Wainwright and Ellis, 1997; Maartens and Bassett, 1998; Danehkar, 2009; Ellis, 2009; Ellis,

Maartens, and MacCallum, 2012; Danehkar, 2022). For an irrotational dust perfect fluid the electric

and magnetic parts are:

E
{u}
αβ = −hµαhνβσ̇µν − σαµσ

µ
β − 2

3

(
Θσαβ + hαβσ

2
)
,

B
{u}
αβ =

Ä
D{u} × σ

ä
αβ
,

(2.74)

where the first of these equations actually corresponds to the shear evolution equation Eq. (2.66).

Indeed, a key quantity in these expressions is the shear σαβ , since it is present in every term. Should

shear be absent, the presence of an electric part of the Weyl tensor would then make it appear. The

magnetic part is simply the curl of the shear, see Section 2.1.4.3. Since the curl of a scalar is zero,

B
{u}
αβ , is solely sourced by purely vectorial or tensorial quantities. We finally note that if there is

no magnetic part, the spacetime can be evolved only with ordinary differential equations (instead of

partial) (Bruni, Matarrese, and Pantano, 1995b; Bolejko, 2018).

Then the divergence and curl of E
{u}
αβ andB

{u}
αβ are

D{u}µE{u}
αµ =

1

3
D{u}

α ρ{u} + ϵ{u}αµνσ
µ
βB

{u}νβ ,

D{u}µB{u}
αµ = −ϵ{u}αµνσ

µ
βE

{u}νβ ,

Ė
{u}
αβ −

Ä
D{u} ×B{u}

ä
αβ

= −ΘE
{u}
αβ + 3σµ⟨αE

{u}
β⟩

µ
− 1

2
ρ{u}σαβ,

Ḃ
{u}
αβ +

Ä
D{u} × E{u}

ä
αβ

= −ΘB
{u}
αβ + 3σµ⟨αB

{u}
β⟩

µ
.

(2.75)

3

Further electromagnetic analogies can be pursued with the Bel-Robinson tensor (Bel, 1958; Maartens and Bassett,

1998).
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See Eq. (2.26) for the traceless operator A⟨αβ⟩. Here again, we can see that the shear σαβ is a crucial

quantity but notable features are that the divergence of the electric part is also given by the energy

density gradient, which in general will be a stronger effect than the shear, and the evolution ofE
{u}
αβ

andB
{u}
αβ are both strongly impacted by the expansion of the fluid.

2.5.2 Weyl scalars

An alternative method to decompose the Weyl tensorCαβµν is with the Newman-Penrose (NP) for-

malism (Newman and Penrose, 1962; Stephani et al., 2003; Alcubierre, 2008; Shibata, 2015) which

projects it with a null tetrad base to create the five complex Weyl scalars: Ψ0,Ψ1,Ψ2,Ψ3, andΨ4.

To obtain these, we will first present how to create a null tetrad base, starting by defining a set of

four vectors:

v0
α = vα, v1

α = δα1/

√
P

{v}
11 , v2

α = δα2/

√
P

{v}
22 , v)

α = δα3/

√
P

{v}
33 , (2.76)

where vα is a unit timelike vector, that can be freely chosen and P
{v}
αβ its projection tensor Eq. (2.25).

This set of vectors are made orthonormal with the Gram-Schmidt method to obtain e(α), our or-
thonormal tetrad basis. We start this procedure by choosing e(0)

α = v0
α = vα without normalising

it such that it remains timelike. Then the Gram-Schmidt scheme makes the other vectors all or-

thogonal to e(0)
α
and each other with a spacelike normalisation. We distinguish tetrad indices with

parenthesis and these are raised or lowered with the Minkowski metric ηαβ = diag(−1, 1, 1, 1).

As they are orthonormal they have the properties:

e(0)
αe(0)α = −1, e(i)

αe(i)β = δαβ, e(i)
αe(j)α = δ(j)(i), e(0)

αe(j)α = 0. (2.77)

They span the metric as gαβ = −e(0)αe(0)β +P
{v}
αβ where the projection tensor can be expressed as

P
{v}
αβ = δ(i)(j)e(i)αe(j)β and e(1)

1e(2)
2e(3)

3 = det
Ä
P

{v}
ij

ä−1/2
.

From these, four complex null vectors are defined
4
:

lα =
(
e(0)

α + e(1)
α
)
/
√
2, kα =

(
e(0)

α − e(1)
α
)
/
√
2,

mα =
(
e(2)

α + ie(3)
α
)
/
√
2, mα =

(
e(2)

α − ie(3)
α
)
/
√
2,

(2.78)

together referred to as a null NP tetrad corresponding to our null tetrad base. By definition their

norm is zero, and while lαk
α = −mαm

α = −1 all other combinations vanish. They span the

metric as

gαβ = −2l(αkβ) + 2m(αmβ). (2.79)

Finally, this null tetrad base is used to project theWeyl tensor and obtain theWeyl scalars, defined

as:

Ψ0 ≡ Cαβµν l
αmβlµmν = Q

{v}
αβ m

αmβ

Ψ1 ≡ Cαβµν l
αkβlµmν = −Q{v}

αβ m
αe(1)

β/
√
2

Ψ2 ≡ Cαβµν l
αmβmµkν = Q

{v}
αβ e(1)

αe(1)
β/2 = −Q{n}

αβ m
αmβ

Ψ3 ≡ Cαβµν l
αkβmµkν = Q

{v}
αβ m

αe(1)
β/

√
2

Ψ4 ≡ Cαβµνk
αmβkµmν = Q

{v}
αβ m

αmβ,

(2.80)

4

Here we use Alcubierre’s notation in Alcubierre (2008), the lα and kα
vectors are swapped in comparison to the

notation in Stephani et al. (2003).
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where in the second equalities, the Ψs are related to E
{v}
αβ and B

{v}
αβ viaQ

{v}
αβ . Clearly, by construc-

tion, the Ψs are frame dependent, based on the choice of null tetrad whose construction was based

on vα. To express them as a function ofQ
{v}
αβ , we use Maple (Maplesoft, 2019) to substitute the Weyl

tensor with Eq. (2.72) and make simplifications based on the tetrad and null vector properties, as

well as e(0)
αe(1)

βmµm̄νϵαβµν = e(1)
βmµm̄νϵβµν = −i, meaning that : e(1)

βmµϵβµν = −imν

and e(1)
βm̄νϵβµν = −im̄µ (Shibata, 2015).

Conversely, with the Weyl scalars one can express Q
αβ{v}

by projecting Eq. (3.58) of (Stephani

et al., 2003) along vµ, obtaining (Barnes and Rowlingson, 1989; Stephani et al., 2003; Cherubini et al.,

2004)

Q
{v}αβ

=Ψ2e
αβ
C

+
1

2
(Ψ0 +Ψ4)e

αβ
T+ − i

2
(Ψ0 −Ψ4)e

αβ
T×

− 2(Ψ1 −Ψ3)e(1)
(αe(2)

β) + 2i(Ψ1 +Ψ3)e(1)
(αe(3)

β).

(2.81)

To build intuition on this expression, consider a spherical frame, e(0)
α = vα is in the temporal

direction, e(1)
α
would radially be pointing outward giving the longitudinal direction, and e(2)

α
and

e(3)
α
along withmα

and m̄α
would be the angular transverse directions. ThusΨ2 is the component

on the Coulombian basis tensor

eαβC = 3e(1)
αe(1)

β − P {v}αβ = 2e(1)
αe(1)

β − e(2)
αe(2)

β − e(3)
αe(3)

β, (2.82)

Ψ0 andΨ4 are the components of the two transverse basis tensors

eαβT+ = e(2)
αe(2)

β − e(3)
αe(3)

β
and eαβT× = 2e(2)

(αe(3)
β)

(2.83)

Ψ1 andΨ3 are the components on the two longitudinal basis tensors e(1)
(αe(2)

β)
and e(1)

(αe(3)
β)
.

One can then express E{v}αβ
and B{v}αβ

using the Weyl scalars, as components on the above-

defined tetrad basis, by using Eq. (2.71) and its complex conjugate taking the realℜ and imaginaryℑ
parts:

E{v}αβ = ℜ(Ψ2)e
αβ
C

+
1

2
ℜ(Ψ0 +Ψ4)e

αβ
T+ +

1

2
ℑ(Ψ0 −Ψ4)e

αβ
T×

− 2ℜ(Ψ1 −Ψ3)e(1)
(αe(2)

β) − 2ℑ(Ψ1 +Ψ3)e(1)
(αe(3)

β),

B{v}αβ =−ℑ(Ψ2)e
αβ
C

− 1

2
ℑ(Ψ0 +Ψ4)e

αβ
T+ +

1

2
ℜ(Ψ0 −Ψ4)e

αβ
T×

+ 2ℑ(Ψ1 −Ψ3)e(1)
(αe(2)

β) − 2ℜ(Ψ1 +Ψ3)e(1)
(αe(3)

β).

(2.84)

Note that Q
{v}αβ

, E{v}αβ
and B{v}αβ

are defined in terms of a generic vµ frame, therefore the

expressions in Eq. (2.81) and Eq. (2.84) are valid in any orthonormal frame with timelike vector

e(0)
µ = vµ.
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2.5.2.1 Null tetrad rotation

As theΨs are frame dependent we may want to identify the frame that maximises the independence

between the different scalars, i.e. the frame where the most number of Ψs vanish, this null tetrad

frame is referred to as the principal null directions. There are three different types of null tetrad

frame rotations available to find them.

❖ Class I: Using the complex scalar a and its complex conjugate, the frame is rotated such that

lα andΨ0 remain intact:

lα → lα

kα → kα + aālα

+ āmα + am̄α

mα → mα + alα

m̄α → m̄α + ālα

Ψ0 → Ψ0

Ψ1 → Ψ1 + āΨ0

Ψ2 → Ψ2 + 2āΨ1 + ā2Ψ0

Ψ3 → Ψ3 + 3āΨ2 + 3ā2Ψ1 + ā3Ψ0

Ψ4 → Ψ4 + 4āΨ3 + 6ā2Ψ2 + 4ā3Ψ1 + ā4Ψ0

(2.85)

❖ Class II: Using the complex scalar b and its complex conjugate, the frame is rotated such that

kα andΨ4 remain intact:

lα → lα + bb̄kα

+ b̄mα + bm̄α

kα → kα

mα → mα + bkα

m̄α → m̄α + b̄kα

Ψ0 → Ψ0 + 4bΨ1 + 6b2Ψ2 + 4b3Ψ3 + b4Ψ4

Ψ1 → Ψ1 + 3bΨ2 + 3b2Ψ3 + b3Ψ4

Ψ2 → Ψ2 + 2bΨ3 + b2Ψ4

Ψ3 → Ψ3 + bΨ4

Ψ4 → Ψ4

(2.86)

❖ Class III:Using the real scalars λ and θ, the frame is rotated such that the lα and kα directions

andΨ2 remain intact:

lα → λ−1lα

kα → λkα

mα → eiθmα

m̄α → e−iθm̄α

Ψ0 → λ2e2iθΨ0

Ψ1 → λeiθΨ1

Ψ2 → Ψ2

Ψ3 → λ−1eiθΨ3

Ψ4 → λ−2e−2iθΨ4

(2.87)

The class I and II rotations can easily be used to cancel certain Ψs, while the class III rotation does

not give this possibility as clearly. For example, using a class I or II rotation where ā or b is the root

of the complex 4th order polynomial

Ψ4 + 4āΨ3 + 6ā2Ψ2 + 4ā3Ψ1 + ā4Ψ0 = 0

or

Ψ0 + 4bΨ1 + 6b2Ψ2 + 4b3Ψ3 + b4Ψ4 = 0

(2.88)

gives the new Ψ̂s that have Ψ̂4 = 0 or Ψ̂0 = 0 respectively. Then using class II or I where b or ā is

the root of the complex 2nd order polynomial

Ψ̂1 + 3bΨ̂2 + 3b2Ψ̂3 = 0

or

Ψ̂3 + 3āΨ̂2 + 3ā2Ψ̂1 = 0

(2.89)
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respectively gives the new Ψ̃s that have Ψ̃4 = Ψ̃1 = 0 such that only Ψ0, Ψ2 and Ψ3 remains or

Ψ̃0 = Ψ̃3 = 0 such that only Ψ1, Ψ2 and Ψ4 remains. Either way, there is always a possibility to

cancel out two of the Weyl scalars. Whether or not it is possible to cancel more can be deduced from

the number of roots of Eq. (2.88), see Section 2.5.3.3, and this will establish if the spacetime is special

as we shall see in Section 2.5.4.

2.5.3 Spacetime invariants

Spacetime invariants have been traditionally considered to address two main and related problems:

i) to establish if two metrics, presented in seemingly different forms, e.g. in different coordinates,

actually represent the same spacetime; this equivalence problem became an important one at the

timewhen therewas a proliferation of new exact solutions, and the development of the first computer

algebra software was underway; ii) to classify exact solutions into Petrov types, which we describe

in Section 2.5.4. The equivalence problem was originally formulated by Cartan (1946) and Brans

(1965), then reconsidered and addressed, and related to the Petrov classification Petrov (2000), by

D’Inverno and Russell-Clark (1971), see Karlhede (1980) for an early review. More general sets of

invariants were then considered in Carminati and McLenaghan (1991) and Zakhary and McIntosh

(1997). Recently, the specific equivalence problem for cosmological models has been addressed in

Wylleman et al. (2019) ; in Bini, Geralico, and Jantzen (2023) a more refined classification for Petrov

type I spacetimes has been proposed. For a classical and rather detailed account of invariants and the

characterisation of spacetimes, we refer the reader to Stephani et al. (2003).

In the following, we are going to construct all the needed scalar invariants for spacetime com-

parison, as well as for the Petrov classification in Section 2.5.4, using E
{v}
αβ and B

{v}
αβ and the Ψs in

an arbitrary frame. When a combination of frame-dependent quantities is frame-independent, this

will be emphasised by dropping the index {v}.
To clarify the vocabulary used here, we use

❖ coordinate variance or invariance to identify whether a quantity is conserved under the coordi-
nate transformation law given by Eq. (2.6) (as such all scalars are coordinate invariant (Wald,

1984; Stephani et al., 2003)),

❖ coordinate dependent or independent to identify whether a quantity retains its meaning in dif-

ferent coordinates, for example, whether a quantity calculated from two different spacetimes

will be the same, and

❖ frame-dependent or independent to identify whether a quantity depends on a projection frame

for its construction. An example of frame-dependant quantities isE
{u}
αβ andB

{u}
αβ that depend

on the uα frame, and theΨs that depend on the chosen null tetrad.

All the spacetime invariants considered in this section are also coordinate independent, so for sim-

plicity, here they are just referred to as invariants; the distinction between the two becomes more

relevant in Section 4.2.6 where this discussion is continued in the context of cosmological perturba-

tion theory.
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2.5.3.1 Fundamental invariants

The two fundamental scalar invariants of the Weyl tensor are (Stephani et al., 2003)

I ≡ 1

2
‹Cαβµν

‹Cαβµν , and J ≡ 1

6
‹Cαβλσ

‹Cλσ
µν
‹Cαβµν , (2.90)

where we use the complex self dual Weyl tensor
‹Cαβµν = 1

4(Cαβµν − iC∗
αβµν). By fundamental

we identify invariants that can be used to express all others. Because these definitions are directly in

terms of the Weyl tensor and do not use any projection, I and J are clearly frame-independent.

We can then express I and J in terms of Eαβ and Bαβ (McIntosh et al., 1995; Stephani et al.,

2003; Alcubierre, 2008)
5
whatever the projection tensor used:

I =
1

2
QαβQ

αβ

=
1

2

Ä
EαβE

αβ −BαβB
αβ
ä
− iEαβB

αβ,

J =
−1

6
Q

α
βQ

β
µQ

µ
α

=
−1

6

î
Eα

β

Ä
Eβ

µE
µ
α − 3Bβ

µB
µ
α

ä
+ iBµ

α

Ä
Bα

βB
β
µ − 3Eα

βE
β
µ

äó
.

(2.91)

Then to express I and J in terms of theWeyl scalars, we expand the above explicitly using the in-

verse of themetric Eq. (2.79) to lower indices, e.g. Q̄α
β = gαµQ̄µβ , and using the definition Eq. (2.80)

we obtain the well known expression:

I = Ψ0Ψ4 − 4Ψ1Ψ3 + 3Ψ2
2, J =

∣∣∣∣∣∣∣
Ψ4 Ψ3 Ψ2

Ψ3 Ψ2 Ψ1

Ψ2 Ψ1 Ψ0

∣∣∣∣∣∣∣ , (2.92)

where J takes the determinant of the matrix.

2.5.3.2 Analogy to electromagnetism

We can construct invariants analogous to the fundamental invariants of electromagnetism (Landau

and Lifshitz, 1975; Maartens, Gebbie, and Ellis, 1999). For Eαβ and Bαβ in any frame, these are

(Matte, 1953; Bonnor, 1995),

LB ≡ 1

8
CαβµνC

αβµν = EαβE
αβ −BαβB

αβ = 2ℜ(I),

M ≡ 1

4
CαβµνC

∗αβµν = EαβBαβ = ℑ(I).
(2.93)

The equivalent ofLB in particular is the field energy density or Lagrange density. These correspond

to the real and imaginary parts of I respectively so they are also frame-independent. In the case of

a purely gravitational waves spacetime, i.e. Petrov type N, LB = M = 0; these two conditions are

also valid for Petrov type III (Bonnor, 1995).

5

Note that various references use different normalisations of I and J .
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2.5.3.3 Characterising spacetime

To characterise the spacetime with the Weyl tensor one considers the alignment possibilities, this is

core to the Petrov classification, see Section 2.5.4. As we will see there are multiple approaches to

finding this but given our introduction to the Weyl scalars and null tetrad frame rotations in Sec-

tion 2.5.2 we will continue with the process of finding this alignment by finding the principal null

directions. Core to this is the number of roots of Eq. (2.88), if all the roots are distinct, then there is

no intrinsic alignment to the spacetime and it is general, otherwise it is special.

An invariant way to check this is with the speciality index (Baker and Campanelli, 2000),

S = 27J2/I3, (2.94)

or simply

D = I3 − 27J2
(2.95)

as in Coley, Peters, and Schnetter (2021). The spacetime is of a special Petrov type whenD = 0 and

S = 1 or I = J = 0 (Stephani et al., 2003). S andD are coordinate invariant and frame-independent

scalars.

Then the different subcategories of the Petrov special types are distinguished based on the num-

ber of repeated roots. These can be determined based on the discriminants of Eq. (2.88), these are

defined as
6
(Penrose, 1960; D’Inverno and Russell-Clark, 1971; Stephani et al., 2003):

K = Ψ1Ψ
2
4 − 3Ψ4Ψ3Ψ2 + 2Ψ3

3, L =

∣∣∣∣∣Ψ4 Ψ3

Ψ3 Ψ2

∣∣∣∣∣ , N = 12L2 −Ψ2
4I. (2.96)

However, ifΨ4 = 0 andΨ0 ̸= 0 thenΨ0 andΨ4 need to be interchanged as well asΨ1 andΨ3. K ,

L andN are coordinate invariant scalars but are also frame-dependent (Bini, Geralico, and Jantzen,

2023).

2.5.4 Petrov classification

Spacetimes can be classified according to their Weyl tensor, Ricci tensor, energy-momentum tensor,

or some special vector fields and symmetries (Stephani et al., 2003). The Weyl tensor classification

leads to the definition of the different Petrov types (Petrov, 2000) and because it can be obtained

invariantly it has become more significant (Stephani et al., 2003). There are six different Petrov types

going from the general one to the most special: I, II, D, III, N, and O. There are multiple interrelated

methods to determine the classification, which we now briefly summarise; we refer the reader to

Stephani et al. (2003), cf. Bini, Geralico, and Jantzen (2023) for a recent account.

❖ Via the Q matrix. This is the tensor Qαβ , Eq. (2.71), expressed with respect to an arbitrary

orthonormal basis. Thismatrix has 3 complex eigenvalues andwhether or not they are distinct

will establish the Petrov type (Stephani et al., 2003; Barnes, 2014; Bini, Geralico, and Jantzen,

2023).

❖ Via the principal spinors (or Debever spinors). The Weyl tensor can be expressed as a combi-

nation of these four spinors, and the Petrov type is related to whether or not these are inde-

pendent or aligned (Plebański and Krasiński, 2006).

6K should not be confused with the trace of the extrinsic curvature Eq. (3.12) and Eq. (3.14).
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❖ Via the principal null directions that can be found using the Weyl scalars (Newman and Pen-

rose, 1962; Chandrasekhar, 1992; Stephani et al., 2003; Alcubierre, 2008; Owen, 2010; Shibata,

2015). Depending on the null tetrad base, certain Weyl scalars vanish
7
. In the frame that max-

imises the number of vanishing scalars, those scalars will determine the Petrov type. Starting

from a generic null base, a frame rotation can be chosen such that the new Ψ0 vanishes. This

is done by solving the 4th order complex polynomial Eq. (2.88) and the number of distinct

roots, and whether or not they coincide, will determine the Petrov type and the principal null

directions. Indeed, the more roots coincide, the moreWeyl scalars can be made to vanish with

further transformations.

❖ Via the I , J , K , L, and N invariants. Finding the roots of the polynomial Eq. (2.88) is not a

trivial task. So, based on the discriminant of the polynomial, these invariants are constructed

(D’Inverno and Russell-Clark, 1971) and whether or not they vanish will establish the number

of distinct roots and therefore the Petrov type, see the flow diagram in Figure 9.1 of (Stephani

et al., 2003) replicated in Fig. (6.13). For all special Petrov types S = 1 (Baker and Campanelli,

2000), see Eq. (2.94), orD = I3 − 27J2 = 0 (Coley, Peters, and Schnetter, 2021).

The six different Petrov types and their respective properties with regard to these different meth-

ods are presented in Fig. (2.1). Their physical interpretation has been described by Szekeres (1965)

using a thought-device, the gravitational compass, measuring tidal effects, i.e. using the geodesic de-

viation equation. This physical interpretation is then based on looking at which of the Weyl scalars

are non-zero in each case and on their specific distortion effects: Ψ0 and Ψ4 generate a transverse

geodesic deviation, whileΨ1 andΨ3 generate a longitudinal tidal distortion; the real part ofΨ2 rep-

resents the tidal distortion associated with a Coulomb-type field originating from a central mass (the

only one that would be present in a Newtonian gravitational field); its imaginary part, if present, is

associated with frame dragging. If one thinks of theWeyl tensor as the combination ofEαβ andBαβ

in Eq. (2.72), with Eαβ and Bαβ expressed as in Eq. (2.84): they contain all of the effects mentioned

above, notably Eαβ contains the real part ofΨ2, and Bαβ its imaginary part. As can be seen in Sec-

tion 4.2.4 for an FLRW spacetime linearly perturbed with only scalar perturbations,Bαβ is zero and

Eαβ corresponds to the second derivatives of a linear combination of the Bardeen potentials called

the Weyl potential (Lewis and Challinor, 2006). Then, with this physical description of the Weyl

scalars, the physical interpretation of the different Petrov types, from most special to most general,

is as follows.

❖ Type O is conformally flat, i.e. all Weyl scalars vanish and there are no tidal fields other than

those associated with the Ricci curvature, e.g. like in FLRW spacetimes.

❖ The Petrov typeN is associatedwith planewaves (Pirani, 1957), as the null tetrad can be chosen

so that only Ψ4 (or Ψ0) is not zero; the tidal field associated with Ψ4 (or Ψ0) is purely trans-

verse and, indeed, in the gauge-invariant perturbative formalism of Teukolsky (1973), cf. also

(Stewart and Walker, 1974), gravitational wave perturbations of black holes are represented

byΨ4 (orΨ0).

7

The five complex Weyl scalars are just a different representation of the ten components of the Weyl tensor in 4-

dimensional. Even in the general case, therefore, coordinates or frame transformations can be used to make four of these

ten components vanish, or two complex Weyl scalars.
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O N III

D II

I

Cαβμν = 0 Ψ4 ≠ 0

Ψ2 ≠ 0

all Ψs ≠ 0

Ψ3 ≠ 0

Ψ2 & Ψ4 ≠ 0

All roots 

are distinct

At least one 

double root

￼I = J = 0
￼K = N = 0 ￼K & N ≠ 0

￼I3 ≠ 27J2

￼I3 = 27J2

At least one 

triple root

Figure 2.1: Penrose diagram of the different Petrov types, showing spinor alignments, non-vanishing

Weyl scalars, number of roots of Eq. (2.88) and vanishing invariants

❖ In type III the null tetrad rotations allow us to make all Weyl scalars butΨ3 (orΨ1) zero: since

Ψ3 (orΨ1) gives rise to a longitudinal tidal effect, this is a strange case of spacetimes with pure

longitudinal tidal fields. The sole perfect fluid solution known (Stephani et al., 2003) has been

found in Allnutt (1981).

❖ In type D spacetimes, a null frame can be found such that onlyΨ2 is the non-zero Weyl scalar.

This is the case of the Schwarzschild and Kerr spacetimes (Schwarzschild, 1916; Kerr, 1963;

Szekeres, 1975), where the real part of Ψ2 represents the Coulomb-type tidal field and the

imaginary part (vanishing for Schwarzschild) is associated with frame-dragging. This is often

referred to as the Kinnersley frame (Kinnersley, 1969; Teukolsky, 1973).

❖ In type II spacetimes the scalarsΨ2 andΨ4 (orΨ0) can bemade non-zero by appropriate rota-

tions: these spacetimes can be seen as the superposition of an outgoing wave and a Coulomb-

type field. A perfect fluid example of this Petrov type was found by Bonnor and Davidson

(1985) as a special case of the Robinson–Trautman metrics (Robinson and Trautman, 1962).

❖ For Petrov type I, a standard choice is to haveΨ1,Ψ2 andΨ3 non-zero (Stephani et al., 2003;

Bini, Geralico, and Jantzen, 2023), but the alternative choice Ψ0,Ψ2 and Ψ4 non-zero is also

possible. This latter choice of the NP null tetrad can be called transverse (Beetle and Burko,

2002; Berti, White, et al., 2005), then we can see from Eq. (2.84) that bothE{v}αβ
andB{v}αβ

have a Coulombian component, plus one for each transverse “polarization". In the context of
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black hole perturbation theory, this transverse tetrad can be called quasi-Kinnersley, as there

areΨ0 andΨ4 perturbations on the Kinnersley background, as in Teukolsky (1973) and Stew-

art and Walker (1974). In NR applied to isolated sources of gravitational waves, the search for

this quasi-Kinnersley frame is a non-trivial task associated with the goal of properly extract-

ing gravitational waves, see Nerozzi, Beetle, et al. (2005) and Nerozzi, Bruni, et al. (2006) and

Refs. therein. However, a type I spacetime doesn’t necessarily contain gravitational waves; a

noteworthy example is the spacetime of stationary rotating neutron stars. In this case, in the

quasi-Kinnersley transverse frame,Ψ0 andΨ4 can be interpreted as transverse (but stationary)

tidal field deviation from the Kerr geometry, see Berti, White, et al. (2005).

In summary, the process of making some of the Weyl scalars vanish by rotations of the NP null

tetrad can lead to ambiguities, as there is a certain set of degrees of freedom for each type leading

to a set number of non-vanishing Weyl scalars, hence there is a certain freedom of choosing which

scalar to cancel out. For instance, one may see that for type II it is also possible to have Ψ2 and Ψ3

instead of Ψ2 and Ψ4 non zero (Chandrasekhar, 1992). Nonetheless, each Weyl scalar has a precise

interpretation as a specific type of tidal field on the basis of the geodesic deviation equation and

the associated gravitational compass (Szekeres, 1965). In general, the geodesic deviation equation is

linear in the Riemann tensor (and therefore in its Weyl plus Ricci decomposition), hence it allows

a superposition of the tidal effects associated with each Weyl scalar. However, this decomposition

is not unique, as it differs for different observers associated with the different possible tetrad bases.

This just means that different observers would measure different tidal fields, even if the Petrov type

- and the corresponding intrinsic nature of the tidal field - would be invariant.



3 - Numerical Relativity

As GR connects space, time and matter, this becomes a challenging ensemble to study; we then turn

to numerical methods to solve these equations, namely Numerical Relativity (NR).

The field of NR became possible with the 3+1 splitting of the metric. This is based on choos-

ing a timelike vector nµ, defining its projection tensor γij and using these to split all the relevant

quantities into their temporal and spatial parts as discussed in Section 2.1.4. This was first initiated

by Darmois (1927), where he referred to these coordinates as normalised or intrinsic coordinates,

already using them to draw analogies to Maxwell’s equations. However, it was truly popularised by

Arnowitt, Deser, and Misner (1959) (ADM) as they pursued separating the metric’s dynamical and

coordinate components so that they could draw comparisons with electrodynamics and treat GR

as an ordinary classical field. This 3+1 formalism, also called ADM, was later formally established

by York (1973) where the spacetime, matter and evolution equations are foliated through time as

described in Section 3.1, 3.2 and 3.3 respectively.

Before jumping to solving Einstein’s field equations in the ADM+York form, studying them is

crucial to know if they are well-posed (Rendall, 2008). Fourès-Bruhat (1952) was the first to address

this Cauchy problem and proved this system to be unique using a harmonic formulation∇µ∇µvα =

0. This system has further been proved to be well-posed using a number of different formulations,

notably BSSNOK (Nakamura, Oohara, and Kojima, 1987; Shibata and Nakamura, 1995; Baumgarte

and Shapiro, 1998) see Section 3.3.3.1, and even in modified theories of gravity (Torsello et al., 2020).

Within the coordinate freedom of GR, we shall discuss usual gauge choices in Section 3.4. Addi-

tionally, because gravito-electromagnetism is a key concept to this thesis, Section 3.5 shows the form

the electric and magnetic parts of the Weyl tensor take in the 3+1 formalism, which is implemented

in Section 5.1.2.

In order to run NR simulations, codes need to be developed using various numerical methods,

these are discussed in Section 3.6.

3.1 Spacetime
The 3+1 or ADM formalism is based on splitting the spacetime into spatial hypersurfaces layered

through time (Gourgoulhon, 2007; Alcubierre, 2008; Rendall, 2008; Baumgarte and Shapiro, 2010;

Shibata, 2015). This is done with a timelike unit vector nµ and its projection tensor γµν that provides

a spatial metric of the hypersurface

γµν = gµν + nµnν , γµν = δµν + nµnν , γµν = gµν + nµnν . (3.1)

Projecting along a given vector has been discussed in Section 2.1.4, keeping the notation general,

but here in this chapter, the notation will be specific using only nµ and γµν as the timelike vector

29
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αn𝝁dt t𝝁dt

dx𝝁

β𝝁dt

γ𝝁𝝂(t)

γ𝝁𝝂  dx𝝂

（   ）t+dt, 
x+dx, 
y+dyx

（   ）t, x, yx

（   ）t+dt, 
x, yxγ𝝁𝝂(t+dt)

Figure 3.1: Schematic representation of spatial foliation with 2+1 dimensions and Cartesian coordi-

nates showing how one event is connected to neighbouring events.

and projection tensor respectively. By definition nµnµ = −1, γµν is a spatial metric such that its

determinant is positive γ > 0 and its trace is γµµ = 3. It is orthogonal to nµ as nµγµν = 0, and by

construction∇[µnν] = 0.

In order for nµ to exclusively capture the temporal information, it is chosen such that it is solely

provided by the time components of the metric nµ = n0g
0µ

with ni = 0. This will ensure that

the time coordinate t is constant on each γµν hypersurfaces, which are mapped to each other with

the normal to the hypersurface nµ, the lapse α and the shift βµ. The lapse function α(t, xi) is

defined such that n0 = −α and with the timelike normalisation it is α2 = −1/g00. The shift vector

βµ(t, xi) with the components

βµ = {0, βi} and βµ = {βkβk, βj} (3.2)

is defined such that it provides the remaining parts of g0µ as g0µ = |g00|{−1, βi}. Because βµ
only has spatial components it is orthogonal to nµ, nµβ

µ = n0β
0 = 0, as such it lives on the γαβ

hypersurface and its indices are raised and lowered with γαβ : βµ = γµνβ
ν
. These choices and the

definitions of the lapse α and shift βµ provide the normal to the hypersurface nµ as

nµ = {1/α, −βi/α}, nµ = {−α, 0, 0, 0}. (3.3)

where its acceleration is given by

aµ = ṅµ = nν∇νnµ =
D

{n}
µ α

α
= D{n}

µ ln(α). (3.4)

Plugging Eq. (3.3) into Eq. (3.1), gij can easily be retrieved in terms of α and βi providing gαβ

expressed below. This can then be used to obtain gαβ using the system of equations provided by

gαµgµβ = δαβ such that

gµν =

(
−1/α2 βj/α2

βi/α2 γij − (βiβj/α2)

)
, gµν =

(
−α2 + βkβ

k βj

βi γij

)
. (3.5)
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Then simply using this and Eq. (3.1), the spatial metric γµν is

γµν =

(
0 0

0 γij

)
, γµν =

(
βkβ

k βi

βj γij

)
, (3.6)

with its determinant γ related to the spacetime metric determinant as g = −α2γ.

Based on Eq. (3.5), the infinitesimal separation between two events is then expressed in this for-

malism as

ds2 = (−α2 + βkβ
k)dt2 + 2βidtdx

i + γijdx
idxj

= −α2dt2 + γij
(
dxi + βidt

) (
dxj + βjdt

)
.

(3.7)

Two events are separated by a step in time dt and space dxi that together are taken and combined

with the Pythagorean theorem to provide this infinitesimal distance. This is essentially depicted in

Fig. (3.1) with 2+1 dimensions and Cartesian coordinates. How these coordinates evolve in time is

mapped out by α and βµ. To see this, consider the vector tangent to the time axis (Baumgarte and

Shapiro, 2010)

tµ = {1, 0, 0, 0} = αnµ + βµ, (3.8)

where the Lie derivative, Eq. (2.27), of some quantity ϕ along tµ can be separated as

Ltϕ = ∂tϕ = αLnϕ+ Lβϕ. (3.9)

It is common practice to define
d
dt the coordinate time derivative exclusively along the normal to the

hypersurface as

dϕ

dt
= αLnϕ = ∂tϕ− Lβϕ. (3.10)

One position in time is brought from one hypersurface of time t, γµν(t), to the next of time t+ dt,

γµν(t+ dt), along the direction normal to γµν(t) provided by n
µ(t) and by taking a step of spacing

α(t)dt. Once on γµν(t+ dt) the spatial location is then adjusted by the shift βi(t)dt. Therefore the

step in time is provided by tµ(t)dt. Then to take a step in space, while on γµν(t + dt), the location

is moved by γµν(t)dx
ν = γµν(t + dt)dxν = {0, dx1, dx2, dx3}. The combination of the time

and space step is then dxµ = tµdt+ γµνdx
ν
which provides Eq. (3.7) as ds2 = gµνdx

µdxν .

3.1.1 Curvature

What of the curvature? As described in Section 2.1.3 one can compute the curvature of spacetime

gµν with the Riemann tensorRα
σµν with Eq. (2.18) and Eq. (2.19) using the Christoffel symbol Γα

µν

Eq. (2.14). Now that we defined a spatial metric γij one can use the same expressions to get the 3-

dimensional Riemann tensor
(3)Rk

mij with the 3-dimensional Christoffel symbol
(3)Γk

ij by simply

using γij instead of gαβ in equations Eq. (2.19) and Eq. (2.14). In the definition provided by the

Ricci identity Eq. (2.18) the spatial covariant derivative associated with γij ,D
{n}
α , is used instead, see

Eq. (2.32) providing the 3-dimensional Ricci identity

D{n}
µ D{n}

ν vα −D{n}
ν D{n}

µ vα = (3)Rα
σµνv

σ. (3.11)
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However, γij does not have any information on how time evolves, this is contained innµ. To quantify

how curvature evolves with time, one uses the extrinsic curvature

Kµν = −1

2
Lnγµν = −γαµγβν∇αnβ

= − 1

2α
(∂tγµν − Lβγµν) = − 1

2α

dγµν
dt

(3.12)

i.e. the Lie derivative Eq. (2.27) of the spatial metric along the normal to the hypersurface. This

quantity can be used to express how the coordinates expand/contract. Note that we do not use the

spatial covariant derivativeD
{n}
µ , Eq. (2.32), instead of γµ

σ∇σ because nν is orthogonal to γµν .

The extrinsic curvature is symmetric and covariantly purely spatial, i.e. it is orthogonal to nα,

nαK
αβ = 0. However, while K00 = K0i = 0, K00 and K0i are different from zero in general

when the shift is not zero; we can write:

Kαβ =

(
0 0

0 Kij

)
, Kαβ =

(
βiβjK

ij βiK
i
k

βjKl
j Kkl

)
, (3.13)

where its indices are raised and loweredwith the spatialmetricKi
j = γikK

kj
andKij = γikγjlK

kl
.

