
4.92.7

Lightweight Computational
Complexity Stepping Up the NTRU
Post-Quantum Algorithm Using
Parallel Computing

Ghada Farouk Elkabbany, Hassan I. Sayed Ahmed, Heba K. Aslan, Young-Im Cho and

Mohamed S. Abdallah

Special Issue
Asymmetric and Symmetric Study on Algorithms Optimization

Edited by

Prof. Dr. Marcio Basilio and Dr. Valdecy Pereira

Article

https://doi.org/10.3390/sym16010012

https://www.mdpi.com/journal/symmetry
https://www.scopus.com/sourceid/21100201542
https://www.mdpi.com/journal/symmetry/stats
https://www.mdpi.com/journal/symmetry/special_issues/569983474E
https://www.mdpi.com
https://doi.org/10.3390/sym16010012

Citation: Elkabbany, G.F.; Ahmed,

H.I.S.; Aslan, H.K.; Cho, Y.-I.;

Abdallah, M.S. Lightweight

Computational Complexity Stepping

Up the NTRU Post-Quantum

Algorithm Using Parallel Computing.

Symmetry 2024, 16, 12. https://

doi.org/10.3390/sym16010012

Academic Editors: Marcio Basilio,

Valdecy Pereira and Theodore

E. Simos

Received: 1 November 2023

Revised: 12 December 2023

Accepted: 19 December 2023

Published: 21 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Lightweight Computational Complexity Stepping Up the NTRU
Post-Quantum Algorithm Using Parallel Computing

Ghada Farouk Elkabbany 1, Hassan I. Sayed Ahmed 1, Heba K. Aslan 1,2, Young-Im Cho 3,* and

Mohamed S. Abdallah 1,4,*

1 Informatics Department, Electronics Research Institute (ERI), Cairo 11843, Egypt;

gelkabbany@eri.sci.eg (G.F.E.); hassanibrsayed@eri.sci.eg (H.I.S.A.); haslan@nu.edu.eg (H.K.A.)
2 Center of Informatics Science, Faculty of Information Technology and Computer Science, Nile University,

Giza 12588, Egypt
3 Department of Computer Engineering, Gachon University, Seongnam 13415, Republic of Korea
4 DeltaX Co., Ltd., AI Laboratory, 3F, 24 Namdaemun-ro 9-gil, Jung-gu, Seoul 04522, Republic of Korea

* Correspondence: yicho@gachon.ac.kr (Y.-I.C.); sameer@gachon.ac.kr (M.S.A.)

Abstract: The Nth-degree Truncated polynomial Ring Unit (NTRU) is one of the famous post-

quantum cryptographic algorithms. Researchers consider NTRU to be the most important parameter-

ized family of lattice-based public key cryptosystems that has been established to the IEEE P1363

standards. Lattice-based protocols necessitate operations on large vectors, which makes parallel

computing one of the appropriate solutions to speed it up. NTRUEncrypt operations contain a large

amount of data that requires many repetitive arithmetic operations. These operations make it a strong

candidate to take advantage of the high degree of parallelism. The main costly operation that is

repeated in all NTRU algorithm steps is polynomial multiplication. In this work, a Parallel Post-

Quantum NTRUEncrypt algorithm called PPQNTRUEncrypt is proposed. This algorithm exploits

the capabilities of parallel computing to accelerate the NTRUEncrypt algorithm. Both analytical and

Apache Spark simulation models are used. The proposed algorithm enhanced the NTRUEncrypt

algorithm by approximately 49.5%, 74.5%, 87.6%, 92.5%, 93.4%, and 94.5%, assuming that the number

of processing elements is 2, 4, 8, 12, 16, and 20 respectively.

Keywords: post-quantum cryptography; NTRU; parallel computing; Apache Spark

1. Introduction

Cryptography is a major tool for providing the confidentiality of data/information.
Cryptography has evolved from the Caesar cipher, the well-known classical cipher, to the
modern cryptosystems, which are based on modular computations, to quantum computing.
Modern cryptosystems, which are based on modular arithmetic, are subject to a major
threat if quantum computers are invented. This is because quantum computers will be
able to solve computationally hard problems, which represent the strength of the modular
arithmetic ciphers in deterministic time. For example, the Rivest Shamir Adleman (RSA)
algorithm works by generating pairs of public and private keys that are mathematically
related. Therefore, any attempt to guess the private key using the public key by executing
a brute-force attack would require thousands of years using ordinary computers. However,
quantum computers could easily guess the private key from the public key. Digital signature
and encryption algorithms based on public key cryptography will no longer be strong
enough to preserve information secrecy in the quantum computer era [1].

On the other hand, both the symmetric algorithms and hash functions are partially
threatened by quantum computers. The throughput of these algorithms is doubled on quan-
tum algorithms compared to classical computers. Therefore, doubling the key lengths and
hash sizes will result in safe algorithms [2]. This raises the need to invent new algorithms
(post-quantum algorithms) that can resist both classical and quantum computing attacks.

Symmetry 2024, 16, 12. https://doi.org/10.3390/sym16010012 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16010012
https://doi.org/10.3390/sym16010012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-0184-7599
https://orcid.org/0000-0001-7351-625X
https://doi.org/10.3390/sym16010012
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16010012?type=check_update&version=3

Symmetry 2024, 16, 12 2 of 25

In quantum algorithmic development, there are two ground-breaking algorithms
that enable the breaking of public key algorithms. In 1994, Shor proposed an efficient
algorithm based on quantum computation [3,4] for solving discrete logarithm and integer
factorization problems, which is the basis of the security of Elliptic Curve Cryptography
(ECC) and RSA. In addition, in 1996, Grover proposed an O(

√
N)-time quantum algorithm

for functions with N-bit domains [5]. This algorithm, after being implemented on quantum
computers can easily break symmetric key algorithms. To overcome this attack, key sizes
must be doubled to have a similar level of security to the classical computers.

Post-quantum cryptography (PQC) is the science of introducing new encryption
algorithms that are secure against both classical and quantum computers. These algorithms
can be divided into five approaches [6–8]: code-based [9], hash-based [10], multivariate [11],
lattice-based [12,13], and isogeny-based [14] solutions. As will be discussed later, the lattice-
based has the most contributions among the standardized post-quantum algorithms. An
example of lattice-based post-quantum algorithms is NTRU, which was developed in 1996.
Contrary to ECC and RSA, NTRU can withstand attacks against quantum computers. In
addition, it has higher performance compared to both RSA and ECC [15]. The inventors of
NTRU declared that it is two hundred faster than other public key encryption algorithms.
It requires only O(N2) time to encrypt/decrypt a message of length N, while RSA takes
O(N3) time. In addition, it has the following characteristics: it can be easily implemented in
software or hardware, and the storage requirement is small. This makes it suitable for use
in cellular phones, smart cards, and Radio-Frequency Identification Devices (RFIDs).

The main difficulty of NTRU is the computational complexity of polynomial multipli-
cation and vector multiplication. Most of the researchers used traditional algorithms such
as NTT, Montgomery, CRT, and Karatsuba to decrease the complexity of multiplication [16].
With parallel implementation, the system can generate many candidates that cooperate
to execute different polynomial multiplications simultaneously and hence mitigate the
performance slowdown. Investigating the parallelization of polynomial multiplication on
multi-core processors is considered one of the most important research trends at the present
time [17].

In this work, a Parallel Post-Quantum NTRUEncrypt algorithm called PPQNTRUEn-
crypt is proposed. PPQNTRUEncrypt algorithm takes advantage of parallel computation
to expedite the NTRUEncrypt algorithm. In comparison, the analytic model is derived as a
scientific theoretical study to provide understanding and approach to perform results. A
simulation test must be performed to validate the analytical results and to understand the
reality of the method in the way the system behaves. To measure the achievement of the
PPQNTRUEncrypt algorithm, two platforms are used. Whereas the first experiment com-
putes the system performance analytically, the second one calculates it by implementing
the proposed algorithm on the Apache Spark framework. The effect of both system size
and problem size on the conductance of the PPQNTRUEncrypt algorithm is considered.

The rest of the paper is organized as follows: In Section 2, an introduction to the
foremost concepts of the famous post-quantum cryptographic (PQC) schemes and the
important details of the NTRU lattice-based public encryption algorithm are found. In
Section 3, The Parallel Post-Quantum NTRUEncrypt algorithm (PPQNTRUEncrypt) is
discussed in detail. Moreover, Section 4 presents the performance evaluation of the PPQN-
TRUEncrypt algorithm and summarizes its important results, showing the advantages of
using parallel computing. Finally, in Section 5, the conclusions are discussed.

2. Literature Review

In the following subsections, we give a brief description of different post-quantum
cryptographic schemes, NTRU Lattice-based encryption schemes, and a comparison be-
tween NTRU, RSA, and ECC. Then, we mention different parallel computing architectures
used in cryptography.

Symmetry 2024, 16, 12 3 of 25

2.1. Post-Quantum Cryptographic (PQC) Schemes

In the following paragraphs, a brief description of different post-post-quantum cryp-
tographic schemes is illustrated.

• Hash-based cryptography

Hash-based cryptography aims to develop digital signature schemes that are inherent
in their security from the security of cryptographic hash functions, e.g., SHA-3. These
schemes require fewer security assumptions than schemes based on number theory, such
as RSA and DSA. For more information about hash-based cryptography, the reader could
refer to [18]. One algorithm of this category is the Sphimcs+ algorithm [19], which was
chosen as an alternative solution in the result of the third round of the National Institute of
Standards and Technology (NIST) standardization process.

• Code-based cryptography

The security of code-based cryptography [20] depends on the toughness of problems
from coding theory such as syndrome decoding (SD) and learning parity with noise (LPN).
They depend on error-correcting codes to build a one-way function. Their security depends
on the difficulty of decoding a message that includes random errors and recovering the
code structure. An example of this category is the classic McEliece code-based encryption
scheme [10], which was chosen as a qualifier scheme as the result of the third round of the
NIST standardization process.

• Multivariate cryptography

The security of multivariate-based cryptography is based on the difficulty of solving
multivariate systems of equations over a finite field (F). The following algorithms are exam-
ples of multivariate cryptography: Rainbow, TTS, or MPKC schemes. More information
about multivariate cryptography can be found in [21]. Two multivariate-based signature
schemes are selected in the result of the third round of NIST: Rainbow [22] is listed as a
qualifier, and GeMSS [23] is listed as an alternative scheme.

