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ABSTRACT

The past few decades have seen the development of a number of techniques for
calculating scattering amplitudes without recourse to quantum fields and Feyn-
man diagrams. These are broadly referred to as on-shell methods. The devel-
opment of these methods has birthed a new perspective on scattering ampli-
tudes. In many cases they can be thought of as differential forms with special
properties on constrained spaces - i.e. as differential forms on so called posi-
tive geometries. The constraints of positivity suffice to completely determine
the singularity structure of the S-matrix in these cases. This thesis is focused
on understanding the emergence of known physics from positive geometries,
computations in this new formalism and developments in on shell methods for
theories involving massive particles. The first two chapters study the amplituhe-
dron which is the positive geometry relevant to N = 4 super Yang-Mills. They
focus on understanding the constraints of positivity and on seeing the physics
of unitarity emerge from it. The next chapter develops geometric and on-shell
techniques for understanding the properties of one loop integrals from the in-
tegrand in Feynman parameter space. The final chapter takes a step closer to
the real world and develops an on-shell formalism for computing amplitudes in
the bosonic, electroweak sector of the Standard Model. This includes an on-
shell understanding of the Higgs mechanism within the context of the Standard
Model.
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Introduction

The principles of Poincaré invariance and quantum mechanics are the pillars
of 20th century fundamental physics. Since any theory of physics must be con-
sistent with these principles, it is logical to look for a framework in which they
are unified. The unification of these principles in a manifestly local and uni-
tary fashion led to the birth of quantum field theory. The quantity of greatest
interest in any quantum field theory is the scattering matrix or S-matrix. The

ability to compute scattering amplitudes, which are elements of the S-matrix,



using Feynman rules derived from a Lagrangian was one of the earliest successes
of Quantum field theory. The taming of infinities of loop integrals by the de-
velopment of techniques like the renormalization group further entrenched the
position of Quantum field theory in fundamental physics. However the complex-
ity of the computations of scattering amplitudes seemed to grow exponentially
with the number of particles involved, particularly in the case of massless parti-
cles. This is exemplified by the 6 page computation of 2 — 4 gluon amplitude
in [I]. Surprisingly, this huge result could be condensed into a single line. More
surprisingly the single line result with slight modifications was also the result
for the 2 — n MHV gluon scattering [2]. In the next few decades, this stunning
simplicity fuelled explosive progress in understanding of scattering amplitudes.
It is now well understood that the complexity of the calculations stemmed en-
tirely from the presence of gauge degrees of freedom - corresponding to the lon-
gitudinal polarizations of the gluon. The Feynman rules compute of an interme-
diate quantity - which we call the Feynman amplitude - that then needs to be
contracted with polarization vectors to obtain the physical scattering amplitude.
Indeed, all the complexity disappears in the final result for gluons of transverse
polarizations.

The simplicity of the final amplitude precipitated the development of a mul-
titude of techniques, broadly referred to as “on-shell methods”, whose aim was
compute the physical scattering amplitude directly without recourse to Feyn-
man rules. The goal was to avoid computing the Feynman amplitude altogether
and directly arrive at the final, simple expression by using only on-shell quan-
tities and physical principle. Consequently, these techniques make no refer-

ences to Lagrangians, path integrals and quantum fields. Scattering amplitudes



are thought of as functions of the external kinematic data which were severely
constrained by physical principles like locality, unitarity, causality, global and
spacetime symmetries. These developments were largely restricted to theories
involving only massless particles as these were the theories plagued by gauge
redundancy.

One of the earliest on-shell techniques are the unitarity based methods [3].
They were used to evaluate loop integrals which were impossible by traditional,
Feynman diagrammatic techniques. In the next decade, new recursion relations
like BCEW [1,5] and CSW [6] enabled the computation of four and higher point
amplitudes beginning with three point amplitudes - which were completely fixed
by Poincare invariance. The singularity structure of the S-matrix was a slave to
the principles of locality and unitarity. These determined the locations of the
poles, their residues, the location of branch points and the discontinuities across
the corresponding branch cuts.

Symmetries play a pivotal role in constraining the S-matrix. They impose
stringent constraints on scattering amplitudes (examples of which include charge
conservation and Poincare symmetry) or relate different processes (an example
of this is supersymmetry). It is extremely beneficial to choose the representa-
tion of the external kinematics such that the amplitudes have simple transfor-
mation laws under the relevant symmetry groups. The choice of spinor helicity
variables (which correspond to the transverse polarizations of the gluons) in the
gluon amplitude makes the Little group transformation of amplitudes explicit.
This made the resulting expression simple. The use of twistor variables makes
the conformal properties of scattering amplitudes obvious while the momentum

twistors make the dual conformal symmetry manifest. The new expressions also



promoted alternative ways of thinking about scattering amplitudes, particularly
in N =4 SYM [7].

On-shell methods have proven to be spectacularly successful in NV = 4 super
Yang-Mills (SYM). The vast symmetry group of the theory permitted an all
loop extension of BCFW recursion relations [¢]. Exploitation of this symmetry
has also led to the discovery of the underlying Grassmannian structure [9] of the
theory. Each amplitude corresponds to a differential form on a Grassmannian.
Grassmannians corresponding to higher point amplitudes are constructed by
gluing together those corresponding to lower point amplitudes. A convenient
diagrammatic implementation of these rules, called on-shell diagrams replaces
Feynman diagrams in this theory. While symmetries suffice to fix three point
amplitudes, four and higher point amplitudes are constructed by gluing together
three point amplitudes in a manner dictated by unitarity.

The Grassmannian formulation of scattering amplitudes in planar N' = 4
SYM made possible a fundamental reformulation of our understanding of scat-
tering amplitudes. It shifted the role of locality and unitarity from guiding prin-
ciples to emergent properties. The underlying fundamental principle was posi-
tivity. The amplituhedron was a geometric object whose boundaries were deter-
mined by the requirements of positivity. This in turn determines the singulari-
ties of scattering amplitudes. The amplituhedron was just the first example of a
positive geometry in connection with scattering amplitudes. This was followed
by the discovery of positivity in several other contexts - the associahedron in bi-
adjoint scalar field theory, in conformal field theory, in effective field theory and
in ¢* theory.

The ideas outlined so far set the stage for the work presented in this thesis.



The body of work has a number of important frontiers. The amplituhedron

is well defined and the central problem now lies in solving the positivity con-
straints. Understanding precisely how perturbative unitarity emerges from these
positivity constraints will provide valuable prototype for emergent unitarity.
Furthermore, a complete understanding of the constraints is now the central
problem and is crucial in understanding the physics of N' = 4 SYM. While the
amplituhedron geometrizes the loop integrands of the theory, we are still far
away from a geometric understanding of loop integrals. It is essential to look for
geometric structure in loop integrals, beginning with the simplest case of one
loop integrals. The bulk of research in the field of scattering amplitudes over
the last few decades has focused on theories with only massless particles. Yet,
an understanding of massive particles is essential for any complete theory of Na-
ture. Understanding massive theories and their physics from a purely on-shell
perspective is an essential preliminary step. This thesis represents research done
towards these goals. The following section provides a brief overview of its con-

tents.

0.1 OVERVIEW OF THE THESIS

In chapter 1, we review the definition of the amplituhedron and the essential
concepts of canonical forms. We use this definition to present a proof of per-
turbative unitarity for planar N' = 4 SYM, following from the geometry of the
amplituhedron. This proof is valid for amplitudes of arbitrary multiplicity n,
loop order L and MHYV degree k. This is based on the following paper:

A. Yelleshpur Srikant, Emergent unitarity from the amplituhedron,



JHEP 01 (2020), 069

In chapter 2, we use the examine the definition of the amplituhedron and at-
tempt to understand mutual positivity. The definition of the amplituhedron in
terms of sign flips involves both one-loop constraints and the “mutual positiv-
ity” constraint. To gain an understanding of the all-loop integrand of N' = 4
sYM requires understanding the crucial role played by mutual positivity. This
paper is an attempt towards developing a procedure to introduce the complex-
ities of mutual positivity in a systematic and controlled manner. As the first
step in this procedure, we trivialize these constraints and understand the ge-
ometry underlying the remaining constraints to all loops and multiplicities. We
present a host of configurations which correspond to various faces of the ampli-
tuhedron. The results we derive are valid at all multiplicities and loop orders for
the maximally helicity violating (MHV) configurations. These include detailed
derivations for the results in [10]. We conclude by indicating how one might
move beyond trivial mutual positivity by presenting a series of configuration

which re-introduce it bit by bit. This is based on the following papers

o C. Langer and A. Yelleshpur Srikant, All-loop cuts from the Amplituhe-
dron, JHEP 1904, 105 (2019)

o N. Arkani-Hamed, C. Langer, A. Yelleshpur Srikant and J. Trnka,
Deep Into the Amplituhedron: Amplitude Singularities at All Loops and
Legs, Phys. Rev. Lett. 122, no. 5, 051601 (2019)

Chapter 3 is devoted to understanding the geometry of Feynman parameter
space. Spherical contours introduced in [I1] translate the concept of “disconti-

nuity across a branch cut” to Feynman parameter space. In this paper, we fur-



ther explore spherical contours and connect them to the computation of leading
IR divergences of 1 loop graphs directly in Feynman parameter space. These
spherical contours can be used to develop a Feynman parameter space analog of
“Leading Singularities” of loop integrands which allows us to develop a method
of determining Feynman parameter integrands without the need to sum over
Feynman diagrams in momentum space. Finally, we explore some interesting
features of Feynman parameter integrands in A/ = 4 SYM. This is based on the
following paper which is currenty under review by JHEP

A. Yelleshpur Srikant,Spherical Contours, IR Divergences and the geometry of
Feynman parameter integrands at one loop

Chapter 4 is devoted to the development of an on-shell formalism for the
bosonic sector of the standard model. We describe a new approach towards the
development of an entirely on-shell description of the bosonic electroweak sec-
tor of the Standard Model and the Higgs mechanism. We write down on-shell
three particle amplitudes consistent with Poincaré invariance and little group
covariance. Tree-level, four particle amplitudes are determined by demanding
consistent factorization on all poles and correct UV behaviour. We present ex-
pressions for these 2 — 2 scattering amplitudes using massive spinor helicity
variables. We show that on-shell consistency conditions suffice to derive rela-
tions between the masses of the W+, Z, the Weinberg angle and the couplings.
This provides a completely on-shell description of the Higgs mechanism without
any reference to the vacuum expectation value of the Higgs field. This is based
on the following paper which is currently under review by JHEP.

B. Bachu and A. Yelleshpur, On-Shell Electroweak Sector and the Higgs Mech-

anism



Emergent Unitarity from the

amplituhedron

1.1 INTRODUCTION

Unitarity is at the heart of the traditional, Feynman diagrammatic approach
to calculating scattering amplitudes. It is built into the framework of quantum

field theory. Modern on-shell methods provide an alternative way to calculate



scattering amplitudes. While they eschew Lagrangians, gauge symmetries, vir-
tual particles and other redundancies associated with the traditional formalism
of QFT, unitarity remains a central principle that needs to be imposed. It has
allowed the construction of loop amplitudes from tree amplitudes via general-
ized Unitarity methods [3, 12—15] and the development of loop level BCFW re-
cursion relations [7, 8]. These on-shell methods have been particularly fruitful in
planar N = 4 SYM and led to the development of the on-shell diagrams in [9]
and the discovery of the underlying Grassmannian structure. Locality and uni-
tarity seemed to be the guiding principles which dictated how the on-shell dia-
grams glued together to yield the amplitude. The discovery of the amplituhe-
dron in [16], [17] revealed the deeper principles behind this process - positive
geometry. Positivity dictated how the on-shell diagrams were to be glued to-
gether. The resulting scattering amplitudes were miraculously local and unitary!
This discovery of the amplituhedron was inspired by the polytope structure of
the six point NMHYV scattering amplitude, first elucidated in [18] and expanded
upon in [19]. This motivated the original definition of the amplituhedron which
was analogous to the definition of the interior of a polygon. The tree amplituhe-
dron A, 1 was defined as the span of k planes Y., living in (k + 4) dimensions.

Here I ={1,...,k+4} and o = {1,... k}.

V! =C.Z! (1.1)

where Z! (a = 1,...n) are positive external data in (k + 4) dimensions. In this

context, positivity refers to the conditions det {Zal, 2 } =(Z24 .. 24 ,) >

C T Ok+4 C Ak 4a

0ifa; < -+ < agyq and Cyy € G (k,n). G4 (k,n) is the positive Grassmannian



defined as the set of all k£ x n matrices with ordered, positive k£ x k minors. For
more details on the properties of the positive Grassmannian, see [9, 20—22] and
the references therein. The scattering amplitude can be related to the differ-
ential form with logarithmic singularities on the boundaries of the amplituhe-
dron. The exact relation along with the extension of eq.(1.1) to loop level can
be found in [16].

The amplituhedron thus replaced the principles of unitarity and locality by a
central tenant of positivity. Tree level locality emerges as a simple consequence
of the boundary structure of the amplituhedron, which in turn is dictated by
positivity. The emergence of unitarity is more obscure. It is reflected in the fac-
torization of the geometry on approaching certain boundaries. This was proved
for Ay in [17]. The extension of this proof to amplitudes with arbitrary mul-
tiplicity using (1.1) is cumbersome and requires the use of the topological defini-
tion of the amplituhedron introduced in [23]. In the following section, we review
this definition in some detail along with some properties of scattering ampli-
tudes relevant to this chapter. We also expound the relation between the am-
plituhedron and scattering amplitudes. The rest of the chapter is structured as
follows. In Section [1.3], we present a proof of unitarity of scattering amplitudes
for 4 point amplitudes of planar N' = 4 SYM, using the topological definition of
the amplituhedron. This serves as a warm up to Section [1.4] in which we pro-
vide a proof which is valid for MHV amplitudes of any multiplicity. Finally, in
Section 1.5 we show how the proof of the previous section can be extended to

deal with the complexity of higher k sectors.
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1.2 REVIEW OF THE TOPOLOGICAL DEFINITION OF A, 1,

The scattering amplitudes extracted from the amplituhedron defined as in (1.1),
using the procedure outlined in [16], reproduce the Grassmannian integral form
of scattering amplitudes presented in [20-22, 21, 25]. These necessarily involve
the auxiliary variables C,,. In contrast, the topological definition of the ampli-
tuhedron can be stated entirely in terms of the 4D momentum twistors (first
introduced in [18]). Consequently, this yields amplitudes that can be thought

of as differential forms on the space of momentum twistors. In this section, we
will review the basic concepts involved in the topological definition of the ampli-
tuhedron. We begin with a review of momentum twistors and their connection
to momenta in Section [1.2.1] and proceed to the topological definition of the
amplituhedron in Section [1.2.2]. We then explain how amplitudes are extracted
from the amplituhedron in Section [1.2.3] and finally, in Section [1.2.4], we set
up the statement of the optical theorem in the language of momentum twistors.

This is the statement we will prove in the main body of the chapter.

1.2.1 MOMENTUM TWISTORS

Momentum twistor space is the projective space CP?. A connection to physical
momenta can be made by writing them in the coordinates of an embedding C*
as Z, = ()\aa, ug) Here (A, 5\) are the spinor helicity variables which trivialize

the on-shell condition.

Paas = /\aa:\ad - pz = det()‘m /\a) det(:\a; 5\a) =0

11



&

pe = 9%\, where the dual momenta x, are defined via p, = =, — 7,1 and

trivialize conservation of momentum. Thus the point x, in dual momentum
space is associated to a line in momentum twistor space. Scattering amplitudes
in N/ = 4 SYM involve momenta p, which are null (p? = 0) and are conserved
(>°,Pa = 0). Momentum twistors are ideally suited to describe the momenta
involved in these amplitudes because they trivialize both these constraints. Fig-
ure 1.1 summarizes the point-line correspondence between points in dual mo-

mentum space and lines in momentum twistor space. Thus all the points of the

Za+'2 Toii
z%// atl
La /Pa+1
e ¢
2Y g
/—\
\\ To-NPa-1
Za—l """
\2{:2\ Lq-2

Figure 1.1: A representation of the relationship between momenta and momen-
tum twistors, taken from [20].

form

Zo = (Maas 258%Nea) (1.2)

are associated to the momentum p,. Note that these Z, are different from the
calligraphic Z, used in 1.1(the connection between the two is that Z, are ob-

tained by projecting the Z, through the k—plane Y in 1.1). Thus, a set of on-
shell momenta {pi,...p,} satisfying > "_ p, = 0 can be represented by an or-
dered set of momentum twistors {71, ... Z,}. Each line Z,Z,.; corresponds to

the point x, in dual momentum space as shown in Fig 1.1.

12



Each loop momentum /¢, can also be associated to a line in momentum twistor
space. We denote these lines by (AB),, where A and B are any representa-
tive points. This helps us distinguish loop momenta from other external mo-
menta. We can express Lorentz invariants in terms of determinants of momen-

tum twistors using the relation

s (a — lab — 1b)
(@0 = o) = = 1n) (13)

with (abed) = det {Z,, Zy, Z., Z4} and (ab) = det {l, Z4, Zp} where I, is the
infinity twistor [21,26]. Finally, we connect the invariants involving the Z! with

the four bracket via
<ZaZchZd> = 611...Ik+4YII1 T Yklkzgk+lzl)1k+gzgk+32d]k+4

We will utilize this connection later in Section [1.5.4].

1.2.2 TOPOLOGICAL DEFINITION

The amplituhedron A, 1, is a region in momentum twistor space which can be
cut out by inequalities. The region depends on the integers n, k and L which
specify the n—point, N°MHV amplitude. n is the number external legs of the
amplitude and correspondingly the number of momentum twistors which are in-

volved in the definition of the amplituhedron. We denote these by {Z,...Z,}.

L is the number of loops and we have the lines, (AB)1,...... (AB)[, correspond-
ing to the L loop momenta ¢4, .../0;. k appears below in the inequalities that
define A,, 1 ..

13



TREE LEVEL CONDITIONS

The first set of conditions that define the amplituhedron involve only the exter-
nal momentum twistors Z, and we refer to these as the “tree-level” conditions.

They are listed below along with some comments about each condition.

o The external data must satisfy the following positivity conditions.
(ti+1jj+1)>0 i=1,...n (1.4)

We adopt an ordering (1,...n) in all definitions. We must also define a

twisted cyclic symmetry for this ordering with
Znyi = (=117, (1.5)

This definition is required to ensure that (it + 1nl) > 0 for odd k and
(i1 + 1nl) < 0 for even k. We will see below that this is crucial to obtain

the right number of sign flips.

o We require that the sequence
Stree  £(1234), (1235) ... (123n)} has k sign flips. (1.6)

Note that the ordering (1,...n) is crucial for the above condition to make
sense. Using (1.4), (1.6) and the reasoning in Appendix [B], we can con-

clude that all sequences of the form

{(ii + Li+ 20+ 3), ... (i + i+ 2n), (=1 Mii + 1i + 21),... (i + 1i + 20 — 1)(=1)"'}

14



with ¢ = 1,...n have k sign flips. The use of (1.5) is crucial in arriving

at this conclusion. Since all the sequences {(ii + 1i + 2j) 52;; have the

same number of flips (with the appropriate twisted cyclic symmetry fac-
tors), we can use any of them in place of the sequence {(123i)}'_7. Tn the
rest of the chapter, we will the sequence which is most convenient to the

situation.

LOOP LEVEL CONDITIONS

The next set of conditions involve both the external data and the loops (AB),

and we refer to these as “loop level” conditions.

« Each loop (AB), must satisfy a positivity condition analogous to (1.4)
(AB)yii+1) >0 i=1,...n (1.7)

Note that we must include the twisted cyclic symmetry factor (—1)*~!
here as well. Once again, this implies that ((AB),nl) > 0 for odd k and
((AB)q1n) > 0 for even k.

o We require that sequence
Sl : L{(AB),12), ((AB),13),... ((AB),1n)} has k + 2 flips. (1.8)

Following a line of reasoning similar to that in 1.2.2, we can show that all

sequences of the form

{{((AB)ii +1),. .. (AB)gin), (AB)4il)(—=1)* "', ... ((AB)gii — 1)(~1)"1}

15



with ¢ = 1,...n have the same number of sign flips. We will make use of

these sequences as convenient in the rest of the chapter.

MUTUAL POSITIVITY CONDITION

The final condition is a relation involving multiple loop momenta (AB),. We

must have

(AB)J(AB),) >0  Va,b={1,...L} (1.9)

For multi loop amplitudes, the conditions above amount to demanding that
each loop (AB), is in the one-loop amplituhedron (i.e. it satisfies conditions
(1.7) and (1.8)) and also the mutual positivity condition (1.9). Finding a solu-
tion to all these inequalities is tantamount to computing the n—point N*MHV
amplitude. The complexity of solving the mutual positivity condition shows up
even in the simplest case of n = 4. Indeed, its solution is at the heart of the four
point problem, as explained in [17].

The topological definition is well suited to exploring cuts of amplitudes (which
correspond to saturating some of the inequalities in (1.4) - (1.9) by setting them
to be equal to zero). This formalism has been exploited to investigate the struc-
ture some cuts of amplitudes that are inaccessible by any other means. The

results of some classes of these “deep” cuts are obtained to all loop orders in

[10,27].

16



1.2.3 AMPLITUDES AND INTEGRANDS AS CANONICAL FORMS

The inequalities (1.4) - (1.9) define a region in the space of momentum twistors.
The goal of the amplituhedron program is to be able to obtain the amplitude
from purely geometric considerations. More precisely, we can obtain the tree
level amplitude and the loop level integrand for planar N' = 4 SYM. In con-
trast to generic quantum field theories, the planar integrand in NV = 4 SYM
is a well defined, rational function as shown in [8, 28]. The conjecture here is
that the Canonical form associated to the amplituhedron is the loop integrand.
The Canonical form associated to a region is the differential form with loga-
rithmic singularities on all the boundaries of that region. For more details on
Canonical forms, their properties and precise definitions, see [29]. The discov-
ery of amplituhedron-like geometric structures (for e.g. [30-33]) in other theories
lends further support to the idea that amplitudes can be thought of as differen-
tial forms on kinematic spaces. Some consequences of this are explored in [31].
It is interesting to note that a topological definition of the amplituhedron has
been found directly in momentum space [35]. This allows for the possibility of
expressing N' = 4 SYM amplitudes as differential forms in momentum space
rather than momentum twistor space.

It is illustrative to show the calculation of the canonical form for the simple

case of Ay . This canonical form should be the 4-point, one-loop MHV inte-

17



grand. The defining inequalities are

Tree Level : (1234) > 0 (1.10)
Loop Level : (AB12) > 0, (AB23) > 0, (AB34) > 0, (AB14) > 0,

(AB13) < 0, (AB24) < 0

Since A, B € C*, we can expand these in a basis consisting of {Z, Zy, Z3, Z,}.
However, A, B are arbitrary points on the line AB which corresponds to the
loop momentum. Since any linear combination (A’, B") of the points A and B
is also on the same line, there is a GL(2) redundancy in the choice of A and B.

Fixing this redundancy, we arrive at the following parametrization.

A=7Z1+ a1Zs+ asZs B = -7+ 123+ B224

The solution to the inequalities in (1.10) is

a; >0 ay > 0 51>0 ﬁ2>0

The boundaries are located at a; = as = 1 = P2 = 0 and the differential form

with logarithmic singularities on all the boundaries is just

doy dos dpy By (ABA2A)(ABd®B) (1234)?

ap as B B VOl(GL(2))  (AB12)(AB23)(AB34)(AB14)

This is the integrand for the 1-loop four point MHV amplitude as conjectured.
At higher points, the situation is more complicated cases. There are multiple

ways in which the sequence S°°P (1.8) can have k + 2 sign flips. It is useful to
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triangulate the complete region by enumerating all such patterns. This proce-

dure works extremely well for n—point MHV amplitudes and is fleshed out in

Section [7] of [23]. Specifically, if we parametrize
Av=21+aZi+oZiyn Bo=—Z1+ B2+ PoZja (1.11)
: (AB)ali) _ o (AB)alj) _ _ B
with o; > 0, 52 > 0, we have m = _a_; and m = _,8_; The

sequence { ((AB),1i)} has two sign flips, one occurring between ((AB),17) and
((AB),1li + 1) and the second between ((AB),1j) and ((AB),1j + 1). Summing
over all i < j = {1,...n} covers all the positions of the flips. The canonical

form for this region is the integrand of the n— point MHV amplitude.

(AB(lii + 1N 155 + 1))?

> (ABd*A)(ABd’B)

i<j

(ABLi)(AB1i + 1)(ABii + 1)(AB1;)(AB1j + 1)(ABjj + 1)

For another derivation of this integrand, please refer to [3].
Finally, an important property of these forms is that they are all projectively
well defined. They are invariant under the re-scaling Z; — t;Z; of each external

leg. We will make use of this property in Section [1.5].

1.2.4 UNITARITY AND THE OPTICAL THEOREM

The relationship between the singularity structure of scattering amplitudes and
unitarity has been the subject of a lot of work. [3, 1215, 28 36-38]. Tt is well
known that the branch cut structure of amplitudes is intimately tied to pertur-
bative unitarity. This is encapsulated in the optical theorem which related the

discontinuity across a double cut to the product of lower loop amplitudes.
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The presence of branch points in loop amplitudes is due to the pole structure
of the integrand. This is governed by the boundary structure of the amplituhe-
dron. The structure of boundaries and their relation to branch points has been
studied extensively in [39-10]. The discontinuity across a branch cut is calcu-
lated by the residue on an appropriate boundary of the amplituhedron. The
optical theorem thus translates into a statement about the factorization of the
residue on this boundary. We expect this factorization to emerge as a conse-

quence of the positive geometry.

R B

Figure 1.2: Structure of a unitarity cut of MHV amplitudes. The loop (AB) is
cut and the residue factorizes as shown.

Let us begin by rewriting the optical theorem, specifically for N' = 4 SYM
in the language of momentum twistors. For now, we will focus on MHV ampli-
tudes. We are interested in the case where one of the loops, AB, cuts the lines
it + 1 and jj 4+ 1 and all other loops (which we denote by (AB),) remain uncut.
Thus we are calculating the residue of the n — point MHV amplitude on the cut

(ABii+ 1) = (ABjj + 1) = 0. It is convenient to parametrize AB as

A= ZZ + JIZH_l + wlZ* B = ij + Zj+1 + UJQZ* (112)
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where Z, is an arbitrary reference twistor. The terms in the L-loop integrand

which contribute to this cut (which has the required poles) can be written as

b — _(ABd?A)(ABA’B) [T{(AB) AN (AB)od*By) f (0, y, w1, wa, (AB),)

" (ABii+ 1)(ABjj + 1)

The dependence of f on the external twistors has been suppressed. The residue

of MZ on the cut (ABii + 1) = (ABjj+ 1) =0 is

L-1

H ) {(AB)od’B,) f(2,9,0,0, (AB),)(1.13)

=1

da:d

L
Resy, —wy—0 M, =

S)

where g(x,y) is a Jacobian which is irrelevant to our purposes. Unitarity pre-
dicts that the function f(z,y,0,0,(AB),) is related to lower point amplitudes

(see figure 1.2) and is of the form

f(xvyaoa 07 (AB)G) = Z M,C ( J+1s - 'Zi7A7 B>M7LQ2(BvA7 Z1+17aZj)(114)

Li+Lo=L—-1

We will show that this structure emerges from the geometry of the amplituhe-
dron. We will first present a proof for the four point case. This is just a rewrit-
ing of the proof found in [17] using the topological definition. This proof will

then admit a generalization to amplitudes of higher multiplicity.

1.3 PROOF FOR 4 POINT AMPLITUDES

In this section we will examine the unitarity cut (AB12) = (AB34) = 0, at
four points and show that the residue can be written as a product of lower loop,

4-point amplitudes. Specifically, we will show that the defining conditions of

21



Figure 1.3: Structure of the unitarity cut at 4 points

the amplituhedron (1.4) - (1.8) can be replaced by two disjoint set of condi-
tions which define a “left amplituhedron” with external data {7, A, B, Z,} and
a “right” amplituhedron with external data {A, Z5, Z3, B}. We will show that
the mutual positivity conditions in (1.9) which seemingly connect the “left” and
“right” amplituhedra are automatically satisfied once the defining conditions
for the “left” and “right” amplituhedra are met. This suffices to prove that the

canonical form on the cut is

Z M£1(217A7B7Z4> M%g(B,A, ZQ,Z3)

Li+Lo=L—-1

where Mﬁl(Zl, A, B, Z,) and M%(B, A, Zs, Z3) are the canonical forms of the
“left” and “right” amplituhedra respectively. A suitable parametrization of

(AB) is

This ensures the cut conditions are satisfied. To compute the canonical form

on the cut, we must solve the remaining inequalities. The tree level constraints
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(1.4), (1.6) trivially imply (1234) > 0. The remaining loop level conditions in
(1.7) and (1.8) impose (AB13) < 0 and (AB14) > 0 which ensure z > 0,y > 0.
Denoting the uncut loops as (AB), with a = 1,... L — 1, the remaining inequali-

ties are loop positivity conditions,

((AB)jj+1)>0 VYj=1,...4, (1.16)

mutual positivity among the uncut loops

((AB)a(AB)) > 0, (1.17)

and mutual positivity with the cut loop

(ABA,B,) = (AyBa13)y + (A,B,14) + (A, B,23)xy + (A,B,24)x > 0. (1.18)

Here we have used the parametrization (1.15) for A and B. The consequences of
this inequality are best understood by considering the related quantity (((AB).2B){(AB),A3)).