It can be split into its traceK = Ki
i and traceless partAij = K⟨ij⟩ as

Kµν =
1

3
γµνK +Aµν , (3.14)

where the magnitude of the traceless part is

2A2 = AµνA
µν = KαβK

αβ − 1

3
K2. (3.15)

These two quantities will become useful when considering the evolution and constraint equations.

How the extrinsic curvatureKαβ and intrinsic curvature
(3)Rij relate to the 4-dimensional Riemann

tensor is discussed in Section 3.3.2.

3.2 Matter
As NR is based on the foliation created along the nµ vector, naturally, one would consider the de-

composition of Tµν as described in Section 2.3 using nµ, this takes the form

Tµν = ρ{n}nµnν + 2q
{n}
(µ nν) + S{n}

µν . (3.16)

The nµ frame is commonly referred to as an Eulerian observer, while the observer moving with the

fluid flow, the uµ frame, is referred to as a Lagrangian observer. Here we will see how the hydrody-

namical terms in the nµ frame relate to those in the fluid frame uµ (q{u} = 0) should the fluid be

described as a perfect fluid, then in its own frame

Tµν = ϱ{u}h{u}uµuν +

Å
p{u} − Λ

κ

ã
gµν

= ρ{u}uµuν + p{u}hµν −
Λ

κ
gµν .

(3.17)

With the cosmological constantΛ introduced into the energy stress tensor rather than being its own

term in Einstein’s field equations as we follow from (Bentivegna, 2017) whose code we use during

this thesis.
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The timelike normalisation of the 4-velocity uµu
µ = −1 provides the temporal components as

u0 =
1

α

»
1 + γijuiuj , u0 = ukβ

k − α2u0. (3.18)

We also use the 3-velocity of the fluid flow vi = ui/u0. In literature, the 3-velocity is defined with

different normalisations vi = ui/αu
0
(Alcubierre, 2008) or vi = ui/u0 but here we will use the

latter to keep with the notation of Bentivegna (2017) (Anninos, 1998; Baumgarte and Shapiro, 2010;

Shibata, 2015). While the indices of uµ are raised and lowered with gµν , those of v
i
are raised and

lowered with γij providing

vi =
ui

u0
=
γijuj
u0

− βi, vi =
ui
u0

− βi (3.19)

For the same energy-stress tensor, Tµν , it is presented here in Eq. (3.16) and Eq. (3.17) using

two different frames nµ and uµ. While we consider a perfect fluid, Tµν only takes the simplified

expression of Eq. (3.17) in the fluid frame, uµ, otherwise for an arbitrary timeline vector nµ it takes

the more general form Eq. (3.16).

To go from one observer to the other, we need to see how they relate, so we consider their

product, which is quantified by

W = −uµnµ = αu0

=
»

1 + γijuiuj .
(3.20)

This corresponds to the Lorentz factor commonly used in special relativity to relate two observers

moving at different speeds. Note that the product of two vectors is related to their tilt angle β as

uµnµ = − coshβ (Bruni, 1991). Should uµ and nµ be in the same direction uµ = nµ, as is the

case in comoving coordinates, then their respective timelike normalisation meansW = 1 and so the

terms expressed in the nµ frame are the same as those in the uµ frame.

Then using W , the fluid quantities measured in the Eulerian frame are expressed in terms of

those in the Lagrangian frame as (Alcubierre, 2008)

ρ{n} = Tαβnαnβ = ϱ{u}h{u}W 2 −
Å
p{u} − Λ

κ

ã
,

q
{n}
i = −γβiTβαnα = ϱ{u}h{u}Wui,

S
{n}
ij = γµiγ

ν
jTµν = ϱ{u}h{u}uiuj + γij

Å
p{u} − Λ

κ

ã
.

(3.21)

Einstein’s field equations Eq. (2.39) only require Tµν which can be provided by either Eq. (3.16)

or Eq. (3.17). However, the constraint and evolution equations derived from Eq. (2.39) are con-

structed by projecting a chosen timelike vector; this is shown in Eq. (2.60, 2.61, 2.62) with the

fluid flow uµ. However here, nµ is going to be used instead in Section 3.3.3 which will require

{ρ{n}, q{n}i, S{n}ij}.
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3.3 Constraint & evolution equations

3.3.1 Conservation equations

While in the Lagrangian frame (fluid frame), the fluid may be a perfect fluid of the form Eq. (3.17)

whose evolution equations are provided by∇µT
µν = 0 see Section 2.4.1, in the Eulerian frame (nµ

frame) the fluid may not appear as a perfect fluid, it instead takes the form Eq. (3.16), making the

fluid equations more challenging. The state of the fluid can be established based on the primitive

quantities {ϱ{u}, ε{u}, p{u}, vi}, however, to express the evolution equations in a form analogous

to the Eulerian equations in Newtonian theory, the Wilson scheme uses the conserved quantities

{D, E, Si} instead (Wilson, 1972, 1979; Baumgarte and Shapiro, 2010). These are the rest mass-

energy density, internal energy density and energy flux (or momentum density)

D =
√
γϱ{n} = Wϱ{u}

E =
√
γϵ{n} = Wϱ{u}ϵ{u}

Si =
√
γq{n}i = Wϱ{u}h{u}ui

(3.22)

respectively, where

W =W
√
γ = αu0

√
γ. (3.23)

Usually, they are presented without W , but this choice simplifies the expression of their evolution

equations. The conservation equations, ∇µT
µν = 0 Eq. (2.40), in their various projections and

the equation of state, p{u} = wρ{u} Eq. (2.48), provide the conservation of particles, energy
1
and

momentum evolution equations (Anninos, 1998)

∂t (D) + ∂k
(
Dvk

)
= 0,

∂t (E) + ∂k
(
Evk

)
= −p{u}

(
∂tW + ∂k

(
Wvk

))
,

∂t (Si) + ∂k
(
Siv

k
)

=
SµSν

2S0
∂igµν − α

√
γ∂ip

{u} ,

(3.24)

respectively
2
. This system is implemented in CT_Dust (Bentivegna, 2017), which was used for this

thesis. Once {D, E, Si} are evolved Tαβ is reconstructed via Eq. (3.16) and decomposed into

{ρ{n}, q{n}i, S{n}ij} for Einstein’s field equation, see Section 3.3.3.

3.3.2 Ricci identity

To algebraically relate the 4-dimensional Riemann tensor Rα
σµν to the extrinsic curvature Kαβ

consider the Ricci identity Eq. (2.18) applied to nµ. Projecting it and simplifying it corresponds to

the Codazzi (or Codazzi-Mainardi) equation (Shibata, 2015)

D{n}
α Kβµ −D

{n}
β Kαµ = −γναγλβγσµRνλσηn

η, (3.25)

that relates the 4-dimensional curvature to the spatial covariant derivative D
{n}
α , Eq. (2.32), of the

extrinsic curvature.

1

Because of the ∂tW term, theE quantity is often replaced by E =
√
γρ{n} −D (Alcubierre, 2008; Baumgarte and

Shapiro, 2010).

2

Note that SµSν∂igµν = −SµSν∂ig
µν

.
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To then see how the intrinsic 3-dimensional Riemann curvature
(3)Rα

σµν of the slices relates

to Rα
σµν andKαβ consider again the Ricci identity Eq. (2.18) but this time applied to an arbitrary

vector v{n}µ living on γµν such that v{n}µnµ = 0. With simplifications and using Eq. (3.11) this

reduces to the Gauss equation (Shibata, 2015)

(3)Rαβµν = γλαγ
σ
βγ

ω
µγ

η
νRλσωη +KανKβµ −KαµKβν . (3.26)

Rαβµν contains first and second order spatial and temporal derivatives of gαβ . To separate these,

the spatial derivatives ∂i & ∂i∂j of γαβ are all in
(3)Rαβµν given by Eq. (3.11) and Eq. (3.26). For

temporal parts, at first order, ∂t & ∂i are in Kαβ given by Eq. (3.12). Then, at second order, ∂i∂t

& ∂i∂j are in D
{n}
α Kβµ provided by Eq. (3.25), and the remaining derivatives ∂t∂t & ∂t∂j are in

LnKαβ given by

LnKαβ = γλαγ
ω
βRλσωηn

σnη − 1

α
D{n}

α D
{n}
β α−Kλ

βKαλ (3.27)

This is obtained from expandingLnKαβ = nµ∇µKαβ+2Kµ(α∇β)n
µ
, introducing the Ricci iden-

tity nµ, ∇µ∇αnβ = Rβσµαn
σ +∇α∇µnβ , projecting with γ

µ
αγ

ν
β and simplifying based on the

expressions

Kα
µKµβ +Kµβnαa

µ = ∇αn
µ∇µnβ

D
{n}
µ aν + aµaν = 1

αD
{n}
µ D

{n}
ν α

(3.28)

using Eq. (3.4), see Baumgarte and Shapiro (2010) for a step-by-step derivation of Eq. (3.27).

Since Eq. (3.25, 3.26, 3.27) contain all the derivatives that are in the 4-dimensional Ricci, these

equations are essential to removeRαβ terms in Einstein’s field equations.

3.3.3 Einstein’s field equations

Just as in Section 2.4.3, Einstein’s field equations Gαβ − κTαβ = 0 are projected along a chosen

timelike normal vector. In Section 2.4.3, we projected them considering fluid flow; here, we project

themwithnµ and γαβ . We omit the cosmological constant since thematter is treated as a source term

to these evolution equations, Λ can be included in the energy stress tensor as Tµν → Tµν − Λ
κ gµν as

described in Eq. (3.17).

❖ (Gαβ − κTαβ)n
αnβ = 0 is the Hamiltonian constraint equation,

(3)R+
2

3
K2 − 2A2 = 2κρ{n}

⇔ (3)R+K2 − 2KijKij = 2κρ{n}
(3.29)

This is obtained usingGαβn
αnβ = 1

2γ
αµγβνRαβµν where the 4-dimensional Riemann term

can be replaced by the contraction of the Gauss equation Eq. (3.26) with γαµγβν .

❖ γβα (Gβµ − κTβµ)n
µ = 0 are the Momentum constraint equations,

D
{n}
i (Kij − γijK) = κq{n}j (3.30)

This is obtained with γβαGβµn
µ = γβαRβµn

µ
where the 4-dimensional Ricci term is sub-

stituted with the Codazzi equation Eq. (3.25) contracted with γβµ.
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❖ and γµαγ
ν
β (Gµν − κTµν) = 0 are the evolution equations of the extrinsic curvature (York,

1979)

dKij

dt
=−D

{n}
i D

{n}
j α− κα

ï
S
{n}
ij − 1

2
γij(S

{n} − ρ{n})

ò
+ α
î
(3)Rij +KKij − 2KikK

k
j

ó (3.31)

where we use Eq. (3.10). This expression is essentially Eq. (3.27) where the Riemann term is

substituted with the Gauss equation Eq. (3.26) and the Ricci term that would then appear is

replaced with Einstein’s field equation Eq. (2.39).

Evolving the extrinsic curvature with Eq. (3.31) would naturally provide the evolution equa-

tions of the spatial metric according to Eq. (3.12)

dγij
dt

= −2αKij (3.32)

Then the lapse α and shift βi evolve according to the gauge choice, see Section 3.4.

The evolution equations Eq. (3.31, 3.32) provide a system of coupled quasilinear second-order

partial differential equations (PDE). To numerically integrate this system, it needs to be well-posed,

i.e. that a solution exists and is unique; this will ensure their stability such that if there is a small

deviation, the systemwill remain close to the solution, andwith increased resolution, it will converge

to the true solution. To establish this, we consider the terms in the principal part of the PDE

D
{n}
i D

{n}
j α = ∂i∂jα+ ...

(3)Rij = −1

2
γmn (∂m∂nγij + ∂i∂jγmn − ∂i∂nγmj − ∂m∂jγin) + ...

(3.33)

PDEs are categorised, depending on the coefficients of the higher order terms, as either elliptic

(Poisson’s equation), parabolic (diffusion equation), or hyperbolic (wave equation) (Baumgarte and

Shapiro, 2010). As they stand, the system’s equations can not be classified amongst either group, but

through coordinate choices, the constraint equations can be shown to be elliptic and the evolution

equations to be hyperbolic (Rendall, 2008). Hyperbolic evolution equations can further be classified

as either strongly or weakly hyperbolic, which identifies whether the solution can be bound by an

arbitrary exponential function; if an equation is strongly hyperbolic, then its solution grows slower

or equal to an exponential evolution, and this equation is therefore well-posed (Alcubierre, 2008).

Such a reformulation was first provided by Fourès-Bruhat (1952) with harmonic coordinates that

reduce the evolution equations to well-posed wave equations. Then amongst the formalisms that are

now available, we shall describe BSSNOK.

3.3.3.1 BSSNOK

The BSSNOK formulation from (Nakamura, Oohara, and Kojima, 1987; Shibata and Nakamura,

1995; Baumgarte and Shapiro, 1998) express the ADM+York evolution equations, Eq. (3.32) and

Eq. (3.31), in a well-posed form based on a conformal rescaling and the
(3)Γk = γij(3)Γk

ij con-

nection function. The conformal mapping is applied to the spatial metric and the traceless part of

the extrinsic curvature

¯̄γij =
¯̄ψ−4γij ,

¯̄Aij =
¯̄ψ−4Aij (3.34)
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such that the conformal spatial metric ¯̄γij has unit determinant ¯̄γ = det (¯̄γij) = 1. This defines

the conformal factor from the spatial determinant
¯̄ψ = e

¯̄ϕ = ¯̄γ1/12, where ¯̄ψ and
¯̄ϕ can be used

interchangeably depending on convenience. Naturally, the indices of
¯̄Aij are raised and loweredwith

the conformal metric
¯̄Ai

j = ¯̄γik ¯̄Akj . However, as indicated by the notation, with this rescaling ¯̄γij ,
¯̄ψ, ¯̄ϕ and

¯̄Aij are not tensors but tensor densities, they transform as Eq. (2.8) and their Lie derivative

is Eq. (2.28) which is notable given d/dt defined in Eq. (3.10). ¯̄ψ, ¯̄ϕ have the same weight of 1/6, then

¯̄γij and
¯̄Aij have a weight of−2/3 while in their contravariant form their weight is 2/3.

Applying this decomposition to Eq. (3.32) provides evolution equations for the conformal factor

¯̄ϕ, and for the conformal spatial metric ¯̄γij

d ¯̄ϕ

dt
= −1

6
αK,

d¯̄γij
dt

= −2α ¯̄Aij . (3.35)

These are all stable first-order PDEs; indeed Eq. (3.32) is not posing stability concerns, Eq. (3.31)

is the challenging equation. The evolution equation of the extrinsic curvature, Eq. (3.31), is split

into its trace and traceless parts. The trace part provides the evolution equation ofK , and although

it depends on the trace of the 3-Ricci tensor, this is substituted with the Hamiltonian constraint

Eq. (3.29) providing a stable evolution equation

dK

dt
= −γijD{n}

i D
{n}
j α+ α

Å
2 ¯̄A2 +

1

3
K2

ã
+
κ

2
α
Ä
ρ{n} + S{n}

ä
. (3.36)

The traceless part is expressed in terms of the conformal traceless part
¯̄Aij

d ¯̄Aij

dt
= e−4 ¯̄ϕ

Ä
−D{n}

⟨i D
{n}
j⟩ α+ α(3)R⟨ij⟩ − ακS

{n}
⟨ij⟩

ä
+ α
Ä
K ¯̄Aij − 2 ¯̄Aik

¯̄Ak
j

ä
, (3.37)

where ⟨...⟩ is the traceless operator Eq. (2.26). This however still depends on the 3-Ricci tensor,

(3)Rij , which is then calculated using the conformal 3-Ricci tensor
(3) ¯̄Rij and additional terms that

depend on
¯̄ϕ

(3)Rij =
(3) ¯̄Rij +

(3)R
¯̄ϕ
ij

(3) ¯̄Rij =− 1

2
¯̄γlm∂l∂m ¯̄γij + ¯̄γk(i∂j)

(3) ¯̄Γk + (3) ¯̄Γk(3) ¯̄Γ(ij)k

+ ¯̄γlm
Ä
2(3) ¯̄Γk

l(i
(3) ¯̄Γj)km + (3) ¯̄Γk

im
(3) ¯̄Γklj

ä
(3)R

¯̄ϕ
ij =− 2 ¯̄Di

¯̄Dj
¯̄ϕ− 2¯̄γij

¯̄Dk ¯̄Dk
¯̄ϕ+ 4 ¯̄Di

¯̄ϕ ¯̄Dj
¯̄ϕ− 4¯̄γij

¯̄Dk ¯̄ϕ ¯̄Dk
¯̄ϕ

(3.38)

where
¯̄D is the covariant derivative of ¯̄γij . Themixed second-order derivatives in

(3) ¯̄Rij are avoided

as they are expressed using the conformal connection function

(3) ¯̄Γk = ¯̄γij(3) ¯̄Γk
ij = −∂i ¯̄γij (3.39)

which, instead of computing it from the metric, is considered a new variable with its own evolution

equation

d(3) ¯̄Γi

dt
=¯̄γjk∂j∂kβ

i +
1

3
¯̄γij∂j∂kβ

k − 2 ¯̄Aij∂jα

+ 2α

Å
(3) ¯̄Γi

jk
¯̄Ajk + 6 ¯̄Aij∂jϕ− 2

3
¯̄γij∂jK − κ¯̄γijq

{n}
j

ã (3.40)
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that has been made more stable with the momentum constraint equation Eq. (3.30).
(3) ¯̄Γk

is not ac-

tually a tensor density, but here it can be treated as a tensor density of weight 2/3 in the Lie derivative

of d/dt Eq. (3.10).

Thus this formalism provides a set of evolution equations for
¯̄ϕ, ¯̄γij ,K ,

¯̄Aij and
(3) ¯̄Γk

, Eq. (3.35,

3.36, 3.37, 3.40), which are all well-posed. This has been demonstrated analytically (Nakamura,

Oohara, and Kojima, 1987; Alcubierre, Allen, et al., 2000; Alcubierre, 2008) and numerically (Baum-

garte and Shapiro, 1998).

3.4 Gauge choice
In NR the coordinate freedom of GR translates into initially defining α, βi and γij at the start of the

simulation and making a choice as to how α and βi evolve, while γij evolves according to Einstein’s

field equations, see Section 3.3.3. Amongst these gauge options, a non-exhaustive list is presented be-

low where a lapse condition is referred to as a type of slicing. See Section 4.2.3 for further discussion

in the Cosmological context.

❖ Synchronous gauge: where coordinate time coincides with proper time t = τ . This is pro-

vided by (Darmois, 1927)

α = 1, ∂tα = βi = ∂tβ
i = 0. (3.41)

In NR, this is commonly called the geodesic gauge because, as Eq. (3.4) and Eq. (2.17) show, if

there is no lapse, these coordinates do not accelerate and thus follow geodesic curves, aµ =

nµ∇µn
α = 0. Naturally, these geodesic observers will focus towards gravitational sources,

and so simulations in this gauge are susceptible to creating coordinate singularities as the path

of different observers cross each other, making γ → 0.

❖ Comoving gauge: α and βi are chosen such that there is no energy flux q{n}i = 0; in this

case the coordinates are those of a Lagrangian observer evolving with the fluid

nµ = uµ, Kij = −Θij (3.42)

where the normal to the hypersurface is the fluid flow, and the extrinsic curvature is the fluid

expansion. This is possible only for an irrotational fluid ωαβ = 0.

❖ Maximal slicing: Here, the volume element takes its maximal size and is constant. The vol-

ume being preserved along nµ means that the extrinsic curvature and its time derivative are

zero, (Smarr and York, 1978a; York, 1979)

γ = const, K = ∂tK = 0, (3.43)

where the K evolution equation (trace of Eq. (3.31)) needs to be solved to provide α. This

means that these coordinates do not expand or contract. Should there be a black hole,α freezes

such that γ can remain constant and the singularity is avoided
3
. However, freezing a section of

the grid while the rest continues to evolve can lead to issues with slice stretching. Additionally,

3

Though not always (Eardley and Smarr, 1979).
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this can only be used for asymptotically flat spacetimes, so for Cosmology, an alternative is

to consider constant mean curvature where K is instead a homogeneous function (Barrera-

Hinojosa and Li, 2020b).

❖ Bona-Masso family: In choosing an evolution equation forα, multiple slicing conditions can

be summarised by (Bona et al., 1995)

dα

dt
= −fαnK (3.44)

with f ⩾ 0 and n an integer. The BSSNOK formulation requires f > 1 to be well-posed,

and if n < 2, this condition will present strong singularity avoidance, freezing the black hole

region (Alcubierre, 2008). Two distinct cases are discussed below, but note that in cosmology, a

commonmodification is subtracting a homogeneous function or scalar toK (Giblin, Mertens,

Starkman, and Tian, 2019b).

✦ Harmonic slicing: Requiring the coordinates to satisfy Laplace’s equation∇µ∇µxα =

0 has the capacity to formulate Einstein’s field equations into wave equations (Fourès-

Bruhat, 1952). Considering only the temporal part, this provides a condition for the

lapse

∇µ∇µx0 = 0 ⇒ gµνΓ0
µν = 0 ⇒ dα

dt
= −α2K. (3.45)

However, this does not satisfy the BSSNOK requirements to be well-posed.

✦ 1+log slicing: An option that is well-posed for BSSNOK and avoids singularities, i.e.

f > 1 and n < 2 in Eq. (3.44), is provided by (Bernstein, 1993; Anninos et al., 1995)

dα

dt
= −2αK ⇒ α = 1 + ln(γ). (3.46)

Which has become the preferred slicing condition for black hole simulations.

❖ Harmonic shift condition: Just like the harmonic slicing, coordinates satisfying the Laplace

equation∇µ∇µxα = 0, only considering the spatial part this time

∇µ∇µxi = 0 ⇒ gµνΓi
µν = 0. (3.47)

provides an evolution equation for βi (Alcubierre, 2008). This can be used independently of

the harmonic slicing condition.

❖ Minimal strain/distortion shift condition: Defining the coordinate strain and distortion

along coordinate time asΘij =
1
2Ltγij and Σij = Θ⟨ij⟩ respectively, which are analogous to

the expansion and shear tensors. The shift vector can be defined such that one or the other is

minimised according to the minimal strain or minimal distortion conditions

D
{n}
i Θij = 0, D

{n}
i Σij = 0 (3.48)

respectively (Smarr and York, 1978a,b). While the minimal strain condition reduces variation

in the size of the volume element, theminimal strain condition reduces its shape (or shear). The

latter is then more appropriate for cosmological simulations and D
{n}
i Σij = 0 is equivalent

to ∂t
(3) ¯̄Γi = 0 known as the Gamma freezing gauge which simplifies the BSSNOK evolution

equations. Furthermore, for aMinkowski spacetime ηαβ with a small perturbationhαβ , gαβ =
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ηαβ +hαβ , in vacuum, the minimal distortion condition implies that the traceless part of hαβ

is purely tensorial h⟨αβ⟩ = hTT
αβ (Smarr and York, 1978a), which is the behaviour described in

the transverse-traceless gauge. See Section 4.2.1 for scalar vector tensor decomposition.

❖ Gamma driver shift condition: Inspired by the Gamma freezing condition, it has been gen-

eralised to have

∂2t β
i = α2ξ∂t

(3) ¯̄Γi − η∂tβ
i

(3.49)

where ξ > 0 is a function of α and xi and controls the wave speed, while the second term on

the right-hand side is a damping term adjusted with the η > 0 parameter. This also minimises

the volume distortion, where it reduces slice stretching for rotating black hole simulations.

The accuracy of binary black hole simulations if further improved with the inclusion of ad-

vection terms βi∂i with
d2βi

dt2
= α2ξ

d(3) ¯̄Γi

dt
− η∂tβ

i
(3.50)

where d/dt = ∂t − βi∂i (Alcubierre, 2008).

❖ Puncture gauge: The combination of the 1+log slicing and the Gamma driver conditions to-

gether are referred to as the puncture gauge; their combined propertiesmake this the preferred

gauge to simulate black holes (Baiotti and Rezzolla, 2006).

3.5 Gravito-electromagnetism
To express E

{n}
ij and B

{n}
ij with this formulation, the Weyl tensor in Eq. (2.68) needs to be replaced

by 3+1 quantities. ForE
{n}
ij one starts with the Gauss equation Eq. (3.26), this is then contractedwith

γβν and rearranged to find nβnνRαβµν . The resulting expression is introduced into Eq. (2.68), then

the remaining 4-dimensional Ricci terms are substituted using Einstein’s field equations Eq. (2.39)

and its contraction, such that (Alcubierre, 2008)

E{n}ij = (3)Rij +KijK −KikKj
k −

2

3
γij
Ä
Λ + κρ{n}

ä
− κ

2
S
{n}
⟨ij⟩ . (3.51)

Note thatE{n}αβ
is purely spatial, indeed from Eq. (2.68)E{n}αµ = α2Cα0µ0

, and the antisymmet-

ric nature of the Weyl tensor implies that E{n}αµ
can only have spatial components. One can then

defineE{n}i
j = E{n}ikγkj andE

{n}
ij = γikγjlE

{n}kl
. In lowering the indices ofE{n}αβ

with γαβ ,

however, we see that the temporal components of E
{n}
αβ do not vanish when the shift is non zero.

E{n}αβ
and E

{n}
αβ can be written in terms of the shift and the space components, as in Eq. (3.13).

In Eq. (3.51), it is the Hamiltonian constraint Eq. (3.29) that ensures that E{n}ij
remains trace-

less. However, in NR simulations, this constraint is used as a validity check, therefore, although

small, it tends to be non-zero. This carries into E{n}ij
when computed with Eq. (3.51), where the

non-zero trace would correspond to the violation of the Hamiltonian constraint. Then, in order to

avoid introducing errors in the calculation of E
{n}
ij , in particular a non-zero trace, we substitute in

Eq. (3.51) the term Λ + κρ{n} from the Hamiltonian constraint, obtaining

E
{n}
ij = (3)R⟨ij⟩ +K⟨ij⟩K −Kk

⟨iKj⟩k −
κ

2
S
{n}
⟨ij⟩ (3.52)

where the traceless operator Eq. (2.26) makes it explicit that this expression remains traceless up to

numerical errors.
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Similarly, B
{n}
ij can be expressed using the Codazzi equation Eq. (3.25). This is contracted with

γαµ to provide nβRνβ , and it is rearranged to have nβRαβµν . These two terms can be introduced

into the expression forB
{n}
ij , Eq. (2.68), so that

B
{n}
ij = ϵ{n}klj

Å
D

{n}
k Kli +

1

2
γik
Ä
D

{n}
l K −D{n}

m Km
l

äã
. (3.53)

At this point, the momentum constraint Eq. (3.30) is typically inserted (Alcubierre, 2008) to simplify

the second term. Again, to avoid introducing errors in the numerical computation, we abstain from

taking this last step. Here B
{n}
ij can be seen to be trace-less because of the anti-symmetry of the

Levi-Civita tensor. Finally, B
{n}
αβ can be expressed in terms of the shift and its space components in

the same way thatKαβ and E
{n}
αβ are, as in Eq. (3.13).

E
{n}
αβ and B

{n}
αβ calculated with Eq. (3.52) and Eq. (3.53), exclusively provide the electric and

magnetic parts of the Weyl tensor projected orthogonally to nµ, i.e. on γij , as indicated with the {n}
superscript. If one were to preferE

{u}
αβ andB

{u}
αβ , where they are projected orthogonally to the fluid

flow uµ (since these have specific physical meaning as discussed in Section 2.5.1), then these can be

obtained by constructing Cαβµν from E
{n}
αβ andB

{n}
αβ with Eq. (2.72), then projecting it with uµ.

Note that Cαβµν is not gauge independent; the Weyl tensor computed with two different slic-

ings will differ, and these can furthermore be projected on any arbitrary time-like vector. Here, we

specifically discuss the Weyl tensor computed with the slicing of the simulation (along nµ), and use

the notation {n} or {u} to distinguish upon which vector it is further decomposed.

3.6 Numerical methods
Since the formalism of NR was created, there has been interest in running such simulations; with

the advancement of numerical techniques, many codes are now available. A non-exhaustive list of

named NR codes includes

❖ BAM (Brügmann, 1999; Thierfelder, Bernuzzi, and Brügmann, 2011; Chaurasia, Dietrich, and

Rosswog, 2021)

❖ bamps (Hilditch, Weyhausen, and Brügmann, 2016)

❖ BHAC (Porth et al., 2017)

❖ CosmoGRaPH (Mertens, Giblin, and Starkman, 2016)

❖ Dendro-GR (Fernando et al., 2019)

❖ Einstein Toolkit (n.d.) (Löffler et al., 2012; Brandt et al., 2020)

❖ had (Anderson et al., 2006)

❖ Hahndol (Imbiriba et al., 2004; Baker, Centrella, et al., 2006)

❖ KADATH (Grandclément, 2010)

❖ GR-Athena++ (Daszuta et al., 2021)
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❖ GRChombo (Clough, Figueras, et al., 2015; Andrade et al., 2021)

❖ Gmunu (Cheong et al., 2021)

❖ OllinSphere2 (Alcubierre and Mendez, 2011; Torres et al., 2014)

❖ sagra-mpi (Yamamoto, Shibata, and Taniguchi, 2008)

❖ Simflowny (Palenzuela et al., 2018)

❖ SFINGE (Meringolo and Servidio, 2021)

❖ SpEC (Kidder et al., 2000; Boyle, Lindblom, et al., 2007)

❖ SPHINCS_BSSN_v1.0 (Rosswog, Torsello, and Diener, 2023)

❖ Whisky (Giacomazzo and Rezzolla, 2007)

but many more (Musco, Miller, and Rezzolla, 2005; East, Pretorius, and Stephens, 2012; Rekier,

Cordero-Carrión, and Füzfa, 2015; Yoo, Harada, and Okawa, 2017; Escrivà, 2020) have been created

with various motivations, each with its own strengths. While some may share parts of their infras-

tructure, these can be distinguished based on the NR formalism, fluid treatment, underlying grid,

mesh refinement, parallelism, or evolution schemes. On this last point, evolution schemes can either

be based on spectral methods, e.g. KADATH and SpEC, or based on finite difference (FD) methods.

While results from spectral methods can be multiple orders of magnitude more accurate than FD

methods, they are notoriously more challenging to implement, making FD schemes more popular.

Therefore, some of the relevant FD schemes are presented in the following sections.

Based on their application, most were created for strong gravity simulations, while Cosmo-

GRaPH has been exclusively created for cosmological simulations of LSS with the capacity to sim-

ulate either a fluid or particles, yet it is general enough to simulate a lattice of black holes (Giblin,

Mertens, Starkman, and Tian, 2019a). This cosmological application has been explored in full NR

with codes in spherical symmetry (Torres et al., 2014; Rekier, Cordero-Carrión, and Füzfa, 2015)

and more in general without symmetry (Bentivegna and Bruni, 2016; East, Wojtak, and Pretorius,

2019; Macpherson and Heinesen, 2021). Yet because particle simulations are not the strong suit of

NR codes, further relativistic codes have been created using different approaches

❖ gevolution (Adamek, Daverio, et al., 2013; Adamek, Durrer, and Kunz, 2014; Adamek, Daverio,

et al., 2016b) N-body code in the Poisson gauge in the weak field limit

❖ gramses (Barrera-Hinojosa and Li, 2020a,b) N-body code extended to include all scalar and

vector terms of GR in the constant mean curvature and minimal distortion gauge

❖ simsilun (Bolejko, 2018) fluid NR code exclusively for an irrotational silent universe

Within this wealth of options, this thesis uses the Einstein Toolkit code following (Bentivegna and

Bruni, 2016), whose structure and implementation are described in Section 6.2. See Section 4.3.5 for

further discussion about cosmological simulations.
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3.6.1 Differentiating

To differentiate a quantity, the FD schemes are based on the Taylor series where an infinitely dif-

ferentiable function f(x) is expressed in terms of a power series of its derivatives at x0 as (Landau,

Páez, and Bordeianu, 2007; Shibata, 2015)

f(x) =
∞∑
n=0

f (n)(x0)

n!
(x− x0)

n

=f(x0) + f (1)(x0) (x− x0) +
f (2)(x0)

2
(x− x0)

2 +
f (3)(x0)

6
(x− x0)

3

+
f (4)(x0)

24
(x− x0)

4 +
f (5)(x0)

120
(x− x0)

5 +
f (6)(x0)

720
(x− x0)

6 + ...

(3.54)

While we know the value of f(x) we seek f (1)(x0). The x parameter in Eq. (3.54) can be chosen at

any location; therefore, we can create a system of equations to isolate f (1)(x0). Consider the location

x0 +∆x where

f(x0 +∆x) = f(x0) + f (1)(x0)∆x+O(∆x2) (3.55)

rearranging this for f (1)(x0) provides

f (1)(x0) =
f(x0 +∆x)− f(x0)

∆x
+O(∆x)

= lim
∆x→0

f(x0 +∆x)− f(x0)

∆x

(3.56)

where all terms with ∆x or higher are not included in the equation. This will lead to a truncation

errorO(∆x); however, as∆x→ 0, this expression will converge to the true value. This expression

will have a first-order convergence. To increase the order, additional locations are considered, say

the locations before x0 for a backward mask, the locations around x0 for a centred mask, or the

locations after x0 for a forward mask (as is the case with Eq. (3.56)). If two locations are provided

for each scheme, each system is rearranged to provide the following backward, centred, and forward

second-order schemes

f (1)(x0) =
1

∆x

Å
1

2
f(x0 − 2∆x)− 2f(x0 −∆x) +

3

2
f(x0)

ã
+O(∆x2)

f (1)(x0) =
1

∆x

Å
−1

2
f(x0 −∆x) +

1

2
f(x0 +∆x)

ã
+O(∆x2)

f (1)(x) =
1

∆x

Å
−3

2
f(x0) + 2f(x0 +∆x)− 1

2
f(x0 + 2∆x)

ã
+O(∆x2)

(3.57)

respectively. Providing more locations will further increase the convergence scheme. The weights of

each location in the various schemes are summarised in Table (3.1) where Eq. (3.56) and Eq. (3.57) can

be recognised. These schemes were implemented in the codes described in Chapter 5, which were

applied in Chapter 6. See Appendix C on how to compute errors and convergence, and Appendix A

where we show the centred schemes to outperform the backward and forward ones.
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Order −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

Backwards

1 −1 1

2

1

2
−2

3

2

4

1

4
−4

3
3 −4

25

12

6

1

6
−6

5

15

4
−20

3

15

2
−6

49

20

Centred

2 −1

2
0

1

2

4

1

12
−2

3
0

2

3
− 1

12

6 − 1

60

3

20
−3

4
0

3

4
− 3

20

1

60

Forwards

1 −1 1

2 −3

2
2 −1

2

4 −25

12
4 −3

4

3
−1

4

6 −49

20
6 −15

2

20

3
−15

4

6

5
−1

6

Table 3.1: Coefficients of backward, centred and forward finite differencing schemes at second, fourth

and sixth order (Fornberg, 1988).

3.6.2 Integrating

PDEs have multiple independent variables, time t and space xi, which are separated to be integrated.

This is key to the method of lines technique (Schiesser, 1991) where the spatial derivatives are re-

placed by their numerical approximations, given the schemes described in Section 3.6.1, and treated

as source terms such that the PDE can be treated as an ordinary differential equation with only time

derivatives. In this case, the initial value problem (or Cauchy problem) is provided by a set of evolu-

tion equations and initial conditions

∂tf = S (f, t) f (tIN ) = fIN (3.58)

where S (f, t) corresponds to the source terms of the evolution equation. This is typically studied

for well-posedness; however, now we seek to evolve this system.

One way to integrate this is by using Taylor’s expansion Eq. (3.56) (with t instead of x) where

f (t+∆t) is isolated and f (1) (x0) (or ∂tf here) is replaced by the source terms from Eq. (3.58)

providing

f (t+∆t) = f (t) + ∆tS (f, t) +O
(
∆t2

)
(3.59)
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which simply corresponds to Euler’s first-order forward-stepping rule (Landau, Páez, and Bordeianu,

2007). The initial conditions provide the right-hand side of the first step, and the left-hand side can

then be used for the next step and so on. This is an explicit iterative method where the system at the

current time is used to calculate the system’s state at a later time.

Next, we shall consider the more robust Runge-Kutta method. To start, we Taylor expand the

source function around the point in time tn + ∆t
2 , i.e. the time at the nth iteration with half a time

step ∆t. To simplify notation we use tn+ 1
2
= tn + ∆t

2 and fn+ 1
2
= f
Ä
tn+ 1

2

ä
, such that S (f, t)

around tn+ 1
2
is

S (f, t) =S
Ä
fn+ 1

2
, tn+ 1

2

ä
+
Ä
t− tn+ 1

2

ä ∂S Äfn+ 1
2
, tn+ 1

2

ä
∂t

+O
(Ä
t− tn+ 1

2

ä2)
.

