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Abstract

In recent years, Weyl semi-metals have attracted a lot of interest in topological
condensed matter, for instance for their significant potential application in quan-
tum electronics, as the coupling between Weyl semi-metals and superconductivity,
either intrinsically in the material or at the interface of a heterostructure, gives rise
to a new type of topological superconductivity, which could be used to perform
quantum computation operations free from decoherence.

In this thesis, we investigate the low temperature magneto-transport properties of
trigonal-PtBi,, a layered material, both in the presence of quantum confinement
(exfoliated nano-structures) and in its absence (macro-structures). We report band
structure calculations showing that trigonal-PtBi, is a type-I Weyl semi-metal
with multiple bands at the Fermi level. Shubnikov-de-Haas oscillations in macro-
structures confirm the contribution to transport of carriers from multiple pockets,
and magneto-transport measurements show an unusual angular dependence of the
magnetoresistance with the field, which might be a manifestation of the large
anisotropy of the topological band. We also report the existence of a large planar
Hall effect in nano-structures, which is one of the predicted manifestations of Weyl
physics.

At very low temperature, below 1K, trigonal-PtBi, becomes superconducting. We
investigate the superconducting state in both macro- and nano-structures, and
find that quantum confinement in nano-structures makes the superconductivity
become two-dimensional. This result is confirmed by the characterization of a
Berezinskii-Kosterlitz-Thouless (BKT) transition in nano-structures. This tran-
sition is very robust, as it occurs in nano-structures five times thicker than what
had previously been reported for any BKT transitions in the literature. We also
report on the impact of inhomogeneities on the superconducting transition.
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Introduction

The properties of a material can be significantly modified by quantum confine-
ment, which is achieved when one or more of its dimensions are reduced below
some relevant length scale. Such low-dimensional systems have attracted great
interest in material physics in the past decades for their new and often unique
properties, such as the the quantum Hall effect (QHE), a topological phase of
matter which cannot be described by the usual theory of electronic band struc-
ture, and which was discovered experimentally in two dimensional electron gases
(2DEGs) in 1980 [Klitzing et al., 1980]. This field found a new beginning with
the discovery of the mechanical exfoliation of graphene [Novoselov et al., 2005],
which made possible the study of newly emerging layered materials, and has since
developed rapidly. Contrarily to the bulk graphite from which it can be easily ex-
foliated, graphene is a gapless semiconductor with Dirac-like linear dispersion and
massless Fermion quasiparticles around the band touching points, which opened
the possibility to study in mesoscopic physics effects which were until then only
observable in high energy physics. Graphene also displays many other interesting
properties, including an exceptional mechanical strength and a very large thermal
conductivity.

In 2005, Kane and Mele predicted the existence of a new topological phase in
graphene, provided that a very strong spin-orbit coupling could be induced in the
material: the quantum spin Hall effect (QSHE) [Kane and Mele, 2005]. Exper-
imentally, the spin-orbit coupling is expected to be very small in graphene and
the QSHE has not been observed in graphene flakes. Nevertheless, the findings of
Kane and Mele were extended to the case of HgTe quantum wells [Bernevig et al.,
2006], were the QSHE was discovered soon afterwards [Konig et al., 2007]. Sub-
sequent theoretical developments in band structure theory were made by taking
into account the effects of the Berry phase and the symmetries of the Hamiltonian
on the band structure. In essence, this new topological theory of band structure
shows than not all band gaps are equivalent and that they can be sorted into
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different universal classes based on the symmetries of the Hamiltonian. The most
important consequence of this theory is the existence of gapless states at the inter-
face between materials of different universal classes. Since vacuum belongs to the
trivial universality class, non-trivial materials therefore support conducting states
on their surface (at 3D), edges (at 2D) or extremities (at 1D).

In 2011, a non-trivial 3D topological phase called Weyl semi-metal with a conduct-
ing bulk was predicted [Wan et al., 2011; Matsuura et al., 2013]. Most Weyl semi-
metals are layered materials with strong spin-orbit coupling, including trigonal-
PtBi, (tr-PtBiy), as we unveil in this work (see below). In these materials, the bulk
bands touch at points called Weyl nodes, which have a defined chirality. These
chiral nodes appear in pairs of opposite chirality, and the bands disperse linearly
around them, forming topologically protected Weyl cones. One of the most impor-
tant aspect of this topological band structure is that Weyl nodes act as sources or
sinks of Berry curvature, depending on their chirality, which can have a significant
impact on experimental properties of the material, including in transport, such as
the appearance of a planar Hall effect.

In recent years, the interplay between topology and superconductivity has at-
tracted considerable attention. A distinct kind of superconductivity can emerge in
topological materials [Qi and Zhang, 2011], as well as at the interface between a
conventional superconductor and a strong topological insulator [Liu et al., 2020].
Such topological superconductors may have unconventional pairing mechanisms,
such as Fulde-Ferrell-Larkin-Ovchinnikov phases [Larkin and Ovchinnikov, 1964;
Fulde and Ferrell, 1964] where the Cooper pairs have a finite momentum, which
results in a non-uniform order parameter with a modulation along the momen-
tum direction. Topological superconductors (T'SCs) are also a good medium to
study non-Abelian statistics, where quasiparticles are neither fermions nor bosons
[Sato and Ando, 2017]. The edge states in TSCs are predicted to host Majorana
fermions, which are their own antiparticle, and should allow for topologically-
protected operations, free from decoherence, in quantum computation.

Besides the interplay between superconductivity and a possible non-trivial topol-
ogy, 2D materials are a very interesting platform to study low dimensional su-
perconductivity in general. When superconductivity occurs at two-dimensions,
vortices and antivortices are generated by thermal fluctuations, even in the ab-
sence of magnetic field. At low temperature, the Berezinskii-—Kosterlitz—Thouless
(BKT) phase transition occurs and vortices and antivortices couple to one another
in pairs, which are spatially pinned. Since vortex centers should host Majorana
bound states in topological 2D superconductors [Frolov et al., 2020; Wang et al.,
2018], these systems are very interesting to study Majorana modes at zero mag-
netic field.
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The aim of our work is to study tr-PtBi,, a layered van der Waals material
with strong spin orbit coupling, through charge transport measurements. Den-
sity functional theory (DFT) calculations have shown that tr-PtBi, has a Weyl
semi-metallic band structure, and the material has been shown to become super-
conducting at low temperature. Omne possible signature of the Weyl nature of
tr-PtBi, is the appearance of a planar Hall effect in nano-structures, which cannot
be attributed to any intrinsic magnetization of the material. The superconductiv-
ity becomes two-dimensional in thin nano-structures of tr-PtBi,, with a unusually
robust BK'T phase transition happening in structures as thick as 60nm, making
tr-PtBi, very interesting to study the robustness of the BKT transition. The com-
bination of topology and robust 2D superconductivity in this material also makes
it a promising candidate for studying intrinsic topological superconductivity and
Majorana bound states. Thanks to its 2D layered nature, it is also possible to
create tr-PtBiy heterostructures, which opens new possibilities to design complex
devices. Such devices could include top and bottom electrostatic gates, to modify
the Fermi energy in thin enough samples and study e.g. Josephson junctions, or
interfaces between tr-PtBi, and other materials such as 2D ferromagnets.

This manuscript reports the main findings of our study, and is separated in two
parts. The first part comprises the first two chapters and pertains to theoretical
and methodological considerations, while the experimental results are presented
and discussed in chapters 3 and 4. In the first chapter, we introduce the reader to
the physics of topological systems, and especially of topological Weyl semi-metals.
We then present the most important feature of superconductivity, before focusing
on low dimensional superconductivity which appears in the presence of quantum
confinement. In the second chapter, we present important concepts about very
low temperature and low noise measurements, and describe the methods used to
produce the samples which were studied. In the third chapter, the results of DFT
calculation of the band structure are presented, along with a characterization of
transport of macroscopic single crystals of tr-PtBi, in the normal state, followed by
a preliminary study of the planar Hall effect in exfoliated nano-structures. In the
fourth and final chapter, we studied superconductivity in both macro-structures
and nano-structures, where we observed a reduction of the dimensionality of the
superconductivity evidenced by a Berezinskii-Kosterlitz-Thouless transition hap-
pening at low temperature.
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1 Topological semi-metals and
superconductivity

Historically, the study and understanding of phenomena in condensed matter
physics has come hand in hand with the classification of the materials in which they
appear. The discovery of materials eluding previously established classification is
often associated with fundamental or technological breakthroughs. For instance,
the electrical conducting properties of materials have been understood through the
theory of electronic band structure, which makes it possible to classify materials
as either conducting or insulating depending on the position of their Fermi level
(respectively in the conduction band or in the band gap). The discovery (and un-
derstanding) of materials eluding this simple classification, semiconductors (which
have smaller band gaps and can be tuned, e.g. via electrostatic gating, from in-
sulators to conductors), led to the development of transistors in 1947, on which
modern electronics is based.

In modern condensed matter physics, the classification is made in terms of phases
of matter. These phases have been understood for decades following Lev Landau’s
approach, which characterizes them in terms of their spontaneously broken un-
derlying symmetries. However, the discovery of the quantum Hall effect (QHE)
[Klitzing et al., 1980] has led to the development of a new topological classifica-
tion based on topological invariant (the Chern number in the case of the QHE)
[Kosterlitz and Thouless, 1973; Thouless et al., 1982], in which some properties are
protected from small changes of the material parameters. More than two decades
later, the discovery of 2D topological insulators (2DTI) [Bernevig et al., 2006;
Konig et al., 2007] resulted in the emergence of topological materials as a very ac-
tive new field of research in condensed matter physics, with potential application
in electronics. The discovery of 2DTI was quickly followed by that of many other
topological phases, such as 3D topological insulators, as well as Dirac and Weyl
semi-metals. In recent years, the combination of topological properties with super-

13
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conductivity has also attracted growing interest, with the possibility of studying
new superconducting pairing mechanisms (unconventional superconductivity), and
applications in quantum electronics (topological superconductivity, e.g. Majorana
zero modes) [Frolov et al., 2020; Qi and Zhang, 2011].

In this chapter, we will briefly introduce concepts of topology which are use-
ful to understand the context of this study. We will then describe topological
semi-metals, the class of topological materials to which trigonal-PtBi, (tr-PtBi,)
belongs, and will discuss some expected experimental signatures of this topology,
including the planar Hall effect. In the second section of this chapter, we will intro-
duce the basic concepts of superconductivity, and present the concepts behind the
Bardeen—Cooper—Schrieffer (BCS) microscopic theory as well as the phenomeno-
logical Ginzburg-Landau (GL) theory. In the latter formalism, we will study the
consequences of spatial confinement on the superconductivity (i.e. at lower di-
mension). We will also discuss briefly the interplay between superconductivity
and topology, and some phenomena which may be observed in such a context.

1.1 Topological materials

The most basic electronic state of matter we can consider is the trivial insulat-
ing state of a trivial insulator. In the description of band theory, an insulator
presents an energy gap separating a fully occupied valence band and a fully empty
conduction band with the Fermi energy lying in the gap (see Fig.1.1.b). Such a
state can be easily transformed continuously into a semiconducting state by tun-
ing the Hamiltonian of the system, without phase transition: these two states are
therefore topologically equivalent. In a similar way, it is possible to show that all
trivial insulators (with different number of core bands) as well as the vacuum state
(which also possesses an energy gap between an electron (conduction) band and a
positron (valence) band, according to Dirac’s relativistic quantum theory [Hasan
and Kane, 2010]) are equivalent to the same topological phase. However, not all
systems with an energy gap in their band structure are topologically equivalent to
vacuum, as we will see in the following section.

1.1.1 Quantum Hall effect and topological insulators

The simplest example of a non-topologically trivial insulator, and the first one his-
torically, is the integer quantum Hall effect (QHE) discovered experimentally by
K. von Klitzing in 1980 [Klitzing et al., 1980], for which he received the 1985 Nobel
Prize in Physics. This effect occurs in a gas of electrons confined to two dimensions
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Figure 1.1: Left (a)-(f): Electron motion (a,d) and band structure (b,e) in a trivial
insulator and a quantum Hall insulator (respectively top and bottom row). (c,f):
representation of two topologically different objects, with genus 0 (c¢) and 1 (f).
Adapted from [Hasan and Kane, 2010]. Right: Bending on the LLs at the edges
of a sample, leading to the existence of conducting, chiral edge states. Adapted
from [Zimmermann, 2017].

(2D electron gas, or 2DEG), in the presence of a high magnetic field B. In such

eB
a system, electrons have a cyclotron motion with frequency w, = — (with e the
m*

electron energy and m* the effective mass of the electrons), and quantized field-
dependent energy levels (Landau Levels, or LLs) with energy ¢, = hw.(n + 1/2),
with n € N (see Fig.1.1.e). At temperature T=0, if the Fermi energy lies between
the LL N and the LL N+1, an energy gap exists between empty and occupied
states, and the system is therefor a bulk insulator. In a finite sample, the LLs
are bent upward close to the physical edges by the confinement potential linked
to these edges (see Fig.1.1, right). This results in the Fermi level e crossing each
filled LL, closing the gap near the edge of the sample and creating one-dimensional
chiral edge channels (N in total, one per filled LL), with no back-scattering allowed,
leading to a vanishing longitudinal resistance (when e is between two LL) [Klitz-
ing et al., 1980].

The quantized Hall conductivity and the number of edge channels are topologically-
protected properties in the system, i.e. they are not affected by smooth transfor-
mations of the Hamiltonian, as long as these do not close the energy gap. The
topological invariant in this system is called the Chern number, and is equal to the
number N of filled LLs [Hasan and Kane, 2010]. A geometrical equivalent to the
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Chern number can be found in the genus of a surface (in simple terms, the number
of "holes"), as it is impossible to smoothly transform an object into another with
a different genus, for instance a sphere with g=0 (Fig.1.1.c) into a torus with g=1
(Fig.1.1.1).

In 2005, a new topological phase, the quantum spin Hall effect (QSHE), was pre-
dicted to appear in graphene, provided a strong enough spin-orbit coupling is
induced in the graphene sheet [Kane and Mele, 2005]. Contrarily to the QHE,
this topological phase does not break time reversal symmetry and has therefore a
Chern number equal to zero. It can be seen as the superimposition of two time
reversal symmetric QHE states with counter propagating spin-polarized edge chan-
nels (see Fig.A.1). This effect was predicted to appear in HgTe quantum wells the
next year by Bernevig et al. [2006] and was experimentally confirmed one year
later by Konig et al. [2007], establishing the first experimental realization of a
2-dimensional topological insulator.

Figure 1.2: (a) Dirac cone with spin momentum locking corresponding to a topo-
logical surface state. Adapted from [Hasan and Kane, 2010]. (b) Schematic rep-
resentations of a Weyl cone in a type-I (left) and type-II (right) Weyl semi-metal.
Adapted from Armitage et al. [2018].

The important property of topological band theory, which the QHE and the QSHE
evidence, is the existence of conducting, gapless states at the interface between
topological systems of different topological class, e.g. between a topologically non-
trivial phase and trivial vacuum. This is called the bulk-boundary correspondence:
the difference in the topological class of two materials ensures the presence of topo-
logically protected "boundary" states at the interface between the two materials.

Following the discovery of the QSHE in 2006, Fu et al. [2007] predicted the exis-
tence of topological insulators at 3 dimensions (3DTT). The most usual mechanism
inducing a 3DTT state is band inversion, in which strong spin-orbit coupling in the
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material leads to an inversion of the valence and conduction bands. Hence, the
bands must reverse at the interface and the gap has to vanish, creating conducting
surface states at the Fermi level in the gap of the bulk bands. In the presence of
time reversal symmetry these topological surface states (T'SS) show a linear dis-
persion in every momentum direction, and can be described in real materials (i.e.
with disorder) by a Dirac cone with spin-momentum locking (see Fig.1.2a) and a
disorder potential. The Dirac Hamiltonian can thus be written as

H=wvp-o+V(r), (1.1)

with v the Fermi velocity, p the momentum, ¢ = (o,,0,) the Pauli matrices
and V (r) a potential representing the disorder [Murakami, 2007; Dufouleur et al.,
2018].

1.1.2 Topological semi-metals

In the past decade, an important evolution has been the prediction and discovery
of new topological phases in semi-metals [Wan et al., 2011; Matsuura et al., 2013].
These topological semi-metals can be separated in two main categories, Weyl and
Dirac semi-metals, based on their symmetries. In the years following the 1928 pub-
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Figure 1.3: (a) Representation of Fermi arcs connecting the surface projections of
Weyl nodes of opposit chirality. Adapted from Lv et al. [2015]. (b) Fermi arcs in
TaAs, imaged by ARPES. Adapted from Liu et al. [2016].

lication of the Dirac equation [Dirac, 1928], which successfully reconciled for the
first time quantum mechanics and relativity, several extensions of the theory were
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introduced, describing different systems. The most well known of these modifica-
tions was made by E. Majorana [Majorana and Maiani, 1937] using real numbers,
and describes a neutral particle which is its own anti-particle. Prior to Majorana’s
prediction, H. Weyl made another modification of Dirac’s equation for massless
particles, the Weyl equations, which solutions are 2 particles with opposite chi-
ralities, or handedness. Such a chiral particle, or Weyl fermion, can be combined
with another Weyl fermion of the opposite chirality to form a Dirac fermion. Al-
though Majorana’s theory has found large echoes in modern particle physics, no
fundamental particle has been identified as a Weyl fermion. In condensed matter
systems however, the lowering of the symmetry in crystal lattices (with respect to
free space) makes the study of Dirac and Weyl Fermions possible, at experimen-
tally accessible energy scales, and quasiparticles which can be described by the
Dirac and Weyl equations have been predicted in newly discovered semi-metallic
topological phases [Matsuura et al., 2013; Armitage et al., 2018].

In these new topological phases, called Dirac and Weyl semi-metals, the conduc-
tion and valence bands touch at discreet points in the band structure called Dirac
of Weyl nodes, with a linear energy dispersion close to these points in all three mo-
menta directions, called Dirac and Weyl cones. Dirac nodes are fourfold degenerate
and are not associated with any chirality, while Weyl nodes are twofold degenerate
with either a positive or a negative chirality. Since coupling Weyl fermions to an
electromagnetic field results in a non-conservation of the electric charge in a single
Weyl node which is related to the chirality of the node (an effect known as chiral
anomaly) [Adler, 1969; Bell and Jackiw, 1969], the net chirality in the Brillouin
zone (BZ) must vanish. Due to this, Weyl nodes always exist as pairs of opposite
chiralities in Weyl semi-metals. This also provides a topological protection against
gaping Weyl cones since, to destroy a Weyl node without modifying the net chi-
rality in the BZ, it must annihilate with another Weyl node of opposite chirality
[Armitage et al., 2018]. Dirac nodes can be seen as the superimposition of two
Weyl nodes of opposite chiralities, yielding a fourfold degenerate node without chi-
rality. Dirac nodes are therefore not topologically protected, although they may
be protected by space group symmetries of the material.

In a Weyl semi-metal (WSM), either the time reversal symmetry 7 or the inversion
symmetry Z must be broken, in order to obtain twofold degenerate Weyl nodes.
When both 7 and Z are present, the nodes are fourfold degenerate, as in the case of
Dirac semi-metals (DSM). When time reversal symmetry is broken, the inversion
symmetry makes a given Weyl node at momentum +k correspond to another Weyl
node of opposite chirality at momentum -k. This case corresponds to the minimum
number of Weyl nodes possible in a WSM (2). If inversion symmetry is broken
however, time reversal symmetry will make a Weyl node at +k correspond to a
Weyl node at momentum -k with the same chirality. Another pair of Weyl nodes
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with the opposite chirality must therefore exist to make the net chirality vanish,
bringing the minimum number of Weyl nodes to 4.

Interestingly, the lower symmetry of crystal lattices allows for a deviation from the
Weyl equation in real materials, by tilting the Weyl cones [Armitage et al., 2018].
Small tilts simply induce anisotropies into the band dispersion relation near the
Weyl nodes (See Fig.1.2b, left for a Weyl cone without any tilt), and the resulting
phase is called "Type-I". When the tilt is large enough however, the system changes
drastically as the Fermi surface becomes open, and the electron and hole pockets
touch at the Weyl point (see Fig.1.2b, right). This phase is referred to as "Type-
IT", and some effects which appear in WSM are expected to be modified in this
phase, such as the chiral anomaly (when the magnetic field is aligned with the tilt
direction) or the anomalous Hall effect.

1.1.3 Signatures of Weyl topology in transport measure-

ments
ke E E
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Figure 1.4: (a) Cyclotron orbit in a hybrid real-momentum space (kyky,z).
Adapted from Potter et al. [2014]. (b) Representation of the band structure of
a WSM in a magnetic field, with the two chiral bands represented in red and blue.
When an electric field is applied along the magnetic field, a valley imbalance ap-
pears between them. Adapted from Armitage et al. [2018]

Fermi Arcs

As written above, one of the common manifestations found in topological phases
is the presence of topological surface states (TSS) at the interface with a trivial
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insulator due to the bulk-boundary correspondence. In WSM, such TSS appear as
Fermi arcs, and (at the Weyl node energy) link together the projections of Weyl
nodes of opposite chiralities on the surface Brillouin zone (see Fig.1.3a). Fermi
arcs have been directly observed through ARPES [Xu et al., 2015; Liu et al., 2016]
(see Fig.1.3b), as well as STM measurements [Chang et al., 2016].