Using (1.15) for A and B, we can rewrite this as follows.

(((AB)a2B)((AB).A3))

= ((AuBa24) + (A, B,23)y) ((A,B,13) + (A, B,23)x)

= (ABA,B,){(AqB,23) — (AuBy14)(A,B,23) + (AgB,13) (A, B,24)
— (ABA,B,){(A4B.23) + ((AeBa1 N A, B,2)34)

= (ABA,B,){(AuBa23) + (A,B,12) (A, B,34) (1.19)
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The above equation implies ((AB).2B){(AB),A3) > 0 as each term on the right
hand side is individually positive due to (1.16) and (1.18). The two possible so-

lutions are

(AB)2B) >0 ((AB).A3) >0 (1.20)

and

(AB),2B) <0 ((AB).A3) <0 (1.21)

A particular loop (AB), may satisfy either (1.20) or (1.21). In a generic case,
there will be Ly loops, (AB),, which obey (1.20) and Ly, = L — Ly — 1 loops,
(AB),, which obey (1.21). There are no restrictions on what values L; and Lo
can take. Consequently, the complete region satisfying the inequalities (1.16)
and (1.18) is a sum over all values of L; and Ly with L; + Ly = L — 1. We
will now show that the canonical form for a region with fixed L; and L, can be
written as a product of forms for amplituhedra A4 1, and Ay ,. From Fig.
1.3, it is clear the the external data corresponding to the left amplitude is the

set {Z1, A, B, Z4}. Any loops (AB),, which belongs to this amplituhedron must
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satisfy the defining conditions 1.4, 1.6, 1.7, 1.8.

Tree Level  (1AB4) = (AB14) = (1234) > 0 from 1.15 (1.22)
Loop level  ((AB),,1A) = 2 ((AB)4,12) > 0 ((AB)o, B4) = y((AB)4,34) > 0
Both of these follow from (1.15) and (1.16)
((AB)4, AB) > 0 from (1.18)
The sequence {{(AB),, 1A4), ((AB)4,1B), ((AB),,14) } has 2 sign flips

Mutual positivity — ((AB)a, (AB);) >0 (1.17),

The flip condition is the only one left to be verified and follows from the Pliicker

relation

((AB)a, 1B)((AB)a,23) = ((AB)a,2B)((AB)a,13) = ((AB)a, 12)((AB)a, B31.23)

This can be derived by noting that the 5 twistors {B, Aq,, Ba,, Z1, Z2} are lin-

early dependent which leads to the condition

(BA,, Bo,1)Zy + (A4, By, 12)B + (By, 12B)A,, + (12BA,,)B., + (2BA,, Ba,)Z1 = 0.

Contracting this with (AB)a,Z3 yields (1.23). Note that the RHS of (1.23) is
negative since ((AB),, B3) = —((AB),,34) < 0 while the signs of the terms in
the LHS are

{{((AB)a,23), (AB)a,2B), ((AB)a, 13)} (1.24)

{ + T ) - }

25



This forces ((AB),1B) < 0 and ensures that the sequence in (1.22) has 2 flips.
Similarly, the external data for the right is the set {A, Z,, Z3, B} and a loop

(AB),, which belongs to it satisfies the following conditions.

Tree Level  (A23B) = (AB23) > 0 (1.25)
Loop level  ((AB),,A2) = (AB),,12) >0 ((AB),,23) > 0

((AB)a,3B) = ((AB)g,34) > 0

The sequence {((AB)q, A2), ((AB)a, A3), ((AB),, AB)} has 2 sign flips

Mutual positivity — ((AB)a,(AB)a,) > 0,

Clearly, the conditions (1.22) and (1.25) define the amplituhedra A4 1, and
Ay 0.1, with canonical forms ME(Z,, A, B, Z,) and M (B, A, Zy, Z3) respec-
tively. To complete the proof that the canonical form on the cut is just the
product of these forms, we must show that that mutual positivity between the
loops (AB),, and (AB),, imposes no further constraints. To see this, we can

expand the loop (AB),, in terms of {Z1, A, B, Z4}

Aal = Z1 + O./lA + OéQB Ba1 = —Z1 + BlB + 5224

and compute ((AB)4, (AB),,) which yields,

(AB)a,(AB)ay) = y{(AB)a,1B)61 + ((AB)ay14) B2 + ((AB)a, 1A4) (1) + ((AB)a, AB)a

+((AB)g,Ad)as, 2 + ((AB) 4y 1B) (ags) + ((AB)ay B4)ags 5o (1.26)
The positivity of all the terms except for ((AB),,A4) and ((AB),,B1) immedi-
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ately follows from (1.25). For these two, we have

<(AB>a2A4> = <<AB)a2A(B - y3)> = <(AB)a2AB> - y<(AB)a2A3> >0

((AB)a,1B) = ((AB)a,(A = 22) B) = ((AB)a, AB) — #{(AB)a,2B) > 0

Therefore, ((AB)q4, (AB)4,) > 0 imposes no new constraints and the canonical

form on the cut factorizes into M, and M.

1.4 Proor rFOrR MHV AMPLITUDES OF ARBITRARY MULTIPLIC-

ITY

We will extend the above results to amplitudes of arbitrary multiplicity. How-
ever, the existence of higher k sectors beginning with n = 5 complicates the
proof. In this section we will focus on a proof of unitarity for MHV amplitudes.
This allows us to sketch the essentials of the proof without additional complica-
tions. In the next section, we modify the proof to account for higher k sectors.
We are examining the residue of the MHV amplituhedron A, o (Z1, ..., Z,)
on the cut (ABii + 1) = (ABjj + 1) = 0. For the rest of the chapter, we will as-

sume j # i+1*. The defining conditions for the amplituhedron A, o 1{Z1,...Z,}

*In the singular case of j = ¢ + 1, the amplitude factorizes into a 3-point MHV or MHV
amplitude a n + 1 point MHV amplitude. The 3 point case is degenerate and the use of
momentum twistors ensures that all the defining conditions(on-shell and momentum conserva-
tion) are always satisfied. There are no further constraints that need to be imposed
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are

Tree Level  (ijkl) > 0fori<j <k <l (1.27)
Loop level — (ii+1) >0
The sequence S = {(i +1i+2),...(i+ 1n), —(i + 11),--- — (i + 1i)}

has 2 sign flips.

Mutual Positivity — ((AB).(AB)y) >0  Va,be{l,...L}

Here, (ij) = ((AB).ij). We have chosen to look at the flip pattern of a partic-
ularly convenient sequence. All other related sequences will also have the same
number of flips as mentioned in Section [1.2.2].

There are clearly many patterns of signs for which the sequences S has two
sign flips. We refer to each pattern as a configuration of the amplituhedron. A
configuration for the MHV amplituhedron is specified by giving the signs of all
entries of the sequence S. We would like to show that for each configuration, the
canonical form can be written as the product of canonical forms of a left and

right amplituhedron. To begin, we we can parametrize the cut loop AB as

A= Zl +x Zi+1 B = yZ] -+ Zj+1 (128)

To show that the canonical form on this cut can written as a product of canon-
ical forms for lower loop, “left” and “right” MHV amplituhedra AﬁhO’ , and
AR o1, (With Ly = L — Ly — 1), we need precise definitions of these objects.

This is provided in the following section.

28



1.4.1 LEFT AND RIGHT AMPLITUHEDRA

THE LEFT AMPLITUHEDRON A, o,

)

Figure 1.4: The left amplituhedron

The left amplituhedron A,,, o 1, is defined by three sets of conditions similar
to (1.27). In this case, the external data, as seen from Fig 1.4 is the set £ =
{Z1,...Z;A, B, Z; 11, ..., Z,}. Letting a,b, ¢, d denote elements of this set and

(1j) = ((AB),ij), the defining conditions are

Tree Level Vao<b<e<del

(abed) > 0, (iAab) >0, (ABab) >0, (Bj + lab) >0
These are satisfied if x > 0 and y > 0.

Loop Level  (aa+1) >0, (iA) >0, (AB) >0, (Bj+1) >0
The sequence Sp, = {(iA), (iB), (ij + 1),...(in),—(i1),--- — (i1 — 1)}
has 2 sign flips

Mutual Positivity — ((AB).(AB)s) > 0.
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The above sequence lends itself to easy comparison with the sequence S in (1.27).
However, for consistency, we must also verify that the following sequences have

the same number of sign flips as Sp.

{{AB),(Aj+1),...,—(A4i)}

{(Bj+1),(Bj+2),...,—(BA)}

((i —14), (i — LAY, - — (i — 1i — 2)}

This ensures that the definition of the amplituhedron is independent of the

choice of sequence, similar to Section [1.2.2]. The positivity conditions on the
loop data ensures that all the first and last entries of these sequences are pos-
itive. Furthermore any two sequences in the above set, all of which are of the

form {(ak)} and {(a + 1k)}, satisfy

(ak){a + 1k + 1) — (ak + 1){a + 1k) = (aa + 1)(kk + 1) > 0 (1.29)

The equality of sign flips now follows from the analysis in Appendix [B]. This
shows that the left amplituhedron can be consistently defined at tree level. The
mutual positivity and the loop level positivity conditions for all the loops in the
left amplituhedron are automatically satisfied because of (1.28) and (1.27). The
flip condition defines the criterion for any uncut loop (AB), to be in the left

amplituhedron. We will present a detailed analysis in Section [1.4.2].
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Figure 1.5: The right amplituhedron

THE RIGHT AMPLITUHEDRON A, 01,

The external data for the right amplituhedron A,, o1, is R = {A, Z;i11,...,Z;, B}
and the defining inequalities are listed below. a,b,¢,d € R and (ij) = ((AB).ij)

with (AB), being an uncut loop.

Tree Level  (abed) > 0, (Ai+ lab) >0, (abjB) >0, (1.30)
(ABab) >0 witha <b<c<d

Loop Level  (Ai+1) >0, (jB) >0, (aa+1) >0
The sequence Sg = {(i+1i+2),...(i +1j),(i+ 1B), —(i + 1A)}
has 2 sign flips

Mutual Positivity — ((AB).(AB)y) >0
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Once again, for consistency we should verify that

S {(Ai+1),(Ai+2),...,(AB)}

So i {(i+2i+3),(t+20+4),...,—(i+20+1)}

S2+jfi : {_<BA>7 _<Bi + 1>7 T <Bj>}

all have the same number of sign flips as Sg. The proof is identical to the one
for the left amplituhedron. The tree level, mutual positivity and loop level posi-
tivity conditions are once again guaranteed by (1.28) and (1.27) and an analysis

of the flip condition is in Section [1.4.2].

1.4.2 FACTORIZATION ON THE UNITARITY CUT

It was shown in the last section that the two sets £L ={Z;,...,Z;,A, B, Z;11,...,Z,}
and R = {A,Z;11,...Z;, B} define positive external data and that the loop

level positivity conditions are satisfied. We need to analyze every configuration

of the amplituhedron and show that for each configuration, an uncut loop be-

longs to the left or the right amplituhedron. The similar analysis for the 4 point
case, performed in Section [1.3], was much simpler owing to the fact there there

was only one possible sign pattern for the sequence, {(AB12), (AB13), (AB14)}.
Here, the presence of multiple compatible sign patterns increases the complex-

ity of the proof and no simple relation like (1.19) exists. It is natural to label

the configurations of A, o 1(Z1,...Z,) by looking at the sign patterns in the se-
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quence S as explained below.

S={(i+1i+2), ... (G+1)|GE+1+1), ... —(i+1)}

Note that the flip pattern of this sequence determines whether the loop (AB),
belongs to the original amplituhedron which has external data {Z1,...Z,}.
Consequently, it doesn’t involve the points A and B. We have divided the se-
quence in a suggestive way. The left half of S looks very similar to Sk (1.30). It
is natural to label the different flip patterns of S as Sy, where a,b = + are the
signs of (i + 1j) and (i + 15 + 1) and [, r are the number of flips in the left and
right parts of S.

In order to compare Sy, (1.29) to S, we introduce the sequence

S, ={@+1A), (i +1B),(i+1j+1),---— (i+ 1i — 1)} (1.31)

and call the number of flips in this sequence &} flips. The motivation behind in-
troducing this is that Sz, and S} are connected by the Pliicker relation (similar

to (1.29))

(ik) (i + 1k + 1) — (ik + 1)(i + 1k) = (ii + 1) (kk + 1) > 0 (1.32)

Following the analysis in Appendix[B], the relation between kz, and &/ is deter-

mined entirely by the signs of the first and last elements

(iA) —(ii — 1) + +
(i+14) —(i+1i—1) — (i—1i+1)
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where kj, is the number of sign flips in Sp. If (i — 1i + 1) > 0, then k;, =k} — 1
otherwise k;, = k7.

S now looks almost like a juxtaposition of Sg and S7. Each flip pattern of
S determines whether the corresponding loop (AB), belongs to the left or the

right amplituhedron as shown below.
o Siioo={+,...2flips---H+...0flips---+}

The sequence Sk clearly has 2 sign flips since

—(t+1A)>0and (i+1j) >0, (i+1j+1) >0 = (i+1B) >0

S’ has one sign flip since

(i+1A) >0, (i+1B) >0, (i — li+1) > 0.

Furthermore k;, = k7 — 1 = 0 and the loop (AB), belongs only to the right

amplituhedron.

e Sito2={+,...0flips ---H+...2flips ---+}

Sg obviously has 0 sign flips. If (i — 1i + 1) > 0,k = k7 +1 = 2 and if
(1t —1i+1) < 0,k = kg = 2. In both cases, the loop belongs to the left

amplituhedron and not the right.
e Sy o= {+,...O ﬂips"-—i—\—,,.l ﬂjp..._|_}

If (i + 1B) > 0, then the sequence Sg has 0 flips and the loop doesn’t belong

to the right amplituhedron. If (i — 1i +1) > 0, k), = 3 and k, = k) — 1 = 2.
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Otherwise, k7 = 2 and kj, = k} = 2. Thus irrespective of the sign of (i — 1i + 1),
the loop (AB), belongs to the left amplituhedron.

If (i + 1B) < 0, then Sk has 2 sign flips and it can be shown that k;, = 0 by
analysis similar to the cases above. This (AB), belongs to the right amplituhe-

dron.
e S_i1o={+,...1flip ---—[+...0 flips ---+}

In this case, Sk has two flips and S} has one flip irrespective of the sign of (i +
1B). Since ki, = k7 — 1, we have k, = 0 and the loop belongs to the right

amplituhedron.
e S__y1={+,...1flip ---—\—”,1ﬂjp o4}

Once again, it is simple to show that Sk has two sign flips and Sy, has 0 sign

flips in this configuration.

TRIVIALIZED MUTUAL POSITIVITY

We have shown that for every configuration of the amplituhedron, each loop
belongs either to the left or the right. While we can consistently define left and
right amplituhedra, it remains to be shown that the mutual positivity between a
loop (AB)z, (£ = 1,...L;) in the left amplituhedron and a loop (AB)z (R =
1,...Ly) in the right amplituhedron doesn’t impose any extra constraints.

This is easiest to see if we expand each loop (AB), and (AB)g using (1.11)

as

Ar = A+ Z, + 21 Br = —-A+ 12y, + B2Zryi1
Ap = A+ a3y, + auZy By = —A+ 832, + BaZiy1
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withm <ry € {A,Zis1,...,Z;,Byand |y < ly € {Z1,... Z;, A, B, Zj11,..., 2y}
On expanding ((AB).(AB)g), every term is of the form (lylori79) with 1 < Iy <
r1 < re. Since the external data are positive, i.e. (ijkl) >0 fori < j <k <I, we
are assured that ((AB)z(AB)g) > 0.

This completes the proof of factorization for MHV amplituhedra on the unitar-

ity cut. In the next section, we will extended this proof to the higher k£ sectors.

1.5 PROOF FOR HIGHER k SECTORS

The proof of unitarity for higher k is similar in spirit to that for the MHV sec-
tor. However, there are a lot additional details that we must take into account.
Firstly, we must modify (1.14) to include products of “left” and “right” ampli-
tuhedra with different k. Suppose the left amplitude has g; negative helicity
gluons and the right amplitude has gz negative helicity gluons, then we have

g1+ gr = g+ 2. With the MHV degrees defined as kp = g, —2,kr = gr— 2,k =
g — 2, this equation reads k;, + kr = k. Recall that we introduced the func-
tion f(z,v,0,0,(AB),) in (1.13) and stated the optical theorem in terms of it.

Including sectors of different £, this becomes,

f@,9,0,0,(AB)) = > > MEh ot (1.33)

kr+kr=k L1+Lo=L—-1

We expect that unitarity emerges from a factorization property of the geome-
try in a manner similar to the MHV case. In order to make this statement more
precise, we will have to define analogues of the left and right MHV amplituhe-
dra for N*MHV external data. A, x 1, the N¥MHV amplituhedron defined by
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Figure 1.6: Unitarity cut for an N¥MHV amplitude

the conditions

Tree level (i34 155 +1) >0, (ii + 1n1)(—1)*"' > 0 and the sequence (1.34)
Stree s Lii + 1i+ 20+ 3),... (i + 1i +2i — 1)(—=1)" '} has k sign flips.
Loop level  ((AB)4ii +1) > 0, (ABn1)(—1)""' > 0 and the sequence
Sloop - £((AB),12), ((AB),13),...((AB),1n)} has k + 2 sign flips.

Mutual Positivity — ((AB).(AB)p) >0

We can use any sequence {(ABki)} instead of {{AB1i)} as explained in Section
[1.2.2].

It is worth re-emphasizing that we wish to prove that the canonical form on
the cut (which is computed by solving the inequalities (1.34) for the uncut loops
(AB), along with (ABii + 1) = (ABjj + 1) = 0) can be written as in (1.33).
For this to happen, we want to show that the set of inequalities in (1.34) can
be replaced by two sets of inequalities which define lower loop amplituhedra,

AE

i kp.L, and AR It is not essential that the external data for these is a

n2,kr,L2"

subset of {Z,...Z,}. In particular they can be rescaled by factors Z; — o(i)Z;

and still yield the same canonical form due to projective invariance as discussed
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in Section [1.2.3]. In fact, as we show below, this rescaling plays a crucial role
in ensuring that the left and right amplituhedra have k of both even and odd
parity.

On the unitarity cut ((ABii+ 1) = (ABjj + 1) = 0 with ¢ + 1 # j), there is a

natural division of the external data into “left” and “right” sets, {Z1,...,Z;, A, B, Zj 1, ...

and {A, Zi41,...,Z;, B}. However, insisting that this be the external data for
the left and right amplituhedra imposes too many constraints. To see this, sup-
pose that the “left” set has MHV degree k. We must have (ABn1)(—1)%~! >
0. But (1.34) implies that (ABn1)(—1)*! > 0. This forces (—1)k**2 > 0
and restricts kz to be the same parity as k. Similarly for the right set, we have
(j — 1jBA)(—1)*2~1 > 0 and again (1.34) implies (ABj — 15) > 0 which forces
(—=1)*® > 0. In order to avoid these extra constraints on kj, and kg, we must

allow for arbitrary signs on the Zs and define two the sets of external data as

L={o.(1)Z1,...00(0))Zi,0L(A)A,0L(B)B,or(j + 1) Z;j11,...,00(n)Z,}

R = {O’R(A)A,O'R<i + 1)2 + 1, e ,O'R<j)j, O'R(B)B} (135)

where o(k) = =£1. These signs will be determined by conditions like (1.34)
which define the left and right amplituhedra along with the appropriate twisted
cyclic symmetry. We will then show that the canonical form for every config-

uration in A, ; 1, can be mapped into a product of canonical forms on suitably

defined left and right amplituhedra A% , | and A%

na,kr,La"
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1.5.1 THE LEFT AND RIGHT AMPLITUHEDRA
L
THE LEFT AMPLITUHEDRON Am,kb L

We must demand that the set £ satisfies all the conditions in (1.34). In addi-

tion, this must also be compatible with the fact that the Z; are the external

data for A, 1.

(aa + 1bb + VYo (a)op(a+ 1)op(b)or(b+1) >0
(ABaa + 1)o(A)or(B)or(a)or(a+1) >0 (1.36)

Va,be{l,...i—1,j+1,....n—1}

AB and the Zs automatically satisfy (aa + 10b + 1) > 0 and (ABaa + 1) > 0.
Thus we have, o (a)or(a+1)on(b)or(b+1) > 0 and o(A)oL(B)or(a)or(a+1) >

0. Furthermore, we have new constraints on A and B coming from

(tABj 4+ 1)or(i)or(A)or(B)or(j +1) >0
<ZA/{7/{7 + 1>0L(i)0L(A)UL<]€)UL(/{7 + 1) >0 (137)

(Bj + 1kk + Yo (B)or(j + 1)or(k)or(k+1) >0

Finally, since the set £ is the external data for A% , | it must satisfy a twisted

cyclic symmetry

(aa + 1nl)op(a)or(a+ 1)op(n)op(1)(=1)* "1 >0 (1.38)
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Since {(aa+1n1)(—1)*=1 > 0, consistency requires (—1)*"*2 o (a)or(a+1)or(n)or(1) >

0. This divides into two cases
o (=) <0

An allowed set {o(k)} satisfying (1.36) and (1.38) is

{UL(l)a cee ng(i)’UL(A)7UL(B)>0L(j + 1)7 s ng(n)}

={+ ..., + 7,7, = ,.., =}

with 01,(A) and o7 (B) undetermined. (1.36) requires or(A)or(B) > 0 and the

constraints in (1.37) read

(iABj+1) <0  (iAkk+ 1oy (A)>0  (Bj+ lkk+ 1)o,(B) <0

The solutions to these constraints are

Ly:0.(A) >0, op(B) >0 with (iAkk+1) >0, (Bj +1kk+1) <0, (iABj+1) <0

Lo:0(A) <0, 0r,(B) <0 with (iAkk+1) <0, (Bj +1kk+1) >0, (iABj+1) <0

o (—1)FFhr >0

In this case {0 (k)} satisfying (1.36) and (1.38) is

{op(1),...,00(i),00(A),0n(B),on(j +1),...,00(n)}

={+, ..., + 7 , 7,0 + sy + 0}
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which again requires o7,(A)or(B) > 0 and turns (1.37) into

(iABj +1) >0  (idkk + D)o (A) >0  (Bj+ lkk+ 1)oL(B) > 0.

This has the following solutions

Ls:0,(A)>0, op(B) >0 with ({Akk+1) >0, (Bj+1kk+1) >0, (iABj+1) >0

Ly:00(A) <0, o,(B) <0 with ({Akk+1) <0, (Bj+1kk+1) <0, (iABj+1) >0

Each of these regions is characterized by particular signs for (¢Akk + 1) and

(Bj + 1kk + 1) along with a pattern of sign flips for the sequence

Sy {{i = liAB)aL(B), (i = LiAj + 1o (j + 1),... (i = 1idi = 2)(=1)""o(i — 2)} .

Each region allows parametrization of the line (AB) as A = +£7; + 7,4, and

B = +yZ; + Z;, with x > 0,y > 0. In the table below, we list the different

possibilities.
Region A B S
'Cl :|:ZZ + ZUZ¢+1 —yZ] + Zj+1 {+, ceey (—1)kL}
Ly +tZi—alin | yZ; £ Zia | {— . (D"
Ls | +ZitvaZin | yZi+Zi | {+,.., (1)}
Ly +7Z —aZin | —yZ;+ Zia | {-, . (D)7

Table 1.1: Parametrization of (AB) in the four regions

It is crucial to remember that the canonical form is independent of the choice
of o(i) and parametrization of A and B. In all these cases the canonical form is

that of A, k, 1,
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R
THE RIGHT AMPLITUHEDRON ‘Am,kmLz

A similar analysis of the effects of (1.34) on the set R yields the following con-

straints on {og}.

or(a)or(a+ )or(b)or(b+1) >0 (1.39)
or(A)og(i+ 1)og(k)or(k + 1)(Ai + 1kk +1) >0
or(j)or(B)or(k)or(k +1)(jBkk + 1) >0
or(B)or(A)or(k)or(k + 1){BAkk + 1)(—1)"71 > 0

or(A)or(B)o(i + 1)or(j)(ABi + 1j) > 0

These conditions are satisfied by

{or(1),...,0r(i),0r(A),0r(B),0r(j +1),...,0r(n)}

={+, ..., + 7 .7, + ..., + }
with og(A) and og(B) having solutions depending on kg.

o (=1)Fr >0

Ry :or(A) >0, o0g(B) > 0 with (Ai + 1kk +1) > 0, (jBkk+1) >0, (ABi+15) > 0

Ry : or(A) <0, o0(B) < 0 with (Ai + 1kk +1) <0, (jBkk+1) <0, (ABi+15) >0

o (=1)*r <0
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Rs:op(A) >0, op(B) < 0 with (Ai + 1kk +1) > 0, (jBkk+1) <0, (ABi +15) <0

Ry:op(A) <0, op(B) >0 with (Ai + 1kk +1) <0, (jBkk+1) >0, (ABi +15) <0

Once again, each region is characterized by different pattern of sign flips of the

sequence

Spe {{Ai+ 1i+ 2i 4+ 3)ogr(i +3),..., (Ai + 1i + 2B)or(B)}

where we have ignored an overall factor of or(A)og(i + 1)or(i + 2). We list the

various parametrizations and sign patterns of S% below.

Region A B Sree
Rl Zz :|: l’ZZ'+1 :l:yZ] —I— Zj+1 {+, ey —I—}
Ro —ZixxZiy | 2yZ; — Ziq | {+, ..., +}
Rs ZitaxZiyn | 2yZ; —Zigq | {+,...,—}
R4 —Z; £ $Zi+1 :tyZJ + Zj+1 {—, ce —|—}

Table 1.2: Parametrization of (AB) in the four regions

The canonical form is independent of the choice of ¢(i) and parametrization

of A and B.

1.5.2 FACTORIZATION OF THE EXTERNAL DATA

We will show that, on the unitarity cut, for every allowed sign flip pattern of

the sequence S™°, there exist regions £;, R; such that S§*® and S have the
flip patterns necessary for A% , ;| and A% . . The analysis that follows is
similar to the one is Section [1.4.2]. The sequence Sy is similar to the left part

of S and can be compared directly. In order to compare S with S™ it is

necessary to introduce another sequence S7™¢. This is analogous to what we did
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in (1.31),
SE: {(i +20AB)or(B), (i + 20Aj + 1or(+ 1), (i + 20Ai = 2)or (i — 2)(~1)" '}

Let k, ky, k', kr be the number of flips in Stree, Sjtree) Gtree gtree pegpectively. ky,

and K} are related to each other due to the following Pliicker relations

or(B)op(G+1) ((i — LABY(i + 214 + 1) — (i — LiAj + 1){i + 2iAB))

=or(B)op(j+1)(i — 1iAi+ 2)(1ABj +1) >0
and

(i — 1iAk) (i + 2iAk + 1) — (i — 1iAk + 1) (i + 2i Ak)

= (i — 1iAi 4 2)(iAkk + 1) > 0

It is easy to see that these hold in all regions (£;,R;). As shown in Appendix|B],
we can conclude that the relation between k;, and k) depends only on the signs
of first and last terms which are encoded in the matrix below.

sign((i — 1iAB)) sign({i —2i — 1iA))(—1)*

M = (1.40)
sign({i + 21AB)) sign({i — 2iAi + 2))(—1)**

- +

sign((iAaa + 1))sign({Ai + laa + 1)) sign({i — 2ii + 1i + 2))

The relation between k;, and k) is tabulated below.

It is helpful to label all the allowed flip patterns of S as S%° where a and
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sign((tAaa + 1)) | sign((Ai + laa + 1)) | sign((i — 2it + 10 + 2)) | kr — k;
¥ + + 0
+ n - 1
¥ - + 1
T+ i - 0
- T + 1
- + - 0
- - ¥ 0
- - - 1

Table 1.3: Relation between kj and k7 determined according to Appendix [B]

b are the signs of (it + 17 + 2j) and (i@ + 1i + 2j + 1) respectively. The different

possibilities are shown below.