(3.60)

Integrating this from tn to tn+1 = tn +∆t, where all except the t terms are constant provides∫ tn+1

tn

S (f, t) dt = ∆tS
Ä
fn+ 1

2
, tn+ 1

2

ä
+O

(
∆t3

)
⇒ fn+1 − fn = ∆tS

Ä
fn+ 1

2
, tn+ 1

2

ä
+O

(
∆t3

)
⇒ fn+1 = fn +∆tS

Ä
fn+ 1

2
, tn+ 1

2

ä
+O

(
∆t3

) (3.61)

where the integrated second-order term of Eq. (3.60) cancels out when tn+1 and tn+ 1
2
are expanded,

and the left-hand side term is replaced by its integral provided by Eq. (3.58). The remaining issuewith

this expression is that fn+ 1
2
is unknown; trying to find it with the same methodology will require

fn+ 1
4
and so on, therefore an other scheme needs to be used, notably Euler’s method Eq. (3.59), the

expression then becomes second-order Runge-Kutta evolution scheme

fn+1 = fn +∆tS

Å
fn +

∆t

2
S (fn, tn) , tn+ 1

2

ã
+O

(
∆t2

)
(3.62)

where fn = f (tn) and tn are the input information to determine the values at the next step.

Using the same methodology, the fourth-order Runge-Kutta evolution scheme is

fn+1 = fn +
∆t

6
(k1 + 2k2 + 2k3 + k4) +O

(
∆t4

)


k1 = S (fn, tn)

k2 = S
(
fn + k1

∆t
2 , tn + ∆t

2

)
k3 = S

(
fn + k2

∆t
2 , tn + ∆t

2

)
k4 = S (fn + k3∆t, tn +∆t)

(3.63)

where the source terms need to be calculated four times, and interpolated between time steps for

tn + ∆t
2 , to advance one step, yet fn is the only information needed.

Note that neither Euler nor Runge-Kutta methods presented here are symplectic. This means

that when applying these schemes to a system of equations with conserved quantities (such as the

Hamiltonian and momentum constraint here), the truncation error may accumulate over time, caus-

ing the solution to drift and violate the conservation properties of the system. Hence the importance

of monitoring the constraint violations.





4 - Cosmology

Cosmology is the field of study of the universe as a whole. As we look out into the starry night, we

see stars in all directions as far as the eye can see, and with binoculars, even more of them. These

stars have differing luminosity, and the further they are, the dimmer they appear. What we can see

has led to the cosmological principle (Peacock, 1999): the universe is homogeneous and isotropic.

Yet this is challenged by Olber’s paradox or dark night sky paradox: if the universe is infinite static,

and eternal, then the light from an infinity of stars would accumulate to completely fill the sky such

that there would be no darkness. As this is not what we see, there must be something wrong with

these assumptions, so further observations are needed.

Someof these stars appear grouped, forming clusters, and some luminous regions do not look like

point sources; these were then called nebulae. Placing ourselves in the universe, (Hubble, 1929) has

shown that most of these astronomical objects are relatively close, contained in our galaxy, theMilky

Way. Yet some of the nebulae are actually other galaxies extremely far away populating the universe,

and they are moving away from us as their electromagnetic light is redshifted; the further away, the

larger the redshift, meaning that each galaxy is expanding away from the other. The distance between

us and these galaxies and their redshift is related by the current expansion rate of the universe, also

known as Hubble’s constantH0.

Another pivotal discovery is the detection of the same faint electromagnetic signal from every di-

rection in the universe that follows a perfect black body curve (Penzias andWilson, 1965). This Cos-

mic Microwave Background (CMB) proves that in the past, the universe had a radiation-dominated

era where there was only plasma and that the universe has expanded out of this state such that the

photons are free to travel and be redshifted with the expansion of the universe. This CMB is the fur-

thest possible electromagnetic observation we can measure, prior to this all emitted photons were

absorbed straight away.

These two observational facts have confirmed the Big Bang theory (Friedmann, 1922, 1924;

Lemaître, 1931, 1933) of the evolution of the universe: which was hot and dense at early times and

has expanded out of that state and continues to expand today. This expansion with an initially dense

state answers Olber’s paradox leaving the cosmological principle intact; we, therefore, discuss a ho-

mogeneous isotropic and expanding universe in Section 4.1.

Thesemeasurements have since been improvedwithmore astronomical objects and increasingly

accurate observational tools. To measure short distances, one can use parallax, then further out, one

needs to know the absolute magnitude of an astronomical object and compare it to the apparent

magnitude measured (Schneider, 2015). Such objects are referred to as standard candles, they in-

clude cepheids and type Ia supernovae. Probing large distances has shown that the universe is not

only expanding, but expanding at an accelerated rate (Riess, Filippenko, et al., 1998). This new force

47
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driving this acceleration is called dark energy; it can be accounted for in Einstein’s field equations,

Eq. (2.39), by a positive constant, the cosmological constant Λ (Einstein, 1917).

Additionally, it was discovered that the radial velocity of stars within galaxies differs from that

expected according to the observedmass of the galaxy (Rubin and Ford, 1970). So theremust bemore

matter that does not emit any electromagnetic signal and only interacts gravitationally, i.e. ColdDark

Matter (CDM) (Peebles, 1982).

Current measurements of the CMB confirm the ΛCDM model (Planck Collaboration, 2020),

finding that the universe content is composed of 5% of normal visible matter, 27% of dark matter,

and 68% of dark energy, although the inferred value of H0 differs from that measured using type

Ia supernovae (Riess, Yuan, et al., 2022). The mystery around this dark content and measurement

discrepancies lead us to continually question our understanding of the universe (Di Valentino et al.,

2021; Abdalla et al., 2022).

While the assumptions of the cosmological principle have held on average and at large scales,

there are small fluctuations in the CMB temperature (Planck Collaboration, 2020) meaning that the

CMB is neither isotropic nor homogeneous. These inhomogeneities can be described with cosmo-

logical perturbation theory, where they are depicted as small perturbations to the homogeneous uni-

verse, as discussed in Section 4.2. Indeed reflecting on our position in the universe, our presence

proves that the universe is not perfectly homogeneous, it can only be treated as statistically homo-

geneous. As observed, the universe is filled with stars populating clusters and galaxies which have

grouped together, forming galaxy clusters that create the large-scale structures (LSS) that fill our

universe with a cosmic web whose notable elements are: haloes, filaments, sheets and voids (Peebles,

1980; Springel, Frenk, and White, 2006). How these structures form is key to this thesis. Mapping

the CMB fluctuations to the present-day universe, over-dense (OD) and under-dense (UD) regions

are identified, and during the matter-dominated era, the sufficiently OD regions have grown to ac-

cumulate enough matter to locally counter the universe’s expansion and be gravitationally bound

allowing them to create the relevant astronomical objects (Mo, Bosch, and White, 2010), some mod-

els depicting this behaviour are discussed in Section 4.3.

4.1 Homogeneous & isotropic universe

Assuming a homogeneous and isotropic universe, we discuss its spacetime, matter, constraint and

evolution equations with their solutions below. Since the terms introduced here are relevant in the

next sections and referred to as the background quantities, we define these with an overhead bar to

clearly identify them.

4.1.1 Spacetime

The FLRW metric, named after Friedmann (1922, 1924), Lemaître (1931, 1933), Robertson (1935,

1936a,b), and Walker (1937), provides a homogeneous and isotropic spacetime. It is given below

in comoving spherical coordinates using the 4-dimensional and 3-dimensional metric ḡαβ and γ̄ij
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respectively (Vittorio, 2018)

ds2 = ḡαβdx
αdxβ

= −dτ2 + γ̄ijdx
idxj

= −dτ2 + a2(τ)

Å
dr2

1− kr2
+ r2dΩ2

ã
= a2(η)

Å
−dη2 + dr2

1− kr2
+ r2dΩ2

ã (4.1)

with r the comoving radial coordinate, dΩ2 = dθ2 + sin2(θ)dϕ2 the metric of a two-sphere with θ

and ϕ the polar and azimuthal angles, and τ and η are respectively the proper and conformal time.

The time derivatives are denoted with an overhead dot and a superscript dash as

dτ = a(η)dη,

df

dτ
= ḟ ,

df

dη
= f ′.

(4.2)

a(τ) is the scale factor to be determined in Section 4.1.4, it quantifies the scale over which a distance

has grown from the reference point in time τR where it is normalised a(τR) = 1. This means that

a proper physical distance dphy that evolves over time is related to the constant comoving distance

dcom as dphy(τ) = a(τ)dcom, then given the normalisation of the scale factor, the comoving distance

corresponds to the physical distance at the reference time dphy(τR) = dcom. A typical choice for τR

is today, while in cosmological NR simulations, it is common to see it chosen as the initial simulation

time.

k is the curvature constant, which can be set to +1, 0, or −1 for closed, flat or open curvatures

with the units of r accordingly defined. With this spacetime metric, the corresponding Weyl tensor

and 4-dimensional and 3-dimensional Ricci tensor and scalar are

C̄αβµν = 0,

R̄00 = −3
ä

a
, R̄ij =

γ̄ij
a2
(
aä+ 2ȧ2

)
+ (3)R̄ij , R̄ =

6

a2
(
aä+ ȧ2

)
+ (3)R̄,

(3)R̄ij =
2k

a2
γ̄ij ,

(3)R̄ =
6k

a2
,

(4.3)

where R̄αβ and
(3)R̄ij have no off-diagonal terms and

(3)R̄ emphasises the role that k has. The

Weyl tensor is zero indicating that the FLRW spacetime is conformally flat, i.e. of Petrov type O, see

Section 2.5.4 about different Petrov types. Note that should the spacetime be flat k = 0, the metric,

its inverse and determinant can be expressed with Cartesian coordinates as

γ̄ij = a2(τ)δij γ̄ij = a−2(τ)δij γ̄ = a6(τ) (4.4)

and clearly given Eq. (4.3),
(3)R̄ij =

(3)R̄ = 0.
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4.1.1.1 Hubble expansion

The universe’s expansion can be measured with standard candles (Schneider, 2015) whose relation

between the redshift z or recession velocity v and its physical distance dphy is such that (Hubble,

1929)

v(τ) = z(τ) = H(τ)dphy(τ). (4.5)

The units are accordingly v length/time, dphy length, andH 1/time. The recession velocity is simply

the time derivative of the physical distance v = d(dphy)/dτ = ḋphy . Then, using the scale factor

where dphy(τ) = a(τ)dcom, the Hubble scalar is recognisable as

H(τ) =
ḋphy(τ)

dphy(τ)
=
ȧ(τ)

a(τ)
=

1

a(τ)

da(τ)

dτ
. (4.6)

The Hubble scalarH , the rate of change of distances, is shown to quantify the universe’s expansion.

Its inverse provides the Hubble time, τH = H−1
, that corresponds to the age of the universe only if a

evolves linearly in time, however amongst the models discussed in Section 4.1.4 this is only relevant

for the Milne model, see Section 4.1.4.1 which despite this still provides the order of magnitude.

Note that for the conformal time η, the derivation of the scale factor with respect to η provides the

conformal Hubble scalar

H(η) =
a′(η)

a(η)
=

1

a(η)

da(η)

dη
. (4.7)

The redshift z, due to the Doppler effect, quantifies the wavelength shift between the electro-

magnetic light observed today τ0 where z(τ0) = 0 and a(τ0) = a0 and when it was emitted τ . This

corresponds to the ratio of physical distances between these two times

dphy(τ)

dphy(τ0)
=
a(τ)

a0
=

1

1 + z(τ)
,

dphy(τ1)

dphy(τ2)
=
a(τ1)

a(τ2)
=

1 + z(τ2)

1 + z(τ1)
. (4.8)

The cumulative effect in Eq. (4.5) with an expanding universe H > 0 shows that the larger the

distance dphy , the larger the recession velocity v to the point where it is larger than the speed of light

v > c, this identifies the Hubble distance or radiusRH = cH−1
within which spacetime is causally

connected, which is called the Hubble horizon or Hubble sphere. This differs from other types of

observational boundaries (Davis and Lineweaver, 2004) such as the past light conewhich encompasses

all past events whose information is able to reach us. This will include events that have receded out

of the light cone, yet we can still detect their past light, measuring their recession velocity to be larger

than the speed of light. Then, the expansion of the universe implies that we can only observe as far

as information has had the time to travel, which is delimited by the particle horizon. Or equivalently,
the future light cone determined at our position when the CMB was emitted. The overlap between

the past light cone and the particle horizon identifies the observable universe.
The value ofH measured todayH0, the current expansion rate of the universe, is called Hubble’s

constant and its measurement is a pivotal topic in current cosmological discussions (Di Valentino et

al., 2021; Abdalla et al., 2022), it is parametrised with the dimensionless Hubble parameter

h = H0/100 km s
−1

Mpc
−1. (4.9)

From this, one quantifies Hubble’s time and Hubble’s radius today as (Peebles, 1980)

tH0 = H−1
0 ≃ 9.78 h−1

Gyr,

RH0 = cH−1
0 ≃ 2997.9 h−1

Mpc.
(4.10)
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4.1.2 Matter

The properties of matter have evolved throughout the universe’s history. Considering it to be a

homogeneous perfect fluid the energy density takes the form (Ellis, Maartens, andMacCallum, 2012)

Tαβ = ρ̄uαuβ + p̄hαβ (4.11)

where the fluid energy density ρ̄ = Tµνuµuν and pressure p̄ = 1
3T

µνhµν are in the frame of the

fluid 4-velocity uµ and its orthogonal projection tensor hµν Eq. (2.49). For a homogeneous fluid,

these are all constant in space and only a function of time. Note that the curvature terms Eq. (4.3) are

purely diagonal therefore via Einstein’s field equations Eq. (2.39) we can see that the energy stress

tensor is also diagonal.

The specific type of perfect fluid at hand is approximated to be the most dominant type during

different eras of the universe’s evolution. Based on the equation of state Eq. (2.48) p̄ = wρ̄, it is w

that is given different values based on the era.

❖ At early times z > 3600 during the radiation-dominated era, the matter in the universe

takes a radiative plasma form as seen with the CMB so w = 1/3.

❖ Thenduring thematter-dominated era, there is enough distance between particles to assume

that they are non-relativistic and only interact gravitationally so it is considered pressureless,

w = 0, and called dust. Since CDM identifies matter that only interacts gravitationally, this is

also represented as dust w = 0 and appears as the dominant contribution during this era.

❖ At late times 0.4 > z during the dark energy-dominated era, vacuum energy w = −1

is dominant. A vacuum energy density, however, is to be used as an alternative to having a

cosmological constant Λ based on preference.

Typically, depending on the case considered, one of these fluids is considered exclusively. Alter-

natively, these fluids can be combined by adding their respective energy density,

Tµν = Tµν
rad + Tµν

dust + Tµν
vac. (4.12)

4.1.2.1 Kinematics

The energy rest frame is given by the frame where there is no energy flux (Bruni, 1991), which is

identically zero for the energy-stress tensor in Eq. (4.11) as qα = −(gβα + uβuα)Tβµu
µ = 0.

Using the metric Eq. (4.1) with proper time, qi = 0 is simply satisfied by ui = 0, and the timelike

normalisation uαuα = −1 provides the other components

uµ = {1, 0, 0, 0} and uµ = {−1, 0, 0, 0}. (4.13)

With the synchronous spacetime at hand Eq. (4.1) we see that with the ADM decomposition,

the normal to the hypersurface nµ = uµ thus the spacetime is also comoving and the orthogonal

hypersurfaces are the same γ̄αβ = hαβ .

Because the fluid 4-velocity is constant in time and in space, its gradients are zero (no acceler-

ation) leaving only the second term in its covariant derivative ∇νuµ = −Γ̄0
νµu0 = 1

2
˙̄gνµ which

is symmetric (no vorticity), traceless (no shear), and only has spatial components. Therefore from
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Eq. (2.50)∇iuj is entirely given by the expansion tensor and scalar (Ellis, Maartens, andMacCallum,

2012)

∇iuj = Θ̄ij =
1

2
˙̄γij =

1

3
γ̄ijΘ̄. (4.14)

The expansion scalar is further expressed with the scale factor and Hubble function as

Θ̄ =
1

2
γ̄ij ˙̄γij = 3

ȧ

a
= 3H. (4.15)

The absence of 4-acceleration can be understood physically from the pressure. Since this is a

homogeneous fluid there is no vorticity, shear or spatial pressure gradient, thus no acceleration see

Eq. (2.56).

4.1.3 Evolution Equations

The general spacetime and fluid evolution and constraint equations were discussed in Section 2.4,

as we consider the FLRW spacetime from Section 4.1.1 with a homogeneous perfect fluid from Sec-

tion 4.1.2, these are simplified and we list them below.

4.1.3.1 Conservation equations

Of the conservation equations, uβ∇αT
αβ = 0, Section 2.4.1, since there is no acceleration only the

energy conservation equation Eq. (2.55) remains non-trivial, it is also called the continuity equation

(Vittorio, 2018)

˙̄ρ = −3H (ρ̄+ p̄) . (4.16)

Integrating with the equation of state Eq. (2.48) provides

ρ̄

ρ̄0
=

Å
a

a0

ã−3(1+w)

= s−3(1+w)
(4.17)

where the integration constants ρ̄0 and a0 are the values of the energy density and scale factor mea-

sured today. As a/a0 is a recurring ratio a common normalisation is a0 = 1 but for clarity here,

we will use the variable s = a/a0. For radiation ρ̄ ∝ a−4
and for dust ρ̄ ∝ a−3

which for a flat

spacetime Eq. (4.4) shows that the energy density simply grows with the volume element ρ̄ ∝ √
γ̄.

4.1.3.2 Einstein’s field equations

Projecting Einstein’s field equations, Section 2.4.3, with this homogeneous fluid flow

(Gαβ + Λgαβ − κTαβ)u
αuβ = 0, only the Hamiltonian constraint Eq. (2.60), remains non-

trivial which for this particular spacetime corresponds to the first Friedmann equation (Friedmann,

1922)

H2 =
ȧ2

a2
= − k

a2
+
κρ̄

3
+

Λ

3
. (4.18)

The other field equations rely on spatial gradients that are obviously not present in this homogeneous

solution. The first Friedmann equation is rewritten in terms of the dimensionless curvature, matter

and dark energy density parameters:

Ωk +Ωm +ΩΛ = 1

Ωk = − k

a2H2
, Ωm =

κρ̄

3H2
, ΩΛ =

Λ

3H2
.

(4.19)
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These quantify the content of the universe by conservation of matter and energy; the sumwill always

be one though the individual terms may vary. Rescaling this with the values measured today shows

how each of these grow with the expansion of the universe (Vittorio, 2018)

H2

H2
0

= Ωk0s
−2 +Ωm0s

−3(1+w) +ΩΛ0

= Ωk0s
−2 +Ωm0, dusts

−3 +Ωm0, rads
−4 +ΩΛ0

(4.20)

where the matter parameter is split into its radiation and dust parts. Therefore at early times, de-

pending on the values of these parameters, when s is small, Ωm0, rad dominatesH , then as s grows,

this transitions to Ωm0, dust, then Ωk0, then finally at late times ΩΛ0 dominates.

4.1.3.3 Ricci identity

From the Ricci identity applied to the fluid flow uα, ∇µ∇νu
α − ∇ν∇µu

α = Rα
σµνu

σ
, see Sec-

tion 2.4.2, the only non-trivial equation is the Raychaudhuri equation Eq. (2.57) (Raychaudhuri, 1955)

that becomes

Ḣ +H2 =
ä

a
= −κ

6
(ρ̄+ 3p̄) +

Λ

3
(4.21)

which is the second Friedmann equation (Friedmann, 1922). It can also be retrieved from the con-

traction of Einstein’s field equationsGα
α + 4Λ = κTα

α and substituting with the first Friedmann

equation Eq. (4.18). Expressing this with the dimensionless density parameters measuremed today,

this becomes

ä

aH2
0

= −1

2
Ωm0s

−3(1+w)(1 + 3w) + ΩΛ0

= −1

2
Ωm0, dusts

−3 − Ωm0, rads
−4 +ΩΛ0

(4.22)

where we see here and in Eq. (4.21) that the presence of radiation and matter decelerates the expan-

sion of the universe, whereas depending on the sign of Λ, it accelerates Λ > 0 or decelerates Λ < 0

the expansion of the universe.

4.1.4 Solutions

The Friedmann equations Eq. (4.18) and Eq. (4.21) provide the first and second-order evolution equa-

tion of the scale factor a; finding the solution to these will provide cosmological solutions to the ex-

pansion of the universe. From simplest to most complex we present some of those solutions below.

4.1.4.1 Milne

Considering an empty universewith no cosmological constant, the dimensionless density parameters

are Ωm = ΩΛ = 0 leaving Ωk = 1. The Friedmann equations reduce to ȧ2 = −k and ä = 0, this

is not possible for k = +1 or 0, and for k = −1 the solution is given by the Milne (1935) model

(Vittorio, 2018)

s =
√
−k
Å
τ

τ0

ã
, H =

1

τ
, (4.23)

which is an expanding universeH > 0. Here we use the variable s = a/a0 with a0 and τ0 the scale

factor and proper time today.
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4.1.4.2 Einstein’s closed static universe

Assuming the universe is static ȧ = ä = 0 with positive curvature, dust and the cosmological

constant (Einstein, 1917), Eq. (4.20) and Eq. (4.22) become (Vittorio, 2018)

Ωk0s
−2 +Ωm0, dusts

−3 +ΩΛ0 = 0, −1
2Ωm0, dusts

−3 +ΩΛ0 = 0

⇒ Ωm0, dust = −2
3Ωk0s = 2ΩΛ0s

3
(4.24)

meaning that k and Λ are both positive. Indeed considering Eq. (4.21) the matter decelerates the

universe’s expansion, this is made static with a precise value of the cosmological constant Λ.

4.1.4.3 de Sitter

Considering two non-zero components while having an empty universe, the dimensionless density

parameters areΩm = 0 leavingΩk +ΩΛ = 1. The solution to the Friedman equations are given by

the de Sitter (1917) model

s =


cosh (Hτ) if k > 0

exp (Hτ) if k = 0

sinh (Hτ) if k < 0

H =

…
Λ

3
. (4.25)

In the dark energy-dominated era of the ΛCDM model, where Ωk = 0 and Ωm → 0 such that ΩΛ

dominates, the ΛCDM scale factor will tend towards that provided by the k = 0 de Sitter solution.

4.1.4.4 Einstein-de Sitter

Considering a universe with zero cosmological constant, the dimensionless density parameters are

ΩΛ = 0 leavingΩk +Ωm = 1. While k and Λ are constants, that is not the case for ρ̄ so to solve the

Friedmann equations, assuming a perfect fluid, it needs to be substituted with the scale factor using

Eq. (4.17). Assuming only radiation and dust, there are six solutions to the Friedmann equations

based on curvature and matter, these are listed in Table (4.1) (Vittorio, 2018), where ς is used as a

dimensionless parameter (see Eq. (4.66) in Section 4.3.2) as well as proper time τ .

open flat closed

k < 0 k = 0 k > 0

radiation w = 1/3
a ∝ sinh (ς)

τ ∝ (cosh (ς)− 1)
a ∝ τ1/2

a ∝ sin (ς)
τ ∝ (1− cos (ς))

dust w = 0
a ∝ (cosh (ς)− 1)
τ ∝ (sinh (ς)− ς)

a ∝ τ2/3
a ∝ (1− cos (ς))
τ ∝ (ς − sin (ς))

Table 4.1: Solutions to the Friedmann equations for Λ = 0 considering radiation and dust matter

and open flat or closed curvature.

Both closed models collapse, we shall discuss the dust case in more detail in Section 4.3.2.3, the

flat cases show monotonic growth and the dust open case tends towards the Milne model.
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For the flat dust case in particular, the first Friedmann equation Eq. (4.18) is trivial and the second

Friedmann equation Eq. (4.21) is

ä+
ȧ2

2a
= 0, ⇒ Ḣ +

3

2
H2 = 0 (4.26)

whose solution is known as the Einstein and de Sitter (1932) solution

s =

Å
τ

τ0

ã2/3
, H =

2

3τ
. (4.27)

This is often considered when Λ is negligible in the ΛCDM solution; during the matter-dominated

era, the scale factor tends towards the flat dust solution, and likewise the flat radiation solution during

the radiation-dominated era.

4.1.4.5 ΛCDM

Lastly butmost importantly, considering a flat universe withΛ andmatter, the dimensionless density

parameters are Ωk = 0 leaving Ωm + ΩΛ = 1. Choosing only to consider dust w = 0, which

accounts for both baryons and CDM, Eq. (4.20) can be expressed as

H = H0

√
Ωm0s−3 +ΩΛ0, Ωm =

Ωm0

Ωm0 +ΩΛ0s3
, (4.28)

where Ωm comes from its definition Eq. (4.19) with the energy density substituted with the scale

factor with Eq. (4.17). With these choices, the solution to the Friedmann equation is the ΛCDM

model

s =

Å
Ωm0

ΩΛ0

ã1/3
sinh2/3

Å
3τH0

2

√
ΩΛ0

ã
. (4.29)

This provides the best current model describing the universe. Based on CMB data the Planck Collab-

oration (2020) has found that the values today areΩm0 = 0.3147±0.0074 andh = 0.6737±0.0054,

see Eq. (4.9).

4.2 Perturbation theory
While the universemodels described in Section 4.1 perfectly satisfy the cosmological principle, in or-

der to account for anisotropy and inhomogeneity perturbations are introduced (Kodama and Sasaki,

1984; Bruni, 1991; Ma and Bertschinger, 1995; Bertschinger, 2000; Malik and Wands, 2009), such

that, on average, the universe is still isotropic and homogeneous. With this approach, the universe is

composed of a background, Section 4.1, uponwhich are added scalar, vector, or tensor perturbations

of small amplitude.

4.2.1 Spacetime

First of all, perturbing a flat spacetime k = 0, in themost general formwith all types of perturbations,

the metric takes the form (Bruni, Hidalgo, Meures, et al., 2014)

ds2 = a2
[
−(1 + 2ϕ)dη2 + 2ωidηdx

i
]
+ γijdx

idxj ,

γij = a2 [(1− 2ψ)δij + χij ] .
(4.30)
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The perturbations are the scalar ϕ and ψ, vector ωi, and tensor χij quantities. While scalars can

be used to construct vectors or tensors by using the scalar’s gradient, those will be curl-free, see

Section 2.1.4.2. So a vector perturbation can be decomposed into its purely scalar (curl-free part)

and purely vectorial parts as (Bertschinger, 2000; Malik and Wands, 2009)

ωi = ∂iω + ωS
i (4.31)

with S standing for a solenoidal vector that is divergence-free and can not be constructed from

a scalar. This constitutes the longitudinal (curl-free) and transverse (divergence-free) parts of the

Helmholtz decomposition (Bertschinger, 2000).

In the perturbations to the spatial metric γij , ψ is the perturbation to the trace, and so χij is a

traceless tensor containing all the other types of perturbations. It is itself decomposed as

χij = □ijχ+D
{n}
(j χS

i) + χTT
ij (4.32)

with □ij = ∂i∂j − 1
3δijδ

kl∂k∂l a traceless operator, D
{n}
i the covariant derivative from γij and

TT stands for transverse traceless. Here all three terms are traceless; only one index at a time of the

solenoidal term is transverse, hence the symmetrisation, while both indices of the tensor term are

transverse, making it doubly transverse. While χS
i is divergence-free, that is not the case ofD(jχ

S
i),

while it is the case for χTT
ij . A doubly transverse traceless tensor can not be constructed from a

vector.

Therefore we identify the scalar perturbations ϕ, ω, ψ, and χ, vector perturbations ωS
i , and χ

S
i ,

and tensor perturbations χTT
ij . This full decomposition has the advantage of being decoupled in

the evolution equations allowing perturbations to be solved separately at linear order. During the

matter-dominated era, the vector and tensor perturbations are neglected at first order (Lu et al., 2009)

as scalar perturbation are the main contributors to structure formation, see Section 4.3.1.

Furthermore, this decomposition makes gauge choices a simple modification to the metric. Each

scalar perturbation provides one degree of freedom, and the solenoidal vector and transverse trace-

less tensor perturbations each provide two. Therefore the perturbed metric possesses 10 degrees of

freedom, allowing a large range of gauge choices, see Section 4.2.3.

4.2.2 Matter

Just as what was done for spacetime, all the fluid terms are perturbed while still assuming a perfect

fluid description. To simplify the task, we shall only consider irrotational dust, so there is no vorticity,

pressure or acceleration. Therefore the full energy density is

ρ{u} = ρ̄(1 + δ) (4.33)

where δ is a new scalar perturbation corresponding to the density contrast δ = ρ{u}/ρ̄ − 1 that

quantifies the inhomogeneity of the fluid.

The new fluid 4-velocity will differ from the homogeneous one but because of its normalisation,

its components will depend on the choice of coordinates see Section 4.2.3. Should weworkwith syn-

chronous comoving coordinates, then even with inhomogeneities the fluid velocity will be provided

by Eq. (4.13).
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For this irrotational dust, the covariant derivative of the fluid is provided by the expansion tensor

∇νuµ = Θµν which is the homogeneous background expansion tensor Θ̄ij plus the deformation

tensor ϑij (Bruni, Hidalgo, Meures, et al., 2014)

Θij = Θ̄ij + ϑij =
1

3
γ̄ijΘ̄ +

1

3
γijϑ+ σij (4.34)

with the deformation scalar ϑ and shear σij which, like χij , is composed of scalar vector and tensor

terms.

4.2.3 Gauge choice

Some of the degrees of freedom provided by the perturbations to spacetime and matter are redun-

dant, these are then reduced by making gauge choices. This consists of cancelling certain terms such

that the coordinate observers can not "see" those perturbations according to the direction of the

gauge, see Malik and Wands (2009).

❖ Synchronous: ϕ = ω = ωS
i = 0 such that with these coordinates, each observer evolves

according to the cosmic proper time.

❖ Comoving: uµ = nµ this is a Lagrangian observer, meaning that the coordinates follow the

fluid, the normal to the hypersurface is the same as the fluid flow, so the expansion of the

coordinates provided by the extrinsic curvature Eq. (3.12) corresponds to the fluid expansion

Eq. (2.50)Kij = −Θij . Because the fluid flow is orthogonal to the spatial hypersurface, this

is sometimes called the comoving orthogonal gauge. Note that a smooth spatial hypersurface

requires the fluid to have no vorticity and that the comoving curvature perturbation is defined

asRc, see Eq. (4.40, 4.45, 4.54) in Section 4.2.6.1.

❖ Newtonian: ω = ωS
i = χ = χS

i = χTT
ij = 0 as indicated by the name, the evolution equa-

tions in this gauge resemble the most the Newtonian ones (see the Poisson equation Eq. (4.55))

therefore this is often considered the most physically intuitive gauge. When proper time τ is

used, this gauge is referred to as the Newtonian gauge; when conformal time η is used, this

gauge is called the conformal Newtonian or longitudinal gauge (Ma and Bertschinger, 1995).

Note that the conformalNewtonian curvature perturbation is defined asΨ, see Section 4.2.6.3.

❖ Poisson: ω = ωS
i = χ = 0 this generalises the Newtonian gauge where the spatial vector

and tensor modes remain.

❖ Spatially flat or uniform curvature: ψ = χ = χS
i = χTT

ij = 0 such that γij = γ̄ij where

the curvature terms then match with the homogeneous background hence the name uniform

curvature. It is common to work with a flat background; therefore, the spatially flat name also

works.

❖ Uniform density: δ = 0, none of the spacetime perturbation terms are set to zero but are

instead accordingly defined such that δ = 0. This is a practical gauge choice for inflation and

is reversed to the uniform curvature gauge. Note that the uniform density curvature pertur-

bation is defined as ζ .

Also see Section 3.4 for a gauge discussion from the point of view of NR, although in both cases,

this can be reduced to a choice of slicing.
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4.2.4 First order scalar constraint & evolution equations

Here we consider the constraint and evolution equations of an irrotational dust perfect fluid from

Section 2.4.4 where we introduce the perturbations in the spacetime from Section 4.2.1 and matter

from Section 4.2.2. Since scalar perturbations are the main contributors in structure formation in

the matter-dominated era, we omit the vector and tensor terms ωS
i = χS

i = χTT
ij = 0. Additionally,

we choose to work with synchronous and comoving coordinates ϕ = ω = 0 and NR α = 1 and

βi = 0. These choices mean that the metric and stress-energy tensor we work with are (Bruni,

Hidalgo, Meures, et al., 2014)

ds2 = −dτ2 + γijdx
idxj ,

γij = a2 [(1− 2ψ)δij +□ijχ] ,
Tµν = ρ̄(1 + δ)uµuν . (4.35)

The deviations from the FLRW background spacetime are ψ and the trace-less□ijχ, corresponding

to the volume perturbation and anisotropic distortion respectively (Kodama and Sasaki, 1984). Then,

ψ is the only perturbation in the determinant of the spatial metric up to first order

γ ≃ γ̄(1− 6ψ(1)), with γ̄ = a6. (4.36)

Additionally, these comoving coordinates mean that the normal to the hypersurface and the fluid

flow are the same

uµ = nµ = {1, 0, 0, 0}, (4.37)

and so the coordinated expansionKij corresponds to the fluid expansionΘij with a sign difference

Kij = −1

2
γ̇ij = −Θij ⇒

K = −Θ,

Aij = −σij .
(4.38)

Θ and σij can then be expressed in terms of the metric perturbations ψ and χ as

ϑ(1) = −3ψ̇(1) σ
(1)
ij =

a2

2
□ijχ̇

(1)
(4.39)

where ϑ is the deformation scalar Eq. (4.34). Due to the complexity of this calculation, we will only

work with first-order perturbations, denoted with the (1) superscript.

Furthermore, for the spacetime metric Eq. (4.35), the first-order curvature quantities are

(3)R(1) = 4∇2Rc = 4∇2

Å
ψ(1) +

a2

6
∇2χ(1)

ã
,

E
{u}(1)
ij =

1

2
□ij

Å
ψ(1) − a2

2

Å
Hχ̇(1) + χ̈(1) − 1

3
∇2χ(1)

ãã
, B

{u}(1)
ij = 0,

(4.40)

where the Laplacian∇2 = γij∇i∇j is such that for first-order scalar perturbations, it takes the form

a−2δij∂i∂j . We preemptively express Rc, the comoving curvature perturbation, see Section 4.2.6,

as this is a key quantity in Section 6.1. The magnetic part of the Weyl tensorB
{u}(1)
ij is zero since we

only consider scalar perturbations and no curl can be constructed from them at first-order; however,

at second and higher order, their coupling no longer vanishes B
{u}(2)
ij ̸= 0. The traceless operator

□ij = ∂i∂j − 1
3δijδ

kl∂k∂l emphasises the traceless nature of the electric part of the Weyl tensor
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E
{u}
ij . While the above is for the synchronous gauge, only considering scalar perturbations, note that

for the Newtonian gauge E
{u}
ij is

E
{u}(1)
ij =

1

2
□ij

Ä
Φ(1) −Ψ(1)

ä
, (4.41)

where
1
2 (Φ−Ψ) is called the Weyl potential (Lewis and Challinor, 2006) which emphasises that at

first-order E
{u}
ij can be perceived as the tidal gravitational force.

Now aswe go back to the constraint and evolution equations of Section 2.4.4, these are expressed

for the above-perturbed spacetime with the background part from Section 4.1.3 removed, leaving

only first-order scalar expressions. Firstly from the conservation equations Eq. (2.40) we have the

continuity equation Eq. (2.63) which becomes

δ̇(1) = −ϑ(1). (4.42)

Then from the Ricci identity applied to the fluid flow, Eq. (2.18), we have the Raychaudhuri equa-

tion Eq. (2.65) (second Friedmann equation in the background Eq. (4.21)) that provides the evolution

equation of the deformation scalar

ϑ̇(1) + 2Hϑ(1) = −3

2
H2Ωmδ

(1)
(4.43)

where Eq. (4.19) was used. The projected Ricci identity also gives the shear evolution equation,

Eq. (2.66), that provides a second-order evolution equation for χ(1)
which we omit here. Then from

Einstein’s field equations Eq. (2.39) we have the Hamiltonian constraint Eq. (2.60) (first Friedmann

equation in the background Eq. (4.18))

(3)R(1) + 4Hϑ(1) = 6H2Ωmδ
(1)

(4.44)

and the momentum constraint Eq. (2.61)

∂iṘc = 0 (4.45)

essentially saying thatRc is constant in time, so from Eq. (4.40) the conformal 3-Ricci, a2(3)R(1)
, is

also constant in time. We again omit the evolution equations in Einstein’s field equations for sim-

plicity.

How these equations are used to determine how δ(1) evolves is addressed in Section 4.3.1 where

we talk about structure formation.

4.2.5 Backreaction

It is clear that the universe is not exactly homogeneous, hence the inhomogeneous perturbations,

however it is assumed that on average and on large scales it can be considered as such. The evo-

lution equations are local evolution equations satisfied everywhere, but that may not necessarily be

the case should their terms be individually averaged (Buchert and Räsänen, 2012). To express this,

consider the first and second Friedmann equations Eq. (4.18) and Eq. (4.21) whose general form are

the Hamiltonian constraint Eq. (2.60) and Raychaudhuri equation Eq. (2.57) which for an irrotational
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dust with no cosmological constant respectively take the form

1

3
Θ2 = 3

ȧ

a
= −

(3)R

2
+ κρ{u} + σ2,

Θ̇ +
1

3
Θ2 = 3

ä

a
= −κ

2
ρ{u} − 2σ2.