Weyl orbits

In transport experiment, Fermi arcs are expected to play a roll in a new type of
quantum oscillations. Indeed, when a magnetic field is applied in a direction (z in
Fig.1.4a) perpendicular to the direction separating the Weyl node (ky in Fig.1.4a),
a Lorentz force will act on the surface electrons and make them move along the
Fermi arcs. While this would lead to a close path for a conventional Fermi surface,
Fermi arcs in a WSM are open and end at the surface projections of the Weyl nodes.
When the electrons reach the tip of the arcs, they are then expected to tunnel into
the bulk states, where they will be conveyed by the chiral Landau Levels to the
opposite surface (see Fig.1.4a). The electrons then proceed to move along the
other Fermi arc, and tunnel back into the bulk towards the first Fermi arc. These
trajectories, called Weyl orbits, contribute to quantum oscillations and behave like
surface states, with a magnetic field dependence only on the vertical component
of the field. However, these quantum oscillations also depend on the thickness
L. of the device, since the electrons accumulate a phase ® « L, on traversing
the bulk [Armitage et al., 2018]. Furthermore in a real material, scattering in the
bulk results in an exponential suppression of the amplitude of quantum oscillations
which is also thickness dependent.

Chiral anomaly

The most direct consequence of Weyl topology in transport measurements is the
chiral anomaly [Nielsen and Ninomiya, 1983] which is, contrarily to the two previ-
ous phenomena, a pure bulk effect. If we consider a WSM with one pair of Weyl
nodes of opposite chirality, the total charge is conserved due to the vanishing net
chirality. However, when applying collinear electric and magnetic fields to the
WSM, charges will be pumped from one node towards the other, modifying locally
the chemical potential in the vicinity of the Weyl nodes (see Fig.1.4b). A steady
state is reached when the chiral pumping is compensated by inter-Weyl node scat-
tering, which gives a chiral current proportional to E - B. This extra current
results in a negative longitudinal magnetoresistance (NLMR) [Son and Spivak,
2013; Burkov, 2015]. It is to be noted however that current jetting can also pro-
duce a NMLR [Pippard, 1989]. The NLMR can also be masked in experiments if
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the material displays a much larger positive orbital magnetoresistance.

1.2 Planar Hall effect in Weyl semi-metals
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Figure 1.5: Evolution of the amplitude Ap of the PHE (measured in o, the Drude
conductivity) as a function of L./L, < B. At low field, Ap increases quadratically,
before saturating at higher fields. Adapted from Burkov [2017]

The appearance of a transverse voltage in a sample when a magnetic field is ap-
plied in the sample’s plane is called the planar Hall effect (PHE). This transverse
voltage is not the result of Lorentz forces acting on the charge carriers, as is the
case of the conventional Hall effect, since the magnetic field, the current and the
induced transverse voltage are all in the same plane, a configuration in which the
conventional Hall effect vanishes.

In the PHE configuration, the transverse voltage is caused by an anisotropy of
the in-plane magnetoresistance (MR) p, (B) # pj(B), with p, and py the resis-
tivities when the in-plane magnetic field is respectively perpendicular and parallel
to the current. It was originally studied in ferromagnetic thin films, in which the
magnetization is responsible for the MR anisotropy [Bowen et al., 2005].

Following the discovery of the chiral anomaly in Weyl semi-metals (WSM), Burkov
[2017] predicted that a large PHE must develop in these materials as a direct
consequence of the chiral anomaly. Indeed the resistivity p (when the magnetic
field is along the current) decreases with the field because of the chiral anomaly,
while the resistivity p, (when field and current are perpendicular) is expected to
not be influenced by the magnetic field [Burkov, 2017]. Because of this anisotropy,
the longitudinal and transverse resistivities (p,, and p,,) depend on the angle ¢
between the magnetic field and the current, and can be expressed as
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Pra (B, ¢) = p1 — Ap(B) cos® ¢ (1.2)
FHE(B, 6) = —Ap(B) cos ¢ sin o,

with Ap = p; — p|| the amplitude of the PHE. As can be seen from these equations,
both the longitudinal and the transverse resistivities are m-periodic signals when
rotating the field in the sample’s plane, with a 7/4 offset between the two signals,
and they share the same amplitude Ap.

In order to characterize the field dependence of Ap, two characteristic lengths
can be introduced: the magnetic field related length scale L, = D/I'B, with
D the charge diffusion coefficient and I'" a transport coefficient representing the
coupling between chiral and electric charges induced by the chiral anomaly, and
L. = \/Dt,, with 7, the chiral charge relaxation time, which represents the chiral
charge diffusion length [Burkov, 2017]. In the low field regime L, > L., the
amplitude of the PHE increases quadratically with the magnetic field, with Ap
(L./L4,)* oc B2 When the field becomes larger (L, < L.), the amplitude of the
PHE is expected to saturate at the Drude conductivity ¢ = e%¢gD, with ¢ the
density of states at the Fermi energy. The amplitude of the PHE in this regime is
given by Ap =1/0(1 — 2L,/L), with L the sample length [Burkov, 2017].

Later that same year, Nandy et al. [2017] investigated the PHE using a quasiclas-
sical model taking the Berry curvature into account, in the case of both type-I and
type-II WSM. They showed that in a type-II WSM, when the current is aligned
with the tilting axis of the Weyl cones, the longitudinal and transverse conductivi-
ties are no longer m-periodic when rotating the magnetic field, but instead become
2m-periodic. Furthermore, when the magnetic field is along the tilting axis as
well, the amplitude of the oscillations increases linearly with the field, contrarily
to type-I WSM in which it is always quadratic. This quadratic field dependence
is recovered in type-II WSM when the field and the current are orthogonal.

1.3 Superconductivity

In 1911, shortly after he successfully liquefied Helium, Kamerlingh Onnes discov-
ered that the electrical resistance of various metals vanished entirely and sud-
denly at low enough temperature [Onnes, 1911], a phenomenon now known as
superconductivity. In this section, we will recall briefly the main hallmarks of su-
perconductivity, before presenting the two main theories describing conventional
superconductivity: the Bardeen—Cooper—Schrieffer (BCS) microscopic theory and
the Ginzburg-Landau (GL) phenomenological theory. In that second formalism,
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we will describe superconductivity at 2-dimensions, which is needed to analyze our
experimental results. Finally, we will discuss about the consequences of topology
on the superconducting state, and some of its manifestations.

1.3.1 Hallmarks of superconductivity

i B B B
[
i -
L
:’,42.‘;- ! '_:7‘9‘.""_
| ‘ =
| '
240 —— __ ..:!_ e —————
i ' M
aons B L S
{ | L 1
: i
'
80 — e
0025\ — ;
| )
5 1050
| *\ :
2,00 A ¥ S ]
e &40 470 0 L

Figure 1.6: Superconducting transition of Mercury, as first reported by Onnes
[1911].

One of the most visible consequence of superconductivity is its ability to conduct
charges without resistance while the temperature of the material remains lower
than a material-dependent critical temperature T, (see Fig.1.6). This effect was
studied extensively, for instance by injecting current in superconducting rings and
letting it flow for long periods of time (permanent currents). The time constant de-
scribing current decay can be determined by measuring the variations in magnetic
field created by the current, using nuclear magnetic resonance, with a lower bound
of 105 years [Tinkham, 2004]. Another important phenomenon of superconduc-
tors, which was discovered in 1933 by Meissner and Ochsenfeld, is the expulsion of
magnetic field from superconductors. This phenomenon is known as the Meissner
effect, and reflects the fact that superconductors are perfect diamagnets. Initially,
attempts to describe this new phase of matter were made using phenomenological
equations, such as the London equations [London and London, 1935] which de-
scribe the response of superconducting electrons to electric and magnetic fields, to
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account for the two aforementioned effects.

In the following years, new properties of superconductors were discovered, such
as the existence of an energy gap at the Fermi level, which was first observed by
specific heat measurements [Corak et al., 1954; Tinkham, 2004].

1.3.2 Bardeen—Cooper—Schrieffer theory

The London model, as well as its non-local generalization by Pippard [1953], were
introduced to describe superconductivity phenomenologically. However, at that
time, there was no microscopic understanding of the mechanisms leading to super-
conductivity, and therefore no possibility to calculate phenomenological parame-
ters. In 1957, Bardeen, Cooper and Schrieffer published their Theory of super-
conductivity [Bardeen et al., 1957], which revolutionized the understanding of this
phenomenon. The idea behind this theory is that the Fermi sea is unstable in
the presence of attractive electron-electron interactions (no matter how weak they
may be), which leads to the binding of electrons into Cooper pairs [Cooper, 1956].
In conventional superconductors, Cooper pairs are formed by electrons of opposite
momenta, so that the pairs may have zero total momentum, and opposite spins.
At T = 0, they extend over a characteristic length &, called coherence length, and
condense into a bound state with energy inferior to the Fermi energy Fr, creating
an energy gap in the band structure.

In conventional superconductors, the attractive interaction needed for the elec-
tron pairing is usually given by electron-phonon interactions: In a semi-classical
picture, the first electron (negatively charged) locally polarizes the medium, by
attracting the surrounding nuclei (positively charged) of the lattice, which then
attracts the second electron. If this attractive interaction is greater than Coulomb
repulsion, the resulting electron-electron interaction is attractive, and supercon-
ductivity can happen. It is to be noted however that the BCS pairing mechanism
does not specifically require a phonon-mediated attraction, but only an attractive
interaction over a range of energy close to Er. The BCS model is therefore rele-
vant even in the case of superconductors with unconventional pairing mechanisms,
for which it however requires some generalization.

1.3.3 Ginzburg-Landau theory
Before the BCS theory was published, another approach to describe superconduc-

tors was explored by Landau and Ginzburg [1950] which focuses on superconduct-
ing electrons (instead of excitations, as for BCS), describing them with a complex
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order parameter 1) following Landau’s general theory of second order transitions.
In the Ginzburg-Landau (GL) approach, the order parameter stands for the local
density of superconducting electrons. The GL theory successfully described effects
which were beyond the scope of the earlier London equations, such as the spatial
variations of the superconducting electron density n,, as well as identifying two
types of superconductors: type I with a first order transition, and type II in which
the transition is of second order. In the second case, the superconductor is also
expected, above a certain magnetic field, to form vortices of normal phase amid
the superconducting phase. The distinction between the two types is made based
on the value of the dimensionless Ginzburg-Landau parameter £ = A\ /£ (with A the
magnetic penetration length and ¢ the superconducting coherence length), with
x = 1/4/2 separating type I (inferior) and type II (superior) superconductors.

While the GL is entirely phenomenological, Gor’kov [1959] showed that it could be
derived directly from the BCS theory close to T,.. In that context, ¢/ corresponds to
the wavefunction describing the motion of the Cooper pairs’ center of mass, and is
found to be proportional to the BCS gap parameter A. The GL theory is therefore
valid, and is also better adapted than the BCS theory in situations involving spatial
inhomogeneities as well as for the determination of critical parameters, such as the
critical field.

1.3.4 Superconductivity at reduced dimensions

In the context of our study of superconductivity in tr-PtBi,, we are mostly inter-
ested in the dependence of observables on accessible parameters (e.g. the angular
or temperature dependence of the critical magnetic field), as well as in how these
dependences change at reduced dimensionality. We will therefore focus in this sec-
tion on the observables and parameters to which we have access through transport
measurements, such as current, temperature, and magnetic field (and its orienta-
tion).

Temperature dependence of the critical field

The easiest parameter we can set in our experiments is the magnetic field, since we
can vary it’s intensity from much lower to much higher than the critical field, and
we can change its orientation in 2D and 3D vector magnets. We also have access to
a range of temperatures around the critical temperature, by using a dilution fridge
to cool down the sample (see sec.2.1.1). The critical field’s temperature dependence
is therefore straightforward to measure and gives important information regarding
the superconducting state, as shown below.
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Considering an infinite sample, it is possible to derive from the GL theory the
maximum field H,. at which a superconducting state can nucleate:

Po

H.(T) = (1)

(1.3)

where @, = h/2e is the flux quantum (with h the Planck constant, and e the
electronic charge), &(T) = &(1 — T/T.)~/? is the GL superconducting coherence
length (in the plane perpendicular to the magnetic field) and & = &(T = 0) [Tin-
kham, 2004]. We can therefore obtain the value of the superconducting coherence
length at zero temperature &, by fitting the temperature dependence of a measured
critical field.
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Figure 1.7: (a) Temperature dependence of the in- and out-of-plane critical mag-
netic field (in blue and red triangles, respectively) in magic angle bilayer graphene,
adapted from Cao et al. [2018]. A clear deviation from linearity can be observed
for an in-plane field, as expected for a 2D system. The data was fitted with eq.1.4
and eq.1.5 (blue and red line, respectively). (b) Angular dependence of H. (ref-
ered to as B, in red full circles) for a 1T-SnSe, bilayer, adapted from Zeng et al.
[2018]. The inset shows a zoom in on the peak and a comparison of fits using
eq.1.6 (3DAGL model, dashed line) and eq.1.6 (2D Tinkham model, blue line).

Eq.1.3 is valid for any direction of the magnetic field as long as we consider a
homogeneous bulk sample. If we consider a thin enough superconducting film (i.e.
with a thickness d smaller than the out-of-plane coherence length £1) instead, the
superconducting state reacts differently to in- and out-of-plane fields, and eq.1.3
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becomes

H(T) = gt (15

with H!l and H} the critical field respectively in the in- and out-of-plane directions,
¢!l the in-plane coherence length and dge the thickness of the superconducting state
(dsc < d). As expected, the out-of-plane critical field stays the same as in the 3D
case (Eq.1.3), with a linear temperature dependence (given by &(7')?), since there
is no confinement in the film’s plane. For an in-plane field however the temperature
dependence is significantly modified, with a square root dependence (from &(T),
see Fig.1.7a). The temperature dependence of the critical field is therefore a useful
way of determining if the superconducivity in a sample is confined (2D) or if it
behaves as in bulk samples (3D).

Angular dependence of the critical field in thin films

As eq.1.4 and 1.5 show, the critical field is expected to be anisotropic in thin
samples due to quantum confinement in the direction perpendicular to the plane.
However, even in the absence of quantum confinment (i.e. in the 3D case) it is
still possible to observe an anisotropy of the value of the critical field, for instance
in the case of finite samples with large aspect ratios. It is therefore interesting to
see the impact of quantum confinement on the angular dependence of the critical
field in between the two out-of- and in-plane extrema.

Let us consider a sample in the form of a large slab (i.e. very thin compared to its
lateral width), but which thickness is still much larger than the superconducting
coherence length (3D case). We expect the critical field to reach a minimum H}
for an out-of-plane field, and a maximum H| for an in-plane field. In between
the two, and in the absence of quantum confinement, the critical field should
vary smoothly and is defined intrinsically by the 3D GL anisotropic-mass model
(3DAGL) [Tinkham, 2004]:

H.(0) cos 0 H,(0) sin6\>
(A0 t) oy (O, (16)
with @ the angle between the field and the out-of-plane direction. In the (2D) case
of a thin film with quantum confinement in the plane however, the critical field is
expected to show a cusp at § = 90° (for an in-plane field) [Tinkham, 1963], i.e. a
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sudden change of sign of its derivative. The full angular dependence is described
by the implicit 2D Tinkham model [Tinkham, 2004]:

‘H@e‘ <H<9>9> _1 (17)

H y
Therefore, the temperature and angular dependences of the critical magnetic field
make it possible to distinguish easily between a bulk-like, 3-dimensional supercon-
ductivity and a quantum-confined, 2-dimensional superconductivity (see Fig.1.7b).

Berezinskii—Kosterlitz—Thouless transition

At three dimensions, long range order can be attained at low enough temperatures,
where thermal fluctuations are weak enough to preserve this order. For lower
dimensional systems (d < 2) however, Mermin and Wagner [1966] have shown that
no long range order is possible for non-zero temperatures due to the higher impact
of thermal fluctuations at these dimensions. In 2-dimensional superconductors,
this results in the formation of vortices and antivortices, even in the absence of
magnetic field [Tinkham, 2004].

Close to T, (the GL mean field critical temperature) these vortices are free and,
when a transport current is flowing in the film, they become subject to Lorentz
forces and drift in opposite directions, which causes flux-flow dissipation and there-
fore a non-zero resistance. At low (finite) temperature however (7' < T.), vortices
of opposite chiralities are attracted by one another and bind together, forming
pinned pairs which are not subject to any net Lorentz force, and therefore the
resistance of the thin film vanishes. The temperature above which the vortex pairs
begin to unbind is well defined [Kosterlitz and Thouless, 1973], and the related
phase transition (from free vortices to pinned vortex pairs) is called the Berezin-
skii-Kosterlitz—Thouless (BKT) transition [Berezinsky, 1971; Kosterlitz and Thou-
less, 1972, 1973]. Before being applied to 2D superconductors, it was use to de-
scribe 2-dimensional neutral superfluids, for which Kosterlitz and Thouless earned
the Noble Prize in Physics in 2016.

The main manifestation of the BKT transition in transport can be seen in the
temperature dependence of the current-voltage characteristics V(I). Above the
BKT transition temperature Tgx7, the unbound vortices give a linear resistance,
so that V oc I. Well below Tggr, all vortices should be bound in pairs at I = 0,
and no resistance is expected. At finite current however, Lorentz forces (caused
by the current) exert equal and opposite forces on each vortex of a pair, and start
dissociating some of them into free vortices. Right below Tgxr the number of free
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vortices grows as I? [Tinkham, 2004], which makes the voltage increase as V oc I3,
This sudden jump in the V(I) at Ty, from linear to cubic law, is the main
hallmark of the BKT transition in the V' (/) characteristics. While this transition
is robust against disorder, to a certain degree, a broadening of the transition caused
by inhomogeneities is expected [Maccari et al., 2017]. This results in a continuous
increase of the V (I) power law between T, and Ty rather than a sudden jump at
Tprr (see Fig.1.8, inset). The transition temperature is defined as the temperature
at which the V(I) power law becomes cubic: V(Tgrr) o< I3.

As Halperin and Nelson [1979] have shown (and as was later refined by Benfatto
et al. [2009]), the temperature dependence of the resistance of a 2D superconductor
is only influenced by the BKT transition close to Tgxr < T.. In this regime, we

- T
expect Rpyr(T) o< exp(—2b/+/t), with the reduced temperature ¢t = BET

Y

Tsrr
while close to T, thermal fluctuations dominate and we expect Rgp(T) ~ & (T —

T.)/T.. They introduced an interpolation of the conductivity ¢ between the GL
and BKT regimes, given by

& = i sinh? <2a\/7> (1.8)
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Figure 1.8: Temperature dependence of a 2D superconductor undergoing a BKT
transition. The data is fitted with both a homogeneous (Halperin-Nelson) model
(red line, eq.1.8) and an inhomogeneous (Benfatto) model (black dashed line,
eq 1. 9) Inset: Temperature dependence of the V(I) power law exponent V(T')
1) for both models. Adapted from Benfatto et al. [2009)].

To take into account the influence of inhomogeneities on the transition in real
samples, Benfatto et al. [2009] proposed a model with an inhomogeneous superfluid
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density or, equivalently, a spatial distribution of the T transition temperature.
Assuming for simplicity a Gaussian distribution of T, and noting that R/ Ry =
1/(1 4+ Ac/oy) (with Ry the resistance in the normal state), we can express
the resistance of a 2D sample as an integral of the local contributions over the
distribution of transition temperatures:

-1

4 | . t
1 + ﬁ sinh (b H) s
(1.9)
with ¢ the Gaussian spread of Tgxr and b = 2a\/(TC — Tgkr)/Terr. This inho-
mogeneous model manages to reproduce the "tail" which is sometimes measured in

BKT transitions [Reyren et al., 2007], where the resistance doesn’t vanish abruptly
at TBKT (see F1g18)

o = s e ()

1.3.5 Topological superconductivity and low dimensional-
ity

We have discussed so far only about conventional superconductivity. However,
when superconductivity occurs in a topological material or at the interface be-
tween a trivial superconductor and a material with high spin orbit coupling, it is
possible to observe a different kind of superconductivity called topological super-
conductivity (TSC) [Frolov et al., 2020] and described by non-Abelian statistics,
where quasiparticles are neither bosons nor fermions. The most prominent man-
ifestation of TSC is the existence of Majorana bound states (MBS) on the edges
of the sample or in vortex cores. Majorana fermions are their own antiparticles,
and are sought after in quantum computation to realize topologically protected
operations, free from decoherence [Sato and Ando, 2017]. While TSC is usually
associated with unconventional non-s-wave superconductivity, a 2D model to real-
ize non-Abelian Majorana zero modes was proposed by Sato [2003] even for s-wave
superconductors.