See s (i 4+ 1i+ 20+ 3), ... (i + Li+ 25)|(i6 + 1i+ 25 + 1), ..., (i 4+ 10 + 20 — 1)(=1)*'}

SYE s {+ ki +|+ ks (—1)*)
SYE{+ by +| - ks (~1)F
ghree s {4 ki —|+ ks (—1)*}
Siree s {4 ki —| - ks (—1)*}

For each configuration, S’ the sequences S; and Sg have the following signs

depending on the region (£;, R;).
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Stree R Ro Rs R4

Ly | (ke+1,k1) | (ko —1,k1) | (ko + 1, k1 +1) | (ke —1,k1 +1)
Lo | (ke —1,k1) | (ka+1,ky) | (ko—1, ki +1) | (ke+1,ky+1)
L3 (ko, k1) (ko k1) (ko, k1 + 1) (ko, k1 + 1)
Ly (ko, k1) (ka, k1) (ko, k1 + 1) (ko, k1 + 1)

For the configuration S, we have k; 4+ ko = k. Thus regions which satisfies

kL + kR - k: are (‘ClaR4)7 <£27R3)7 (£37R1)a (£3aR2)7 (£47R1)7 (£47R2)- FOI'

Table 1.4: (kr, kg) in all regions for the configuration S,

Shree R Ro Rs R4

L4 (ko k1) (ka, k1) (ko, k1 4+ 1) (ko, k1 4+ 1)
Lo (ka, k1) (Ko, k1) (ko, k1 + 1) (ko, k1 + 1)
L3 | (ko+1,k1) | (ke — 1, k1) | (ka+ 1,k +1) | (ko — 1,k +1)
Ly | (ka—1k1) | (ke +1,ky) | (ko — 1, k1 +1) | (ka+1,k1+1)

the configuration S, _, we have k; + ko = k — 1. Thus regions which satisfies

Table 1.5: (kr, kg) in all regions for the configuration S, _

kL + kR =k are (‘Cla R3)7 (£17 R4)7 (£27 R3)a (‘CQa R4)7 (£37 Rl)) ('647 RQ)

Stree R Ro Rs R4

L1 | (ke+ 1,k +1) | (bo—1,k+1) | (ka+1,ky) | (ko —1,ky)
Lo | (ke—1ki+1) | (ka+ 1,k +1)| (ks —1,k1) | (ka+1,k1)
L3 (ko, k1 + 1) (ko k1 + 1) (ko, k1) (Ko, k1)
Ly (koy k1 + 1) (koy k1 + 1) (ko k1) (ko k1)

Table 1.6: (kr, kg) in all regions for the configuration S_

For the configuration S_,, we have k; + ky = k — 1. Thus regions which
satisfies kL + ]{JR =k are (,Cl, R3), (,CQ, R4), (,Cg, Rl), (Eg, Rg), ([,4, Rl), (£4, Rg)
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Gtree R R, Rs Ry

L, (kg by + 1) (ko by + 1) (Ko, k1) (g, ky)
L, (g, by + 1) (Ko, by + 1) (Ko, k1) (g, ky)
Ly | (ke+1,k1+1) | (ko—Lki+1) | (ka+1,k1) | (ke —1,k1)
Ly | (ko—1k+1) | (ko+ 1,k +1) | (ka—1,k1) | (k2 +1,k1)

Table 1.7: (kr, kr) in all regions for the configuration S__

For the configuration S__, we have k; + ko = k. Thus regions which satisfies
krp + kg =k are (L1,R3), (L1, Ry4), (L2, R3), (L2, Ry4), (L3, Ra), (L4, R1).

We see that for every configuration S%c, there are regions (£;, R;) that sat-
isfy kp + kg = k. Thus every configuration in the original amplituhedron can be
covered by these regions consistent with the expected factorization. The remain-
ing regions exist because they are related to amplitudes via inverse soft factors
and have identical canonical forms. However, these are not necessary to cover

all regions of the original amplituhedron.

1.5.3 FACTORIZATION OF LOOP LEVEL DATA

At loop level, we need to show that each loop (AB), belongs either to the left

or the right amplituhedron. The relevant sequences are (denoting ((AB),ij) as

(i5))

Sp™ = {(i +1i+2)op(i +2),..., (i + 1j)or(j), (i + 1B)or(B), (=1)" (i + 14)or(A)}

SpP = {(iA)oL(A), (iB)or(B), {ij + Vor(j +1),..., (i — Do (i — 1)(-1)H '}
Similar to before, it will be convenient to introduce the sequence 52°°p

81 = {{i + 14)01(A). (i + 1B)or(B), (i + 1j + or(j + 1), i+ 1i = Doy (i = (=1}
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Let the number of flips in S}§°P and S}JOOP be k, and k; respectively. These are
not kr and kz, which are the number of flips in the tree level sequences S

and S respectively. The flip patterns of Sie can be organized as follows.

S {(i 4 1i+2), (i 4+ Li+3), o (- L+ 1+ 1), (G 1) (=)
S0P k1 + | + k2 (—D)F
S

gloor . ki - |+ o (—1)*

e N S S

+ o+ o+ o+

Sloop

}
}
ky + | - ko (=D }
}
}

ky — | — ko (—1)k

We showed in the previous section that on the unitarity cut, the external data
factorizes such that ki, + kg = k with ky, kg € {0,...k}. It is trivially true that
each loop belongs either to the left or the right amplituhedron. We must show
that if a loop (AB), belongs to the left amplituhedron, then it cannot belong

to the right amplituhedron. First, note that in each configuration, we will have
ky = ko + 1 and k, = k; + r with 7,/ = 1 or 2. Now suppose that (AB), belongs
to both the left and right amplituhedra. Then we must have k; = kj, + 2 and
k. = kr+2. Expressing k; and k, in terms of kq,[, ks and r, and using k;, + kr =

k, we get

dif ki +ky =k
l+7r=

Ditki +k=k—-1

Clearly, | + r = 5 is impossible since [,7 = 1 or 2. We just need to show that

[ +r = 4 is impossible. Note that this is possible only if [ = r» = 2. In this case,
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the following hold true.

((i + 1)or()), (i + 1B)ogr(B), (=1)*) ~ (=1)* (+, -, +)

((it +1A)o(A),(i+ 1B)or(B), i+ 1j+ 1)or(j + 1))
= (—ou(A)or(A), =(=1)*"or(B)oL(B), (i+ 1j + 1)oL(j + 1))

= (+ -+ or(—+,—)

In all these cases, we must have or(A)og(B)or(A)or(B)(—=1)* < 0. Tt is easy
to verify from Section [1.5.1] that this is always false. Thus each loop belongs

solely to the left or the right ampltuhedron.

1.5.4 MUTUAL POSITIVITY

To complete the proof of factorization, we need to show that the mutual posi-
tivity between a loop in Aﬁhh, 1, and one in A% is automatically satisfied.
This is easier to see while working with (k + 2) dimensional data. We can re-
write all the four brackets using Z’s and the k—plane Y as described in Section
[1.2.1]. For more details, see Section [7] of [23]. A loop in the left amplituhedron
can be parametrized as a ki + 2 plane Y/ ... VX A, B,.
Vi=(-1)""or(A)A+a,oL(i) 2, + Boor(v+1) Z, ., (1.41)
o= (=)Mo (A) A+ ag, 1 o1 (iky+1)Zi, o+ By, wr 0Ll 41 +1) Ziy

A
B, = (1) 20 (A) A+, 4o 01 (i, 12) Zip, o+ Bin, o onling 12+ 1) 25y i1
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with v = {1, . kL}, Ziu € {Zla . ZZ',A, B,Zj+1,Zn} and 7;1 < 7;2 <.. .Z.KL + 2.
Similarly, a loop in the right amplituhedron can be thought of as a kz + 2
plane Y/ ... Y}t A, B, and parametrized as
VI = (=1)""or(A) A+ oy or(iy) Zi, + Buor(p+1) Zi,,, (1.42)
Ay = (_1)kR+10R(A> A+ Qkp+1 UR(ikR+1)ZikR+l + BikRJrl UR(ikR+1 + 1) ZikR+1+1

By = (=1)""261(A) A + appr0 R (ikye2) Zipio T Binpo 0R(ikpt2 +1) Ziy it

with € {1,... kg}, Zi, € {4, Zip1,..., Z;, B} and with j1 < jo» < ... jrzso.
This reduces the mutual positivity condition (YX(AB),YZ(AB),) > 0to a
condition involving k+4 brackets of the form (ijklim). It is easy to see that with
positive k + 4 dimensional data ((i; ...ix4) When i3 < s < ...igy4), mutual
positivity is guaranteed. The signs oy (k) and og(k) are crucial in making this

work.

1.6 CONCLUSIONS

We have shown that unitarity can be an emergent feature. The positivity of the
geometry inevitably leads to amplitudes identical to those derived from a uni-
tary quantum field theory. This lends further support for the conjecture that
the amplituhedron computes all the amplitudes of N' = 4 SYM. It also suggests
that the notion of positivity is more fundamental than those of unitarity and lo-
cality which are the cornerstones of the traditional framework of quantum field

theory.
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Deep into the Amplituhedron

2.1 INTRODUCTION

The amplituhedron is a geometric object that is conjectured to encode all the
perturbative scattering amplitudes of planar N/ = 4 sYM. First introduced

in [16], the original definition of this object was built on the discovery of the
structures of the positive Grassmannian uncovered in [9] as well as the observa-

tion in [15] associating the NMHV tree amplitude to the volume of a particular
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polytope in momentum twistor space. The amplituhedron realizes a similar ge-
ometric picture for general tree amplitudes and loop integrands, associating to
each positive geometry a (conjecturally unique) “canonical differential form”
defined by having logarithmic singularities on all its boundaries [29]. The com-
putation of scattering amplitudes in planar N = 4 is equivalent to determining
a triangulation of the amplituhedron, so that different representations of am-
plitudes correspond to different geometric triangulations of the space. There is
nontrivial evidence [17—19] that this geometric construction can be extended to
the nonplanar sector of the theory, as the essential analytic properties of the
loop integrand, namely logarithmic singularities and no poles at infinity [50],
have been observed to hold beyond the planar limit.

Understanding this geometry A, ;. 1, for all multiplicities n, helicity config-
urations k£ and loop orders L is an open problem, and many different direc-
tions have been explored. The connections between the tree level amplituhe-
dron and the Yangian symmetry of N' = 4 have been explored in [71], while a
triangulation-independent understanding of the geometry has been studied from
several different perspectives [52-51], primarily for NMHV trees. An explicit
description of how the BCFW cells triangulate the tree-level space was given
in [55] while an alternative sign flip reformulation of the m = 1 amplituhedron
was given in [50]. A manifestly Yangian invariant diagrammatic formulation us-
ing so-called “momentum twistor diagrams” was introduced in [57] and used to
study the structure of the one-loop geometry in [78]. The higher loop-level ge-
ometry of the amplituhedron was explored in detail in [?, 10] and an attempt
to completely understand the geometry at four points and progressively higher

loops can be found in [59-01]. However, important open questions regarding the
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technical details of triangulating the amplituhedron remain. Moreover, while the
original definition provided a deeper understanding of the positive Grassman-
nian and on-shell diagrammatic structure of scattering amplitudes in N' = 4
sYM, it was still slightly unsatisfactory since all these structures were associated
to an auxiliary space not directly tied to the kinematic data.

The introduction of the topological definition of the amplituhedron in [23]
completely resolved this issue, revealing the geometric structure of the ampli-
tudes directly in kinematic space. In this new formulation, the amplitudes and
loop integrands could now be thought of as differential forms in momentum
twistor space depending on the loop integration variables as well as the external
data. Recently, it was discovered that the scattering amplitudes in other theo-
ries may also be written as differential forms on the space of kinematical data,
see e.g, [30,33,34].

The topological definition also makes it clear that the inequalities that define
the multi-loop amplituhedron fall into two categories. The first set of condi-
tions constrains the variable associated with each loop to live in the one-loop
amplituhedron, while the second set of conditions enforces mutual positivity
among the different loops. This division provides us with greater control on the
source of complexity — the mutual positivity. A full understanding of the inter-
play between these two conditions is still lacking. However, as a starting point
we begin by analyzing special configurations which completely trivialize mutual
positivity. These cuts are exactly the opposite of the all-loop cuts considered
in [17], which focus on cutting propagators involving external data. Moreover,
we begin an investigation of the effects of mutual positivity by introducing this

non-triviality in stages.
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Figure 2.1: A subclass of diagrams which contribute to the cuts considered in
this chapter.

One way to understand the geometry of the all-loop amplituhedron is by ex-
ploring different cuts of the loop integrand. In addition to specifying the struc-
ture of the amplituhedron’s boundaries, these cuts allow us to access all-loop
order information about the loop integrand which seems out of reach using any
other known method. In this chapter, we utilize the reformulation of the ampli-
tuhedron outlined in [23] to explore a few faces of the all-loop MHV amplituhe-
dron. These will involve cutting the maximal number of internal propagators
involving loop momenta and thus trivializing the mutual positivity conditions
between loops. As an example, in terms of Feynman diagrams, at four points,
our cut will include (but is not limited to) summing over all diagrams of the
form shown in Figure 2.1. In this sense the cuts we consider in this work probe
the contributions of the most complicated multi-loop Feynman diagrams to the
loop integrand involving the highest number of internal propagators. We will
derive compact expressions for these cuts which are valid at all loop orders and,
moreover, for an arbitrary number of external particles.

The chapter is structured as follows. In Section 2.2, we will briefly review the

amplituhedron and explain the geometry of the different cuts that we analyze in
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this chapter. In Section 2.3, we explore cuts which involve cutting 4L—4 propa-
gators. We derive expressions for these cuts and verify their correctness against
known results. In Section 2.4, we derive the results for 2L—4 cut propagators
which in [10] were named the “deepest cuts” of the amplituhedron. Finally, in
Section 2.6, we present a few preliminary results which involve solving nontriv-
ial mutual positivity conditions. We consider the nontrivial deformations away
from the deepest cuts, as well as generalized ladder cuts which are n-point ex-

tensions of the four-point results of [17].

2.2 GEOMETRY OF THE AMPLITUHEDRON

Although it was initially defined in terms of a generalization of the positive
Grassmannian [9], the amplituhedron can be defined entirely in terms of sign
flip conditions on intrinsically four-dimensional data [23]. The external kine-
matic data for any massless scattering process is completely specified by the
(null) external momenta {ps, ..., p,} satisfying momentum conservation, and
the helicities of the interacting particles. The external momenta can be com-
pletely specified by giving n unconstrained momentum twistors {71, ... Z,} as
introduced in [18]. In V' = 4 sYM, it suffices to give the N"MHV degree k in-
stead of specifying the individual helicities. Additionally, at L loops the loop in-
tegration variables are given by L lines £, = (AB),, a« = 1,..., L, each of which

can be specified by two points say, A, and B,. In terms of these variables, the
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amplituhedron is the region which satisfies the following conditions:

Gi+1jj+1) >0, ¥i<j, (2.1)
{(1234), (1235), ... (123n) } has k sign flips,

(AB)nii+1) >0  Vae {1,...L},

{{(AB)a12), ..., ((AB),1n)} has k + 2 sign flips,

((AB)a(AB)g) >0, Va < Banda, B€{l,...L}.

The L-loop integrand for the N*MHV helicity configuration is the unique de-
gree 4(k + L) differential form in (Z;, (AB),) with logarithmic singularities on

all boundaries of the space. For the MHV (k = 0) helicity configuration, the

~

sign flip conditions on the sequence {((AB)41i)}i—a. ., can be reformulated in a
slightly different form in terms of the planes i = (i—17i+1) dual to the points
Z; [23]. For the MHV L-loop integrand we can equivalently impose the follow-

ing set of conditions:

(ii + 155 + 1) > 0, (2.2)
((AB)aij) >0,  Vi<yj,

((AB)o(AB)g) > 0, Va < fanda, fe{l,...L},

where we introduced the shorthand notation ((AB),ij) = ((AB)4(i—1ii+1) N
(j—17j+1)) to denote the intersection of the planes 7 and j. From these defi-
nitions, it is clear that solving the problem at L-loops amounts to solving the
problem at one-loop together with the mutual positivity conditions ((AB).(AB)g) >

0. In this chapter, we are interested in some faces of the amplituhedron which
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Figure 2.2: Intersecting cut

trivialize all mutual positivity constraints i.e., we approach the boundary where
((AB)o(AB)g) = 0 for all @ < f. Generically, this set of constraints has two
solutions which are related by parity i.e., the exchange of points<+planes. The
first solution is a configuration of lines, all of which intersect at a single point A
as shown in Figure 2.2. We refer to this solution as the intersecting cut.

It is worthwhile to understand the counting of the number of degrees of free-
dom left on this boundary. We start with L loops and hence 4L degrees of free-
dom. Making each loop pass through a point requires two constraints. Naively,
this would require 2L constraints. However, the point at which all the lines in-
tersect is not specified. Hence we only need 2L — 3 conditions, and the resulting

form has degree (2L + 3). The remaining conditions on the loop lines are

(AB,ij) > 0. (2.3)

These are completely independent of each other and the problem essentially re-
duces to L copies of the one-loop problem. These inequalities determine the al-
lowed locations of A (which has three degrees of freedom) and also the allowed

configuration of each line AB,, for a given A (each B, has two degrees of free-
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Figure 2.3: Projection through A at four points.

dom left). We seek a cell decomposition of A-space such that for each cell in A
space, the geometry of B, is fixed. By projecting through the common intersec-
tion point A one possible one-loop configuration at, say, four points is given in
Figure 2.3 (the full L-loop configuration is simply L copies of this geometry).*
In this picture we see that A lives inside a tetrahedron with vertices 71, ..., Z,
while B lives inside the triangle with vertices Z%, Z) and (23)’'N(14)". The tri-
angulation of the intersecting cut is given by the set of all such configurations
consistent with the inequalities defining the amplituhedron. Note that since the
mutual positivity has been trivialized we expect that we will be able to write
the canonical form such that it factorizes into a form for each cell in A space

and a product of forms for each loop AB,. Schematically, we have

L
Q=Y ", [ 2s.. (2.4)
A a=1

*Of course, at this point there is no reason to think that the configuration of Figure 2.3
is actually consistent with the inequalities defining the amplituhedron. However, as we shall
demonstrate in Section 2.4 this geometry does contribute to the intersecting cut.
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Figure 2.4: All in plane cut

where in this expression (and in many that follow) we suppress the measure of
integration, which for the L-loop intersecting cut amounts to omitting the com-
mon factors (Ad®A) H§:1<ABad2Ba> from all expressions.

The second solution to ((AB).(AB)g) = 0 is the configuration in which all
lines are coplanar but do not necessarily intersect at the same point shown in
Figure 2.4. We refer to this solution as the coplanr cut.

Let us denote the common plane by (A;A3A3). In this case, the remaining

constraints read
<(A1A2A3)Bafj> > 0. (2.5)

Since it is easier to work with points than to work with planes, we can dualize
the above configuration. This involves the dual point A7 = /7KL AJ AKX AL The

dual of the condition in (2.5) is

(AB,ij) > 0. (2.6)
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We see that the dual configuration is now a set of lines AB,, all of which inter-
sect at a point but satisfy (AB,ij) > 0 rather than (AB,ij) > 0 as in (2.3).
This demonstrates that the two cuts are distinct from each other.

To find the canonical form for the configuration in Fig. 2.4, we can find the
canonical form associated to the dual inequalities (2.6) and dualize the form, ex-
changing Z < W. Here we are assuming that the dual of the canonical form
of the dual region is equal to the canonical form of the original region. We refer
the reader to [29] for more details. Operationally, it is somewhat easier to com-
pare our results for the coplanar cut to cuts of the corresponding parity conju-
gate, “MHV” integrand, where by “MHV” here we mean the integrand obtained
by dualizing Z < W. Note, however, that this is not quite the actual MHV in-
tegrand since this object is defined by setting & = n—2 in the full definition of

the amplituhedron. The relationships can be summarized by

MHYV intersecting <+ “MHV” coplanar , (
2.7)

“MHV” intersecting <> MHV coplanar.

Thus we can view the set of conditions (AB,ij) > 0 as defining the intersect-
ing cut of the “MHV” integrand, which is dual (by exhanging Z <> W) to the
coplanar cut of the MHV integrand. Similarly, the MHV intersecting cut can
be viewed as the dual of the “MHV” coplanar cut. To keep notation consistent
in the rest of this chapter we will write all results in terms of the intersection
point A, regardless of whether we are considering the intersecting or coplanar
cut. Explicit formulae for the two coplanar cuts are obtained by dualizing ex-

pressions (2.56) and (2.81). Before solving these two cuts, however, we will first
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consider an even simpler set of geometries where the intersecting/coplanar lines

satisfy additional constraints.

2.3 4L — 4 CuTts OF AMPLITUDES

2.3.1 INTERSECTING CUT

In this section, we will focus on a configuration of lines (AB), a = 1,...L,

all of which intersect at a common point A. Additionally, we will demand that
some of them pass through the points Z;. Let us suppose that AB, for some

a passes through Z;. The constraints that this imposes are given by a special
case of (2.5), i.e. (Alij) > 0. It is straightforward to show this implies that
{(A123), (A134), ..., (Aln2)} must all have the same sign. Geometrically, this
implies that after projecting through Z;, the point A lies in the polygon with
vertices {22, Zs, ..., Zn} (where the hats indicate the projection through 7).
We can thus express A = 375 + ...c,Z, with ¢; > 0. Similarly, for a line
passing through Z; B we have the constraint that (Aii+1i+2), (Aii+2i+3), ...,
(Ain(—1)), ... and (Ai(—(i—2))(—(i—1))) all have the same sign. In this case,

we can write

A= —chl — CQZQ — o+ CiJrlZi+1 cee 4 CnZn7 (28)

with c; > 0.
Thus each line (AB), which passes through some point Z;_  imposes con-
straints on the possible positions of the intersection point A. These are all lin-

ear inequalities on the P3 in which A lives. Therefore they cut out some poly-
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tope, provided the inequalities are mutually consistent. To check for the consis-
tency, it suffices to keep track of the sign pattern in the expansion of A in terms
of the Z;. For example, passing through Z; forces the pattern to be (74 +---+)
or (? — —---—) and Z, forces (=? 4+ +---+) or (+? — —--- —), where the ?
means that there are no constraints on the sign of that coefficient. We will now
demonstrate this in detail for a few examples.

Let us begin with the the simplest case of n = 4 points and two loops. Here
we have two lines AB; and AB,, and we demand that these pass through Z;

and Z5. We can expand

A= chl + CQZQ + Cng + C4Z4. (29)

Passing through Z; imposes the pattern (? + ++) or (? — — —) on the signs of
the coefficients ¢;,

ce>0,c3>0,c40>0, orecg<0,c3<0,¢4 <O. (2.10)

Similarly, passing through Z, imposes the pattern (=7 ++) or (+? — —). We see
that the only consistent patterns are (— 4+ ++) or (+ — ——). These are equiva-
lent up to an overall sign and we can write A = —Z; + ¢392y + c343 + ¢4 Z,. This
is indeed a polytope as stated above. Namely, it is a tetrahedron with vertices
Lo, 3, 24 and — 2.

Still working with two loops, we can consider the configuration that results
from demanding that the lines pass through Z; and Z3. The patterns imposed

on the ¢; are (? + ++) or (? — ——) from Z; and (——7+) or (++7—) from Zs.
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To obtain a consistent pattern from these, we would need to make one of the ¢;
vanish. This results in a degenerate configuration and is not allowed for generic
loop momenta. Thus there are no consistent patterns and the cut must vanish.
We know that this is indeed the case, as shown in [16]. We will also verify this
and more general predictions in Section 2.3.2.

While still working at two loops, we can easily generalize the above results to

arbitrary n. If the two lines pass through Z; and Z5, then, we have

A: _Zl+CQZQ+0323+"'+CnZn. (211)

Hence A is in the convex hull of {Z,, ..., —Z;} which we denote as A € Conv|[Zs, Zs, ..., —Z1].
We can further generalize to the configuration of lines passing through Z; and

Z; (with i < j), with the result that

Ae Conv|Z;,...Zy, =24, — Zi—q] and A€ Conv|Z;,Ziw1...Z;—1, 7],
(2.12)
provided neither is degenerate. Finally, for the most general case in which L
lines (AB)y, ..., (AB)r, pass through Z; ,... Z;, , respectively, the above discus-
sion shows that we can have A € Conv [Z;,, Zi, 11, -+ Zns =21y oy —Ziy—1),
A € Conv [Z; Zi,], A € Conv [Z;

e 2y Zis], up to A € Conv [ZiL_l...ZiL],

barring degeneracy.

2.3.2 VERIFICATION

In this section, we will verify all predictions made in Section 2.3.1 for two loops.

We do this by computing the cuts directly from the two loop MHV integrand
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which can be expressed in terms of a cylic sum of the double pentagons intro-

duced in [26]. We denote the following diagram as (ijkl):

J k

This picture represents the formula

— (ABij)
CIK) = TABi 1y (ABi 1) (AB- 1) (ABj 1 1 {ABCD) 1Y)
(CDEKI) (ijkl) (2.14)

“CDE—1kY(CDkk+1)(CDI—1){C DU+ 1)’
where the two loop lines are (AB) and (C'D). The MHV two-loop integrand can

be expressed as a sum of double pentagons,

ANy =Y (k). (2.15)

1<j<k<l<i
We follow the same order as in the last section and begin with n = 4. In this
case the integrand can be expressed in terms of two double boxes
O, — (ABd?A)(ABd®B)(CDd?C){C'Dd*D)(1234)3
T (AB14)(AB12)(AB34)(ABCD){(CD12)(C'D23)(C D34)

(ABA2A)(ABd?B)(C'DA2C)(C DA2D)(1234)*
(AB14)(AB12)(AB23)(ABCDY(CD14){CD23){CD34)

(2.16)

(2.17)

Taking the residue such that AB passes through Z; and C'D through Z,, we
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get!

(Ad3 A)(1234)3
(A123)(A134)(A412) (A423)’

O eue = (2.18)

where A is the point of intersection of AB and C'D. This is precisely the canon-
ical form for the simplex with vertices Zs, Z3, Z4, —Z; as expected from Sec-
tion 2.3.1.

We can also make AB pass through Z; and C'D through Z3. Taking residues

appropriately, we find the residue on the cut vanishes

(1234)3 N (1234)3 _0/2.19)
(C142)(C134)(C312)(C234)  (C142)(C123)(C314)(C234) —

Q4,cut =

exactly as predicted in Section 2.3.1 and [10].
At five points, we next consider the cut where AB passes through Z; and C'D

through Z;. Only three double pentagons contribute to this cut.

Boz (CA3C)(5123)(4512)(1234)

)
(5123) D—zy (C145)(C512)(C'123)(C234) (2:20)
Bz, (CA3C)(5124)2(2345)
(5124) =7, (C145)(C512)(C234) (C'245) (221)
Boz (CdPC)(1234)2(1345)
A123) L (G131 (C145) (C123)(C230)° (222)
(2.23)

It is easy to check that this is indeed a triangulation of the cyclic polytope with
vertices Zo, Z3, Zy, Zs, — 41 as expected from Section 2.3.1.

More generally, at two loops if we have AB passing through 7, and C'D pass-

THenceforth where appropriate we will sometimes suppress the measure of loop integration.
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ing through Z,, the following double pentagons contribute:

(ajil) P27 (Aa (@n7)){Ab (bN1) (abjl)) (2.24)
P D5 (Aa)(Aaj — 1j)(Aajj + I{(AD)(Abl — L)(Abl + 1)
(ajikt) 27, (Aa (@nj)){Ab (kN Dd) (ajkb)) (2.25)

p=2" (Aa)(Aaj — 15)(Aajj + 1)(AD)(Abk — 1k)(Abkk + 1)
BoZ, (Aa (ina))(Ab (bN1) (iabl))

(tabl) y —— . . — - (2.26)
D=2z, (Aa)y(Aai — 1i)(Aaii + 1) (Ab) (Abl — 11)(Abll + 1)
Aa (1Na@)Y(Ab (kNb) liakdb
(@akb) B—)Za : < a’(z a>>< (_ ) <Za >> (227)
D=z, (Aa)(Aai — 1i){Aaii + 1){Ab)(Abk — 1k)(Abkk + 1)
The form on this cut is then
b—1 a1 b—2 b1 a—2 a—1 a—2 b—1
Q=" > (agbl)+ Y Y (ajkb)+ > (iabl)+ > > (iakHp.28)
j=a+11=b+1 j=a+1k=j+1 I=b+1i=l+1 i=b+1 k=a+1

We expect this to be a triangulation corresponding to the sum of the forms for
the two cyclic polytopes Conv[Z,, ... Zy| and Conv|Zy, ... Z,, —Z1,...,—Z,]. To
verify this, we need the canonical form of a cyclic polytope. A triangulation of

this form is given by €y + 9, where [29]

b—2 a—2
Q=) laii+1b), and  Qy= > [bii+ la, (2.29)
i=a+1 i=b+1
where we define
3
[abed] = {abed) (2.30)

(Aabe) (Abed) (Acda) (Adab)

We have verified up to n = 20 that this prediction holds true in every case.

However, the double pentagon expansion provides a triangulation of the two
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polytopes which is different from (2.29). Furthermore, there is no obvious sub-
set of terms in the double pentagon form which triangulates either the polytope
Conv[Z,,...Zy| or Conv|Zy, ... Z,, —Z1,...,—Z,| separately. This of course fol-
lows from the known fact that the double pentagon expansion of the integrand,
although term-by-term local, is not a triangulation in the usual mathematical
sense because it involves points living outside the amplituhedron. Understand-
ing exactly how this representation of the integrand covers the amplituhedron,
even on this special cut, is an interesting open question which we leave to future

work.

2.3.3 COPLANAR CUT

In this section we will focus on the coplanar cut of the MHV integrand. Since
we are considering coplanar lines, we cannot demand that they pass through
the Z;. This is impossible for generic configurations of external data. However,
there exists a natural analog of making the lines AB, pass through Z;. Consider
the planes (i—1ii+1), which are dual to the points Z;. These intersect the plane
(A1A3A3) in lines as shown in Figure 2.5.