(4.46)

This is expressed in terms of the hypersurface orthogonal to the fluid flow, and so this is averaged

on this same hypersurface. The spatial metric is given by the projection tensor hαβ Eq. (2.49) where

its square root determinant

√
h gives the local fluid volume element on this hypersurface. We then

define the domain-averaging operator ⟨...⟩D{u} and the domain averaged scale factor aD{u} as

⟨ϕ⟩D{u}(τ) =
∆x3

∑
D{u} ϕ(τ, xi)

√
h(τ, xi)

∆x3
∑

D{u}
√
h(τ, xi)

,

aD{u}(τ) =

Ç
∆x3

∑
D{u}

√
h(τ, xi)

∆x3
∑

D{u}
√
h (τR, xi)

å 1
3

.

(4.47)

where D{u}
is the domain on the hypersurface hαβ which is averaged upon, ∆x is the spacing be-

tween the integrated measurements, and τR is the reference proper time chosen to normalise the

scale factor. More on numerically integrating in Appendix D.

Taking the domain average of the terms in Eq. (4.46) and expanding according to the domain

averaging’s algebraic properties provides

3
ȧ2D{u}

a2D{u}
= −⟨(3)R⟩D{u}

2
+ κ⟨ρ{u}⟩D{u} − 1

2
QD{u}

3
äD{u}

aD{u}
= −κ

2
⟨ρ{u}⟩D{u} +QD{u}

(4.48)

withQD{u} the kinematical backreaction variable defined as

QD{u} =
2

3

(
⟨Θ2⟩D{u} − ⟨Θ⟩2D{u}

)
− 2⟨σ2⟩D{u} . (4.49)

The first term in particular is essentially the variance of the expansion. If the universe were homo-

geneous this would vanish, otherwise, this quantifies the dispersion of expansion rates. This comes

from expanding ⟨Θ2⟩D{u} in terms of the domain averaged scale factor, providing the left-hand side

terms of Eq. (4.48).

Comparing Eq. (4.48) to the Friedmann equations Eq. (4.46) we can see that QD{u} substitutes

the cosmological constant term. In particular, if the expansion variance is larger than the domain

average shear and energy density terms, i.e. QD{u} > 0 and QD{u} > κ
2 ⟨ρ{u}⟩D{u} , then the

universe expansion is accelerated äD{u} > 0. This behaviour has therefore been suggested as an

explanation for dark energy (Buchert and Räsänen, 2012).

To verify this, various groups have set out to quantify this effect using NR (Adamek, Clarkson,

Durrer, et al., 2015; Bentivegna and Bruni, 2016; Macpherson, 2019; Macpherson, Price, and Lasky,

2019), however, measurements tend to disagree and be generally small. This can be amplified by con-

sidering highly non-linear simulations yet the inconsistency between different simulations is due to

the lack of gauge invariance of this quantity. IndeedQD{u} has been defined covariantly using fluid
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quantities so it is in the fluid frame uµ, but more importantly, it depends on the averaged hypersur-

face. Naturally, quantities averaged on different hypersurfaces will have different values (Adamek,

Clarkson, Daverio, et al., 2018; Giblin, Mertens, Starkman, and Tian, 2019b). So the domain on the

hypersurface orthogonal to the fluid flow D{u}
, is different to the domain on the hypersurface or-

thogonal to nµ D{n}
, so QD{u} ̸= QD{n} (if not comoving). Furthermore, these would also differ

from the domain measured by an observer looking into their past light cone. One ought to then

consider gauge invariant quantities and observables.

4.2.6 Covariant & gauge invariants

We first discussed invariants in Section 2.5.3 where we identified valuable quantities that are coordi-

nate invariant, coordinate independent and frame-independent, these are I and J , thus subsequently

that is also the case for LB ,M , S andD. Then we also defined coordinate invariant, coordinate in-

dependent and frame-dependent quantitiesK , L andN (Bini, Geralico, and Jantzen, 2023).

In the context of cosmological perturbation theory, we deal with two spacetimes: the realistic

one Eq. (4.30), which we wish to describe as a small deviation from an idealised background Eq. (4.4),

and the fictitious background spacetime itself whose form is unknown. Furthermore, the realistic

spacetime Eq. (4.30) is expressed with different gauges obtained by reducing the degrees of freedom

according to Section 4.2.3, providing different sets of coordinates or slicings.

Continuing with the vocabulary of Section 2.5.3, we use

❖ gauge variance or invariance to identify whether a quantity is conserved under gauge transfor-
mation,

❖ gauge dependent or independent to identify whether a quantity retains its meaning in different

gauges.

The gauge-variance of perturbations is due to the fact that a gauge choice in this context is a

choice of mapping between points of the realistic spacetime and points of the background, so that a

passive change of coordinates in the first (a change of labels for a given point) produces a change of

points in the background. Since the background points also have their own coordinates, the change

of points in the background results in what is sometimes referred to as an active coordinate trans-

formation (or point transformation) of the perturbation fields on the background. The latter is the

point of view inWeinberg (1972), and also affects scalar quantities in general. Based on this spacetime

mapping, there are two ways to create gauge invariants, based on coordinate transformation rules

and the Stewart-Walker lemma.

4.2.6.1 Stewart-Walker invariants

This gauge-variance can be formalised (at first order) with the Stewart-Walker lemma (Stewart and

Walker, 1974), the essence of which is that for a tensorial quantity T the relation between its per-

turbations in two different gauges is given by δT̃ = δT + LξT̄ , where ξ is the vector field gen-

erating the said mapping of points in the background at first order and LξT̄ is the Lie derivative

along ξ of T̄ , the tensor T evaluated in the background. It then immediately follows that a tensorial

quantity is gauge-invariant at first order if the background value is either zero T̄ = 0, a constant
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scalar, or a constant linear combination of Kronecker deltas. Gauge transformations and conditions

for gauge invariance of perturbations generalising the Stewart-Walker lemma to an arbitrary higher

order were derived (Bruni, Matarrese, Mollerach, et al., 1997; Sonego and Bruni, 1998; Bruni and

Sonego, 1999), soon leading to applications in cosmology (Mollerach and Matarrese, 1997; Matar-

rese, Mollerach, and Bruni, 1998; Maartens, Gebbie, and Ellis, 1999; Bartolo et al., 2004; Clarkson,

2004; Noh and Hwang, 2004; Lyth, Malik, and Sasaki, 2005; Nakamura, 2007; Osano et al., 2007;

Pettinari et al., 2013; Bruni, Hidalgo, Meures, et al., 2014; Villa and Rampf, 2016; Gressel and Bruni,

2018) and the theory of black holes perturbations (Campanelli and Lousto, 1999; Garat and Price,

2000; Gleiser et al., 2000; Loutrel et al., 2021; Ripley et al., 2021; Cheung et al., 2023; Mitman et al.,

2023), that have been summarised in various reviews (Kokkotas and Schmidt, 1999; Malik and Ma-

travers, 2008; Tsagas, Challinor, and Maartens, 2008; Berti, Cardoso, and Starinets, 2009; Malik and

Wands, 2009; Berti, Yagi, et al., 2018; Pound andWardell, 2020). The theory of gauge variance of rel-

ativistic perturbations was then extended to higher order with two and more parameters in Bruni,

Gualtieri, and Sopuerta (2003) and Sopuerta, Bruni, and Gualtieri (2004), again with applications in

cosmology (Pitrou, Pereira, andUzan, 2015; Goldberg, Clifton, andMalik, 2017; Talebian-Ashkezari,

Ahmadi, and Abolhasani, 2018) and sources of gravitational waves (Passamonti, Bruni, Gualtieri, and

Sopuerta, 2005; Passamonti, Bruni, Gualtieri, Nagar, et al., 2006; Passamonti, Stergioulas, and Na-

gar, 2007; Sopuerta and Yunes, 2009; Lenzi and Sopuerta, 2021), cf. also (Pani, 2013) and references

therein.

Applying the Stewart-Walker lemma to cosmology, we then consider the vanishing terms in the

FLRW background. For a flat background spacetime
(3)R̄ is zero so

(3)R(1)
is gauge invariant, and

if the background is curved, it is the conformal curvature a2(3)R̄ that is constant so a2(3)R(1)
is

gauge invariant. Indeed taking the
(3)R(1)

calculated from a spatial hypersurface A so
(3)R

(1)
A , and

coordinate transforming it to another gauge, that describes the spatial hypersurface B, will show that

the first order part is unchanged, making
(3)R

(1)
A gauge invariant. However, while

(3)R
(1)
A has a clear

spatial curvature meaning to hypersurface A, that is not the case for hypersurface B which has its

own spatial curvature
(3)R

(1)
B . Therefore,

(3)R
(1)
A ̸= (3)R

(1)
B , while they are both gauge invariant,

they are gauge-dependent (Malik and Wands, 2009).

Thus, the first order 3-Ricci is commonly expressed in terms of various gauge invariant terms:

the comoving curvature perturbationRc, the uniform density curvature perturbation ζ(1), and the

conformal Newtonian curvature perturbation Ψ. In the synchronous-comoving gauge
(3)R(1)

is

related toRc as (Lyth, 1985)

(3)R(1) = 4∇2Rc, with Rc = ψ(1) +
a2

6
∇2χ(1) =

1

3
δ(1) − ζ(1). (4.50)

Considering themetric perturbations that are naturally zero in the background, at first order, the

scalar, vector and tensor perturbations are decoupled but since there are multiple scalar and vector

terms only the tensor perturbation χ
TT (1)
ij is separate from the other terms. Therefore, χ

TT (1)
ij is

gauge invariant and gauge independent at first order, since it is invariant under gauge transforma-

tions and has the same physical meaning in all gauges (Malik and Wands, 2009; Ota, Macpherson,

and Coulton, 2022).

The Weyl tensor itself is zero in the background, whether it is curved or flat. Therefore all

first-order terms constructed from Cαβµν are gauge invariant at first order. Cosmology aside, both
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Teukolsky (1973) for the Kerr black hole and Stewart and Walker (1974) for any type D spacetime

based their studies of first-order perturbations on Weyl scalars in the principal null direction (cre-

ating frame-dependent quantities). If the background is of type D, only Ψ2 is non-zero, so all other

Weyl scalars are gauge invariant at first-order
1
, includingΨ4 which is then commonly used to extract

first-order gauge invariant gravitational wave information. However, the discussion that follows the

decomposition of the Weyl tensor is usually frame-dependent, the principal null direction is pre-

ferred for the Weyl scalars, and an arbitrary frame can be chosen for the gravito-electromagnetic

decomposition. This frame needs to be chosen in a physically meaningful way.

4.2.6.2 Covariant invariants

In cosmology, a physically meaningful unique frame that is always present is the fluid rest frame.

This is key to the covariant approach to cosmological perturbation theory where first order gauge-

invariant quantities explicitly depending on the fluid frame are considered (Ellis and Bruni, 1989).

Hawking (1966) first used this as the shear and vorticity of the matter 4-velocity vanish in an FLRW

background, together with the electric andmagnetic parts of theWeyl tensor in the fluid frameE
{u}
αβ

andB
{u}
αβ from Eq. (2.73), where their first order quantities are gauge invariant (Bruni, Dunsby, and

Ellis, 1992). If we define E
{n}
αβ andB

{n}
αβ with respect to a frame nµ = uµ + V µ

, where V µ
is a first

order deviation from the background uµ. Contracting Cαβµν with n
µ
gives, at first order, the same

result as contracting with uµ, i.e.E{n}µν = E{u}µν +O(2) andB{n}µν = B{u}µν +O(2). Should

there be only scalar perturbations, then the first order magnetic term is zero B
{u}(1)
αβ = 0, so the

second order termB
{u}(2)
αβ is gauge invariant.

This covariant approach was then extended in Ellis and Bruni (1989) by defining fully nonlinear

variables characterising inhomogeneities. While most of the background terms do not vanish or are

not constant, they are homogeneous, that is the case of the energy density ρ̄, expansion scalar Θ̄

and 3-Ricci
(3)R̄. They evolve in time but are constant in space, so their spatial derivative vanishes

which will then be gauge invariant at first-order. Here again, the frame chosen to define these spatial

derivatives is that of the fluid frame, so we use the covariant derivative of the spatial hypersurface

orthogonal to the fluid flowD
{u}
i . We then consider (Bruni, Ellis, and Dunsby, 1992)

Di =
a

ρ{u}
D

{u}
i ρ{u}, Zi = aD

{u}
i Θ and Ci = a3D

{u}
i

(3)R (4.51)

that correspond to the comoving fractional density, expansion, and curvature gradients respectively.

Due to the nature of these variables, their first-order evolution equations show strong similarities to

those of δ(1), ϑ(1) and (3)R(1)
respectively. The continuity equation Eq. (4.42) and the momentum

constraint Eq. (4.45) provide

hj iḊj
(1)

= −Z(1)
i and hj iĊ(1)

j = 0. (4.52)

While Di, Zi and Ci by definition live in the hypersurface orthogonal to the fluid flow, given by the

spatialmetrichij , that is not the case for their time derivative. That iswhy the quantityhj i appears, as

it projects these terms back onto the spatial hypersurface. Then the first and second order evolution

1

Things are more complicated for more general black holes (Pani, 2013).
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equations of δ(1) Eq. (4.56), see Section 4.3.1 for their derivation and solution, provide the first and

second order evolution equations ofD(1)
i

hj iD̈j
(1)

+ 2Hhj iḊj
(1) − 3

2
H2ΩmD(1)

i = 0,

4Hhj iḊj
(1)

+ 6H2ΩmD(1)
i − C(1)

i

a2
= 0.

(4.53)

Showing thatD(1)
i ,Z(1)

i and C(1)
i are the covariant first-order gauge invariant equivalent of δ(1), ϑ(1)

and
(3)R(1)

in the fluid rest frame.

4.2.6.3 Invariant by coordinate transformation

Clearly, not all perturbations of interest can be directly characterised by a tensor field that vanishes in

the background, notably perturbations of the metric (other than the tensor perturbation). Nonethe-

less, first-order gauge-invariant variables can be constructed as linear combinations of gauge-variant

quantities, such as the metric components and velocity perturbations, as first proposed by Gerlach

and Sengupta (1978), then fully developed for perturbations of an FLRW background by Bardeen

(1980) and extended by Kodama and Sasaki (1984) to the multi-fluid and scalar field cases. This way

of creating invariants is done by considering coordinate transformation rules and creating quan-

tities where the transformation terms cancel out such that they are invariant at first order under

gauge transformation. Most notably, amongst the quantities created this way, there are the Barden

potentials

Φ = ϕ+
(
ω′ +Hω

)
− 1

2

(
χ′′ +Hχ′) , Ψ = −ψ −∇2χ+H

Å
ω − 1

2
χ′
ã
. (4.54)

Bardeen’s approach is such that gauge-invariant variables only acquire a physical meaning in a spe-

cific gauge. Note that in the Newtonian gauge Φ = ϕ and Ψ = −ψ, where Φ is referred to as the

Newtonian potential and Ψ as the conformal Newtonian curvature perturbation and it satisfies the

Poisson equation

∇2Ψ =
3

2
H2Ωmδ, (4.55)

where it takes the role of the gravitational potential. The sign ofΦ andΨ differs within the literature

as this is an arbitrary choice but the difference between the two |Φ|/|Ψ| orΦ−Ψ is the anisotropic

slip commonly used to quantify higher order effects (Macpherson, Lasky, and Price, 2017; Sobral-

Blanco and Bonvin, 2021).

It is clear, however, that physical results can’t depend on themathematical approach used, and the

two approaches are equivalent
2
, as shown in (Goode, 1989; Bruni, Dunsby, and Ellis, 1992; Dunsby,

Bruni, and Ellis, 1992), indeed the physical meaning of Bardeen-like variables is elucidated through

the use of the covariant variables, e.g. Bardeen’s potentials appear in the expansion of the electricWeyl

tensor Eq. (4.41); Bardeen’s evolution equations for the gauge-invariant variable are also recovered

in the same process, see Bruni, Dunsby, and Ellis (1992) section 5.

2

More precisely, a full equivalence with Bardeen’s original variables is obtained under minimal and reasonable as-

sumptions, in essence, those required for a harmonic expansion on the homogeneous and isotropic 3-space of the FLRW

background, see also (Stewart, 1990).
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4.2.6.4 Observables

Measurable quantities in relativity (Rovelli, 1991), commonly referred to as observables, should be

gauge-invariant, and the invariant scalars discussed in Section 2.5.3 are gauge-invariant observables

in that sense, i.e. they are coordinate independent.

How about observables as usually intended by cosmologists? Both the scalar invariants of the

previous section and the gauge-invariant perturbations discussed above are local quantities, but in

cosmology, observers can’t go in a galaxy far far away and measureE{u}µν
andB{u}µν

there: rather

we have to link points (spacetime events) on the past light-cone of the observer, points where lo-

cal observables are defined, with the point of the observers themselves, i.e. ray tracing is key, see

Adamek, Barrera-Hinojosa, et al. (2020) for a concrete example in NR cosmology and an application

to simulation comparisons and Grasso and Villa (2021), Grasso, Villa, et al. (2021), Buchert, Elst, and

Heinesen (2023), and Macpherson (2023) and references therein for a general discussion. Nonethe-

less, although the issue of defining observables is simple for first-order perturbations but more in-

volved at second and higher-order, first-order gauge invariance, i.e. the vanishing in the background

of the value of the observable tensorial quantity, plays a crucial role, see Bruni and Sonego (1999)

and Yoo and Durrer (2017) for a recent and extended discussion.

4.3 Structure formation
As small fluctuations in an otherwise homogeneous universe grow, they become the LSS we observe

today (Peacock, 1999; Mo, Bosch, and White, 2010; Vittorio, 2018). These fluctuations initially grow

according to the overall global evolution of the universe, but gradually they decouple to create an

independent bound system. During this transition, they experience an expansion, turn-around (TA),

contraction and virilisation phase. To describe this evolution non-linearly, multiple approaches have

been created (Sahni and Coles, 1995; Monaco, 1997; Peacock, 1999; Mo, Bosch, and White, 2010;

Vittorio, 2018), starting with the simple Top-Hat spherical and homogeneous collapse model (Gunn

and Gott, 1972), see Section 4.3.2, to then gradually consider more elaborated models (Mo, Bosch,

and White, 2010), see Section 4.3.4, to finally work with numerical simulations when the system

becomes too complex see Section 4.3.5.

4.3.1 From perturbation theory

The first-order scalar constraint and evolution equations for an irrotational dust perfect fluid have

been expressed in Section 4.2.4, upon these, we will determine how δ evolves. The continuity, Ray-

chaudhuri and Hamiltonian equations Eq. (4.42), Eq. (4.43) and Eq. (4.44) provide the first and second

order evolution equations of δ(1) as (Bruni, Hidalgo, Meures, et al., 2014)

Hδ̇(1) +
3

2
H2Ωmδ

(1) =
1

4
(3)R(1),

δ̈(1) + 2Hδ̇(1) − 3

2
H2Ωmδ

(1) = 0.

(4.56)

These are ordinary differential equations, so the solution to the first order equation is composed of

a homogeneous solution δ− (no source term) and a particular solution δ+ which is sourced by the
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curvature
(3)R(1)

. To find these solutions, in the matter-dominated era, we shall set the background

to be EdS from Section 4.1.4.4 with Ωm = 1.

Firstly, the homogeneous solution, setting δ− ∝ H , we see that the first-order equation cor-

responds with the second Friedmann equation Eq. (4.26) they then have the same solution and so

δ− ∝ 1/τ . This means that as τ → +∞ then δ− → 0, so this is commonly called the decaying

solution or mode.

Secondly, considering the particular solution, setting δ+ ∝ a, we see that the second order

differential equation corresponds to the second Friedmann equation Eq. (4.26), so they have the same

solution δ+ ∝ τ2/3. δ+ then grows over time; it is called the growing solution or mode.

Combining the two solutions together, with constant factors of the same order of magnitude, as

time evolves, the growing mode dominates the evolution, as τ → +∞ then δ → δ+, such that in

the matter-dominated era, δ− is negligible, and only δ+ is considered.

Yet the best current model of the universe is the ΛCDM solution, see Section 4.1.4.5, which

differs from the EdS solution, see Section 4.1.4.4 as the former has the cosmological constantΛ. This

is quantified with the difference between the growth of δ and that of the scale factor a known as the

growth factor (Peebles, 1980; Wang and Steinhardt, 1998; Bernardeau et al., 2002; Linder and Cahn,

2007)

f1 =
d ln δ

d ln a
=
aδ̇

ȧδ
=

δ̇

Hδ
≃ Ω6/11

m , (4.57)

where if Λ were absent, f1 = 1.

4.3.2 Top-Hat spherical collapse model

To describe the density contrast’s nonlinear growth, the Top-Hat spherical collapse model was cre-

ated by Gunn and Gott (1972). It describes a homogeneous spherically symmetric OD in the matter-

dominated era, with a dust fluid in an otherwise flat FLRW universe. The density profile of such a

distribution resembles a Top-Hat, hence the name of the model. This OD sphere is modelled by a

closed (positive spatial curvature) FLRW “separate universe" within an external FLRW background

universe, usually spatially flat (zero curvature). The radius of the Top-Hat OD expands at a slower

rate than the background, gradually slowing down, as it is bound by its positive curvature (equivalent

to the conserved and negative mechanical energy in the Newtonian description of the Top-Hat). It

eventually reaches its maximal size, turns around (TA), and then contracts into itself to collapse. The

dynamics of this OD are highly nonlinear due to decoupling with the expanding universe, so three

methods beyond linear perturbation theory are considered here. Firstly, with Newtonian mechan-

ics in Section 4.3.2.1 considering kinetic and potential energy (Sahni and Coles, 1995; Mo, Bosch,

and White, 2010; Vittorio, 2018), then with the Schwarzschild and closed FLRW spacetimes in Sec-

tion 4.3.2.2 and Section 4.3.2.3 respectively to describe the evolution of this sphere while "patching"

those spacetimes with the otherwise flat FLRW universe.
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4.3.2.1 Newtonian

❖ Radius

With basic mechanics, one splits the total energy of the sphere’s outer shell into kinetic and potential

energy

ETot = EKin + EPot, (4.58)

which naturally remains constant by the conservation of energy. The two contributing terms that

do vary are the kinetic energy EKin, due to the size variation, and the potential energy EPot sim-

ply corresponding to that obtained by Newtonian gravitational theory (Newton, 1687). These are

expressed per unit mass withG = 1 as

EKin =
1

2
Ṙ2, EPot = −M

R
, (4.59)

where R is the radius of the outer shell, andM is the mass contained within, that can be identified

with its energy density ρ and density contrast δ

ρ =
3M

4πR3
= ρ̄(1 + δ), (4.60)

and since mass is conserved, one can identify it with the corresponding initial values. At an early

initial time, the sphere expands according to the expansion of the universe, so the kinetic energy is

solely sourced by the Hubble expansion at that initial time (Vittorio, 2018)

EKin, IN =
1

2
H2

INR
2
IN , EPot, IN = − M

RIN
= −EKin, IN Ωm, IN (1 + δIN ), (4.61)

whereM in EPot, IN is substituted with Eq. (4.60) and ρ̄ with Eq. (4.19).

In order for collapse to occurETot < 0 therefore the initial density contrast is given the require-

ment (Sahni and Coles, 1995)

1 + δIN > Ω−1
m, IN . (4.62)

Should this be satisfied then the sphere transitions from expanding to infalling, at turn-around (TA),

where R reaches its maximal size RTA and Ṙ changes sign such that there is no kinetic energy,

leaving only the potential energy non-zero

EKin, TA = 0, EPot, TA = − M

RTA
, (4.63)

and so ETot = EPot, TA. By conservation of energy, the evolution equation of R is then retrieved

as

1

2
Ṙ2 − M

R
= − M

RTA
, (4.64)

andRTA is expressed as a function of the initial values as

RTA =
RIN (1 + δIN )

1 + δIN − Ω−1
m, IN

, (4.65)

where M and HIN in ETot, IN = ETot, TA were substituted with Eq. (4.60) and Eq. (4.19). The

solution to the evolution equation, Eq. (4.64), is found with the new variable ς such that

R =
RTA

2
(1− cos(ς)),

τ =
τTA

π
(ς − sin(ς)),

with

Å
RTA

2

ã3
=
(τTA

π

)2
M. (4.66)
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Figure 4.1: Top-Hat spherical collapse model: radius R Eq. (4.66), nonlinear and linear density con-

trast δ Eq. (4.60) and δ(1) Eq. (4.74) of a homogeneous spherical over-density in an otherwise flat EdS

universe as a function of proper time τ whose corresponding ς Eq. (4.66) is presented below with its

own axis. The moments of turn-around (TA), virialisation (V ) and collapse (C) are emphasised with

vertical lines with their density contrast constants listed in the top panel. Virialisation according to

the first definition V 1 is on the Eq. (4.66) curve, but since the virialisation, according to the second

definition V 2, is not on this curve (requiring extra relaxation mechanisms) it is marked on each plot

with a dot.

τTA can then also be expressed as a function of the initial conditions with Eq. (4.65)

τTA =
π(1 + δIN )

2HINΩ
1/2
m, IN (1 + δIN − Ω−1

m, IN )3/2
. (4.67)

The practical parametrisation of ς allows us to see thatR reaches its maximal sizeRTA at ςTA =

π or τTA and is zero at ςC = 2π or τC = 2τTA which identifies TA and collapse, see Fig. (4.1) whose

bottom plot presents Eq. (4.66).

According to the virial theorem (Clausius, 1870), virialisation happens when the potential energy

is double the kinetic energy, with a sign change, EPot, V = −2EKin, V such that the total energy is
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ETot, V = EPot, V /2. As energy is conserved, thismeans that the potential energy at virialisation can

be related to the potential energy at TA, EPot, V /2 = EPot, TA, therefore at virialisation the radius

becomes RV = RTA/2, which according to Eq. (4.66) is when ςV = 3π/2. In literature, different

authors identify virialisation following different definitions (Sahni and Coles, 1995; Peacock, 1999;

Mo, Bosch, and White, 2010; Vittorio, 2018). The first choice, simply following Eq. (4.66) identifies

it as above at ςV 1 = 3π/2, while the second choice is based on additional relaxation mechanisms

that are not present in this simplistic description. In practice, particles would start interacting with

each other, slowing down the collapse such that it reaches its virialised stateRV = RTA/2 at a later

time, notably when it would otherwise collapse ςV 2 = ςC = 2π. This requires a discontinuity with

the Eq. (4.66) curve, see the bottom plot of Fig. (4.1) where this theoretical point in time is marked at

RTA/2 and τC .

❖ Nonlinear density contrast

The energy density can be retrieved with Eq. (4.60), keeping M constant, and substituting R and

RTA with Eq. (4.66) such that

ρ =
3π

4τ2TA(1− cos(ς))3
. (4.68)

At the key instances of the evolution ςTA = π, ςV 1 = 3π/2, and ςC = 2π, the energy density is then

ρTA =
3π

32τ2TA

, ρV 1 =
3π

4τ2TA

, ρC = +∞. (4.69)

To further quantify the density contrast δ = ρ/ρ̄ − 1, one needs to make a choice as to the model

considered to express ρ̄. The usual choice is with EdS, see Section 4.1.4.4, where ρ̄ = 1/6πτ2 such

that substituting τ with Eq. (4.66) provides δ as (Sahni and Coles, 1995)

δ =
9(ς − sin(ς))2

2(1− cos(ς))3
− 1, (4.70)

which is plotted in the top panel of Fig. (4.1). At the relevant events, with Eq. (4.69), δ is

δTA =

Å
3π

4

ã2
− 1 ≃ 4.55, δV = 2

Å
3πτV
2τTA

ã2
− 1, δC = +∞. (4.71)

where τV is chosen according to the corresponding virialisation definition

δV 1 = 2

Å
3(3π + 2)

4

ã2
− 1 ≃ 145.84, δV 2 = 2 (3π)2 − 1 ≃ 176.65. (4.72)

All of these constants are identified in the top panel of Fig. (4.1).

❖ Linear density contrast

Taking the limit of Eq. (4.70) as ς tends towards zero, where the evolution of δwould be accurately

portrayed by its linear value, provides

lim
ς→0

δ ≃ δ(1) =
3

5
δIN

Å
τ

τIN

ã2/3
, (4.73)

which is proportional to the scale factor, as shown in Section 4.3.1 for a growing mode. The extra

factor means that only 3/5 of the initial amplitude contributes to the growing mode (Sahni and
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Coles, 1995). Then substituting τ with Eq. (4.66) and τTA, Eq. (4.67), expressed at first order in EdS

τ
(1)
TA = 3π

4 τINδ
−3/2
IN , then provides

δ(1) =
3

5

Å
3

4

ã2/3
(ς − sin(ς))2/3 , (4.74)

δ
(1)
TA =

3(6π)2/3

20
≃ 1.06,

δ
(1)
V 1 =

3(9π + 6)2/3

20
≃ 1.58, δ

(1)
C = δ

(1)
V 2 = 22/3δ

(1)
TA ≃ 1.69.

(4.75)

Again these constants are identified in the top panel of Fig. (4.1). δ
(1)
C , in particular, is a crucial con-

stant present in the Press-Schechter mass function (Press and Schechter, 1974), see Section 4.3.3.

4.3.2.2 Schwarzschild

The Schwarzschild (1916) metric for a static spherically symmetric star of massM is

ds2 = −F (r)dt2 + F−1(r)dr2 + r2dΩ2
with F (r) = 1− 2M

r
. (4.76)

The Schwarzschild radius 2M corresponds to an event horizon, if the radius of the star’s surface is

larger than the Schwarzschild radius then it is a normal star, otherwise, it is a black hole.

We shall now consider the 4-velocity of a sphere of particles around this star such that θ and

ϕ are constant. Following from Section 2.1.2.2 this vector is along a geodesic and takes the form

vα =
(
ṫ, ṙ, 0, 0

)
, and its timelike normalisation provides (Chandrasekhar, 1992)

vαvα = gαβv
αvβ = −F (r)ṫ2 + F−1(r)ṙ2 = −1. (4.77)

Because the metric does not depend on t or ϕ, then this spacetime has the two Killing fields ξαt =

{1, 0, 0, 0} and ξαϕ = {0, 0, 0, 1}, see Section 2.1.4.1. ξαt indicates that the spacetime is static

and the contraction with our vector along the geodesic curve identifies the particle’s total energy

gαβξ
α
t v

β = F (r)ṫ = ETot (Wald, 1984). Likewise, ξϕαv
α
provides the angular momentum which

is zero for our sphere of particles. Simply introducing ETot into Eq. (4.77) provides the equation

of motion ṙ2 = E2
Tot − F (r). Should ṙ = 0, as it is the case at TA, then ETot is identified as

E2
Tot = F (rTA)meaning that

ṙ2 = −2M

rTA
+

2M

r
(4.78)

which is identical to Eq. (4.64), therefore having the same solution Eq. (4.66) plotted in the bottom

panel of Fig. (4.1). Typically for a black hole or star the expanding phase of this sphere is omitted,

using rTA as the initial size of the sphere, and no virialisation is considered as the particles are all

absorbed by the black hole or star.

4.3.2.3 Closed FLRW

The first Friedmann equation Eq. (4.18) of a dust filled closed universe, k = 1, with no cosmological

constant using Eq. (4.17), takes the form

ȧ2 = −1 +
aTA

a
with aTA =

κρ̄0a
3
0

3
(4.79)



4.3. STRUCTURE FORMATION 71

where aTA is taken when ȧ is at rest, marking a transition between expansion and contraction. The

Friedmann equation in this form has taken the same expression as Eq. (4.66) whose solution is

a =
aTA

2
(1− cos(ς)), τ =

τTA

π
(ς − sin(ς)), (4.80)

as seen in Table (4.1). This solution can again be found should we consider the Lemaître (1933),

Tolman (1934), and Bondi (1947) (LTB) metric (Vittorio, 2018).

These methods of finding Eq. (4.66) show that this model is valid no matter the gravitational

attractor, as long as the matter is spherically distributed. Even though in the Newtonian description,

there is no curvature, theGR picture provided here shows that indeed this sphere is positively curved.

Fitting this into the universe, one can think of a Swiss-cheese universe, it is a flat FLRWuniverse with

OD holes which contain a positively curved FLRW or LTB solution (Marra et al., 2007) but also UD

holes of a negative curvature FLRW solution.

4.3.3 Mass function

However simple the Top-Hatmodel seems, this provides a critical value that is essential for the Press-

Schechter mass function and the Sheth-Tormen extension (Press and Schechter, 1974; Sheth and

Tormen, 1999). The mass function is a crucial estimator providing the number of virialised objects

of massM at a given time (Monaco, 1997; White, 2002; Mo, Bosch, and White, 2010). This comes

from the probability that the density contrast is greater than δ
(1)
C .

Consider the initial δIN distribution, linearly extrapolated to the redshift of interest δ(1) and

smoothed over to the relevant scaleR, providing δ
(1)
M , whereR is the radius of a sphere encompassing

the chosen massM in the background
4π
3 R

3 = M
ρ̄ . The spherical smoothing is key to the Press-

Schechter mass function; it is improved with Sheth-Tormen using an ellipsoid window function.

The δ
(1)
M distribution will then have the corresponding variance σM (filtered with the same spherical

window function) and a mean of zero (in accordance with the cosmological background). Assuming

this is a Gaussian distribution, the cumulative probability density function is

P
Ä
δ
(1)
M > δ

(1)
C

ä
=

1

σM

√
2π

∫ ∞

δ
(1)
C

exp

(
−δ

(1)2
M

2σ2
M

)
dδ

(1)
M

=
1

2
erfc

(
δ
(1)
C

σM

√
2

) (4.81)

where erfc() is the error function.

The probability P (δ
(1)
M > δ

(1)
C ) provides the mass fraction of collapsed objects; when differenti-

ated, this gives the number density of collapsed objects known as the mass function. Using δ
(1)
C as a

virialisation identifier is key to this method and so it is worthwhile to check this constant.

4.3.4 More complicated analytical models

More complex models have since been created with either inhomogeneity, a non-spherical shape, or

with angular momentum (Mo, Bosch, and White, 2010; Giusti and Faraoni, 2021), most notably the

Zel’dovich approximation, in the context of Newtonian structure formation, informs us on how pan-

cakes are formed (Zel’dovich, 1970) and how they represent the attractors for the dynamics (Bruni,
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Maartens, and Tsagas, 2003). Yet, all these models lack relaxation mechanisms that would bring the

structure to its final virialised stable state. The first attempt to describe this was with statistical me-

chanics (Lynden-Bell, 1967), however, analytical limitations have led many researchers to work with

numerical simulations instead. With these tools, an inhomogeneous universe is either modelled with

a fluid or particle description of matter.

4.3.5 Simulations

N-body simulations have the advantage of going beyond shell crossing and inform us on the virialisa-

tion process and the shape of LSS (White and Rees, 1978; Navarro, Frenk, andWhite, 1996; Gosenca

et al., 2017; Pace et al., 2019; Angulo and Hahn, 2022; Saga, Taruya, and Colombi, 2022). With some

caveat, it has been shown that in the Newtonian case the simulations accurately portray structure

formation when compared with GR simulations, except when the weak gravity regime doesn’t hold

(East, Wojtak, and Abel, 2018). To make the description of gravity in N-body simulations somehow

more accurate, multiple approaches have been attempted (Fidler et al., 2016). A simple approxima-

tion has been used in Rácz, Dobos, et al. (2017), wherematter is coupled to the expansion of distances

with the average expansion-rate approximation. A fully relativistic approach neglecting only tensor

modes has been used in Barrera-Hinojosa and Li (2020a,b) and Barrera-Hinojosa, Li, Bruni, et al.

(2021), based on the constant mean curvature and minimal distortion gauge. In Adamek, Daverio, et

al. (2016a,b) and Lepori et al. (2023) a weak field expansion has been used, based on the Poisson gauge

with six degrees of freedom in the metric, see also Adamek, Barrera-Hinojosa, et al. (2020). Alterna-

tively, a relativistic post-processing treatment of Newtonian simulations can measure vector modes

(Bruni, Thomas, and Wands, 2014; Thomas, Bruni, and Wands, 2015; Barrera-Hinojosa, Li, and Cai,

2021), even for f(R) gravity (Thomas, Bruni, Koyama, et al., 2015). Finally, some relativistic effects

can be extracted from Newtonian simulations with ray-tracing, see e.g. (Barreira et al., 2016; Rasera

et al., 2022; Tian, Carney, et al., 2022; Macpherson, 2023). Tomake the gravitational description fully

relativistic, one may instead simplify the matter description and consider collisionless particles that

evolve according to the global distribution (Yoo, Harada, and Okawa, 2017; East, Wojtak, and Pre-

torius, 2019; Giblin, Mertens, Starkman, and Tian, 2019b) or using smooth particle hydrodynamics

(Magnall et al., 2023; Rosswog, Torsello, and Diener, 2023).