Low dimensional superconductivity in a topologically non-trivial material is par-
ticularly interesting. As mentioned in the previous section, when a 2-dimensional
superconductors undergoes a BKT transition, vortices and anti-vortices sponta-
neously form even in the absence of magnetic field, and in topological supercon-
ductors these vortices might support MBS in their center. It is therefore theoreti-
cally possible to study MBS at zero field in 2D topological superconductors. One
promising material for this study is the iron-based superconductor FeTe 555€ 45
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in which MBS have been found in the center of vortices at low fields (B = 0.5T)
[Wang et al., 2018]. This material also shows a BKT transition for films under
d ~ 6nm [Tang et al., 2019], but no study has yet found MBS at zero field in BK'T
systems.
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2 Methods

We present in this chapter the measurement techniques used in our study of tr-
PtBi, (cryogenics and low-noise transport techniques), as well as the fabrication
techniques used to make the samples we studied.

At room temperature, charge transport in metals is dominated by phonon scat-
tering [Ziman, 2001], and the thermal broadening is larger than the energy scale
of most quantum effects, which suppresses them. In order to study the quantum
properties of materials, such as Berry curvature related effects or superconductiv-
ity, with electrical transport, it is therefore necessary to decrease the temperature
enough to allow these effects to be measurable. The first steps in this direction
were made by the liquefaction of different room-temperature gases, beginning with
oxygen in 1877 (reaching 7' ~ 90K) and nitrogen in 1882 (7' ~ 77K). The most
significant development came in 1908, with the liquefaction of “‘He by Kammerling
Onnes, reaching T' ~ 4.2K, which led to, among other things, his discovery of
superconductivity in mercury in 1911. In the case of the superconducting transi-
tion studied in this manuscript, the temperature needs to be lowered even further,
down to 100mK, which requires the use of a *He - *He dilution refrigerator, as
described in this chapter.

At low temperature, the resistivity of metallic materials may drop considerably.
In order to maintain a good signal-to-noise ratio without increasing the current
(to avoid any heating effect), we may decrease the aspect ratio of the structures
studied, for instance by fabricating nano-structures, or by reducing their thickness,
e.g. through exfoliation for van der Waals materials. In addition to increasing the
signal-to-noise ratio of experimental measurements, this also allows for the study
of materials at reduced dimensionality. The use of nano-structures patterned by
e-beam lithography also gives us a greater control on the geometry and the aspect
ratio of the contact scheme, and makes it possible to study more homogeneous
devices.
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In this chapter, we will describe in the first section the operation of a 3He - ‘He
dilution refrigerator, which was used in our experiments to reach sub-kelvin tem-
peratures, as well as our experimental setup for low-noise electronic transport mea-
surements. In the following section, we will present the methods used to contact
macroscopic crystals, as well as the fabrication and patterning of nano-structures.

2.1 Low temperature and low noise measurements

In order to study superconductivity in trigonal-PtBi, (tr-PtBi,), we had to reach
temperatures lower than T, ~ 300mK. Such low temperatures were obtained using
3He - “He dilution refrigerators, which were inserted in either a 12T-1T magnet
(for macro-structures) or a 6T-2T-2T magnet (for nano-structures) to perform
magnetotransport measurements.

2.1.1 3He - ‘He dilution refrigerator

A dilution refrigerator is a system which uses the endothermic diffusion of 3He
into “He in order to reach temperatures as low as 2mK. Contrarily to "single-shot"
cryogenic systems, which can only stay at low temperature for a limited time,
dilution refrigerators function continuously.

Fig.2.1 represents the schematics of a dilution refrigerator. The main idea is that,
at T < 800mK, a mixture of *He and *He separates in two phases, a concentrated
3He rich phase and a dilute *He phase. At T' = 0K, the concentrated phase is
made of pure *He and the dilute phase is made of 93.4% “He and 6.6% 3He. The
key idea is to use the fact that the diffusion of He from the concentrated phase
to the dilute phase is endothermic. The phase separation happens in the mixing
chamber, the coldest part of the dilution refrigerator (to which the cold finger,
with the sample, is attached), and *He is being circulated from the dilute phase
back to the concentrated phase, to keep the cooling process going continuously, as
we will see below.

The dilute phase in the mixing chamber, which is below the phase interface, is
connected to the "still", a chamber which contains an interface between the liquid
dilute phase, and a gas phase which is maintained at low pressure by a system
of pumps at room temperature. *He having a larger saturation vapor pressure
than “He, the vapor is made mostly of *He (at 96%), even though the dilute phase
has a very low concentration in *He (only about 0.7%). The *He vapor is then
reinjected into the system, where it is cooled down to 4.2K by the Helium bath in
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Figure 2.1: Schematics of a *He - *He dilution refrigerator, adapted from De Waele

[2011].

which the entire refrigerator is immersed. The *He then enters a vacuum chamber,
in which it is put in contact with a pumped Helium bath ("1K bath") by a heat
exchanger, and is cooled down to around 1.2K. It is then further cooled down by
Joule-Thomson effect in the main impedance, before thermalizing with the still
to a temperature below 700mK, and passing through a further Joule-Thomson
(secondary) impedance. Lastly, the incoming 3He is cooled down by the mixture
coming from the mixing chamber through discreet and continuous heat exchangers.
The cold incoming *He then reaches the mixing chamber, where it diffuses into
the dilute phase in an endothermic process. In order to enhanced the flow of 3He
mixture circulating in the fridge in the steady state (and therefore increase the
cooling power), a small heating power is applied to the still.
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2.1.2 Low noise electrical measurements technique

As we mentioned previously, the resistivity of metals (and semi-metals) decreases
with temperature. One of the challenges of transport measurements at cryogenic
temperatures is therefore to measure such low resistivities, and to maintain a low-
enough signal-to-noise ratio so as to be able to measure small variations of this
resistivity. In order to get low noise transport measurements at low temperature,
several techniques are used.

First, since we are technically studying samples’ resistance (through voltage mea-
surements) rather than their resistivity, it is possible (as mentionned previously)
to enhance the signal by increasing the aspect ratio of the structure, since R, =
p/t- L/W with R, the measured resistance, p the resistivity, and L,W and t the
length, width and thickness of the structure, respectively. In the case of layered
van der Waals materials such as tr-PtBi,, it is possible to exfoliate thin flakes
(down to t ~ 40nm in our case), with an aspect ratio L /W superior to one (see
sec.2.2.2), increasing the structures’ resistance to R,, > 1.

Second, it is possible to increase the signal measured by flowing a larger current
through the sample, although this technique has three limitations: it may affect the
system studied (e.g. by turning a superconducting sample into a normal metal for
I > I.); For low resistivity samples (e.g. macro-structures), it may cause significant
heating through the resistive measurement lines ; It can also lead to a rise of the
electronic temperature of the system. Indeed, at very low temperature (typically,
T < 1K), the electron-phonon coupling is greatly reduced, and electrons may
not be at equilibrium with the phonon bath of the crystal lattice. This happens
when the size of the device becomes of the order of magnitude or smaller than the
electron-phonon inelastic length. In these conditions, applying a large voltage to a
sample will cause the temperature of the electrons to increase with respect to the
thermometer located near the sample. A general rule for determining a maximal
voltage V which can be applied to a sample without increasing the temperature
past the system’s temperature T, is eV < 4kgT,. At base temperature, this
corresponds to a few tens of uV.

In order to measure these low voltages, and their correspondingly low variations,
we use lock-in amplifiers (shortened below to 'lock-in"). These devices deliver
a sine wave signal at a given frequency fy, and are used to flow an AC current
through the sample by using a polarization resistance of 1M¢2, much larger than
the resistance of the sample. The lock-in is then used to measure the response
of the sample at that same frequency fy, thus avoiding the 1/f and the 50Hz
noise of the electronic devices. Other lock-ins can be synchronized to the same
frequency, to measure different resistances of a single sample simultaneously. With
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this system, we are able to measure signal variations down to about 5nV /Hz'/? of
amplitude, which corresponds to the intrinsic noise of the lock-ins. Moreover, in
order to avoid heating through radio frequency (RF) signals, the dilution fridge is
equipped with low-pass RC filters.

The samples were measured in "4-probe" configuration, i.e. by applying a current
between a pair of contacts, and measuring the voltage between a different pair of
contacts, to avoid measuring the contact or measurement-line resistances.

Differential resistance

When measuring with lock-ins, it is possible to measure the differential resistance
of a sample by applying a DC current in addition to the AC current applied with
the lock-in. Indeed, if we consider I4o < Ipc, the measured voltage can be
expanded into Taylor series as

dv d*v
V(Ipc + Iac) =V(Ipc) + lac - a Ao Fizl + ... (2.1)
Ipc Ipc
=Vpec+Vy,+ Vo, + ... (2.2)

with V,, and V5, the first and second harmonics, respectively. Since lock-ins filter

only the response at the frequency of Isc, the voltage read by (the first har-

dv

monic of) the lock-in is simply /¢ - 12
Ipc

differential resistance of our samples. This is very advantageous, as analytically

differentiating measured signals (especially more than once in a row) can introduce

a large noise, while integration doesn’t. With this method, it is possible to obtain

V(1) by integrating.

, which is directly proportional to the

Superconductivity in macroscopic crystals was measured using DC sources oper-
ated in a delta mode, a method that is particularly adapted to the measurement
of low resistances.

2.2 Sample fabrication

In this work, we studied two different kinds of samples: macro-structures and
nano-structures. The first category corresponds to as-grown crystals, typically a
few milimiters in size and less than 1mm thick. The second category corresponds
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to flakes mechanically exfoliated onto substrates, and are typically 10-20um in size
and under 150nm thick. In this section, we will describe the fabrication of these
samples, and the techniques used to contact them.

2.2.1 Macro-structure fabrication

400um

Figure 2.2: Optical (b) and SEM backscattered electrons (e) images of tr-PtBi,
crystals. Adapted from Shipunov et al. [2020]

In order to make macro-structures, we selected crystals with flat (reflecting) facets,
and a platelet shape (i.e. without inclusion with a different c-axis). Because of
their layered nature, the crystals were very soft, and often included parts which
were partially torn away (see Fig.2.2). We discarded these crystals, and only
contacted the ones which looked pristine. The crystals were contacted in four-
probe configuration using sliver wires and epoxy. In order to avoid a short circuit
with the conducting chip carrier, the crystals were first deposited on insulating
Kapton tape. An optical picture of such a contacted crystal (MS2) is shown in the
inset of Fig.4.3.

2.2.2 Mechanical exfoliation

In 2005, Novoselov and Geim managed to fabricate graphene monolayers for the
first time [Novoselov et al.; 2005]. To do so, they developed a simple technique
called mechanical exfoliation. This technique has contributed to the rise of the
very active area of 2D materials, and is applicable to the wide range of van der
Waals materials. In these materials, the crystallographic structure is made of
layers with strong intra-layer interactions, and weak van der Waals inter-layer
interactions. Exfoliation is the general process consisting in separating these layers
from one another. Different types of exfoliation exist, such as liquid exfoliation
(where a crystal is submerged in a liquid, usually a solvent such as IPA or acetone,



2.2. SAMPLE FABRICATION 39

and undergoes an ultrasonication treatment), or atomic force microscopy (AFM)
exfoliation (where the top layers of a pile are "scratched" away by using an AFM
tip in contact mode). In this work, we used mechanical exfoliation, which is the
most widespread method to obtain large, high quality exfoliated flakes.

Mechanical exfoliation consists in the repeated act of cleaving a layered crystal, by
attaching to both sides of the crystal and pulling them apart. The most common
tool used for this purpose is adhesive tape, although it is also possible to use other
types of adhesive, such as PDMS or electrostatic tape. This technique has many
parameters which can be varied to adapt to different materials.

Tape

The first and most obvious parameter is the choice of the type of adhesive tape.
Since mechanical exfoliation works by cleaving layers from each other, the tape
must have an adhesiveness superior to the inter-layer van der Waals interactions:
If the tape is not adhesive enough, a crystal will be transferred between the two
tapes rather than be cleaved. On the other hand, if the tape is too adhesive, it
will be difficult to cleave the crystal, as it will simply stay on the first part of the
tape, since the glue of adhesive tape tends to cover the sides of the crystal (to some
extent) rather than stay in contact with the lowest layer only. Another important
thing to consider is how well the tape’s glue holds to itself. Indeed, some tapes
have an adequate adhesive power, but leave a substantial amount of glue on the
substrate to which the exfoliation is transferred, or even on the flakes themselves.
This can be particularly detrimental in the case of transport measurements, since
glue residues on an exfoliated flake may lay between the metallic contacts and
the material. Stronger adhesive tapes in particular tend to leave more significant
traces of glue onto samples and substrates.

The substrate used in the exfoliation must also be considered carefully. Indeed,
the last step of an exfoliation is usually to transfer the cleaved crystal parts to a
chosen substrate. Ideally, the way this would work would be that whole crystals are
not actually transferred from the tape to the substrate, but instead their surface
would attach to the substrate and they would be cleaved one last time. In this
case, the flakes present on the substrate show a freshly cleaved and very clean top
surface. This is the case of graphene or MoTe, for instance. If the flakes have
difficulty exfoliating from the tape (due to e.g. strong inter-layer interactions, or
low adhesiveness with the tape), they may be transferred as such to the substrate,
potentially keeping traces of glue on their top surface (or even between the flakes
and the substrate in case of transfer between the two tapes). This is the case for
tr-PtBi,.
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For these reasons, it is important to select the correct tape for exfoliation, to
eliminate, or at least reduce, these issues. Unfortunately this selection process,
like most other aspects of this technique, is based on trial-and-error, which is
extremely time consuming. One part, though, is pretty straightforward, but still
holds a lot of importance: the color or transparency of the tape. As it is important
to be able to visualize the results of an exfoliation before transfer, the tape must
make a good optical contrast with the crystals (e.g. no black tape for dark graphite
crystals, and no white, opaque tape for white Boron Nitride crystals). In some
cases, transparent PDMS (either as tape, available commercially with different
adhesiveness, or as films mixed and baked by oneself) can be a good alternative
to other adhesive tapes, since PDMS leaves no residues on substrates or flakes.
Its adhesive power is lower than most tapes though, so it is difficult to use with
materials with strong inter-layer interactions, such as tr-PtBi,. Another option
can be electrostatic tape, which also doesn’t leave any residue, and can be useful
when dealing with particular materials.

In this work we used Tesa Krystall-Klar adhesive tape (transparent), as it was
useful in exfoliated numerous thin flakes, and left low amount of glue on the
substrates. It is to be noted that manufacturers regularly change the adhesive
glue formula, without necessarily re-labeling the tape, which can change their
suitability as exfoliation tape. It is therefore advised, once a suitable tape has
been found, to store significant quantities of it in order to avoid future problems.

Exfoliation

The exfoliation process itself is quite straightforward, however it is still important
to highlight a few important point, so they are not forgotten as they are still
important to the final quality of the exfoliation (i.e. size, cleanliness, thickness
and quantity of exfoliated structures). The main part of the exfoliation process is
to stick repeatedly a piece of tape (on which is attached a crystal) onto another
adhesive surface. The most efficient and clean way to operate is by using tape
as both surfaces, and preferably a single piece of tape used on both ends (which
is easier to manipulate). This process is repeated a certain number of times,
depending on the difficulty of the exfoliation. When sticking the tape onto itself,
the aim should be to have a very dense area with many crystals (see Fig.2.3), while
being careful to not stick two parts with crystals onto one another (which would
damage them).

A light pressure of the pad (the soft part) of the finger can be applied on the tape
in order to make sure the crystals stick to both sides of the tape. Depending on
the fragility of the material, a pressure too high may provoke intra-layer breaking,
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Figure 2.3: Optical pictures of scotch tape during an graphite exfoliation. (a) The
tape is stuck on itself during the initial exfoliation procedure. The two mother
tapes are obtained by straightening the tape (b). The black squares are made of
the successive iterations of the exfoliation of a single graphite crystal.

which results in tiny, densely concentrated flakes on the final substrate, instead of
large, distant flakes. For most materials which present no particular exfoliation
difficulty, sticking the tape to itself enough time to have an exfoliation area equiv-
alent to that of the substrate used (about 5x5mm?) is enough to obtain very thin
flakes.

In order to improve the number of flakes obtained from a single crystal, we use
the two pieces of tape obtained with this technique as so called mother tapes, and
exfoliate from them once more using a new piece of tape (simply sticking them
together once, as described above). These tapes are called daughter tapes, and
are then transferred onto the substrates, as explain further below. It is usually
possible to use two daughter tapes per mother tape, as well as both mother tapes,
and so an exfoliation typically gives 6 substrates (one per tape). This is of course
influenced by the difficulty of cleaving the material, and by how thin the original
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crystal was.

Choice of substrate

Once the tape is ready, the exfoliated crystals can be transferred to a substrate. We
use Si*/SiO, substrates, with a 285nm layer of oxide, because of two reasons: first,
this substrate has an insulating surface, which makes it possible to do transport
measurements, and a conductive bulk, which allows for applying a gate voltage
to eventually tune the Fermi level of thin structures. Second, polished Si has a
reflecting surface, and when a (partially transparent) thin flake is deposited at the
surface of the substrate, the light reflecting at the Si surface will undergo multiple
reflections at the SiO, surface and at the top of the flake, leading to Fabry-Perot
interferences and different color contrasts for different flake thicknesses, which
allows for easy optical determination of interesting flakes [Li et al., 2013; Menon
et al., 2019].

An oxide layer of 285nm corresponds to the optimal thickness for enhanced optical
contrast with graphene [Novoselov et al., 2005]. It is also a good choice for many
other materials. The substrates should be cleaned before the exfoliation, by letting
them bath in acetone and Isopropyl alcohol (IPA), preferably with a low-power
ultrasonication (~ 30%), to help detach any durt which may be on the substrates.
After this initial cleaning, it is possible to use Piranha acid (H,SO4 + Hy05) on
the substrates, which removes most organic contamination. This step is necessary
when making ultra-high quality few-layer structures, but was not considered useful
in our case, and was therefore skipped.

Transfer

In order to transfer flakes from the tape to the substrate, the tape is stuck to the
substrate from above (making a "U-shape" with the tape), to ensure as little air
is trapped between tape and substrate, which might cause areas of the tape to
not touch the substrate. Then, the tape-on-substrate should be rubbed gently,
to ensure that the flakes stick to the substrate without destroying them. One
technique is to use the back of a pen cap (e.g. Stabilo), and apply a slight pressure
to it. Applying too much pressure scratches and destroys the structures, while not
applying enough makes the structures not stick to the substrate. This rubbing
should last about 2 minutes, and be done in different directions, to optimize the
chances of successfully transferring structures to the substrate.

Once this is done, the tape is taken off the substrate as slowly as possible (about 1
or 2 minutes for a 5mm long substrate), while keeping an angle between the tape
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and the substrate of about 80°. With such an acute angle, the flakes are more
likely to exfoliate correctly and to not be broken , which might be related to the
fact that applying an obtuse angle would cause the crystals to bend backwards
and break.

Characterization and EBL patterning

15.8 nm g
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Figure 2.4: (a) and (b): Optical pictures of MoTe, (a) and tr-PtBi, (b) exfoliated
flakes. The MoTe, shows a color contrast typical for flakes thinner than ~ 10nm,
while the PtBi, flake shows a uniform color (which doesn’t change with thickness,
down to 40nm). (c) and (d): AFM images of the flakes in (a) and (b), respectively.
(c) The AFM reveals the flake is 8nm thick, with a monolayer and bilayer steps
(along the white line). The bilayer step is faintly visible in the optical image. (d)
A 10nm step is revealed by AFM (along the white line, 95nm to 85nm), which was
not visible by optical microscopy).

Such mechanical exfoliation is a statistical process: the goal is to produce many ex-
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foliated flakes, on different substrates, and then to search for suitable flakes. Thus,
after an exfoliation, the substrates should first be observed by optical microscopy.
The criteria for suitable flakes depend on the specific project, but usually involve
lateral size, thickness (determined by the color contrast, as shown in Fig.2.4a),
shape, flatness/cleanliness and environment (e.g. a flake must be "accessible" for
contacting, and can’t be surrounded by thick structures, or be too close to a sub-
strate edge). AFM is then used to determine the surface state of a flake, as well
as its precise thickness. In the case of tr-PtBi, however, all thicknesses (down
to ~ 40nm, the thinnest exfoliated flake we found) appear with the same color
(see Fig.2.4b), due to the metallicity of tr-PtBiy. In this case, we relied on AFM
research to find thin flakes.

The flake is contacted using standard EBL patterning techniques, with a modi-
fied SEM. The desired contact geometry is patterned into PMMA (poly(methyl
methacrylate)), which is a positive electron sensitive resist. The PMMA serves as a
lithography mask for depositing the metalic contacts, made of a thin sticking layer
of Cr (typically 10nm), and a thicker conducting layer of Au (up to about 140nm,
to cover the flake). this process is described in details in Labracherie [2021]. The
contacts on the flake are connected to large metallic pads, which are then bonded
to the chip carrier used in our setups.

2.2.3 Samples studied

In this work, we present results on both macro- and nano-structures. The first
macro-structure, MS1, was contacted and measured by Dr. Federico Caglieris.
Three additional crystals, MS2, MS3 and MS4, were contacted and measured by
Valentin Labracherie: MS2 is a pure tr-PtBi,y crystal, while MS3 and MS4 were
grown with Rh doping of respectively 3% and 10%.