• Lattice-based cryptography

Lattice-based cryptography is considered one of the most promising post-quantum
encryption algorithms for the following reasons. The security is guaranteed since it relies
on well-known lattice problems such as the ring learning with errors (RLWE) problem and
shortest vector problem (SVP) [24]. In addition, it allows powerful cryptographic primitives,
such as fully homomorphic encryption and functional encryption [25]. Furthermore,
new lattice-based cryptographic schemes have become efficient (key exchange protocol
NewHope) [26], and a signature scheme BLISS [27]. Lattice-based cryptography has
the most contributions in the third-round outcome of the NIST standardization process.
Kyber [28], NTRU [29], and SABER [30] lattice-based encryption schemes are selected
as the qualifiers’ schemes. NTRUprime [31] is in the alternative finalist lattice-based
encryption scheme. Dilithium [32] and Falcon [33] lattice-based signature schemes are also
finalist schemes.

• Isogeny-based cryptography

Isogeny-based cryptography uses particular relations between abelian varieties over
finite fields as its main component. It is characterized by relatively small keys. These
schemes rely on supersingular elliptic curve isogenies [14], which could resist quantum
attacks. They are used for digital signatures or key exchange, such as the supersingu-
lar Isogeny Diffie–Hellman (SIDH) scheme [34]. SIKE [35], which is an isogeny-based
encryption scheme, is in the alternative list of NIST third-round outcomes.

NIST is one of the main institutions that are interested in the standardization of post-
quantum algorithms [36]. In 2016, the standardization process began to choose candidates
for post-quantum cryptographic algorithms. The process now is in the third round after
two rounds of evaluations. By 2024, it is expected to announce the winners. In 2016, NIST

Symmetry 2024, 16, 12 4 of 25

published a report on PQC [37], expecting that a quantum computer would be built by
2030. It can break 2000-bit RSA in a few hours. The third-round qualifiers contain four
public-key encryption algorithms and three digital signature algorithms. In addition, it
contains five and four alternative candidates for public key encryption and digital signature
algorithms, respectively. These algorithms are listed in Table 1. From the table, lattice-
based post-quantum technology has the most contributions among the list of standardized
post-quantum algorithms.

Table 1. NIST Standardization Efforts [38].

Post-Quantum
Algorithm Type

Third Round
Finalist

Technology
Alternate

Candidates
Technology

Public Key
Encryption/Key
Encapsulation
Mechanisms

Classic McEliece Code BIKE Code

CRYSTALS
KYBER

Lattice FrodoKEM Lattice

NTRU Lattice HQC Code

SABER Lattice
SIKE Isogeny

NTRU Prime Lattice

Digital Signature
Algorithms

CRYSTALS-
DILITHIUM

Lattice GeMSS
Multivariate
Polynomial

FALCON Lattice PICNIC Other

RAINBOW
Multivariate
Polynomial

SPHIMCS+ RAINBOW

In the literature, numerous papers have undertaken comparisons among various types
of post-quantum cryptography [39–41]. These studies elucidate the main characteristics,
advantages, and disadvantages of these cryptographic approaches. In this present paper,
our focus is on key encapsulation mechanism algorithms. Accordingly, our interest lies
in comparing the following mechanisms: code-based, lattice-based, and isogeny-based
cryptographic algorithms. Table 2 presents the principal characteristics of these algorithms.
However, isogeny algorithms are distinguished by their small key size, rendering them
suitable for low-constrained devices, yet they exhibit a slower operation speed. Conversely,
both code-based and lattice-based algorithms demonstrate a rapid operation speed at the ex-
pense of larger key sizes. Lattice algorithms have an advantage over code-based algorithms
due to their shorter key size, making them more appropriate for low-constrained devices.
Furthermore, the algorithms employed in lattice-based cryptosystems are distinguished
by their simplicity, efficiency, and high parallelizability [42]. The cryptographic protocols
grounded in lattice structures have demonstrated robust security, relying on established
lattice problems such as the shortest vector problem (SVP) and the learning with errors
problem (LWE) [42]. These factors collectively position lattice-based cryptographic schemes
as a dynamic and leading area of exploration in post-quantum cryptography considered
the most prominent and promising.

In the literature, numerous papers have conducted comparisons among lattice-based
post-quantum cryptographic algorithms [42–44]. From these papers, we extract information
for Table 3, which presents a comparative analysis of SABER, CRYSTALS-Kyber, NTRU,
and FrodoKEM post-quantum algorithms. The comparison encompasses key size, CPU
usage, operation speed, and ciphertext length. The table reveals that FrodoKEM exhibits
the least favorable metric values among all other algorithms. Conversely, the SABER
algorithm demonstrates moderate metric values. When comparing NTRU with CRYSTALS-
KYBER, they exhibit similar operation speeds and ciphertext lengths. However, CRYSTALS-
KYBER outperforms NTRU in terms of CPU usage, while NRTU excels in small key sizes
compared to CRYSTAL-KYBER. Notably, a key advantage of NTRU is its commercial

Symmetry 2024, 16, 12 5 of 25

implementation [42], indicating a well-established understanding of its security since its
initial publication in 1996.

Table 2. Comparison among Lattice-based, Code-based, and Isogeny-based Post-Quantum Key

Encapsulation Mechanisms.

Post-Quantum
Algorithm Type

Key Size Operation Speed Algorithms

Lattice Medium Fast

CRYSTALS-KYBER
NTRU
SABER

FrodoKEM
NTRU Prime

Code Large Fast
Classic McEliece

BIKE
HQC

Isogeny Small Slow SIKE

Table 3. Comparison among SABER, CRYSTALS-KYBER, NTRU, and FrodoKEM.

Post-Quantum
Algorithm

Key Size CPU Usage Operation Speed Ciphertext Length

SABER Medium Medium Fast Medium

CRYSTALS-
KYBER

Medium Light Fast Small

NTRU Small High Fast Small

FrodoKEM Large High Slow Large

In the next subsection, a description of the NTRU public encryption algorithm is detailed.

2.2. NTRU Lattice-Based Public Encryption Algorithm

NTRU uses three parameters (N, p, and q). N is used for modulo operation, the
polynomial degree to be less than N. To enhance security, it is preferred that N be a prime
number. On the other hand, p and q are required to be co-prime, and they are used to
minimize the polynomial coefficients. It should be noted that p must be less than q; in
addition, q must be less than N. The recommended parameters of NTRU for different
security levels are shown in Table 4.

The NTRU encryption algorithm has three modules, namely key generation, message
encryption, and message decryption. These modules are described below.

Table 4. Recommended NTRU Parameters [45].

(a) NTRU Parameters

Parameter Description Knowledge

p Small Modulus to reduce coefficients Public

q Large Modulus to reduce coefficients Public

N Number. of coefficients in a polynomial Public

f Polynomial private key Private

g Used in public key generation Private

h Polynomial public key Public

r Random blinding polynomial Private

df Number of coefficients with value 1 in polynomial f Public

Symmetry 2024, 16, 12 6 of 25

Table 4. Cont.

(b) Security Levels for p, q, and N

Security levels

Parameters Highest High Standard Moderate

P 3 3 3 3

q 256 128 128 128

N 503 347 251 167

2.2.1. Key Generation

The first step is to choose two random polynomials, which are used to calculate the
public key (f(y) and g(y)). In f(y), the number of ‘1 s’ coefficients must be greater than the
other coefficients. In g(y), the number of both coefficients ‘1’ and ‘−1’ must be equal. The
next step is to compute the inverse of f(y) modulo q and p with the given properties:

f (y) ∗ fq = 1 mod q (1)

and
f (y) ∗ fp = 1 mod p (2)

In some cases, f(y) does not have an inverse modulo q and p. Thus, another polynomial
f(y) must be randomly chosen to calculate fq and fp. The private key is represented by f(y)
and fp, while the public key Pk is calculated as follows:

Pk = p ∗ (fq ∗ g (y)) mod q (3)

2.2.2. Encryption

To encrypt a message Msg, it is, first, converted into polynomial form with coefficients
in the range of [(p − 1)/2, (p − 1)/2], and the degree must be less than N. A polynomial
r(y) is also selected with equal positive and negative coefficients. The encrypted message
(Msge) is calculated as:

Msge = (r(y) ∗ Pk + Msg)) mod q (4)

2.2.3. Decryption

The following steps are performed to restore Msg. First, Msge is multiplied by the
private key f(y) as follows:

Msgd1 = f(y) ∗ Msge mod q (5)

Then, modulo q is applied on Msgd1 to reduce the coefficients of the polynomial to be
in the range of −p/2 and p/2 as follows:

Msgd2 = Msgd1 mod q (6)

The final step is to compute the original message Msg using fp as follows:

Msg = fp ∗ Msgd2 mod p (7)

It should be noted that all modules used to implement the NTRU algorithm utilize
costly polynomial multiplication. In the next subsection, the performance comparison of
NTRU, RSA, and ECC will be illustrated.

2.2.4. NTRU Security Analysis

NTRU is grounded in the shortest vector problem within a lattice, employing polyno-
mial multiplication. Considered resilient to quantum computer attacks, particularly Shor’s
attack [43], NTRU stands out as a prominent post-quantum cryptosystem. It is designed to
resist various types of attacks, including lattice basis reduction, meet-in-the-middle attacks,
and chosen ciphertext attacks [42]. Ongoing cryptanalysis efforts continually examine

Symmetry 2024, 16, 12 7 of 25

NTRU, leading to the development of various attack strategies [42]. Some detailed attacks,
as per [42], include:

Brute-Force Attack: This approach entails testing all possible values of the private key
until the correct one is identified. While generally impractical for NTRU due to its large
key space.

Key Recovery Attack: This attack exploits vulnerabilities in the key-generation process
of NTRU. For instance, if the arbitrary number generator used for creating the confidential
key is found to be fragile, a malicious user may recover the private key.

Side-Channel Attack: All lattice-based algorithms suffer from side-channel attacks.
Side-channel attacks encompass timing attacks, power analysis attacks, and fault attacks.
Physical accessibility to the device running the implementation is required for such attacks.
It has to be noted that the parallel implementation of NTRU inherits the susceptibility
of side-channel attacks. Researchers employ various techniques, including parameter
selection, randomization, and error-correcting codes, to safeguard NTRU against these
threats and prevent the leakage of secret data and information.

2.3. Comparison between NTRU, RSA, and ECC

In this subsection, a comparison between NTRU, RSA, and ECC public encryption
algorithms is given. Table 5 shows the security level bits for these algorithms. The table
shows that the security level of NTRU-251 is comparable with RSA, which has a key
length of 1024 bits, and ECC, which has a key length of 160. Table 6 shows that NTRU is
considerably faster than both RSA and ECC. In addition to being faster than RSA and ECC,
the NTRU has the advantage of being a post-quantum encryption algorithm. Finally, Table 7
shows that both the encryption and decryption modules of NTRU consume more time than
the key generation module. Therefore, decreasing the time consumed in these modules
will enhance the algorithm’s performance. As noticed from the algorithm’s description, the
costliest operation is polynomial multiplication. In the present paper, we present a parallel
design to achieve a higher encryption/decryption throughput.