The fluid description of matter lends itself more conveniently to the 3+1 formalism of NR (East,

Pretorius, and Stephens, 2012; Torres et al., 2014; Rekier, Cordero-Carrión, and Füzfa, 2015; Ben-

tivegna and Bruni, 2016; Giblin, Mertens, and Starkman, 2016; Mertens, Giblin, and Starkman, 2016;

Macpherson, Lasky, and Price, 2017, 2018; Adamek, Barrera-Hinojosa, et al., 2020; Staelens, Rekier,

and Füzfa, 2021). While convenient for early times cosmology, together with scalar fields (Kurki-

Suonio et al., 1987; Goldwirth and Piran, 1990; Musco, Miller, and Polnarev, 2009; Alcubierre, Ma-

corra, et al., 2015; Clough and Lim, 2016; Braden et al., 2017; Clough, Lim, et al., 2017; Yoo, Ikeda,

and Okawa, 2019; Aurrekoetxea, Clough, Flauger, et al., 2020; Andrade et al., 2021; Kou et al., 2022),

it finds its limitations at the first shell crossing. As structures decouple from the background and

subsequently virialise, particles should go into a multi-stream regime, while in a fluid description,

shell crossing crashes simulations with comoving coordinates.

Bothmethods have their advantages and disadvantages, and it is important to keep those inmind

depending on the simulated scenario.
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NR simulations are based on the 3+1 formalism (Alcubierre, 2008; Arnowitt, Deser, and Misner,

2008; Shibata, 2015), see Chapter 3, where obtained results depend on the gauge choice in gen-

eral, which in the 3+1 context corresponds to a choice of lapse and shift, i.e. a choice of mapping

between a time-slicing and the next one, see Section 3.4 cf. (Giblin, Mertens, Starkman, and Tian,

2019b; Tian, Anselmi, et al., 2020) for a discussion in the cosmological context. In practice, this

gauge choice is equivalent to fixing coordinates, therefore, the raw results of simulations are gauge/-

coordinate dependent. Physical interpretations and simulation comparisons then need to be done

in a gauge-independent manner based on invariants (East, Wojtak, and Abel, 2018; East, Wojtak,

and Pretorius, 2019; Adamek, Barrera-Hinojosa, et al., 2020), see Section 2.5.3, these are quantities

that characterise the spacetime (D’Inverno and Russell-Clark, 1971; Karlhede, 1980; Carminati and

McLenaghan, 1991; Bonnor, 1995; McIntosh et al., 1995; Zakhary and McIntosh, 1997; Stephani et

al., 2003; Alcubierre, 2008; Wylleman et al., 2019; Bini, Geralico, and Jantzen, 2023) and should be, at

least in principle, observable, i.e. measurable quantities (Rovelli, 1991). The invariant characterisa-

tion of spacetimes obtained in NR, specifically in cosmological simulations, is our main motivation,

together with the presentation of EBWeyl, a publicly available Python post-processing code built for

this purpose (Munoz, 2022). An application of EBWeyl to the computation of the various invari-

ants discussed here is presented in Munoz and Bruni (2023b) see Chapter 6, where we analyse the

evolution of cosmic structures and a quasi-spherical collapse from initial curvature perturbations.

Within cosmological perturbation theory, according to the Stewart-Walker lemma (Stewart and

Walker, 1974), the electric andmagnetic parts of theWeyl tensor,E
{u}
αβ andB

{u}
αβ (Matte, 1953; Jordan

et al., 1964; Hawking, 1966) see Section 2.5.1, are gauge-independent at first order because they

vanish in the background, see Section 4.2.6.2. Therefore, if we consider linear perturbations of an

FLRW spacetime,E
{u}
αβ andB

{u}
αβ are first-order gauge-invariant variables (Hawking, 1966; Ellis and

Bruni, 1989; Bruni, Dunsby, and Ellis, 1992); they are related to the Bardeen potentials (Bardeen,

1980; Bruni, Dunsby, and Ellis, 1992; Lewis and Challinor, 2006), and so are scalars constructed

from them, see Eq. (4.41) in Section 4.2.4.

E
{u}
αβ and B

{u}
αβ are of specific interest for their physical meaning: they describe the non-local

tidal gravitational fields (overall represented by the Weyl curvature) and they are related to the shear

and vorticity of matter (Maartens and Bassett, 1998; Ellis, 2009; Ellis, Maartens, and MacCallum,

2012) see Section 2.5.1. They can be computed from simulations in NR, and because of their physical

meaning, and since they are gauge invariant at first order, they are a clear asset in describing the

simulated scenario and comparing with different codes and with perturbation theory (Wylleman et

al., 2019). Additionally, they can be used to build a full set of coordinate independent and invariant

scalars that characterises the spacetime see Section 2.5.3, some frame-dependent and some frame-

independent, and these scalars can be used for the Petrov classification described in Section 2.5.4.

73
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Describing the spacetime of an NR simulation using E
{u}
αβ and B

{u}
αβ was first considered for

colliding black holes (Owen et al., 2011). A cosmological application has been studied for universe

models containing lattice of masses where a significant magnetic part can arise (Korzyński, Hinder,

and Bentivegna, 2015; Clifton, Gregoris, and Rosquist, 2017). Furthermore, an approximation where

the magnetic part has no divergence has been found to be valid on large scales in simulations of a

non-linear matter-dominated spacetime (Heinesen andMacpherson, 2022). Indeed gravitomagnetic

effects have been gaining interest for their possible implications in cosmology (Bruni, Thomas, and

Wands, 2014; Milillo et al., 2015; Thomas, Bruni, Koyama, et al., 2015; Thomas, Bruni, and Wands,

2015; Barrera-Hinojosa, Li, Bruni, et al., 2021; Barrera-Hinojosa, Li, and Cai, 2021).

In this chapter, based on Munoz and Bruni (2023a), we present two methods to compute E
{u}
αβ

and B
{u}
αβ , with the goal of computing them numerically: we call the first “geometrical" as the com-

putation only requires the spacetime metric, while we call the second “slicing" (Munoz, 2022), as the

required variables are those of the 3+1 decomposition of spacetime. The defining difference between

the two methods is in how the time derivatives of the spacetime metric are computed; for the for-

mer, this is done numerically, while for the latter this is obtained from the extrinsic curvature. For

each of these two methods, a code was created and tested on five example spacetimes, four of which

are known exact solutions of GR; these tests demonstrate the reliability of our codes. These space-

times were specifically chosen because they provide examples from cosmology. One of the examples

we consider is inhomogeneous, it is a generalisation of the dust-only Szekeres models (Szekeres,

1975) that includes the cosmological constantΛ (Barrow and Stein-Schabes, 1984), which we callΛ-

Szekeres. Since it doesn’t have a magnetic Weyl part, in order to test the codes on an inhomogeneous

spacetime with a non-zeroB
{u}
αβ we have also introduced a conveniently made-up metric. Our tests

and results show that the code based on the slicing method outperforms the other: on this basis, we

have made the slicing code, which we dub EBWeyl, publicly available at (Munoz, 2022).

This chapter is structured as follows. Section 5.1 presents our two Python post-processing codes:

the geometrical and slicing codes. In Section 5.1.1 we describe how the electric andmagnetic parts of

theWeyl tensor,Eαβ andBαβ , are derived from the Riemann tensor; this establishes the geometrical

method used in our first code, see Section 2.5.1. Then, in Section 5.1.2, we present an alternative

computational method to obtain Eαβ and Bαβ directly based on the 3+1 slicing formulation; this

establishes the slicing method used in our second code (Munoz, 2022), see Section 3.5. Invariants

needed for the Petrov classification that can be computed from Eαβ and Bαβ are now described in

Section 2.5.3, wherewe also introduce theWeyl scalars. Our codes are tested on five spacetimes, these

are each presented in Section 5.2. The usefulness of these codes is demonstrated using theΛ-Szekeres

metric (Barrow and Stein-Schabes, 1984) in Section 5.3.1, where for this spacetime we computeEαβ

and Bαβ , the 3-dimensional and 4-dimensional Ricci scalars, the invariants of Section 2.5.3 and

the Petrov type. Finally, the performance and computing errors are discussed in Section 5.3.2. In

Section 5.4 we draw our conclusions. In two appendices we demonstrate finite difference limitations

(Appendix A) and list the analytical expressions we computed withMaple (Maplesoft, 2019) and used

in this chapter (Appendix B).
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5.1 Codes

In this section, we present the two codes, the theoretical methods and numerical implementations to

computeE{n}2 = E
{n}
µν E{n}µν

, andB{n}2 = B
{n}
µν B{n}µν

. These are both Python post-processing

codes, one referred to as the geometrical code and the other which is based on the slicing method

that we call EBWeyl (Munoz, 2022). These are applied in Section 5.3 to the test-bedmetrics reviewed

in Section 5.2. The theoretical framework section has been shortened and merged with the code

description section compared to Munoz and Bruni (2023a) since the relevant information can now

be found in the background chapters Chapter 2, Chapter 3, and Chapter 4.

5.1.1 Geometrical code

In the code using the geometrical approach, the 4-dimensional Riemann tensor is calculated from

its definition in terms of the derivatives of the metric gαβ . From the 4-dimensional metric gαβ ,

its derivatives are computed numerically and these are then used to compute the Christoffel sym-

bols Eq. (2.14) and its derivatives to then calculate the 4-dimensional Riemann tensor Rαβµν with

Eq. (2.19). Because of the added complexity in computing time derivatives, this code has been de-

veloped only for the synchronous gauge, g0α = {−1, 0, 0, 0}. In practice, assuming that this

post-processing code is applied to data produced by a numerical simulation in this gauge, then the

metric is directly given by γij .

The first spatial derivatives of the metric are computed with a centred finite difference (FD)

scheme where the boundary points are obtained using a periodic boundary condition when applica-

ble (here only for the test metric case Section 5.2.2), otherwise a combination of forward and back-

ward schemes are used, see Section 3.6.1. As the centred scheme has lower relative error than either

the forward or backward scheme, the points along the edges affected by this boundary choice are cut

off, see Appendix A. These considerations are of no concern when applying these codes to cosmo-

logical simulation results, as in this case the boundary conditions commonly used are periodic.

The first time derivative of the metric in the synchronous gauge coincides with the extrinsic

curvature,Kij = −1
2∂tγij , and therefore can directly be retrieved from the data of the underlying

simulation.

Finally, to compute second derivatives of the metric, spatial derivatives of all of the above are

computed with the same scheme applied for the first spatial derivatives, and time derivatives are

computed with a backward scheme. The FD schemes are all of 4th order, then to increase accu-

racy we also implement the option to use 6th order schemes (Fornberg, 1988), and to have Riemann

symmetries enforced withRαβµν = −Rβαµν = −Rαβνµ = Rµναβ .

Once the 4-dimensional Riemann tensor Rαβµν is obtained, its trace is taken to compute the

Ricci tensor Rαβ and scalar R, Eq. (2.22, 2.23), which are removed from the Riemann tensor pro-

viding the Weyl tensor Cαβµν with Eq. (2.24). From these, the Weyl tensor is simply projected along

the chosen timelike unit vector, say nµ, to provide the electric and magnetic parts of the Weyl tensor

according to Eq. (2.68) (Matte, 1953; Jordan et al., 1964; Hawking, 1966):

E{n}
αµ = nβnνCαβµν , B{n}

αµ = nβnνC∗
αβµν , (5.1)
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whereC∗
αβµν = 1

2Cαβλσϵ
λσ

µν is the dual of theWeyl tensor and ϵαβµν is the Levi-Civita completely

antisymmetric tensor Eq. (2.12). See Section 2.5.1 for an in-depth description of their properties

where their magnitudes are taken as E{n}2 = E{n}αβE
{n}
αβ andB{n}2 = B{n}αβB

{n}
αβ .

The outputs of this code are the 4-dimensional Ricci scalar R (also written as
(4)R), and the

magnitudes of the electric and magnetic parts of the Weyl tensor E{n}2
, and B{n}2

; these are used

in the examples in Section 5.3.

5.1.2 Slicing code: EBWeyl

We now consider the method applied in our second code: this consists of calculatingE
{n}
αβ andB

{n}
αβ

by using the 3+1 formalism, seeChapter 3 andmore in particular Section 3.5 (Wald, 1984; Gunnarsen,

Hisa-Aki, and Kei-Ichi, 1995; Alcubierre, 2008; Arnowitt, Deser, andMisner, 2008; Choquet-Bruhat,

2015; Shibata, 2015) that explains how the 4-dimensional Riemann and 4-dimensional Ricci tensors

are substituted out of Eq. (5.1) to provide the following expressions Eq. (3.52) and Eq. (3.53)

E
{n}
ij = (3)R⟨ij⟩ +K⟨ij⟩K −Kk

⟨iKj⟩k −
κ

2
S
{n}
⟨ij⟩

B
{n}
ij = ϵ{n}klj

Å
D

{n}
k Kli +

1

2
γik
Ä
D

{n}
l K −D{n}

m Km
l

äã
,

(5.2)

where ⟨..⟩ is a spatial traceless operator, Eq. (2.26).
As we use the 3+1 decomposition,E

{n}
ij andB

{n}
ij are only projected orthogonally to the normal

to the slicing, whereas it is when they are projected orthogonally to the fluid flow that they take spe-

cific physical meaning for cosmologists. While one can use a slicing such thatnµ = uµ, in general the

two do not coincide, as the slicing/gauge is chosen in order to optimise numerical computations, or

one wishes to consider a fluid with vorticity. For these reasons, we are now going to constructE{u}2

and B{u}2
by projecting along the fluid flow uµ, c.f. (King and Ellis, 1973; Bruni, Dunsby, and Ellis,

1992; Bini, Carini, and Jantzen, 1995). Changing the projection vector in the geometrical method is

straightforward but the slicing method is built on nµ and the resulting 3-metric and extrinsic cur-

vature. Hence we need to construct the Weyl tensor fromE
{n}
αβ andB

{n}
αβ . Assuming that these have

been computed from Eq. (5.2), we can constructCαβµν using Eq. (2.72) then it is projected along the

fluid flow in the same method as the geometrical code to get E
{u}
αµ andB

{u}
αµ following Eq. (2.73).

This is implemented in EBWeyl (Munoz, 2022), where the metric gαβ provides the 3+1 variables

needed to compute
(3)Rij and the spatial covariant derivativeD

{n}
. Then withKαβ and Tαβ ,E

{n}
αβ

and B
{n}
αβ are computed with Eq. (5.2)). No time derivatives are needed and the spatial derivatives

are obtained with the same scheme used in the geometrical code.

This is implemented in EBWeyl (Munoz, 2022) which is essentially a post-processing Python

module with functions and classes providing FD tools and computations of tensorial expressions.

In the github repository there is an example Jupyter Notebook demonstrating how to use it for

the Bianchi IV vacuum plane wave spacetime in Section 5.2.5. The user first needs to provide the

data box grid spacing, the number of data points per direction, the boundary conditions and the

FD order to a FiniteDifference class. This class provides FD tools to apply backward, centered,

and forward FD schemes of 4th and 6th order using either periodic boundary conditions (as it is

relevant for cosmological simulations) or a combination of the three different types of schemes as an

alternative to boundary conditions, as explained above in Section 5.1.1.
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Next, the user needs to provide the defined FiniteDifference class along with gαβ , andKij

as numerical numpy arrays to the class called Weyl, this will automatically define the terms gαβ ,

γij , γ
ij
, βi, β

i
, α, nα, and n

α
, then the class’s functions can be used to compute the 3-dimensional

Christoffel symbols
(3)Γi

jk and the 3-dimensional Ricci tensor
(3)Rij and scalar

(3)R. The spatial

derivatives of the spatial metric and the 3-dimensional Christoffel symbols are computed numeri-

cally using the FiniteDifference class. Further functions are then available to computeE
{n}
ij and

B
{n}
ij according to Eq. (5.2), note that for B

{n}
ij the covariant derivative is computed by again using

FiniteDifference, and that for E
{n}
ij the energy-momentum tensor Tαβ needs to be provided

1
.

Another function is then available to compute E{n}2
and B{n}2

. These two terms along with
(3)R

are those whose numerical error is considered in Section 5.3.2.

Furthermore, the equations described in Section 2.5.3 are also provided by EBWeyl, as demon-

strated in the Jupyter Notebook (Munoz, 2022). With E
{n}
ij and B

{n}
ij there is a function available

to compute Cαβµν following Eq. (2.72), then another function to project it along any chosen time-

like unit vector, say uα to have E
{u}
ij and B

{u}
ij with Eq. (2.73). Additionally, using Cαβµν there is a

function available to compute the Weyl scalars, the Ψs, for an arbitrary null tetrad starting from a

user-provided timelike unit vector according to Eq. (2.76, 2.77, 2.78, 2.80) where the Gram-Schmidt

process has been implemented in order to ensure that the e(α) tetrad is orthonormal (−1 for timelike

leg) no matter the numerical metric. These scalars can then be passed to another function that pro-

vides all the invariants needed for the Petrov classification of spacetime I , J ,K , L andN according

to Eq. (2.92, 2.96). An application of their usefulness is given in Section 5.3.1 and 6.3.6.

Finally, we emphasise that although the examples of this chapter are all cosmological and we

always use the synchronous gauge, EBWeyl is general enough to be applied to any spacetime in any

gauge.

5.2 Test-bed spacetimes

In this section, we summarise the spacetimes that we use to test our two codes. These are all ex-

act solutions of GR, except for the test metric of Section 5.2.2. Since our codes are motivated by

cosmological applications, most of the solutions are homogeneous but we also consider one inho-

mogeneous solution, a Λ-Szekeres spacetime in Section 5.2.1; and because it has no magnetic part

of the Weyl tensor, we have created a test metric that presents an inhomogeneous spacetime with

an electric and magnetic part of the Weyl tensor. These metrics were chosen for their potential

challenge to the codes, indeed by order of presentation, two of these spacetimes have a sinusoidal

dependence on the space coordinates, the next is polynomial, and the last two are exponential. They

are all provided to the two codes which then compute
(3)R or

(4)R, E2
, and B2

that we compare

to the analytical solutions to establish code performance, see Section 5.3.2. Then for the Λ-Szekeres

spacetime, in particular, we show what those variables and the scalar invariants look like, and we

verify the resulting Petrov classification Section 5.3.1.
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Figure 5.1: Space distribution of the density contrast δ in Eq. (5.4) indicated by colour coding (the top
plot ranges from -0.8 to 0 and the bottom plot ranges from -0.7705 to -0.7701) for the Λ-Szekeres
spacetime on the z-x and y-x planes (with y/λ = 0 and z/λ = 0 respectively) of a data box of size
λ = 20Mpc with 643 grid points, at redshift 230.

5.2.1 The Λ-Szekeres models of Barrow and Stein-Schabes

The first spacetime we consider is a cosmological solution generalising the FLRWmetric to include a

nonlinear inhomogeneity, it is theΛ-Szekeres (Szekeres, 1975; Goode andWainwright, 1982) model

with dust and cosmological constantΛ first considered by Barrow and Stein-Schabes (1984). Follow-

ing the representation of Szekeres models introduced in Goode and Wainwright (1982), this model

can be presented as a nonlinear exact perturbation of a flat (zero curvature) ΛCDM background

(Meures and Bruni, 2011, 2012) where the dust fluid represents CDM. In Cartesian-like coordinates

the line element is:

ds2 = −dτ2 + a2(τ)(dx2 + dy2 + Z2(t, x, y, z)dz2). (5.3)

This model is well known to be Petrov type D and has no magnetic part of the Weyl tensor. It is a

well-understood exact inhomogeneous cosmological solution, making it an interesting example for

code testing, cf. (Grasso and Villa, 2021).

It turns out (Goode and Wainwright, 1982; Meures and Bruni, 2011, 2012) that the scale factor

a(τ) in Eq. (5.3) satisfies the Friedmann equations for the flat ΛCDM model, see Section 4.1.4.5, so

a(τ) is provided by Eq. (4.29), with background matter density ρ̄(τ) from Eq. (4.19).

1

For example, in vacuum, as in Section 5.2.5, this simply means that Tαβ should be provided as an array of zeros.
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The inhomogeneous matter density is ρ{u} = ρ̄(1 + δ), where the density contrast δ can be

written as:

δ(τ, x, y, z) = −F (τ, z)/Z(τ, x, y, z). (5.4)

The function Z(τ, x, y, z) represents inhomogeneity in the metric Eq. (5.3) and can be written as:

Z(τ, x, y, z) = 1 + F (τ, z) + β+(z)(x
2 + y2)

3

4
H2

0Ω
1/3
Λ0 Ω

2/3
m0 . (5.5)

Remarkably, as far as its time-dependence is concerned, the nonlinear perturbation F (τ, z) sat-

isfies exactly the same linear second order differential equation satisfied by δ in linear perturbation

theory Eq. (4.56) (Goode and Wainwright, 1982; Meures and Bruni, 2011, 2012), cf. (Bruni, Hidalgo,

Meures, et al., 2014). Because of this, F is in general composed of a growing and decaying mode. The

latter is usually neglected in cosmological structure formation theory, while the former is sourced

by the curvature perturbations related to
(3)R (Bruni, Hidalgo, Meures, et al., 2014), cf. also (Bruni,

Hidalgo, and Wands, 2014) for a different approximation leading to the same equations. Therefore

for our test, we only consider the growing mode:

F (t, z) = β+(z)
3

5
cosh (t) sinh (t)2/32F1

Å
5

6
,
3

2
;
11

6
; − sinh (t)2

ã
, (5.6)

where t = τ
»

3Λ
4 , and 2F1 is a hypergeometric function, see Appendix B.1. Then we chose the

spatial perturbation to be β+(z) = 103(1 − sin (2πz/λ)), λ being the data box size. Given these

choices, the density contrast δ in Eq. (5.4) is negative and it is illustrated in Fig. (5.1), where we can

see the influence of the sinusoidal distribution on the x − z plane, and the paraboloid structure on

the x− y plane. This spacetime’s invariants and its Petrov type will be discussed in Section 5.3.1.

5.2.2 A non-diagonal inhomogeneous test metric

In order to have an inhomogeneous example with a non-vanishing magnetic part of the Weyl tensor,

we introduce a spacetime with the following line element:

ds2 = −dτ2 + τA(z)δijdx
idxj + 2dx(dy + dz), (5.7)

whereA(z) is an arbitrary function, that for practical purposes we assume to be positive. This can be

found as a solution to Einstein’s equations by the method of reverse engineering the metric, where

one starts with the metric, and then finds the corresponding energy-momentum tensor with Ein-

stein’s field equations. In the analytical computations of this spacetime, we find it to be of Petrov

type I, see Appendix B.2.

However, since the determinant of this metric is g = A(z)τ [2 − A(z)2τ2], one can see that

this spacetime is only valid for a certain domain in time, when g < 0, also depending on A(z).

Additionally, the resulting energy-momentum tensor doesn’t have any particular physical meaning,

so we are not referring to this spacetime as a GR solution. All we need to test our code is a specific

form of the metric. In this light, althoughA(z) is an arbitrary function, we define it for the purpose

of the test asA(z) = 2.3+ 0.2 sin (2πz/λ) so we can use periodic boundary conditions, with λ the

box size. Then, in the frame associated with nµ, we obtain the (rather fictitious) non-perfect fluid

energy-momentum tensor Tαβ from Einstein’s equations, see Appendix B.2.



80 CHAPTER 5. EBWEYL

5.2.3 Bianchi II Collins-Stewart

The Collins and Stewart Bianchi II γ̃-law perfect fluid homogeneous solution (Collins and Stewart,

1971; Wainwright and Ellis, 1997) has the spatial metric

γij =

Ö
τ (2−γ̃)/γ̃ τ (2−γ̃)/γ̃(sz/2γ̃) 0

τ (2−γ̃)/γ̃(sz/2γ̃) τ (2+γ̃)/2γ̃ + τ (2−γ̃)/γ̃ (sz/2γ̃)2 0

0 0 τ (2+γ̃)/2γ̃

è
, (5.8)

with the constant s2 = (2−γ̃)(3γ̃−2). This is with the synchronous comoving gauge andCartesian-

like coordinates. The perfect fluid has energy density ρ{u} = (6− γ̃)/4κτ2γ̃2, and pressure follow-

ing the γ̃-law: p{u} = (γ̃ − 1)ρ{u}, so γ̃ = 1 for dust and γ̃ = 4/3 for radiation. In the latter case

(4)R = 0, in both cases this spacetime is of Petrov type D, see Appendix B.3. This is our sole example

showing the spatial metric having a polynomial dependence on the space coordinates.

5.2.4 Bianchi VI tilted model

Assuming the synchronous gauge and Cartesian-like coordinates, the Rosquist and Jantzen Bianchi

VI tilted γ̃-law perfect fluid homogeneous solution with vorticity (Rosquist and Jantzen, 1985;

Stephani et al., 2003), has the spatial metric:

γij =

Ö
(1 +m2)(kτ)2 mkτ1+s−qex 0

mkτ1+s−qex τ2(s−q)e2x 0

0 0 τ2(s+q)e−2x

è
, (5.9)

with the constants:

s = (2− γ̃)/(2γ̃),

m2 = −32q2s/(s− q − 1)2(3s+ 3q − 1),

q = (6− 5γ̃)(2− γ̃ + 2
√
(9γ̃ − 1)(γ̃ − 1))/2γ̃(35γ̃ − 36),

k2 = −(3s+ 3q − 1)/(s+ 3q − 1)(3s2 + (6q − 1)s− q2 − q).

(5.10)

With this definition of q, γ̃ is limited to the domain 6/5 < γ̃ < 1.7169... (Stephani et al., 2003).

For our test, we use γ̃ = 1.22 and although this solution is described by a perfect fluid following

the γ̃-law in a tilted frame, Tαβ used in EBWeyl was computed from Einstein’s equations in the nα

frame using Eq. (3.16). Another relevant note for the code testing, is that the space dependence of the

metric is exponential. Using Maple (Maplesoft, 2019), we find that this spacetime is of Petrov type I,

see Appendix B.4.

5.2.5 Bianchi IV vacuum plane wave

The final spacetimewe consider is the Harvey and Tsoubelis Bianchi IV vacuum plane wave homoge-

neous solution (Harvey and Tsoubelis, 1977; Harvey, Tsoubelis, and Wilsker, 1979; Wainwright and

Ellis, 1997) with spatial metric:

γij =

Ö
τ2 0 0

0 τex τex(x+ log (τ))

0 τex(x+ log (τ)) τex((x+ log (τ))2 + 1)

è
. (5.11)
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Again, this is for the synchronous comoving gauge and Cartesian-like coordinates. This is in vacuum

so
(4)R = 0, and the plane wave represented by this model makes it a very interesting example: it

is easy to check with Maple (Maplesoft, 2019), see Appendix B.5, that E{u}2 = B2{u} = 1/2τ4 and

that the Petrov type is N (Bonnor, 1995). This gives an additional point of comparison forE{u}2
and

B{u}2
.

5.3 Results
Here we present two forms of tests. Firstly, we demonstrate applications of these codes to the Λ-

Szekeres spacetime in Section 5.2.1 (Szekeres, 1975; Barrow and Stein-Schabes, 1984; Meures and

Bruni, 2011, 2012). We compute
(4)R with the geometrical code and we compute

(3)R, B2
, E2

and

the invariants of Section 2.5.3 with EBWeyl. With the invariants, we then check that this spacetime

is of Petrov type D. This process is then applicable to any numerical spacetime where the Petrov type

is not known, see Section 6.3.6.

Secondly, we show the numerical error, and convergence, on computing
(4)R, (3)R,E2

, andB2

for each code on each example spacetime of Section 5.2. As we identify different types of numerical

errors, each is addressed individually showing how reliable these codes are.

To do these tests using the metrics of Section 5.2 we generate 3-dimensional data boxes of N3

points where the x, y, and z coordinates vary, such that each data point is associatedwith a numerical

metric tensor computed from the analytical metric. We additionally associate a numerical extrinsic

curvature and stress tensor with each of these points. The provided data has been generated exactly

at a single arbitrary time for EBWeyl, and multiple times, with a small time step, for the geometrical

code. These numerical arrays are provided to the two codes where the outputs can be plotted, as

in Section 5.3.1, or compared to the expected solution as in Section 5.3.2. This comparison is done

by computing the average relative difference between the code outputs, say v, and the analytical

solution, vth: E (|v/vth − 1|). These solutions are derived analytically using Maple, see Appendix B,

and provided as numerical arrays for comparison.

5.3.1 Invariants for the Λ-Szekeres spacetime

The 4-dimensional and 3-dimensional Ricci scalars and the invariants from Section 2.5.3 of the Λ-

Szekeres spacetime have been computed and are presented in Fig. (5.2). This is organised in three

main rows, with panels depicting the spatial distribution of the various quantities, with each main

row divided into two sub-rows showing the distribution in the x−z and x−y planes. We present all

quantities in homogeneous (first) powers of the Weyl tensor, e.g. I1/2, and make them dimensionless

by dividing by the Hubble scalar H = ȧ/a, cf. (Wainwright and Ellis, 1997), e.g. I1/2/H2
. For

complex scalars, only the real part is shown; for the imaginary part, which is zero analytically, we

only get numerical noise. The geometrical code was used for
(4)R, and then EBWeyl otherwise.

In Fig. (5.2) the behaviour of the various quantities seem to differ according to two regions, where

δ → 0− towards the z/λ = 0.25 plane and the rest where δ < 0, see Fig. (5.1). These region-

dependent properties are summarized in Table (5.1).

The Szekeres spacetime and the Barrow and Stein-Schabes model with Λ is well known to be

of Petrov type D (Barnes and Rowlingson, 1989; Stephani et al., 2003; Meures and Bruni, 2011),
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Figure 5.2: For the Λ-Szekeres spacetime we show the spatial distribution of the 4-dimensional and

3-dimensional Ricci scalar
(4)R and

(3)R, the magnitude of the magnetic and electric parts of the

Weyl tensor

√
|B2| and

√
|E2| and the invariant scalars along the z-x and y-x planes (with y/λ = 0

and z/λ = 0 respectively) of a data box with 643 grid points. These quantities are made dimension-

less by dividing by the square of the Hubble scalar H . Only the real part of the complex invariants

are shown, as the imaginary parts are zero, up to numerical noise.
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(4)R (3)R B2 E2

δ → 0− ∈ R+
larger → 0− = 0 → 0+

δ ∈ R− ∈ R+
smaller ∈ R− = 0 ∈ R+

LB M Re(I1/2) Re(J1/3)

δ → 0− → 0+ = 0 → 0+ → 0+

δ ∈ R− ∈ R+ = 0 ∈ R+ ∈ R+

Re(S) Re(K1/3) Re(L1/2) Re(N1/4)

δ → 0−
+∞ at

z = 0.25λ
= 0 → 0+ = 0

δ ∈ R− = 1 = 0 ∈ R+ = 0

Table 5.1: Summary of the quantities presented in Fig. (5.2) based on the spatial distribution of δ as
presented in Fig. (5.1).

meaning that I ̸= 0, J ̸= 0, S = 1, and K = N = 0 see Figure 9.1 of (Baker and Campanelli,

2000; Stephani et al., 2003) and Fig. (2.1). We can check this here, indeed in the second rows of each

main row of Table (5.1) (for δ ∈ R−
) we can see that all of these properties are fulfilled such that we

can identify this spacetime to be of type D. Additionally, we see that B2 = 0, it just corresponds to

numerical noise, meaning that for the invariants, based on equations Eq. (2.93, 2.94, 2.91): M = 0

(also numerical noise) and LB , I , and J are all some type of combination of Eαβ , explaining the

similarities in their spatial distributions in Fig. (5.2).

On the z/λ = 0.25 plane, corresponding to the z/λ = 0.25 horizontal line in the z − x panels

of Fig. (5.2), δ → 0− as it approaches this plane, and the Λ-Szekeres spacetime tends towards a flat

FLRW spacetime which is of Petrov type O. This type of spacetime has the properties B2 = E2 =

LB = M = I = J = K = L = N = 0 as the Weyl tensor itself is zero, it is conformally flat, and

we indeed observe this behaviour in the first rows of Table (5.1) (for δ → 0−), and we also see that

the spatial curvature
(3)R also tends towards flatness as z/λ = 0.25 is approached. In particular,

on this plane we do not have I exactly zero, but a small value, as there is always numerical noise.

Consequently, on this plane S = 27J2/I3 from Eq. (2.94) is numerically extremely large, see the

yellow line in the first column and fifth row of Fig. (5.2). This is expected, since S is ill-defined for

spacetimes other than I, II, and D.

We can then numerically confirm that this Λ-Szekeres metric is of Petrov type D, except on the

z/λ = 0.25 plane where it is of Petrov type O. In summary, we have shown the potential of this

code in deriving various invariants of an analytic spacetime. The same type of analysis can be done

on any spacetime generated numerically as seen in Section 6.3.6. We next look into the accuracy of

these measurements.

5.3.2 Code tests

To test our codes, we run them on all the example spacetimes listed in Section 5.2 and compare the

results to the expected analytical expressions of Appendix B. Fig. (5.3) shows the resulting numerical

error when computing
(3)R or

(4)R, E2
, B2

, ET
and BT

(their trace, which should be zero). If the

analytical solution is different from zero, the relative error is shown, otherwise, the value itself is
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presented. The scalars that are absent from the plot, are omitted because the error is too small to

fit in, and so is of lesser interest. All these plots display multiple types of numerical errors so we

will address these individually. To complete this analysis, we show again in Fig. (5.4) the numerical

error for the Bianchi VI and the plane wave cases, this time using the 6th order FD and Riemann

symmetry enforcement options. Additionally, the plane wave case has E2 = B2
, so Fig. (5.5) shows

how accurately each code can reproduce this.

5.3.2.1 Truncation error

The derivatives are computed with FD schemes, this introduces truncation errors that decrease as

resolution increases. This follows the power lawN−o
, withN3

the number of grid points, and o the

order of the FD scheme. In Figs. (5.3, 5.4, 5.5, A.1) this power law is shown with dashed green lines.

The codes’ capacity to numerically compute derivatives will be determined by the dependence of the

metric on the time and space coordinates (time coordinate only for the geometrical method).

❖ The Bianchi II metric in Eq. (5.8) has a polynomial dependence on z and τ . The top plots of

Fig. (5.3) show that the spatial dependence is not an issue as the slicingmethod is not limited by

the truncation error, however, the additional FD for the time derivatives is the limiting factor

in the geometrical method. Even the change in the temporal powers of Eq. (5.8) that results

from changing the γ̃-law index from 1 to 4/3 has changed the B2
error to being truncation

dominated.

❖ The test metric in Eq. (5.7) has a sinusoidal dependence on z and linear dependence on τ .

The middle right plots in Fig. (5.3) shows that the truncation error is the limiting factor here,

the error decreases following 4th order convergence, as predicted by the FD order used in

Fig. (5.3).

❖ TheΛ-Szekeres metric in Eq. (5.3) is sinusoidal along z and paraboloidal in the orthogonal di-

rection and its time dependence follows hyperbolic functions. Themiddle left plots in Fig. (5.3)

show that the truncation error is a limiting factor, it indeed follows the expected power law,

occasionally with an even steeper slope (showing better convergence). More on the middle left

plots of Fig. (5.3) in the floating point error section.

❖ Both Bianchi VI and Bianchi IV plane wave metrics in Eq. (5.9) and Eq. (5.11) have an expo-

nential spatial distribution. The bottom row plots of Fig. (5.3) are similar as they both de-

crease with 4th order convergence. For these cases, a Christoffel component of interest, and

its derivative, are also displayed to demonstrate the errors introduced by the FD scheme. Being

inhomogeneous and zero in certain locations there are bumps in these curves. These Christof-

fel components are limited by the FD order, so they benefit from the 6th order scheme as seen

in the top row of Fig. (5.4). In this case, we can see that the error in the Christoffel components

manages to reach lower values, therefore decreasing the errors in the other terms as they all

have 6th order convergence. This behaviour is also visible in Fig. (5.5). More on this in the

cancellation error section.