Five nano-structures, S1-S5, were measured, with thicknesses of respectively 60nm,
60-120nm, 41nm, 70nm and 126nm. Most of the results presented in this work are
from S1, S3 and S5.



3 Transport and planar Hall
effect in trigonal-PtBi,

PtBi, has attracted a lot of interest in the last 5 years, beginning with the discovery
of a very large linear magnetoresistance in the pyrite crystal structure [Gao et al.,
2017]. The trigonal crystal structure, which also shows strong spin-orbit coupling
as well as a breaking of the inversion symmetry, has been predicted to have a topo-
logical band structure with triply degenerate points [Gao et al., 2018]. A strong
Rashba-like spin-splitting was also measured in this structure [Feng et al., 2019],
as well as pressure-induced superconductivity [Wang et al., 2021]. In this chapter,
we will start with a review of the recent literature on PtBi,, before presenting band
structure calculations for the trigonal crystal structure which were realize for this
work. We will then discuss transport measurements results in macroscopic single
crystals, as well as in exfoliated structures of trigonal-PtBi, (tr-PtBij).

3.1 Crystalline configurations

3.1.1 Pyrite configuration

The pyrite configuration of PtBiy (cubic, space group Pa3) was predicted to be a
3D Dirac semi-metal candidate by Gibson et al. [2015], because of its symmetries
and charge compensation. Two years later, it was found to show an extremely
large and unsaturated magnetoresistance (MR), up to 1.12 x 10" % at 33T and
1.8K [Gao et al., 2017], with a linear magnetic field dependence above B = 14T
Zhao et al. [2018]. This linear dependence, often found in Dirac and Weyl semi-
metals [Feng et al., 2015; Kushwaha et al., 2015; Shekhar et al., 2015; Huang
et al., 2015], could make for a MR of 2.2 x 10" % at 60T, even higher than for

45
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WTe, [Ali et al., 2014]. At lower fields, the carrier densities can be extracted
from the Hall resistance, and show a near perfect charge compensation [Zhao
et al., 2018], as expected theoretically. This compensation between electron and
hole pockets was later confirmed at higher field (55T) by a study of quantum
oscillations. Both studies by Gao and Zhao show that pyrite-PtBi, samples with a
higher Residual Resistance Ratio (RRR, see 3.3.1) also have a higher MR, revealing
a link between high crystal quality and MR in this material. Surface states have
also been observed in pyrite-PtBi, by ARPES measurements [Wu et al., 2019;
Thirupathaiah et al., 2021]. However, the surface states observed formed Fermi
contours instead of Fermi arcs, because of their lack of topological protection [Wu
et al., 2019; Kargarian et al., 2016].

In addition to these properties, pyrite-PtBiy has also been shown to become super-
conducting under an external pressure of 13GPa [Chen et al., 2018]. Interestingly,
the onset of the superconducting transition (7. ~ 2.2K) does not seem to vary at
higher pressure, and no structural transition is observed.

3.1.2 Trigonal configuration

Contrarily to pyrite-PtBiy, tr-PtBi, (space group P31m [Shipunov et al., 2020])
is a layered van der Waals material, making it possible to thin it down through
exfoliation, and was not predicted to be a Dirac semi-metal. Nonetheless, tr-PtBi,
also shows a large and unsaturated magnetoresistance, reaching 1.3 x 10°> % at 32T
and 1.8K [Gao et al., 2018] for the highest quality structures (highest RRR). The
sub-quadratic power-law dependence has been attributed to either linear Dirac
dispersion [Gao et al., 2018], or to open orbits in the Fermi surface [Wu et al.,
2020]. Just as for pyrite-PtBiy, the trigonal configuration was also found to be
superconducting under pressure [Wang et al., 2021], with P. ~ 5GPa and T, ~ 2K,
and the critical temperature also shows a very weak dependence under pressure,
up to 48GPa.

These properties resulted in a rise of interest in PtBi, in the past couple of years.
We focus in this work on tr-PtBi,.

3.2 Band Structure Calculations

The band structure of tr-PtBi, was calculated by Dr. Jorge 1. Facio (ITF, IFW
Dresden), from the crystal parameters obtained by powder XRD measurements
[Shipunov et al., 2020]. Fully relativistic density-functional theory (DFT) cal-
culations, including spin-orbit coupling, were performed, and the energy bands
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Figure 3.1: (a) Crystal structure of tr-PtBiy. (b) Brillouin Zone. Green and blue
points correspond to Weyl nodes with respectively positive and negative chirality.
(c) Band structure along the path shown in (b). The path includes a Weyl node
(red dashed line) at 48meV above the Fermi energy (orange dashed line). (d) Fermi
surface of the v pocket, obtained from DFT calculations. The outer (inner) face
is colored gray (red).

obtained along the Brillouin Zone (BZ) path represented in Fig.3.1.b are shown in
Fig.3.1.c. The band structure shows a semi-metallic nature, as has already been
reported [Gao et al., 2017; Shipunov et al., 2020], with a number of bands cross-
ing the Fermi energy and creating several electron and hole pockets. Since the
inversion symmetry Z is broken in non-centrosymmetric tr-PtBi,, band crossings
at Weyl nodes are allowed. We found 12 symmetry-related Weyl nodes, 48meV
above the Fermi energy (see Fig.3.1:c). 6 nodes are related by combinations of
three-fold rotation and reflection symmetries (Fig.3.1:b, in green), and the 6 oth-
ers are related to them by time-reversal symmetry (Fig.3.1:b, in blue).

The band structure calculations indicate that the Weyl cones are only slightly
canted (see Fig.A.2:a), making tr-PtBi, a type-I Weyl semi-metal. The band
associated with the Weyl node, called v, has a larger nearby pocket, and the two
are merged together at the (DFT calculated) Fermi energy (see Fig.A.3). The
Fermi surface corresponding to the v band at the Fermi energy is represented in
Fig.3.1.d, and shows finger-like extremities, where the Weyl nodes are located.
This is similar to calculations performed by Jiang et al. [2020] (band III in their
paper), who found these fingers connect across the entire BZ, forming "Fermi
tubes', with an canted angle ranging from 20° to 30°. The difference between Fermi
tubes and unconnected fingers can probably be attributed to a slight difference in
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the Fermi energy between the two studies.

In order to investigate for Fermi arcs connecting the Weyl nodes in the surface
electronic structure, the band structure of a semi-infinite slab along the [001] di-
rection was calculated. Clear spectral weight can be seen connecting Weyl nodes
of opposite chirality (see Fig.A.4). Interestingly, we found that Fermi energy con-
tours in tr-PtBi, surface states are highly sensitive to the surface termination, with
the Bi,—terminated surface showing a much more intense spectral weight than the
Bi,—terminated surface.

3.3 Magnetotransport characterization

In this work we prepared and measured a number of single crystals, both in the
form of macro-structures and nano-structures (obtained by exfoliation). While
many properties of the material (e.g. carrier density and mobility) are expected to
remain similar between the two (provided the nano-structures remain in a "bulk-
like" thickness range, where the band structure is not affected by quantum con-
finement effects), some differences are to be expected. Mechanical exfoliation may
damage the crystal structure, inducing defects which increase the resistivity of the
exfoliated structures. It can also produce intra- and inter-layer strain, which can
potentially modify some behaviors in nano-structures. Generally, nano-structures
should display a higher resistance due to their higher aspect ratio, which gives a
better signal-to-noise ratio in our measurements and allows to reveal and study
many details otherwise inaccessible in macro-structures.

In this section, we show a detailed characterization of a macro-structure through
transport measurements, and a comparison with a nano-structure.

3.3.1 Macro-structures

To characterize our macro-structures, we used a 15T cryostat with a lambda plate,
which works down to temperature of about 2.5K, and an insert equipped with a
piezo-driven 2D-rotator, allowing us to tilt the sample with respect to the direc-
tion of the field. The structure we measured (MS1) was about 1.5mm in length
and width, for around 100pm of thickness. Contacts were taken by hand using
silver wires and epoxy, and attached to the top surface of the crystal in 4-probe
measurement, configuration. MS1 was contacted and measured by Dr. Federico
Caglieris (IFF, IFW Dresden, now CNR-SPIN Genova), although we performed
the analysis.
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Figure 3.2: Temperature dependence of a macroscopic sample’s resistivity between
room and liquid-Helium temperature, giving a residual resistance ratio of 130.

The cooldown of the structure shows a typical metallic temperature dependence of
the resistance, with an almost linear dependence at high temperature (7" > 35K)
and a higher order dependence at lower temperatures (7' < 35K) [Ziman, 2001],
before stabilizing at about 4K. The remaining resistance is induced by the defects

of the crystal structure, which dominate at low temperature when electron-phonon
300K

interactions are suppressed. We can determine the RRR = /)((4[()) ~ 130 (with
P

p the resistivity, see Fig.3.2), which indicates the good crystalline quality of the

crystal. This ratio is similar to that of Xing et al. [2020] (162), but smaller than

for Gao et al. [2018] (640).

Magnetoresistance

We studied the magnetoresistance (MR) of MS1, at 7" = 5K and for different
orientations of the field with respect to the [001] direction of the crystal. We per-
formed magnetic field sweeps for both opposite directions of the field (i.e. towards
positive and negative fields), in order to symmetrize the longitudinal voltage in
field. We measured this field dependence for angles ranging from 6 = —30° to
0 = 120°, with 0 the angle between the direction of the field and the [001] crys-
tal direction. Fig.3.3 presents the symmetrized relative MR (in %), defined as
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Figure 3.3: Magnetoresistance of MS1 for different tilting angles of the magnetic
field (0° corresponding to the out-of-plane direction), measured at 5K. The curves
at 0 = 60° and 6 = 120°, which are symmetric tilting angles with respect to the

sample’s plane, are almost perfectly superimposed. Inset: Schematic of a sample,
with definition of 6.

R(B) — R(B = 0)
R(B =0)

MS1 exhibits a colossal MR, with MR > 2000% for an out-of-plane field at 15T.
However, an even higher MR can be reached when the field is tilted by approxi-
mately 6,,,, ~ £20° in either direction, where it reaches ~ 3000%. This behavior
is consistent with the one reported by Gao et al. [2018], albeit with a lower maxi-
mal value of the MR. As we mentioned before, the difference in the amplitude of
the MR can be attributed to a lower crystalline quality, as indicated by the five
times larger RRR of their sample (640). This relation between the amplitude of
the MR and the RRR is confirmed by the work of Xing et al. [2020], who measured
a similar MR at 6 = 0° (2200% at 14T, 2K) and a similar RRR (162) as for MSI.

MR(B) =

, for different angles.

The enhanced MR for a magnetic field tilted by 6,,,. = +20° from the out-of-plane
direction (6 ~ 30° for Gao et al. [2018]) might be related to the similar canted
angle of the Fermi tubes formed by the v pocket, at ~ 20° — 30° [Jiang et al.,
2020].

The angular dependence of the MR with the magnetic field is complex. We will
therefore focus on three different characteristics of the MR here: its amplitude, its
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symmetry with respect to out-of-plane and in-plane directions, and the Shubnikov-
de Hass oscillations (SdHo) measured for some angles.

Angular dependence of the magnetoresistance

-20 0 20 40 60 80 100 120

(%)
Figure 3.4: Magnetoresistance of MS1 at 5K and 15T for each angle, extracted
from Fig.3.3, shown in blue and magenta. In order not to be influenced by the
SdHo, the value of the MR at 15T was extrapolated from fourth-order polynomial

background fits of the data. The sinusoidal fit, in red, was made by excluding the
angles —15° < 0 < 15°, shown in magenta.

Since the MR under an out-of-plane magnetic field is much larger than under an
in-plane field, we can expect, as a first approximation, the MR to follow a cos(f)
dependence (like the out-of-plane component of the field), with a maximum for an
out-of-plane field (# = 0°) and a minimum for an in-plane field (6 = 90°). Instead,
we find that, although the general behavior is that of a cosine, the MR at low
temperature shows a local minimum around 6 ~ 0° (see Fig.3.4). For these angles,
the field dependence no longer corresponds to a simple power law, as it does for
other angles. Instead, the MR at low angles shows an inflection point at low field,
around B ~ 2 — 3T.

In order to study this in details, we computed for each angle 6 the logarithmic

derivative of the MR vs. field, a(B) = dcll‘l)gél(\g), which gives us the field depen-

dence of the MR power law exponent. We find three different types of behavior,
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Figure 3.5: Logarithmic derivative of the Fig.3.3, shown for 4 specific angles,

corresponding to 3 different qualitative responses in field. The resulting data was
slightly smoothed to remove high frequency noise.

depending on the angle (see Fig.3.5): for angles away from the out-of-plane di-
rection 6 € [—30°, —20°] U [20°,60°], the exponent reached a maximum of a ~ 1.5
around 5T, followed by a small decay towards a ~ 1.4 at high field. This behav-
ior is very similar for both positive and negative angular ranges. For low angles
0 €] — 20°,20°], the exponent reaches its maximum, with the same magnitude, at
a lower field of about 3T and then decreases quickly. The power law even becomes
sublinear above 14T for # € [—10°,10°]. This large reduction of the power law ex-
ponent is the reason for the large suppression of the MR around the out-of-plane
direction. Around the in-plane direction (# ~ 90°), the power law is sub-linear.
Interestingly, the power law shows no sign of saturation up to 147T.

The full angular dependence of the MR and its logarithmic derivative are shown
in Fig.B.1a and Fig.B.1b respectively, which show a continuous evolution with the
angle.

Symmetry of the magnetoresistance

Fig.3.3 and Fig.3.4 show another unexpected behavior: the MR is not symmetric
around the out-of-plane direction. Even without taking into account the angles
where it is suppressed, the MR is higher for § = —20° than for § = 20°. This
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Figure 3.6: (a) Magnetoresistance of a macro-structure for different tilting angles
of the magnetic field (0° being the out-of-plane direction), measured at 50K. (b)
Magnetoresistance at 15T for each angle, extracted from Fig.3.6a. A cosine fit is

shown in red. The phase of the cosine was left as a free parameter, and is found
to be offseted by 10.3°.

difference cannot be attributed to a misalignment of the sample in the supercon-
ducting coils, as the MR is symmetric around the in-plane direction § = 90° (see
e.g. 8 =60° and 6 = 120° in Fig.3.3).

We repeated these measurements at higher temperature (7" = 50K), where the
MR is greatly reduced compared to at low temperature, as expected (40% vs.
3000% at 5K, see Fig.3.6a). The anisotropy of the magnetoresistance is much
weaker at 50K such that the in-plane and out-of-plane MR are comparable (30%
and 40% respectively). At this temperature, the angular dependence of the MR
is very well fitted by a cosine law, with a 8, = 10.3° phase shift. Interestingly,
there is no longer any suppression of the magnetoresistance around 6 = 0° (out-of-
plane direction, see Fig.3.6b). This is confirmed by the analysis of the power law
exponent of the magnetoresistance, which is qualitatively the same at every angle

(Fig.3.7): the exponent decreases with the field and shows a saturation at around
1.3 for B > 8T.

The comparison between the low- and high-temperature measurements shows that
the origin of the colossal magnetoresistance is not related to the power law expo-
nent, which can actually be higher at high temperature. However, the appearance
of the magnetoresistance’s suppression at low temperature suggests a quantum ori-
gin, although a more detailed temperature dependence of the suppression would
be needed to get more insight into this origin.
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Figure 3.7: Logarithmic derivative of the data in Fig.3.6a, shown for 5 specific

angles. The resulting data was slightly smoothed to remove high frequency noise.
The response is qualitatively similar for every angle of the field.

Quantum oscillations

Schubnikhov de-Haas oscillations (SdHo) are measured at low temperature (7" =
5K), for angles around 6 = 10° (see Fig.3.3). In order to study them, we remove
from the MR data a fourth-order polynomial background. The results are repre-
sented in Fig.3.8, where the fluctuation of the resistance are plotted as a function
of 1/B. A detailed analysis, performed by varying FFT parameters and at different
angles, shows independent contributions at three frequencies in the FFT spectrum,
38T, 350T and 1250T, and are associated with three carrier pockets, v, a and 3
respectively (see Fig.3.9 and Veyrat et al. [2021]). This is in good agreement with
the theoretical predictions from our band structure calculations (see Fig.3.10b).
According to these calculations, the v pocket associated with the low frequency
oscillation is linked to the Weyl-node band (band 48 in blue, in Fig.3.10b), while
the other pockets are associated with topologically trivial bands. Two additional
pockets are expected to contribute to oscillations (band 49 and 50), albeit with
much higher frequencies (above 3000T and 4000T respectively, see Fig.B.2) and
were not identified experimentally.

The amplitude and frequency of the SdHo depend on the orientation of the mag-
netic field 6, as can be seen in Fig.3.10a: while the lowest frequency oscillations
are always present for angles |#| < 50° (emerging only weakly from the background
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Figure 3.8: Schubnikhov de-Haas oscillations, measured for an angle § = 10° at
5K. A fourth-order polynomial background was removed from the raw data. The
oscillations are represented as a function of the inverse of the field, and show
multiple frequency contributions.

of the spectrum for some specific angles), the oscillations associated with the «
pocket only appear for § € [10° 35°] and § < —15° while those associated with
the 8 pocket only appear for 6 € [—20° 15°]. When the oscillations are visible,
their angular dependence at least partially agrees with band structure simulations
(Fig.3.10b). The amplitude of the oscillations is not correlated to the magnitude
of the magnetoresistance, as negative angles around § = —15° show significantly
smaller oscillations compared to their positive counterparts (see Fig.3.3), despite
showing very similar magnetoresistances.

While the band structure simulations do not reproduce the experimental data ex-
actly, they nonetheless reproduce its main features (similar frequencies and some
of the angular dependence). Similar discrepancies between band structure simu-
lations and experimental results have already been observed in this compound by
Gao et al. [2018].

Effective mass

It is usually possible to extract from the temperature dependence of SdHo the ef-
fective mass of the electrons of the contributing band. For single-frequency SdHo,
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Figure 3.9: Fast Fourier Transform of the SdHo at § = 10° (Fig.3.8), over the
entire field range. Three peaks are clearly visible: «, at 38T, 5 at 350T and ~ at
1250T. Given the wide range of frequencies, the data is shown in semilog scale.
Inset:

this is done by measuring the temperature dependence of the amplitude of the
oscillation at a given magnetic field, and fitting it with the Lifschitz-Kosewitz for-
mula [Shoenberg, 1984]. This formula is only valid for a single-pocket contribution,
but it can still be used when multiple bands contribute to oscillations if these con-
tributions can be isolated from one another. For bands with different mobilities
or effective mass, for instance, it can be possible to perform the analysis over a
magnetic field range where only one pocket contributes. However, this does not
appear to be the case in our sample. We therefore attempted to isolate each pocket
by filtering out every frequency not related to the SAHO of the pocket that is un-
der consideration, thanks to a bandpass around each oscillation frequency, and
analysed the temperature dependence of the resulting oscillations. This didn’t
prove possible for the filtered v and 3 pockets, as the filtered oscillations still show
multifrequency features (see Fig.B.4.b and Fig.B.4.d). The filtered o pocket does
show what appear to be single frequency oscillations (see Fig.B.4.c), however they
cannot be analyzed properly with the LK formula (see Fig.B.5a and Fig.B.5b).
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Figure 3.10: (a) Angular dependence of the different SAHO peaks. Little depen-
dence is found. Only the v pockets shows a contribution to the SAHO at every
angle studied. Missing points in the different graphs mean the absence of the
corresponding frequency in the FFT. (b) Theoretical prediction of the SAHO fre-
quencies from different bands, and their angular dependence. The frequencies
found experimentally are indicated in red (a pocket), green (f pocket) and blue
(v pocket) circles. For some angles, band 48 (in cyan) presents several extremal
orbits, which results in multiple oscillation frequencies expected from simulations.

3.3.2 Exfoliated structures

In addition to macro-crystals, we also measured 5 exfoliated structures in order
to study the influence of quantum confinement on transport properties. Nano-
structures allow us to make much more controlled experiments, with a better
defined sample geometry (through e-Beam lithography) and higher signal-to-noise
ratio. The exfoliated flakes we studied ranged in thickness from 41nm to 126nm.
All exfoliated flakes were studied using a dilution fridge and a cryostat equipped
with a 6T-2T-2T vector magnet.

Exfoliated samples typically show RRR values much lower than in bulk crystal.
For exfoliated samples of tr-PtBi,, we obtained RRR values between 1.3 and 15,
with the highest being obtained for the thickest sample S5 (¢ = 126nm). In this
section we present results for that sample, as all samples show qualitatively similar
properties.

Similarly to macro structures, the resistance of S5 shows a linear dependence down
to low temperature, where it saturates below 7" < 15K (see Fig.3.11a). At 1K, S5
shows a much lower magnetoresistance than the macro-structure MS1, both for
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Figure 3.11: (a) Cooldown of S5 from room temperature to 4K, yielding RRR =
14.8, indicating a good sample quality for exfoliated structures. Inset: Optical
image of the structure, with the contact configuration measured. The current is
applied along the white arrow, while the voltage is measured between the contacts
marked by the blue double-arrow. (b) MR measured at 7" ~ 1K, for both in- and
out-of-plane fields (respectively in red and blue), shown in percentage.

in- and out-of-plane fields (6% and 8% at 1.5T respectively, compared to 55% and
108% for MS1 at the same field and at 5K), as shown in Fig.3.11b. Contrarily
to the macro-structure, no SdHo have been observed in any exfoliated structure,
even at magnetic fields up to 6T. As for macro-structures, the magnetoresistance
itself cannot be interpreted with a simple two-band model.