We can identify the lines (AB), with these lines. To understand why this is
a natural analog, it is helpful to look at the dual picture. Recall that the dual
of a set of coplanar lines is a set of lines intersecting at a point. The dual of a
line lying in the plane (i—1ii+1) is a line passing through the point Z;. Thus
the dual of the configuration shown in Figure 2.5 is a set of lines intersecting
at a point and passing through Z;, Z; and Z;. For the rest of this section, we
will be working with the dual configuration and demanding the constraints

(ABij) > 0 as explained in Section 2.2. We will denote the dual of the common
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(i-1ii+1)

Figure 2.5: The dotted lines are common plane (A; A3 A3) intersecting (i—1ii+1)
and (j—1j7+1).
plane A; A5 A3 by the point A.

The coplanar cut is strikingly different from the intersecting cut. It lacks the
rich structure of deeper cuts that we saw in Section 2.3.1. The first result which
sets the two cuts apart is that we cannot make AB, pass through non consec-
utive Z;. To see this, it suffices to look at the constraints imposed by passing
through Z, and Z, for b > a. Let us suppose that passing through a imposes
(Aaij) > 0. Passing through b then requires (Abij) < 0 since a < b and we must
have a consistent sign for (Aabj). Now, if there exists ¢ such that a < ¢ < b we
have a contradiction, and therefore such a configuration of lines does not belong
to the one-loop amplituhedron.

Consequently, configurations of lines passing through three or more of the Z;

are also disallowed since this will necessarily involve two non consecutive Z;.
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¢ | total # of topologies | possible contributions | %

4 8 4 50

5 34 20 58.8
6 229 146 63.8
7 1873 1248 66.6
8 19 949 13 664 68.5
9 247 856 172 471 69.6
10 3 586 145 2 530 903 70.6

Figure 2.6: Number of topologies contributing on the cut through ten loops [10].

2.4 2L —4 CuTts OF AMPLITUDES

We now tackle the problem of finding the form for the cut ((AB).(AB)g) = 0
with no other constraints imposed. As discussed in [10] this cut is hopelessly
complicated from a local diagram expansion. We can be slightly more quanti-
tative about the complexity of this cut by estimating how many local diagrams
contribute at, say, n = 4 points using known results available from the soft
collinear bootstrap program [02—(1]. From the ancillary files in [64] the number
of dual conformal invariant (DCI) integrals that have enough internal propaga-
tors to possibly contribute on the cut can be counted through ten loops, with
the number of topologies given in Figure 2.6 which is taken from [10]. Note in
particular that the total number of diagrams is given by symmetrizing in all
loop momenta and cycling through external labels. Of course, simply having
enough internal propagators is not sufficient to say that a given diagram ac-
tually has support on our cuts, since there may be compensating DCI numer-

ators which cancel some internal propagators and/or kill the residue. Thus,

the numbers shown in the “possible contributions” column of Figure 2.6 are
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Lo L3 L1 Lo

/‘ ° ® -\ /o . ° 0\
Figure 2.7: The two local diagrams at five loops which have the necessary num-

ber of internal propagators but nevertheless do not contribute to the (2L—4)-
dimensional cuts. Here we label the lines £, = (AB),.

overestimates of the actual contributions, as can be seen by, for example, a
more detailed consideration of the thirty-four topologies present at five loops:
of these planar graphs twenty have at least the required seven internal propa-
gators necessary to a priori contribute on the cut. However, of these twenty the

two graphs shown in Figure 2.7 have the associated DCI numerators
Ny = —(1234)*(12(AB),)*{(AB)2(AB)3)?, (2.31)

and

No = —(1234)*((AB)1(AB),)", (2.32)

respectively. Therefore neither of these diagrams have nonzero residue on our

cut, and the correct counting at five loops is eighteen rather than twenty.
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2.4.1 FOUR POINT PROBLEM

We will first focus on the intersecting cut at four points. The inequalities for the

line AB, to be in the one-loop amplituhedron are (AB,ij) > 0. These reduce to

(AB,12) >0, (AB,13) <0, (AB,14) >0,
(2.33)
(AB,23) >0, (AB,24) <0, (AB.34) > 0.

The inequalities that result from the coplanar cut (ABij) > 0 are identical to
(2.33) except for the signs of (AB,13) and (AB,24). However, the form for the
two inequalities is identical as the case of n = 4 is too simple to distinguish

between the two cuts. We can solve the system in (2.33) explicitly by setting

A=71+ayZy + a3Zs + asZy, By =721+ 2025 + Yu s, (2.34)

and solving the resulting inequalities for as, as, a4, o and y,. The resulting

triangulation is the union of the following four regions:

as <0 az >0 as <0 as < Ty <0 0 < Yo < (azzy)/as,

as >0 as <0 as <0 Ty < QA2 Yo > 0,

as >0 ag > 0 as > 0 To <0 0 < Yo < azxq/as,

as >0 az >0 as <0 Ty < o Yo > A3To /a0

This determines the canonical form for the region of interest in terms of as, as, as, r, and y,.
It is trivial to take these expressions and rewrite them in terms of momentum

twistors by solving the linear equations (3.22) for all variables. We refer the
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reader to [17] for numerous example of writing down the canonical forms cor-
responding to regions defined by inequalities, and here give only the final ex-

pression for the four-point form:

(1234)3
(A123)(A124)(A134) (A234)

A123)(A234 A123)(A124
(H< (A4123) (4234) +H<<>>< 3)(A124)

Qb _ (2.35)

AB,12)(AB,23)(AB,34) AB,12)(AB.23)(AB,14)

(A124)(A134) (—1)(A134)(A234)
+H (AB.12)(AB,34) (AB,14) +H(ABa23)<ABa34><ABal4>>’

where at four points there is only one form in A,

(1234)3
(A123) - - - (A412)’

Q) = [1234] = (2.36)

which corresponds to the tetrahedron with faces Z; [19]. This clearly shows that

the form in A, €4, is independent of the number of loops, L.

2.4.2 FIVE POINT COPLANAR CUT

At five points we can algebraically solve the inequalities (AB4ij) > 0 by parametriz-
ing A and B, as above and triangulating the space of allowed common points A

for fixed geometries in B,. As the number of inequalities to solve becomes large

for higher points, this approach becomes computationally intractable. However,

the geometry of the problem is quite simple: we have several intersecting lines

with at most quadratic inequalities between them. This suggests that the pieces

in the triangulation might in some sense be “simple.” To see if this is possible

we seek an alternative procedure to solve the inequalities which is completely
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/ /’ \
2y B

Figure 2.8: Projecting through A to get a two-dimensional configuration.

geometric rather than algebraic in nature. In fact, this reformulation of the
problem is easy to find: to “triangulate” the space of allowed AB, we should
simply draw all configurations of points {71, ... Z,} allowed by the inequalities
(AB,ij) > 0. This is efficiently accomplished by first projecting the external
data and the points B, through the common intersection point A, whence we
land on the two dimensional picture of Figure 2.8 where the bracket (ABij) is
positive if the point B lies to the right of the line (ij).

For a given configuration of projected positive external data Z1,..., 7! (hence-
forth we omit the primes on projected variables) the conditions that AB, is in
the one-loop amplituhedron simply demand that the projected point B, lies to
the right of all lines (ij), for i« < j. This generates a list of allowed configura-
tions in A along with the corresponding regions in B from which we can directly
write down the forms.

There are eight quadrilateral and eight triangular configurations for the four
point case. Checking all possibilities against the inequalities (AB,ij) > 0 for

1 < j = 1,...4, we find four allowed configurations, displayed in Figure 2.9
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2 2
3 (%(14) 4 (%(23)
1 (34) 1 (34)
4 3

(b)

2 : 4
/\ x (3) /\ y (4)
1 4 (14) 1 3 (34)
( )

c) (d

a

Figure 2.9: Four point configurations written as (configuration in A) and
(allowed region in B).

as the list of configurations in A and the corresponding regions in B where the
inequalities are satisfied. From these pictures it is trivial to write down the cor-
responding canonical form, and we find term-by-term agreement with the alge-
braic approach of the previous section. To solve the MHV coplanar (although
here we are thinking of it as the “MHV” intersecting) cut at five points, we

can proceed by taking the four point configurations just obtained and adding

a fifth point everywhere consistent with the additional five point inequalities
(ABi5) > 0, for i = 1,...,4. For example, for configuration (a) of Figure 2.9,
the point Z5 can be added in any of the regions shown in Figure 2.10, where in
this picture we have labelled regions of the plane by the corresponding sign pat-

terns of the sequence

{(A125), (A135), (A145), (A235), (A245), (A345)}, (2.37)

and only configurations which give a nonzero allowed region for B have been
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(+.+++--)

4+ +++)

Figure 2.10: Allowed regions in the projection plane for the point Z;, labelled
by the sign sequence of (2.37).

labelled. Although a priori this gives seven distinct configurations in A, in fact
several of the configurations give identical allowed regions in B and hence “glue
together” naturally. If we complete this exercise for each four-point picture in
Figure 2.9, the resulting list of configurations in A and allowed regions for B
can be translated into the corresponding forms just as in the four point case.
However, it is a less trivial exercise to compute the forms in A corresponding

to configurations of the Z;. For example, one of the allowed configurations is
the simple (projected) pentagon of Figure 2.14(a), which gives for the point B,
the triangle bounded by lines (12)(15)(45). Here the codimension one bound-
aries in A are obviously given by all deformations making three projected points

collinear, so for the pentagon with ordered vertices 12345 the poles of the form
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in A are

{(A123), (A234), (A345), (A451), (A512)}. (2.38)

However, starting at five points we also find configurations such as in Figure 2.14(b)-
(¢), both of which give the region for B, bounded by the lines (12)(15)(34),
where the pole structure of the form is not as obvious. The quadrilateral con-
figuration of Figure 2.14(b) has codimension one boundaries corresponding to
the poles

{(A123), (A134), (A345), (A145), (A235), (A125)},

as can easily be seen by deforming the picture in all ways which make three
points collinear. However, for the triangular configuration as drawn in Fig-

ure 2.14(c) the relative orientation of points Z3 and Z, inside the triangle is
crucial in reconstructing the form, and we must indicate whether the brackets
{(A134), (A234), (A345)} are required to have definite signs in order to sat-
isfy the inequalities. The codimension one boundaries of this cell correspond
to those collinear limits which do not first flip any brackets which have definite
sign. For Figure 2.14(c) this gives, for example, the boundary structure corre-

sponding to the poles

{(A134), (A234), (A135), (A235), (A245)}.

The allowed regions in B, can be classified by the pole structure of the associ-
ated form. In the four-point case we found all possible “triangles” with three
poles in B corresponding to the lines (i—17), (i++1) and (i+1i42), and a pri-

ori at n-points one would anticipate finding triangles, quadrilaterals, etc. up
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to possibly n-gons for the allowed regions for B,. Indeed, adding a fifth point
everywhere in the four-point configurations consistent with the additional five
point inequalities yields both quadrilaterals and pentagons in B,. However, the
corresponding sum of canonical forms for each cell does not reproduce the cor-
rect integrand on this cut at any loop order. The reason for this discrepancy is
simple: in addition to the inequalities (AB,ij) > 0 we must ensure that we are
only keeping configurations that are consistent with having been projected from
positive data. To be more explicit, consider the following five-point configura-
tion obtained from the procedure outlined above which is consistent with the
inequalities (AB,ij) > 0 (here the point Zs must lie to the right of the line (14)

and to the left of the line (25) to give the region in B, shown)

(15)
4 (34)

(45)
(12)

5 (2.39)

Naively this configuration contributes to the cut with a quadrilateral region for
B, with poles (AB12), (AB34), (AB45) and (AB15). However, this configura-
tion of projected Z; is actually inconsistent with having been projected from
positive data, as a simple argument demonstrates. Namely, if we expand Z5 in

the basis 71, ..., Z; we have

Z5 = Oé4Z4 — O{3Z3 + OZQZQ — alZl, (240)
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where the positivity of the variables «; > 0 follows from the positivity of the ex-
ternal data. Expanding the bracket (A135) using (2.40) and noting that (A123) >
0 and (A134) < 0 (which are conditions defining this configuration) we see this

implies this bracket is negative,

(A135) = oy (A134) — a3(A123) < 0, (2.41)

which is in contradiction to the configuration we have drawn, where (A135) > 0.
Thus, the configuration (2.39) cannot be obtained by the projection of positive
data.

If we cross-check the list of configurations obtained by adding a fifth point to
the allowed four-point cases of Figure 2.9 against the positivity constraints on
the external data, the surprising result is the elimination of all geometries apart
from triangles in B,. The complete set of configurations can be constructed out

of the following list:

2 5
(12)(23)(34) 4 (2.42)
| T |
: 2 5
(12)(23)(45) 2 4 (2.43)
1 3 1 C 4
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(12)(23)(15)

(12)(34)(45)

(12)(34)(15)

(12)(45)(15)

(23)(34)(45)

(23)(34)(15)

(no sign on (A245))

3
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(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)



5 4
(28)(45)(15) (2.50)
2
1 ~31 4
4
(34)(45)(15) (2.51)

In these results, we have indicated the regions in B, satisfying the one-loop in-
equalities by the codimension one boundaries which are lines (ii+1) in the pro-
jection through A. The full set of allowed configurations is given by adding all
reflections across the line (12) of the above list (disregarding duplicates), which
is equivalent to requiring the consideration of both cases (A123) = 0. Alter-
natively, all possibilities can be generated by constructing, for each possible B,
region, all configurations consistent with the inequalities (with no requirements
on any (Aijk) bracket); this leads to exactly the same set of allowed configura-
tions as (2.42)-(2.51), plus reflections across (12).

As already mentioned, the key aspect of the five point results (2.42)-(2.51) is
that only triangles in B, are found, despite there being no immediately obvi-
ous reason why quadrilaterals and pentagons are forbidden. In fact, if one re-
peats the above brute-force procedure to construct the complete set of six point
geometries, the same simple result is found: only triangles in B, satisfy the in-
equalities and are consistent with the positivity of external data. Although a
deep explanation of why the positivity constraints demand triangle geometry for

the B, is at this point missing, in Appendix A we discuss the precise nature of
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the constraints imposed on the projected data in slightly more detail. However,
even without a satisfying explanation for this simplicity, we can immediately
make an obvious ansatz: namely, for an arbitrary number of particles, the ge-
ometry in B, is still no more complicated than triangles! As we will see below
this powerful hypothesis, checked by brute force at five and six points, allows
use to solve the problem completely for any n by a simple unitarity-inspired
procedure. Since we know the allowed regions for the B,, we can obtain the
corresponding €24 from the known two loop MHV integrands (2.15) by taking
residues. At higher points our triangle-hypothesis has been verified by matching

our prediction for the cut against known expressions for the full integrand.

2.4.3 COPLANAR CUT FOR ARBITRARY MULTIPLICITIES

It was shown in Section 2.3.3 that the coplanar cut allowed only a limited num-
ber of deeper cuts. In particular, we cannot have any {2z which allows pass-
ing through more than two Z;. We allow for all possible {25 with three factors
of (ABii 4 1) in the denominator and determine the corresponding 4. Sur-
prisingly, this turns out to be the exact form on the cut for arbitrary n and L.

There can be three kinds of {2 with the following factors in the denominator.
e (ABaa+ 1) (ABbb+ 1) (ABcec + 1)
o (ABa — la) (ABaa + 1) (ABbb + 1)
+ (ABa —la) (ABaa + 1) (ABa + la + 2)

We can determine )4 for each of them by localizing the two-loop MHV inte-

grand (2.15) appropriately and computing the residues. Since the form for A is
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independent of the number of loops, this gives us the form in A for any number
of loops.

Case 1: aa+1-bb+1-cc+1

We can assume ¢ < b < ¢ and no degeneracies (i.e b # a + 1,¢ # b +
l,a # ¢+ 1) and focus on the cut (ABaa+1) = (ABbb+1) = 0, (CDbb+1) =
(CDcc+1) = 0. The four double pentagons which contribute to this cut are
(abb+1c), (a+1bb+1c), (abb+1c+1), and (a+1bb+1c+1). Their residues on this

cut are

ce abb+lc
(abb + 1¢) 22Ut IDANTY, abbi1c) (2.52)
B—(Aaat+1n4bb+1)  (Aa) (Ab) (Ab+1)(Ac)
D—(Acc+1NAbb+1) a+1bb+1 C)

(a+ 1bb+ 1¢) — = ——
B—(Aaa+1nAbb+1)  (Aa+1) (Ab)(Ab+1)(Ac)

D (Acc1nAbb+1) (@bb+1c+1)
B—(Aaat1nAbb+1) (Aa)(Ab)(Ab+1)(Ac+1)
D—(Acc+1NAbb+1) (a+1bb+1c+I)
B—(Aaat1nAbb+1) (Aa+1)(Ab)(Ab+1)(Ac+1)

(abb+1c+1)

(a+1bb+1c+1)

Here the bar represents the dual (@ = (a—1laa+1)). The sum of these four terms

can be compactly written as

0. — ((Aaa+1nN Abb+1)cc+1)(a—laa—l—la—l—Z)(b—lbb+1b+2>(c—lcc+1c+2)/2 53)
L (Aa) (Aa+1)(Ab) (Ab+1)(Ac)(Act1) -

This is an octahedron with vertices

(@, b, ©), (a, b, c+1), (@, b+1, ©), (@, b+1, c+1), (a+1, b, ¢),

(a+1, b, c+1), (a+1, b+1, ©), and (a+1, b+1, c+1).
The numerator puts a zero on all the other co-dimension 2 singularities. The
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facets are obvious from the expression.

Case 2: a—la-aa+1-bb+1

A similar calculation shows that the form can be written as

(Aabb+1) (b—1bb+1b+2) (a—2a—1aa+1) {(a—1laa+1a+2)
(Aa—T)(Aa)(Aa+T)(Ab)(Ab+1)

Q, = (2.54)

This is a polytope with vertices

(a—1,a,b),(a—1,a,b+1),(a—1,a+1,b),(a—1,a+1,b+1),(@ a+1,b),

and (a, a+ 1, b+ 1).

Again, the numerator puts a zero on all other co-dimension two singularities
and the facets are obvious.

Case 3: a—1la-aa+1-a+1la+2

Finally, we have

(a—2a—1laa+1)(a—laa+1la+2){aa+1la+2a+3)
(Aa—T)(Aa)(Aa+1I)(Aa+2)

Q; = (2.55)

This is a tetrahedron with vertices (a — 1, @, a+1),(a—1,a, a+2), (a — 1, a+ 1, a + 2),

and (a+ 1, @, a + 2).

The full form at L-loops and arbitrary number of particles n is given by sum-
ming over all possible triangles in B,. Note that the key aspect of this calcu-
lation was the fact that only triangles in B, appear in the expansion (2.4). If
quadrilaterals and higher polygons appeared it would not, in general, be pos-
sible to fully fix the forms in A just from the two-loop integrand. However, in

this problem once we know the result on the cut can be expressed as a sum of
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triangles in B, it is trivial to obtain the coefficients of the individual triangles.
In particular, the triangles labelled by boundaries (i—11), (7i41), (i+1i42) are
fixed by setting some set of the B, = Z; and the rest to Bg = Z;1;. On this fur-
ther cut of the integrand only this triangle can contribute. For example at two
loops for the triangle (12),(23), (34) the form in A is fully fixed by solving the
geometry when we cut (AB;12) = (AB123) = 0 and (AB,23) = (AB234) = 0
i.e., By = Zy and By = Z3. For the triangles (i—1i), (ii+1), (jj+1) we fix the
coefficients by setting some B, = Z; and the rest to Bz = (ii+1) N (Ajj+1). At
two loops we can explicitly check that matching on this cut is sufficient to fix
the coefficient of the triangle, matching on the other possible cuts B, = Z;,Bs =
(i—1i) N (Ajj+1) and B, = (i—1i) N (Ajj+1), Bs = (it+1) N (Ajj—+1) is
automatic.

Proceeding in this way we obtain the full result for the n-point cut:

Z A(1i41) N (Ajj+1)kk+1) (i—1lii+1i4+2) (j—15j+15+2) (k—1kk+1k+2)
& T Il Az—lm—i—l)(Au—i—lz—l—Q}(Ag 1jj+1)(Ajj+1j4+2) (Ak—1kk+1) (Akk+1k+2)

T (A(+1) N (Aji+1)kk+1)
- 1:[1 <ABaii+1><ABajj+1><ABakk+1>)' (2.56)

As discussed in Section 2.2, the final result (2.56) is the correct formula for the
MHYV intersecting cut. To obtain the form for the MHV coplanar cut, we have

to dualize (2.56). As discussed in [10] the dual formula can be written

e v dpue. (P, j, k)
S22 2 H (AB)ii 1 1) (AB)ag) 1) ((AB)FR 1)
(2.57)
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where dyz, is the measure of the line £, on the plane P, and we define

U = O (P 1) () (P 1) (PRY (PR 1)

(2.58)

and

((P(i,5,k))) = (ii+1PN(jj+1) PA(kk+1)), (2.59)

where dup is the measure of the plane P. In terms of the point A and the planes
Z;, the result (2.57) can be schematically interpreted as in Figure 2.15, where

{7, j, k} is the canonical form associated to a cube with facets associated to the
lines (#i+1) (jj+1) and (kk+1) and the form in B, corresponds to a triangle

in the plane with (the projections of) these lines. Note that, for example, in the
case when j = i+1 and k£ = i+2 the geometry (and corresponding form) in (the

dual of) P smoothly degenerates to a tetrahedron.

2.4.4 VERIFICATION OF Q%L)

We have verified that the expression for QY matches the coplanar cut of the
two-loop MHV integrand up to n = 20. We also verified that Q) reproduces
the cut of the three-loop MHV integrand given in [26] up to (and including) n =
7.

2.4.5 INTERSECTING CUT

FIVE POINTS

We now consider the MHV intersecting cut where all lines intersect in a com-

mon point A. Naively, one might hope that the simplicity of (2.56) is mirrored
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in this cut as well. However, the lack of complexity in the coplanar cut arose

from the fact that the only allowed regions in the B, were triangles. This is

clearly impossible for the intersecting cut due to the results of Section 2.3.1

which show non-vanishing residues for the intersecting lines (AB), passing through
any number of external points. It is also straightforward to verify that, for ex-
ample, the three-loop five point integrand has a non-vanishing residue on the

cut where By = Z5 and By = Z4 which no triangle in B, can possibly reproduce.

Instead, at five points we make the following ansatz:

Q= > @B+ D fulAa (2.60)

triangles ¢ quadrilaterals ¢

where the forms in B, for the quadrilaterals have four poles and the numerators
are determined by demanding unit leading singularities and vanishing on spuri-

ous singularities. For example, for the quadrilateral ¢; which corresponds to the
region shown in Figure 2.16 bounded by the lines (12), (23), (34), (45), the form

1S

((AB,45)(A123)(A234) — (AB,3(45)N(A23)))
01((12),(23), (34), (43)) = 1;[ (AB,12)(AB.23)(AB.34)(AB,45)

(2.61)
This form gives the correct residues on B, = Z,, Z3, Z, and the numerator
vanishes on spurious boundaries B, = (12)N(A434) and B, = (23)N(A445) (but

does not vanish on B, = (12)N(A45)). If we complete the exercise the forms for
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the additional quadrilaterals are given by:

(AB,12)(A135)(A234) + (AB,34) (A123)(A125)
2:((12),(23), (34), (15)) = 1;[ (AB,12)(AB,23)(AB.34)(AB,15) ’
(AB,12)(A145)(A235) + (AB,45)(A123)(A125)

a5((12), (28), 49, (5) = | | === g o G oy Bt (ABus)

«

(AB,15)(A124)(A345) — (AB,34)(A125)(A145)
(AB,12)(AB,34)(AB,45)(AB,15) ’
(AB,3(45)N(A23))(A145) — (AB,45)(A135)(A234)
(AB,23)(AB,34)(AB,45)(AB,15)

q1((12), (34), (45), (15)) = [ |

[0}

g5((23), (34), (45), (15)) = [ |

«

(2.62)

The coefficients of the quadrilaterals can be fixed from the two-loop result by
considering particular cuts. For example, only the quadrilateral ¢;((12), (23), (34), (45))
contributes on the cut where By = Z5 and By = Z,. This residue for the two-

loop MHYV integrand on the intersecting cut is

o (1234)2(1245) (1235)(1245) (1345)
Ju(4) == (A123)(A124) (A145) (A234) * (A123)(A125)(A145)(A345)
C (1234)(1235)(2345)  (1234)(1345)(2345) (2:63)
(A123)(A125)(A234) (A345)  (A123)(A145)(A234)(A345)
(1245)(2345)2

(A125)(A234) (A245) (A345)

However, this expression is deceptively complicated as a little algebra reveals

that an equivalent form of the residue is simply

(1245)3

JolA) = TA020 (A2 45) (A151) (A512)

(2.64)

An even faster way to fix (or alternatively double-check the derivation just given)

the coefficient of ¢;((12), (23), (34), (45)) is by considering the following cut
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of the three-loop five point integrand available in local form in [26]: if we set

By, = Zy, By = Z3, By = Z; (which again isolates the coefficient of the quadri-
lateral) it is easily verified that the residue of the three-loop form on this cut is
exactly (2.64). The rest of the cuts are just as trivial; introducing the shorthand

notation
(abed)?
(Aabc) - - - (Adab)’

[abed) = (2.65)

the coefficients of the additional quadrilaterals are

[ulA) = (1345, [u(A) = [2845], [ (A)=[1234],  fu(A) = [1235].
(2.66)
To fix the triangle coefficients we need only demand consistency on additional
cuts. If we cut By = Z; and By = Z, the triangle with edges (12), (23), (15) as
well as the quadrilaterals ¢o and ¢3 contribute. Therefore, we demand that the

residue on the cut, which is

(1234)2(1235) (1234)(1235) (1245)
(A123)(A125)(A134)(A234) ' (A123)(A125)(A145)(A234) 067
(1234)2(1245) (A135) (1245)%(2345) (2.67)

(A123)(A125)(A134) (A145)(A234) ' (A125)(A145)(A234)(A245)

matches the sum of the forms corresponding to the triangle ¢3 and quadrilater-

als q2, 43,

Jis(A) + foo (A) + o5 (A)- (2.68)

Using (2.66) this fixes the form in A for the triangle ¢3 to be surprisingly simple:

fis(A) = [1235]. (2.69)
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Checking all such cuts fixes the rest of the triangle coefficients. It is trivial to
verify that at three loops the coefficients of all triangles and quadrilaterals are

the same as at two loops. The final result at five points is:

ABo12)(AB,23)(AB,34)

(—1)(A123)(A125)
+ 5123 [ | (AB,12)(AB,23)(AB,15)

(A125)(A145)
+ 1245 [ | (AB,12)(AB,45)(AB,15)

(A234)(A345)
+[2345) [ | (AB,23)(AB,34) (AB,45)

(—1)(A345) (A145)
+Basy]] (AB.34)(AB.45) (AB.15
)

05 =+ [1234] ]| < (A4123)(A234) (2.70)

)
(AB,A5 (

(A123)(A234) — (AB,3(45)N(A23))(A124)

+ 11245 1;[ (AB,12)(AB,23)(AB,34)(AB,45)
L
[ S
o[ S e
A

[0

This has been directly checked against the two and three-loop integrands evalu-
ated on the intersecting cut. Note that all triangles of the form ((i—17), (ii+1), (i+1i+2))
appear in this expression, while the five triangles not of this form do not con-

tribute at five points.
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SIX POINTS

At six points it can be verified that on the cut By = Z5, By = Z4, B3 = Zs
the three-loop integrand has nonzero residue. This implies that at the very least
pentagons are necessary, since in our factorized ansatz only the pentagon with
edges ((12),(23), (34), (45), (56)) can possibly contribute on this cut. Writing

down the general ansatz

Qe = Z ftz‘<A)ti<BOé> + Z f%‘(A)Qi(BOé) + Z fpi(A)pi<Ba>7
triangles 4 quadrilaterals 4 pentagons ¢
(2.71)
it is clear that once the forms in A multiplying the pentagons are fixed it will
be trivial to determine the forms for the quadrilaterals and triangles simply by
demanding consistency on lower dimensional cuts. For example, once we com-

pute cuts of the three-loop integrand and find that the coefficients of p; (12,23, 34,45, 56)

and po(12,23,34,45,16) are given by
fu(A)=[1256]  and  f,,(A) = [4561], (2.72)

we can look at the two-loop integrand and cut By = Z, and By, = Z4, where

only these two pentagons and the quadrilateral ¢;(12, 23,34, 45) contribute:
residue on cut = fy, (A) + fp, (A) + fp,(A), (2.73)

which implies f,,(A) = [1245], which is exactly the coefficient of this quadri-

lateral at five points. From these results we can immediately guess (and subse-
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quently verify) the pattern: for the quadrilaterals

(i—1i, 4041, i+1i+2, i+2i+3)

the corresponding forms in A are [i—1ii+2i+3], for the pentagons (i—1i, ..., i+3i+4)

the forms are [i—1ii+3i+4] and for triangles

(i—1i, ii+1, i+1i+2)

the forms are [i—14i4+1i+2]. Checking the set of these cuts fixes the coefficients
of all pentagons at six points as well as all quadrilaterals except those not of the
form

(i—14,i+1, i+1i+2, i+2i+3),

e.g., the quadrilateral (12,23, 34, 56). However, it is easy to verify that all such
quadrilaterals of this type, as well as the triangles not of the form (i—1i,ii+1, i+1i+2),
do not contribute to the integrand. For example, consider the cut By = Z5, By =

Z3 of the two-loop integrand. Naively the following geometries contribute:

residue on cut =t(12,23,34) + (12, 23, 34, 45) + ¢(12, 23, 34, 56) + ¢(12, 23, 34, 16)
+ p(12, 23,34, 45, 56) + p(12, 23,34, 45, 16) + p(12, 23, 34, 56, 16).