Whether the spacetime is inhomogeneous (Λ-Szekeres and test metric) or homogeneous (other

spacetimes) does not seem to make much of a difference on the truncation error, only extra bumps
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Figure 5.3: Six panels showing, respectively, the average relative error of the slicing method with

EBWeyl, left side, and geometrical code, right side, of the Bianchi II (with γ = 1 and γ = 4/3),
Λ-Szekeres, test metric, Bianchi VI, and Bianchi IV plane wave spacetimes, applied to data boxes of

N
3
grid points, using a 4th order FD scheme. Predicted numerical errors are plotted as dotted lines,

green and decreasing corresponds to truncation error, red and increasing corresponds to rounding

error (or floating point error). As truncation error is the dominating type of numerical error, the

theoretical prediction often overlaps with the computational results. The Λ-Szekeres case with the

slicing code (first panel in the middle row) in particular shows the results transition from truncation

error dominated to rounding error dominated. This error is identified as a rounding error since the

error is reduced by increasing the computational precision from 64bit to 128bit.
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Figure 5.4: Top row: Two panels showing, respectively, the average relative error of the slicing, left

side, and geometrical code, right side, of the Bianchi VI and Bianchi IV plane wave spacetimes with

data boxes of N
3
grid points, using a 6th order FD scheme. Bottom row: the same with Riemann

symmetries enforced. For the planewave geometrical case,BT
and theBianchi identity vanish. Using

a 6th order scheme has reduced numerical error with respect to Fig. (5.3), and enforcing Riemann

symmetries has improved results for the Plane Wave Geometrical case, removing cancellation error.

along the curves. However, awareness of the metric spatial and temporal dependence is needed to

understand the impact of the truncation error. If the space dependence is simple, as is the case of

the Bianchi II metric, then the slicing method is preferred. Otherwise, if the space dependence is

challenging, as is the case for the Bianchi VI and plane wave cases, the higher order FD method

ought to be used for more accurate results, more on this in Appendix A.

5.3.2.2 Floating point error

Floating point error or round-off error comes from the limited number of digits stored in the com-

puter memory. It accumulates as the amount of handled numbers and computational steps increases.

Consequently, this type of error grows with the resolution, as it is visible in the top plots and middle

left plot of Fig. (5.3), the increasing slopes follow power laws betweenN0
andN2.5

. To ensure this is

a floating point error and not a coding error we change the computational precision from 64bit con-

tinuous lines to 128bit (dash-dotted lines in Fig. (5.3)). In all cases the amplitude of these dash-dotted

lines is smaller, confirming the origin of this error. EBWeyl applied to the Λ-Szekeres case, middle

left-most plot of Fig. (5.3), is an interesting example where the transition from truncation error to

floating point error is visible. The precision change decreases the amount of floating point error,

therefore, pushing the error transition to happen at a higher resolution. This type of error displays

computational limitations, however in all cases, it remains very small, so this does not pose much
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andE2

for both the slicing and geometrical codes

applied to the Bianchi IV plane wave spacetime, whereB2 = E2
, with data boxes of N

3
grid points.

Both 4th and 6th order FD schemes were used, and Riemann symmetries were enforced for the 6th

order scheme.

concern to results obtained with our codes.

5.3.2.3 Cancellation error

When comparing large numbers to small ones the relative errormaymislead the result if the error on

the large number is of the same order of magnitude as the small number. Large numbers cancelling

each other outwill then introduce significant errors in the rest of the computation. A good example of

this type of error arises in the computation of the Bianchi identity Eq. (2.70). In the Bianchi IV plane

wave case, see bottom right in Fig. (5.3) and right side of Fig. (5.4), each of the Riemann components

in Eq. (2.70) are ∼ 103, say the relative error is 10−3
from truncation error, then the introduced

cancellation error is of ∼ 100. It is then multiplied with smaller numbers and gives the error in the

trace BT
(this should be zero and is indeed negligible in all other cases). This error can be related

to the truncation error so the cancellation error here decreases as the former gets corrected. This

can then be improved by increasing the FD order, as seen from 4th order FD Fig. (5.3) to 6th order

Fig. (5.4) (top row)where the error in the Bianchi identity and other quantities in the plot significantly

decrease. Additionally, this can also be improved by enforcing the symmetries of the Riemann tensor,

see bottom row of Fig. (5.4), where the Bianchi identity is enforced andBT
vanishes and theB2

error

decreases. This additional step does not make a difference in the slicing method or the Bianchi VI

case, i.e. symmetries of the Riemann or Ricci tensors are not limiting issues in EBWeyl or when the

magnetic part is small with respect to the electric part.

5.3.2.4 Performance comparison

The results of the two methods are comparable in the test metric, Bianchi VI and Bianchi IV plane

wave cases in Fig. (5.3, 5.4, 5.5). In some of the tests, as can be seen in the test metric case, middle

right plots of Fig. (5.3), the geometric code computes
(4)R more accurately than EBWeyl computes
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Figure 5.6: Computing time of both codes applied to data boxes of N
3
grid points at a given time,

with both 4th and 6th order FD and Riemann symmetry enforcing.

(3)R. However, in other tests EBWeyl is more accurate, as can be seen in E2
and B2

of the same

spacetime. Fig. (5.5), where B2
and E2

results are compared, as they should be equal for the plane

wave case, shows that the geometrical code is more accurate. To understand this, see bottom right

plots of Fig. (5.3) where the slicing error in E2
is larger than the geometrical errors in E2

and B2
,

making the geometrical code more accurate with theE2
andB2

comparison in Fig. (5.5). While the

geometrical code may occasionally be more accurate than EBWeyl, the latter is never an order of

magnitude worse than the geometrical one. A clear preference can not be established by just using

these more complicated scenarios.

The Bianchi II and Λ-Szekeres cases in Fig. (5.3) clearly show that the slicing method is more

accurate than the geometrical one. The geometrical code can be found to be more than one order of

magnitude worse than the slicing one on a number of occasions. This is because the latter requires

temporal FD which introduces more truncation errors. Those additional computational steps also

significantly increase the computing time of the geometrical method as seen in Fig. (5.6). To manage

time derivatives over the entire data box, data files are appropriately written and read making the

computing time curve bumpy. Additionally, the higher order FD needs more time steps, this then

significantly increases computing time for the geometrical code, but not for EBWeyl. For consistent

accuracy, computational cost and ease of independently treating simulation time steps, the slicing

method is therefore preferred here (Munoz, 2022).

5.4 Summary
Motivated by the need to characterise NR results of cosmological simulations in a gauge-invariant

fashion, here we have presented two codes to compute Eαβ andBαβ and the Ricci scalars
(4)R and

(3)R, along with further scalar invariants that can be used to invariantly characterise any spacetime

and to classify it according to the Petrov type, see Section 2.5.3. The first method is geometrical

as it computes these quantities in full from the metric, and the second, which we dub slicing, uses



5.4. SUMMARY 89

the 3+1 decomposition of the metric. Special care has been taken to not introduce the constraint

equations into the expressions in the slicing method, see Section 3.5. However, for the electric part

of the Weyl tensor, Einstein’s equations were necessary, therefore, this could potentially be a caveat

when applying this method to simulation results, possibly introducing extra numerical error.

A post-processing Python code has been developed for each method, they have been applied

to the Λ-Szekeres spacetime in Section 5.3.1. We have shown that where β+ is strongest we find

negative curvature and a strong electric part, then when it is small the curvature tends to flatness

and Eαβ is weak. As is well known, the magnetic part vanishes and the spacetime is of Petrov type

D, everywhere but when β+ = 0 where it is of Petrov type O (Meures and Bruni, 2011). We have

verified this with our codes to demonstrate their applicability.

We have tested our two codes on the five different spacetimes introduced in Section 5.2. The

results, in Section 5.3.2, show the presence of truncation, floating point and cancellation error de-

pending on the spatial and temporal distribution of the metric. In the most challenging cases, we

make higher-order FD schemes and Riemann symmetry enforcing available. With all best efforts

introduced, in the most difficult case, we can report a relative error of 10−4
for a box with 1003

points, and the relative error continues to decrease for higher resolution. But one should keep in

mind that the numerical error we find depends on the considered case, in less challenging scenarios

we find smaller errors. Then, when applying these codes to simulation results, one would also need

to consider the accuracy of the simulation results. Should a 4th order Runge Kutta scheme be used

to evolve a simulation, then one could not expect better than 4th order convergence on variables

computed with these post-processing codes (even if the 6th order FD scheme is used).

For three of the spacetimes we considered, our tests show that both methods have comparable

performance, however in the two other ones, the slicing method outperforms the geometrical one.

Then when considering the computing time, the slicing method drastically outperforms the geomet-

rical one. This is because of the additional FD scheme required by the geometrical method. On the

basis of its capacities demonstrated here, we have made the slicing post-processing code EBWeyl

available in github (Munoz, 2022); it can be used on any spacetime in any gauge.

While thesemethods and codeswere developed for post-processingNR simulations, in this chap-

ter they were solely tested on exact solutions. The applicability and usefulness of our EBWeyl code

(Munoz, 2022) in the context of cosmological simulations is shown in detail in Munoz and Bruni

(2023b), see Section 6.3.5 and Section 6.3.6, where we have used it to characterise the evolution of

cosmic structures and a quasi-spherical collapse, also introducing a novel effective Petrov classifica-

tion of different regions at different times. Finally, we remark that the use of EBWeyl is not limited

to NR simulations, as it can be applied to any spacetime obtained numerically where the spacetime

metric and extrinsic curvature are available.





6 - Quasi-spherical collapse

The goal of this chapter is to study the nonlinear evolution of the basic elements of the cosmic web,

namely over-densities, filaments and voids, extending the analysis in Bentivegna and Bruni (2016),

where a 3-dimensional sinusoidal inhomogeneity in the matter density was evolved with varying

amplitudes, and backreaction was found to be measurable, but extremely small. This 3-dimensional

structure effectively represents a basic cosmic web, a lattice of over-densities (OD) periodically con-

nected through the boundary conditions by filaments and separated by under-dense (UD) voids; also

used in Bentivegna and Bruni (2016), Macpherson, Lasky, and Price (2017), East, Wojtak, and Abel

(2018), Aurrekoetxea, Clough, Flauger, et al. (2020), Saga, Taruya, and Colombi (2022), and Magnall

et al. (2023) This is referred to as quasi-spherical since it approximates spherical symmetry close to

the peak of the OD; meaning its evolution can reliably be compared to the Top-Hat model (Gunn

and Gott, 1972; Sahni and Coles, 1995; Monaco, 1997; Peacock, 1999; Mo, Bosch, and White, 2010;

Vittorio, 2018).

Here we evolve this 3-dimensional structure in full GR, describing CDM as a pressureless fluid

with the same evolution codes in Einstein Toolkit (Löffler et al., 2012; Bentivegna, 2017; Brandt et

al., 2020) as Bentivegna and Bruni (2016). However, we take a different approach to set the initial

conditions, implementing the 3-dimensional sinusoidal structure in the comoving curvature pertur-

bation Rc, originally introduced in Lyth (1985). This is convenient because Rc is gauge-invariant

and time-independent at first order in perturbation theory and in the long wavelength approxima-

tion (Bruni, Hidalgo, and Wands, 2014), and it is commonly used to model inhomogeneities in the

early universe, e.g. in inflationary models, see Malik and Wands (2009) and Refs. therein. Starting

from the scalar potentialRc, following the method described in Bruni, Hidalgo, Meures, et al. (2014)

we the synchronous comoving gauge and set the initial spatial metric γij and the extrinsic curvature

Kij as if these were only perturbed with first-order scalars, but then we treat them exactly, with no

approximations, and use γij to compute the 3-Ricci scalar
(3)R in full nonlinearity, and this

(3)R

andKij are used in the Hamiltonian constraint to construct the matter density distribution ρ{u}, so

that the Hamiltonian constraint is automatically satisfied on the initial slice. By the same token, the

momentum constraint is satisfied at first-perturbative order (Bruni, Hidalgo, Meures, et al., 2014).

This novel method to set up initial conditions for NR cosmological simulations has two advan-

tages: i) it directly implements a purely growing mode, the only one that should exist in the matter-

dominated era and ii) it can be used to directly implement initial curvature perturbations predicted

by inflationary models (Malik and Wands, 2009; Bruni, Hidalgo, Meures, et al., 2014; Bruni, Hi-

dalgo, and Wands, 2014). After summarising the necessary ΛCDM perturbations results (Bruni, Hi-

dalgo, Meures, et al., 2014) in Section 6.1.2 our method of setting up nonlinear initial conditions and

how they are implemented is described in Section 6.1.3. These depend on three parameters, namely
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the amplitude, wavelength, and initial redshift, whose impact on the initial inhomogeneities is ex-

plored in Section 6.1.3.2. The Fortran thorn ICPertFLRW (Munoz, 2023a) adapted to the Cactus

code (Goodale et al., 2003) was developed to implement these initial conditions in Einstein Toolkit

(Brandt et al., 2020); it is described in Section 6.2.

We describe the evolution at the centre of the OD and UD in Section 6.3.1 and, to explain this

evolution, we consider the contributions to the Raychaudhuri equation in Section 6.3.2. We also look

at how the turn-around (TA) boundary evolves, describing the infalling domain, in Section 6.3.3, and

we consider the evolution of a domain contained within a comoving sphere of various comoving

radii in Section 6.3.4.

Furthermore, our simulations are in full GR, hence we also consider the gravitational description

of our 3-dimensional structure using the Weyl tensor. The electric and magnetic parts of the Weyl

tensor (Matte, 1953; Hawking, 1966; Maartens and Bassett, 1998; Ellis, 2009; Owen et al., 2011;

Ellis, Maartens, and MacCallum, 2012; Bentivegna, Clifton, et al., 2018; Heinesen and Macpher-

son, 2022) are computed in post-processing with EBWeyl, the code presented in Chapter 5 (Munoz,

2022; Munoz and Bruni, 2023a), we then characterise the gravito-electromagnetic evolution of the

3-dimensional structure in Section 6.3.5. Additionally, the same code can be used to compute the in-

variants needed to classify the spacetime according to the Petrov types (Jordan et al., 1964; Stephani

et al., 2003). The 3-dimensional structure in our fully nonlinear simulations is general enough to

find in Section 6.3.6 that the spacetime is of Petrov type I, as expected. We then introduce a novel

method for the dynamical Petrov classification of different regions in space by using thresholds: this

enables us to define a leading-order Petrov type in each region and at different times. This invariant-

basedmethod contrasts the null vector approach (Owen, 2010), and has similaritieswith (Campanelli,

Lousto, and Zlochower, 2009) that are both applied to spacetimes with black holes. In addition, we

also show how this Petrov type depends on the shape of the inhomogeneity.

6.1 Initial conditions

We will be using NR for cosmological simulations of the evolution of inhomogeneities, where the

matter consists of CDM represented as irrotational dust and is evolved in the matter-dominated era

in the synchronous comoving gauge. With these choices, the lapse α = 1, the shift βi = 0, the fluid

4-velocity uµ is the same as the normal to the hypersurface uµ = nµ = {1, 0, 0, 0} and the

expansion tensorΘij is the same as the extrinsic curvatureΘij = −Kij =
1
2 γ̇ij (with a sign change)

and is purely spatial. The evolution equations of such a set-up are described in Section 2.4.4, in this

section we describe their starting point.

To implement the initial conditions of these simulations we start with cosmological perturbation

theory where the background is perturbed at first order with the comoving curvature perturbation

Rc in Section 6.1.2. Background quantities
1
are indicated with an overhead bar and can either be

based on the EdS model see Section 4.1.4.4 or theΛCDMmodel see Section 4.1.4.5. First-order per-

turbations are indicated with a (1) superscript and during the matter-dominated era only scalar per-

turbations are relevant for structure formation, which are expressed in terms ofRc in Section 6.1.2.

1

We emphasise that our simulations do not assume an overall ΛCDM or EdS expansion of the box domain, as in

Newtonian N-body simulations, rather we use these models for the initial conditions’ background and for comparison.



6.1. INITIAL CONDITIONS 93

Introducing inhomogeneities with Rc comes from inflationary motivations that are described in

Section 6.1.1.

With those initial conditions, Einstein’s field equations are satisfied at first order but in Sec-

tion 6.1.3 we shall satisfy them in full nonlinearity, definingRc and discussing how the initial ampli-

tude and redshift of the inhomogeneities, together with the ratio of their length-scale to that of the

Hubble scale, determine the change from linearity to non-linearity of the initial conditions, and the

long-wavelength regime dominated by the spatial curvature perturbations.

6.1.1 Motivations

In the standard scenario for the generation of structure formation in cosmology, the seeds are pro-

duced at large scales, inside the horizon during inflation, then exit; these scales then re-enter the

horizon after the accelerated phase ceases and the seeds can grow. More precisely, inflation pro-

duces an almost scale-invariant spectrum of fluctuations. Starting from Bardeen, Steinhardt, and

Turner (1983), it is then customary to introduce a variable that has the advantage of remaining con-

stant while the perturbation scale is much larger than the Hubble scale, so that one can easily relate

perturbations produced during inflation to when the same perturbations evolve in the radiation and

matter eras, eventually re-entering the Hubble horizon. One such variable is the so-called curvature

perturbation on uniform density hypersurfaces ζ (Malik andWands, 2009). This is a metric variable,

with the line element written as

ds2 = −dτ2 + a2(τ)e2ζ(τ, x
i)γ̃ijdx

idxj , (6.1)

where det(γ̃ij) = 1, see Malik and Wands (2009), Langlois and Vernizzi (2010), Bruni, Hidalgo,

Meures, et al. (2014), and Bruni, Hidalgo, andWands (2014) and Refs. therein. This nonlinear ζ is also

used to model the birth of primordial black holes, see Shibata and Sasaki (1999) and Musco (2019)

and Refs. therein, c.f. (Clough, Lim, et al., 2017; Aurrekoetxea, Clough, and Lim, 2022; Corman and

East, 2022) for different approaches in NR. In single-field slow-roll inflation, the primordial ζ is an

almost Gaussian random field (Acquaviva et al., 2003; Maldacena, 2003). In practice, therefore, non-

Gaussianities are commonly modelled with an expansion of ζ in terms of its first perturbative order

ζ(1), parameterised by fNL and higher order parameters, ζ = ζ(1) + fNLζ
(1)2 + · · ·. For reviews

see Malik and Wands (2009) and Langlois and Vernizzi (2010), where a fully nonlinear conserved

quantity related to ζ(1) andRc is also introduced.

At large scales (in the long-wavelength approximation) and at leading order ζ is constant and

γ̃kj ≃ δkj , so that in this approximation the spatial metric in Eq. (6.1) is conformally flat, and the 3-

Ricci scalar
(3)R is then given by a beautifully simple expression in terms of ζ and its gradients (Bruni,

Hidalgo, and Wands, 2014). We remark that
(3)R vanishes in any flat FLRW background, therefore

according to the Stewart-Walker lemma (Stewart and Walker, 1974) cf. (Ellis and Bruni, 1989; Bruni,

Dunsby, and Ellis, 1992; Dunsby, Bruni, and Ellis, 1992), its first perturbative order
(3)R(1)

as well

as ζ(1) are gauge-invariant, see Section 4.2.6.1 for a general discussion on invariant quantities in

cosmology. It actually turns out (Bruni, Hidalgo, and Wands, 2014) that at leading order in this

large-scales approximation, the equations for the inhomogeneities are formally exactly the same as

those for first-order perturbations (Bruni, Hidalgo, Meures, et al., 2014). Relating this to comoving

coordinates, at first perturbative order
(3)R(1)

simplifies to Eq. (4.50) above, and ζ(1) = Rc at large
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scales, where δ(1) is suppressed, otherwise when δ(1) is non-negligible

ζ(1) =
1

3
δ(1) −Rc. (6.2)

δ(1) represents the gauge-invariant first-order density perturbation on comoving hypersurfaces,

therefore automatically coinciding with the density contrast δ = ρ{u}/ρ̄ − 1 in the synchronous-

comoving gauge we use here, andRc known as the comoving curvature perturbation (Lyth, 1985) is

the first-order gauge-invariant scalar perturbation potential for
(3)R(1)

, the first-order perturbation

of the 3-Ricci scalar.

Motivated by this standardmodelling of primordial inhomogeneities, we now set up fully nonlin-

ear initial conditions using the scalar curvature variableRc. The advantage of usingRc as a starting

point is twofold: i) it is directly related to ζ(1) by Eq. (6.2), and it coincides with it at large scales,

where δ(1) is suppressed with respect to Rc, see Eq. (6.4) below; hence our set up for initial con-

dition can be used to directly implement perturbation predictions from inflationary models; ii) for
dust, Rc is a conserved quantity at all times and for all scales, which can be used to implement all

first-order scalar perturbations variables for the growing mode.

6.1.2 ΛCDM first-order perturbations

In the following, we shall summarise the approach to perturbations in the synchronous-comoving

gauge used in Bruni, Hidalgo, Meures, et al. (2014), based onRc, to use this as a starting point for our

nonlinear initial condition set-up. A parallel nonlinear long-wavelength approximation for inhomo-

geneities on large scales is used in Bruni, Hidalgo, and Wands (2014). With only scalar perturbations

in the synchronous-comoving gauge, the corresponding spacetime, curvature, matter and evolution

equations are presented in Section 4.2.4 with the specific evolution equations for δ(1) discussed in

Section 4.3.1. Here we shall express the first-order scalar perturbations δ(1), ψ(1)
and χ(1)

as a func-

tion ofRc.

Then, the starting point (Bruni, Hidalgo, Meures, et al., 2014) is to consider the first order evolu-

tion equation of the density contrast Eq. (4.56) where the curvature term is provided byRc Eq. (4.50)

4Hδ̇(1) + 6H2Ωmδ
(1) = 4∇2Rc. (6.3)

Only considering the particular solution, the so-called growing mode sourced by the curvature,

Eq. (6.3) can be rearranged by introducing the growth factor f1 = d ln δ/d ln a ≃ Ω
6/11
m (Peebles,

1980; Wang and Steinhardt, 1998), to express δ(1) as a function ofRc

δ(1) =
∇2Rc

FH2
, (6.4)

with F = f1 +
3
2Ωm; in the early-matter era, when the EdS model is a good approximation with

Ωm = 1 and f1 = 1 then δ(1) ∝ a. With Eq. (6.4), ψ(1)
and χ(1)

can be expressed by using the

deformation ϑ(1). In the synchronous comoving gauge ϑ(1) is expressed with metric perturbations

as ϑ(1) = −3ψ̇(1)
Eq. (4.39). Likewise, the first order continuity equation is δ̇(1) = −ϑ(1) Eq. (4.42).

Then, putting these two expressions together δ̇(1) = 3ψ̇(1)
, and so ψ(1)

can be expressed as a func-

tion of Rc using Eq. (6.4), where the integration constant is identified to be Rc from Eq. (4.50).

Furthermore, ψ(1)
can be introduced into Eq. (4.50) to provide χ(1)

, such that

ψ(1) =
1

3
δ(1) +Rc, and χ(1) = − 2Rc

a2FH2
. (6.5)
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Therefore, introducing these into Eq. (4.35), the spatial metric perturbedwith a purely growingmode

expressed up to first order as a function ofRc is

γij = γ̄ij + γ
(1)
ij = a2(1− 2Rc)δij −

2

FH2
∂i∂jRc. (6.6)

Introducing Eq. (6.4) into Eq. (6.3) shows that
d
dτ (1/FH

2) = (2 + f1)/FH andRc is constant in

time (Bruni, Hidalgo, Meures, et al., 2014), so that
(3)R(1) ∝ a−2

, therefore the extrinsic curvature

Kij = −Θij = −1
2 γ̇ij is

Kij = K̄ij +K
(1)
ij = −a2H(1− 2Rc)δij +

(2 + f1)

FH
∂i∂jRc. (6.7)

Kij can be separated into its trace K and traceless Aij part Eq. (3.14) such that in this gauge both

are related to the fluid kinematical quantities. Aij is associated with the shear tensor of the matter

flow σij ,Aij = −σij , at first order

A
(1)
ij = −σ(1)ij =

f1
FH

Å
∂i∂j −

1

3
δijδ

kl∂k∂l

ã
Rc. (6.8)

We remark that in the background σ̄ij = 0, hence the shear is a first-order gauge invariant quantity,

following Section 4.2.6.2 (Hawking, 1966), however it is frame-dependent so this is specific to the

fluid frame. Then,K is associated with the expansion scalarΘ:

K = −Θ = K̄ − ϑ, with K̄ = −3H, and K(1) = −ϑ(1) = f1Hδ
(1). (6.9)

In this gauge the momentum density q{u}i = 0, this means that the momentum constraint Eq. (3.30)

takes the formD
{u}
i (Ki

j) −D
{u}
j (K) = 0. It was shown in Section 4.2.4 (Bruni, Hidalgo, Meures,

et al., 2014) that at first order this expression reduces to ∂j(Ṙc) = 0, and for dust Ṙc = 0 at all times

at all scales at first order, then at this order the momentum constraint is automatically satisfied.

As δ ≡ ρ{u}/ρ̄ − 1 is the density contrast for the matter field, we can define similar quantities

for the contrast of the volume element γ and expansionK :

δγ ≡ γ/γ̄ − 1, and δK ≡ K/K̄ − 1. (6.10)

Given Eq. (4.36), Eq. (6.5), and Eq. (6.9) these can be expressed at first order as:

δγ(1) = −6

Å
1

3
δ(1) +Rc

ã
and δK(1) = −f1δ

(1)

3
. (6.11)

6.1.3 Fully nonlinear initial conditions

6.1.3.1 Ansatz & implementation

To set up initial conditions, we have developed a new thorn ICPertFLRW (Munoz, 2023a). The start-

ing ansatz is that the metric and the extrinsic curvature are precisely given by their expressions

Eq. (6.6) and Eq. (6.7), but should otherwise be thought of as quantities to be used in full non-linearity,

generated by the scalar potentialRc. From γij andKij , we then compute the 3-Ricci scalar
(3)R, the

traceK , and the magnitudeKijKij . Given our ansatz, based onRc and its derivatives, these quan-

tities are computed analytically by ICPertFLRW (Munoz, 2023a). We can then use the Hamiltonian

constraint to compute the initial matter density

ρ{u} =
1

2κ

Ä
(3)R+K2 −KijKji − 2Λ

ä
=

1

2κ

Å
(3)R+

2

3
K2 − 2A2 − 2Λ

ã
, (6.12)
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with A2 = AijAji/2. We emphasise that in setting up initial conditions in full non-linearity, we

introduce vector and tensor modes, in particular in the shear σij = −Aij that sources the magnetic

part of theWeyl tensorB
{u}
ij : this is non-zero, as it will be shown in Section 6.3.5, while at first order

B
{u}(1)
ij = 0 (in all gauges) for the purely scalar perturbation of the previous section.

The main advantage of using the Hamiltonian constraint to set up the matter density ρ{u} initial

distribution in Eq. (6.12) is twofold: i) its algebraic use makes the constraint automatically satisfied

in the initial time step, ii) in order to set up the initial conditions we don’t need to solve an elliptic

equation, as is the case if the starting point is ρ{u}, as in Bentivegna and Bruni (2016). The Hamilto-

nian constraint was also used to non-linearly provide ρ{u} in Giblin, Mertens, and Starkman (2016),

although not usingRc. Note that we could have set up initial conditions exclusively using first-order

quantities: we emphasise the benefit of our fully nonlinear method in Appendix C, where we show

that even starting from small initial perturbations nonlinear effects are important in GR.

All that remains is to define the comoving curvature perturbation Rc. A fully realistic initial

set-up should consist of generating a spatial realisation of Rc starting from a Gaussian (or quasi-

Gaussian) scale-invariant spectrum, but this is beyond our current scope. Instead, we chose a single

3-dimensional sinusoidal mode:

Rc = Apert

Å
sin (xkpert) + sin (ykpert) + sin (zkpert)

ã
, (6.13)

with kpert = 2π/λpert and the simulation box spanning x, y, z ∈ [−λpert/2, λpert/2]. λpert is
the comoving wavelength at the reference redshift a(zR) = 1, such that the physical wavelength is

retrieved as λphy = aλpert. We work with a(zR = 0) = 1 so that the comoving wavelength cor-

responds to a physical wavelength today, as defined in a reference ΛCDM FLRW spacetime, which

would be the background in a perturbative setting. The impact of λpert on the initial inhomogeneity

is discussed in Section 6.1.3.2 and in the simulations of this chapter λpert is chosen such that the ini-

tial physical scale is super-horizon λphy, IN = 4/HIN , as we are interested in large-scale relativistic

effects and we would like to compare to the simulations of (Bentivegna and Bruni, 2016). Further-

more, if a spatial region of a given comoving scale contains an OD that grows non-linearly, then its

physical size today
2
will eventually be much smaller than the corresponding FLRW physical scale.

We then have a simulation box containing a “compensated inhomogeneity", i.e. one as that in

Eq. (6.13), such that its linear average vanishes, while its nonlinear average does not. Note that aver-

ages discussed here are proper domain averages obtained by integrating with the determinant of the

spatial metric, see Appendix D. We emphasise that in general with our setup, averaged quantities do

not exactly coincide with those of the FLRWmodel: even in the initial conditions, the non-linearity

of GR implies that the nonlinear average of Eq. (6.13) is non-zero. This can be intuitively seen for

the initial nonlinear density contrast in Fig. (6.2) where δOD ̸= −δUD and other quantities as seen

in Fig. (6.5).

The spatial distribution Eq. (6.13) allows us to focus on some specific relativistic features that

emerge clearly in this simple set-up, features that would probably be harder to characterise in a

more realistic scenario. Specifically, it will enable us to study the growth of an ODwhose centre is at

x = y = z = −λpert/4 and an UD whose centre is at x = y = z = λpert/4. It produces the initial

δ presented in Fig. (6.1, 6.2, 6.3). Fig. (6.1) shows the initial δ distribution in the simulation box with

2

The size agreed by a network of comoving observers with synchronised clocks.
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Figure 6.1: Initial distribution at zIN = 302.5 of
the density contrast δ in the simulation box, for a

ΛCDM universe. The x, y, and z > −0.25λpert
region is removed exposing the centre of the

over-density at x = y = z = −0.25λpert, where
δIN, OD = 0.03. The full lines go through the

vertices and dash-dotted lines through the centre

of the edges of an octahedron centred at the over-

density.
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Rphy [Mpc]

0.03

0.02
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Figure 6.2: Initial radial profile at zIN = 302.5
of the initial density contrast δ starting from the

centre of the over-density to its minimum in

three different directions, towards the vertices,

edges, and faces of the octahedral distribution in

Eq. (6.13) plotted against the proper radius from

the over-dense peak. Error bars, when visible, are

indicated as shaded regions.

Figure 6.3: Isosurface for δ = 0.01 in the initial distribution of the matter density contrast at zIN =
302.5. The two different panels show different points of view. The periodic boundary conditions

insure that this distribution is a lattice of over-densities connected by filaments and separated by

voids.

the centre of the OD exposed, while Fig. (6.3) shows the isosurface where δ = 0.01. These figures

emphasise the non-spherical shape of this distribution. Indeed, the equation

∑3
i=1 sin(x

ikpert) = 1

parameterises an octahedron, so when close to the peak of the OD, spherical symmetry is approxi-

mated, further out an octahedron geometry creates filamentary-like structures periodically connect-

ing each OD peak. We satisfy the boundary conditions by using periodic boundaries. However, we

emphasise that the non-spherical nature of the distribution is not due to the boundary conditions in

the simulation (Rácz, Szapudi, et al., 2021), but due to the choice of the initial distribution.

Centring an octahedron around the OD we identify three main directions of interest from the

centre of the OD: along the vertices, the centre of the edges and the centre of the faces. A half period
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of δ along each direction is presented in Fig. (6.2). Close to the peak of the OD, the three direc-

tions overlap, highlighting the proximity to spherical symmetry. Beyond that, we see the axis going

through the vertices never goes through anUD region, since this direction goes through the filaments

(full white lines in Fig. (6.1), and full blue lines in Fig. (6.2)), and the axis going through the centre

of the faces goes through the centre of the UD (not in Fig. (6.1), and green dashed lines in Fig. (6.2)).

Although the spatial distribution that we derive from Eq. (6.13) is unrealistic, it contains the three

basic elements of the cosmic web, namely ODs, filaments, and voids and as such, can be viewed as

a skeleton description of large-scale structures and it is more realistic than the spherical Top-Hat

model.

6.1.3.2 Nonlinear & long-wavelength regimes

The above initial distribution lets us freely choose the amplitude and wavelength of the inhomo-

geneity, Apert and λpert, as well as the initial redshift zIN . The impact of these parameters on the

initial amplitude of δγ, δK , δ and (3)R at the peak of the OD is presented in Fig. (6.4). The thin lines

are the first-order quantities from Eq. (4.50, 6.4, 6.11) whereas the thick lines are the fully nonlinear

quantities obtained from Eq. (6.6, 6.7, 6.10, 6.12). Each panel shows their dependencies on Apert,

zIN and λpert while keeping the other two parameters constant (with their values listed in the box).

In the left panel, we consider inhomogeneities on a scale well inside the Hubble horizon at that

time. This shows that the inhomogeneities are proportional toApert when it is small enough. How-

ever, when Apert is large, there is a separation between the thick and thin lines: this identifies the

emergence of the nonlinear regime. This is also visible in the other panels for low redshift and small

scales, domains where local dynamics become dominant. Otherwise, inhomogeneities in the linear

regime are given by the Laplacian of Rc, Eq. (6.4), and as such, they are proportional to λ−2
pert for

the right panel and proportional to a(τ) in the middle panel, except
(3)R ∝ a−2(τ). In the middle

panel, at low redshift, linear curves are no longer straight because in ΛCDM we depart from the

δ-dominated era.

We emphasise that the inhomogeneity in the proper volume at the OD δγIN, OD has a peculiar

dependence on Apert, zIN and λpert even in the linear regime, as clearly visible in the middle and

right panels in Fig. (6.4). To understand this, consider Eq. (6.11), which shows that δγ(1) is com-

posed of two terms: Rc and δ
(1)

. Given the Rc sinusoidal distribution Eq. (6.13), the Laplacian in

δ(1), Eq. (6.4), creates a sign difference between these two terms. δγ then has Rc-dominated and

δ-dominated regimes, and the transition is highlighted by a sign change (the downward spike in the

log-plot Fig. (6.4)). Rc and δ
(1)

are both proportional to Apert, so that their relative weight in the

left panel is constant; in practice, for the given zIN and λpert in this panel (which is sub-horizon),

δγIN, OD is δ-dominated. Considering now the middle and right panel in Fig. (6.4), zIN and λpert

impact the amplitude of δ(1), while Apert, the amplitude of Rc, is constant in these panels. Then,

when |Rc, OD| > |δ(1)OD|, in the Rc-dominated regime (at large zIN and λpert) δγIN, OD shows a

plateau, while δγIN, OD ∝ a(τ)λ−2
pert in the δ-dominated regime, when |Rc, OD| < |δ(1)OD|.

Intuitively, in an OD region (δ > 0 and Rc < 0), you would expect the volume to be smaller

than the background average, meaning that δγ is negative, as that region of space is more compact.

However, in theRc-dominated regime, |Rc, OD| > |δOD|, the volume element is larger than that of
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Figure 6.4: Amplitude of initial (IN) δγ, δK , δ and (3)R in the centre of the over-density (OD) as

a function of Apert, zIN and λpert presented in each panel left to right. While each is varied the

other parameters are kept constant as presented in the top box. The thinner lines correspond to

the first-order expressions of these quantities, while the thicker lines correspond to their nonlinear

expressions, thus the separation of these two lines emphasises non-linearity. The vertical dashed

black lines indicate the instance where the physical wavelength corresponds to the Hubble distance

λphy = c/H hence separating sub and super Hubble horizon regimes. Left panel: for the given
initial redshift zIN and perturbation wavelength λpert, non-linearities start to be relevant when

Apert > 10−4
. Middle panel: for the given Apert and λpert non-linearities would only be rele-

vant for zIN ≲ 50. The first-order thin lines become curved when Λ becomes relevant. The proper

volume perturbation δγIN, OD shows a plateau during theRc-dominated regime, see Eq. (6.11) and

Eq. (6.14), when δγIN, OD > 0, and its sign changes in the transition to the δ-dominated regime

δγIN, OD < 0. Right panel: for the given Apert and zIN non-linearities are only relevant on scales

smaller than λpert ≲ few × 10h−1
Mpc. The Rc-dominated regime is again identifiable with the

plateau in δγIN, OD on large scales.

the background in the OD, δγOD > 0. This counter-intuitive behaviour is observed when:

λphy >
2π

H
√
3F

. (6.14)

ThisRc-dominated regime then occurs when the wavelength is much bigger than the Hubble hori-

zon (> c/H ), so we also call it the long-wavelength regime. This phenomenon has previously been

discussed (Abramo, Brandenberger, and Mukhanov, 1997; Mukhanov, Abramo, and Brandenberger,

1997; Brandenberger, 2002; Geshnizjani and Brandenberger, 2002), where long wavelength modes

were proposed to act as a form of cosmological constant.

6.2 Code description and Numerical implementation
In NR (Gourgoulhon, 2007; Alcubierre, 2008; Baumgarte and Shapiro, 2010; Shibata, 2015), Ein-

stein’s field equations are separated into constraint equations Eq. (3.29, 3.30) and evolution equations

Eq. (3.32, 3.31). So to run simulations, an initial spacetime andmatter distribution satisfying the con-

straints is set, then evolved according to the evolution equations, and the constraint equations are

used to monitor accuracy throughout the evolution. While the initial quantities can be set using the
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ADMformalism (York, 1979; Arnowitt, Deser, andMisner, 2008), the evolution equations take a form

that is not well-posed; this will then cause stability issues in the simulation. These quantities need to

be transformed to a formulation with well-posed evolution equations, such as BSSNOK (Nakamura,

Oohara, and Kojima, 1987; Shibata and Nakamura, 1995; Baumgarte and Shapiro, 1998) see Sec-

tion 3.3.3.1. The quantities associated with the fluid that are sourcing Einstein’s evolution equations

are called the primitive hydrodynamics variables; these are evolved with the conservation equations

∇µT
µν = 0. Typically these variables are also transformed, in this case, to the corresponding con-

served quantities see e.g.(Font, 2003; Alcubierre, 2008; Bentivegna, 2017) and Section 3.3.1, such that

high-resolution shock-capturing numerical schemes can be applied to the evolution equations. This

is particularly relevant to turbulent scenarios, and so are not applied here.