Table 5. PKC Standard Comparison.

Security Levels
(Bits)

RSA ECC NTRU-N

80 RSA-1024 ECC 160-223 NTRU-251

112 RSA-2048 ECC 224-255 NTRU-347

128 RSA-3072 ECC 256-383 NTRU-397

192 RSA-7680 ECC 384-511 NTRU-587

256 RSA-15360 ECC 512 NTRU-787

Table 6. A Comparison of NTRUEncrypt, RSA, and the Elliptic Curves Cryptosystem on an 800 MHz

Pentium III Computer [46].

NTRU 251 RSA 1024 ECC 163

Public key (bits) 2008 1024 164

Private key (bits) 251 1024 163

Plaintext block (bits) 160 702 163

Ciphertext block (bits) 2008 1024 163

Encryption speed (blocks/sec)
Encryption speed (Mbits/sec)

22,727
3.6

1280
0.9

458
0.075

Encryption Speed (blocks/sec)
Encryption speed (Mbits/sec)

10,869
1.7

110
0.077

702
0.11

Symmetry 2024, 16, 12 8 of 25

Table 7. A Comparison of Key Generation, Message Encryption, and Message Decryption for both

NTRUEncrypt and RSA [47].

Key Generations Encryption Decryption

NTRU167 90 msecs 21 s 20 s

RSA512 5 s 3.5 s 34 s

NTRU263 150 msecs 31 s 30 s

RSA1024 10 s 5.8 s 100 s

NTRU503 420 msecs 56 s 55 s

RSA2048 50 s 10.8 s 345 s

2.4. Parallel Computing in Cryptography

Parallelism is a valuable technique that enhances the efficiency and performance of
cryptographic systems by enabling more effective execution of cryptographic operations.
It is well recognized that parallel computing plays a pivotal role in cryptography, con-
tributing to improved efficiency, speed, and scalability. Recent applications of parallel
computing in cryptography include parallelized key generation, parallel encryption and
decryption, parallel password cracking, parallel hash function computation, and more. Fur-
thermore, parallel processing can be implemented in various post-quantum cryptography
algorithms, such as parallelized lattice-based cryptography, parallel implementations of
hash-based signatures, parallel strategies for multivariate cryptography, parallel execution
of code-based cryptography, and others. It is crucial to acknowledge that the choice of
specific parallelization techniques may vary depending on the unique characteristics and
requirements of each cryptographic algorithm. Within this subsection, several instances of
recent cryptographic applications that leverage parallel implementation are provided as
examples [48–50]. To elaborate further on specific examples:

• Parallelizing Encryption and Decryption Protocols: Parallel computing has been uti-
lized to accelerate the encryption and decryption processes in various cryptographic
algorithms. In [48], Aldahdooh presents a parallel implementation and analysis of sev-
eral encryption algorithms (such as Advanced Encryption Standard (AES), Blowfish,
Twofish, Data Encryption Standard (DES), Triple DES, and Serpent). Parallel process-
ing is employed to enhance efficiency, and the experiments demonstrate significant
improvement compared to sequential implementations. The algorithms are evaluated
based on encryption time and speedup.

• Parallelizing Quantum Key Distribution (QKD): QKD is a fundamental application of
quantum cryptography. Wu et al., in their work [49], propose a parallel simulation with
an optimized scheme for QKD networks, specifically addressing network partitioning.

• Parallelizing Lattice-based Cryptography: Wan et al., in their work [50], presented an
NTT box based on the NVIDIA AI accelerator, Tensor Core. After that, they presented
a high-performance implementation of CRYSTALS-Kyber with the suggested NTT
box and achieved considerable performance improvement. This work illustrated the
tremendous potential of Tensor Core in LBC acceleration.

The above examples serve to emphasize the potential advantages of parallel imple-
mentations in enhancing the speed and efficiency of cryptographic systems. As previously
mentioned in the previous sections, this research is concerned with accelerating the polyno-
mial multiplication operation of the NTRU Lattice-based cryptography. The nature of the
NTRUEncrypt operations makes it one of the appropriate applications for the use of data
parallelism [51]. Several researchers have discussed the great potential of using the ability
of parallel computing to speed up the NTRUEncrypt algorithm. However, most of the
researchers used GPUs in their work due to their high speed compared to CPUs [52,53]. The
GPU’s high cost has forced others to use CPUs (with the concept of high-speed computing),
especially in the case of small devices such as smartphones, which need high speed in
security and privacy operations without having to raise their prices. In this work, parallel

Symmetry 2024, 16, 12 9 of 25

computing is used to uplift the performance of the NTRUEncrypt algorithm using multi-
processing architecture. The proposed Parallel Post-Quantum NTRUEncrypt algorithm
called PPQNTRUEncrypt helps the system to generate many nominees that can cooperate
in executing different polynomial multiplications simultaneously and hence amelioration
the NTRUEncrypt algorithm behavior. The next section discusses the PPQNTRUEncrypt
in detail.

3. The Proposed Parallel Post-Quantum NTRU Encrypt Algorithm (PPQNTRUEncrypt)

With the development of high-performance technologies, different cryptographic
schemes have been presented to protect information. Nowadays, Post-Quantum Cryp-
tography (PQC) protocols have been recommended to confront quantum algorithms that
threaten public key cryptography. Post-Quantum NTRUEncrypt is one of the well-known
PQC platforms. By using the characteristics of parallel computing, a Parallel Post-Quantum
NTRUEncrypt algorithm called PPQNTRUEncrypt is proposed. PPQNTRUEncrypt is an
amended NTRUEncrypt algorithm that performs parallelization of the large computational
NTRUEncrypt operations (such as matrix generation, matrix arithmetic, and polynomial-
based operations) to accelerate the NTRUEncrypt algorithm.

Since the computational complexity of polynomial multiplication is the bottleneck of
NTRU, by using parallel computation, the polynomial multiplication operations must be
accelerated to improve the performance of the NTRU. To speed up this protocol, a bi-level
parallel design is proposed, which is based on two levels of parallelism: the first level
is based on computing different polynomial multiplication operations in parallel, while
the second level is used to enhance the execution time of each polynomial multiplication
operation.

3.1. Parallel NTRUEncrypt Model

Lattice-based protocols need different operations that must be executed on large
vectors; these operations are suitable for parallel computing. The PPQNTRUEncrypt
algorithm is designed to implement both encryption and decryption steps in parallel
computer architecture. In addition, it is working on balancing the load between different
processing elements (PEs).

Assumptions

In general, for parallel models, both the machine structure and the description of the
application/operation/job are the two components that must be considered.

• The Structure of the Parallel Machine:

A distributed memory parallel structure with “M” nodes/processing elements (PEs)
{PE0, PE1, . . ., PEi, . . ., PEM-1} is considered. The inter-processor communication between
different PEs is done via message passing). PE0 is suggested as the master PE and is
accountable for the system control. All other PEs, together with the master PE0, contribute
to the task execution. An Intel® Core™ i3-2328M CPU@ 2.20 GHz 2.20 GHz (Intel, Santa
Clara, CA, USA) machine is used to execute the NTRU sequentially. For both analytical and
Apache Spark simulation models and to ensure fairness in the comparison, each node/PE of
this simulated parallel machine has the same specifications as the aforementioned machine.

• Operation description: Polynomial multiplication:

In NTRUEncrypt, each encryption and decryption operation has more than one poly-
nomial multiplication operation. Polynomial multiplication is a process for multiplying
two or more polynomials. In this operation, the terms of the 1st polynomial are multiplied
by the 2nd polynomial to get the resultant polynomial. To multiply polynomials, the
coefficient is multiplied with a coefficient, and the variable is multiplied with a variable
using exponent rules. Each polynomial multiplication operation can be divided into small
processes that can be executed in parallel, as shown in Figure 1, (Appendix A has extra
information and details about the figures).

Symmetry 2024, 16, 12 10 of 25

• Operation description: Polynomial multiplication:
In NTRUEncrypt, each encryption and decryption operation has more than one pol-

ynomial multiplication operation. Polynomial multiplication is a process for multiplying
two or more polynomials. In this operation, the terms of the 1st polynomial are multiplied
by the 2nd polynomial to get the resultant polynomial. To multiply polynomials, the co-
efficient is multiplied with a coefficient, and the variable is multiplied with a variable us-
ing exponent rules. Each polynomial multiplication operation can be divided into small
processes that can be executed in parallel, as shown in Figure 1, (Appendix A has extra
information and details about the figures).

Figure 1. Directed Acyclic Graph (DAG) of the polynomial multiplication operation.

The function that is needed to be parallelized is the polynomial multiplication (Z.Y)
where:

Y = y0 + y1x + …….+ yN−2xN−2 + yN−1xN−1 (8)

Z = z0 + z1x + …….+ zN−2xN−2 + zN−1xN−1 (9)

To multiply Z.Y

Y.Z = (z0.Y) + (z1x.Y) + …….+ (zN−2xN−2.Y) + (zN−1xN−1.Y). (10)

3.2. Parallelizing the NTRU Encryption and Decryption Models
In the current paper, the authors suppose that “N” is the number of tasks that will be

executed in parallel (N: the coefficients of the polynomial multiplication operation as
shown in Equations (8)–(10)). Moreover, it is assumed that all the “M” PEs are homoge-
nous. There are two levels of parallelism:

3.2.1. Level One: Coarse-Grained Level of Parallelization (N ≥ M)
In case the number of tasks “N” is greater than or equal to the number of PEs “M”,

each PE will execute “N/M” tasks. The total sequential time “Ts” that is needed for one
polynomial multiplication is calculated as follows:

Ts = N * Ti + tadd + tmod (11)

where tadd is the time needed for the addition operation, and tmod is the time needed for
modular operation.

Moreover, the overall parallel (execution) time of the problem when using the paral-
lel system “Tpar” is calculated using the following equation:

+= (12)

where the total computational time Tcomp is calculated as:

Add + Mod

Inputs B & A

Initialization

……

…

……
b0 . A b1 . A

bi . A bN-1 . A

Figure 1. Directed Acyclic Graph (DAG) of the polynomial multiplication operation.

The function that is needed to be parallelized is the polynomial multiplication (Z.Y)
where:

Y = y0 + y1x + + yN−2xN−2 + yN−1xN−1 (8)

Z = z0 + z1x + + zN−2xN−2 + zN−1xN−1 (9)

To multiply Z.Y

Y.Z = (z0.Y) + (z1x.Y) + + (zN−2xN−2.Y) + (zN−1xN−1.Y). (10)

3.2. Parallelizing the NTRU Encryption and Decryption Models

In the current paper, the authors suppose that “N” is the number of tasks that will
be executed in parallel (N: the coefficients of the polynomial multiplication operation as
shown in Equations (8)–(10)). Moreover, it is assumed that all the “M” PEs are homogenous.
There are two levels of parallelism:

3.2.1. Level One: Coarse-Grained Level of Parallelization (N ≥ M)

In case the number of tasks “N” is greater than or equal to the number of PEs “M”,
each PE will execute “N/M” tasks. The total sequential time “Ts” that is needed for one
polynomial multiplication is calculated as follows:

Ts = N * Ti + tadd + tmod (11)

where tadd is the time needed for the addition operation, and tmod is the time needed for
modular operation.