(2.74)
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However if we substitute the known forms in A we find this kills the coefficient

of q(12,23,34,56)

residue on cut = [1234] + [1245] + f,(12,23,34,56) + [6134] + [1256] + [6145] + [5634]
— f,(12,23,34,56) = 0.

(2.75)

A similar argument kills the quadrilateral ¢(12,23,45,56) and all quadrilaterals

of this type. The final expression for the six point integrand at L loops is:

6 L . .. .. .
. (Ai—1ii+1)(Aii+1i+2)
1142
2l ] (ABoi—1i)(AByii+1)(AByit1i+2)
i=1 a=1
6 L .
. .. . N, uadrilateral(z)
1442 a
* ;[Z i+ 2i+3] g (ABoi—1i)(AByii+ 1) (ABuit1i+2)(AByit2i13)

Npentagon (Z)
(ABui—1i)(ABgii+1)(AByi+1i+2)(AB4i+2i+3) (AByi+3i+4)

=

6
+ Y [i—1ii+3i+4]

i=1 a=1

(2.76)

where Nyuadrilateral () a1d Npentagon () are the (unique) numerators which have
unit leading singularities on codimension two boundaries such as B, = Z;, Z; 11, Zi12, Zis3
and vanish on spurious singularities such as B, = (i—1i)N(Ai+1i+2). We give

explicit expressions for the form for the k-gon below.

ARBITRARY MULTIPLICITIES

From the six point result it is clear what our ansatz should be at n points: all
triangles, quadrilaterals, pentagons, ..., up to (n—1)-gons which have only con-

secutive poles contribute on the cut. The form in A for the ith k-gon is given by
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[i—1,4,i+k—2,i+k—1] where (i—1,4) labels the first edge and (i+k—2,i+k—1)

labels the last edge. The form is then

n

L . .. .
(Ai—1ui+1)(Adi+1i+2)
Q, =) [i~Liit1i+2) El (ABui—11)(ABuii+1) (AByi+1i12)

=1

L
. .. . N, uadrllateral(z)
§ [i—1ii+2i+3] .
2 limtiit2it g ABi—1i)(ABii+ 1) (AB,i+1i+2)(AByi+2i+3)

=1
L .
H Npentagon (Z)
1L (AB,i—1i)(AByii+1) (AByi+1i+2) (AByi+2i+3) (AByi+3i+4)

+ ) [i—Lii+3i+4]
=1

L )
o . N(n—1)—gon(2)
§ -1 -3 2] | |
+ . [Z , b, 1+N—3,1+n— a:1 AB 2_12 ABaii+1> e (ABai—l—n—3, i+n—2>’

=1
(2.77)
or more succinctly
n—1 n L .
Nk— On(@)
—1,4,i+k—2, i+k—1] g .
;Zl G th=2,0% E ABoi— 1 ABuiit 1) - - (ABuith—2, i th—1)
(2.78)

It is straightforward to verify that assuming (2.78) is true at e.g., seven points
is consistent with computing cuts of the two- and three-loop integrands, even

without having the explicit form of the hexagons in B,. In fact, however, it is
trivial to obtain the forms for any k-gon either using the procedure outlined in

[65] or alternatively by simple triangulation. For a k-gon with the vertices

Zis Ziirs ooy Divns, (i—1)N(A, i+k—2, i+k—1)
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an expression for the form is given by

: (Aig)(Aji+1)(Aj+1i)

J=2

where we define

. Zia, j# k-2,
Zjy1 = o 7 (2-80)

(i—1)N(Aijj+1), j=Fk—2.

The final expression for the intersecting cut is then:

NN in ik 1 TT (S (AL
Q=Y ) [i—1,d,i+k—2,i+k 1]1_[(2 (A@j)<Ajﬁ><Ajﬁz>>' (2.81)

k=1 i=1 a=1 \j=2
Geometrically the solution can be described as (tetrahedron in A)x(polygon in B,)
as in Figure 2.17, which is directly reproduced from [10].
2.4.6 VERIFICATION OF INTERSECTING CUT

The result (2.81) has been checked against the expressions for the two- and

three-loop MHV integrands given in [20] through n = 10 points.

2.5 COPLANAR - INTERSECTING CUTS AND PATH DEPENDENCE

An obvious degeneration of the above configurations would be to demand that
all the lines lie in a plane and intersect each other. Here, we will see that the
order in which the limit is taken determines the result. Recall that the form in

(2.56) is actually the form of the dual configuration in which all the dual lines
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are intersecting and we demand that they satisfy (AB4ij) > 0,Vi,j. We can
now take the limit (A123) = (AB,12) = 0 or (A4123) = (AB,23) = 0 which
forces all the lines AB, (which already intersect at A) to lie in the common
plane (123). We can perform a similar procedure on the form in (2.81). We will
show below that the results are significantly different.

First consider the intersecting cut. To make the configuration collapse to the
plane (123), we need a pole (A123) in addition to either (AB,12) or (AB,23).
Note that there are two solutions to (AB,12) = (AB,23) = 0, one in which
(AB,) passes through Z, and the other in which it lies in the plane (123). How-
ever, since all the regions in B, are polygons, they are designed to have singu-
larities only on their vertices. Thus the numerator is designed to kill the sin-
gularity in which the line lies in the plane (123). This is precisely the singular-
ity we are looking for. Hence we can achieve this limit only if the pole (A123)
is present, which severely restricts the number of terms that can contribute to
this cut. In fact, it is easy to see that only the triangles can contribute. Thus,
we are left with the result that at L loops and n, points, if A lies in the plane
(123), the corresponding region in B, must be either the triangle (12)(23)(34)
or (n1)(12)(23).

We can derive the same result directly from the amplituhedron. Since we are
interested in a configuration of coincident, coplanar lines in the MHV ampli-

tuhedron, we can parametrize them as follows

A= Zl + CLQZQ + (1323

B, =7y +b,2,
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and demand (ABij) > 0. The mutual positivity is trivialized and the form is

just the product of the form for each B,. It is not hard to see that the final re-

) . (2.82)

The first term corresponds to the triangle (n1)(12)(23) and the second to (12)(23)(34).

sult is

Q“lH

1 (& 1 L
0ce — p— (H —(a2 ~ o) + Og

a=1

In contrast with this simple result, the coplanar cut yields a far more com-
plex residue. Indeed whenever B, is in any triangle whose edge is either (12) or
(23), the corresponding region in A has the pole (A123) required to collapse the

configuration into the (123) plane.

2.6 MOVING BEYOND TRIVIAL MUTUAL POSITIVITY

The results in equations (2.56), (2.81) and (2.82) are valid for an arbitrary num-
ber of loops. While analytic all-loop results are few and far between, it is es-
sential to realize that it was possible to obtain these results only because of the
trivial mutual positivity condition. It is essentially equivalent to solving a one-
loop problem. In this section, we begin exploring a few different configurations
in which the mutual positivity conditions are not completely trivialized. We see
that the associated geometries are far richer and the corresponding canonical
forms more complex. In Section 2.6.1, we consider generalized ladder cuts where
we cut only external propagators, while in Section 2.6.2 we examine several cuts

which are directly related to the intersecting and coplanar cuts.
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2.6.1 LADDER CUTS

We consider the cut where our loops (AB),, @ = 1,... L all intersect one line,
say (12). Concretely, we are looking to find the form on the cut (AB,12) = 0.

Let us write our form as

QO = [[((AB)ad® Au)((AB)ad’ B,)

a=1

1

Mf[(AB)a] :

We expand A, = Z1 + ©,25 + 2,7, and take the residue z, — 0 to obtain the

ladder cut:

(2.83)

Aa=1+z02

Qladder _ H Ao {(AB)ad?Ba) fl(AB).]

We will determine Q249" from the geometry of the amplituhedron. We can sat-
isfy all but the mutual postivity condition by putting each loop (AB), in a Ker-

mit

= 7+ 20Zs (2.84)

Aq
B, = —Z1 + Yo Zi, + WaZi,+1),

so that each cell is labelled by L integers {i,...,ir}. Indeed, the conditions
((AB)4ii + 1) > 0 and the sign flip criterion are satisfied and each (AB), is in
the one-loop amplituhedron so long as x,, Yo, W, > 0. It remains to work out

the implications of mutual positivity ((AB).(AB)g) > 0. Inserting (2.84) we
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find

((AB)a(AB)g) = —(AaAsBaBpg) (2.85)

= YalYs(Ta — 25) [(120a15) + wa(1240+1ig) + ws(12i, is+1) + waws(12i,+1is+1)].

Depending on the relative positions of a and 3, we have the following cases:
i Z'a < ia+1 < Zﬁ < ’i6+1

In this case, we have (12i,i5) > 0, (12iq4145) > 0, (12i445+1) > 0 and

(12i4411p41) > 0. Hence (2.85) reduces to

(xq —x5) > 0. (2.86)

i ia < ia+1 - Zg < 'l'ﬁ+1

In this case, (12i4i5) > 0, (12i441i5) =0, (12i4i511) > 0 and

12144179841 ) > 0 and (2.85) again reduces to
B

(xq —x5) > 0. (2.87)

L4 ia = Zﬁ < Z.a-i-]. = /l./3_|_1

This configuration makes (2.85) collapse to

(wg — wy) (T — xg) > 0. (2.88)

At L loops, we will have 3L variables x,, ¥, w, satisfying the inequalities above.

Let us denote by gy;,. ;1 (Ta, wa) the canonical form associated with the L-loop
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configuration. Note that the y, factor out of the problem since they are uncon-

strained variables. We can write

dya
Qladder = Z H i dxa dwa g{llzL} (xav woc>7 (289)
Yo

{il...iL} [e]

where > (i1} stands for a sum over all configurations at L loops. To compute
the canonical form for this space, we need to triangulate it. However, in order
to add the canonical forms associated with different pieces in the triangulation,
we need to write the form of each piece in a coordinate invariant way. The vari-
ables x, are the same for all cells but the y, and w, are cell dependent. We can
obtain coordinate invariant expressions by noting that the point of intersection

of the line (AB) with the plane (17;Z;,1) is by the Schouten identity
(AB) N (1Z:Z;+1) = (ABii + 1)Z) — (ABLi + 1)Z; + (AB1i)Z;s1.  (2.90)

Comparing with (2.84), we read off

(AB1i+1) (AB14) (AB14)

V= Gamen YT Tamen YT Buany 20

From the measure associated with the Kermit, we have

dydw (ABd?B){Alii+1)? dydw  (ABd*B)(Alii+1)?

yw  (ABW)(ABLit1(ABii+1)  y  (ABLi+1)*(ABiitl)’
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Qladder

With this, we can write in an invariant way as

dze(Agligia+1)?
Qladder : _ a A
Y H (AB)alia+1)*((AB)atata+1)
{ir.ir} « (2'92)
N TR . {AB)alia)
Hiied \ oo =AY 1ot 1) )

Let us work out a few examples at low loop orders to get a better idea of how
to write the form explicitly. The first case L = 1 is trivial, since g(z,w) =

1/(zw) and we have

Qladder _ _ Z (Ayii+1)? 1 -1
B (AB1i+1)2(ABii+1) x {AB1)
(AB1i+1) (2'93)

1 Z (Alii+1)
(ABLi){ABLi+1)(ABii+1)

At two loops, the function g, ;) is

1 o .
if 41 < g,
w1w2$2($1 - $2)
1 o .
if 41 > g,
W1W2T1 ([El — .172)
1 1 1 1 o .
+ , if i1 = 9.

$2($1 - $2) w1(w2 - wl) $1($2 - xl) w2(w1 - w2)

Moving to three loops, for the set {iy,is,i3} there are three possibilities: (i) all
three indices are distinct, (ii) Two of the indices are equal, or (iii) all three in-
dices are equal. For each possibility, the indices can be ordered in a variety of
ways. Furthermore, in the degenerate cases we must break these orderings into
smaller pieces in order to triangulate the space. For example, if i; = 75 we must

consider both cases z;, < z;, and z;, > z;, separately. Repeating this for an
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arbitrary number of loops it is easy to see that one possible triangulation which

covers all possibilities exactly once is given by specifying the following:

o A partition N = {Ny,... Ny} of Lie, Y . N; =L and N; > 1 along with
an associated set of integers Jn = {Jji,...Jm} of equal length such that
3 < j1 < jo < -+ <n—1. The integer N; represents how many of the

loops (AB), are in the Kermit labelled by [123;1 j; jit1]
o A permutation IT = {m ... 7} of {1,...L}.

The sum over all the cells is carried out by summing over all possible N, Jy, I1.

For the sake of compactness, we define another quantity

1
W[8767H7j] = — 1 (294>
W, (Wryyy — Wry) o (Wr, — Wa, ) lwmy = %
In terms of this function, the form for the ladder cut can be written as
1
Qladder :<_1)L
N,Jn 10 "L‘WL("EWLA - xﬂ'L) cee (xm - xﬂz)
Ny .
(A, 1j1j141) -
< — W1, Ny, m,
( (AB)m Ui+ 12((AB) s iy ) | o Mo
Ny .
ATr 1j2]2+1>2 .
= — W{1+Ny, N\+ Ny, m,
(a ll_INl (AB)r, Lj2+1)*((AB)z, j2j2+1) | b Nk, )
(Ar 1jmim+1)?
, 5 —
X W14+N1+ -+ Np1, Nou, 7, i) -
(2.95)
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2.6.2 EXTRA FREE LINES

In this section, we will consider a series of cuts in which the configuration of
lines (AB), are minor modifications to the coplanar and collinear cut. In each
case, we consider an extra line which allows for non trivial mutual positivity. In
order of increasing difficulty, some of the types of cuts we consider involve the

following configurations of lines:

e Cut 1: L—1 loops intersecting in a common point A, with each line
passing through one of the external Z;. We can denote these lines as Ai.
An additional line passes through some Z;, but does not intersect the
lines A7 in A. Denoting this line by Bj, the non trivial mutual positivity

conditions are (AiBj) > 0.

e Cut 2: L—1 loops Ai, intersecting in a common point A and passing
through some Z; with the L' line CD completely free. Here, the addtional

constraint is (CDAi) > 0.

« Cut 3: L—1 loops AB, which intersect at A with the L*® line C'D in-
tersecting two of the lines AB; and AB, resulting in the non trivial con-

straint (AB,CD) > 0 with a # 1, j.

« Cut 4: L—1 loops intersecting in a common point A with the L' line

completely free. This is a generalization of the above cut.

The first two cuts are generalizations of the (4L—4)-cuts of Section 2.3.1 while
the next two are related to the (2L—4) cuts of Section 2.4.

Cut 1:
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Here, the configuration of lines Az is the same as in Section 2.3.1, with mod-
ifications for the L' loop as shown in Figure 2.18. We begin by solving this
problem at four and five points to illustrate the complications presented by mu-
tual positivity.

A generic configuration at four points includes L; lines passing through 7,
Lo lines passing through Zs, Ls through Z3 and L4 through Z,. This cut has al-
ready computed in [17] using a slightly different approach. Here, we will merely
present a simple example of a three-loop cut with lines A1 and A2 intersecting
at A and passing through Z; and Z, respectively. The third loop (B3) passes
through Z3 but is otherwise unconstrained. We can be parametrize the points A

and B as

A= Z1 — G,QZQ — ang — G,4Z4, B = Zl - bQZQ -+ b3Z3 — b4Z4. (296)

The constraints (Alij) > 0,(A2i5) > 0 and (B3ij) > 0 are trivially satisfied by

a; > 0 and by, by > 0. We are left with the mutual positivity conditions

—<A1.B3> == (a4b2 - a2b4)<1234> < O,

(2.97)
—(A2B3) = (a4 — by)(1234) < 0.
The canonical form associated to these inequalities is trivial to obtain:
1234)4(B123)(Ad3A)(Bd*B
o (1254)*(B123) (Ad*4)(BE°B) 2.8

(A123)(A124)(AB23)(AB13)(B124) (B134)(B234)’

which matches the three-loop integrand evaluated on the same cut and agrees

with the general result for the corner cut in [?]. Note the presence of the poles
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(AB13) and (AB23) is due to the mutual positivity constraint. This demon-
strates that this condition is introducing new physical boundaries into the ge-
ometry.

Moving on to five points, we begin with L = 3. Consider the configura-
tion of the cyclic polytope cut of Section 2.3.1, where we have lines A1 and A2
which intersect at A and additionally pass through Z; and Z5. The third loop
(AB)3 = (1B) passes through Z; but does not intersect the other lines in A.
The point B has two degrees of freedom since it is constrained to lie on the line

(1B). By imposing the inequalities
(Aaij) >0, a=1,2, (1Bij)>0, (A21B) >0, (2.99)

on the points A and B, the associated canonical form is

Ad3A)(1BA2B)

5 —{
0 w1 = (A145)(A134)(B145)(B125)(AB12) (A345) (A123) (B134)

x ((A123)(B134)(1245)*(1345)* + (A145)(B145)(1234)%(1235)*

+ (A145)(B123)(1345)%(1235)(1245)).
(2.100)

Next consider the corresponding L = 4 configuration where the first three loops
are Aa for a = 1,2, 3, and the fourth line is (AB)s = (1B). As we found in Sec-
tion 2.3.1, the point A must be in the tetrahedron with vertices Z3, Z4, Z5, — Z;.

Here we can parametrize the two points A and B as

A= Zl + CL3Zg + CL4Z4 + CL5Z5 B = —ZQ + b3Zg + b4Z4. (2101)
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Demanding that the inequalities

(Aaij) > 0, (1Bij) > 0, (ABal) >0, a=1,2,3, (2.102)

are satisfied, we find the associated canonical form

(Ad*A)(1BA%B)
(A345)(A145) (A135) (A134) (B145)(B125)(B134) (AB12) (AB13)

le) |cut 1=

x ((A135)*(B134)%(1245)*(1345) — (A135)(A145)(B123)(B134)(1245)(1345)°
— (A134)(A135)(B135)(B134)(1245)%(1345) + (A134)*(B125)*(1345)?
+ (A123)(A145)(B145)(B134)(1235)(1345)*

— (A134)(A135)(B124) (B125)(1345)?).
(2.103)

In both these cases, we can see the poles due to mutual positivity. The all-
loop extension of this configuration with L — 1 lines A1, A2,... A(L—1) pass-
ing through 1,...(L—1), respectively, and the L'" line (AB); = (1B) passing
through Z; but not A can be similarly obtained on a case-by-case basis. How-
ever, we do not yet have an analytic expression valid for all L.
Cut 2:

We now lift the constraint that the extra line passes through one of the exter-
nal points. However, we will still consider the configuration where L — 1 lines
Al, A2,... A(L—1) pass through 1,...(L—1), respectively, so the configuration

is identical to that of Fig. 2.18 with the line (Cj) — (CD). The relevant in-
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equalities are

(CDij)y >0  (AKCD) >0  (Akij) >0  k=1,...L.  (2.104)

We parametrize C'D by putting it in the Kermit:

C= Z1 —+ Olea —+ aQZa+1’ (2105)

D = _Zl -+ ﬁle + /82Z5+1. (2106)

The one-loop constraints (C'Dij) > 0 enforce positivity of o; and 3;. As before,
the one-loop conditions on the lines Ai, which are independent of the line C'D
imply that A must lie in the cyclic polytope Conv [L, L + 1,.. — 1]. The mutual

positivity conditions reduce to a single condition,

(AKCD) =(Ak1b) 51 + (Ak1b+1) s + (Akla)ay + (Akab)ay By + (Akab+1) oy 5s

+ (Akla+1)as + (Aka+1b)an By + (Aka+1b+1)as5s.

(2.107)

Although we do not have a complete understanding of this system of inequal-
ities, in some simple cases an analytical solution is possible. For example, for

n = 4 the free loop line C'D is in the Kermit [123;134], and the form is given by
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I (Ad®A)(C'DA*C){C' DA D)(1234)3
" lou  (A123)(A234)(A134)(A124)(C D14)(CD23)(C D34)(C D A2)(C D A1)

x (= (CD34)(A123)(A124) + (A123)(A234)(CD14)

+ (A134)(CD12)(A234) — (A134)(A124)(CD23)).

(2.108)

Cuts 3 and 4:

Finally, we can also consider cuts which relax conditions on the 2L — 4 cuts
discussed in Section 2.3. For example, we can consider L—1 loops intersecting in
a common point A (but not passing through any external Z;), and the L™ line
intersecting two of the loops (AB); and (AB);, as pictured in Figure 2.19. The
L = 3 configuration is simply the coplanar cut discussed above, but L = 4 is
more interesting. Here we can take the first three loop lines to intersect, and the
fourth line to cut (AB); and (AB)s. We can write (AB), = AB, for « = 1,2, 3
and for the fourth loop (AB)y = (B1Bs). The inequalities defining the four-loop

amplituhedron become

<ABQ€3> > 0, <BlB2€§> > 0, <ABlB2B3> > 0, (2109)

where there is only a single remaining mutual positivity condition. Parametriz-

ing the intersection point A and the points By, By, Bs as in Section 2.4,

A=7+ayZs + a3Zs + a4 Zy, By =21 +xaZy+yass, a=1,3 ( )
2.110

By = Z) + 2043 + Yo 2y,
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(where we choose a different parametrization for By so the configuration is not

too degenerate) we get several quadratic inequalities and a single cubic inequal-

ity,

(AB1B3Bs) = [11y3 + x3(z2 — Y1) — Z122) aa + (T1Y2 — T223) ag + (T2ys — Y1Y2) a2

+ Y1Y2x3 — T1Y2ys > 0.
(2.111)

Completing the triangulation we get for the canonical form

(Ad3A) T (ABod%B,){(B1Byd?®B){BByd?>Bsy)N (AB,, B Bs)

a=1,3

[T II ((ABuiit1))

a=1,3i=1 =1

QELL) |Cut - 4 b

((B1Bsii+1)) (AB, By Bs)

(2.112)
where the numerator N (AB,, By Bs) is a sum with several hundred terms. We
have verified the result of this calculation matches the full four-point four-loop
integrand, which is a sum of eight local diagrams, symmetrized over all loop mo-
menta and cyclically summed over external legs and given explicitly in momen-
tum twistor variables in [05], evaluated on this cut.

The same cut at five points is also solvable with the amplituhedron, although
we have yet to find a particularly simple representation of the canonical form
which suggests a generalization to higher points and loops. We plan to revisit

these problems as well as generalized corner cuts in future work.
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2.7 CONCLUSION

The all-loop amplituhedron is a remarkable mathematical object capturing the
complicated loop-level structure of scattering amplitudes in planar N' = 4
sYM in geometric form directly in the physical kinematic space. This chapter
has been concerned with the practical application of this geometric picture to
make predictions about the MHV loop integrand, valid for any number of parti-
cles and any number of loops, which are completely hidden in the usual unitar-
ity or recursion-based methods. In particular we studied a series of cuts which
probed the part of the loop-integrand which is, in the Feynman diagram expan-
sion, encoded in the subset of diagrams with many internal propagators which
have complicated branch-cut structure. We found remarkably simple expres-
sions for the canonical forms for these “maximally intersecting” cuts. The topo-
logical winding formulation of the amplituhedron of [29] was crucial in deriv-
ing our results. In fact without this sign flip picture even a qualitative descrip-
tion of the canonical forms (2.81) and (2.56), the central results of this chapter,
would likely be impossible. However, from the perspective of the amplituhedron,
the factorization of the canonical forms on the intersecting and coplanar cuts
is completely trivial and follows directly from the definition of the geometry.
However, our analysis reveals an even greater simplicity than one would naively
guess: for the intersecting cut the allowable space for the intersection point is
naturally triangulated by a simple collection of tetrahedra, while the remaining
degrees of freedom of the loop lines live inside a polygon.

This work is a continuation of a systematic exploration of the facets of the

amplituhedron for all n, k, L. As such, there are a number of avenues for fur-
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ther investigation: first, there are the unfinished cuts presented in Section 2.6.2
which gradually relax some of the constraints imposed on the maximally inter-
secting cuts we solved. The most interesting (and complicated) extension of the
all-loop results presented here involve L—1 lines intersecting in a common point
A with the L*™ line free; solving this cut would amount to a complete under-
standing of the MHV two-loop geometry. Although the direct product form of
the solutions obtained to all-loop orders will of course not remain, preliminary
considerations suggest that simple geometrical decompositions of the canoni-
cal forms do persist to these more generic cuts. Another natural starting point
for further work is to consider the same maximally intersecting cuts for £ > 1
i.e., different helicity sectors. For example, by parity conjugation the NMHV
five-point coplanar cut is simply the R-invariant [12345] multiplying the result
derived in this chapter at five points. In the general n, k case although the prod-
uct form will remain, the sign flip conditions change for both the external data
and the loop momentum variables; however, it is likely that just as in the MHV
configuration considered here, these problems will ultimately reduce to finding
the right way of understanding the corresponding one-loop geometries for arbi-
trary n, k. Finally, there is another class of facets of the amplituhedron which
are of physical interest. These involve unitarity cuts which trivialize the in-
equalities involving external data while leaving the mutual positivity conditions
untouched. An example of these are the “corner cuts” computed in [?] at four
points where loop lines pass through either Z; or (i—1éi+1). A detailed under-
standing of such corner cuts, along with complete knowledge of the structure

of the integrand on the maximally intersecting cuts initiated here, would be in-

valuable to the goal of reconstructing the full loop integrand directly from the
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amplituhedron.
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Figure 2.14: (a) Pentagonal configuration 12345 with the region bounded by
the lines (12)(45)(15) for B,; (b) Quadrilateral configuration with the region
bounded by lines (12)(15)(34) for B,; (c¢) Triangular configuration giving the
same region for B, as (b).
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Figure 2.15: The geometry of (the geometric dual of) the coplanar cut at n
points.

(12)N(A45) 4

Figure 2.16: The region bounded by lines (12), (23), (34) and (45) whose canoni-
cal form is given by (2.61).

1+1

i+k—2

X

1 vitk—1 - -
' T )N, i k=2, it k1) k2

Figure 2.17: n-point geometry for the intersecting cut.
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Figure 2.18: Cut 1, where L—1 loops intersect in a common point A as well as
L—1 points Z;,,...,Z and the L™ loop intersects an additional point Z;.

i1

Figure 2.19: Cut 3 where L—1 loops intersect in a common point A, and the
L™ loop intersects lines 7 and j.
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Spherical contours, IR divergences and
the geometry of Feynman parameter

integrands at one loop

3.1 INTRODUCTION

A connection between the singularity structure of one-loop integrals and the
projective geometry of their associated Feynman parameter integrand was estab-
lished in [11]. One of the central results of this chapter was the introduction of
a new kind of residue in Feynman parameter space - associated with “spherical
contours ” - operations involving only the one-loop integrand - which capture
information about discontinuities of the integrals across various branch cuts . It
was shown that this calculus based operation also has an algebraic interpreta-
tion. The purpose of this chapter is to provide some additional details on this
algebraic interpretation and also explore IR divergent integrals as the authors
of [11] largely focused on finite integrals.

The structure of the chapter is as follows. We begin by discussing some pre-
liminaries of Feynman parametrization and setting up the notation for the rest
of the chapter. In Section [3.3], we investigate IR divergent integrals in Feyn-

man parameter space. We motivate and develop a new kind of “residue” opera-
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tion which computes the leading IR divergence of one loop amplitudes. We use
the simple example of a scalar n—gon integral to demonstrate the procedure.
We then use the embedding space formalism [(6] to consider general one loop
integrals and demonstrate that this procedure correctly reproduces the leading
IR divergences. Section [3.4] involves a discussion of the algebraic structure of
spherical residues. In particular, we provide expressions for the new numerators
of spherical residues of integrands. We then prove a few essential properties of
spherical residues. In Section [3.5], we outline a method to construct one - loop
integrands using spherical residues. Finally, we conclude by examining some ap-

pealing features of Feynman parameter integrands in N’ =4 SYM in [3.6].

3.2 FEYNMAN PARAMETRIZATION REVISITED

Although Feynman parametrization is a familiar trick, let us begin by discussing
it in a more geometric way. This will highlight some of the features of Feynman
parameter integrals which are important for the rest of the chapter. Consider
the scalar one-loop integrals of the form (u? is the mass scale introduced in di-

mensional regularization)

dPl;, +~ -
I = (%) LD/Q/H ﬂ-D/kZH T y:z;yj (3.1)
pm

Here each g; is a linear combination of the external momenta p, and the loop

momenta ;. A straightforward Feynman parametrization yields (see [67-09])

uu—(L—i—l)D/Z

_ ¢ oyw-rpy2 L(v = LD/2) n -
I, = (1) /H”—F(Vj)/od Z Jl:[lxj o (32)

J=1
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where U and F are functions of the Feynman parameters x; and depend on the
particular integral being evaluated. They are functions of the external momenta

and are connected to the propagators appearing in eq(3.1) via the polynomial

z( —q° +m Ml + 2 Qe +J
Z ; Z Z

r,s=1

where J contains all the terms independent of the loop momenta. Then,
U =detM F=detM(J+ Q.M *.Q)

U and F are called the Symanzik polynomials. It will be of interest to note that
at one loop, U and F are homogeneous linear and quadratic polynomials respec-
tively. The Symanzik polynomials can also be calculated efficiently by using
graphical rules. For more details on these rules, we refer the reader to [67].