3.4 Planar Hall Effect in exfoliated structures

3.4.1 In-plane field mappings

When studying the response of exfoliated samples to in-plane fields at 1K, we no-
ticed an angular dependence of the magnetoresistance: mappings of in-plane fields
(see Fig.3.12) show an anisotropic, m-periodic variation of both the longitudinal
and transverse resistances, giving two maxima and minima when doing a full rota-
tion of the in-plane field. The extrema are shifted angularly by about 7 /4 between
the two signals. This m-periodicity and /4 shift between longitudinal and trans-
verse signals are the hallmarks of the planar Hall effect (PHE, see sec.1.2). In this
section, we discuss these preliminary results showing PHE and anomalous PHE in
tr-PtBi,.
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Figure 3.12: In-plane magnetic field mappings of the longitudinal (a) and trans-
verse (b) resistances (T = 1.1K and I4c = 20pA), for sample S5, showing a
m-periodicity when rotating the field. The contact configuration used is shown in
Fig.3.13a. The black circle in (a) represents a constant in-plane field at B=1.5T.

To study the PHE in our system, we extracted the angular dependence of both
signals at constant in-plane fields, ranging from 0.5T to 1.5T in steps of 20mT.
Since our data points are not located along these circles but rather on a regular
grid, we collected all points within +10mT of the field we considered, in order to
have a significant enough number of point to perform our analysis. The points
collected this way are not evenly distributed, but are rather concentrated around
certain angles. We then performed a consolidation of our data by averaging points
closer than 0.1° together into a single point, before interpolating the result every
1° and smoothing it with a window of 20°. The angular dependence of S5 at 1.5T
is represented in Fig.3.13b. The high frequency oscillations in both signals (espe-
cially visible in the longitudinal one) come from the analysis procedure, however
it doesn’t have a significant impact on our analysis as it has a relatively small am-
plitude and a much higher frequency in comparison to the effects we investigate
in this study.

3.4.2 Data fitting

As we explained in section 1.2, the PHE is characterized by a m-periodic angular
variation of the resistance in both the longitudinal and transverse configurations,
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(a)

Figure 3.13: (a) Left: Optical image of sample S5 showing the contact config-
uration used, with the current along the white arrow and the longitudinal and
transverse resistances respectively between the blue and red double arrows. Right:
schematic of the directions of the fields B|1| and B|2| with respect to the sample. The
angle ¢ of the magnetic field is defined from B'll. The angle ¢y implicated in the
PHE signal (see text) represents the angle of the current, and is also defined from
Bl (b) Angular dependence of the longitudinal (top) and transverse (bottom)
resistances of S5 for a constant in-plane field B = 1.5T (black circle in Fig.3.12a).
Both signals are mainly 7-periodic.

following

pn (B, ¢) = pL(B) — Ap(B) cos® (¢ — ¢o) (3.1)
P P(B, ¢) = —Ap(B) cos(¢ — ¢o) sin(¢ — ¢o),

with Ap = p1 —p) (pL and p| are the magnetic field dependent resistivities of the
sample when the in-plane field is respectively perpendicular and parallel to the
current) and ¢ — ¢ the angle between the field and the current (see Fig.3.13a).
We fitted the angular dependences of the measured longitudinal and transverse
resistivities at each field in order to show that the m-periodic oscillations share a
common amplitude, and therefore confirm their PHE origin.

Multiple contributions

We have to take into account in our fitting procedure a certain number of effects
which affect our measurements. First, the contacts on each side of the sample are
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not perfectly aligned with respect to the current, meaning that transverse contacts
also measure a longitudinal component. The reverse is also true, but doesn’t need
to be taken into account because of the large difference in amplitude between the
two signals. Second, the sample itself is not perfectly aligned in the magnetic field
plane, which means that our system is also influenced by a small out-of-plane field
which is 27-periodic. This needs to be taken into account, as the out-of-plane MR
is larger than the in-plane MR, and can result in a contribution of the out-of-plane
field of up to 10% of the signal for a misalignment of a few degrees. Lastly, because
we use invasive contacts on our structures we do not measure the entire transverse
signal but rather only a fraction of it [Gluschke et al., 2020]. We correct for this
effect by multiplying the transverse resistance with a geometric (field independent)
factor. Once we have taken all these contributions into account, a significant 27-
periodic signal remains in the transverse measurements which cannot be explained
by the out-of-plane field alone. We understand this contribution as being a Berry-
phase induced Anomalous Planar Hall Effect (APHE) [Battilomo et al., 2021], as
we will discuss later.

Fitting formula

When taking into account all the contributions mentioned above, we can express
the longitudinal and transverse resistivities as

pas(B,6) = MRL,(B, ) + phi™ (B, ¢) + p25(B, ¢) (3.2)
pay(B, &) = MRy, (B, ) + Cur. (o™ (B, 8) + (B, 8)) + Cr.paa( B, ),

where MR, (B, ¢) and MR, (B, ¢) represent the MR due to the misalignment-
related out-of-plane field ; p%EE(B, ¢) and pp,"*(B, ¢) represent the planar Hall
effect contribution, as defined previously (eq.3.1) ; p35(B, ¢) and p3; (B, $) repre-
sent a 2m-periodic, field-dependent contribution ; and Cy and C}, represent the
geometric factor corrections to the transverse and longitudinal signals, and account

respectively for the invasive transverse probes and the contacts misalignment.

To determine MRZ, (B, ¢) and MRiy(B,gb), we measured the longitudinal and
transverse resistances for an out-of-plane field. As mentioned earlier, the contri-
bution of the in-plane component due to the magnetic field misalignment can be
neglected, as it amounts at most to about 5% of the signal. To account for the
misalignment of the sample’s contacts, we symmetrized and anti-symmetrized the
results for MRz, and MRiy respectively, thus selecting only the longitudinal and
transverse contribution from each signal, and we fitted the results with polynomials
of order 4 (red lines in Fig.3.14). As we said above, the out-of-plane component of
the field is 27-periodic in ¢, and will reach a maximum B+ (¢, ) = B.sin(f) for an
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Figure 3.14: Out-of-plane magnetic field dependence of the longitudinal (a) and

transverse (b) resistances of S5 (in blue). The signals were fitted using 4® order
polynomials (in red).

angle ¢, , with 6 the angle of the sample with respect to the field’s plane. The out-
of-plane field thus follows the angle dependence B*(¢) = B.sin(0).cos (¢ — ¢ 1),
and we represent its magnetoresistance by

MR, (B, ¢) = P4y, (BL(9)),

with P4,, and P4,, the 4" order polynomials shown in Fig.3.14. The longitudinal
and transverse terms share a single free fit parameter, ¢, . 0 is fixed to the values

extracted from the angular dependence of the superconducting critical field (see
sec.4.11): 6 = 5° for S3 and S4, and 6 = 2° for S5.

We consider field-dependent 27-periodic contributions for both longitudinal and
transverse signals, with independent amplitudes, and a free phase parameter ¢,
independent of the PHE signal:

Pin(B, ¢) = AL (B).cos(d — ¢n), (3.5)
Pry(B, 0) = A7y (B).sin(é — ¢1).

These contributions are distinct from the MR terms, which amplitudes are en-
tirely determined by the magnetic field and the sample’s misalignment angle.
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Fitting procedure

There are two different types of parameters involved in the fit: parameters shared
between the longitudinal and transverse resistances (o, (B), p|(B), ¢o, ¢1 and ¢ ),
and parameters which only involve one signal (A27(B), A27(B), Cy and CL). Some
of these parameters also have an unknown field dependence. In order to determine
all of these parameters in a single process, we fitted together both longitudinal and
transverse data for each value of field between 0.5T and 1.5T (2 x 51 sets of data),
all at the same time. Field-independent parameters were shared between every set
of data, while field-dependent parameters where split into multiple independent
parameters (one for each field).

Although the number of free parameters in this fit is large, their value can be
determined reliably as they are all somewhat independent, with many parameters
of different nature (amplitudes, phase offset etc.) and pertaining to signals of
different periodicity.

3.4.3 Results

0 2 T 3xf2 2
o (%)
Figure 3.15: Angular dependence of the longitudinal per square (top) and trans-

verse (bottom) resistances, for in plane fields from 0.5T (blue) to 1.5T (red), every
80mT. The fits (eq.3.2) are shown in black.
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The fits we obtained, along with the measured angular dependences of the lon-
gitudinal and transverse resistances for S5, are plotted in Fig.3.15 for multiple
fields from 0.5T to 1.5T (every 80mT). The longitudinal resistance is shown per
square. The agreement between the data and the fits is excellent, and the latter
yield ¢y ~ 91° for the PHE phase, which is compatible with the orientation of
the current in the structure, and ¢; ~ —94° for the 2m-periodic signal. The fits
also yield the longitudinal correction C'p, ~ —0.34, and the transverse correction
factor Cy ~ 5.5 obtained is of the order expected by Gluschke et al. [2020] for
very intrusive transverse probes.

Planar Hall Effect
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Figure 3.16: The field dependence of the PHE (m-periodic signal) amplitude Ap =
pL — p) is shown on the left axis (black squares). It is fitted with a power law
Ap o< B (black line). The right axis shows the field dependence of its two
components, p; and py (in blue and red respectively).

We extracted from Fig.3.15 the field dependence of the parameters p; and p
(respectively blue and red circles in Fig.3.16). They both increase with the field,
although p, increases faster than pj. This difference leads to a non-zero amplitude
Ap = p1 —p) of the PHE when the field increases (black squares in Fig.3.16). The
field dependence of Ap is well fitted with the power law Ap oc B15 (black line).

As we mentioned previously in sec.1.2, the PHE is a manifestation of an anisotropic
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response of the resistivity of a sample to in-plane magnetic fields, which can orig-
inate from magnetic ordering in ferromagnets [Nazmul et al., 2008], or from the
chiral anomaly in Weyl and Dirac semi-metals [Burkov, 2017; Nandy et al., 2017;
Kumar et al., 2018]. The amplitude is expected to depend quadratically on the
magnetic field in type-I Weyl semi-metals [Burkov, 2017], while in type-I1I Weyl
semi-metals, when the current and the magnetic field are applied in the tilting
direction the the cones, the amplitude of the PHE is expected to depend linearly
on the magnetic field [Nandy et al., 2017].

We can rule out ferromagnetism as the origin of the PHE in our system, since tr-
PtBi, is a non-magnetic material. The quasi-linear field dependence of the PHE
amplitude in our sample, as well as the increase with field of both p, and py,
does not correspond to the model of Burkov [2017] for type-I Weyl semi-metals,
which predicts Ap o< B?, a constant p, and a decreasing p; with magnetic field.
However, this model only looked at the contribution of the chiral anomaly to the
magnetoresistance, and Li et al. [2019] have discussed the fact that a strong orbital
magnetoresistance can hide the effects of the chiral anomaly, and sub-quadratic
field dependences have been reported in some topological metals [Singha et al.,
2018]. Therefore, the non-trivial origin of the PHE cannot be excluded and further
additional experiments are planned, both at higher magnetic fields (to determine
precisely the field dependence of the effect), as well as by varying the temperature
(to get more information on its origin).

Anomalous planar Hall Effect

The field dependences of the 27-periodic signals are represented for both trans-
verse and longitudinal resistances in Fig.3.17. As we expected from Fig.3.15, the
longitudinal resistance (in blue) does not show any 27-periodic signal. The trans-
verse resistance (in red) however shows a significant 27-periodic signal, with about
15% of the PHE amplitude, and varies linearly with magnetic field (red line).
Battilomo et al. [2021] proposed a theoretical explanation for such an effect in
two-dimensional ¢rigonal systems. They show that the crystal symmetries (i.e.
lack of Cj rotational symmetry), along with a strong spin-orbit coupling, allow
for a non-vanishing Zeeman splitting-induced Berry curvature, which results in a
27 /3-periodic contribution to the transverse resistivity with a linear field depen-
dence at low fields. Importantly, this effect does not contribute to the longitudinal
resistivity, and can coexist with the regular PHE. In the presence of symmetry-
lowering defects (e.g. crystalline domains or stacking faults between the van der
Waals layers), the C5 rotation symmetry may be broken, which would result in an
increase of the period of the APHE contribution to 27, as we measured. Further
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Figure 3.17: Field dependence of the amplitude of the 27-periodic signals of the
longitudinal and transverse resistances, respectively in blue and red circles. The
amplitude of the former stays constant with field, at zero, while for the latter it
increases linearly with field (red line).

characterization in temperature and at higher field is needed to study this effect
further, and will be performed in the near future.

3.4.4 Other samples

We have conducted the same study in two other samples, S3 and S4, which showed
similar effects. Our overall conclusions are the same, as we can see for S3 in
Fig.3.18b: The longitudinal and transverse resistances both show m-periodic and
2m-periodic signals increasing with magnetic field, and which are well fitted with
our model, which yields ¢y ~ 183°, ¢ ~ 287°, Cy ~ 1.98 and C, ~ 0.15. The
difference in the values of ¢y between S3 and S5 is consistent with the physical
angle between the current lines in the two flakes, which is about 90° (see Fig.3.18a).
There are some differences between the samples however. First, the longitudinal
and transverse resistances of S3 (and S4) are not fitted perfect by our model
anymore, as a slight angular shift can be seen in the longitudinal resistance between
the fits (black line in Fig.3.18b) and the data. This is due to the fact that the
transverse and longitudinal resistances are shifted by slightly less than 7/4 in these
samples, while the theoretically expected shift is exactly 7/4 in the PHE. Also,
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1.48

(a)

Figure 3.18: (a) Optical image of sample S3 showing the contact configuration
used, with the current along the white arrow and the longitudinal and transverse
resistances respectively between the blue and red double arrows. (b) Angular
dependence of the longitudinal (top) and transverse (bottom) resistances for in-
plane fields from 0.5T (blue) to 1.5T (red), every 80mT. The fits of the data using
eq.3.2 are shown in black.

the amplitude of the PHE in S3 follows the power law Ap oc B8 (see Fig.B.6a),
very close to a quadratic field-dependence, while S5 shows a quasi-linear field-
dependence.

Remarkably, the 2m-periodic signal in the transverse resistance shows the same
linear field-dependence in S3 as in S5 (see Fig.B.6b), which indicates that this
effect is not linked to the PHE.

3.4.5 Discussion

Our preliminary results show the existence of a m-periodic planar Hall effect in
thin exfoliated structures of tr-PtBi,, and was confirmed in three different samples
for thicknesses ranging from 41nm (S3) to 126nm (S5). We also measured an
additional 2m-periodic signal in the transverse resistance, which we interpret as an
anomalous PHE. These results were also confirmed at lower AC current for all three
samples (although with lower signal-to-noise ratios). Neither m- nor 27-periodic
signals show a dependence in current.

Although the APHE model of Battilomo et al. [2021] was developed for strictly
2D trigonal systems, the symmetry arguments used, and their conclusion, should
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remain valid in the intermediate case of thin nano-structures. The strongest ar-
gument in favor of this model is the very linear magnetic field dependence of
the signal, which is quite uncommon, as well as its manifestation exclusively in
the transverse resistivity, instead of both longitudinal and transverse resistivities
(which is case for the PHE). As we mentioned earlier, stacking faults between the
van der Waals planes could destroy the C3 symmetry of the crystal structure, and
explain the 27 periodicity of the transverse signal instead of the 27 /3-periodicity
expected in the original model. We should be able to test this hypothesis by re-
peating these measurements at higher fields: following Battilomo et al. [2021], if
the C3 symmetry is not broken in the system we should see a 27 /3-periodic signal
emerge in the transverse resistance at high-enough field, which would invalidate
our hypothesis. A study at higher field would also allow for a more precise deter-
mination of the m-periodic signal’s field dependence. We are therefore planning a
new study using a mechanical rotator to rotate the sample in a constant field up
to 14T, in order to gain more insight into the origin of both 7~ and 27-periodic
signals.



4 Superconductivity in
trigonal-PtBi,

In this chapter, we report on the superconducting transition of both macro- and
nano-structures of trigonal-PtBi, (tr-PtBiy) at very low temperature. We begin
with the definition of critical parameters used throughout this chapter, before pre-
senting our results of superconductivity in macro-structures and nano-structures.

4.1 Critical parameters

When characterizing the superconductivity in our samples, we choose to define
the critical parameters 1., B. and I. as the values at which the resistance R
reaches half of the normal resistance Ry, e.g. R(T.) = Ry/2 (the critical current
also corresponds to the peak of differential resistance dV/dl, see Fig.4.1a). This
definition has the advantage of being simple, effective, and is used widely by the
transport community [Fatemi et al., 2018]. Determining the normal resistance is
not straightforward however.

For most contact configurations, Ry is defined as the value of the differential
resistance dV/dI at very large DC current. This works well for configurations in
which the differential resistance is constant at high current (see Fig.4.1a). This
definition is coherent with field and temperature measurements (see Fig.4.1b and
Fig.4.1c), and is used for most of the contact configurations.

For some contact configurations however, the differential resistance does not reach
its constant value at the highest current measured (Ipc = 75uA, see Fig.4.2a),
or dV/dl measurements where not possible (macro-structures). Since the resis-
tance is also not constant at the highest temperature measured (7" = 600mK, see
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Figure 4.1: Differential resistance dV/dI (a) and resistance dependence with mag-
netic field (b) and temperature (c), in blue, in nano-structure S1. The normal
resistance Ry is defined as the average of the differential resistance at high cur-
rent (red line in (a)). This value is reported in (b) and (c), also as a red line,
and is indicated by red arrows. (b) Inset: optical image of S1 with the contact
configuration used (current along the white arrow, voltage along the blue double
arrow).

Fig.4.2¢), we defined the normal resistance for these configurations from magnetic
field measurements. However, at large fields the resistance is not constant, but
slowly increases with field (see Fig.4.2b, above 600mT). The normal resistance
was therefore defined as the average of the resistance at fields corresponding to
after the end of the superconducting transition and before the magnetoresistance
becomes significant.

4.2 Superconductivity in Macro-structures

In order to study the superconducting properties of tr-PtBi, in macroscopic sam-
ples at very low temperatures we contacted three additional macro-structures
(MS2, MS3 and MS4) using the same method as for MS1. MS2 was grown as
pure PtBi,, while MS3 and MS4 were grown with different Rhodium dopings, al-
though MS3 is practically pure (3% doping) and behaves similarly to the undoped
sample. All structures have shown a superconducting transition at low tempera-
ture. In this section, we will focus on the undoped case sample MS2.
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Figure 4.2: Differential resistance dV/dI (a) and resistance dependence with mag-
netic field (b) and temperature (c), in blue, in nano-structure S1, for a different
configuration. The normal resistance Ry is defined as the average resistance be-
tween 300-350mT (red line in (b)). This value is reported in (a) and (c), also as
a red line, and is indicated by red arrows. (b) Inset: optical image of S1 with the
contact configuration used (current along the white arrow, voltage along the blue
double arrow).

4.2.1 3D superconductivity

We cooled MS2 down to T" ~ 100mK using a dilution fridge. It shows a high
crystalline quality: the resistance decreases with temperature down to about 15K,
where it starts saturating, showing a RRR of 98 (see Fig.4.3). When cooled down
further, the resistance stays constant until about 800mK, where it starts to de-
crease towards zero, suggesting a superconducting transition around 7, ~ 600mK,
as we first reported in Shipunov et al. [2020].

The zero resistance state is destroyed by magnetic fields, as can be seen for an
in-plane field in Fig.4.4, with a critical field B, = 50mT. We note that the zero-
resistance state is slightly shifted with respect to B = 0T due to remanent fields.
Remanent fields in our system are no more than a few mT at most, but the
high sensitivity of the superconductivity to magnetic fields implies that transport
properties can be significantly influenced by such fields.

Interestingly, point-contact measurements show an enhancement of the supercon-
ductivity (i.e. of B. and T,.), probably linked to increased local pressure (see
sec.C.1.2 and [Veyrat et al., 2021]).
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Figure 4.3: Temperature dependence of the resistance of MS2 between room tem-
perature and the base temperature of our dilution fridge (7" ~ 100mK), giving
a residual resistivity ratio of 98. The dashed line corresponds to missing points
due to measurements errors. Inset left: Optical picture of MS2, with the current
flowing along the white arrow, and the voltage measured along between the con-
tacts shown by the blue double-arrow. Inset right: Zoom-in below 1K, showing a
superconducting transition of the sample around 7, ~ 600mK.

Magnetic field anisotropies

Even though the superconductivity does not show any significant magnetic field
anisotropy when sweeping the field along the out-of-plane direction and the two
in-plane directions (Fig.4.5), weak anisotropies are revealed by complete field map-
ping (Fig. 4.6). These anisotropies are small however (~ 1.4 between the plane and
out-of-plane directions, and ~ 2 in the plane) which indicates three-dimensional
superconductivity rather than a layered superconductivity, for which one would
expect a much larger anisotropy [Devarakonda et al., 2020].