Moreover, the overall parallel (execution) time of the problem when using the parallel
system “Tpar” is calculated using the following equation:

Tpar = Tcomp + Tov (12)

where the total computational time Tcomp is calculated as:

Tcomp = max
{

Tcomp(PEi)
}

0 ≤ i ≤ M − 1 (13)

0 ≤ i ≤ M − 1
In addition, the overhead time “Tov” can be computed using the following equation:

Tov = Tc + Tg + Tapp (14)

where:
Tc: The duration consumed in the memory operations.
(accessing, contention, and synchronization).
Tg: The time spent in data exchange between different PEs.
Tapp: The time wasted due to application dependency.
In the case of “M” divides “N” (N/M = integer), each PE executes the same number of

tasks, and the total execution time Tpar is calculated as follows:

Tpar = [(N/M) * Ti + tadd + tmod] + Tov (15)

Symmetry 2024, 16, 12 11 of 25

On the other hand, using Equation (13), when “M” does not divide “N” (N/M ̸=
integer). For the first (N − ⌊N/M⌋ × M) PEs, each PE calculates ⌈N/M⌉ tasks, and for the
remaining PEs, each PE executes ⌊N/M⌋ tasks:

Tcomp = [((Quotient (N/M))+1) * Ti + tadd + tmod] (16)

Using Equation (15), Tpar is given by:

Tpar = [((Quotient (N/M))+1) * Ti + tadd + tmod] + Tov (17)

3.2.2. Level Two: Medium-Grained Level of Parallelism (N < M)

This level is also called load balancing. In case “N” is lesser than “M”, some PEs will
be inactive, which leads to load imbalance. To solve this problem, the load is reallocated
between PEs, and then more than one “PE” cooperates to execute one task. This solution
is called load balancing (LB). LB techniques are categorized as centralized or decentral-
ized/distributed techniques [54,55]. In centralized techniques, the global load information
is collected at a master PE, which controls the load redistribution based on the information
that is exchanged with other PEs. Furthermore, in distributed techniques, the balancing
protocol is imitation in every “PE,” and the immigration process could be started by any
“PE”. In NTRUEncryption, every multiplication operation is split into small tasks and then
executed by more than one PE. Unfortunately, this may lead to communication overhead
due to the need for data exchange. When the number of iterations increases, resorting to
load balancing becomes necessary. In this case, the decentralized load-balancing technique
is appropriate to be used. Besides, using a cluster of PEs for each operation is the best
choice to reduce this overhead and achieve load balancing.

A pseudo-code that illustrates the internal mechanism of the PPQNTRUEncrypt
algorithm and the specific implementation of parallel processing of two polynomial multi-
plications is given in Algorithm 1:

Algorithm 1. Internal mechanism of the PPQNTRUEncrypt and Parallel processing of two
polynomial multiplications

Assume that:
There are “M” processing elements (PEs) {PE0, PE1, . . ., PEi, . . ., PEM-1}

• PE0 is the master PE and is accountable for the system control
• From PE1 to PEM-1, together with the master, contributes to the task execution

Input: NTRU parameters (Polynomial-Y, Polynomial-Z)

1. Divided each Polynomial Multiplication operation into “N” homogenous tasks
2. if N ≥ M

if N/M = integer
For loop (1 to N)

For loop (1 to M)
Each PE assigned a task

if N/M ̸= integer
For loop (1 to (N − ⌊N/M⌋ × M))

Each PE assigned ⌈N/M⌉ tasks
For loop ((N − ⌊N/M⌋ × M) to N)

Each PE assigned ⌊N/M⌋ tasks
if N < M

Load balancing must be taken into account

3. Each PE sends its results to the master PE0
4. PE0 aggregates the data from other PEs multiplication operation
5. PE0 calculates mod value of the aggregated values
6. Finally, PE0 calculates the total value of the multiplication operation

Output: Multiplication (Y.Z)
These steps repeated for each Polynomial Multiplication operation

Symmetry 2024, 16, 12 12 of 25

4. Methods and Experiments

Parallel computing stands out as an environment for computation-intensive appli-
cations. Performance is an important key factor in determining the achievement of any
parallel system. Therefore, analyzing and evaluating the performance of the system is
an imperative feature of parallel computing research. Experimental, analytical modeling,
and simulation are the most widely used methods to evaluate the performance of parallel
systems. Experimental models implement real or synthetic workloads (benchmarks) and
measure their performance on a real machine. Analytical models are mathematical repre-
sentations of the system; they are modeling modelling approaches that aim to provide an
idea of system performance. Simulation models exploit computer resources to represent
and imitate the behavior of the application in a controlled manner. While analytic anal-
ysis supports the proposed design theoretically, simulation analysis shows whether this
design can be physically implementable or not. Therefore, both simulation and analytical
results are needed [56,57]. This work justifies the need for an integrated model combining
the advantages of both analytical and simulation models to evaluate the performance of
parallel systems. Both analytical and simulation approaches are used to evaluate system
performance.

To evaluate the PPQNTRUEncrypt model, various performance metrics such as par-
allel time, speedup, efficiency, and the degree of improvement, the improvement in the
execution time, system scalability, and model validation are presented [58,59]:

• Parallel/execution time “Tpar”: The total time to complete executing the whole prob-
lem when using the parallel system, as shown in Equation (12).

• Speedup “SP”: The unit measuring the ability of the parallel system to speed up
problem-solving compared with the serial/sequential one (Sp = TS/Tpar).

From Equation (11), the total sequential time “Ts” is calculated as:

Ts = Z.Y = (N ∗ Ti) + € (18)

where € = tadd + tmod.

• Efficiency “EP”: The average participation of each PE (E = Sp/M)
• The improvement in the execution time, which is achieved through using “M” PEs, is

given by the ratio. ratio =
Ts−Tpar

Ts

The authors assumed that the parameter set of the NTRU (N, q, p) = (503, 256, 3),
(347, 128, 3), (251, 128, 3) and (167, 128, 3) are used. Table 8 shows the time needed to
execute one polynomial multiplication sequentially with different values of N = 167, 251,
347, and 503 on the selected machine.

Table 8. Time to execute one polynomial multiplication sequentially (N = 503, 347, 251, and 167).

N
The Time to Multiply
One Element (bi.A)

The Time to Execute 100 × 100 Polynomial
Multiplication

503 38.25 19,239.8 s

347 29.21 10,135.4 s

251 22.42 5627.4 s

167 16.53 2760.5 s

4.1. Parallel Computing Using the Analytical Model

An analytic model serves as an effective approach for the study and analysis of parallel
systems. In Section 3, a layered parallel architecture was put forward, which effectively
leverages the parallelism of the NTRU polynomial operations and provides robust support
for them. Moreover, the layered architecture segregates the functionality of each layer,
resulting in improved execution speed of the NTRU protocol. A detailed representation

Symmetry 2024, 16, 12 13 of 25

of the proposed analytical model can be found in Equations (11)–(17). By applying these
equations to varying values of “N and M”, the NTRUEncrypt algorithm is enhanced. The
outcomes of these evaluations will be thoroughly discussed in Section 4.3.

4.2. Parallel Computing Using Apache Spark Framework

Apache Spark is a widely utilized, quick, and efficient system for processing massive
amounts of data in both business and academics. When it comes to high-performance big
data analytics, it is regarded as the finest option. Spark Core uses YARN and Hadoop to
distribute resources [60,61]. Additionally, it can retrieve data from the Hadoop Distributed
File System (HDFS), which is used to read and store data and partition it into Resilient
Distributed Datasets (RDDs). Due to its in-memory data processing, Spark performs
substantially faster than other platforms like MapReduce (Google’s parallel programming
methodology that uses Hadoop). Additionally, Spark can enable batch, interactive, iterative,
and streaming computations inside the same runtime as a general system [62]. Furthermore,
Apache Spark is an open-source framework that processes data in real time. Regarding the
aforementioned characteristics, Spark is advantageous for complicated applications that
make use of many computing techniques, such as cryptography. Consequently, Spark is one
of the data analytics frameworks that may be utilized to speed up the NTRU cryptography
algorithm. To facilitate in-memory processing, Apache Spark uses RDD rather than the
conventional read from and write to the disc. To make Spark a fault-tolerant framework
without the need to write to the disc after each operation, RDD is a read-only data structure
kept in memory. It also offers outstanding batch and stream processing abilities. There are
numerous distinguishing qualities in Apache Spark:

Speed: Spark makes use of RDD, which provides memory-based data storage.

• Usability: Spark supports programming in any language, including Python, Java,
Scala, and R.

• Advanced analytics are possible, including data streaming and more difficult analytics
like machine learning and graph algorithms.

• Real-time stream processing takes advantage of the micro batching [63] method, in
which data streams are processed as a collection of extremely small batches, which the
Spark batch engine then treats as a regular task.

Apache Spark’s architecture, which consists of a master node with a driver program
in charge of calling an application’s main program, is another characteristic. As seen in
Figure 2, the cluster manager first handles resource distribution. The job is then divided
up into several jobs and sent to the worker nodes. An RDD can be allocated among many
workers and cached as soon as it is formed in the Spark context, as shown in Figure 2 [64].
These tasks are then returned to the Spark context. Tasks are carried out by the executor,
and its lifespan is identical to Spark. The number of worker nodes must be increased in
order for the jobs to be further separated into more logical chunks, which will improve
system performance.

workers and cached as soon as it is formed in the Spark context, as shown in Figure 2 [64].
These tasks are then returned to the Spark context. Tasks are carried out by the executor,
and its lifespan is identical to Spark. The number of worker nodes must be increased in
order for the jobs to be further separated into more logical chunks, which will improve
system performance.

Figure 2. Spark framework architecture [65].