It is illuminating to consider an alternate derivation of this result. Let us first

introduce Schwinger parameters «;

1 /OO . 2 2\v;
= | daetairmi) 3.3
CErmdn ), (3:3)

Inserting this in eq(3.1), we can perform the Gaussian integrals over all the loop

momenta. The result is

—v 171'2

> T B LY R S
I, = (u?)"~ LD/Qn—/ doy .. doy, [] o st im0 (3.4)
T T s 1L g

where U and F' are polynomials in the o;. They are homogeneous and like the

Symanzik polynomials ¢/ and F, linear and quadratic respectively. For more
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details, see [67,70].
We can now introduce new variables via «; = nx;. Since there are n + 1 new
variables, we must impose a constraint on the z; which we take to be ) ..o x; =

1 where S C {1,...n} which changes eq(3.4) to

—rv—1,2

& - 1 e, 2
I, = 2\v—LD/2 [ m / dX d n—1 v—n—2 Vi 1 ’”I(U—sz m? x]-)
(1% T J, g™t gx] T

j=1 J

where dX = dx;...dr,6(1 =, g ;). This result is called the Cheng-Wu the-
orem [71]. In particular, this implies that we could set any one of the Feynman
parameters x; to 1. The vector X = (xy,...,2,) can be thought of as a point in
projective space and the measure dx; ...dx, §(1—), ¢ ;) can be better written

as
(Xd"'X) =€y, XPdXF2 . dXP.

The textbook result of Feynman parametrization eq(3.2) is obtained by setting
S = {1,...n}. For the rest of the chapter, we will only work with integrals

with the factors ; = 1 and write all the Feynman parameter integrals in a pro-

n—LD/2

jective manner as shown below (the factor of (u?) is omitted) .

<X dn—1X> un—(L—H) D/2
I, =T(n— LD/2) / T

The homogeneity properties of & and F are essential in making the integrals
projectively well defined.
Throughout this chapter we will use three kinds of variables to describe the

external momenta - dual momenta, momentum twistors [ %] and embedding

119



space momenta [06]. Dual momenta y!" are defined by

=y =i Yi; =Y
In the rest of the chapter, we focus on one-loop integrals and associate the dual
variable y with the loop momentum. Momentum twistors, Z;, introduced in
[18], are convenient to describe null momenta in 4D. They are defined by as-
sociating a line Z;_1Z; with each y;. The scalar yfj is related to the SL(4, R)
invariant (i — 1ij — 1j) = eapepZ,1ZP Z¢ | ZP. Each loop momentum variable
is associated to a line AB in twistor space which is to be integrated over using
the measure (ABd*A)(ABd?*B). For more details, see [20]

A vector y* in D-dimensional Minkowski space is mapped to a null vector
YM = (1,4% y*) in embedding space. Here, we have specified the components in
light-cone co-ordinates, i.e. YT =1,Y~ = ¢* and Y# = y*. The metric is g,_ =
g—+ = —1/2 and g,, = 7, with all other entries zero. The invariants yfj =
—2Y,;.Y;. In particular, for null momenta, we have Y;.Y;1; = 0. The integral
eq(3.1) can be written as

I, = (N2)V_LD/2/ (Y}/l)yl[dy(]yyn)yn (35)

The measure [d*Y] = %. For more details, see [11,60].

For the particular case of planar one-loop integrals, simple expressions are

available for the Symanzik polynomials. While & depends on the details of the
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numerator, F depends only on the pole structure.

F = inxj yr = X.Q.X
i<j
where @;; can be expressed in any of the three equivalent forms yfj (i—1ij—17)

or Y;.Y;.

3.3 1-roor IR DIVERGENCES

The infrared (IR) structure of gauge theories has been the subject of a great
amount of study. Long range forces which lead to early and late time interac-
tions in a scattering process make the very definition of an S-Matrix difficult.
For recent work on these issues, see [72, 73]. One of the main reasons for these
difficulties is the contribution of IR divergent loop integrals to scattering ampli-
tudes. These integrals are usually dealt with via dimensional regularization. In
D = 4 — 2¢ dimensions, at one-loop, soft and collinear divergences appear as %
poles and overlapping soft-collinear divergences lead to }2 poles. At L-loops, the
leading divergence is EQLL

The structure of these divergences is well understood in gauge theories. It has

been shown that they have a universal (independent of the number of external

particles) structure which is captured by the factorization formula

Mn =S <{kl}7 2 6) X H JZ (k%M? 6) X hn({kl}nu) . (36)
i=1
Here M,, is the full n—particle amplitude divided by the corresponding tree

amplitude, p is the factorization scale (an arbitrary scale chosen to separate
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soft and hard momenta) and € is the dimensional regularization parameter. In
writing this, we have followed the notation in [74]. h, is a finite function cor-
responding to hard scattering, S is a color dependant function which encodes
the soft singularities and J; are functions encoding the collinear singularities
along the k; directions. In general, these are all complicated matrices in color
and spin space. For a review of factorization properties and the structure of IR
divergences in QCD and other gauge theories, see [75, 70].

The factorization in eq(3.6) has introduced an arbitrary scale p which distin-
guishes between hard and soft momenta. This scale is unphysical and ampli-
tudes cannot depend on it. Consequently, M,, satisfies a renormalization group

equation

u%saki},u, &) = —TS ({ki}, . ) (3.7)

with I' being the anomalous dimensions matrix. It encodes the structure of IR
divergences in the theory. For more details, we refer the reader to the review
[77].

In planar theories and conformal theories like N' = 4, the all-loop solution to
the RG equations is easy to obtain. Surprisingly, the full four point amplitude
in M, is completely fixed by the structure of IR divergences. It can be written

as [7¢]

1 00 ")/(l) 2g(l) 4 #2 le
M,y =exp [—gz:al ((ZTI;—'— lg ZZ_; ( ) (3.8)

1 —Sii+1

where a is related to the coupling and the number of colours, [ is the number
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of loops and 7}? and gé” are constants that are not fixed by the RG equations.

The cusp anomalous dimension is 'y, = >, al’y%). At one-loop, it is simply
the coefficient of }2 At higher points, while the structure of the IR divergences
doesn’t change, the full amplitude is different from 3.8 and involves remainder
functions. Techniques from integrability provide all order results for ", [79]
which has been tested via perturbative computations extensively [20-33]. The
IR divergences are related to the UV divergences of lightlike cusps of Wilson
loops [84, 85]. The UV divergences of these Wilson loops are controlled by the
same anomalous dimension, justifying the name “cusp” anomalous dimension.

The focus of this chapter is in understanding the origin of IR divergences and
in developing a method to compute the cusp anomalous dimension directly in
Feynman parameter space (in 4 spacetime dimensions). The first step is to gain
an understanding of one-loop integrals. The complete structure of IR diver-
gences in a theory depends on the particle content of the theory. We will not
delve into these issues here and will focus solely on the properties of individual
integrals. The next few paragraphs serve to provide intuition for analyzing IR
divergences in Feynman parameter space.

It is well known that IR divergences arise when the loop momentum ¢ be-
comes collinear with an external massless momentum p;, i.e. £.p; — 0 (soft) or
when it becomes collinear to two consecutive null external momenta £.p;_; =
{.p; = 0. Soft-collinear divergences arise when both these conditions are satisfied
simultaneously. Let us consider the concrete example of a 4D massless box inte-
gral in momentum space and the corresponding Feynman parameter integral (in

dimensional regularization with D = 4 — 2¢).
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; _/ dPe 1
7 [ gDz 2 (0 —p2)2 (0 —pa—p3)? (£ + p1)?

4
0 -1
:/Hdl‘ZF(Q—f-E) (.1'1"‘1’24‘.1'3"‘1’4 )
pale (r173 8 + Towg U)>TE

where s = (p; + p2)? and u = (p; + ps)?. This integral is of course well known
and has been evaluated in dimensional regularization in D = 4 — 2¢ dimensions

(reintroducing the factors of u?) [36,37].

I — L(1+4e)T%(1 —¢) ( 2

Ti-2)s0 \& [(—p72s) ™+ (—p %) ] - logzz - 7r2> +O(e)
The presence of the e% terms indicated an IR divergence. A more transparent
analysis using a massive regulator instead of dimensional regularization reveals
that the divergence coming from the regions (2 = (¢ — py)? = (¢ + p1)? = 0 is of
the form i(IOngTQ + log2m72). We refer the reader to section 7 in [35].

We can thus precisely characterize the leading IR divergent region in momen-
tum space as being associated with three propagators going on-shell. A similar
characterization in Feynman parameter space should involve the Feynman pa-

rameters corresponding to these three propagators, x1, x5 and x3. To motivate
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such a characterization, recall the definition of the Schwinger parameter «

1 o
5 / doe=P’
p 0

Near the upper limit of the integral, i.e. for large «, a configuration with p? ~ 0
would be the most relevant. We might hope that the large o limit probes soft

momenta. Since Feynman parameters are related to Schwinger parameters by

73

T = 20

the limit a; — o0 corresponds to z; — 1 non - projectively or
x; — 00 projectively.

Furthermore, we can manipulate I, to understand the relationship between
the consecutive massless legs and IR divergences. We can use Lorentz invariance
to transform to a frame in which p{ = (1,0,0,0) and p4 = (0,1,0,0). Here,
the components have been specified in light-cone frame as (p;", p; , p}, p?). Hence
p? = p2 = 0 is automatic. If we work in the soft region where /> ~ 0, we can
write £.p; = [, and {.po ~ [_. In this case, we can schematically write the

integral as follows

[4%

/ 1 420, de_ de, 39)

2po.ps (Ll —07) (- L

(where we have set € = 0*). The soft collinear region is the region in which all
three propagators go on shell. £, =~ 0, /_ ~ 0 and (> =~ ¢, (_. In combina-
tion with the intuition in the previous paragraph, this suggests that the region

in Feynman parameter space which gives rise to the divergence is zo ~ xj73

*Formally, the integral is ill defined and doesn’t exist. However, it suffices to illustrate the
point schematically. In the rest of the chapter, we will be interested in computing residues
which are well defined and do not require a regulator.
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and x5 — oo. In this region, we should be able to observe a log? divergence and
calculate its coefficient. This should be equal to the coefficient of }2 in dimen-
sional regularization which is the cusp anomalous dimension I'. Note that this
is purely a conjecture at this point and in the next section, we will demonstrate

that this region in Feynman parameter space indeed captures the essential infor-

mation about the IR divergent region and can be used to calculate I'.

3.3.1 COMPOSITE RESIDUES IN MOMENTUM SPACE

Let us begin by understanding the calculation of I' directly in momentum space
as a composite residue on the poles corresponding to three propagators going on
shell. The idea of composite residues was first introduced in [39, 90]. Here, we

compute this for a scalar n-gon.

; _/ d*1
" P —pa)? ... (I+p)?

d4y
— 3.10
| e R P (3.10)
where
k
pi=vi—yio1  y=l+z (=D p)=l+y—u
i—2

We want to calculate the residue associated with the loop momentum ¢ being
collinear to two consecutive null external momenta, i.e. £.p; 1 = £.p; = 0. In
terms of the dual momenta y;, this is equivalent to (y — 1) = (y — ;1) =

(y — yir1)? = 0. To calculate this residue, we first parametrize y on the cut
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(y — yi)? = 0 by introducing spinor helicity variables (see [37] for a review).
=yl o A A Y=y, = oh A A

oo’

From this, it follows that

(v = u)* = W = 9)* + 2 (% — Y) Opaa (AN

where (ab) = €,3a°0° and [ab] = € dﬂ‘&di)’é For convenience, we expand A in a

basis consisting of A; and \;;; (with a similar expansion for ;\)
A=BN+ A1 A=0 N+ phin
In terms of these variables, the measure on the cut (y — y;)*> = 0 is
/d4y 6 ((y—w)?) = / % = /d”Y dpdo (Ni Niy1) [Ai Aigd]

We have used the GL(1) to fix § = 1. By introducing the spinor helicity vari-
ables, we are already on the cut (y — y;)? = 0. This residue can now be written

as

dy dp do 1

Resy—ye=oln = [ ——— <
TP i) P A Tl pioiary (0 = 96)% + 2 (05 = Ur)#0paa AAY)

On this cut, we can now fully localize the loop momentum y; by taking the

residue of the poles v = p = ¢ = 0, even though we have cut only three propa-
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gators. This is an example of a composite residue. Recalling that (A; Ai11) [N Aiv1] =
2(yi—vic1)-(Yir1—yi) = %2—11'+1, the co-efficient of the IR divergence can be writ-

ten as

1

F[n = f R€8(y,yi)2:0[n = (311)
y=p=0=0

2 2
Yic1,i+1 Hk;é{z‘—l,i,i—i-l} Yik

This can be compared to the full expression for the amplitudes given in [$0,91].

3.3.2 (COMPOSITE RESIDUES IN FEYNMAN PARAMETER SPACE

We will now demonstrate that the coefficient of the log? divergence, as obtained
in eq(3.11) can also be obtained directly in Feynman parameter space. As sug-
gested above, the IR divergences in Feynman parameter space are associated to
a triplet of consecutive Feynman parameters (z;_1,x;, z;+1) and come from the
region where x; is large and x;_;x;,, scales as x;. We will evaluate the integral
eq(3.10) in this limit and find that the result is proportional to I'y,.

We being by writing (3.10) as a projective integral in Feynman parameter

space.

I =T(n— 2)/ (X X) U (3.12)

with the Symanzik polynomials

U= le F = Z ;T yfj (3.13)
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Let us introduce new variables (p, 7) via

Tio1=ripe’ w1 = Jripe "

This change of variables ensures that we have the required scaling, x; 1z;11 =
p*x; of the relevant Feynman parameters. In the limit of the limit of large z;,

the Symanzik polynomials reduce to

U=z +O(/T)

F=ai|vunlt+ Y. vz | +0/m@).
jA{i—1,ii+1}
Note that the quadric has factorized in this limit. This guarantees that the re-
sulting integral over the remaining (n — 3) Feynman parameters (recall that the

integral is projective and requires only (n — 1) integrations) is now rational.

(27" T(n—2)

(2

- dr
I, z/(Hlﬁész+1 k) 22 dp dr -
VolGL(1) ne2 (2 5 2\
Yi1i1P? + D jspio i1y Yis T

n B /dxz H];ﬁ{z 1,z,z+l} 2p dp
VolGL(
) (yzg—lz’—&-po + D it 1iitn) v xi)

n—2

where we’ve explicitly written out a factor of Vol GL(1) to indicate that the x;

are projective. The divergent factor is

dx; 1 i
/ Yigr = —/dlogq:i dlogerl
T; 2 Ti—1

After fixing the GL(1) redundancy by setting one of the z; = 1, the remaining
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integral is rational and can be easily evaluated.

H];é{z 1,7,,z+1} 1 .
Ypdp s = 1
VolGL(1 9
P>+ Dot T

With this,

1 Z- 1
I, =~- /dlogxi dlog <$ H) 5 5
2 Tic1 ) Yivi Ljsgioriion Vi

where the ~ sign indicates that this result is true only in the above limit. We
see that there is a log? divergence and its coefficient is identical to I'; com-

puted directly as a composite residue in eq(3.11), i.e

1 1
Ty, ==

2 y?—lz’-&-l Hj;é{ifl,i,zﬁrl} Z/in

(3.14)

3.3.3 PROOF FOR GENERAL ONE-LOOP INTEGRALS

The proof of the previous section is valid only for scalar n—gon integrals. This
is due to the specific form of the Symanzik polynomials in eq(3.13). In this
section, we will generalize the above results to include cases with tensor nu-
merators. We will show that the coefficient of the IR divergence obtained by
computing a composite residue involving three propagators is the same as the
one obtained in Feynman parameter space using the procedure outlined in Sec-
tion[3.3.2]. It is easiest to work in embedding space. A generic one-loop integral
with a tensor numerator has the form

T (Y™ [d4Y]
L= [ vy (315)
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where T [Y"™4] = T,

i dSYS(YY)
[d*Y] = Vol(GL(1)) "

L Y Y is a tensor of rank n — 4. The measure

To calculate the coefficient of the IR divergence, we follow the same proce-
dure as in Section [3.3.1]. We calculate the residue on the cut Y.Y; = Y.V, =
Y.Y; = 0. Since the denominator is the same as in eq(3.12), it is easy to see that

the same computation goes through. The end result is,

. T |:Y'2n74]
I, —
(Y1.Y3) Hk;ﬁ{l,2,3} Y2.Yy

(3.16)

We will now show that the same result can be obtained in Feynman parameter
space by scaling the parameters as mentioned before. We begin by Feynman

parametrizing the integral in (3.15)

[Ty [dhY] (XdX)
I = / )

where W = ). z;Y;. To do the integral over Y, we note that each factor of ¥’

can be exchanged for ﬁ to get

() e

CONTE

d \n4| _ d d
where T [(W) ] =Ty ipa iy - - - T and we have used

dy] 1
/(W-Y)4 - (Ww)?
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To compare with (3.16), we set x1 = \/Tape™, 3 = \/Tape T and take the limit
of large x5. Once again we have W ~ x5Ys and W.W = x4 (,02 Yi.Y5+ 2#172’3 xZYzY2>

In the large 2 limit, only the term T[W"~4] = 23 *T[Y;**] contributes and

I /dl‘gd T[Y"™ 4] / (Xd"4X) pdp
n~ | —dr
Ty (V1.Y5) H#Lz,g(Y?‘Yi) (p* + Zi¢1,2,3 ;)" 2

X d"4X)pdp _ 1

The integral [ (inZ e 33 is independent of the details of the
i#1,2,3 Ti :

numerator. This explains why I';  is always rational at one-loop irrespective of
the details of the integrand.

We have shown that the co-efficient of the IR divergence can be extracted
from the integral by an algebraic operation directly in Feynman parameter space.
There is a potential IR divergence associated with every triplet (z;_1,x;, z;i11).
The complete IR divergence associated with the one-loop integral (3.15) is given
by summing over all such regions

n T [Yn—4]
I'= ¢ )
zZ:; (Yi1.Yien) [ #i—1,3,i41 YY),

(3.17)

3.3.4 IR FINITE INTEGRALS

It is instructive to understand what makes integrals IR finite in Feynman pa-
rameter space. We can see from eq(3.11) that I' = 0 unless T[Y;"™*] # 0 for at
least one i € {1,...n}. As an example, consider a well known finite integral, the

chiral hexagon

. (AB13)(AB46)(5612)(2345)
B /AB (AB12)(AB23){AB34)(AB45)(AB56){ AB16)

(3.18)
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Figure 3.1: Chiral Hexagon

where we have used momentum twistor notation and [, , = [(ABd>A)(ABd*B).

On Feynman parametrization, this becomes,

(Yi-Yae) (W.W) — 6(W.Yi3) (W.Yio)
(W)

where W = ZZ x; Y; and Y;; is the vector in embedding space corresponding to
the bi-twistor [ij). The numerator doesn’t contain any terms of the form z? and
doesn’t encounter IR divergences from the collinear region.

We can now easily construct a basis of IR finite integrals in Feynman param-
eter space. At n-points, the numerator of a Feynman integral is a polynomial of

degree (n — 4) in the Feynman parameters.

et T[XY
/ X0 X) o (3.19)

where T[ X" =T}, ; _,X"%~"=4_ The only constraint IR finiteness imposes on
T is that coefficients of 27* should vanish for all i € {1,...n}.
At n = 5, this implies that there are no IR finite integrals. This is in agree-

ment with the result that the chiral pentagons for n = 5 suffer from IR diver-
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gences from unprotected massless corners [20].

At n = 6, the tensor is left with 15 independent coefficients. Further con-
ditions can be imposed to uniquely specify a basis. For instance, we can de-
mand that some leading singularities vanish while others are £1. We will de-
velop these ideas further in Section [3.5]. But first, we need to understand the
avatar of leading singularities in Feynman parameter space, which involve the

notion of spherical contours.

3.4 ALGEBRAIC ASPECTS OF SPHERICAL RESIDUES

The idea of a spherical contour integral and the corresponding spherical residue
was introduced in [ 1] to compute the discontinuities of one-loop integrands di-
rectly in Feynman parameter space. Here, we give a brief description of the pro-

cedure. Consider the following integral.

n, (3.20)

(n+k)

; :/wxm*XﬂﬁXﬂ
(X.Q.X) =2

with & and n even. For any pair of Feynman parameters (z;,x;), there is a nat-

ural decomposition of the quadric () into four parts,

XQX = Xujpy-Qujtit- X + Xt Quijy. Xy

Xy Qi Xun + Xy Q.o Xy
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where

and the ; indicates that the entry is missing. The integral can develop sin-
gularities at locations determined by the entries of () (which are functions of
the external momenta) and the properties of the numerator. There are possible

branch point beginning at the following locations.

/

T(Q{_i}},{ij}) Qii 7’é 0, ij 7’é 0
Q2 —sign(Qi;)
() Qi =0, Qs #0
Y= Qz?' —Sign(Qij)
<Q]> Qi #0,0Q; =0
-2 Si H(Qij)
\Qij ¢ Qu = O: ij =0

where 7(A) = Ar—/(A12)2-A11As

Ara+y/(A12)2—A11Ag,

Qij. For a complete explanation of how these arise, we refer the reader to [11].

and sign (Q;;) is just the sign of the element

These are actual branch points only if the residue on the spherical contour cor-
responding to the variables x; and x; is non zero. In the cases when the residue
is non-zero, its value gives the discontinuity across the cut.

To compute the spherical residue, we use the following algorithm.

e Perform the transformation

Z; w;
_ —1 R R
=k — Quinin Qi X @y (3.21)

w
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thereby reducing the denominator to the form
wiw; + X5, QWX 55,

0 1/2
Here R is a 2x2 matrix such that RT Qg R = /
1/2 0

« Integrate over the entire complex plane / Riemann sphere by setting w; =

re” and w; = re~ with ranges r € (0,00) and 6 € (0, 27).

It was shown in [l 1] that the whole procedure can be interpreted as an algebraic
operation on the quadric, i.e. after integration the new quadric Q) is related

to the old one by
@) o O 1 N
Q™ = Qi — Qaiyun Qeivin Quny

Furthermore, the effect of performing multiple spherical contour integrals is cap-
tured by extensions of the same formula. In 4 spacetime dimensions, the max-
imum number of spherical contours we can perform is two (this is equivalent

to cutting four propagators and fully localizing the momentum). This double

spherical residue results in a quadric

Gik) _ 1 -
Q™ = Qg — Qi @ik iy @ i 7y

In order to complete the interpretation as an algebraic operation , we need to
provide similar expressions for the numerators after the integrals. We will now

examine the effect the spherical contour integral has on the numerators.
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Linear numerator

Let’s start with a Feynman parameter integral with a linear numerator,

. / (Xd" ' X)(L.X) (3.22)

(X.Q.X)(”+l)/2

We want an expression for the numerator after performing a spherical contour
integral along the (x;,z;). To perform the integral, we first decompose the nu-

merator into parts along z;, x; and orthogonal pieces.

Performing the transformation eq(3.21) results in an integral which we denote

as
n—3 (i5) X ~
i) _ [ K X (LX) (3.23)
! (X {}Q(J)X )nl)/2 '
with
L) = ! <L L Qih, o Q ) (3.24)
 /4DetQpjypy (7Y iy ig)y < GGy '
Quadratic numerator
Consider next, the case of an integral with a quadratic numerator.
Xd"1X)(N.X.X
I, = < i ) (3.25)
(X.Q.X)(”+2)/2

To perform a spherical contour integral in the (z;, z;) direction, we decompose
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NG in the same way as before.

XNX = Xapn Nupun X gy + 2Ny iy Xan Xy + Ny X iy X iy

We can show that the result can be written as

) _ (X(ij)dn—SX(ij)>(X(ij)_N(ij),X(ij))
a (X@) Q) X @)/
with
@ — QO] o _ o1 o A
N = QWTr(Quj iy Nunn) + (= 2) (Q{z’j}{z‘j}Q{z‘j}{z‘j}N{w}{w}Q{z‘j}{z’j}Q{z’j}{zj}
-1 -1
Qi Qe Nona — Niayon Qenen Quniy TN {@‘}{@’}) (3.26)

For more details on the calculation, we refer the reader to Appendix D.
The effect of multiple spherical contours is easy to express in this form. For
e.g. a double spherical residue along directions (ijkl), on the linear and quadratic

numerators, results in L@ and N@*) with obvious definitions.

3.4.1 PROPERTIES OF FEYNMAN INTEGRALS COMING FROM LOOP INTEGRALS

In this section we elaborate on some properties satisfied by Feynman integrals.
An integral of the form eq(3.20) must satisfy the following conditions if it comes

from a Feynman diagram.

e The quadric @ must be degenerate for n > 6. This is because the entries
of the quadric are all of the form Y;.Y; where Y; and Y; are embedding

space vectors. The embedding space corresponding to 4D spacetime is 6
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dimensional. Thus the rank of Q) is always 6.

o The tensor in the numerator, 7" must share the null space of the degener-
ate Q (for n > 6). If N is a vector in the null space of @, i.e. Q.N = 0,

then we must have T.N = 0.

It is a non trivial fact that these properties continue to hold after we perform a
spherical contour integral. We can use the expressions derived above to provide
a quick proof of these facts.

This is easy to show for a Feynman parameter integral with a linear numera-
tor eq(3.22). We want to show that the new numerator shares a null space with
the new quadric. i.e. for every N’ such that Q) N’ = 0, we have L'.N = 0. To
show this, suppose that N belongs to the null space of L and (). Then we have
LN =0=Q.N = 0. It is easy to see that N' = N, is a null vector of Q)
using the following property.

QN =0 = QpunNup = Qi Ny

where the empty {} can be either {ij} or {ij}. Using eq(3.24) it is obvious that
L) N' = 0. Thus eq(3.22) satisfies all the conditions of a Feynman integral
after a spherical contour.

This can be extended to a class of integrals of the form

(LX)
(X.QX)"D7

(Xd" ' X) (3.27)

The spherical residue in variables (z;,z;) is a sum of terms of the form (0 < k <
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n— D)

(L(ij).X)n—D—k/Q
(X/Q/X/)(D+k+2f2n)/2

See [??] for the detailed derivation of this result. We see that the proof for a
linear numerator works here as well. An similar calculation using eq(3.26) shows

that the same holds true in the case of a quadratic numerator

3.4.2 SPHERICAL CONTOURS MEET IR DIVERGENCES

We have seen that the double spherical contours calculate the leading singu-
larities. We know that leading singularities obey relations that arise from the
global residue theorem [26]. These must be reflected in the double spherical con-

tours. Let us start with the simple example of

I / (X d'X) z

(T123Q13 + T124Q14 + T224 Q24 + T2x5Q25 + T375()35)°

This integral is IR divergent and the divergence corresponds to the triplet (zzox3).

Let us calculate the double spherical contours (1423), (1425), (1324), (1325).

1
C1423 = —Ci1425 = C1324 = C1325 = — 5~ ~ ~ 3.28
20 Qs Qs (3.28)
We see that cia05 + c1423 = 0 as expected from the Global residue theorem.

However, c1394 + 1325 # 0 and this is precisely because of the IR divergence.
Similar residue theorems are satisfied by the double spherical contours as can

be checked from our expression for the 6 point MHV amplitude. Since the IR
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divergence introduces non-zero composite residues, the statement of the global
residue theorem must be changed to accommodate these. The spherical residue
capture the usual leading singularities in Feynman parameter space and the
scaling limit introduced in Sec[3.3.2] captures the composite residues. A simi-

lar analysis can be found in [92].

3.5 (CONSTRUCTING INTEGRANDS USING SPHERICAL RESIDUES

In 4D, performing two spherical contour integrals is equivalent to putting four
propagators on-shell. This fully localizes the loop momentum. The resulting
object is the sum of the leading singularities associated with cutting the four
propagators. Specifying the leading singularities (LS) puts constraints on the
integrand. We can construct integrands from their singularities in Feynman pa-
rameter space using this technique. In this section, we will illustrate this with a
few examples at 5 and 6 points. We will use our knowledge of the leading singu-
larities of MHV amplitudes of N' = 4 SYM to construct the one-loop integrand

for the 5 and 6 point amplitudes.

3.5.1 5 POINT INTEGRANDS

At 5 points, a generic Feynman parameter integrand is

I = / (XdX) %

Since we know that the only allowed poles in momentum twistor space are of
the form (ABii + 1) = 0, we will assume that the quadric is Q;; = (¢ — lij —

1j). The vector in the numerator L = (Iy,1ls,13,14,15) is to be determined from
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the LS. We demand that all the LS are equal and for convenience, we set them
equal to 1.

We have five unique double spherical contour integrals corresponding to the
five one mass LS. We denote a double spherical residue by the four associated
Feynman parameters. (Note that our Feynman parameters are labeled such that
the contour (ij) is equivalent to cutting propagators (ABi — 1i) = (ABj — 1j) =

0. The residue corresponding to (1435) is

2(15Q13Q24 + 14Q13Q25 — 13Q14Q25 + 12Q14Q35 — 11Q24Q35)
Q13Q24Q25

(3.29)

Demanding that this be 1 imposes a constraint on the /;. Similarly demanding

that all the other LS are equal to one leads to the numerator

l= 1/2 (Q13Q14Q257 Q13Q24Q257 Q13Q24Q357 Q14Q24Q357 Q14Q25Q35) (330)

We see that the leading singularities completely determine the five point am-
plitude in Feynman parameter space. This should be compared with eq(3.37)
which was obtained by summing all the chiral pentagons at 5 points. Note that
this integrand is IR divergent and has all the divergences associated with the 5
point amplitude.