Critical field versus temperature

To further study the superconducting phase in macro-structures, we measured the
temperature dependence of the in-plane critical magnetic field. To this purpose,
we measured a series of magnetic field sweeps, from 0T to 500mT and back, at
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Figure 4.4: Magnetic field response of MS2 for an in-plane field, showing a su-
perconducting transition below B. ~ 50mT. The horizontal line corresponds to
R = Ry/2, with Ry the resistance in the normal state. The intersection between
this line and the data gives the critical magnetic field.

different temperatures ranging from 150mK (well bellow 7}) to 750mK (above T¢.).
From this, we could determine the critical magnetic field at different temperatures.
The temperature dependence of the critical field is shown in Fig.4.7, and the full
data in Fig.C.1. The temperature dependence of the critical field is well described
by the Ginzburg-Landau (GL) theory at 3D (see eq.1.3), with a linear dependence
down to T' = 250mK. The value of the superconducting coherence length at zero-
temperature given by this model is £, ~ 60nm. The same results are obtained for
the forward and backward sweeps. This result shows that superconductivity in tr-
PtBi, macro-structures is more three-dimensional than layered or surface-held: if
this were the case, the Ginzburg-Landau theory predicts that the in-plane critical
field would not depend linearly on the magnetic field (see eq.1.4 and eq.1.5).

To study the nature of the superconductivity in macro-structures, specific heat as
well as SQUID measurements were performed, but they did not give any signature
typical of superconductivity, which could indicate that the superconducting state
in macro-structures is percolative. Nonetheless, the large superconducting coher-
ence length obtained from charge transport measurements suggests that it could
be possible to observe superconductivity of reduced-dimension in thin exfoliated
samples.
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Figure 4.5: Magnetic field response of MS3 for different directions of the field,
showing an isotropic behavior. Bt (green) was extracted from a 2-dimensional
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Figure 4.6: Field mappings of the resistance of MS3, between the sample plane
and the out-of-plane direction (a), and between the two in-plane directions (b).

4.3 Superconductivity in exfoliated structures

As mentioned previously, the large coherence length of the superconductivity found
in macro-structures coupled to the van der Waals nature of the material make it
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Figure 4.7: In-plane critical magnetic field of MS2 as a function of the temperature,
extracted from the contour in Fig.C.1 (blue triangles). Close to T, the data is well
fitted by the 3D Ginzburg-Landau theory (red dashed-line), and yields a coherence
length &y = 60nm.

possible to study confined superconductivity in thin exfoliated structures of tr-
PtBiy, with thicknesses lower or comparable to the superconducting length. As
stated before in sec.3.3.2, we studied 5 exfoliated structures in total. In this
section, we will focus on presenting results for one particular structure, S1 (the
first exfoliated structure we measured), and for the particular contact configuration
VO shown in the inset of Fig.4.8. The main results presented in the next two
subsections are currently posted on arXiv [Veyrat et al., 2021].

4.3.1 Characterization of the superconductivity

Sample S1 is 60 nm thick for about 10 pm in width. It shows a good crystalline
quality, with a RRR of 9. When cooled down to sub-kelvin temperatures, the
sample showed a slightly broad superconducting transition around 7, = 350mK
(Fig.4.8, in red), much lower than for macro-structures. We will discuss this figure
in more details shortly.
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Figure 4.8: Reduced resistance as a function of the temperature (in red), showing a
superconducting transition at 7' ~ 350mK. Applying a small out-of-plane magnetic
field of 2.4G, to compensate for the remanent field, improves the transition to
T. = 370mK (in blue). Both data were extracted from the zero-current data of
differential resistance mappings in temperature and current (see Fig.C.6 for the
mapping at B = 2.4G). Inset: Optical image of the structure, with the contact
configuration measured. The current is applied along the white arrow, while the
voltage is measured between the contacts marked by the blue double-arrow.

Current and field response

To further characterize the superconducting state, we measured the differential
resistance of the sample (see Fig.4.9a) by applying a DC current in addition to
the AC polarization current (see sec.2.1.2). The zero resistance state persists until
the DC current reaches I, = 10pA, for an AC current [4c = 1pA. We find
a critical current I, ~ 22pA (defined as the current for which the differential
resistance reaches its maximum). Therefore, since our AC polarization current of
1pA is one order of magnitude lower than 1%, it will not influence significantly the
superconductivity in our AC resistance measurements (without DC current). We
find this AC current to be a good compromise to measure at-equilibrium properties
while maintaining the highest signal-to-noise ratio possible.

We then focused on the response of the sample to an external magnetic field. We
find the critical magnetic field to be B!l ~ 143mT for an in-plane field, and B} ~
6mT for an out-of-plane field. While the in-plane critical field is significantly higher
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Figure 4.9: (a) Differential resistance measured at different (out-of-plane) magnetic
fields, in order to compensate for the remanent field. (b) Magnetic field dependence
of the resistance, for both in- and out-of-plane fields (respectively in red and blue).
A clear anisotropy can be seen, with B‘c‘ ~ 143mT and B+ ~ 6mT.

than for macro-structures, the out-of-plane field is greatly reduced. This leads to
a high anisotropy in the field response, with a critical field ratio of Bll/B} ~ 25
(Fig.4.9b), compared to a rather isotropic response in macro-structures. When the
sample’s misalignment is taken into account, this ratio reaches 55 (see sec.4.3.2).
Such a large difference is a direct consequence of the reduced dimensionality of the
superconductivity in this sample.

Remanent field and reset procedure

The effects of remanent fields are visible for exfoliated structures under out-of-
plane magnetic field, with the effective zero field state being shifted to the negative
fields for a sweep from positive to negative fields and vice versa. In Fig.4.9b (blue
curve), the center of the transition is at B+ ~ —3mT for a sweep from positive
to negative fields. Remanent fields are not as visible for in-plane fields, due to
a strong asymmetry in the field transition (a small one also exists for an out-of-
plane field), as can be seen in Fig.4.9b (red curve). We have studied this effect
in different samples, and understand it as metastabilities in the superconducting
state. However, this study goes well beyond the scope of this manuscript, and we
will therefore not include it here. In practice, we can avoid most measurement
issues related to metastabilities by always increasing the magnitude of in-plane
fields (e.g. sweeping from 0 to positive or negative fields), and by applying a
"reset” procedure (see below) when decreasing them.
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Since a few millitesla of out-of-plane field can be enough to greatly influence the
superconductivity in our samples, we developed an empirical "reset" procedure to
minimize both the out-of-plane remanent field and the effect of metastabilities.
The superconductivity being less sensitive to in-plane remanent fields for S1, we
did not need to develop a similar procedure for them. We note nonetheless that, for
other exfoliated structures, a similar procedure along an in-plane direction must
be applied to remove the effects of metastabilities.

The "reset" procedure we developed for S1 consists in sweeping the out-of-plane
field around zero, back and forth with decreasing amplitude, before setting it at
zero: B+ = 0T — 1T — —0.5T7 — 0.27 — 0T. We found this procedure to be

very efficient in avoiding any remanent fields and metastabilities.

Due to the high sensitivity of the superconductivity to the out-of-plane magnetic
field, we could measure precisely the remaining out-of-plane remanent field to
be -2.4G (see Fig.4.9a) by comparing the differential resistance of the sample at
different small applied fields (in attempted compensation of the remanent field):
The remanent field is compensated when the peaks on either side of the zero-
resistance plateau are maximized. This is the most accurate method we found
to compensate the remanent field, and is as sensitive as a fraction of Gauss (see
Fig.4.9a).

Temperature dependence R(T) with remanent field compensation

Since the remanent field has a significant impact on the superconducting state,
we compensated for it by applying an out-of-plane field B+ = 2.4G and measured
the temperature dependence of the resistance R(T) again. Because of the long
stabilization time of the dilution fridge, the temperature dependence was not ob-
tained by varying the temperature continuously (with all other parameters staying
constant), but were rather extracted from a series of differential resistance mea-
surement done at constant temperatures (see Fig.C.6): The resistance at each
temperature was taken as the zero-DC-current value of the differential resistance
(to reduce the noise of the measurement, we averaged the zero-current value over
a 1pA range centered around zero).

With the remanent field compensated for, we see an improvement of the super-
conducting critical temperature to T, = 370mK (a 20mK improvement compared
to the T, obtained without compensation), as well as a sharper transition (see
Fig.4.8, in blue).
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Figure 4.10: Temperature dependence of the resistance for contact configuration
V1 (a), and V2 and V3 (b), see insets. For V1, an out-of-plane field of B+ = 2.4G
is applied to compensate for the remanent field. Configuration VO is shown in
blue, for comparison

Thanks to its contact geometry, we were able to measure S1 in different contact
configurations, varying both the current orientation and the voltage probes. By
comparing these results, we can gain insight into the inhomogeneities in the sample.
When keeping the same source and drain as for the previous configuration (VO0)
and measuring the voltage on the other side of the structure (configuration V1), we
find a slightly different superconducting transition (see Fig.4.10a): Even though
R(T) = Ry/2 is reached for a very similar T, = 371mK than for VO, the shape of
the transition differs, with a peak of resistance at T' ~ 450mK, just above T..

A behavior similar to V1 was also observed for two other configurations (V2 and
V3) with different drain, source and voltage probes (see Fig.4.10a), with a resis-
tance peak, for T 2> T,, and we find respectively TV? = 354mK and 73 = 374mK,
close to the values measured in the previous configuration. We will discuss the
origin of these peaks in section 4.3.4.

4.3.2 Dimensionality of the superconductivity

Angular dependence of the critical field

In order to study the dimensionality of the superconductivity in thin exfoliated
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Figure 4.11: Angular dependence of the critical magnetic field for V2, with 6 = 0°
corresponding to an out-of-plane field. This data was extracted from Fig.C.4a, and
was fitted with the 3D Ginzburg-Landau model (in blue), and the 2D Thinkham

model (in red). Inset: Zoom-in on the peak, which is centered around 6 = 91.1°,
due to a physical misalignment of the sample.

samples, we measured the angular dependence of the critical magnetic field. As
we have shown in sec.1.3.4, a difference is expected in the critical field’s angular
dependence B.(f) depending on the dimensionality of the superconductivity: In
contrast to 3D superconductivity, 2D superconductivity is expected to show a
cusp-like peak of the critical field for an in-plane field (corresponding to 6 = 90°).

To measure B.(f), we measured the resistance of the sample while sweeping the
out-of-plane field and keeping the in-plane field constant. We then increased the
in-plane field by 5mT, and swept the out-of-plane field back in the other direction,
and repeated these measurement up to an in-plane field of 250mT, above B!l (see
the results in Fig.C.4a as a magnetic field mapping).

From each sweep, we can extract the fields’ values (B!l, B+) for which R(B!l, B+) =
Ry /2, and compute the angles and magnitude of the total critical field. The
results, presented in Fig.4.11, show a clear peak of the critical field around the
in-plane field direction, and a minimum for an out-of-plane field, as expected from
the theory. As we can see in the zoomed-in inset, the peak is centered around
0 = 91.1°, rather than 90°. This angular shift is due to a physical misalignment of
the sample in our system.
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Even though it is small, this misalignment has a very significant impact on our
measurements, as the measured in-plane critical magnetic field is actually reduced
by about 29% compared to the "true" in-plane critical field. The figure shows fits
of the data to either the 3D Ginzburg-Landau model (eq.1.6, in blue), or the 2D
Thinkham model (eq.1.7, in red), with no parameter constraint (free parameters
for the fit are the in- and out-of-plane critical fields, as well as the misalignment
angle). The 2D model globally fits the data better than the 3D model, which
cannot account for the cusp-like shape of the peak.
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Figure 4.12: Angular dependence of the critical magnetic field for V5, with 6 = 0°
corresponding to an out-of-plane field. This data was extracted from Fig.C.5a, and
was fitted with the 3D Ginzburg-Landau model (in blue), and the 2D Thinkham
model (in red). Inset: Zoom-in on the peak, which is centered around 6 = 91.1°,
due to a physical misalignment of the sample.

We repeated this analysis with other pairs of contacts (see e.g. configuration V5 in
Fig.4.12), all of which also show cusp-like peaks around the in-plane direction, with
the same misalignment of 1.1°. This cusp-like angular dependence of the critical
field, well fitted by the 2D-Tinkham model, and reproducible on different contact
configurations, constitutes a first strong indication of the reduced dimensionality
of the superconductivity in our sample.
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Figure 4.13: Temperature dependence of the critical magnetic field for VO, both
in- and out-of-plane (red and blue respectively), extracted from Fig.C.4b. The
out-of-plane field was increased by an order of magnitude for visibility. The data
was fitted with a misalignment-corrected 2D Ginzburg-Landau model. For the
out-of-plane critical field, two fits were done: from 150mK to 295mK in dashed
blue, and from 300mK to T, in dotted black.

Temperature dependence of the critical field

To confirm the reduced dimensionality of the superconductivity, we studied the
temperature dependence of the critical field, both in-plane and out-of-plane. Since
the field measurements were done along the coil’s directions, we need to adapt
the Ginzburg-Landau model for the in-plane field (eq.1.4). This can be done by
injecting the temperature dependence of B!(T) and B} (T) (respectively eq.1.4
and eq.1.5) into eq.1.7, giving:

B.(0,T)

= — 4.1
2 BH(T) sin?6 Bl (T2 cos*d (41)

 1BI(T)? |cosh) J BX(T)? sin%0
We used the original Ginzburg-Landau equation 1.5 for the out-of-plane field, as
the misalignment has no significant impact in this direction (see configuration V0
in Fig.4.11).

For the out-of-plane field, the measurements were made by sweeping the field back
and forth at constant temperature. The temperature is increased between each
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sweep by 50mK from 150mK to 250mK, and then by 5mK from 250mK to 450mK.

For the in-plane magnetic field, in order to avoid issues associated with the metasta-
bilities mentioned previously, the temperature was increased at fixed magnetic field
(in steps of 20mK). For each field, the temperature was stabilized for 30 minutes,
and the resistance was taken as the average over the last 50 points measured in
order to enhance the signal-to-noise ratio. Then, the magnetic field was increased
by 20mT (from 0T to 200mT) while the sample cooled-down, and the procedure
was repeated. Due to the very long time required to do these measurements, we
only measured over temperature ranges close to the transition at each field, to
reduce the overall duration of the measurements. The full mapping obtained can
be see in Fig.C.4b.

The temperature dependence of the critical field, for both orientations of the field,
is plotted in Fig.4.13 (the out-of-plane critical field was enhanced by an order of
magnitude for better visibility). The out-of-plane critical field still shows a linear
dependence in temperature, as expected by the Ginzburg-Landau theory in both
the 3D and confined cases. Nevertheless, two different slopes can be observed for
different temperature ranges: from low temperature up to 295mK, the linear fit
(dashed blue line) yields T, = 400mK and &, = 176nm, according to the Ginzburg-
Landau model. This is not consistent with other measurements, which indicate
that T, is closer to 370mK. However, from 300mK on, a transition to another
linear temperature dependence is observed (dotted black line), corresponding to
T. = 376mK and &, = 158nm, in excellent agreement with our R(7") measurements.
This is also in perfect agreement with the zero-field measurements we did for the
in-plane field-temperature mapping, which gives T, = 375mK.

We have noticed a similar change of slope for the out-of-plane critical field’s tem-
perature dependence in all our different samples, and for different contact config-
urations. The determination of the origin of this phenomenon goes well beyond
the scope of this manuscript, but it might be linked to inhomogeneities in the su-
perconducting transition. We will discuss more about these inhomogeneities later
in sec.4.3.4.

Contrarily to the out-of-plane field, the in-plane critical magnetic field no longer
shows a linear temperature dependence in exfoliated structures. Taking into ac-
count the sample’s 1.1° misalignment, we can fit the temperature dependence with
the 2D Ginzburg-Landau theory (eq.4.1), which is shown in red in Fig.4.13. From
the theory, we can extract three parameters: the critical temperature 7, = 361mK,
less than 4% away from the value obtained from the R(T') ; the superconducting
thickness dgc = 57nm, which is of the order of the sample’s thickness ; and the
in-plane coherence length at zero temperature 5(‘)' = 138nm, close to the value
obtained from the out-of-plane critical field. These results can be reproduced for
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other contact configurations, with very similar parameters (see Fig.C.3).

The critical field’s temperature dependence (in both field orientations), together
with the critical field’s angular dependence, show the 2-dimensional nature of
the superconductivity in thin exfoliated samples of tr-PtBi,. We investigate fur-
ther the low dimensionality of the superconducting state in the following section,
and evidence a Berezinskii-Kosterlitz—Thouless (BKT) transition in thin exfoliated
samples.

4.3.3 Berezinskii—Kosterlitz—Thouless transition

V(I) characteristics
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Figure 4.14: Current-voltage V(I) characteristics of VO at different temperatures,
shown in logarithmic scale. The characteristics vary continuously from supercon-
ducting to normal state in temperature. At T'= 310mK, the slope of the charac-
teristics reaches a maximum of 3 (black dashed line), typical of a BKT transition.

One typical way of identifying a BKT transition in transport is to consider the
temperature dependence of the current-voltage V(I) characteristics. In a perfect
material, at high temperature (7" > T,) the potential should follow Ohm’s law
at any current, while at lower temperature (7' < T,) and at low enough current
(I < I.), the voltage should drop down to zero. In a BKT transition, the po-
tential is expected to follow a temperature dependent power law V oc I1%7) (see
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sec.1.3.4). The exponent a is equal to 1 in the normal state, and increases at lower
temperature for 7' < T, (with T, the BCS critical temperature). In a homogeneous
and infinite sample, the exponent shows a jump at the BKT temperature Tgg7,
from a(Thyr) =1 to a(Tzxr) = 3, and keeps increasing with decreasing tempera-
tures, while in an inhomogeneous and finite sample the transition is expected to be
broadened in temperature. In both cases, the BKT temperature Tgxr is defined
by the relation a(T' = Txr) = 3.

In order to evidence a BKT transition, we measured V(I) characteristics at different
temperatures, from 7" = 100mK to T = 500mK. In practice, in order to enhance
the signal-to-noise ratio, we measured the differential resistance (see Fig.C.6) and
integrated it, after having checked the equivalence with direct V' (/) measurements.
The data for VO is plotted in logarithmic scale in Fig.4.14 to make the power law
more visible. A temperature dependence typical of BKT transitions is evidenced,
with an increasing slope (i.e. power law exponent) with decreasing temperature.
At around T = 310mK, the power law exponent reaches 3 (dashed black line), and
keeps increasing at lower temperature.

Power law exponent

10 - - -
[}

310mK

100 200 300 400 500
Temperature (mK)

Figure 4.15: Maximum of the exponent of the V(I) power law at different
temperatures, extracted from Fig.C.7a, making it easier to identify precisely
TB KT — 310mK.
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A more accurate method of analyzing the power laws is to perform the logarith-

Olog(V
mic derivative of V(I) at different temperatures, a(Ipc,T) = (%0‘?5)) (see
o9\tnc) |,

Fig.C.7a), and to extract the temperature dependence of their maximum, as pre-
sented in Fig.4.15. This analysis shows that, at high temperature, the exponent is
constant and equal to 1, and starts to increase around 7' = T, = 370mK, before
reaching 3 at a temperature between 305mK and 310mK, confirming our initial
analysis. It then increases further at lower temperature. This indicates again that
a BKT transition takes place around Tzxr = 310mK.

This method suffers from one important drawback: since it is based on V(I) sweeps,
a "large" DC current (Ipc ~ 20uA > I4c = 1uA) has to be applied to the sample,
which brings the electrons out of equilibrium. Due to our sample’s low resistance
(typically R ~ 1€ in the normal state), the excitation energy of the current eVpo ~
20pV remains lower than the broadening of the Fermi-Dirac distribution at low
temperature (4kgT ~ 35uV at 100mK), so that measurements are done very close
to equilibrium, avoiding heating issues related to electron-electron interactions.
Nevertheless, we will show below that the temperature dependence of the resistance
at low current provides another signature of the BK'T transition, at equilibrium.

Temperature dependence of the resistance

In a homogeneous material, the resistance of an infinite sample should drop to zero
below T = Tggr. As we mentionned earlier in sec.1.3.4, the Halperin-Nelson the-
ory [Halperin and Nelson, 1979] gives an expression of the temperature dependence
of a sample above T' = Tg:

1
R(T)/Ry = ———  with
(T)/ Ry 1+A0/0N’Wl
2
Ao 4 | | T. — Tkr
= — hl2 _ 4.2
on A2 sin (a T_TBKT) , (4.2)

where A is a number of order unity and « is the scale of the vortex-core energy
(typically a ~ 1). No reasonable fit of our data can be achieved using this formula
without some of the parameters taking meaningless values. This is due to the
presence, in our data, of a resistance "tail" at low temperature (see Fig.4.16) which
is incompatible with the Halperin-Nelson model which predicts R(T < Tgxr) = 0.