4.2.1. Programming Model and Core Techniques of Spark.
The RDD abstraction model, which is an immutable collection of records divided

among several computers, is the foundation upon which Spark is built, as was discussed
in the previous subsection [66]. Through coarse-grained transformations, each RDD is cre-
ated from data in external, reliable storage systems (like HDFS) or from other RDDs (in-
cluding map, filter, and group by key). Each RDD’s transformation information is logged
in order to create a lineage dataset, which provides fault tolerance. When a node failure
causes a data partition of an RDD to be lost, the RDD can recompute that partition using
all of the information that was available when it was first computed from other RDDs. It’s
important to note that the transformation is a lazy operation that just defines a new RDD
rather than instantly calculating it. Spark provides additional action operations, including
count, collect, save, and reduce, which either return a value or export the RDD’s data to
an external storage system in order to start the computation of the RDD. Additionally,
users can decide whether to persist an RDD’s data in memory or on a disc. One driver
master process is created for each Spark application, and this driver master process is in
charge of scheduling tasks. Jobs, stages, and tasks are used in a hierarchical scheduling
process, where stages are smaller groups of tasks separated from interdependent jobs,
which mimic the map and reduce phases of a MapReduce job. It contains two schedulers,
DAGScheduler and TaskScheduler. The DAGScheduler calculates a DAG (Directed Acy-
clic Graph, which is used to represent any task, job, or stage) of stages for a job and keeps
track of both the materialized RDDs and stage outputs. The low-level scheduler
TaskScheduler, on the other hand, is in charge of gathering and sending tasks from each
stage to the cluster for execution.

Benefits of using the Apache Spark framework
• Easy to use: Spark offers more than 80 high-level, simple operators (such as map,

reduce, reduceByKey, and filter) that simplify the design of parallel computing
frameworks without requiring users to consider the underlying complex parallel

Figure 2. Spark framework architecture [65].

Symmetry 2024, 16, 12 14 of 25

4.2.1. Programming Model and Core Techniques of Spark

The RDD abstraction model, which is an immutable collection of records divided
among several computers, is the foundation upon which Spark is built, as was discussed
in the previous subsection [66]. Through coarse-grained transformations, each RDD is
created from data in external, reliable storage systems (like HDFS) or from other RDDs
(including map, filter, and group by key). Each RDD’s transformation information is logged
in order to create a lineage dataset, which provides fault tolerance. When a node failure
causes a data partition of an RDD to be lost, the RDD can recompute that partition using
all of the information that was available when it was first computed from other RDDs. It’s
important to note that the transformation is a lazy operation that just defines a new RDD
rather than instantly calculating it. Spark provides additional action operations, including
count, collect, save, and reduce, which either return a value or export the RDD’s data to an
external storage system in order to start the computation of the RDD. Additionally, users
can decide whether to persist an RDD’s data in memory or on a disc. One driver master
process is created for each Spark application, and this driver master process is in charge
of scheduling tasks. Jobs, stages, and tasks are used in a hierarchical scheduling process,
where stages are smaller groups of tasks separated from interdependent jobs, which mimic
the map and reduce phases of a MapReduce job. It contains two schedulers, DAGScheduler
and TaskScheduler. The DAGScheduler calculates a DAG (Directed Acyclic Graph, which
is used to represent any task, job, or stage) of stages for a job and keeps track of both
the materialized RDDs and stage outputs. The low-level scheduler TaskScheduler, on the
other hand, is in charge of gathering and sending tasks from each stage to the cluster for
execution.

Benefits of using the Apache Spark framework.

• Easy to use: Spark offers more than 80 high-level, simple operators (such as map,
reduce, reduceByKey, and filter) that simplify the design of parallel computing frame-
works without requiring users to consider the underlying complex parallel computing
problems like data partitioning, task scheduling, and other issues. Additionally, by
providing comparable APIs, Spark enables users to create user-defined functions in a
variety of computer languages, including Java, Scala, and Python.

• Quicker than other frameworks like MapReduce: Spark has proven to be quicker than
MapReduce in batch processing thanks to its in-memory computing.

• Support for computation: Spark is an integrated system that offers batch, interactive,
iterative, and streaming processing options. Additionally, it offers a stack of high-
level APIs and a sophisticated DAG execution engine for complex DAG applications.
Additionally, it provides specialized tools for a variety of applications, such as Shark,
Spark SQL, MLlib, and Graphx.

• Flexible running assistance. When running on YARN or Mesos, Spark can operate
independently or share the cluster with other computing systems like MapReduce.
Additionally, it offers APIs, for consumers to set up and use cloud computing (e.g.,
Amazon EC2). Additionally, it may allow access to a variety of data sources, such as
HDFS, Tachyon, HBase, Cassandra, and Amazon S3.

4.2.2. Model Validation

Model validation is the crucial process of ensuring that the model fulfills its intended
purpose. Validating a parallel model involves scrutinizing its performance, accuracy,
and efficiency through various ways such as speedup, efficiency, scalability, comparative
analysis, accuracy, sensitivity analysis, and more. Furthermore, analytical solutions can be
leveraged for validation of the simulator model, especially when the theoretical foundation
behind the problem is well-established, facilitating a direct comparison of the simulation
results with the analytical solution.

To validate a computation problem in Apache Spark, various techniques can be
applied depending on specific requirements. A common approach to validate results, such
as polynomial multiplication in Spark, is to compare them with a known result. In cases

Symmetry 2024, 16, 12 15 of 25

where the correct outcome is already known for a small-scale computation problem, cross-
referencing the Spark-computed result with the predetermined one is standard practice.
Manually executing the computation for a modest input serves as a benchmark to assess
the accuracy of Spark’s output [67].

4.3. Discussion of Results

Figures 3–6 show the system performance when using the PPQNTRUEncrypt with
respect to the performance when using one machine. The above metrics are used to evaluate
the system’s performance. In addition, a comparison of the system’s performance when
using both the analytical model and Apache Spark is done to verify the applicability of the
PPQNTRUEncrypt algorithm, as shown in Figures 3–6).

The experiments were conducted using Apache Spark, an open-source framework
for big data processing, within the Databricks cloud platform. The configuration of
Apache Spark involved optimizing various settings and parameters, with the specified
spark_version being ‘10.4.x-scala2.12’. Key parameters, such as the number of worker
nodes and executors, were configured. The Spark cluster was specifically configured with
‘cluster_id’: ‘0626-104331-u8vxnmc6’. Throughout the experiments, the number of nodes in
the cluster was systematically varied, reaching up to 20 worker nodes, as observed in the
results. The experiments assumed that encryption or decryption operations, based on the
NTRU algorithm, were performed more than 10,000 times per iteration. This signifies an
increase in the count of connected devices within the network. The findings underscore
the necessity for a distributed processing framework like Apache Spark, demonstrating its
scalability to accommodate a growing number of connected elements in the network.

A pseudo-code of two polynomial multiplications is given in Algorithm 2:

Algorithm 2. Two polynomial multiplications

Input:

NTRU parameters (Polynomial1, Polynomial2)

1. Spark Configurationconf = SparkConf().setAppName(“PolynomialMultiplication”)

2. for numNodes in range(1, 21)

3. Set the number of worker nodes in the configuration

4. Conf.setMaster(f“local[{numNodes}]”)

5. Create Spark Context sc = SparkContext(conf)

6. for numIterations in range(1, 10,001):

7. Convert Arrays to RDDs

poly1RDD = sc.parallelize([(exp, coeff) for coeff, exp in enumerate(polynomial1)])

poly2RDD = sc.parallelize([(exp, coeff) for coeff, exp in enumerate(polynomial2)])

8. productRDD = poly1RDD.cartesian(poly2RDD) \
.map(lambda ((exp1, coeff1), (exp2, coeff2)): (exp1 + exp2, coeff1 ∗ coeff2)) \
.reduceByKey(lambda x, y: x + y) \
.sortByKey()

9. Collect and Format Results

10. product = “ + “.join([f”{coeff}*xˆ{exp}” for exp, coeff in productRDD.collect()])

11. Print the Result for each set of worker nodes and iteration

12. Stop the Spark Context

Output:

Multiplication

Symmetry 2024, 16, 12 16 of 25

Algorithm 2. Two polynomial multiplications
Input :

“ ”

” ”

∗
“ “ ” ”

Output:
 Multiplication

(a) (b)

0

10

20

30

40

50

60

70

80

90

1 3 5 7 9 11 13 15 17 19

T
im

e
 i

n
 s

e
c.

No. of Processing Nodes

Execution time (secs)

Analytic

spark

0

4

8

12

16

20

1 3 5 7 9 11 13 15 17 19

sp
e

e
d

u
p

No. of Processing Nodes

Speedup

Analytic

spark

(c) (d)

(e)

Figure 3. The Performance of the PPQNTRUEncrypt for p = 3, q = 256, and N = 503.

0

1

2

3

4

5

1 3 5 7 9 11 13 15 17 19

E
ff

ic
ie

n
cy

No. of Processing Nodes

Efficiency

analytic

spark

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19

Im
p

.

No. of processing Nodes

Improvment Degree

Analytic

spark

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19

D
A

S

No. of Processing Nodes

Model Validation

Figure 3. The Performance of the PPQNTRUEncrypt for p = 3, q = 256, and N = 503.

Symmetry 2024, 16, 12 17 of 25
Figure 3. The Performance of the PPQNTRUEncrypt for p = 3, q = 256, and N = 503.

(a)

(b)

0

10

20

30

40

50

60

70

80

90

1 3 5 7 9 11 13 15 17 19

T
im

e
 i

n
 s

e
cs

.

No. of Processing Nodes

Execution time (secs)

Analytic

spark

0

2

4

6

8

10

12

14

16

18

1 3 5 7 9 11 13 15 17 19

sp
e

e
d

u
p

No.of Processing Nodes

Speedup

Analytical

spark

(c) (d)

(e)

Figure 4. The Performance of the PPQNTRUEncrypt for p = 3, q = 128, and N = 347.

0

1

2

3

4

5

1 3 5 7 9 11 13 15 17 19

E
ff

ic
ie

n
cy

No of Processing Nodes

Efficiency

Analytic

spark

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 3 5 7 9 11 13 15 17 19

IM
P

No of Processing Nodes

Improvment Degree

Analytical

spark

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 3 5 7 9 11 13 15 17 19

D
A

S

No. of processing Nodes

Model Validation

Figure 4. The Performance of the PPQNTRUEncrypt for p = 3, q = 128, and N = 347.

Symmetry 2024, 16, 12 18 of 25
Figure 4. The Performance of the PPQNTRUEncrypt for p = 3, q = 128, and N = 347.

(a) (b)

0

10

20

30

40

50

60

70

80

90

1 3 5 7 9 11 13 15 17 19

T
im

e
 i

n
 s

e
cs

.

No. of Processing Nodes

Execution time (secs)

Analytic

spark

0

2

4

6

8

10

12

14

16

18

sp
e

e
d

u
p

No. of Processing Nodes

Speedup

Analytical

spark

(c) (d)

(e)

Figure 5. The Performance of the PPQNTRUEncrypt for p = 3, q = 128, and N = 251.