We can also construct an integrand with only one non zero LS. Demanding

that I5 has support only on the cut (1425) and has unit residue results in

1o @1aQa5 (£1Q13 + 5Q35)
[ s
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It is easy to recognize that this is the Feynman parametrization of

(AB34)
/AB (AB12)(AB23)(AB34) (AB45)(AB15)

3.5.2 6 POINT INTEGRANDS

A generic 6 point integrand in Feynman parameter space has a quadratic nu-

merator.

X.N.X

Is = /(Xd5X> X0X)

N is a symmetric, rank 2 tensor. The quadric Q);; = (i — 1ij — 15) as usual for a

one-loop integral. We can always make a change of variables to reduce it to

1 (751 0 0 0 us

1 1 w 0 0 O

01 1 wg 0 O

We refer the reader to Appendix E for more details. We have three kinds of
leading singularities, one-mass, two-mass easy and two-mass hard. All the two
mass hard leading singularities must vanish and all the remaining ones must be

equal. We normalize them to unity for convenience. For computational simplic-
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ity, we choose external data

The constraints on N arising from specifying the leading singularities suffice to
fix all but 6 of the coefficients. After implementing these constraints, the inte-

gral can be written as a sum of two terms.

o= [ (X X

with

X.Ni.X = 9(72927 + 810z125 + 8123 + 1262915 + 4525 + 50374 + Haj — 648z015
+495z325 + 50z425 + 4527 + 8102176 + 12152316 + 207426 + 1262576 + 8127)

XNQX = 272131}11‘3 + 27114.1711‘4 + 27@4%’21’4 + 271151‘11’5 — 271141’2!E5 + 2’/115.1321‘5 + 1871241’2!E5

—(10n14x3$5)/9 - (107126?[731‘5)/9 + 271261‘2]76 - 271151’3!1)6 - 1871241’31‘6

—(271131‘41‘6)/9 + (271141'41‘6)/9 — (2n15x4:p6)/9 — 2’[1241’4{176

The large integers that arise in this expression are due to the choice of external
data. It is tedious but possible to rewrite this expression in terms of (ijkl). The
integral with numerator X.N,.X is always rational and all its double spherical
residues vanish. Here, we see a clear separation in Feynman parameter space of

the rational part and the transcendental part.
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3.6 FEYNMAN PARAMETRIZATION IN PLANAR N =4 SYM

In this section, we examine the one-loop MHV integrand of N' = 4 SYM. It is
completely determined by its leading singularities and has a well known expres-

sion in terms of chiral pentagons.

(3.31)

Henceforth, we denote the chiral pentagon integral shown above by (ji) which

takes the following form in momentum twistor space.

(i) :/ (AB(j — 157 + 1) N (i — Lii + 1)) (xj7) (3.32)
a5 (ABi — 1i)(ABii+ 1)(ABj — 15)(ABjj + 1)(ABx) '
where % is an arbitrary bi-twistor.

There are two leading singularities, i.e. two solutions to the set of equations
(ABi—1i) = (ABii + 1) = (ABj — 1j) = (ABjj + 1) =0

These are the lines Z; Zj; and (i — 1lit + 1) N (j — 155 + 1). The above integrand
is chiral and has vanishing support on the solution (i — 1éi + 1) N (j — 15 + 1).
Thus an individual chiral pentagon is tailored to reproduce a leading singular-
ity. However, it also has additional leading singularities arising from the pole
(AB%). These are not singularities of the amplitude and must cancel in the sum

in eq(3.31). The cancellation of the spurious poles is not manifest and it is de-
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sirable to obtain an expression for the complete amplitude which is free of spu-
rious poles. For attempts along this line in momentum twistor space, see [(5].
Here, we will derive an expression for the complete integrand in Feynman pa-
rameter space and we will see a transparent cancellation of the spurious poles.
We begin with the simple case of the four point amplitude. In this case, there

are 12 contributing pentagons

AV = (1,2) 4 (1,3) + (1,4) + eyelic

— (x12)(AB34) + (x23)(ABA1)

MH _ 2(1234)
AT _/AB (AB12)(AB23)(AB34) (ABAL) (ABx) | ~3H(AB12) + (x41)(AB23)
+(AB24) (x13) + (AB13)(x24)
= / [d'Y] (Xd'X) <(WY:§))5 (3.33)
where

W =21 [12) + 2523) + x334) + z4[41) + x|x)

and N is the numerator of eq(3.33) written in embedding space. Performing the

momentum integral yields the Feynman parametrization.

1 —2(1234) 2 ((x13) (x24) — (X12)(x34) + (x23)(x41))
(Ww)?

AV = / (Xd*X)
(1234)2 (21 (K12) + 2 (%23) + 23 (x34) + x4(x41))

Having obtained the Feynman parametrization, it is now straightforward to
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demonstrate that A}V is independent of both = and *. First, note that the
coefficient of x, which is quadratic in x vanishes due to a Schouten identity. The

rest of the expression can be written as a total derivative.

vy L 4 2 0 1 1 3 1
A 2/<Xd X234y ((WW)2> _ 2/<Xd X) G 69

with W = W‘x:(] and the integral over the remaining Feynman parameters.

This procedure can be repeated at higher points. In each case, we find that
the coefficient of the highest power of = vanishes due to a Schouten identity and
the rest can be written as a total derivative which is independent of x at the
boundaries. We present an expression for the 5 point amplitude. The details of

the calculations are relegated to Appendix F'.

AMEV /(Xd5X> 0 <2 no (W) +W.Wny + 3 (W*)nw) (3.35)

9z (P (Wor)?

Here ng and ny are the coefficients of 2° and z in eq(F.2). As before, the inte-
gral localizes to the boundaries where it is independent of the bi-twistor x and is

given by

AVHY / (Xd*X) % (3.36)
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n = ((1234)(1245)(1235)z; + (1234)(2345)(1235) 25 + (1345)(1234) (2345) 25

+(1345) (2345) (12454 + (1345)(1245)(1235) 2:5) (3.37)

d=W.W  where W = z[12) + 2523) + 2434) + 2,45) + x5[15)

It is easy to see that eq(3.34) and eq(3.37) have the correct singularity struc-
ture. The presence of linear terms in the numerator of the 5 point amplitude
implies the presence of IR divergences as expected. We can obtain similar ex-
pressions for the integrand at higher points. However, this has to be done on a

case by case basis and we don’t have a general expression.

3.7 OUTLOOK

In this chapter we have explored the singularity structure of one-loop Feynman
parameter integrands and their geometry. The spherical residue captures the
notion of discontinuity and the double spherical residue that of leading singu-
larities. Feynman parameter integrands that arise from Feynman graphs satisfy
special constraints and we saw that the spherical contour remarkably preserves
these properties. We have provided an algebraic description of spherical residues
and given formulae which can be use to compute both them as algebraic map-
pings. The double spherical residue was exploited to construct Feynman param-
eter integrands. Composite residues in momentum space captures the leading
IR divergences. The scaling procedure introduced in Section[3.3.2] to extract the
leading IR divergences shows that the notion of composite residues exists even

in Feynman parameter space.
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The obvious next step is to extend the results of this chapter beyond one
loop. It would be interesting to explore the extraction of the leading IR di-
vergence of a two loop graph by a similar method. For some details on higher
loop Feynman parametrization and IR divergences, we draw the reader’s at-
tention to [93]. While extraction of the leading IR behaviour is fascinating in
its own right, it could also prove useful in calculating the cusp anomalous di-
mension of N' = 4 SYM which has been a topic of some interest in the past
few years [80-83]. The knowledge of the relationship between cuts of Feynman
graphs and discontinuities is intensely studied in momentum space (see [941,95]).
In Feynman parameter space, this amounts to an understanding of the rela-
tionship between between spherical residues and leading singularities at higher
loops. This is an essential ingredient in attempting any construction of higher
loop integrands. While these are some of the immediate pragmatic questions of
general interest, some features of Feynman parameter integrands of A = 4 SYM
raise more provocative questions.

Section[3.6] shows the explicit independence of MHV amplitudes on spurious
poles at 4 and 5 points. While this cancellation is expected even in momen-
tum twistor space, it is simpler to observe in Feynman parameter space and
isn’t the consequence of a complicated identity satisfied by the external data.
Another miraculous feature, seen from the 4 and 5 point one-loop integrands,
eq(3.34) and eq(3.37), is that they are both manifestly positive ( for positive
external data). Positivity of the integrands in momentum twistor space was ob-
served in [05]. There the positivity stemmed from the more complicated identity
(ABij) > 0 for configurations of Z; in the amplituhedron. Here, (ijkl) > 0 for

1 < j < k < [ suffices to guarantee positivity. It is crucial to check if these fea-
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tures persist beyond one loop. It would also be interesting to analyze the posi-
tivity properties of the log of the amplitude and the n-point Ratio function [96]
in Feynman parameter space.

The existence of these properties seems to suggest that Feynman parameter
space more than an auxiliary space introduces to aid in integration and is a nat-
ural space to study loop integrands. In the last decade, a rich geometric struc-
ture underlying scattering amplitudes of A/ = 4 SYM has been uncovered [0, 1(]
and positive geometry [29] is at the heart of it all. It is a natural to wonder if
the properties seen here are a reflection of this structure. If this were true, it
suggests that Feynman parameter space has an extremely rich geometry and the

properties observed thus far are only the tip of the iceberg.
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On-shell Electroweak sector and the

Higgs mechanism

4.1 INTRODUCTION

Quantum fields, path integrals and Lagrangians have been a cornerstone of
20th century theoretical physics. They have been used to describe a variety of

natural phenomena accurately. Yet, it is becoming increasingly apparent that
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these mathematical tools are both inefficient and insufficient. They obscure

the presence of a deeper, underlying structure, particularly of scattering am-
plitudes in quantum field theories. The field of scattering amplitudes has un-
dergone a paradigm shift in the past three decades. This was sparked by the
discovery of the stunning simplicity of the tree-level gluon scattering amplitudes
in [1,2]. The simplicity of these amplitudes was revealed due to the use of he-
licity spinors, (A4, /N\a) which correspond to the physical degrees of freedom of
massless particles - helicity. The forbidding complexity of the Feynman diagram
based calculation of tree level gluon scattering amplitudes is now understood to
be an artifact of the unphysical degrees of freedom introduced by gauge redun-
dancy. These unphysical degrees of freedom are necessary to package the phys-
ical degrees of freedom into local quantum fields in a manner consistent with
Poincaré invariance [97]. The simplicity of these amplitudes fueled the develop-
ment of a variety of “on-shell” techniques for computing scattering amplitudes
involving massless particles. These methods do not rely on Feynman diagrams,
do not suffer from gauge redundancies and do not invoke virtual particles. For
an overview of these methods, see [98-102] and the references therein. However,
most of this progress was limited to amplitudes involving only massless parti-
cles.

Since helicity spinors correspond to the physical degrees of freedom of massless
particles, it is natural to attempt to find variables akin to these for massive par-
ticles. The physical degrees of freedom of massive particles correspond to the
little group SU(2) [103]. Some early generalizations can be found in [104-111].
However, the little group covariance was not manifest in these generalizations

until the introduction of Spin-spinors (or massive spinor-helicity variables) in
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[112]. These variables (AL, \}) which carry both little group indices and Lorentz
indices and make the little group structure of amplitudes manifest. Information
about all the (25 + 1) spin components of each particle is packaged into com-
pact, manifestly Lorentz invariant expressions. Amplitudes written in terms of
these variables are directly relevant to physics. This is in contrast to a Feynman
diagram based computation which involves an intermediate object with Lorentz
indices which must then be contracted with polarization tensors which carry
the little group indices. For some interesting applications of these variables, in-
cluding black holes, supersymmetric theories and double copy constructions,

see [113-123].

One of the biggest successes of path integrals and the Lagrangian formulation

is the development of effective field theory and the Higgs mechanism. Recently,
there has been a lot of focus towards the development of on-shell methods for
effective field theory and an on-shell understanding of the structure of the Stan-
dard Model (SM) [124=129]. Tt is worth pointing out that the aims of [121]

are similar to ours but differs in the strategy employed to achieve these aims.
Specifically, the authors aim to derive the constraints of electroweak symmetry
breaking by specifying the IR structure of the SM and imposing perturbative
unitarity. In contrast, we will derive these constraints by specifying both the
UV and IR behaviour and demanding that the low energy theory has a smooth
high energy limit. A completely on-shell description of the Higgs mechanism
was outlined in [112] for the abelian and non-abelian gauge theories. The con-
ventional understanding of the Higgs mechanism involves a scalar field acquiring
a vacuum expectation value and vector bosons becoming massive by “eating”

the goldstone modes arising from spontaneously broken symmetry. However,
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the on-shell description has no mention of scalar fields, potentials and vacuum
expectation values. Nevertheless, it reproduces all of the same physics. Addi-
tionally, well known results like the Goldstone Boson equivalence theorem be-
come trivial consequences of the high energy limits of our expressions. From

an amplitudes perspective, it is more natural to think of the Higgs mechanism
as a unification of the massless amplitudes in the UV into massive amplitudes
in the IR. In this chapter, we will focus on computing scattering amplitudes in
the bosonic electroweak sector of the standard model and describing the Higgs
mechanism and electroweak symmetry breaking using a completely on-shell lan-
guage.

The chapter is structured as follows. We begin with a brief review of the lit-

tle group, spin-spinors and their properties in Section [4.2]. We focus on con-
structing three particle amplitudes in the IR in Section [4.3.1] and the UV in
Section [4.3.2]. In Section [4.3.4], we compute the high energy limits of the three
particle amplitudes in the IR and demand that they are consistent with the
three point amplitudes in the UV. This gives us the all the standard relations
between the coupling constants, the masses of the Z and W= and the Weinberg
angle 0,,. We also see the emergence of the custodial SO(3) symmetry in the
limit in which the hypercharge coupling vanishes. Finally, in Section [4.4], we
construct 4 point amplitudes in the IR by gluing together the three point ampli-
tudes found before. We enunciate the details involved in the gluing process. We
will also discover that demanding that these amplitudes have a well defined high

energy limit imposes constraints on the structure of the theory.
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4.2 SCATTERING AMPLITUDES AND THE LITTLE GROUP

4.2.1 HELICITY SPINORS AND SPIN-SPINORS

In this section, we briefly review some aspects of the on-shell approach to con-
structing scattering amplitudes. We will review the formalism of spin-spinors
introduced in [112] whilst highlighting some features important for this chap-
ter. One particle states are irreducible representations of the Poincare’ group.
They are labeled by their momentum and a representation of the little group.
If the particle is charged under any global symmetry group, appropriate labels
must be appended to these. In (3+1) spacetime dimensions, the little groups for
massless and massive particles are SO(2) and SO(3) respectively.
Representations of the massless little group, SO(2) = U(1) can be specified by
an integer corresponding to the helicity of the massless particle. A massless one
particle state is thus specified by its momentum and helicity. Under a Lorentz

transformation A,

[ h,o) = w|Ap, b, o) (4.1)

where o are labels of any global symmetry group and w has the same meaning
as in [07] and [112]. Tt is useful to introduce elementary objects Ay, Aq which

transform under the little group as

Ao — W A, and g — WAy - (4.2)

We can use these objects to build representations with any value of h. The nat-
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ural candidates for these elementary objects are the spinors which decompose

the null momentum p,, = p,ok,. We have

Pac = Aara = [NalAs - (4.3)

Throughout the chapter we will find it convenient to make use of the following

notation,

M= = =0 M=)

For any two null momenta p1, ps, we can form two Lorentz invariant combina-

tions of these spinors,
(12) = e (M)s(Aa)a [12] = (A a(Aa) 4 (4.4)

The massive little group is SO(3) = SU(2). Its representations are well known
and can be specified by the value of the Casimir operator which is restricted

to values S(S + 1), where S is defined as the spin of the particle. The spin S
representation is 25 4 1 dimensional. A massive one-particle state of spin S thus

transforms as a tensor of rank 2S under SU(2).
|p, I, ... I, 0'> — W]ljl . W]23J2S|Ap, Ji, ... Jog, O'> (45)

The elementary objects in this case are the spinors of SU(2), which are referred
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to as spin-spinors. These transform as

A= (WAL AL WA

(e}

J

a

(4.6)

Higher representations can be built by taking tensor products of these. Decom-

posing the rank 2 momentum, similar to eq.(4.3), yields the requisite spinors,
< <J
Pas = EJ[|)\>I[A|J = EJ[AQAB . (47)

From this we have

det(p) = det(e) det(\) det(N). (4.8)

Using the fact that det(e) = 1 and det(p) = p* = m?, we have det(\) det()\) =
m?2. For the rest of the chapter, we will set det(\) = det()\) = m*. We will find
it convenient to suppress the little group indices on the spin-spinors. We do this
according to the convention in eq. (G.2). Finally, we can construct Lorentz in-

variants out of spin-spinors corresponding to two massive momenta p;, po similar

to eq.(4.4).

(12)" = " (A1)5(N); [12]" = (A5 (R) ] (4.9)

*There is more freedom to set det A = M and det A = M such that MM = m?2, but for our
purposes M = M = m suffices.
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4.2.2 SCATTERING AMPLITUDES AS LITTLE GROUP TENSORS

Scattering amplitudes are defined as the overlap of in and out states. We have

M(pl;pl .- pnvpn) - 0ut<p17p17 .. -pnapn|0>in

where we are assuming that all particles are outgoing. p = (h, o) for massless
particles (eq.(4.1)) and p = ({I1,... 25}, 0) for massive ones (eq.(4.5)). Trans-
lation invariance allows us to pull out a delta function which imposes momen-

tum conservation

M<p17p1 - °pn7pn) = 64(]91 + .. 'pn)M<p1ap17 s apnvpn) (410)

Assuming that the asymptotic multi-particle states transform under Lorentz
transformations as the tensor products of one-particle states, we have the fol-
lowing transformation law for the function M(py, p1,. .., Pn, pn) under a Lorentz

transformation A.

M (Pas pa) = [ [ (Dpup, (W) M((Ap)a, ) (4.11)

where D, (W) = 850 0p, w2 for massless particles and D, ,, (W) =

0,07 WII} e WII,QS for massive ones. As an example, we display the transforma-
1 25

tion law for a 4-particle amplitude where particle 1 is massive with spin 1, par-

ticle 2 is massless with helicity 5/2, particle 3 is massless with helicity —2 and
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particle 4 is massive with spin 0.

M{[l’b}’{‘r’m}’{*z}’{()}(p1,p2,p3,p4) N (W1)2 (W1)§Z w55 w§ M{I{,Ié},{5/2}7{72},{0}(php2jp37p4)'
(4.12)

Thus, objects constructed from helicity spinors and spin spinors can correspond

to scattering amplitudes only if they are Lorentz invariant and have the above

transformation law under the little group. This imposes restrictions on the func-

tional forms of objects that make up scattering amplitudes. Indeed, three point

amplitudes involving all massless particles are completely fixed by this restric-

tion. At three points, we have,
2p1.pe = (12)[12] = 0 2pa.p3 = (23)[23] = 0 2p3.pr = (31)[31] =0

We must choose either the A or the A to be proportional to each other. The two

solutions are the MHV configuration
M =(230¢ A =@3DC A= (12) (4.13)
and the anti-MHYV configuration

A =[23C A =[B1C A =[12]¢ (4.14)
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Using these, one can show that the three point amplitudes can only take the

following form.

Mh1h2h3 =g <12>h1+h2—h3 <23>h2+h3—h1 <31>h3+h1—h2 7 if hl + h2 + h2 >0
= g [12]re—h2 (23] —hemha (3 hamha—hy if hy+hy+hy>0.

(4.15)

In cases involving one or more massive particles, Lorentz invariance and little
group covariance are not sufficient to completely fix the amplitude. However,
they narrow down the form of the amplitude to a finite number of terms. For an
exhaustive analysis, we refer the reader to [112] and [130, 131]. In this chapter,

we will discuss only the amplitudes relevant to us.

4.2.3 THE HIGH ENERGY LIMIT OF SPIN-SPINORS

When particle energies are much higher than their masses, it is intuitive to treat
them as massless. We can formalize this by expanding the spin-spinors in a con-

venient basis in little group space.

A =2l 0T = VE+pC () CHR) +VE —pC (p) CH ()
Xt =Xl — s = VE+pG ) (k) —VE—plp) (k) (4.16)

where X, A are the helicity spinors, (¥ are eigenstates of spin 1/2 along the
momentum. We give explicit expressions for all objects involved are in Ap-
pendix [G]. Here, we just note that 1,,7; o< vVE —m = m + O(m?). Taking

the high energy limit corresponds to taking m/E — 0. In this limit, the spin-
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spinors reduce to massless helicity ones. Finally, it should be pointed out that
we must take special care while taking the high energy limit of 3-point ampli-
tudes. Owing to the special three point kinematics, factors like (12) or [12] can

tend to zero in the high energy limit.

4.3 'THREE PARTICLE AMPLITUDES

3-particle amplitudes are the fundamental building blocks of scattering ampli-
tudes. In this chapter, we are interested in analyzing the bosonic content of

the standard model both in the UV and IR. The spectrum in the UV is com-
prised solely of massless particles. The three point amplitudes are completely
determined by Poincare’ invariance and little group scaling as outlined in Sec-
tion [4.2]. The form of these amplitudes was given in eq.(4.15). We will use this
formula to write down all the relevant 3-particle amplitudes in Section [4.3.2].
All the amplitudes in the UV obey the SU(2), x U(1)y symmetry.

The spectrum in the IR consists of massive particles and a single massless vec-
tor. 3-particle amplitudes involving massive particles are not completely fixed.
They can have several contributing structures. In Section [4.3.1], we will write
down all the relevant amplitudes. The amplitudes in the IR obey only a U(1)gum
symmetry.

Finally, we will demand that the high energy limit of the IR amplitudes is con-
sistent with the amplitudes in the UV. We will find that this consistency is pos-
sible only if the masses of particles in the IR are related in a specific way. These

turn out to be the usual relations involving the Weinberg angle.
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4.3.1 TuE IR
The spectrum in the IR consists of the following particles.

o Three massive spin 1 bosons (W, W~ Z) which have masses (my,, my,, m;)
and charges (4, —, 0) respectively under a global symmetry group U(1)gas.
Note that W and W~ are eigenstates of the U(1)gm generator. They

must have equal mass as they are related by charge conjugation.

e One massless spin 1 boson, the photon, v which is not charged under the

e One massive scalar, the higgs, h which is also uncharged under U(1)gyy,.

The only symmetry of the IR is the U(1)gy. We will now discuss all the rele-
vant three point amplitudes in the IR. Owing to the existence of various identi-
ties amongst the spin-spinors, each amplitude can be written in a multitude of
different ways. In many of the cases below, we have chosen particularly conve-
nient ways of writing them. Different forms of the three point amplitudes lead
to different expressions for four point amplitudes. The difference between these
are contact terms that can be fixed by imposing other constraints on the ampli-
tude. While the form of the contact term will depend on the form of the three
point amplitudes used, the final amplitude will be the same. We will elaborate
on these comments in the appropriate places below. In the rest of the chapter
we will follow the convention that the bold lines in the diagrams correspond to

massive particles while the unbolded lines correspond to massless ones.

WHTW~Z
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2y~

B = (121208l — pof8] Feve]  (417)

Lo+
This is a form of the three point amplitude that is chosen to suit our needs. It
should be noted that it can be reduced to a combination of <> and [ ]. As an
example, consider the first term in the above equation which can be re-written

as follows,

(12)[12](3[p1 — p2[3) = 2 (ma[12](23)[31] — m2[12][23](31) + m3[12](23)(31)) ,

where we made use of the Schouten identity (12)3 + (23)1 + (31)2 = 0.

WHW v

35 = e x),(12) (4.18)

Ty+

We discuss other forms of writing the same vertex in Appendix [H].

Z7Zh

27

P A ((12)* + [12%) (4.19)

my my

R F—

1z

163



W W~™h

2w-

coee 8 = U 12)[12] + n/f ((12)? + [12]?) (4.20)

Ly
We will set N7 = N, = 0 in what follows since these terms yield four point

amplitudes which grow as £? where E is the center-of-mass energy.

hhh

:)'"" 3h = €ppn Mp (421)

4.3.2 THE UV

The UV spectrum of the electroweak sector of the standard model consists of

the following

» One massless spin-0 particle & = {¢y, ¢o, @3, ¢4} with four real degrees of

freedom in the fundamental representation of SO(4) = SU(2), x SU(2).
e One massless spin-1 particle B with charge % under a global U(1)y sym-
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metry group.

« Three massless spin-1 particles (W7, Wy, W3), in the adjoint representation
of SU(2),. These are not charged under the group U(1)y. In order to fa-
cilitate easy comparison to the massive particles in the IR, we will work
with particle states W= = — (W' £iW?) which are eigenstates of the

U(1)gm symmetry in the IR.

The electroweak sector has an SU(2);, x U(1)y symmetry. The generators of
these symmetries are related to the generators of SO(4) listed in Appendix [J]

as follows.
T'=X" T*=Xx? T*=X* TP=Y3 (4.22)

The generator of U(1)gy, which we denote by @, can be written as a linear

combination of the generators of the UV

eQ=agT*+ B¢ T", (4.23)

where e is U(1)gy coupling. Since TF = \/Li (T' £ 4T?) are eigenstates of @,

we are free to work with the states W= in the UV. We will now list all the rele-
vant amplitudes in the UV. The superscripts on the particles indicate the corre-

sponding helicities.

Ww-w?
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2+

o (12)°
s =9 3 31) (4.24)
1
WHedp
2;
N o (120D
1
W~ o
20,
_ oy, (12)(23)
LHLS =g(T )z’jW (4.26)
1
W3edp
2j
R 1C1Y
///W 3 (T )U 1) (4.27)
1

These amplitudes must be proportional to a generator T1+ =3} of the SU(2).

For explicit forms of these generators, see Appendix [J].

Be®
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rn 3h = g (TPt (4.28)

The above list doesn’t contain any WW B or W BB amplitudes since the W’s
are not charged under the U(1)y. Note that all the above amplitudes involve
particles whose helicities, hy, ho, hs are such that > h; > 0. The amplitudes

with Y h; < 0 are given by flipping < >—[].

4.3.3 THE HE LiMmiT oF THE IR

All the amplitudes in the IR listed above have one or more factors of % At
first glance, this seems to suggest that they blow up in the UV and cannot be
matched onto any 3-particle amplitude of massless particles. However, we will
see that all these factors of inverse mass drop out when we take the special 3
particle kinematics into account and carefully take the high energy limit. Many
of these high energy limits are worked out in [I12] and [I30]. We present them
here in a form compatible with our conventions. For each massive leg, in order
to take the high energy limit we must first specify the component which we are

interested in.

WHtW-Z

167



2~

3z

HE

\

+
2

T

+
15,

0
20,

w
NO

+
15,

9-

w
N=

0
19,

0
20,

w
N+

0
19,

myg (12)(31)

= Ty (23

mg (12)(23)
w mw (31>

m%—2m%, (23)(31)

m, (12)

(4.29)

Amplitudes with one longitudinal mode and two transverse modes vanish in the

high energy limit.
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ot
- (233
9 5 = Caan
1t
3 _HE (4.30)
b gt 9, (2361
T T
19,
\ W
WTW~h and ZZh
( 2;
____30  — _enxx {(12)(23)
2y h 2 @3y
1%
s _HE 9, (4.31)
X
1x
.30 _ enxx (12)31)
h 2 (23)
1%

\

where X = W, Z. The high energy limit of amplitudes involving only one trans-
verse mode vanish. This is consistent with the fact that we have no WIW® am-
plitudes in the UV. Furthermore, the high energy limit of the all longitudinal

component of these amplitudes also vanish implying that there is no ®3 interac-

tion in the UV.
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hhh

»----3 HE . 0 (4.32)

The hhh amplitude vanishes in the HE limit due to the explicit factor of my,.

This is again consistent with the fact that there is no ®* amplitude in the UV.