We use the open-source code Einstein Toolkit (n.d.) (Löffler et al., 2012; Brandt et al., 2020) for

our simulations. This code is a compilation of multiple modules, named thorns, that communicate

within the Cactus framework (Goodale et al., 2003). These thorns have different tasks and capacities

and may be written in C++ or Fortran adapted to Cactus code or in Mathematica or Python to then

be converted to C++ Cactus code by Kranc (Husa, Hinder, and Lechner, 2006) or NRPy+ (Ruchlin,

Etienne, and Baumgarte, 2018). To manage this infrastructure, the simfactory job manager (Thomas

and Schnetter, 2010) is used for compilation and running jobs.

The initial distributions for our simulations are calculated by our new thorn ICPertFLRW

(Munoz, 2023a), developed in Fortran and adapted to Cactus code for this project. It defines the

initial ADM variables: γij Eq. (6.6), Kij Eq. (6.7), with α = 1, βi = 0 and ρ{u} given by Eq. (6.12).

As explained in Section 6.1.3, defining ρ{u} using the Hamiltonian constraint implies that this is ini-

tially automatically satisfied, while the momentum constraint is initially satisfied at first-order, see

Appendix C showing that while initial conditions remain linear his is not an issue. ICPertFLRW then

provides the ADM quantities to the ADMBase (Löffler et al., 2012) and CT_Dust thorns (Bentivegna,

2017). The variables are provided on a Cartesian grid, supported by Carpet (Schnetter, Hawley, and

Hawke, 2004); this has mesh refinement capacities, although we have not used these in this chapter.

To evolve the geometrical variables, they are transformed into the BSSNOK formalism (Naka-

mura, Oohara, and Kojima, 1987; Shibata and Nakamura, 1995; Baumgarte and Shapiro, 1998) and

the subsequent variables are evolved by the ML_BSSN thorn (Brown et al., 2009). The primitive hydro-

dynamics variables are transformed to their conserved form and evolved by CT_Dust (Bentivegna,

2017) without shock-capturing schemes, which differs from the usual thorn GRHydro (Mösta et al.,

2013) since here we exclusively use dust. This system of equations is integrated with the 4th order

Runge-Kutta scheme provided by the MoL thorn (Löffler et al., 2012) and described in Section 3.6.2.

The coupling between the metric and the matter field is ensured by the TmunuBase thorn (Löffler

et al., 2012).

The simulations were run on the Sciama HPC Cluster (SCIAMA n.d.) with box sizes of 323, 643

and 1283 data points. Sciama’s job manager Slurm (Slurm n.d.) was made to communicate with sim-

factory (Thomas and Schnetter, 2010).

The simulation outputs are τ , γij , Kij and ρ
{u}

these have been analysed with data process-

ing codes developed exclusively for this project, notably EBWeyl see Chapter 5 (Munoz, 2022) and

sphereint see Appendix D (Munoz, 2023b).
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6.3 Simulation results

In this section, we describe two simulations with the initial conditions of Section 6.1.3, one with

Λ and one without. Both are compared to the spherical collapse model in Section 6.3.1, and the

simulationwithΛ is then describedmore in the following subsections. We fix some of the parameters

as in Bentivegna and Bruni (2016), namely λphy, IN = 4/HIN = 6Mpc and δIN, OD = 3 × 10−2
,

where we assume H0 = ch/2997.9 Mpc
−1

, with c = 1 and h = 0.6737 (Planck Collaboration,

2020). As such the simulation without Λ starts at zIN = 205.4 with λpert = 1206Mpc and the

simulation with Λ at zIN = 302.5 with λpert = 1821Mpc. The initial δOD is chosen in order for

the OD to collapse at 2 < z < 5.

These initial conditions evolve until the OD collapses on itself; in practice, the simulation

‘crashes’ as NaN (not a number) values appear. This is due to our fluid description of matter and

use of synchronous-comoving coordinates, while such a structure would otherwise be expected to

relax into a virialised dark matter halo. To go beyond the limitations of the synchronous gauge, with

other gauge choices, such as the 1+log or harmonic gauges, the lapse would decrease during the con-

traction, gradually slowing down the evolution of the centre of the OD, freezing it such that it would

not collapse while the rest of the cosmic web would freely evolve. Therefore those gauges, partic-

ularly the harmonic gauge, are common choices for cosmological simulations in NR (East, Wojtak,

and Abel, 2018; Giblin, Mertens, Starkman, and Tian, 2019b; Macpherson, 2019), and will be con-

sidered for future work. One may also consider gauge choices such that the shift is no longer zero.

However, whatever the gauge, so long as one uses the fluid description, the virialisation process can’t

be described; one would need to consider a different method of implementing matter (East, Wojtak,

and Pretorius, 2019; Magnall et al., 2023). Here it is precisely the collapse of the structure in the fluid

frame that is of interest, hence the use of the synchronous-comoving gauge (Bentivegna and Bruni,

2016), which helps in the comparison with the Top-Hat model.

6.3.1 Over-density peak evolution & Top-Hat model

The evolution of the inhomogeneities at the OD peak and at the UD’s bottom is presented in Fig. (6.5)

for the ΛCDM case. For the top row, from left to right, we show the density, volume, and expansion

contrasts δ, δγ, and δK in Eq. (6.10). The dashed lines are the first-order expectations from Eq. (6.4),

Eq. (6.11) and Eq. (4.50) while the full lines are the results of the simulation. The separation between

those lines shows a departure from linearity, which happens early on in the simulation. The unphys-

ical regions (ρ{u} and γ need to be positive) and Milne model limit, see Section 4.1.4.1, in the plots

show that these departures from linearity are indeed necessary for this system to remain physical.

In the centre of the OD, still on the top row from left to right: δOD becomes very large, the

volume element tends towards zero, so that δγOD → −1, the initial expansion is more and more

decelerated until it turns around (TA) and contraction begins, when KOD = 0 and δKOD = −1.

The reverse is observed in the centre of the UD: the density tends to zero δUD → −1, the volume

element becomes much larger than the reference FLRW and the expansion is faster. In the centre of

the simulation box, where initially Rc = 0, the first-order quantities all remain zero, but the non-

linearity introduced by
(3)R in the initial conditions makes all quantities in the figure measurably

non-zero (beyond numerical error) although they remain very small.
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Figure 6.5: Evolution of various quantities at the peak of the over and under-density (OD in orange

andUD in blue) aswell as the central location of the simulation box (in green). Top: thematter density,

volume, and expansion contrasts δ, δγ and δK . Bottom: the conformal 3-Ricci scalar defined with

the ΛCDM FLRW scale factor a2(3)R; conformal 3-Ricci scalar defined with the nonlinear scale

factor γ
1
3 (3)R; the same quantity normalised with its initial value

Ä
γ1/3(3)R

ä
/
Ä
γ1/3
IN

(3)RIN

ä
− 1.

The dashed lines are the first-order projections from Eq. (6.4), Eq. (6.11) and Eq. (4.50), and the full

lines are the simulation results. Initial conditions are δIN, OD = 3 × 10−2
, zIN = 302.5 and

λpert = 1821Mpc, and Λ is present. Error bars, when visible, are indicated as shaded regions.

Notice the sign change in the volume contrast δγ at a/aIN ≃ 3.1. This behaviour is represen-

tative of the transition experienced by long wavelength perturbations as they evolve from the Rc-

dominated to δ-dominated regime, according to Eq. (6.14) (Abramo, Brandenberger, andMukhanov,

1997; Mukhanov, Abramo, and Brandenberger, 1997; Brandenberger, 2002; Geshnizjani and Bran-

denberger, 2002).

Then the second row of panels in Fig. (6.5) show, first on the left, the conformal 3-Ricci scalar

defined with respect to the ΛCDM FLRW scale factor, a2(3)R (Bruni, Hidalgo, Meures, et al., 2014;

Bruni, Hidalgo, and Wands, 2014). At first order, this quantity is conserved at all scales for dust,

as shown by the dashed lines, however in the OD the curvature is positive and grows larger and

larger up until the crash (where there are large error bars), while in the UD it is initially negative and

tends towards zero. Themiddle panel, on the other hand, shows the conformal 3-Ricci scalar defined

with respect to the nonlinear scale factor from the simulation, γ
1
3 (3)R: for the OD, essentially this is
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conserved throughout the evolution up until just before the crash. Indeed, when normalised with its

initial value, as can be seen in the rightmost panel, only sub-percent fluctuations are observed in the

UD and OD (when error bars are reasonable), but a more notable deviation can be seen in the central

location. This shows that the locations at the top/bottom of the inhomogeneity conserve their local

nonlinear conformal curvature, which is essentially consistent with the closed FLRW description

of the Top-Hat model, see Section 4.3.2.3. As the volume element in the OD shrinks, the curvature

grows, therefore the two effects evolve together such that nonlinear conformal curvature is constant,

conversely in the UD the volume element grows and the curvature tends towards zero such that the

conformal curvature is also constant. In the central region, although too small to be seen in Fig. (6.5),

the volume element shrinks and the curvature grows like in the centre of the OD; however, in this

location the nonlinear conformal curvature is not conserved. This may be due to this location having

a much greater density gradient ∂iRc = Apertkpert than the OD and UD centre ∂iRc = 0.

To compare with the Top-Hat model as described in Section 4.3.2, the exact values of various

quantities at TA, at times corresponding to virialisation according to two different definitions (Gunn

andGott, 1972; Peacock, 1999; Mo, Bosch, andWhite, 2010; Vittorio, 2018), and at the collapse/crash

time are listed in Table (6.1). DefiningR as the radius of the Top-Hat sphere, in thismodelR increases

to reach its maximal size at TA, RTA, when KOD changes sign, from expansion to contraction, so

TA measurements are taken whenKOD = 0. After that, R shrinks and collapses to R = 0. While

the Top-Hat model does not have the mechanisms to enable virialisation, there are two different

definitions typically used to approximate it. The first definition of virialisation is when R, evolving

according to the Top-Hat model, reachesRTA/2 (Peacock, 1999).

The second definition also works with RV = RTA/2 but assumes that relaxation mechanisms are

present, and so establishes that R would reach this value at the time of collapse τC (Peacock, 1999;

Vittorio, 2018). This means that this second definition has a discontinuity in theR evolution, which

is assumed to be filled with relaxation mechanisms. Either way, these two definitions predict specific

nonlinear δOD , so here we record a/aIN when δOD reaches those values, see Section 4.3.2.1 for

more details.

Recording the values reported in Table (6.1) was done in multiple ways. The proper times when

KOD = 0, δOD = 145.84 or δOD = 176.65 occur between recorded iterations, so they were

obtained with a linear interpolation and then passed to Eq. (4.27), Eq. (4.29) or Eq. (6.4) to obtain

a/aIN , z or δ(1). The nonlinear values γ
1/6
OD/γ

1/6
IN, OD , ⟨γ1/6⟩D{u}/⟨γ1/6⟩D{u}, IN and δOD were

obtained by linear interpolation to the previously determined time. Then, for the collapse/crash,

the last valid values are recorded giving the nonlinear terms and a last proper time that was used

to compute the corresponding a/aIN , z or δ(1). For each case (Λ = 0 or Λ ̸= 0) this process was

repeated for the three simulations of varying resolution, the high-resolution result is reported in

Table (6.1) and the two lower resolution results are used to compute the corresponding error bars

according to Eq. (C.4).

In our simulations, the TA and collapse/crash, with and without Λ, occur at an earlier time than

the time in Bentivegna and Bruni (2016). This shows that the presence of the decaying mode in

their case has significantly slowed down the evolution, as was also shown by (East, Wojtak, and Abel,

2018). Correspondingly, they also have a bigger
3 δ

(1)
OD at those moments, this is simply due to the

3

That is, for the linearly extrapolated density contrast we have δ
(1)
TA, OD = 1.8 for a TA at a/aIN = 60 as in
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Top-

Hat,

Λ = 0
Here, Λ = 0 Here, Λ ̸= 0

(Bentivegna

and Bruni,

2016)

Initially zIN 205.4 302.5 205.4

a/aIN 35.4137 35.24467± 7e-5 35.195± 3e-3 60

z 4.85620± 1e-5 7.6234± 7e-4 2.44

Turn Around

(TA)

γ
1/6
OD

γ
1/6
IN, OD

20.10169± 3e-5 20.0600± 1e-4

KOD = 0
⟨γ1/6⟩D{u}

⟨γ1/6⟩D{u}, IN

35.2064± 1e-4 35.154± 3e-3

δ
(1)
OD 1.06241 1.05734± 2e-6 1.05584± 8e-5 1.8*

δOD 4.55165 4.55164± 1e-5 4.5626± 5e-4

a/aIN 56.22 55.9± 1e-1 55.87± 8e-2 96

z 2.692± 7e-3 4.432± 8e-3 1.15

Collapse

γ
1/6
OD

γ
1/6
IN, OD

0.4± 6e-1 0.8± 2e-1

/Crash

⟨γ1/6⟩D{u}

⟨γ1/6⟩D{u}, IN

55.8± 1e-1 55.77± 2e-2

δ
(1)
OD 1.686 1.678± 3e-3 1.676± 2e-3 2.88

δOD +∞ 2e+6± 2e+6 4e+5± 4e+5

Virialisation a/aIN 52.64 52.5055± 9e-4 52.469± 2e-3

R = RTA/2 δOD 145.84 145.84 145.84

Virialisation a/aIN 56.22 52.83625± 7e-5 52.801± 2e-3

R = RTA/2
& τ = τC

δOD 176.65 176.65 176.65

Table 6.1: Various variables during the evolution of an over-density (OD) whose initial (IN) density

contrast is δIN, OD = 0.03 and physical size λphy, IN = 4/HIN . These variables are recorded for

four scenarios at different stages of the evolution: the turn around (TA), the collapse/crash of the OD,

and its virialisation according to two different definitions, when the radius of the Top-Hat sphere

is half its radius at TA, and when that property happens at the time of the collapse. The four sce-
narios are the theoretical Top-Hat spherical and homogeneous collapse model (first column (Gunn

and Gott, 1972; Peacock, 1999; Mo, Bosch, and White, 2010; Vittorio, 2018) see Section 4.3.2.1) and

three numerical relativity simulations of a 3-dimensional sinusoidal peak. These are: our simula-

tions with a purely growing mode with Λ = 0 (second column), and with Λ ̸= 0 (third column);

from (Bentivegna and Bruni, 2016), with a growing and decaying mode withΛ = 0 (fourth column).

The variables are: the normalised background scale factor a/aIN , with its corresponding redshift z

and linear density contrast δ
(1)
OD (δ

(1)
OD = δIN, OD a/aIN for EdS), this is to be compared to the lo-

cal scale factor γ
1/6
OD/γ

1/6
IN, OD , the domain average scale factor ⟨γ1/6⟩D{u}/⟨γ1/6⟩D{u}, IN (averaged

over the whole simulation box), and the nonlinear density contrast δOD . For the two definitions of

virialisation a/aIN is recorded at the given δOD . The asterisk indicates a factor of three correction

to the value reported in Bentivegna and Bruni (2016).

Bentivegna and Bruni (2016), thus correcting the value for δ(1) at TA reported in Bentivegna and Bruni (2016), δ
(1)
T =

0.6. Similarly, given that the collapse in Bentivegna and Bruni (2016) is at a/aIN ≃ 96, δ(1) ≃ 0.96 under the same

assumptions, while the correct value is δ(1) ≃ 2.8, as we report in Table (6.1). The presence of the decaying mode in

Bentivegna and Bruni (2016) implied that a direct match with the prediction of the Top Hat model was not expected and

somehow confused the interpretation of the results. This was based on assuming that the initial density contrast was

δIN, OD = δi = 10−2
, as reported in the text around Eq. (9) in Bentivegna and Bruni (2016), while the correct value of
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longer evolution since δ
(1)
OD = δ

(1)
IN, OD a/aIN in EdS.

Otherwise, we see that at the peak of the OD we reach TA and collapse/crash precisely when the

Top-Hat model predicts it, with the expected a/aIN , δ
(1)
OD and δOD values in agreement with East,

Wojtak, and Abel (2018). With the conservation of the local conformal curvature, this shows that the

Top-Hat model provides excellent predictions for the centre of the OD. Furthermore, the domain

averaged scale factor, ⟨γ1/6⟩D{u}/⟨γ1/6⟩D{u}, IN , is also close to the Top-Hat model prediction for

a/aIN . This is not the case for the local measurement, γ
1/6
OD/γ

1/6
IN, OD , which instead shows the

compactness of the region.

For virialisation, we recover the expected a/aIN for the first definition ofR = RTA/2, but not

for the second R = RTA/2 and τ = τC . The first definition is based on the exact evolution of R

for the Top-Hat model, while the second provides an approximation by making the assumption that,

relaxation mechanisms are present. The matter in these simulations is described as a pressureless

perfect fluid, it therefore does not have any relaxation mechanism, so instead, as we observe in the

centre of the OD, the evolution of the density contrast is well predicted by the Top-Hat model.

We see a slight difference depending on the presence of Λ in the simulation. However, the error

estimates overlap in many cases and we measure up to a maximum≃ 0.57% difference between the

Λ = 0 and the Λ ̸= 0 simulations.

6.3.2 Raychaudhuri equation: local evolution & Top-Hat approxi-
mation

Our results, in either case, show that at the peak of the OD the Top-Hat model is an excellent ap-

proximation. To understand this, consider the Raychaudhuri equation Eq. (2.65)

Θ̇ +
1

3
Θ2 + 2σ2 +

κ

2
ρ{u} − Λ = 0, (6.15)

describing the local evolution of the fluid expansion scalar. Each term contributing to Θ̇ is plotted

along the x = y = z diagonal, in Fig. (6.6). This direction goes from the centre of the OD through

the centre of the face of the octahedron such that it also goes through the centre of the UD (this is

the dashed green line in Fig. (6.2)).

The matter density ρ{u} curve, i.e. the dot-dot-dashed red line in Fig. (6.6), clearly shows the OD

and UD regions located at ±0.25λpert. The shear contribution, σ
2
, shown with the dashed green

line, is subdominant everywhere; it does grow around the OD but it is always essentially zero at the

peak of the OD and at the centre of the UD. The reason that σ2 is negligible in these specific locations

is because of the triaxial symmetry, so that around these two points the distribution is almost spher-

ical. The fact that the shear gives a negligible contribution to the Raychaudhuri equation implies

that at the OD and the UD locations the evolution is in essence independent of the environment.

Mathematically, neglecting the shear implies that the Raychaudhuri equation is only coupled to the

continuity equation Eq. (4.16): then at the OD these two equations are formally identical to those in

FLRW with positive 3-curvature, as implied by the Hamiltonian constraint Eq. (6.12). Therefore, at

the peak, the Top-Hat model is a very good approximation.

the initial δ was δIN, OD = 3δi = 3× 10−2
, as it is clearly visible in the leftmost panel of Fig. 1 and their Eq. (9).
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Figure 6.6: Contributions to the Raychaudhuri equation just after the turn-around of the peak (top

panel) and just before the crash (bottom panel): since c = G = 1 all these terms have units of

length
−2

, therefore we measure them in λ−2
pert units. Each term is presented along the x = y = z

diagonal of the data box, the peak of the over-density is at x = −0.25λpert and the bottom of the

under-density is at x = 0.25λpert. Error bars, when visible, are indicated as shaded regions.

Then the expansion,Θ, shown with the dot-dashed orange line, peaks downwards,Θ = −K =

0, in locations experiencing TA. The peak of theOD experiences TA first, then its surrounding region.

This identifies the infalling domain discussed in the next Section 6.3.3.

6.3.3 Expansion of the infalling domain

Throughout the evolution of the collapsing region, the expansionΘ = −K of the OD is positive but

more decelerated than the referenceΛCDM, until it reaches TA atΘ = 0 and then contracts inwards

Θ < 0. The peak of the OD is the first to reach TA, followed by its surrounding region, where points

at a larger distance from the peak reach TA at later times.

The infalling region, identified using the TA boundaryΘ = 0, is shown in Fig. (6.7) at two differ-
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Figure 6.7: Absolute expansion scalar Θ in units λ−1
pert in the x-y plane passing by the peak of the

over-density (z = −0.25λpert) at a/aIN = 40.45 and 53.00. The full lines indicate directions along
the vertices and the dash-dotted lines are the directions along the centre of the edges.
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Figure 6.8: Evolution of the turn around radius RTA - distance from the peak of the over-density

to Θ = 0 in three directions. On the left, RTA measured in terms of the comoving length today;

on the right the corresponding proper length; we emphasise that the physical length is an order

of magnitude smaller than the comoving length. Error bars, when visible, are indicated as shaded

regions.

ent times. Initially, the boundary surface is close to spherical symmetry, but later, as it encompasses a

greater comoving volume and therefore a largermass, the non-spherical shape becomes apparent. As

the TA boundary expands outward it tends towards an octahedron, this appears as an almost square

boundary in the 2-dimensional slicing through the box in the right panel of Fig. (6.7), extending

beyond the box sides with the periodic boundary condition.

With octahedrons, there are three directions of interest: from the centre to the vertices, to the

centre of the edges, and to the centre of the faces. The plane in Fig. (6.7) shows the vertex and the cen-

tre of the edge directions (full and dash-dotted lines). As the TA boundaryΘ = 0 expands outward,

we measure the distance between the peak of the OD and the TA point in each direction, which we

call the TA radius RTA. The evolution along the three different directions is presented in Fig. (6.8),

where we depict the comoving coordinate TA radiusRTA, com in the left panel, and the physical TA
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radiusRTA, phy in the right panel, see Appendix D.

In the left panel, the TA boundaries grow in the same way in the three directions, so long as

they stay in the region that is almost spherically symmetric around the peak, and then they split out

according to the direction-dependent distribution. In the directions with the biggest δ, the TA radius

grows the fastest.

This is also true when we consider the proper distances RTA, phy , by integrating with the local

scale factor, see Appendix D, which are shown in the right panel of Fig. (6.8). Notably, we see that in

the two directions that go through an UD region, edges and faces,RTA, phy stops growing and starts

decreasing. So in these two directions, the region of infalling material reaches a maximal size and

then starts shrinking, while in the direction where δ is always positive, the infalling region continues

to grow.

6.3.4 Evolution of a comoving sphere

We can draw another comparison to the Top-Hat model by considering the evolution of a comov-

ing sphere, a region with constant mass, centred on the peak of the OD and compare its evolution

with that of a homogeneous spherical Top-Hat with δ = ⟨δ⟩D{u} . For a given comoving radius, we

integrate to measure the proper physical radius and present it in the left panels of Fig. (6.9). Two

comoving radii are considered, one small 0.02λpert, where we see that all three directions behave in

the same way, and one big 0.33λpert, with a direction-dependent evolution such that the bigger the

δ, the sooner the collapse. In the latter case, we see how a spherical comoving region gradually gets

distorted in physical space.

The Top-Hat models from Section 4.3.2.1, grey dotted lines in the left panels of Fig. (6.9), were

computed with the domain average δ within the given comoving sphere, ⟨δ⟩D{u} , seeMunoz (2023b)

and Appendix D. The small comoving radius case closely follows the Top-Hat model but falls just

short of reaching collapse as the peak had already reached that point, stopping the simulation. In the

large comoving radius case, there is a clear departure from the Top-Hat model, the region would col-

lapse sooner than what the Top-Hat model would have predicted. Indeed for such an inhomogeneity,

it is unfair to compare it to a homogeneous sphere.

The average relative difference between the physical radius and the Top-Hat model prediction

is measured for a range of comoving radii and presented in the top right panel of Fig. (6.9). The

grey dot-dot dashed vertical lines identify the two cases on the left panels. This indeed shows that as

the radius of the comoving sphere is increased, the bigger the difference between the results and the

corresponding Top-Hat model. This indicates the limit with which inhomogeneous structures can

be predicted with homogeneous models.

In Section 6.3.2 we identified the sub-dominance of shear in the proximity of the peak to be the

main reasonwhy the evolution of this region closely follows the Top-Hatmodel prediction described

in Section 6.3.1. Then, in the bottom right panel of Fig. (6.9) we also show the shear as a function

of the comoving radius Rcom. Indeed, further out from the peak of the OD, the shear is no longer

negligible, even if it is still subdominant at this radius as a contribution to the Raychaudhuri equation

in Fig. (6.6).
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Figure 6.9: Left panels: evolution of proper physical radius of two comoving spheres, one small (top

panel) and one large (bottom panel), centred on the peak of the over-density, in all three directions,

compared to the Top-Hat spherical and homogeneous collapse model. The comoving radii are listed

as text in the plots. The Top-Hat models were computed using the domain average δ within the two
spheres, ⟨δ⟩D{u} see Appendix D. Top right panel: average relative difference between the simulation

results and the Top-Hat model prediction for a range of comoving radii. The two cases on the left

are identified with grey dot-dot-dashed lines. Bottom right panel: shear in the three directions from

the peak of the over-density. Error bars, when visible, are indicated as shaded regions.

6.3.5 Gravito-electromagnetism

The electric andmagnetic parts of theWeyl tensor definedwith respect to the fluid flow, uα, are given

by E
{u}
αβ and B

{u}
αβ Eq. (2.73), see Section 2.5.1 (Matte, 1953; Hawking, 1966; Maartens and Bassett,

1998; Ellis and Elst, 1999; Ellis, 2009; Ellis, Maartens, and MacCallum, 2012) where they are shown

to describe the non-local gravitational field. In general, in 3+1 they are computed with respect to a

unit timelike hypersurface-orthogonal vector field nα providing E
{n}
αβ andB

{n}
αβ .

We compute E
{n}
αβ and B

{n}
αβ with EBWeyl, the code presented and tested in Chapter 5

(Munoz, 2022; Munoz and Bruni, 2023a), together with their divergence D{n}νE
{n}
νµ and curlÄ

D{n} × E{n}
ä
αβ

(Ellis, Maartens, and MacCallum, 2012), see Section 2.1.4.2 defined in the hy-

persurface with metric γij , see Chapter 5 (Munoz and Bruni, 2023a):

D{n}iE
{n}
iµ , and

Ä
D{n} × E{n}

ä
µν

= −ϵαβσ(µnαD{n}
β E

{n}
ν)σ = αϵ0ij(µD

{n}
i E

{n}
ν)j , (6.16)

whereD
{n}
i is the covariant derivative with respect to γij . In this chapter we use the synchronous-

comoving gauge, so the normal to the γij hypersurface is the fluid 4-velocity nµ = uµ, so E
{u}
αβ

and B
{u}
αβ , their divergence and curl Eq. (6.16) are computed with respect to the fluid flow. Addi-

tionally, because of the nature of the Levi-Civita tensor and the symmetrisation applied to the curl,
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Figure 6.10: Distribution of the electric and magnetic parts of the Weyl tensor (left and right) in the

simulation box, made dimensionless with the Hubble scalarH . The x, y, and z > −0.25λpert region
is removed exposing the centre of the over-density. The full white lines go through the vertices and

dash-dotted lines through the centre of the edges of an octahedron centred at the over-density.Ä
D{u} × E{u}

ä
µν

only has spatial components. We compute themagnitude of these tensors follow-

ing: |T | =
√
gαµTαTµ or |T | =

»
gαµgβνTαβTµν , where we drop the frame-dependent notation

for simplicity presenting the magnitude of the variable, of its divergence and of its curl as |E|, |∇·E|
and |∇ × E| respectively.

Fig. (6.10) shows the |E| and |B| distribution in 3-dimensions. These are made dimensionless by

dividing byH2
. The electric part is strongest along the vertices of the OD gradually moving towards

the peak of the OD. To some extent, the electric part is analogous to the Newtonian description of

gravity as it embodies tidal gravitational pull. The regions experiencing this the strongest are along

the vertices as thematter is being pulled along the filaments towards the centre of theOD. At the peak,

where the curvature is strongest, |E| is small as the matter is already at the bottom of the potential

well.

Conversely, the magnetic part is strongest around the vertices. The filaments along the vertex di-

rection, connecting the ODs periodically present, can be perceived, by analogy to electromagnetism,

to be carrying a gravitational current, with |E| strong along it, and |B| strong around it. In pertur-

bation theory, at first order the magnetic part is only constructed from vector and tensor modes and

embodies relativistic effects. When we set the initial conditions, as explained in Section 6.1.3, the

density is defined non-linearly from the Hamiltonian constraint and the simulation freely evolves in

full GR. At nonlinear order the scalar, vector and tensor perturbations couple, explaining the non-

zero magnetic part. Connecting this to the fluid flow, the magnetic part in general is sourced by

shear, vorticity and acceleration (Ellis, Maartens, and MacCallum, 2012). Yet, in the synchronous-

comoving gauge and with pressureless dust there is no vorticity or acceleration. Therefore, in this

case, the magnetic part embodies the curl of the shear Eq. (2.74)

B
{u}
αβ =

Ä
D{u} × σ

ä
αβ
, (6.17)

and we have shown the shear to be present in Fig. (6.6) and Fig. (6.9).

On the leftmost panels of Fig. (6.11) the dimensionless |E| and |B| distributions are shown on

a 2-dimensional plane, where the notable axes of symmetry are marked in the top panel. These are
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Figure 6.11: Magnitude of the electric and magnetic parts of the Weyl tensor, and their divergences

and curls along the x and y = z plane of the simulation box (with d2 = y2 + z2) at a/aIN = 40.0,
and made dimensionless with the Hubble scalar H . The relevant axes of symmetry are marked on

the top left panel. The directions going from the centre of the octahedrons to the vertices are marked

with full lines, to the centre edges with dash-dotted, and to the centre of the faces with dashed lines.

Directions going from the centre of the over-density aremarkedwith black lines, and from the under-

density with white lines, the directions going along the faces are valid for both the over-density and

the under-density and so are in grey.

to be compared with Fig. (6.10) to grasp these distributions. |E| is indeed strongest along the OD

vertex, black full line, and |B| wraps around it. However we also see that they become negligible in

the UD, and along the faces directions, dashed grey lines, and |B| also disappears in the UD vertex

direction, white full line. These axes of symmetry are notable features in the divergence and curl

distributions, middle and right panels. The divergence is strongest close to the peak of the OD, and

to the other OD present through periodic boundaries. Then the curl of |B| is strongest along the
vertex and the curl of |E| is strongest around the vertex axis.

The presence of |B| in itself is not proof of the benefit we get from having a fully relativistic

simulation, as frame-dragging can be measured from Newtonian simulations (Bruni, Thomas, and

Wands, 2014; Milillo et al., 2015; Thomas, Bruni, and Wands, 2015; Rampf et al., 2016) as well as

in relativistic simulations (Adamek, Daverio, et al., 2016a; Barrera-Hinojosa, Li, Bruni, et al., 2021;

Barrera-Hinojosa, Li, and Cai, 2021). However, when only gravitational waves are present |E| = |B|
(Bonnor, 1995), the divergences vanish and the curls are present (Hogan and Ellis, 1997). We look at

Fig. (6.12) to see that here the domain average divergence does not vanish, and looking at the ratios,

|B| is smaller than |E| but still has a per cent level presence. We also find that for the electric part, the

domain average of the divergence is stronger than that of the curl, ⟨|∇ ·E|⟩D{u} > ⟨|∇×E|⟩D{u} ,
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Figure 6.12: Top left: comoving domain average magnitude of the magnetic part of the Weyl tensor,

of its divergence and curl throughout the simulation, made dimensionless with the Hubble scalarH .

Bottom left: same as above but with the electric part of the Weyl tensor. Right: ratios between the

magnetic and electric terms. Error bars, when visible, are indicated as shaded regions.

and the reverse is true for the magnetic part, ⟨|∇ ·B|⟩D{u} < ⟨|∇ ×B|⟩D{u} .

The electric and magnetic parts of the Weyl tensor have previously been measured in NR cos-

mological simulations: i) for a lattice of black holes, where the potential bias that is introduced by

the magnetic part in optical measurements is quantified (Korzyński, Hinder, and Bentivegna, 2015;

Bentivegna, Clifton, et al., 2018); ii) in more realistic cosmological simulations, where models with

vanishing divergence of the magnetic part are found to be a valid approximation on large scales

(Heinesen andMacpherson, 2022). This differs fromwhat we find as ⟨|∇·B|⟩D{u} is initially present

and grows throughout the simulation, even though it has the smallest amplitude in Fig. (6.12). These

results do not contradict each other since we are considering very different spatial distributions, and

here the simulation evolves into a highly nonlinear regime.

6.3.6 Effective Petrov classification

The Weyl tensor is the traceless part of the Riemann curvature tensor and describes, in essence, the

tidal gravitational fields, far richer in a metric theory of gravity than in the Newtonian case. It is

classified according to the Petrov classification (Petrov, 2000) see Section 2.5.4, with complex scalar

invariants I , J , K , L, and N that we compute with EBWeyl from E
{u}
αβ and B

{u}
αβ , following the

equations provided in Section 2.5.2 and Section 2.5.3 (Munoz, 2022;Munoz and Bruni, 2023a). These

invariants can then be used to classify different regions of the spacetime as Petrov type I, II, D, III, N,

or O according to the scheme presented in Fig. (6.13), where we apply the theory of classification of

exact solutions in Stephani et al. (2003). Each Petrov type has a specific physical interpretation, e.g.

type D is characteristic of the Schwarzschild and Kerr black holes, as well as of the tidal field outside a

spherically symmetric gravitational field, while type N is characteristic of plane gravitational waves;

we refer the reader to Section 2.5.4 (Munoz, 2022; Munoz and Bruni, 2023a) and Refs. therein for

more details.
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Figure 6.13: Flow diagram of Petrov classification, with a couple of modifications this is an adapation

of Fig. (9.1) in Stephani et al. (2003). Cutoff values used in our analysis are listed here.

Numerically we hardly reach exact numbers; additionally, our simulation can be thought of as

containing all types of perturbations at all orders, so our spacetime is of Petrov type I, the most gen-

eral type. However, we consider the leading order type by introducing thresholds; then, because the

background FLRW is of Petrov type O, that of conformally flat spacetimes, initially, this is the lead-

ing order Petrov type, as the perturbations are initially small. As non-linearities grow, the spacetime

becomes more general. To see this transition, we adapt the IF statements described in Fig. (6.13) by

considering the real and imaginary parts of each quantity separately, normalising them, making them

dimensionless, and comparing them to a chosen cutoff value. This is done bymaking these invariants

have the same power as the Weyl tensor and dividing byH2
. For example for the real part of I , we

then have the value: V = |Re(I1/6)|/H2
, that we compare to a cutoff V < cut. We also consider

the numerical error Verror obtained with the lower resolution simulations; see Appendix C. So we

adapt the statement to V < cut AND (V > Verror OR cut > Verror)where the part in parenthesis

establishes how reliable the variable is, if it isn’t reliable, we keep the classification general.

The cutoff value c is an arbitrary choice; if it is too small, the whole spacetime is of type I; if it

is large then it is of type O. No matter the cutoff value the order of transition between the Petrov

types remains the same; we then choose the cutoff values as presented in Fig. (6.13) to emphasise this

behaviour. The cutoff values are different at all stages as we disentangle leading order contributions.

Following this process, Fig. (6.14) shows the leading order spacetime on the x and y = z plane

throughout the simulation. Overall the simulation starts as an effective type O spacetime, that of

FLRW, as all the inhomogeneities embodied in the invariant scalars are below the cutoff values; then

the spacetime gradually transitions towards type I. This sort of peeling-off (D’Inverno, 1992; Alcu-

bierre, 2008) goes as O→N→ D→ II→ I, from most special to least special. In this transition, we

pass through all these spacetime types, with notable features related to the OD structure.
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Figure 6.14: Classification of the spacetime regions according to the leading order Petrov type as

defined in Fig. (6.13), along the x and y = z plane of the simulation box (with d2 = y2 + z2). Eight
points in time in the simulation are presented, and the corresponding normalised scale factor is on

top of each panel. The peak of the over-density is in the bottom left quadrant, at x = −0.25λpert
and d ≃ −0.35λpert, it is periodically connected to other over-densities with a filament along the

d ≃ −0.35λpert direction, and the bottom of the under-density is in the top right quadrant at x =
0.25λpert and d ≃ 0.35λpert.

Throughout this evolution, the OD’s peak and the UD’s bottom are type O. These regions are

conformally flat, which is not what we expected a priori from the peak of the OD. However, as we

saw previously, in this location |E| = |B| = 0, therefore the spacetime is type O and the conformal

curvature is constant like a local closed FLRW. Thus, this is another reason why the Top-Hat model

describes the evolution of the peak of the OD very well.