0

1

2

3

4

5

1 3 5 7 9 11 13 15 17 19

E
ff

ic
ie

n
cy

No of Processing Nodes

Efficiency

Analytic

spark

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 3 5 7 9 11 13 15 17 19

IM
P

No. of Processing Nodes

Improvment Degree

Analytical

spark

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 3 5 7 9 11 13 15 17 19

D
A

S

No of Processing Nodes

Model Validation

Figure 5. The Performance of the PPQNTRUEncrypt for p = 3, q = 128, and N = 251.

Symmetry 2024, 16, 12 19 of 25

(a) (b)

(c) (d)

(e)

0

10

20

30

40

1 3 5 7 9 11 13 15 17 19

Ti
m

e
in

 se
cs

.

No. of Processing Nodes

Execution time (secs)

Analytic
spark

0

5

10

15

20

1 3 5 7 9 11 13 15 17 19

sp
ee

du
p

No. of Processing Nodes

Speedup

Analytic
spark

0

0.5

1

1.5

2

2.5

3

1 3 5 7 9 11 13 15 17 19

Ef
fe

cie
nc

y

No. of Processing Nodes

Efficency

Analytical

spark

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19

Im
p.

No. of Processing Nodes

Improvment degree

Analytical
spark

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 3 5 7 9 11 13 15 17 19

DA
S

No. of Processing Nodes

Model Validation

Figure 6. The Performance of the PPQNTRUEncrypt for p = 3, q = 128, and N = 167.

Symmetry 2024, 16, 12 20 of 25

By observing the above figures, the next interpretations can be recognized:

• Figures 3–6 show that the PPQNTRUEncrypt considerably reduces the total time for
completing the NTRUEncrypt cryptography algorithm, which makes it suitable for
cryptography algorithms (by parallelizing polynomial multiplication).

• From Figures 3a, 4a, 5a and 6a, it is noted that when the number of PEs increases, the
total parallel/execution time decreases regardless of the parameter set. This is clear
when using both analytical and Spark implementation. That achieves the scalability
characteristics of the PPQNTRUEncrypt algorithm.

• Figures Figures 3b, 4b, 5b and 6b show that the speedup increases when the number
of PEs increases for both analytical and Spark implementation. Moreover, the system
efficiency decreases unrelated to the parameter set, as shown in Figures 3c, 4c, 5c and 6c.
These figures show that efficiency is affected by the escalation of the PEs number. That
is to say, when the number of PEs increases, the system efficiency decreases, which
leads to unstable system efficiency. To solve this problem, the load must be reallocated
between different PEs. This ascends the need to split each polynomial multiplication
operation into parts (sub-tasks). Therefore, more than one PE works together to
execute one polynomial multiplication operation. In this case, the overhead time due
to inter-processor communication increases (because of the need to exchange large
amounts of data). Therefore, the total parallel/execution time increases. For that
reason, it is not preferable to resort to a load-balancing solution except in the case of a
large value of “N”.

• Figures 3d, 4d, 5d and 6d show that for both analytical and Spark models, the degree
of parallel time improvement increases when the number of PEs increases regardless
of the parameter set.

• In order to validate the Apache Spark model, a comparison between the performance
of the system using the analytical model and its performance using Apache Spark
is performed. This compassion is shown in Figures 3e, 4e, 5e and 6e. The results
indicated that the difference in the percentage of system performance improvement
when using the analytical model and Apache Spark (Difference between analytical
and Spark (DAS)) was very small and did not exceed 2%. (it ranges from 2% to 0.2%).
It is observed that this difference decreases when the number of PEs (M) increases.
Furthermore, this percentage decreases as the number of tasks (N) increases.

• Experimental results demonstrate that achieving significant system performance im-
provement requires a maximum of twenty processing elements (PEs). Beyond this
threshold, the performance gains become economically and hardware-wise insignifi-
cant. In other words, the rate of improvement becomes economically and hardware-
wise insignificant. Therefore, to ensure practicality, the proposed model suggests
limiting the number of PEs to twenty, making it suitable for deployment in small
devices like smartphones. Consequently, the authors establish a boundary on the
number of PEs, specifically when applying the proposed model to compact devices
such as smartphones.

• Adding extra nodes to a Spark cluster can initially enhance performance by increasing
parallelism. However, there is a saturation point where the returns start diminishing.
Once the number of worker nodes exceeds a certain threshold (specifically, twenty
worker nodes), adding extra nodes may not yield significant performance improve-
ments. In fact, it could introduce coordination overhead among the nodes.

• In summary, the findings affirm the effectiveness of employing distributed processing
through big data analytics platforms for cryptographic techniques. Specifically, the
PPQNTRUEncrypt model in this study utilizes the Apache Spark platform. This
is particularly relevant due to the increasing number of connected nodes and the
simultaneous encryption and decryption tasks. It can be inferred that the volume of
required computational workload, such as polynomial multiplication commonly found
in the cryptographic techniques (specifically NTRUEncrypt in this study), significantly
increases, potentially involving hundreds of concurrent instances. Furthermore, the

Symmetry 2024, 16, 12 21 of 25

ability of the algorithm to operate in real-time becomes essential to accommodate the
expanding number of nodes in the environment.

4.4. Limitations

Cryptographic algorithms often involve computationally intensive operations, such
as encryption and decryption, which can benefit from parallel processing to enhance per-
formance and efficiency. To achieve optimal efficiency, concurrency must be integrated
into software development. This integration enables the comprehensive utilization of the
architecture found in distributed processing systems. Emphasizing the significance of
conducting a thorough algorithm analysis beforehand is crucial when employing multi-
processor technologies to prevent runtime problems such as synchronization conditions,
communication overhead, or attempting to parallelize an inherently impossible algorithm.
Parallelism in software is a powerful tool that must be utilized appropriately to yield
optimal results and facilitate the creation of more efficient software [68].

Apache Spark distributed processing framework offers significant advantages in terms
of scalability and parallelism. In this work, when implementing the NTRU cryptography
algorithm using Apache Spark, specific challenges arise in the encryption and decryption
operations. One significant challenge is the communication overhead that arises when data
is distributed, and processing is coordinated across multiple nodes. This overhead can
impact system performance due to the frequent data exchanges involved in encryption
and decryption operations. Experimental results indicate that the optimal number of
PEs for achieving significant system performance improvement is twenty. Beyond this
value, the gains in performance become negligible, considering the associated cost and size
implications. Furthermore, distributing sensitive information introduces another challenge,
namely security risks.

To address these challenges in the future, efforts should be directed toward refining
communication protocols, enhancing security mechanisms, and developing encryption
algorithms optimized for distributed processing. These advancements aim to mitigate
overhead and achieve more efficient and secure distributed cryptography algorithms.

5. Conclusions

Public key cryptography can be considered one of the essential protocols in protecting
the key exchange between two parties due to its ability to provide secure communication
between these two parties. NTRU is a public key cryptographic algorithm that has become
popular recently due to its ability to resist attacks from quantum computers. Polynomial
multiplication is the core of many NTRU algorithms, such as NTRUEncrypt cryptography,
since it contains a huge number of computational operations, which makes it preferable
to be parallelized. In this work, a Parallel Post-Quantum NTRUEncrypt algorithm called
PPQNTRUEncrypt is proposed. This algorithm uses the skills of parallel computing to
speed up the NTRUEncrypt algorithm, by executing polynomial multiplication operations
in parallel. Different parameter sets (N, q, p) are explored on a multiprocessor architecture
using both analytical and Apache Spark platforms. The implementation results show
that utilizing the PPQNTRUEncrypt algorithm enhanced the NTRUEncrypt algorithm by
approximately 49.5%, 74.5%, 87.6%, 92.5%, 93.4%, and 94.5%, assuming that the number of
processing elements is 2, 4, 8, 12, 16 and 20 respectively.

For future research, we can explore the application of our model to other lattice-based
cryptographic protocols. Since the primary focus of our paper is to expedite polynomial
multiplication—a core operation in all lattice-based cryptosystems, including LWE and
Ring LWE. Another aspect of improvement is to investigate the security risks associated
with both serial and parallel implementations of lattice-based cryptographic protocols.

Author Contributions: Conceptualization, G.F.E., H.I.S.A. and H.K.A.; Methodology, G.F.E., H.I.S.A.

and H.K.A.; Software, G.F.E., H.I.S.A. and H.K.A.; Validation, G.F.E., H.I.S.A., H.K.A. and M.S.A.;

Formal analysis, G.F.E., H.I.S.A., H.K.A. and M.S.A.; Writing—original draft, G.F.E., H.I.S.A. and

H.K.A.; Writing—review & editing, G.F.E., H.I.S.A., H.K.A. and M.S.A.; Visualization, G.F.E., H.I.S.A.,

Symmetry 2024, 16, 12 22 of 25

H.K.A. and M.S.A.; Supervision, G.F.E., H.I.S.A., H.K.A., Y.-I.C. and M.S.A.; Project administration,

Y.-I.C. All authors have read and agreed to the published version of the manuscript.

Funding: This paper is supported by Korean Agency for Technology and Standard under Ministry of

Trade, Industry and Energy in 2023, project numbers are K_G012002236201, K_G012002073401 and

K_G012002234001.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

This appendix is an extra information section that contains details about the figures’
Titles and Legend:

• Figure 1: Directed Acyclic Graph (DAG) of the polynomial multiplication operation.

A directed acyclic graph (DAG) represents the polynomial multiplication operation in
a graph structure without any cycles. The DAG represents the step-by-step multiplication
process. Each node in the graph represents a multiplication operation between two terms,
and the edges represent the flow of the computation. The DAG structure allows for
efficient computation of polynomial multiplication by eliminating redundant operations
and utilizing intermediate results.

• Figure 2: Spark framework architecture.

The Spark framework architecture follows a distributed computing model in which
there is a master node and multiple slave nodes. The master node is responsible for
managing the distributed computing tasks and coordinating the execution of jobs on the
slave nodes.

Here is an overview of the master and slave architecture in Spark:

- Master Node: The master node is the central coordinator of the Spark application.
It is responsible for dividing the application into tasks and distributing them to the
different slave nodes for execution. The master node also tracks the progress of tasks
and collects the results from each slave node. The master node generally runs on a
dedicated machine.

- Slave Nodes: The slave nodes are worker machines that execute the tasks assigned
by the master node. Each slave node typically runs multiple executor processes
that perform the actual computations. These executor processes are responsible for
processing the data in parallel and communicating with the master node.

The tasks are divided into smaller units called partitions, and these partitions are
distributed across the available slave nodes. Each partition is processed by a single ex-
ecutor process on a slave node, and the results are merged at the master node to form the
final output.

• Figure 3: The Performance of the PPQNTRUEncrypt for p = 3, q = 256 and N = 503.