If we fix Tprr = 310mK, as obtained previously from the V(I) measurements,
the best fit is obtained for the parameters A = 2.86, a = 0.37 and T, = 512mK
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Figure 4.16: Temperature dependence of the reduced resistance (same data as in
Fig.4.8, in blue.) The reduced resistance is fitted with both the Halperin-Nelson
(homogeneous) model, in black, and the Benfatto (ingomogeneous) model, in red.
The homogeneous model cannot represent the data correctly. The inhomogeneous
model gives a small gaussian broadening of the transition temperature, with § =

25mK, and accounts very well for our measurements over the entire measured
temperature range.

(black dashed line in Fig.4.16). The large value of T, is an artificial attempt at
broadening the transition, but it is incompatible with our other measurements of
T, ~ 370mK.

Following the model of [Benfatto et al., 2009] (see sec.1.3.4), we can take into ac-
count the spatial inhomogeneities in our sample by considering a broadening of the
transition temperature, in the form of a Gaussian distribution. The temperature
dependence of the resistance thus follows

-1

2
R(T) 1 (t — Txr)? 4 | t
= dt _ 1+ — h|by|—=——
Rn —27r(5/ exp( 552 X + 2 s T3 ,
(4.3)
with § the Gaussian spread of Tgyxr and b = 204\/(TC —Tgkr)/Terr. By fix-
ing both T, = 370mK and Tggr = 310mK to the values determined previously

(from R(T.) = Ry/2 and the V(I) characteristics, respectively), we obtain a very
good fit of our data (see red line in Fig.4.16) over the entire temperature range.
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We obtain as parameters, A = 18.5, b = 1.27, and the transition temperature
broadening = 25mK. This broadening is consistent with the range of 7T, mea-
sured between different contact configurations, which is of the same order (see e.g.
configurations V2 and V3 in Fig.4.10b and V4 and V5 in Fig.4.20a with, respec-
tively, TV? = 354mK, T3 = 374mK, T)* = 406mK and 75 = 346mK). At low
temperature, the fit deviates slightly from the data, which is non-zero, due to mea-
surements artifacts related to common mode rejection ratio issues, a limitation of
the measurement of low impedance samples with lock-in techniques.

Combined with the V(I) characteristics’ temperature dependence, this shows the
existence of a BKT transition in nano-structure S1. This is highly unusual, as
this sample is relatively thick (60nm, which corresponds to several dozen layers),
and BKT transitions have until now only been reported for films thinner than
12nm [Mondal et al., 2011]. This led us to study more structures with different
thicknesses, to confirm the existence of this transition, and potentially evidence it
in even thicker structures.

Thinner structure

In addition to sample S1, we measured three more samples of varying thickness,
between 41nm and 126nm (S3, S4 and S5). However, we can only apply the
previous analysis to sample S3, as we will explain in more details in the next section
(sec.4.3.4). Since sample S3 is thinner than sample S1 (41nm vs. 60nm), we expect
it to show a BKT transition as well. Looking at the temperature dependence of
the V(I) characteristics (shown in logarithmic scale in Fig.4.17a), we see again
that the slope reaches a cubic power law, between T" = 350mK and 7" = 375mK.
As for the previous sample, we analyzed the logarithmic derivative of the V(I)
curves (see Fig.C.7b) and extracted the maximal power-law exponents reached at
each temperature (Fig.4.17b). By interpolating the data presented in the graph,
we determine the BKT temperature Tggr ~ 369mK.

Using the same analysis procedure as before, we can then fit the resistance tem-
perature dependence, with either the homogeneous Halperin-Nelson model, or the
inhomogeneous Benfatto et al. model, with Trxr fixed at the value determined
from the V(I) characteristics above (see Fig.4.18). We see that, as for S1, the in-
homegeneous model fits our data better, with a significantly smaller broadening of
the transition temperature than for S1 (§ = 11mK). The other parameters of the
fit are A = 3.15 and b = 0.25. This confirms the existence of a BKT transition in
S3. It also rules out the experimental setup as the cause of the broadening of Tgxr
(e.g. from line filtering issues in the dilution fridge), since both samples should
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Figure 4.17: (a) Current-voltage characteristics V(I) at different temperatures,
shown in logarithmic scale, for sample S3, which is 41nm thick. The characteristics
vary continuously in temperature from the superconducting to the normal state.
Between T" = 350mK and T = 375mK, the slope of the characteristics reaches
a maximum of 3 (black dashed line), typical of a BKT transition. Inset: optical
image of S3 with the contact configuration used (current along the white arrow,
voltage along the blue double arrow). (b) Maximum of the exponent of the V(I)
power law at different temperatures, extracted from Fig.C.7b, making it possible
to identify the transition temperature with more precision, with Tgxr = 369mK.

then have a similar broadening. The lower transition temperature broadening for
S3 implies, in our interpretation, a smaller inhomogeneity of the superconducting
state.

Therefore we have strong evidence, both in the V(I) characteristics and in the
temperature dependence, of a BKT transition happening in two exfoliated sam-
ples, 41lnm and 60nm thick, much above what has previously been reported in the
litterature [Mondal et al.; 2011]. The shape of the temperature dependence can
be well understood by taking into account spatial inhomogeneities in the super-
conducting state, which result in a minimal, sample dependent broadening of the
BKT transition temperature.

4.3.4 Inhomogeneous superconducting transitions
In every sample and configuration we have studied we have noticed some deviations

from the expected superconducting transitions, whether in temperature, magnetic
field or current. Depending on the contact configurations, these deviations varied
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Figure 4.18: Temperature dependence of the reduced resistance of S3. The reduced
resistance is fitted with both a spatially homogeneous BKT model, in black, or a
spatially inhomogeneous one, in red. The homogeneous model cannot represent
our data correctly. The inhomogeneous model gives a small gaussian broadening
of the transition temperature, with 6 = 11mK, and account very well for our
measurements over the entire measured temperature range.

in nature and amplitude, making analysis and interpretation of the data more
difficult. In the previous section, we have shown the results for which deviations
were not too significant, and for which the results were therefore unambiguous.
In this section, we will discuss in more details about the nature of these different
variations, about their consequences in our different samples, and about their
possible origin.

We will discuss below three different types of deviations: an overshoot, a multi-
step feature and an inflection point in R(T) and R(B), all of which are related to
inhomogeneities of the superconductivity.

Resistance peak above the transition

As we already mentioned in sec.4.3.1, some configurations show a small peak of
resistance following the superconducting transition. In Fig.4.19a, we present the
temperature dependence of the resistance for three contact configurations of sample
S1. Even high above their T, (371mK, 354mK and 374mK for V1, V2 and V3
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Figure 4.19: (a) Temperature dependence of the normalized resistance for 3 differ-
ent contact configurations of sample S1, shown in the insets. The current for each
configuration is represented by the white arrow, while the resistance is measured
between the contacts indicated by the colored double arrows. The vertical colored
dashed-lines correspond to the different temperatures considered in Fig.4.24. (b)
Out-of-plane magnetic field dependence of the normalized resistance, for the same
configurations as in (a).

respectively), defined as previously as R(7.) = Ry/2, the resistance does not
saturate at R = Ry. For V1 and V2, we can see that the peak is followed by a
small depression of the resistance below Ry and before the saturation to Ry, a
property which could not be evidenced for V3 in the temperature range studied,
and because of the higher noise level. These effects (peak and depression) are
better revealed in the (out-of-plane) field dependence (see Fig.4.19b), where both
V1 and V2 reach R = Ry around B ~ 60mT, which corresponds to about 105..

Multiple-step transition

Other deviations from the usual superconducting transition have been observed
in different samples and contact configurations. For instance, configuration V4
of sample S1 (Fig.4.20a, in blue) shows a step in the resistance’s temperature
dependence around 7' = 450mK, with a resistance plateau over about 100mK,
before increasing again until the highest measured temperature (77 = 600mK).
Despite the fact that T, ~ 406mK, the normal resistance is still not reached at
T = 600mK = 1.5T,. On the other hand, configuration V5 (in red) shows a brutal
change of slope to a much lower one around 7" = 370mK. V5 also displays a small
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Figure 4.20: (a) Temperature dependence of the normalized resistance for 2 differ-
ent contact configurations of sample S1, shown in the insets. The current for each
configuration is represented by the white arrow, while the resistance is measured
between the contacts indicated by the colored double arrows. The vertical colored
dashed-lines correspond to the different temperatures considered in Fig.4.25b. (b)
Out-of-plane magnetic field dependence of the normalized resistance, for the same
configurations as in (a).

peak of resistance around 7' = 500mK, as described in the previous section, and V3
(in green in Fig.4.19a) also shows a small shoulder around 7" = 380mK, showing
that these deviation to the usual transition may occur concurrently.

We can again look at the magnetic field dependence of the resistance for these
contacts for comparison. Similarly to its temperature dependence, V4 shows a
step-like behavior with a plateau around 20mT. The resistance reaches the normal
resistance at B ~ 300mT, or about 30B.. V5 also shows a change of slope followed
by a small peak, respectively around 9mT and 40mT. Magnetic field measurements
are easier to perform than temperature measurements, which require a stabiliza-
tion of the temperature. Therefore, they can reveal finer structures than R(T)
characteristics. For instance, instead of a single step, V4 shows a change of slope
at 11mT followed by two steps (from 14mT to 19mT and 27mT to 44mT). The re-
sistance then increases again quickly, until about 65mT, before slowing down until
about 300mT. This slow increase cannot be attributed to the magnetoresistance,
as the resistance then stays constant for about 550mT before rising steadily with
the field again.

While the resistance peaks and steps are the most visible deviations from the
standard superconducting transition, changes of slope, or small shoulders, are
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much more frequent. Overall, every sample we measured showed at least one such
feature.

Inhomogeneous transition model
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Figure 4.21: Model explaining the peak above the critical temperature in super-
conducting transitions. Adapted from [Vaglio et al., 1993]. (a) Top: Out of line
contact configuration required for the peaks to appear. Bottom: Modelization of
the configuration above as a resistance circuit, with Ry = R3 & Ry = Ry. (b)
Top: Temperature dependences of R; and R,. The transitions are considered the
same, with a small shift in T, (T, = 1.007 x T,;). Bottom: Measured resistance
R,, = V/I (formula in main text), displaying a peak just above T..

Resistance peaks above the superconducting transition such as described above
have already been observed in the early 1990’s in disordered superconductors, for
particular current/voltage contact configurations [Lindqvist et al.; 1990; Nord-
strom and Rapp, 1992]. Possible origins raised at the time included current redis-
tribution and vortex motion, creating transverse voltage in the absence of a mag-
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netic field. Soon after, Vaglio et al. [1993] proposed a simple model attributing
the origin of the peaks to spatial inhomogeneities of the superconducting transi-
tion. In this model, they consider a typical four-probe measurement scheme with
out-of-line current and voltage probes (see Fig.4.21a), which can be simplified as
a square circuit of four resistances (for simplicity, Ry = R3 & Ry = Ry). The
Vo R?

I 2(R?+ R3)
sistance follows a superconducting transition temperature-dependence, and taking
R, and Rs to have a slightly different T, they could reproduce the observed peak
of resistance above T, (see Fig.4.21b).

measured resistance is then R, = . By considering that each re-

Vaglio et al. [1993] attributed all differences between the superconducting transi-
tions to inhomogeneities in their samples, which modify slightly the T, in different
areas of the film, and they confirmed through in-line measurements (which do not
show this effect) that their samples indeed showed a small spatial inhomogeneity
of the T,.

We can extend this model in different ways. First we use the Halperin-Nelson
formula to modelize the superconducting transition, since we know our samples
show a BKT transition:

o\ -
R(T) 4| T, — Tarr
— =14+ — 2004 | ——— 4.4
R + yE sinh ( o T TBKT) , (4.4)

We then have four tunable parameters (if we consider the normal resistance to be
the same, for simplicity): « and A, which determine the sharpness of the transition,
as well as the two transition temperatures 7T, and Tgxr. As in the original model,
we will consider only two different transitions, R; and R,, in order to give a
proof of principle rather than an accurate fit of our data. For simplicity, we will
always consider the same transition for R, with parameters a; = 0.34, A; = 4,
Te1 = 370mK and Trrr) = 310mK, which describe more or less accurately the
transition in S1. By varying the transition R, it is possible to reproduce the three
previously observed deviation types.

We first take for Ry the same transition as for Ry, but shifted by 15mK (7,5 =
385mK and Tsxr2 = 325mK). As in the study of Vaglio et al. [1993], this leads to
a sharp peak above Tt (see Fig.4.22). Interestingly, since the BKT transition
results in a variation of the resistance over a much broader range of temperatures
than the regular GL transition, it leads to a small depression of resistance just
after the peak. This is similar to what we observe in several contact configurations
(e.g. V1 and V2). Importantly, it is impossible to obtain such a depression when
considering a standard second-order transition (see below), as in the original model,
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Figure 4.22: Measured resistance R,, (in black) obtained for R; and Ry (in blue
and red, respectively). The two transitions are described by the Halperin-Nelson
formula, with oy = 0.34, A; =4, T;; = 370mK and Tgxr; = 310mK for R, and
ay = aq, Ay = Ay, To o = 385mK and Trrre = 325mK for R;. The measured
resistance R, shows a peak followed by a small depression.

which confirms that a BKT transition occurs in S1.

If we now consider that the spatial inhomogeneities in the superconducting state
may not only shift the transition in temperature, but also affect it’s shape (i.e.
ay # op and Ay # A;), we can explain the two other observed behaviors in
the measured resistance. As before, we consider a second transition R, shifted
to higher temperatures (i.e. 7.5 > T.;), but also sharper than R;, so that the
two transitions may cross (see Fig.4.23). For instance, if we take as parameters
ay = 0.5, Ay = 10, Tp2 = 400mK and Tprre = 312mK, we obtain an abrupt
change to a smaller slope above Tpxro (Fig.4.23a), as observed in V1, V2 and V5.
If we increase very slightly Tprr2 = 314mK, we may even obtain a small plateau
of measured resistance in the transition (Fig.4.23b), followed by an increase with
a different slope than before. This was seen in V4, as well as in other structures.

We can obtain very similar results for all three deviations by considering a simple

second-order transition (modelized by R(T) = —————=, see appendix section
14+e “ T
C.2.3). However in this case, the model cannot reproduce the small depression of

resistance after the peak.
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Figure 4.23: Measured resistance R,, (in black) obtained for Ry and Rs (in blue
and red, respectively). The two transitions are described by the Halperin-Nelson
formula, with for Ry oy = 0.34, A; = 4, T.; = 370mK and Tgrr; = 310mK,
and for Ry ap = 0.5, Ay = 10, T.» = 400mK and either Tpxr2 = 312mK (a) or
Tprro = 314mK (b). The measured resistance R,, shows either a brutal change
of slope (a), or a plateau (b).

This model could be extended to represent more accurate transitions, to include
more than two different resistances and to take into account the precise contact
geometries of each studied configuration. Nonetheless, our simple approach is sat-
isfactory since it can qualitatively reproduce every deviation from the standard
transition we have measured, and it suggests that inhomogeneities in the super-
conductivity have a significant influence on our measurements.

Origin of inhomogeneities of the superconductivity

This model is very general and only requires spatial inhomogeneities in the su-
perconducting transition to function, without presupposing anything about their
origin. We discuss below about the potential origins of inhomogeneities in our
samples.

The first possibility could be spatial inhomogeneities in the sample itself, either in
the charge density, the transport length, the local thickness, or in other types of
defects originating from the mechanical exfoliation for instance. However, AFM
images do not indicate any significant variation of thickness in S3 and S4 (they
are flat to around ~ 1nm, which should not have any major impact on the super-
conductivity in the sample’s bulk), even though these samples show the same kind
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of deviations from the typical superconducting transition as discussed above (see

Fig.C.9 for S4).

To gain more insight into the inhomogeneities, we can look at the differential resis-
tances dV/dI(Ipc,T) of the different contact configurations, and their evolution
with temperature. Since the transition from superconducting to normal state at
Ipc = 1. is accompanied by peaks of differential resistance, this is a sensitive
measurement to investigate whether a contact configuration detects contributions
from multiple superconducting transitions, as suggested by our model.
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Figure 4.24: (a) Differential resistance of V1 (S1) at different temperatures, shown
with dashed lines in Fig.4.19a and (b), and color coded, with (from blue to red),
Ty = 280mK, Ty = 385mK, T3 = 435mK and T, = 500mK. (b) Colormap of the
differential resistance of V1 versus DC current and temperature. The color scale is
set to enhance the differential resistance peaks, which can be seen in red to yellow.

In Fig.4.24a, we represent such differential resistance curves for V1 at 4 different
temperatures, 77 = 280mK, T, = 385mK, T3 = 435mK and T = 500mK. At low
temperature (blue curve), before the beginning of the superconducting transition
(R(Ty) = 0, see Fig.4.19a), we have a typical differential resistance profile, with a
zero resistance plateau at low current surrounded by two peaks. These peaks are
themselves surrounded by 2 additional pairs of peaks at higher currents. At higher
temperature, during the increase of resistance (7%, in purple), the inner peaks
disappear while the other peaks are slightly reduced and shifted to lower currents.
At T3, in dark red, we still see signs of peaks, and a plateau of resistance at low
current at R ~ 0.94Ry. When increasing the temperature up to 7 in red, where
R(T') has almost reached Ry, we measure only one pair of small peaks, surrounding
a very large plateau at the same resistance R ~ 0.94Ry. The full temperature
dependence of the differential resistance is shown in Fig.4.24b. We note that every
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pair of peaks behaves similarly in temperature, staying at constant current until
a given temperature before moving to lower current as the temperature increases
further, until they eventually merge and disappear at high enough temperature.

Interestingly, the last differential resistance profile at 7, = 500mK almost corre-
sponds perfectly to what would be expected for a typical superconducting tran-
sition (two peaks surrounding a plateau of zero-resistance), but with a finite re-
sistance at low DC current. This would correspond to the differential resistance
of a superconducting domain in series with a domain of constant resistance (e.g.
a domain in the normal state). Generally, these measurements support our inter-
pretation in terms of multiple superconducting transitions in our sample.
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Figure 4.25: (a) Differential resistance of V4 (S1) at different temperatures, shown
with dashed lines in Fig.4.19a and (b), and color coded, with (from blue to red),
Ty = 290mK, 75 = 380mK, 73 = 480mK and 7, = 560mK. (b) Colormap of the
differential resistance of V4 versus DC current and temperature. The color scale is
set to enhance the differential resistance peaks, which can be seen in red to orange.

We can see something very similar in the differential resistance for configura-
tion V4: Fig.4.25a shows many peaks surrounding a zero resistance state at low
temperature, but as the temperature increases these peaks disappear slowly. At
T3 = 480mK (in dark red, see Fig.4.20a), the differential resistance also shows a
plateau at low current (at R = 0.64Ry) surrounded by two pairs of peaks. At
higher temperature, we can see that the outermost pair of peaks still hasn’t disap-

peared (see Fig.4.25b), which is supported by the fact that R(T, = 560mK) < Ry
(see Fig.4.20a).

The large similarities in the differential resistance evolution with temperature,
for contact configurations showing otherwise different qualitative behaviors in the
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R(T), strengthens our hypothesis of spatial inhomogeneities in the superconduct-
ing transition. To confirm this, we are currently collaborating with S. Sykora
(TUD, formerly IFF) to conduct percolation simulations on a 2D grid, with inho-
mogeneities represented by a randomized potential perturbation of the supercon-
ducting links, and preliminary results indicate good qualitative agreement with
our data.

4.4 Summary and conclusion

In this chapter, we have shown that tr-PtBi, is a superconductor, in macro- as
well as in nano-structures. While nano-structures show a lower 7, than macro-
structures (7. ~ 370mK for nano-structures compared to 7. ~ 600mK for macro-
structures), they also show a much larger anisotropy in magnetic field, with re-
spectively a much lower and a much higher critical field for the out-of-plane and
the in-plane fields (B} ~ 6mT and B!l ~ 140mT for nano-structures compared to
B, ~ 50mT for macro-structures). This anisotropy is due in part to a reduction of
the dimensionality of the superconducting state in exfoliated structures, which we
have characterized. We evidenced a BKT transition happening at low temperature
in our two thinnest structures (S3 and S1, respectively 41lnm and 60nm). To the
best of our knowledge, both exfoliated structures are the thickest reported samples
to exhibit a BKT transition (respectively 3 and 5 times thicker than for Mondal
et al. [2011]).

We have also measured two additional structures (S4, 70nm and S5, 126nm) at
the same time as S3, both of which also showed 2D superconductivity (determined
from B.(T) and B.(0) measurements). However, we could not evidence a BKT
transition in these samples, due to a lower resolution in temperature.

We characterized 3 main types of deviations to the expected superconducting
transition, in temperature and magnetic field, and showed that each type could
be obtained qualitatively by a simple model which considers inhomogeneities in
the superconductivity resulting in several different transitions impacting the mea-
surements. These deviations also have a strong impact on the V(I) characteristics.
Their presence can make the analysis challenging, or even impossible for some
contact configurations, since when the deviations are too important (e.g. long in-
termediate resistance steps, significant change of slope etc.), our definition of the
critical parameters (e.g. R(T.) = Ry/2) doesn’t correspond to the middle of the
transition anymore. We expect all our previous conclusions to stand despite these
inhomogeneities, as our analysis was based on contact configurations which did
not show significant deviations.
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The strong impact of inhomogeneities on the superconducting state may be a pos-
sible explanation for the absence of bulk superconductivity in macroscopic crystals.
Indeed, such inhomogeneities could result in a partial superconducting transition
of the crystal with superconducting islands embedded in a normal metal (and vice
versa), making the impact of the superconducting volume fraction of the sample
not measurable by SQUID or specific heat measurements. If the superconduct-
ing islands are dense enough to percolate however, these macro-structures would
appear superconducting in charge transport measurements.