Along the vertex direction, the transition goes as O→N→D. The focus of a D spacetime along

the filament is interesting as this group includes the Schwarzschild, Kerr, and Szekeres metrics. The

Weyl tensor of typeD spacetimes has been described (Szekeres, 1965; D’Inverno, 1992) as aCoulomb-

like tidal field, where the matter gets elongated in a given direction towards a gravitational source,

see Section 2.5.4 for more details. Indeed, we find that along the filaments matter is being pulled

towards the two OD peaks they connect.

Then, remarkably, we note the strong presence of type N, the spacetime of gravitational waves.

A non-spherically symmetric collapse is naturally expected to generate gravitational waves; here,

tensor modes have a temporary leading order presence. We leave the study of the generation of

gravitational waves in nonlinear structure formation in full NR to future work.
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6.4 Summary
This work presents NR simulations of a simple nonlinear inhomogeneous structure growing in a

ΛCDM universe. The simulations are run with Einstein Toolkit (Löffler et al., 2012; Brandt et al.,

2020) using the new publicly available ICPertFLRW thorn (Munoz, 2023a), then post-processed with

our EBWeyl code (Munoz, 2022) described in Chapter 5 (Munoz and Bruni, 2023a). We have used

the synchronous-comoving gauge, i.e. the rest frame of CDM, represented as a pressureless and ir-

rotational perfect fluid.

Inhomogeneities are introduced with the comoving curvature perturbation Rc, defined as a 3-

dimensional sinusoidal. This creates a periodic lattice of over-densities (OD) connected by filaments

and surrounded by under-dense (UD) voids. Near the peak of the OD, the matter distribution and

other fields are close to spherical symmetry, but this is no longer the case further out, as the structure

tends towards an octahedron-like symmetry, with OD filaments along the vertices.

We obtain threemain results: i) usingRc, a gauge-invariant curvature perturbation typically used

in early universe perturbation theory (Malik and Wands, 2009), we successfully implement a purely

growing mode in our initial conditions, following (Bruni, Hidalgo, Meures, et al., 2014; Bruni, Hi-

dalgo, and Wands, 2014); in particular, we useRc to set up our initial metric and extrinsic curvature

inhomogeneity, the fully nonlinear 3-Ricci curvature
(3)R, then defining the fully nonlinear matter

density field from the Hamiltonian constraint, which is then automatically satisfied; ii) we study the
evolution of the peaks through turn-around and collapse, finding that it is very well described by the

Top-Hat model, to a level better than 1%, see Table (6.1); iii)we study the Weyl tensor, both from the

perspective of the electric and magnetic parts Eαβ and Bαβ and through a novel dynamical Petrov

classification, finding that the gravito-magnetic effects are stronger around the filaments, and Petrov

type N, the signature of gravitational waves, emerges in the directions connecting the OD peaks with

the UD.

More in detail, the main points are the following.

❖ The configuration described above leaves us free to choose the initial amplitude and wave-

length of the inhomogeneities, as well as the initial redshift. These are chosen such that ini-

tially, we are in the linear regime, and the simulation remains within the matter-dominated

era (i.e. Λ is negligible), even if our treatment is fully nonlinear. Additionally, we identify the

curvature-dominated regime, when the physical wavelength is larger than the Hubble scale,

see Eq. (6.14). In this regime, the volume element is larger than the background in the OD

region.

❖ Monitoring the peak of the OD we find that, in this specific location, the turn-around (TA)

and collapse are reached when the linearly extrapolated density contrast δ(1) has values

δ
(1)
TA = 1.05584 ± 8 × 10−5

and δ
(1)
C = 1.676 ± 2 × 10−3

in the ΛCDM case, within 1% of

the theoretically predicted values in the Top-Hat spherical and homogeneous collapse model

(Sahni and Coles, 1995; Monaco, 1997; Peacock, 1999; Mo, Bosch, and White, 2010; Vittorio,

2018) see Section 4.3.2. We explain this by looking at the contribution of the different terms in

the Raychaudhuri equation, finding that the shear is, in general, subdominant around the peak

and totally negligible at the peak, so that in this location, the evolution is independent of its en-

vironment and in essence described by the Friedmann equations of a closed (positively curved)
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model. Indeed, our analysis also shows that at the peak location γ1/3(3)R is constant in time,

generalising into the fully nonlinear regime the conformal-curvature variable Rc. However,

when considering a comoving sphere with a large comoving radius, containing a more signif-

icant inhomogeneity, its evolution can no longer be well described with the Top-Hat model.

❖ The peak of the OD is the first location to reach TA when the expansion scalar reachesΘ = 0,

then the surface Θ = 0 expands outward in the neighbouring region. This TA boundary

distinguishes an infalling and an expanding region. The infalling region encompasses more

andmorematerial, eventually taking the shape of the entire OD region. In the direction where

δ is the biggest, the TA radius increases the most, and in directions going through an UD

region, the TA radius eventually stops growing and shrinks instead. These features are due to

the inhomogeneous non-spherical shape we are working with.

❖ Filaments are a fundamental part of the cosmic web structure due to tidal fields (Bond, Kof-

man, and Pogosyan, 1996). In computing the electric and magnetic parts Eαβ and Bαβ of

the Weyl tensor with EBWeyl (Munoz, 2022; Munoz and Bruni, 2023a), we find that Eαβ is

strongest along the filaments periodically connecting the ODs, stretching matter towards the

OD centres, while Bαβ wraps around the filaments. On average, the magnetic part is smaller

than the electric part, changing the ratio from < 10−2
to almost 10% during the evolution.

The divergence ofEαβ is stronger thanEαβ itself, while the curl ofBαβ is stronger thanBαβ .

For both, the divergence is strongest towards the OD, and the curl of Eαβ is strongest on the

filaments while the curl ofBαβ is strongest around them.

❖ We also use EBWeyl (Munoz, 2022; Munoz and Bruni, 2023a) to classify the spacetime as

Petrov type I. However, introducing a novel dynamical Petrov classification using thresholds

that define leading order contributions, we find that the centres of the OD and UD are of type

O, i.e. conformally flat as an FLRWmodel at leading order. At the same time, the spacetime is

typeD along the filaments, representing a tidal stretching along these directions, and transition

as O→N→ III→ II→ I elsewhere, with a notable presence of type N, typical of gravitational

waves.



7 - Future prospects

This work has brought about the creation of an initial conditions code for cosmological simula-

tions in numerical relativity ICPertFLRW, and a post-processing code to invariantly characterise

numerical spacetimes using the Weyl tensor EBWeyl. These tools allowed for creating and analysing

numerical relativity simulations of a quasi-spherical cosmological collapse. Results showed that the

Top-Hat spherical and homogeneous collapse model could be perceived as a robust approximation,

that gravitational waves are generated in this process and that by gravito-electromagnetic analogy,

filaments can be perceived as carrying a gravitational current. For further details on the conclusion,

see Section 6.4. Going forward, we believe several interesting questions should be investigated as a

follow-up to this work.

❖ Collapsing structures:We have confirmed that the Top-Hat collapse description is valid at the

OD’s peak, finding only a 1% difference. We believe this result is robust for profiles around the peak

that tend to be spherically symmetric. Still, the analysis here should be extended in two directions: to

model the effects of different quasi-spherical profiles on virialisation and to understand the effects of

introducing some anisotropy at the peak, in particular, to measure how large the change of collapse

time due to shear and vorticity would be, cf. (Lucie-Smith et al., n.d.).

✦ Anisotropy: Considering that close to the OD peaks and around UD voids, the spacetime

is close to spherical symmetry, extending our work to look for self-similar behaviour (Bertschinger,

1985a,b; Jain and Bertschinger, 1996) would be interesting. Here, we have considered an over-

simplified structure based on a single initial wavelength, going further with this or starting from a

more complex structure, the effects of different wavelengths, mode-coupling during nonlinear evo-

lution (Jain and Bertschinger, 1993) and the effects of very large-scale tidal fields (Schmidt et al., 2018)

should be explored.

This study of collapsing structures in full GR could be further developed by considering the impact of

the cosmological horizon, the cosmological constant, and mode coupling. To do this, the sinusoidal

wavelength and initial redshift would be chosen accordingly, and multiple sinusoidal distributions

would be added. These considerations have never been studied with full GR simulations when the

gravitational collapse has to decouple from the otherwise expanding universe to collapse into form-

ing a dark matter halo.

Related to this, we are also considering a structure that breaks the triaxial symmetry of the

3-dimensional sinusoidal, by changing the sinusoidal wavelength in one direction and two, with

the goal of investigating the shear evolution at and around the peak of the OD. It is possible that the

shear would be non-negligible in the central region and thus impact the formation of the pancakes
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expected from the Newtonian generic tri-axial collapse. This is of particular interest as shear signif-

icantly contributes to gravito-magnetic effects. It is possible that the gravitational waves generated

may backreact into bringing the structure around the peak to a more spherical distribution, therein

partially changing the standard Newtonian picture of first shell crossing and pancakes.

Here we have neglected vorticity for the good reason that it vanishes for purely scalar first-order

perturbationswhile it is typically sourced in themulti-stream regime following the first shell crossing

(Pueblas and Scoccimarro, 2009), and it is a subdominant source for gravito-magnetic effects in N-

body simulations (Bruni, Thomas, and Wands, 2014; Thomas, Bruni, and Wands, 2015; Barrera-

Hinojosa, Li, Bruni, et al., 2021). A rough test-field estimate suggests that even if vorticity were

initially present at the peak of the OD, its value at the last reliable step of our simulations would only

be about twice its initial value. However, it would be interesting to study the effect of vorticity in

detail using a more general gauge, cf. (Ellis, Bruni, and Hwang, 1990).

✦ Virialisation: While the central region of the OD in the simulation is well described by

the top-hat spherical collapse model, such a structure would otherwise be expected to virialise. Yet

the particle dynamics that should be present for the relaxation mechanism can’t be described within

the fluid approximation used in the Einstein Toolkit simulations, this needs to be extended (Magnall

et al., 2023). Recently a relativistic particle code, GRAMSES, has been created (Barrera-Hinojosa and

Li, 2020a), and it can address the shortcomings of the simulation run with Einstein Toolkit. It would

then be worthwhile to run twin simulations, up to the first shell crossing, one with Einstein Toolkit

and one with GRAMSES. Eventually, GRAMSES will be able to evolve simulations into the fully

nonlinear multi-stream regime, describing the virialisation of the proto-halo. Additionally, while

transverse deformations were identified to have a transitory but leading order role in the collapse

evolution, Petrov typeN in Fig. (6.14), GRAMSES does not evolve tensorial perturbations. Therefore,

this would be a point of comparison to establish the presence of gravitational waves.

❖ Initial conditions and approximations: A modern concern in the era of precision cosmol-

ogy is the issue of how best to set up initial conditions for large-scale structure simulations to op-

timise computational efficiency while maintaining the required modelling accuracy. Historically

many approximations have been introduced to model quasi-linear stages (Sahni and Coles, 1995;

Monaco, 1997), and more recently to consider relativistic effects (Fidler et al., 2016, 2017). Various

quasi-linear relativistic approximations have been considered in the past (Matarrese, Pantano, and

Saez, 1993, 1994b,a; Bruni, Matarrese, and Pantano, 1995a,b; Kofman and Pogosian, 1995; Hui and

Bertschinger, 1996; Maartens, Ellis, and Siklos, 1997; Sopuerta, Maartens, et al., 1999) and more re-

cently (Pareja and MacCallum, 2006; Ip and Schmidt, 2017; Heinesen and Macpherson, 2022); we

believe that these should be further investigated to understand how to improve the setting up of ini-

tial conditions for the modelling of relativistic effects in nonlinear stages of structure formation, cf.

(Quintana-Miranda, Monaco, and Tornatore, 2023).

❖ Primordial Black Holes and Gravitational Waves: A natural extension of my work so far

will be to consider primordial black hole (PBH) formation during the radiation-dominated era, be-

yond spherical symmetry. Indeed, PBHs have been experiencing a renaissance in the last few years

(Shibata and Sasaki, 1999; Hawke and Stewart, 2002; Yoo, Harada, and Okawa, 2020; de Jong, Aur-

rekoetxea, and Lim, 2022; Musco and Papanikolaou, 2022; de Jong, Aurrekoetxea, Lim, and França,
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2023; Escrivà and Yoo, 2023). We could use Einstein Toolkit in tandemwith the hydrodynamical and

horizon-finder thorns as well as the inflation-inspired initial conditions of Section 6.1 based on the

3-curvature variableRc. Simulations of this kind would have two main goals: firstly, studying how

breaking spherical symmetry changes the critical-density threshold for the formation of PBHs and

their masses; secondly, invariantly studying the gravitation radiation that will necessarily be emit-

ted in the non-spherical collapse, where EBWeyl would be relevant. This would be a worthwhile

contribution to constraints on PBHs and gravitational wave predictions.

❖ Gravito-electromagnetism: EBWeyl could be applied to other cosmological simulations. We

have demonstrated in Section 6.3.5 and Section 6.3.6 the wealth of information that this can pro-

vide and its potential contributions to the understanding of structure formation. We could apply

this methodology to all future simulations described above, but eventually, EBWeyl could be applied

to other more realistic simulations starting from a typical power spectrum, for instance, publicly

available simulation data, since it is a post-processing code. Each simulation’s properties may im-

pact how the Weyl tensor evolves; despite this, the invariant nature of the decomposition will give

a fair characterisation of the spacetime. Additionally, applying EBWeyl to simulations with a realis-

tic distribution of large-scale structures would take this gravitational description one step forward

from the idealistic lattice distribution of the universe used so far. This process of exploring space-

time would be further developed by considering the eigenvectors and eigenvalues of the electric and

magnetic part of the Weyl tensor, which would complete the gravitational description of spacetime

(Nichols et al., 2011). We also emphasise that the application of this code is not limited to simula-

tions in full GR; it is also possible to extract gravito-magnetic information from simulations evolved

with Newtonian gravity (Thomas, Bruni, and Wands, 2015; Barrera-Hinojosa, Li, Bruni, et al., 2021;

Barrera-Hinojosa, Li, and Cai, 2021).





A - Finite Differencing test

To understand the limitations of the FD schemes, described in Section 3.6.1, we test them in 3 simple

cases: a polynomial, a sinusoidal and an exponential, with both the 4th and 6th order schemes.

As seen in Fig. (A.1), the polynomial case is no challenge to the scheme, having a relative error of

10−14
and a rounding error increasing with aN1

slope. This error does not originate from the FD

approximation but from computing limitations, so the higher-order FD has a slightly higher error

due to the additional operations. This error is reduced by increasing computing precision, as seen

from 64bit to 128bit.

The sinusoidal case shows convergence according to the expected truncation error, so this ben-

efits from increasing the FD order.

The same could be said of the exponential; however, the boundary points must be considered.

Unless periodic boundary conditions can be applied, a combination of forward and backward FD

schemes were used. Fig. (A.2) shows that the relative error of these different schemes can signifi-

cantly differ for an exponential distribution. Indeed the left-most points (calculated with a forward

scheme) and right-most points (backward scheme) have larger errors than the central ones com-

puted with the centred scheme. The forward and backward schemes are of the same convergence

order as the centred scheme but start with a higher relative error. In the right panel of Fig. (A.1),

we then consider the case where these edge points are included (full lines) and when they are cut off

(dash-dotted lines). In the first case, the order of convergence is higher at low resolution and tends

towards the expected value at high resolution. This is because, as the resolution is increased, more

points are computed with the centred scheme, whereas the same number of points are computed

with the forward and backward scheme throughout. Then, excluding the boundary points reduces

the initial relative error and allows it to follow the expected convergence explicitly. For the examples

considered in Section 5.3.2, the edge points have then been excluded.
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Figure A.1: Average relative error of the FD scheme applied to a polynomial, sinusoidal and expo-

nential as a function of theN points in the data arrays. The FD uses a 4th (blue) or 6th (orange) order
scheme. The dash-dotted lines on the left plot distinguish floating point precision, and on the right,

they distinguish cases where the edge points calculated with forward and backward FD schemes are

included or cut out.
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Figure A.2: Relative error of the FD scheme applied to an exponential distribution, for 4th and 6th

order schemes and applied to a data array of 40 points.



B - Analytic expressions

The metric gαβ , the extrinsic curvature Kαβ and the energy-momentum tensor Tαβ are passed to

our codes in Chapter 5 in order to retrieve
(4)R, (3)R, E2

, and B2
. The analytic expressions of

gαβ have been presented in Section 5.2, then Kαβ can easily be obtained from its time derivative

Kαβ = −1
2∂tgαβ in the synchronous gauge, and we will present below the analytical expressions

of Tαβ for the different metrics. For the Λ-Szekeres, Bianchi II Collins-Stewart, and Bianchi IV

Harvey and Tsoubelis metrics, the coordinates are comoving with the fluid, so the fluid velocity is

uα = {1, 0, 0, 0}, and because this matches the normal to the hypersurfaces, we will drop the

frame specific notation ρ{n} = ρ{u} = ρ. For the test-metric, Tαβ is built from Einstein’s equations;

here, for simplicity, we choose to express this Tαβ in the normal frame nα. Finally, for the Bianchi VI

Rosquist and Jantzenmetric, although it describes a tilted perfect fluid, the different terms of Tαβ are

again expressed in the frame nα: then, in this frame, the fluid no longer appears as that of a perfect

fluid.

Then with Maple (Maplesoft, 2019), we have derived the expressions of
(4)R, (3)R, E2

, and B2

listed below. Here, an overhead dot, e.g. v̇ means the proper time derivative of said variable v.

B.1 TheΛ-Szekeresmodels of Barrow and Stein-Schabes
To help compute time derivatives of the metric in Section 5.2.1, we provide here the Hubble scalar

H =
ȧ

a
= H0

√
Ωm0a−3 +ΩΛ0. (B.1)

The hypergeometric function in Eq. (5.6) is the result of the following integral∫
sinh (τ)

cosh (τ)
dτ =

3

5
cosh (τ)

sinh (τ)5/3

cosh (τ)
2F1

Å
5

6
,
3

2
;
11

6
; − sinh (τ)2

ã
. (B.2)

The Λ-Szekeres metric is a solution of Einstein’s equations with dust and Λ: the energy-

momentum tensor takes the form Tαβ = ρuαuβ , with the energy density provided by Eq. (4.19)

and Eq. (5.4). Then the Maplesoft (2019) results for this spacetime are:

(3)R = − 4v1
a2Z

,

(4)R = (3)R+ 6

Å
H2 +

ä

a

ã
+

2

Z

Ä
4HŻ + Z̈

ä
,

E2 =
(v1 + v2)

2

6a4Z2
,

B2 = 0,

(B.3)
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with v1 = ∂x∂xZ = ∂y∂yZ , and v2 = aȧŻ + a2Z̈ , and we use the property ∂x∂yZ = ∂y∂xZ = 0.

In particular, here, the magnetic part of the Weyl tensor is null,Bαβ = 0, because ∂xŻ = ∂yŻ = 0.

Then we also have the invariants I = E2/2 and J = (E2/6)3/2, confirming that I3 = 33J2
:

therefore this is a spacetime of special type. With the null vector base obtained by following the

methodology of Section 2.5.2, we find the Weyl scalars

Ψα = {3Ψ2, 0, Ψ2, 0, 3Ψ2}, (B.4)

withΨ2
2 = E2/24. These are not built with the principal null direction, and, given their expressions,

one can see that they can be further simplified. Indeed, the complex scalars are K = N = 0 and

L = 3Ψ2
2, confirming that we find this spacetime to be of Petrov type D, and we know that in this

case, only Ψ2 is non-zero, if built with the principal null directions. We demonstrate this through

two tetrad rotations, see Section 2.5.2.1, first to makeΨ0 vanish, such that the new scalars are

Ψ̃α = {0, 0, −2Ψ2, 3iΨ2, 3Ψ2}, (B.5)

then to make the new Ψ̃4 vanish, hence the final scalars are

Ψ̂α = {0, 0, −2Ψ2, 0, 0}. (B.6)

This indeed leaves only Ψ̂2 ̸= 0, and it has gained a factor of−2 through these rotations. This is the

same result as Eq. (42) of (Meures and Bruni, 2011).

As expected, we have identified the spacetime to be of type D; however, should E2 = 0, which

is the case if β+ = 0, then it would reduce to an FLRWmetric, i.e. it would be of type O.

TheMaple “PetrovType()" function will identify this spacetime as type I unless it is also provided

with the following definition Z(x, y, z, t) = 1+ β+(z)F(t) +Aβ+(z)(x2 + y2) (without needing

to define β, F or A), it then finds this spacetime to be of type D. For the other spacetimes, the

classification we make by computing the invariants corroborates the classifications made by this

function, where we only need to provide the metric as information.

B.2 A non-diagonal inhomogeneous test metric

With γ = At(−2 +A2t2) the determinant of the spatial metric of Section 5.2.2, we find:

(3)R =
At2

2γ

(
t(∂zA)

2(2 + 3A2t2)− 4γ∂z∂zA
)
,

(4)R =
A

2γ2

(
(2 + 3A2t2)(−2A+ t3(∂zA)

2)− 4t2γ∂z∂zA
)
,

E2{n} =
1

96γ4

(
2A4c22

(
3A2t2 + 2

)
+ c22t

3(∂zA)
2
(
8A3 + t(∂zA)

2
(
A2t2 + 3

))
+ 4γt2∂z∂zA

(
4A3c2 +

(
A2t2 + 3

) (
c2t(∂zA)

2 + γ∂z∂zA
)) )

B2{n} =
5A3t3

32γ4
(∂zA)

2(2 +A2t2)2,

(B.7)

where we simplify these expressions with the following substitution c2 = 2− 3A2t2.
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Then using Einstein’s equations we find Tαβ for a non perfect fluid Eq. (2.41) (Ellis, Maartens,

and MacCallum, 2012):

Tαβ = ρ{n}nαnβ + p{n}γαβ + 2q
{n}
(α nβ) + π

{n}
αβ , (B.8)

with the energy density ρ{n}, pressure p{n}, energy flux q
{n}
α , and anisotropic pressure π

{n}
αβ all

expressed in the normal frame nα. They can be identified following their definitions:

ρ{n} = Tαβnαnβ =
At

4κγ2

(
3A2γ + t2(∂zA)

2(2 + 3A2t2)− 4tγ∂z∂zA
)
,

p{n} =
1

3
γαβT

αβ/3

=
A

12κγ2

(
4A+ 3A5t4 + (2 + 3A2t2)(2A− t3(∂zA)

2) + 4t2γ∂z∂zA
)
,

q{n}α = −γβαTβµnµ =
At∂zA

4κγ2

(
0, At(−6 +A2t2), 2 +A2t2, 2− 7A2t2

)
,

π
{n}
αβ = γαµγβνT

µν − 1

3
γαβγµνT

µν =
1

12κγ2

à
0 0 0 0

0 πxx πxy πxz

0 πxy πyy πyz

0 πxz πyz πzz

í
,

(B.9)

with the factorised components of π
{n}
αβ expressed as below, with c1 = t2(∂zA)

2(2 − 3A2t2) +

2tγ∂z∂zA:

πxx = 16A3t+ (3 +A2t2)c1

πxy = A2(4 + 3A4t4) + 4Atc1

πxz = A2(4 + 3A4t4) +Atc1

πyy = 2A3t(2 + 3A2t2) + (3 +A2t2)c1

πyz = 6At(2−A4t2) + 3c1

πzz = 2A3t(2 + 3A2t2) + (3− 2A2t2)c1.

(B.10)

Then, in computing the invariants to determine the Petrov type (too long to be included here),

we find that I and J do not satisfy the requirements for this spacetime to be special, so it is of Petrov

type I. Note that, should A be a constant along z, then (3)R = B2{n} = 0, and

I3 − 27J2 =
A12c62
215γ10

. (B.11)

Then, at the point in time where c2 = 0, this spacetime would be of type O, with E2{n} = 0.

B.3 Bianchi II Collins-Stewart

Here γ is the γ-law index of the perfect fluid, so the energy-stress tensor takes the form:

Tαβ = ρ{u}((γ − 1)gαβ + γuαuβ) (B.12)
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with ρ{u} given in Section 5.2.3. Then we obtain the following expressions:

(3)R = − s2

8γ2t2

(4)R =
3γ2 − 36γ + 44

8γ2t2
+ (3)R

E2 =
(3γ − 2)2(5γ − 6)2

384γ4t4

B2 =
−3(γ − 2)(3γ − 2)3

128γ4t4
.

(B.13)

The only non-zero Weyl scalar is

Ψ2 =
(3γ − 2)(6− 5γ + 3is)

48γ2t2
, (B.14)

directly obtained with the scheme in Section 2.5.3, without further frame rotations. The invariants

are then I = 3Ψ2
2, J = −Ψ3

2 andK = L = N = 0. Therefore this spacetime is of Petrov type D

for both dust and radiation.

B.4 Bianchi VI tilted model
The spacetime from Section 5.2.4 has the following metric determinant g = −k2t2(1+2s)

, and we

find the following expressions:

(3)R =
−2

k2t2
,

(4)R = (3)R+
1

2t2

(
m2c21 + 4q2 + 12s2

)
,

E2{n} =
1

24k4t4

[
16 + 16k2q2

(
− 2 + k2(q2 + 3c22)

)
+ k2m2c21

(
16 + 4k2m2c21 + k2(11q2 − 18qc2 + 3c22)

)]
,

B2{n} =
9m2c21 + 16c22

8k2t4
,

(B.15)

where we use the parameter substitutions c1 = (q − s+ 1) and c2 = (s− 1).

Although this spacetime follows a γ-law perfect fluid in a tilted frame, we work with the normal

frame nα = {1, 0, 0, 0}, meaning that the stress-energy tensor takes the non-perfect fluid form,

Eq. (2.41), with the following quantities:

ρ{n} =
−1

4κk2t2

(
4 + k2(m2c21 + 4q2 − 4s(s+ 2))

)
,

p{n} =
1

12k2κt2

(
4− k2(3m2c21 + 12q2 + 4s(5s− 2))

)
,

q{n}α =
−1

2κt

(
0, m2c1 + 4q, mc1e

x/ktc1 , 0
)
,

π
{n}
αβ =

1

6κ

à
0 0 0 0

0 πxx πxy 0

0 πxy πyy 0

0 0 0 πzz

í
,

(B.16)
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with the factorised components to the anisotropic pressure:

πxx = −8− 8c2k
2s+m2(4− k2(−6c2q + 3c21m

2 + 3q2 + 11s2 − 14s+ 3)),

πxy =
mex

ktc1
(4− k2(3c21m

2 + 3q2 + 6q + 5s2 − 8s+ 3)),

πyy =
e2x

k2t2c1
(4− k2(3c21m

2 + s(4c1 + 8q))),

πzz =
4t2(q+s−1)

k2e2x
(1 + k2s(3q + s− 1)).

(B.17)

Computing the invariants, we find the spacetime to be of Petrov type I, in particular for γ = 1.22,

I3 − 27J2 ≃ 61.05t12.

B.5 Bianchi IV vacuum plane wave
As described by the title of this spacetime from Section 5.2.5, this is a vacuum solution, so Tαβ =
(4)R = 0, then we find

(3)R = −2/t2, and E2 = B2 = 1/2t4 and the complex scalars are all null:

I = J = K = L = N = 0. Therefore this spacetime is of type N, as can be established by the Weyl

scalars in the null principal directionΨα = {0, 0, 0, 0, t−2}.



C - Constraints, error bars and
convergence

The 3+1 decomposition of Einstein’s field equations (Baumgarte and Shapiro, 2010) provide the

Hamiltonian and momentum constraints, see Section 3.3.3:

H = (3)R+
2

3
K2−2A2−2Λ−2κρ{n} = 0, and Mi = D

{n}
j

Å
Aij − 2

3
γijK

ã
−κq{n}i = 0,

(C.1)

with q{n}i = −γianbTab the momentum density, andD
{n}
j the spatial covariant derivative of γij .

We estimate the accuracy of the initial conditions implemented by quantifying the violation of

these constraints (H orMi
) normalised with their relative energy scales (Mertens, Giblin, and Stark-

man, 2016; Macpherson, 2019):

[H] =

ñÄ
(3)R
ä2

+

Å
2

3
K2

ã2
+
(
2A2

)2
+ (2Λ)2 +

Ä
2κρ{n}

ä2ô1/2
, (C.2)

[M] =

ñ
D

{n}
j (Aij)D

{n}
j (Aj

i ) +

Å−2

3

ã2
γijD

{n}
j (K)D

{n}
i (K) + (−κ)2q{n}iq{n}i

ô1/2
. (C.3)

The momentum constraint is automatically satisfied at first order, so we first focus on the Hamilto-

nian constraint as presented in Fig. (C.1). This enables us to try different methods to set the initial

conditions of the simulation and find the best approach.

Firstly, we consider pure FLRW simulations (Apert = 0) in both the ΛCDM Eq. (4.29) and EdS

Eq. (4.27) models. Their normalised H, domain averaged over the whole simulation box, are pre-

sented as blue lines in Fig. (C.1). In both cases, we find a small error confirming these were imple-

mented correctly.

Secondly, various methods of implementing the perturbation in the initial energy density are

tried with ρ{n} = ρIN . We show the impact of initially setting ρIN up to its first order as ρIN =

ρ̄(1 + δ(1)) using Eq. (6.4), this is the pink curve. Then, we show the impact of including higher

order terms by defining ρIN with the Hamiltonian constraint Eq. (6.12), this is the dotted black line.

Where all terms on the right-hand side of Eq. (6.12) are calculated in full from the definition of γij

andKij , Eq. (6.6) and Eq. (6.7). This shows a significant decrease in the initial error; this perturbation

amplitude even matches the simulations without perturbations.

We highlight the importance of including the higher order terms consistently, with the purple

dashed line, where ρIN is initially defined from the Hamiltonian constraint, but instead of being cal-

culated in full from themetric, the 3-Ricci is provided using only the first order expression, Eq. (4.50).

The error in the resulting simulation matches that of the simulation with only first-order terms. So
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Figure C.1: Domain average violation to the Hamiltonian constraint normalised with its energy scale

of 5 different simulations, versus the redshift z. The initial (IN) amplitude of density contrast δ at
the peak of the over-density (OD) and the presence of Λ in the simulations is specified in the legend.

When δIN, OD = 3 × 10−5
, the initial energy density can be defined as ρIN = ρ̄(1 + δ(1)) (pink

full), or as ρIN = ρHam with R(1) (purple dashed) from theHamiltonian constraint but with first order

3-Ricci scalar, Eq. (4.50). We find that a better definition is ρIN = ρHam (black dotted), calculated in
full from the Hamiltonian constraint using the first order γij andKij , Eq. (6.6) and Eq. (6.7), and the

fully nonlinear 3-Ricci scalar of γij . Here λpert = 1821Mpc and zIN = 302.5 for ΛCDM initially

and λpert = 1206Mpc and zIN = 205.4 otherwise. Error bars, when visible, are indicated as shaded
regions.

the best approach for our simulations corresponds to the dotted black line with ρIN obtained from

the Hamiltonian constraint in full, which is what was used for this project.

The error bars on Fig. (C.1), and throughout, are obtained by using two other simulations of

double grid size each, such that we have three simulations, each of 323, 643, and 1283 data points.

Consider the result f∆x from a simulation with grid size∆x; we have accompanying simulations of

grid size 2∆x and 4∆x each having their respective solution f2∆x and f4∆x. The error on f∆x is

then (Alcubierre, 2008):

ϵ∆x =
f2∆x − f∆x

C − 1
(C.4)

with the convergence

C =
|f4∆x − f2∆x|
|f2∆x − f∆x|

= 2n (C.5)

and n is the order of the FD approximation. Fourth-order schemes are used for the simulation evo-

lution and in post-processing, see Section 3.6.1, Section 5.1.2 and Appendix A.

To check convergence in the simulations, we show in Fig. (C.2) the error in the normalisedHamil-

tonian and momentum constraints.

On the left panels, we plot their absolute value at different quartiles of the grid distribution, how-

ever this could be made more candid by tracking the evolution of the individual data points. Then,

on the right, the average median is considered versus the resolution (Macpherson, Lasky, and Price,

2017), where the dashed lines correspond to the predicted truncation error from the FD schemes,

that is∝ N−n
, indicative of the convergence order.
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Figure C.2: Left: momentum (top) and Hamiltonian (bottom) constraint violation, normalised with

their respective energy scale, measured at different quartiles of the data distribution during the evo-

lution of the simulation. The simulation with Λ is indicated with full lines, while the one without is

indicated with dot-dashed lines. The three momentum constraints i = {1, 2, 3} are plotted with

the same lines, but they are not distinguishable because they overlap. Error bars, when visible, are

indicated as shaded regions. Right: average median of these constraints for simulations of different

resolution (N3
the number of data points) and amplitude of the initial (IN) density contrast at the

peak of the over-density (OD) δIN, OD . When perturbed, the energy density is initially fully defined

from the Hamiltonian constraint. λpert = 1821Mpc and zIN = 302.5 when Λ ̸= 0 initially and

λpert = 1206Mpc and zIN = 205.4 otherwise.

For the Hamiltonian constraint, while the amplitude of the violation may increase as the pertur-

bation amplitude increases, it continues to follow fourth-order convergence, as expected.

For themomentum constraint, while the same could be said for small perturbations, the top right

panel of Fig. (C.2) shows a decreased convergence when δIN, OD = 0.03. Indeed, the momentum

constraint is only satisfied a first order, so in a nonlinear scenario, the solution tends towards a non-

zero solution. However, the top left panel shows that while there is a violation of the momentum

constraint, this does not grow throughout the simulation. The max curve may seem concerning, but

this is because it is amplified by data points whose momentum energy scale is the numerical equiva-

lent of zero; thus, the shape of the curve resembles numerical noise. In computing C , with Eq. (C.5),

we find that the average convergence of the median of the normalised momentum constraint vio-

lation is C ≃ 13.76 for the case with Λ and C ≃ 15.47 for the case without, indicating that this

solution has a 3.7− 3.9 order convergence towards a non-zero solution that does not grow during

the simulation.



D - Numerically Integrating

The average of a scalar ϕ over a certain domainD{n}
on the hypersurface γij is computed as:

⟨ϕ⟩D{n} =
∆x3

V

∑
D{n}

ϕγ1/2 (D.1)

with γ the determinant of the spatial metric in our synchronous-comoving gauge and∆x = ∆y =

∆z are the space coordinate intervals between grid points. V is the proper volume given by

V = ∆x3
∑
D{n}

γ1/2. (D.2)

The proper and comoving lengths along a grid line are calculated by

Lp = ∆x

imax∑
i=0

γ1/6 and Lc = ∆x

imax∑
i=0

1, (D.3)

since ∆x is the comoving spatial coordinate element. In the background, the comoving length is

related to the proper length simply by the scale factor: Lp(t) = a(t)Lc.

Computing Lp and Lc as in Eq. (D.3) is perfectly fine along the vertex direction because this

direction is aligned with the grid. However, this is no longer the case in the face and edge directions,

so a weighted integration is needed:

Lp = ∆x

imax∑
i=0

wγ1/6 and Lc = ∆x

imax∑
i=0

w (D.4)

with the weight w in the range 0 ⩽ w ⩽
√
3. Each data point is in the centre of a cubic grid cell, so

the value of this data point only applies to the section passing through this cell. w ∆x then represents

the comoving length of the section contained in each cell. It is computed by finding the intersection

between the integrated direction and the grid cells and then calculating the length between these

intersection points.

On occasion, we integrate up toK = 0 see Section 6.3.3, or up to a given comoving radius see

Section 6.3.4; in these cases, the last weight to be used is measured between the last intersection and

this boundary point. In both these cases, the boundary point is found using a trilinear interpolation

within this last cell.

The chosen averaging domain in Section 6.3.4 is a comoving sphere. Approximating a sphere

on a grid can be done by only considering the grid points contained within the sphere; however, we

refine this with a weighted integration:

⟨ϕ⟩D{n} =
∆x3

V

∑
D{n}

wϕγ1/2 and V = ∆x3
∑
D{n}

wγ1/2, (D.5)
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with 0 ⩽ w ⩽ 1. Here w ∆x3 is the comoving volume of the part of the cubic grid cell that is

included in the comoving sphere. The weight w is computed with the sphereint code (Munoz,

2023b), where the value of w depends on the number of cubic grid cell vertices contained in the

sphere. If all eight are in the sphere w = 1, and if there are none w = 0. When the cell is partially

within the sphere, we compute the intersecting points of the sphere and the cube edges, approximate

the spherical boundary contained in the cube as a plane, and compute the volume of the correspond-

ing geometrical shape. Most cases take the form of trirectangular tetrahedrons. That is clear when

one cube vertex is in the sphere, but in other cases, the shape is extended to be a trirectangular tetra-

hedron, and then smaller trirectangular tetrahedrons are removed. When four cube vertices are in

the sphere, there is a particular case where a truncated right square prism needs to be considered.
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