Figure 3 shows the performance analysis results of the analytical method and dis-
tributed processing (Spark) method for the PPQNTRUEncrypt for p = 3, q = 256, and
N = 503. Figure 3a shows the results of the execution time analysis for the two methods.
Figure 3b shows the speedup of the two methods against the number of processing nodes.
Figure 3c shows the efficiency of the model analysis based on the two methods. Figure 3d
shows the degree of improvement in using distributed processing analytically and Spark
against the number of processes. Figure 3e shows the error decreasing against the number
of analytical processing using distributed processing and Spark.

• Figure 4: The Performance of the PPQNTRUEncrypt for p = 3, q = 128 and N = 347.

Figure 4 shows the performance analysis results of the analytical method and dis-
tributed processing (Spark) method for the PPQNTRUEncrypt for p = 3, q = 128, and
N = 347. Figure 4a shows the results of the execution time analysis for the two methods.

Symmetry 2024, 16, 12 23 of 25

Figure 4b shows the speedup of the two methods against the number of processing nodes.
Figure 4c shows the efficiency of the model analysis based on the two methods. Figure 4d
shows the degree of improvement in using distributed processing analytically and Spark
against the number of processes. Figure 4e shows the error decreasing against the number
of analytical processing using distributed processing and Spark.

• Figure 5: The Performance of the PPQNTRUEncrypt for p = 3, q = 128 and N = 251.

Figure 5 shows the performance analysis results of the analytical method and dis-
tributed processing (Spark) method for the PPQNTRUEncrypt for p = 3, q = 128, and
N = 251. Figure 5a shows the results of the execution time analysis for the two methods.
Figure 5b shows the speedup of the two methods against the number of processing nodes.
Figure 5c shows the efficiency of the model analysis based on the two methods. Figure 5d
shows the degree of improvement in using distributed processing analytically and Spark
against the number of processes. Figure 5e shows the error decreasing against the number
of analytical processing using distributed processing and Spark.

• Figure 6: The Performance of the PPQNTRUEncrypt for p = 3, q = 128 and N = 167.

Figure 6 shows the performance analysis results of the analytical method and dis-
tributed processing (Spark) method for the PPQNTRUEncrypt for p = 3, q = 128, and
N = 167. Figure 6a shows the results of the execution time analysis for the two methods.
Figure 6b shows the speedup of the two methods against the number of processing nodes.
Figure 6c shows the efficiency of the model analysis based on the two methods. Figure 6d
shows the degree of improvement in using distributed processing analytically and Spark
against the number of processes. Figure 6e shows the error decreasing against the number
of analytical processing using distributed processing and Spark.

References

1. Balamurugan, C.; Singh, K.; Ganesan, G.; Rajarajan, M. Code-based Post-Quantum Cryptography. Preprints 2021, 2021040734.

[CrossRef]

2. Wang, L.; Zhang, K.; Wang, J.; Cheng, J.; Yang, Y.; Tang, S.; Yan, D.; Tang, Y.; Liu, Z.; Yu, Y.; et al. Experimental Authentication of

Quantum Key Distribution with Post-Quantum Cryptography. Npj Quantum Inf. 2021, 7, 67. [CrossRef]

3. Nielsen, M.; Chuang, I. Quantum Computation and Quantum Information. Phys. Today 2002, 54, 60. [CrossRef]

4. Shor, P. Algorithms for Quantum Computation: Discrete Logarithms and Factoring. In Proceedings of the 35th Annual Symposium

on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; IEEE Computer Society: Washington, DC, USA,

1994; pp. 124–134.

5. Grover, L. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings of the 28th Annual ACM Symposium on

Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; pp. 212–219.

6. Buchmann, J.; Lauter, K.; Mosca, M. Postquantum Cryptography-State of the Art. IEEE Secur. Priv. 2017, 15, 12–13. [CrossRef]

7. Umana, V. Post Quantum Cryptography. Ph.D. Thesis, Technical University of Denmark, Kongens Lyngby, Denmark, 2011.

8. Wikipedia. Post-Quantum Cryptography. Available online: https://en.wikipedia.org/w/index.php?title=Post-quantumcryptogr-

aphy&oldid=999863701 (accessed on 12 December 2023).

9. McEliece, R. A Public-Key Cryptosystem Based on Algebraic. Coding Thv 1978, 4244, 114–116.

10. Merkle, R. Secrecy, Authentication, and Public Key Systems; Computer Science Series; UMI Research Press: Ann Arbor, MI, USA,

1982.

11. Patarin, J. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families of Asymmetric Algorithms.

In Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques, Saragossa, Spain,

12–16 May 1996; pp. 33–48.

12. Hoffstein, J.; Pipher, J.; Silverman, J. NTRU: A ring-based public key cryptosystem. In International Algorithmic Number Theory

Symposium; Springer: Berlin/Heidelberg, Germany, 1998; pp. 267–288.

13. Regev, O. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. J. ACM (JACM) 2009, 56, 34. [CrossRef]

14. Jao, D.; Feo, L. Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies. PQCrypto 2011, 7071,

19–34.

15. Kamal, A.; Ahmad, K.; Hassan, R.; Khalim, K. NTRU Algorithm: Nth Degree Truncated Polynomial Ring Units. In Functional

Encryption, EAI/Springer Innovations in Communication and Computing; Springer: Cham, Switzerland, 2021. [CrossRef]

16. El-Hassane, L.; Azize, A. Boosted Performances of NTRUencrypt Post-Quantum Cryptosystem. J. Cyber Secur. Mobil. 2021, 10,

725–744. [CrossRef]

17. Mansouri, F. On the Parallelization of Integer Polynomial Multiplication. Master’s Theses, The School of Graduate and Postdoc-

toral Studies, The University of Western Ontario, London, ON, Canada, 2014.

https://doi.org/10.20944/preprints202104.0734.v1
https://doi.org/10.1038/s41534-021-00400-7
https://doi.org/10.1119/1.1463744
https://doi.org/10.1109/MSP.2017.3151326
https://en.wikipedia.org/w/index.php?title=Post-quantumcryptography&oldid=999863701
https://en.wikipedia.org/w/index.php?title=Post-quantumcryptography&oldid=999863701
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1007/978-3-030-60890-3_6
https://doi.org/10.13052/jcsm2245-1439.1045

Symmetry 2024, 16, 12 24 of 25

18. Butin, D. Hash-based signatures: State of play. IEEE Secur. Priv. 2007, 15, 37–43. [CrossRef]

19. Bernstein, D.; Hülsing, A.; Kölbl, S.; Niederhagen, R.; Rijneveld, J.; Schwabe, P. The SPHINCS+ Signature Framework; Report

2019/1086; Cryptology ePrint Archive: 2019, University of California: San Diego, CA, USA.

20. Joachim, R. An Overview to Code Based Cryptography. 2016. Available online: https://hkumath.hku.hk/~ghan/WAM/Joachim.

pdf (accessed on 12 December 2023).

21. Ding, J.; Petzoldt, A. Current state of Multivariate Cryptography. IEEE Secur. Priv. 2017, 15, 28–36. [CrossRef]

22. Chen, M.; Ding, J.; Kannwischer, M.; Patarin, J.; Petzoldt, A.; Schmidt, D.; Yang, B. Rainbow Signature. Available online:

https://www.pqcrainbow.org/ (accessed on 12 December 2023).

23. Casanova, A.; Faueère, J.; Macario-Rat, G.; Patarin, J.; Perret, L.; Ryckeghem, J. GeMSS: A Great Multivariate Short Signature.

Available online: https://www-polsys.lip6.fr/Links/NIST/GeMSS.html (accessed on 12 December 2023).

24. Chi, D.; Choi, J.; Kim, J.; Kim, T. Lattice Based Cryptography for Beginners; Report 2015/938; Cryptology ePrint Archive: 2015;

University of California: San Diego, CA, USA.

25. Lepoint, T. Design and Implementation of Lattice-Based Cryptography. Ph.D. Thesis, Ecole Normale Euérieure de Paris—ENS,

Paris, France, 2014.

26. Alkim, D.; Ducas, L.; Pöppelmann, T.; Schwabe, P. Post-Quantum Key Exchange—A New Hope; Report 2015/1092; Cryptology

ePrint Archive: University of California, San Diego, CA, USA, 2015.

27. Ducas, L.; Durmus, A.; Lepoint, T.; Lyubashevsky, V. Lattice Signatures and Bimodal Gaussians; Report 2013/383; Cryptology ePrint

Archive: University of California, San Diego, CA, USA, 2013.

28. Bos, J.; Ducas, L.; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schanck, J.; Schwabe, P.; Seiler, G.; Stehlé, D. CRYSTALS—Kyber: A

CCA-Secure Module-Lattice-Based KEM; Report 2017/634; Cryptology ePrint Archive: University of California, San Diego, Ca,

USA, 2017.

29. Chen, C.; Danba, O.; Hoffstein, J.; Hülsing, A.; Rijneveld, J.; Saito, T.; Schanck, J.; Schwabe, P.; Whyte, W.; Xagawa, K.; et al.

NTRU: A Submission to the NIST Post-Quantum Standardization Effort. Available online: https://ntru.org/ (accessed on 12

December 2023).

30. D’Anvers, J.; Karmakar, A.; Roy, S.; Vercauteren, F. Saber: Module-LWR Based Key Exchange, CPA-Secure Encryption and CCA-Secure

KEM; Report 2018/230; Cryptology ePrint Archive: University of California, San Diego, CA, USA, 2018.

31. Bernstein, D.; Chuengsatiansup, C.; Lange, T.; Vredendaal, C. NTRU Prime: Reducing Attack Surface at Low Cost; Report 2016/461;

Cryptology ePrint Archive: University of California, San Diego, CA, USA, 2016.

32. Ducas, L.; Lepoint, T.; Lyubashevsky, V.; Schwabe, P.; Seiler, G.; Stehle, D. CRYSTALS—Dilithium: Digital Signatures from Module

Lattices; Report 2017/633; Cryptology ePrint Archive: University of California, San Diego, CA, USA, 2017.

33. Fouque, P.; Hoffstein, J.; Kirchner, P.; Lyubashevsky, V.; Pornin, T.; Prest, T.; Ricosset, T.; Seiler, G.; Whyte, W.; Zhang, Z. Falcon:

Fast-Fourier Lattice-Based Compact Signatures over NTRU. Available online: https://www.di.ens.fr/~prest/Publications/falcon.

pdf (accessed on 12 December 2023).

34. Supersingular Isogeny Diffie–Hellman Key Exchange (SIDH). Available online: https://en.wikipedia.org/wiki/Supersingular_

isogeny_key_exchange (accessed on 12 December 2023).

35. Costello, C.; Longa, P.; Naehrig, M. Efficient Algorithms for Supersingular Isogeny Diffie-Hellman. In Proceedings of the Annual

International Cryptology Conference, Santa Barbara, CA, USA, 14–18 August 2016.