Conclusion

In this thesis, we investigated the transport properties of trigonal-PtBi,, a layered
van der Waals material with strong spin-orbit coupling. We report for the first
time, through density functional theory calculation, the existence of 12 symmetry-
related Weyl nodes in its band structure, at 48meV above the Fermi energy. A
detailed study of the energy dispersion around these points shows a minimal tilt,
making tr-PtBiy a type-I Weyl semi-metal. These calculations also show a high
sensitivity of the topological surface states on the surface termination, with a much
higher intensity of the Fermi arcs’ spectral weight for Bi,-terminated surfaces than
for Bij-terminated surfaces.

Magneto-transport measurements of macroscopic single crystals of tr-PtBi, show
multiple-bands electronic transport, in agreement with our band structure cal-
culations, with three bands contributing to Shubnikov-de-Haas oscillations. We
characterized at low temperature an anisotropy of the magnetoresistance with the
out-of-plane field orientation, which shows two symmetric maxima 0,,,, ~ 20°
away from the out-of-plane direction. This anisotropy vanishes at higher temper-
ature. The angle 6,,,, could possibly corresponds to an anisotropy of the Weyl
cone pocket, which is oriented in this direction.

Thanks to the layered nature of tr-PtBiy, we were able to exfoliate and study
thin nano-structures with thicknesses of the order of the coherence length. At
temperatures above 1K, these structures exhibit an anisotropic resistance when an
in-plane magnetic field is rotated in the structure’s plane. We characterized this
anisotropic response to be a combination of a planar Hall effect, with a m-periodic
variation of the longitudinal and transverse resistance, and an anomalous planar
Hall effect, with a 2m-periodic contribution to the transverse resistance. Both
effects are probably linked to the topological nature of tr-PtBi,, with high Berry
curvature in the band structure.

At very low temperature, around 600mK, macro-structures become superconduct-
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ing. This does not seem to be a bulk superconductivity, as specific heat and
SQUID measurements do not give any indication of superconductivity. Nonethe-
less, our charge transport characterization of the superconducting state is coherent
with the 3D Ginzburg-Landau theory, with a linear temperature dependence of the
in-plane critical magnetic field and only a small anisotropy in its magnetic field
response. In this framework, a high coherence length of the superconductivity can
be extracted, with &, ~ 60nm.

Nano-structures of tr-PtBi, become superconducting at a slightly lower temper-
ature than macro-structures, around 370mK, and have a lower out-of-plane crit-
ical magnetic field as expected from their 2D geometry. Nonetheless, we have
found that nano-structures show an enhanced stability of the superconductivity
against in-plane fields, with an in-plane critical field up to three times higher than
in macro-structures. By studying the temperature and angular dependence of
the critical field, we characterized the dimensionality of the superconductivity to
be two-dimensional. We also evidenced a Berezinskii-Kosterlitz—Thouless (BKT)
transition in structures as thick as 60nm, which is 5 times larger than the thickest
reported samples exhibiting such a transition. A small broadening in temperature
of the BKT transition in the 60nm thick structure, which was visible in the tem-
perature dependence of the resistance, could be attributed to inhomogeneities in
the superconductivity.

Our study of tr-PtBi, has raises several important questions, and opens the way
to further studies in different directions. A detailed characterization of the out-of-
plane angular dependence of the magnetoresistance in macro-structures, and its
temperature dependence, should be conducted in order to determine the origin
of the anisotropy observed. If this anisotropy is indeed, as we believe, linked to
the topological band structure, this might provide some experimental confirmation
of the Weyl nature of tr-PtBi,. A more complete study of the in-plane magne-
toresistance and PHE in nano-structures, at higher magnetic fields, should also
be conducted in order to determine more accurately the field dependence of the
different contributions to the in-plane oscillations of the resistance. It would also
be interesting to measure structures of different thicknesses to determine if these
contributions, or their relative amplitudes, are thickness dependent, as suggested
by our initial measurements.

In addition to these well understood properties, we measured in nano-structures
a non-symmetric hysteresis in the magnetic field transition, which results in the
superconductivity persisting sometimes well above the critical magnetic field when
the field is swept in a particular direction, with a large heat release occurring at
the superconducting-to-normal-state transition. While we have characterized it
experimentally, a theoretical understanding of this feature and its origin is still
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lacking, and further investigation is necessary to fully understand it.

The van der Waals nature of tr-PtBi, opens up many possibilities of interesting
studies by designing suitable heterostructures with e.g. electrostatic gates or other
materials. For instance, it would be possible to study the formation of vortices
and antivortices around the BKT transition in a flake of tr-PtBi, by stacking on
it a thin flake of WTe, (separated by an insulating few-layer h-BN) acting as a
highly sensitive magnetic field sensor.

The most important question raised by our study, and by other experiments not
reported in this manuscript, regards the nature of the superconductivity in macro-
scopic single crystals of tr-PtBi,, with charge transport results coherent with the
3D Ginzburg-Landau theory despite no sign of bulk superconductivity from heat
transport measurements, indicating that most of the volume remains in the normal
state, even at low temperature. These results point toward a possible percolative
nature of the superconducting state in macro-structures of tr-PtBi,y, which needs
to be investigated.

This hypothesis is comforted by recent simulations we conducted of percolating
transport in nano-structures in the presence of inhomogeneities. These preliminary
results could qualitatively reproduce many features we observed in our measure-
ments, including the presence of multiple steps in superconducting transitions, and
might help us understand the nature of the superconductivity in bulk crystals.
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A Topology and Band structure

A.1 Quantum spin Hall effect

99 o o9

Figure A.1: Schematic drawing showing edge channels in a QSH insulator, in the
two-terminal (a) and four-terminal (b) geometries. The diagrams on the right side
indicate how the edge states are populated. Adapted from Kane and Mele [2005]

At low temperature, a very large spin-orbit coupling converts graphene from a
semi-metallic system to a quantum spin Hall (QSH) insulator, in the absence of
external magnetic field. In this state, the bulk of the graphene sheet is gaped, and
gapless edge states appear at the edges of the sample, similarly to the quantum
Hall effect (QHE). These edge states support the transport of charges, as well as
the transport of spin. In a two-terminal configuration (see Fig.A.l.a), a charge
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current [ flows along the direction of an applied electric field. When an electric
field is applied in a four-terminal configuration (Fig.A.1.b) however, a spin current
I® develops perpendicularly to the applied field. This geometry can also be used
to measure spin currents, as such a current injected from the left to the right lead
results in a voltage developing between the top and bottom leads.
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A.2 Band Structure calculation
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Figure A.2: Left: Energy dispersion around the Weyl point, along the three carte-
sian directions. The Weyl cone is weakly canted. Right: Isoenergetic contours
around the Weyl point, at OmeV, +10meV and +20meV with respect to the Weyl
point energy. The isoenergetic contours reduce to a single point at OmeV, as ex-
pected for a type-I Weyl node.

Fig.A.2 shows the energy dispersion around the Weyl node along the three carte-
sian directions (left) as well as the isoenergetic contours around the Weyl node
(right) for different energies. The energy dispersion shows that the Weyl cones are
only slightly canted, indicating that the Weyl node is of type-I. This is confirmed
by the isoenergetic contours, which reduce to a single point at the Weyl node en-
ergy. Away from that energy, the cones are anisotropic in the (k,,k.) plane, as
indicated by the ellipsoidal shape isoenergetic contours. Further below the Weyl
node energy, at about 15 meV above the Fermi energy, the Weyl cones merge with
a larger pocket from the same band (see Fig.A.3). Fig.A.4 shows the existence of
Fermi arcs in tr-PtBi,’s surface band structure, for both Bi,- and Bis- terminated
surfaces.
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Figure A.3: Isoenergetic contours of the band associated with the Weyl node, with
OmeV (red line) corresponding to the Fermi energy. The Weyl cone merges with a
larger pocket at about 15meV above the Fermi energy.
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Figure A.4: Fermi surface corresponding to the Weyl node energy, for a Bi,-

terminated surface (left) and Bis-terminated surface (right). The Weyl points
are represented by green (positive chirality) and blue (negative chirality) points.



B Magnetotransport

B.1 Magnetoresistance
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Figure B.1: Angular dependence of the magnetoresistance of the macro-structure
MS1 (a) and its logarithmic derivative (b) at 5K.

Fig.B.1a shows the full angular dependence of the magnetoresistance (MR) of MSI1,
at HK, and its logarithmic derivative is shown in Fig.B.1b, which represents the
power low exponent of the MR. The reduction of MR is clearly visible around
6 = 0° in both figures.
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B.2 Schubnikhov-de-Haas Oscillations
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Figure B.2: Angular dependence of the quantum oscillation frequencies associated
with each band. Experimental frequencies are represented in red (a pocket), green
(6 pocket) and blue (v pocket) circles.

The angular dependence of the quantum oscillations frequencies of every band
found in our DFT band structure calculation is shown in Fig.B.2, along with our
experimental measurements. Bands 46 and 47 where already presented in the main
text, as well as part of the oscillation frequencies from band 48 (associated with
the Weyl nodes). Two additional bands are expected to contribute to quantum os-
cillations, albeit at frequencies inaccessible with our magnetic fields (above 2000T
in the angular range in which quantum oscillations were measured).
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B.3 Temperature dependence of Shubnikov—de
Haas oscillations
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Figure B.3: (a) Magnetoresistance of MS1 at 6 = 20°, at different temperatures

from 2.5K to 25K. (b) Temperature dependence of the magnetoresistance at 15T,
extracted from (a).

Fig.B.3a shows the magnetoresistance of MS1 at § = 20° with increasing tempera-
tures, up to 25K. The amplitude of the magnetoresistance decreases with temper-
ature (see Fig.B.3b), as well as the amplitude of Shubnikov—de Haas oscillations
(SdHo). After removing the MR background (Fig.B.4a), it is visible that multi-
ple frequencies contribute to the oscillations. Fig.B.4c, B.4b and B.4d show the
results of filtering the oscillations around the frequencies identified experimentally
for each band. Only the filtered oscillations associated with the e pocket appear to
come from a single frequency. The amplitude of the SAH peak at 1/B = 0.08T ",
extracted from Fig.B.4c, is shown in Fig.B.5a. The amplitude shows a saturation
at low temperature, which is not linked to a saturation of the electronic tempera-
ture (as can be seen in Fig.B.3a), and cannot be fitted correctly by the LK formula
over the entire temperature range. A best fit yields an effective mass m* = 0.18m,,
with m,. the electron mass. However, if we reproduce this analysis for each SAH
peak at different magnetic fields, we find that the effective mass is not constant

with magnetic field (Fig.B.5b), which is not consistent with the LK theory for a
single band.
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Figure B.4: Shubnikov—-de Haas oscillations at § = 20° extracted from Fig.B.3a,
with the same color code for temperature (a). (b)-(d) show the oscillations of (a)
filtered around the frequencies identified for each pocket.
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Figure B.5: (a) Temperature dependence of the relative amplitude of the SdHo
peak at 1/B = 0.08T " (blue circles) for the o pocket. The red line shows the LK
fit attempt (over the full-line temperature range), yielding m* = 0.18m,. (b) Field
dependence of m* extracted for each SdHo visible peak, with the same analysis as

in (a).
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B.4 Planar Hall effect in S3
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Figure B.6: (a) Field dependence of the w-periodic signal’s amplitude Ap = p, —
pj| in S3, corresponding to the planar Hall effect (in black). It is fitted with a
power law Ap o< BY¥7 (black line). The right axis shows amplitudes of p, and
p||, respectively in blue and red. (b) Field dependence of the amplitude of the
2m-periodic signal (anomalous planar Hall effect) in the longitudinal (blue) and
transverse (red) resistances.

In addition to nano-structure S5, we studied the variation of the resistance of
S3 when rotating the magnetic field in the structure’s plane. We performed the
same analysis as for S5 (main text) and fitted the angular variations of the lon-
gitudinal and transverse resistances with eq.3.2. The amplitude of the 7-periodic
signal (planar Hall effect) shows an almost quadratic dependence on the magnetic
field (see Fig.B.6a), with Ap oc B'®7  compared to an almost linear dependence
for S5 (Ap oc B*1%). Nonetheless, the amplitudes of the 2r-periodic oscillations
(Fig.B.6b) is very similar to that of S5, with a linear dependence for the transverse
resistance and an almost-zero, constant amplitude for the longitudinal resistance.
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C Superconductivity

C.1 DMacro-structures

C.1.1 Critical magnetic field
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Figure C.1: Two-dimensional mapping of the resistance versus magnetic field and
temperature for MS2, obtained by sweeping an in-plane magnetic field from 0T to
0.5T at constant temperature, increasing the temperature in steps. The black line
corresponds to R(B) = Ry/2.

To obtain the temperature dependence of the in-plane critical magnetic field, we
measured the resistance of MS2 by sweeping the field from 0T to 500mT and back,
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at fixed temperature. The temperature was then increased in steps of 20mK, from
150mK to 750mK, and we repeated the field sweep measurements once the sample’s
temperature had stabilized (see Fig.C.1). The critical field B. at each temperature
is defined by R(B.) = Ry/2, with Ry the resistance in the normal state (black
line). No significant differences are found between the two sweep directions.
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C.1.2 Point-Contact Measurements
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Figure C.2: (a) Differential resistance dV/dl as a function of the applied voltage,
for different temperatures, measured in point-contact. Signs of superconductivity
(a deviation from Ohm’s law) are visible up to 2.7K, a large increase compared
to measurements without pressure. (b) Point-contact differential resistance as a
function of the applied voltage, for different applied magnetic fields and at 1.55K.
Signs of superconductivity are still visible at B = 0.57", almost an order of mag-
nitude larger than the critical field measured at ambient pressure in MS2.

Point contact spectroscopy measurements on macroscopic crystals were realized
by Dr. Dima Bashlakov of ILTPE in Kharkiv, Ukraine. For point contact mea-
surements, the crystals are contacted to an electrical circuit on one side, which is
closed on the other side by pressing on the crystal with a wire made of a noble
metal (Cu, Ag or Au). This measurement techniques thus applies local pressure
to the sample under the contact.

Point contact measurements on tr-PtBi, indicate that the critical temperature
increases, likely due to local pressure, similarly to tr-MoTe, [Naidyuk et al., 2018],
as can be seen in Fig.C.2a. The differential resistance dV'/dI, which saturates at the
normal resistance Ry at high bias voltage (when the sample is in the normal state),
drops to almost Ry /2 at T = 1.55K ~ 2.5 x T, with T, the critical temperature
measured at ambient pressure in MS2. The drop in resistance, which indicates at
least a partial condensation of the carriers, is still visible at temperatures as high
as 2.9K, or almost 5 times the critical temperature at ambient pressure.

Samples were also measured in point contact under an external magnetic field,
at T = 1.55K (Fig.C.2b). At this temperature, the samples still shows signs of
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superconductivity even at B = 500mT’; about 10 times the critical field at ambient
pressure. This shows that superconductivity in bulk tr-PtBi, is greatly enhanced
under pressure, similarly to previously reported results [Wang et al., 2021].
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C.2 Nano-structures

C.2.1 Dimensionality of the superconductivity

In this section, we present results on the dimensionality of the superconductivity
in nano-structures for another contact configuration, as well as the full mapping
data we used for this analysis. Fig.C.3 shows the temperature dependence of in-
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Figure C.3: Temperature dependence of the critical magnetic field for V1, both
in- and out-of-plane (red and blue respectively), extracted from Fig.C.5b. The
out-of-plane field was increased by an order of magnitude for visibility. The data
was fitted with a misalignment-corrected 2D Ginzburg-Landau model. For the
out-of-plane critical field, two fits were done: from 150mK to 315mK in dashed
blue, and from 320mK to T, in dotted black.

and out-of-plane critical magnetic fields for another contact configuration on S1.
The overall behavior of the resistance is the same, and is well fitted by the 2D
Ginzburg-Landau theory with misalignment. The out-of-plane critical field shows
a linear temperature dependence with again a change of slope, albeit at a slightly
larger temperature than for configuration VO (320mK instead of 300mK). These
two slopes correspond to 7. = 383mK and & = 180nm for the low temperature
slope (T' < 315mK), and T, = 376mK and {, = 172nm for the high temperature
slope (T' > 320mK). The in-plane critical field fit yields T, = 358mK, dgc = 38nm

and §(|)‘ = 136nm. These parameters are very close to those obtained previously for
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V0. Given that the contacts of both configurations are located on opposite sides
of the sample, with respect to the current source and drain, the minor differences
could originate from spatial inhomogeneities in the sample itself.
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Figure C.4: (a) Two-dimensional magnetic field mapping (in- and out-of-plane) for
contact configuration V2 (see Fig.4.10b, inset), at 100mK. The contour at Ry /2
is marked by a white line. (b) Mapping of the resistance of configuration VO with
in-plane magnetic field and temperature. The black line corresponds to Ry /2.

To extract the angular dependence of the critical magnetic field, we measured
the resistance while sweeping the out-of-plane field, at constant in-plane field.
The in-plane field was increased in steps of 5mT, up to 250mT. The critical field
corresponds to R(B.) = Ry/2 (Fig.C.4a and Fig.C.5a). The out-of-plane field is
swept at constant in-plane field to avoid hysteresis issues related to metastabilities.
For the same reason, in order to measure the temperature dependence of the in-
plane critical field, we swept the temperature at constant field, and increased the
in-plane field in steps of 20mT (Fig.C.4b and Fig.C.5b).
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Figure C.5: (a) Two-dimensional magnetic field mapping (in- and out-of-plane)
for contact configuration V5 (see Fig.4.12, inset), at 100mK. The contour at Ry /2
is marked by a white line. (b) Mapping of the resistance of configuration V1 with
in-plane magnetic field and temperature. The black line corresponds to Ry /2.
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C.2.2 Berezinskii—Kosterlitz—Thouless transition

~l

D

)]

Differential resistance (£2)
N w L

—_—

o

-60 -40 -20 0 20 40 60

DC current (pA)
Figure C.6: Differential resistance (dV/dl) of configuration VO measured at fixed
temperature, from 100mK to 500mK in steps of 10mK. A magnetic field of 2.4G

was applied to compensate for remanent fields. The curves are shifted vertically
for visibility.

In order to measure the DC current dependence of the voltage V(I) in our sam-
ples, we used our lock-in amplifiers to measure the differential resistance dV/dI
by applying DC and AC currents simultaneously, before integrating it to recover
the V(I) characteristic. These measurements were done at multiple tempera-
tures between 100mK and 500mK (see Fig.C.6), in order to evidence a Berezin-
skii-Kosterlitz—Thouless (BKT) transition. The Ipe = 0A points were also used
to obtain the temperature dependence of the resistance.

Since the V(I) power law is exactly a(Tpxr) = 3 at the BKT transition temper-
ature, we extracted the power law exponent a(7") from our V(I) measurements
dlog(V)
dlog(I
og(1) |,

(Fig.C.6) by taking their logarithmic derivative: a(7T,I) = . The results

at all temperatures are represented in Fig.C.7a and C.7h.
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Figure C.7: Logarithm derivative of the V(I) characteristics at different tempera-
tures for S1 (a) and S3 (b). The temperatures for which the maximum is closest
to 3 (corresponding the the BKT temperature) are shown as thicker lines.



C.2. NANO-STRUCTURES 124

C.2.3 Inhomogeneous superconducting transitions
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Figure C.8: Measured resistance R,, (in black) obtained for R; and Ry (in blue
and red, respectively) in three different cases. The two transitions are described
by a second-order transition, with A; = 1, a; = 100 and T,; = 340mK for R;.
Ry’s parameters are Ay = 1; ay = 100; T,o = 350mK (a), A2 = 1; ay = 240;
Teo = 342mK (b) and Ay = 1; ay = 150; T,y = 344mK (c). R,, is reduced by 1/3
in (b) and (c) for visibility.

We performed the same simulations as in section 4.3.4 by replacing the BKT
transition R(T) with a simple second order model given by

A
R(T) - ﬁ‘ (C].)
l14+e "7
Using this model, we can qualitatively reproduce the three different behaviors of

R, = % = %ER%) discussed in section 4.3.4: a resistance peak, a change of slope
in the transition and a step in the transition (see Fig.C.8). The main difference
in this model between the second-order and BKT transitions is the absence in the
former of the small depression of resistance following the peak, which is present in

the latter and which we measured in our samples.

We observed these deviations from the standard superconducting transitions (see
sec.4.3.4) in all our samples, in both temperature and field: in Fig.C.9, which shows
the in-plane field dependence of the normalized resistance of S4, the transition
shows both a sudden change of slope (at B ~ 100mT) and a resistance peak (at
By ~ 250mT)
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