36. Post-Quantum Cryptography|CSRC. Available online: https://csrc.nist.gov/projects/post-quantum-cryptography/post-

quantum-cryptography-standardization (accessed on 12 December 2023).

37. Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray Perlner, and Daniel Smith-Tone, Report on Post-Quantum

Cryptography; Technical Report NISTIR 8105; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2016.

38. Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody,

Rene Peralta, Ray Perlner, Angela Robinson, and Daniel Smith-Tone, Status Report on the Second Round of the NIST Post-Quantum

Cryptography Standardization Process; Technical Report NISTIR 8309; National Institute of Standards and Technology: Gaithersburg,

MD, USA, 2020.

39. Ahn, J.; Kwon, H.-Y.; Ahn, B.; Park, K.; Kim, T.; Lee, M.-K.; Kim, J.; Chung, J. Toward Quantum Secured Distributed Energy

Resources: Adoption of Post-Quantum Cryptography (PQC) and Quantum Key Distribution (QKD). Energies 2022, 15, 714.

[CrossRef]

40. Kumar, M. Post-quantum cryptography Algorithm’s standardization and performance analysis. Array 2022, 15, 100242. [CrossRef]

41. Dam, D.-T.; Tran, T.-H.; Hoang, V.-P.; Pham, C.-K.; Hoang, T.-T. A Survey of Post-Quantum Cryptography: Start of a New Race.

Cryptography 2023, 7, 40. [CrossRef]

42. Sabani, M.E.; Savvas, I.K.; Poulakis, D.; Garani, G.; Makris, G.C. Evaluation and Comparison of Lattice-Based Cryptosystems for

a Secure Quantum Computing Era. Electronics 2023, 12, 2643. [CrossRef]

43. Kumar, A.; Ottaviani, C.; Gill, S.S.; Buyya, R. Securing the future internet of things with post-quantum cryptography. Secur. Priv.

2022, 5, e200. [CrossRef]

44. Septien-Hernandez, J.-A.; Arellano-Vazquez, M.; Contreras-Cruz, M.A.; Ramirez-Paredes, J.-P. A Comparative Study of Post-

Quantum Cryptosystems for Internet-of-Things Applications. Sensors 2022, 22, 489. [CrossRef] [PubMed]

https://doi.org/10.1109/MSP.2017.3151334
https://hkumath.hku.hk/~ghan/WAM/Joachim.pdf
https://hkumath.hku.hk/~ghan/WAM/Joachim.pdf
https://doi.org/10.1109/MSP.2017.3151328
https://www.pqcrainbow.org/
https://www-polsys.lip6.fr/Links/NIST/GeMSS.html
https://ntru.org/
https://www.di.ens.fr/~prest/Publications/falcon.pdf
https://www.di.ens.fr/~prest/Publications/falcon.pdf
https://en.wikipedia.org/wiki/Supersingular_isogeny_key_exchange
https://en.wikipedia.org/wiki/Supersingular_isogeny_key_exchange
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://doi.org/10.3390/en15030714
https://doi.org/10.1016/j.array.2022.100242
https://doi.org/10.3390/cryptography7030040
https://doi.org/10.3390/electronics12122643
https://doi.org/10.1002/spy2.200
https://doi.org/10.3390/s22020489
https://www.ncbi.nlm.nih.gov/pubmed/35062450

Symmetry 2024, 16, 12 25 of 25

45. Tata, P.; Narumanchi, H.; Emmadi, N. Analytical study of implementation issues of NTRU. In Proceedings of the International

Conference on Advances in Computing, Communications and Informatics (ICACCI), Delhi, India, 24–27 September 2014; pp.

700–707. [CrossRef]

46. Karbasi, A.; Atani, S.; Atani, R. PairTRU: Pairwise Non-commutative Extension of The NTRU Public key Cryptosystem. Int. J. Inf.

Secur. Sci. 2018, 7, 11–19.

47. D’Souza, R. The NTRU Cryptosystem: Implementation and Comparative Analysis; George Mason University: Fairfax, VA, USA, 2001.

48. Aldahdooh, R. Parallel Implementation and Analysis of Encryption Algorithms. Master’s Thesis, Al-Azhar University-Gaza,

Faculty of Engineering & Information Technology, Gaza, Gaza Strip. April 2018.

49. Tallapally, S.; Manjula, B. Suitable encrypting algorithms in Parallel Processing for improved efficiency. IOP Conf. Ser. Mater. Sci.

Eng. 2020, 981, 022017. [CrossRef]

50. Wan, L.; Zheng, F.; Fan, G.; Wei, R.; Gao, L.; Wang, Y.; Lin, J.; Dong, J. A Novel High-Performance Implementation of CRYSTALS-

Kyber with AI Accelerator. In European Symposium on Research in Computer Security, (ESORICS 2022): Computer Security—ESORICS;

Springer: Cham, Switzerland, 2022; pp. 514–534.

51. Kamal, A.A.; Youssef, A.M. Enhanced Implementation of the NTRUEncrypt Algorithm Using Graphics Cards. In Proceedings of

the 1st International Conference on Parallel, Distributed and Grid Computing (PDGC-2010), Solan, India. 28–30 October 2010; pp.

168–174.

52. Dai, W.; Schanck, J.; Sunar, B.; Whyte, W.; Zhang, Z. NTRU modular lattice signature scheme on CUDA GPUs. In Proceedings of

the 2016 International Conference on High Performance Computing & Simulation (HPCS), Innsbruck, Austria, 18–22 July 2016.

[CrossRef]

53. Wong, X.-F.; Goi, B.-M.; Lee, W.-K.; Phan, R.C.-W. Performance Evaluation of RSA and NTRU over GPU with Maxwell and Pascal

Architecture. J. Softw. Netw. 2017, 201–220. [CrossRef]

54. Law, M.; Monagan, M. A parallel implementation for polynomial multiplication modulo a prime. In PASCO ‘15: Proceedings of the

2015 International Workshop on Parallel Symbolic Computation, Bath, UK, 10–12 July 2015; ACM Digital Library: New York, NY, USA,

2015; pp. 78–86. [CrossRef]

55. Amit, C.; Gurvinder, S. Analysis & Integrated Modeling of the Performance Evaluation Techniques for Evaluating Parallel Systems; CSC

Journals: Tulsa, OK, USA, 2008.

56. Jain, R. The Art of Computer Systems Performance Analysis; Wiley: Hoboken, NJ, USA, 1991.

57. Tang, S.; He, B.; Yu, C.; Li, Y.; Li, K. A Survey on Spark Ecosystem for Big Data Processing. arXiv 2018. [CrossRef]

58. Hennessy, J.; Patterson, D. Computer Architecture: A Quantitative Approach; Morgan Kaufmann: Cambridge, MA, USA, 2003.

59. Rasslan, M.; Elkabbany, G.; Aslan, H. New Generic Design to Expedite Asymmetric Cryptosystems using Three-level Parallelism.

Int. J. Netw. Secur. (IJNS) 2018, 20, 371–380.

60. Foldi, T.; von Csefalvay, C.; Perez, N. JAMPI: Efficient Matrix Multiplication in Spark Using Barrier Execution Mode. Big Data

Cogn. Comput. 2020, 4, 32. [CrossRef]

61. Park, T.; Seo, H.; Kim, J.; Park, H.; Kim, H. Efficient Parallel Implementation of Matrix Multiplication for Lattice-Based

Cryptography on Modern ARM Processor. Secur. Commun. Netw. 2018, 2018, 7012056. [CrossRef]

62. Jangla, G.; Amne, D. Development of an Intrusion Detection System based on Big Data for Detecting Unknown Attacks. Int. J.

Adv. Res. Comput. Commun. Eng. 2015, 4, 229–232.

63. Ellingwood, J. Hadoop, Storm, Samza, Spark, and Flink: Big Data Frameworks Compared. 2016. Available online: https://www.

digitalocean.com/community/tutorials/hadoopstorm-samza-spark-and-flink-big-data-frameworks-compared (accessed on 12

December 2023).

64. Deshai, N.; Sekhar, B.V.D.S.; Venkataramana, S. Mllib: Machine learning in apache spark. Int. J. Recent Technol. Eng. 2019, 8, 45–49.

65. Kumar, G. Evaluation Metrics for Intrusion Detection Systems—A Study. Int. J. Comput. Sci. Mob. Appl. 2014, 2, 11–17.

66. Kattemolle, J. Short introduction to Quantum Computing. 2017. Available online: https://www.kattemolle.com/

KattemolleShortIntroToQC.pdf (accessed on 12 December 2023).

67. Apache Software Foundation. Apache Spark Documentation. Available online: https://spark.apache.org/docs/latest/ (accessed

on 12 December 2023).

68. Mochurad, L.; Shchur, G. Parallelization of Cryptographic Algorithm Based on Different Parallel Computing Technologies. In

Proceedings of the Symposium on Information Technologies & Applied Sciences (IT&AS’2021), Bratislava, Slovakia, 5 March 2021.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ICACCI.2014.6968468
https://doi.org/10.1088/1757-899X/981/2/022017
https://doi.org/10.1109/HPCSim.2016.7568376
https://doi.org/10.13052/jsn2445-9739.2017.10
https://doi.org/10.1145/2790282.2790291
https://doi.org/10.48550/arXiv.1811.08834
https://doi.org/10.3390/bdcc4040032
https://doi.org/10.1155/2018/7012056
https://www.digitalocean.com/community/tutorials/hadoopstorm-samza-spark-and-flink-big-data-frameworks-compared
https://www.digitalocean.com/community/tutorials/hadoopstorm-samza-spark-and-flink-big-data-frameworks-compared
https://www.kattemolle.com/KattemolleShortIntroToQC.pdf
https://www.kattemolle.com/KattemolleShortIntroToQC.pdf
https://spark.apache.org/docs/latest/

	Introduction
	Literature Review
	Post-Quantum Cryptographic (PQC) Schemes
	NTRU Lattice-Based Public Encryption Algorithm
	Key Generation
	Encryption
	Decryption
	NTRU Security Analysis

	Comparison between NTRU, RSA, and ECC
	Parallel Computing in Cryptography

	The Proposed Parallel Post-Quantum NTRU Encrypt Algorithm (PPQNTRUEncrypt)
	Parallel NTRUEncrypt Model
	Parallelizing the NTRU Encryption and Decryption Models
	Level One: Coarse-Grained Level of Parallelization (N M)
	Level Two: Medium-Grained Level of Parallelism (N < M)

	Methods and Experiments
	Parallel Computing Using the Analytical Model
	Parallel Computing Using Apache Spark Framework
	Programming Model and Core Techniques of Spark
	Model Validation

	Discussion of Results
	Limitations

	Conclusions
	Appendix A
	References