4.3.4 UV-IR CONSISTENCY

Thus far, we have specified the structure of the IR which consists of the inter-
actions among the W*, Z, v and h which preserve the U(1)gy symmetry and
the structure of the UV which consists of the interactions among the W%, B,
which preserve the SU(2);, x U(1)y symmetry. We must now ensure that they
are compatible with each other. We take the high energy limit of the IR ampli-
tudes and demand that they are equal to the appropriate amplitudes in the UV.
We refer to this process as ‘UV-IR matching’ This imposes many constraints
and determines the couplings in the IR in terms of those in the UV. Further-
more, it also imposes constraints on the masses of the particles in the IR. To be-

gin with, we must relate the degrees of freedom in the IR to the ones in the UV.
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We assume that they are related by the following orthogonal transformation

w+ Oir O Oy3 Oip w+
W= O, O0__ O3 O_ W=
| P (4.33)
Z Ozy Oz- Ozz Ozp w?
y 0. o_ 0, 0,)\ B

Clearly, we must have O, = O3 = Oy = O_, = O_3 = O_g = 0. This
is a result of working with the same states in the UV and IR. Orthogonality

demands that the matrix be block diagonal, and so we have the simpler relation

Z cos 0, —sin 6, w3
= (4.34)

v sin 6, cos 6, B

for some unknown angle 6,,. All the massive particles in the IR have longitudi-
nal components which must be generated by some some linear combination of

the scalars in the UV. We assume that

O = Upi®; W =Up® 27 = Uy, (4.35)

wt
The remaining linear combination of the components of ®, h = Uy;®; has an
independent existence. Indeed, it is well known that its presence is crucial for
the theory to have good UV behaviour. The high energy limit of each of the
three point amplitudes in the IR must be equal to some combination of the
amplitudes in the UV. This determines the masses in the IR in terms of the
couplings in the UV. It also imposes some constraints on the couplings in the

UV. All the constraints arising from eq.(4.29) - eq.(4.31) are determined below.
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WHW~Z

There are a total of 27 components to the W1W~Z amplitude corresponding
to the (+, —,0) spin component of each particle. Amplitudes with just one lon-
gitudinal mode all vanish in the high energy limit. This is consistent with the
fact that there are no WW®, WB®, BB® amplitudes in the UV. The indepen-
dent constraints arising from the remaining components are given below. Recall
that the superscript on the particle is its helicity. These are also listed at the

top of each diagram for particles 1, 2 and 3 respectively.

(++-)
+ +
20— 25~
3, = Ozg 3yys
i i

Using the expressions from eq.(4.29) and eq.(4.24), we get

L2 o (1)

(23)(31) 73 193)(31) = ew = gcos Oy . (4.36)

The absence of a WTW ™ B interaction in the UV means that there is no term

proportional to Ozp on the RHS.
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(00+)

0
2, 2; 2,
\\ \\
3, =Uw+iUw-; Oz ron 33 +Uw+iUw-;0z ~n3h
10+ 1 1;

Using eq.(4.29), eq.(4.27) and eq.(4.28) in the above gives,

m?2 — 2m?2, (23)(31) (23)(31)

_ 3 B
2 2 2
- Gw% = Uw+; (g cos 6, Tfj’ — ¢'sin 0, TZ?) Uw-; . (4.37)
2
(+00)
20, 2i
3% = gUw-; Uz ;r\%?’a
1 s
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Again, eq.(4.29) and eq.(4.25) give

m, (12)(31)

(12)(31)
o (23)

(23)

= gUw-iT;; Uz

— —€y Mz = gUW*zT;; UZj- (438)

w

WHW v

Since the photon is massless in the IR, the W™~ amplitude only has 18

components. This leads to the following constraints.
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2t 28
3,7 = (973 3;113
1$+ 1;;[”
(12)3 (12)3
Cw oo a1y IYv375 970
(23)(31) (23)(31)
= e =gsin 6, (4.39)
(00+)
20, 2 2
3;‘- = UW+’£ UWij O’YS :)fvvv\/ 3%3 —l— UW+i UW*] OfyB :)’\/\/\/\/ 3;
137+ 12'/ 1i/

(23)(31) 3 B (23)(31)
—QGW = UW+Z' (g (9’73 7—;] + g/ O’YB 7—;] ) UW?JW
= —2e¢ = Up+; (g sin Qwaj + ¢ cos 0, TZ?) Uw-; (4.40)
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WZy

Conservation of the U(1)gm charge in the IR must be imposed. This is achieved
by setting the W+ Z~ amplitude to zero. A similar equation is given by setting

the W~ Z~ amplitude to zero.

(00+)

29 2; 2;

\ \
\ \

37 =Uw+iUz; Oy o3l +FUw+Uz; Oyp v 3%

/ /
’ ’

13,+ 17; 171

23)(31
0=Un+i (90T + 9 O:pT5) Uﬂ%
= 0=Upw+; (g sin 0, TS + ¢ cos b, Tg) Uz (4.41)

Z7Zh

(+00)
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2; 2

N \
N \

~—--30 =UzUn;j Oz r\j\r*?’j + Uz Unj Ozp ;33'

+
Ly 15

(12)(31) _ 3 sy (12)(31)
GZZHW = Uz (g Oz T35 + 9 Ozs T;; ) Uhjw
= ey = Uz (g cos B, Tl?; - g' sin 6, TZ]]B) UHj (4.42)
W W h
(+00)
20— 21‘\
----3n = Uw-; Uy ;\}33‘
1—111_/+ 1+W+
12)(31 3 12)(31
ewwn% =gUw-,; Tz’j Uhj%
= Cywuy = ¢ Uwflﬂ; Uhj (443)
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As already highlighted, eq.(4.17) and eq.(4.39) yield
e =gsinf, and ew = g cos by, (4.44)
Further, the remaining set of constraints (4.36 - 4.43) can be solved by the ansatz

Upr = LTV Uy =L1t.Vv

My My
1 .
Uz = - (9 cosb, T — g sinf, T) -V (4.45)

where V' = {wvy,vq,v3,v4}. Note that despite the similarity of this equation
with the usual Lagrangian based description of the Higgs mechanism, V' does
not have the interpretation as the vacuum expectation value of scalar field here.

With the above anstaz, we find

/

v =vy=0, tan@w:g—
my, = gy/vs +v7, My = gcos O,/ v3 + v?
(A "
cos O, = — (4.46)
eZZH

We get the exact solutions as the Standard Model because we have restricted
the form of the three point amplitude in eq.(4.17). Allowing for other structures
will generalize the relation between m, and m,,. Further note that when ¢’ — 0,
we have 0, = 0 and m, = m,,. Here, we see the emergence of the custodial
SU(2) = SO(3). The three particles W=, Z all have equal mass in the limit
where the hypercharge coupling vanishes.

Note, the combination of generators in the anstaz (4.45) has the same form
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as the generators one would associate to the W* and Z gauge fields from a field
theory perspective. The generator () associated with the photon can be found in
eq.(4.41). Substituting the values in eq.(4.46), we find the familiar Q = T3 + T?
such that -V = 0.

4.4 FOUR POINT AMPLITUDES IN THE ELECTROWEAK SECTOR

As we explained in the previous section, the structure of three point amplitudes
is is severely restricted by Poincare’ invariance and little group constraints. The
construction of four point amplitudes from the three point ones requires more
work. Translation invariance is assured by the delta function in eq.(4.10) and
Lorentz invariance is guaranteed if we build the amplitude from the invariants
in eq.(4.4) and eq.(4.9). These amplitudes must be little group tensors of the
appropriate rank (or in the case of massless particles have appropriate little
group weights). This still leaves open a multitude of possibilities. But beyond
three points, we have new constraints arising from unitarity. The amplitude
must factorize consistently on all the poles, i.e. when some subset of the exter-
nal momenta goes on shell, the residue on the corresponding pole must factorize
into the product of appropriate lower point amplitudes. In particular, if the ex-
changed particle is massless, we must have

ahpga—h
M7 My

M — P2

(4.47)

Here and below, a is an index for the intermediate particle. In cases where there
are particles which may have identical helicity and mass, this index distinguishes

between them. Similarly for the exchange of a particle with mass m and spin S,
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we have

Dy | elashs ppa

Ma{ll ..... IQS}MG'
L R{Jl,...,JQS}. (4.48)

a
R{I,...Ias} ML{IL---JzS}E
M — =
P2 —m?2 P2 —m?2

For the rest of this section, we will work with four particle amplitudes with par-

ticles 1 and 2 incoming and 3 and 4 outgoing. Diagrammatically,

2
. & ehJi  ¢lasJas _ﬁj
= _p Ty Xy X lung
pr—m
1

(4.49)
At four points, there are only three possible factorization channels defined by
s=(p+p)?  u=(p1—ps)® t=(p—p)* (4.50)

We must ensure that the four point amplitude factorizes into appropriate three
point amplitudes on all these channels. We do this by computing the residues in

the s, t and u channels and

R, n R n R,
s—m?2 t—m? wu-—m2)’

where my, m;, m,, are the masses of the particles exchanged in the s, ¢, u chan-

nels respectively. This procedure will yield local amplitudes for almost all cases.
Only in the case of the W W™~ amplitude, which has one massless particle and

two particles of equal mass, this yields a four point amplitude with x factors
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which must be eliminated to get a local expression. We will go into more details
in the corresponding section.

This represents only the factorizable part of the four point amplitude. We will
find that these need to be supplemented by contact terms which depend on the
specific form of the three point vertices. We can determine these by specifying
the UV behaviour of the four point amplitudes. For the case of the Standard
Model, we demand that they do not have any terms which grow with energy.
This lets us determine the required contact terms. The complete four point am-
plitude is then written as

R, R R, ~
M, = ( + L+ ) + P(A\i, Ni),

— 2t _ a2 2
s—mi t—my u—m;

where P is a Lorentz invariant polynomial in the spin spinors corresponding to

the four particles with the appropriate number of little group indices.

4.41 WHW- - WTW~-

In this section, we analyze the scattering of WTW = — W*W ™. For the sake of
explicit calculations, we make the following choice for the 4 particle kinematics

(with particles 1, 2, 3 and 4 corresponding to W~ W* W W~ respectively.

b1 = (Ea 07 0,]7) b2 = <E7 07 07 _p> (451)

ps = (E,psiné,0,pcosb) ps = (E,—pcosf,0,—pcosh)

We will see that, based on the three point amplitudes listed in Section [4.3.1],
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the scattering can occur in the s and ¢ channels via the exchange the Z, A or h.

2py+ 3w+ 2p+ 3w+
2w Dy, W 2w+ 3w+ 2+ w Hﬂ"‘-\,f"f
N P :
Z/y H '
L R A T s oo
N
I Tw- 4y - Tw- Ay -
ly- dy- Tw- Ay -

s - CHANNEL

o 7 exchange

We can glue together two WTW™=Z three point amplitudes and construct the

residue in the s - channel.

(M7) 1) = - (A2 [12){T] (1) — () 1]+ eye) (4.53)
(MZ) (1) = mfm (—(34)(34] (Tlps — pal] + cye.) 1y (4.54)

Here I = p; + ps is the momentum exchanged and we have suppressed the little
group indices corresponding to the external particles. The residue on the s -

channel is

RsZ = (MLZ>{IIIQ}(MI§){1112}
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Evaluating this expression yields

2

RZ =t { 2(12) [12] (34) [34] (p1 — p2)-(ps — pa) (4.55)

S mév

+4((42) [24] (Lpa 1] (3lpal3] + (31) [13] (2Up1 2] (4lpsl4] — (1 > 2))

+2 (<12>[12] (4|ps[4] (3|p1 — p2[3] + (12) [12] (3[p4|3] (4[p1 — p2|4]
(1,2 & 3,4))}

The full details of the calculation are presented in Appendix [I].

o Photon exchange

This corresponds to gluing together the two W1W ~~ vertices. There are two

possibilities
_ e _ 2 € 2
e e
Mt =—zt 12> M; = —uz;, (34)
Pe b0 My = i (34)

where the superscripts indicate the helicity of the photon. Note that the defini-
tion of z-factors differs slightly from Appendix [H| due to the fact that p; and

po are now incoming momenta. The appropriate definitions are

(—=p1 + D2)ad \a N (P3 — Pa)ad \ o ~
BT iy Ma T M= 3, (—Ara)
(=p1 +P2)aca (Ps = Pa)ac, 74 N
T)‘I =Ty Aa T(_)‘I) = T3y Aa

The extra minus sign that accompanies Arg in the equations defining x3i4 is be-

cause the momentum [ is incoming. The residue corresponding to the photon
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exchange is a sum over both the possibilities in eq.(4.58).

RA = (e (12)2(341 + oy, 12]2(34)) (@57
2

We must now eliminate the x - factors in order to obtain a local expression for
this residue. There are multiple ways to achieve this and they generally result
in different expressions for the residue. It is important to emphasize that while
these forms are precisely equal on the factorization channel, they all lead to dif-
ferent expressions away from the pole. Since the physical amplitude must be the
same, they yield different contact terms. The complete details of the calculation

are delegated to Appendix [I]. Here, we present two different expressions for the

residue on the s—channel.

62

4
2ms,

R] =

{(m — p2)-(ps — pa) (12) [12] (34) [34] (4.58)

+ ((12)[12] (3] (91 — p2) (1 + p2) [4) [34] — (34) [3] (11 + p2) (p1 — p2) |4

— (s +p2 4)[8] s + p2|2) [12) (34) + (1, 2 & &4))}

where (1,2 <+ 3,4) means 1 <> 3 and 2 < 4 simultaneously. This expression
can be manipulated to look identical to eq.(4.55). This requires the use of the

following Schouten identities

(3] (p1 —p2) I'14) [34] — (34) [3[ I (p1 — p2) 4]

= 2((4]ps 4] (3] (o1 — 1) 3] — (3 > 4))
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and

(1]114][3]1|2) [12] (34) + (1, 2 <> 3,4)

— 4((42) [24) 1] p2 1] (3] pa 3] + (31) [13] (2/p1 2] (Al ps |4] — (1 > 2))

where I = p; + ps. These identities are true only on the factorization channel
I? = 0 on which we can write R} = RZ (mz = 0). This is not true away from
the factorization channel. Consequently the contact terms that must be added
to achieve the correct UV behaviour differ. This explicitly demonstrates the de-

pendence of contact terms on the specific form of the three point amplitudes.
o Higgs exchange

This is the simplest to compute. We just glue together the following amplitudes.

M, = e;;”ff(u)[lz] My = 6;‘;’VH<34> 34] (4.59)

which directly yields

62

R = %(12>[12}<34> [34] (4.60)

S
w

The complete contribution of the s— channel is

RZ R} Rh
Ms:( o+ —+ )

—m2 — 2
s—mZ s s—my
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t - CHANNEL

The computation of the ¢ - channel residues is very similar to that of the s -
channel. In fact, we can obtain them from the s— channel ones by the replace-

ment py <> —py. The results are presented below with I = p; — py.

o 7 exchange

62

RE =% {2 (14)[14] (32) [32] (91 + 1) (b5 + 12) (1.61)

w

+4((31) [13] (4] |4] (21 ps 12) — (42) [24] (1] p 1] (3] p213] = (1 > 4))

+ 2((12>[14] (2[ps[2] (3 p1 + p2 3] + (14) [14] (3| p2 [3] (2 pr + pa[2] = (1 & 4))}

e Photon exchange

The residue on the t— channel resulting from gluing together two W+W ~~ am-

plitudes is

62

4
2m3,

R} = { — (p1 + pa)-(ps + p2) (14) [14] (32) [32] (4.62)

+ ((14) [41] [(3] (1 + pa) (1 — p4) 2) [32) = (32) [3] (91 — pa) (11 + 1) |2] |

+ (1| p1 — pa|2][3]| p1 — ps|4) [14] (32) + (1, 4 <> 3,2))}
o Higgs exchange

2

R} = S0 (14) [14] (23) [23] (4.63)
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The total contribution from the t—channel is

Z Y h
Mt:( Rt +&+ Rt )

t—m2 t  t—md

CONTACT TERMS

The quantity M = M, + M, has been constructed to have the correct factoriza-
tion properties. As explained before, the behaviour away from the factorization
channels depends on the specific forms of the three point amplitudes. We can
impose further constraints on the amplitude to fix it completely. It is evident
that the high energy limit of the amplitude is ill defined due to the presence of
the % poles which leads to amplitudes which grow with energy as E*. This vi-
olates perturbative unitarity. If we insist that the theory has a well defined high
energy limit, we must add contact terms (which by definition have 0 residue

on the factorization poles) to cancel this E* growth . The form of the contact
terms can be deduced by figuring out which components of the amplitude grow
in the UV. Plugging in the 4-particle kinematics in 4.51, we find that only the

all longitudinal component grows as E*,

4E*
M — —- (e +e2) (=5 — 12 cos§ + cos 26) . (4.64)

w

The following contact term serves to kill these high energy growths

e + 2
Cowww = ——— (—(12)[12](34)[34] + 2(13)[13](24)[24] — (14)[14](23)[@B§p)
w
TWe thank the authors of [124] for pointing out to us that this contact term can also be

derived by UV-IR matching as in Section[4.3.4]
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Adding these contact terms, we find that the amplitude still grows as E?/m?,.

Demanding that the coefficient of this growing term vanishes enforces €2, =

2(e* +e2).

4.4.2 WrZ -W+Z

The 4 particle kinematics appropriate to this situation is

P1 = (El, 0, O,p) D2 = <E27 07 07 _p) (466)

b3 = (E27p sin 07 07p COsS 9) Ps = (E17 -p sin 97 07 —p COs 0)

This configuration automatically satisfies momentum conservation. We can

rewrite Ey in terms of E; by using the on-shell constraint as Fy = \/E? — m2, + m2.
We can build this amplitude by gluing together two W*+W~Z amplitudes in two

ways and by gluing a WHTW~h and a ZZh amplitude.

2z 4z 2z 3z

\p_) 177' 32 22
D) W -+ wt + h
AN '

2z
1w+ P Ps A+ 1w+ A+ ,J_’_,-HJLLLLL\

(4.67)

We present the final expressions below. The calculations are very similar to

those involved in WTW~= — WTW~.

o s—channel W - exchange
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RV = v {2<m$v —m2)%(12)[12] (34) [34] + m?, (2<12> 12 (34) [34] (p1 — p2)-(ps — pa)
+ 4] (42) [24] (11pa1] (3lpal3] — (32)[23] (1ps[1] (4]ps]4] + (1,3 > 2,4)]

+2[(12)[12] ((Alpal4] (311 — pal3] — (30 4)) + (1.2 0 MD}

(4.68)

e u—channel W - exchange

Ry = {2<mi)—m§)2<13>[13]<24> [24J+ma(—2<13> [13] (24) [24] (51 + ps)-(p2 + p)
4| — (43) [34) (1ps[1) (2(ps[2) - (32)[23] (Lipsl1] (4lpald] + (1,2 > 3.4)]

2] = (13)013] (a2l +al3] + 20 9) + (1.3 0 2.0)]) }

(4.69)

o t—channel Higgs - exchange

R = 67";@ e;j’f (23)[23] (14)[14]. (4.70)

o Contact terms

We are again in the familiar situation where the quantity

(REV+RZV R?)

— m2 —m2 o _ 2
s—my  u—mg t—my

factorizes correctly on all the factorization channels. However, the all longitudi-

nal component again grows with energy as can be seen by evaluating this using
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the kinematics in eq.(4.66). We find that the following contact term is needed

to fix this and have a well behaved theory in the UV,

62

Cwanz = ' ((12) [12](34) [34] + (23) 23] (14) [14] — 2(24) [24] (13) [13)).

w

(4.71)

Furthermore, to kill growth at O(FE?), we must also have ey €,,, m3, = €2, m3.

4.4.3 WtW~ = Zh

We next consider the scattering W+W = — Zh with the following kinematics

plll = (E17070>p1) pg = <E170707_p1) (472)

pg = (E37p2 sin 07 07p2 COs 9) pZ = (E47 —P2 sin 07 07 —pP2 COS 9)

Using on-shell constraints, we can eliminate pq, ps, F3, Fy in favor of Ej.

m2 —m? + 4E? AF? —m2 +m?
=/ Ef—my pr=/Ei—mi FE3=—~ 4Ehl LB = — 4Ef 2

We can build this amplitude by gluing together (W*W =2, Zhh) on the s—channel

and by gluing together (W*W~h, ZZh) in the u and ¢ channels as shown

2pp+ 3z 2+

2w+ \f'z p3/1 3Z Qw+ 3Z \
Z \\
S -
lw- b P 4p lw- 4y

lyw- 4y

(4.73)
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Using the familiar procedure, we get

e s— channel Z exchange

R = ZE (—(12) [12] (3|ps — pa3] - 2(28) [23] (1/pa[1] + 2(13) [13]( 2(p1 2])

(4.74)

e u— channel W exchange

RV = SwOnwn 13y [(13](2[p1 + ps|2] + 2(23) [23](1|ps[1] — 2(12) [12](3[p13])

My My,

(4.75)

e t— channel W exchange

Ry = SO0 ((95) (23] (Llpa + pal1] + 2(13) [13](2[ps[2] - 2012) [12] (3[paf3])

(4.76)

o Contact terms

In this case, the component of the amplitude with W+, W=, Z all being longi-
tudinal grows with energy. However, there are no possible contact terms that
are compatible with Loretnz invriance and the little group. The vanishing of the

growing term imposes a constraint on the couplings ey, €475

€zzm _ My, (4 77)

Cwwn my
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4.4.4 WHTW~ — hh

To compute this amplitude, we can glue together two W*W~h amplitudes in

the ¢ and u channels.

2w— 3h QW* 3}
QW* \f p/',/‘gh ,z,, 2w+ 3n
+ b p\A 4p \\\ Tw- 4p
1w+ 4y Tw+ 4p
(4.78)
e t-channel W exchange
w 6124/WH 2 1
Ry = S _mw<12> [12} - _<1|p1 - p4|1] [2|p1 - p4|2> (479)
ms, 2
e u— channel W exchange
w €L2VWH 2 1
Ry = | —ma(12)[12] = S(lpr — ps1] 2p1 — ps]2) (4.80)
2
e s— channel h exchange
Rl = Swwn S T (19) (12 (4.81)

My

Contact terms

The contact term necessary to kill the O(E?) growth is

e2

Cunnn = 3222 (12) [21] (4.82)

w

192



4.4.5 hh — hh

The only three point amplitudes which contribute to this are the hhh vertices
eq.(4.21). As opposed to the usual, Lagrangian based approach to the Higgs
mechanism, where we discover the new triple higgs vertex in the IR, here we
must include its contribution simply because it is non zero and contributes to

this scattering process.

2n 3n 2p 4y
2h ., N 3h ) / ' 2h 3}1
\\\f p'/',/ I/ ‘\ II .
° ’ : ! \\ ! N h
B ! + X 4 RN > (4.83)
e \\ L v .
1n /p. b 4y K 1n 4y
1n ’ 4y 1 ‘4h,

1 1 1
e m? < + + 2> + A (4.84)
where )\ is a contact term.

4.5 (CONCLUSIONS AND OUTLOOK

We have presented a completely on-shell description of the higgs mechanism
within the Standard Model. We see that all the physics is reproduced by de-
manding consistent factorization, correct ultraviolet behaviour and consistency
of the UV and IR. The precise relations between the masses of the W*, Z and

6., depend on the structures that have been included in the three point W+tW~Z

amplitude. Our choice of the three point amplitude in eq.(4.17) ensured that
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we reproduced the usual result. We have constructed four particle, tree-level
amplitudes from three particle amplitudes. The construction of higher point
amplitudes and extensions to loop amplitudes are the obvious next questions.
We have also restricted the particle content of the scalar sector to a single, real
scalar transforming under an SO(4) global symmetry. We have studied the
Higgs mechanism for SU(2);, x U(1)y breaking to U(1)gwm, relevant to elec-
troweak symmetry breaking. It would be interesting to extend this analysis to
completely general theories.

This work is a preliminary step in connecting modern methods in scattering am-
plitudes to the real world. There have been many developments in new ways

of thinking about scattering amplitudes. It has proved useful to think of them
as differential forms on kinematic space [34]. These differential forms are asso-
ciated to geometric structures in many cases. The physics of scattering ampli-
tudes emerges from simple properties of the underlying geometry as seen in the
few known cases [?,10,33,132,133]. It would therefore be useful to rewrite ampli-
tudes in the Standard Model as differential forms. This would lay the ground-
work for an attempt to look for hidden geometric structure within these ampli-

tudes.
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Constraints from projecting positive data

In this appendix, we derive the constraints that result from projecting positive
data. We derive the constraints that must be satisfied by 3 dimensional data
which are the result of projecting four dimensional positive data. Let us start

with n = 5. We can add one extra component and turn them into 4D data.
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The 3D z; can be thought of as coming from positive 4D data if we can add
a fourth component such that the resulting 4D data are positive. Thus at 5

points, we need to demand

(1234) > 0, (1235) > 0, (1245) > 0, (1345) > 0, (2345) > 0

The resulting system of equations can be written in the following way.

—(234)  (134)  —(124)  (123) 0 ¢
—(235)  (135)  —(125) 0 (123) | | 2
—(245) (145) 0 —(125)  (124) | | 5 | = ATc > 0(A1)
—(345) 0 (145)  —(135) (134) | | &
0 —(345)  (245)  —(235) (345)/) \cs

Thus, we can think of the 3D data, z; as coming from 4D positive data if this
system of inequalities as a solution,. The condition for the existence of a so-
lution for a system of linear inequalities is given by Gordan’s theorem which

states,

Theorem 1 FEzxactly one of the following systems has a solution.
(1) y*A >0 for some y € R®

(2) Ax = 0,2 > 0 for some non zero x € R"

Thus the condition for the existence of a solution to our system is that the null
vectors cannot have all positive entries. To find the null eigenvectors of A, we

first note that the Schouten identity in three dimensions is

(123)4 — (234)1 + (341)2 — (412)3 = 0 (A.2)
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—(234)  —(235) —(245) —(345) 0
(134) (135) (145) 0 —(345)
A=|_(124) —(125) 0 (145) (135) (A.3)
(123) 0 —(125)  —(135)  —(235)
0 (123) (124) (134) (345)
We can easily see that any vector of the form <<5ab) —(4ab)  (3ab)  —(2ab)

is a null eigenvector as a consequence of the Schouten identity. Here a and b
are any two 3D vectors. From Gordan’s theorem, the condition for the existence
of a solution and consequently the constraint on the 3D data is that not all en-
tries of the null vector are positive. Let us choose a = z; and b = z,. Then
{(512), —(412),(312)} aren’t all positive or the sequence {(125), (124), (123)}
has less than 2 sign flips. However, in this case we cannot say anything about
the sign flips of the sequences resulting from a different choice of a and b. Fur-
thermore, any one of them having the wrong flip pattern is sufficient to show
that this 3D data cannot arise from positive 4D data.

This can be easily extended beyond n = 5. At an arbitrary n, we have to
impose positivity of all ordered minors (ijkl) with ¢ < 7 < k < [. This results in
a similar system of inequalities with null eigenvectors of the form

{(-=1)¥{(n —i)ab)}, i=1,2.n—1 (A.4)

which leads to a similar constraint on the signs.
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Restricting flip patterns

Consider a pair of sequences {ay,...,a,} and {b1,...,b,} which have an equal
number of terms. Further suppose that they are connected by the Schouten
identity and satisfy a postivity condition, i.e. there exists a relation a;b;11 —
ai11b; = ab > 0. We will show that the number of sign flips in these sequences,
k1 and ks respectively, are related and that the relation depends only on the
signs of ay, a,,b; and b,.

Firstly, we note that the positivity forces each block in the pair of sequences
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ai Qi+l
to take one of the following forms.
bi biv1

+ 4+ [+ +) [- ) [- -
Type 1: ; ; :

+ - + - - 4+ -+
Type 2: ; ; ;

+ o+ - -
Type 3: ,

— + —

+ -\ [- +
Type 4: ,

+ . J—

Blocks of type 1 and 2 leave ki — ko fixed. A block of type 3 changes k; — ko by
—1 and a block of type 4 changes it by 1. Two consecutive blocks of type 3 or

4 are prohibited and a block of type 4 must follow a block of type 3 before the
sign of the bottom sequence can be flipped without flipping the sign of the top.
Thus, if we know the signs of aq,a,,b; and b,, we can determine k; — ky. We can
list the possibilities by the matrices s(a) s(an) where s(z) is the sign of z.

s(b1)  5(bn)

i ]ﬁ:kg
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Cuts of Feynman integrals

A class of integral coming from Feynman parametrizing a 1-loop diagram will

are of the form

n—1 (LX)n—D
T = / (X X) (X.QX)DP?
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We will perform a spherical contour integral in the (i) directions. Using the

transformation in (3.21), the above integral becomes,

n—1I
-1
(L{?j}X{fj} + Ly (Rw) iy — L{ij}Q{z‘j}{z‘j}Q{z’j}{?j}X{fj})
(w; w; + X QU X (@) )n=D/2

[q(lij) — /dwi dw; (X(ij)d"*:”X(ij))R

where R =det R. The integral over w;, w; to be done over S? with an implicit

factor of Qim Using 3.24, we can write the numerator as

(i) P

Since we are integrating over the Riemann sphere with the substitution w; =
re'®, w; = re”*?, only terms containing some power of the product w;w; survive

the angular integration. This yields,

o "R (n—D\[ k w2, el (1+k/2)T (=1 = D/2 —k/2+n)
0= 3 (") () iy 3T (n = D/2)

(L(ij) .X(ij))nfokﬂ
(X @) Q) X (i) ) (D+k+2-2n)/2

k=0,even

/ (X ) g5 x i)y
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Spherical contour with a quadratic

numerator

In this appendix, we sketch out the details of transformation of a quadratic nu-

merator under a spherical residue. Consider the integral in 3.25. The transfor-
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mation (3.21) changes the numerator to

-1 -1
X.N.X — detR ((RW)N{ij}{ij}(Rw) + X Quanin Qanun Neinin Qun i Qunin X @

71 . . . =N N N
—2X G5 Q51 Yunen N X T X{ij}N{ij}{ij}X{ij}>

With detR = 2,/—detQyij)ij1, we can write the cut integral as

1) _ / <X(ij)dn—3X(ij)> dw;dw; (Rw)N{ij}{ij}(Rw) + X{;j}N'X{iAj}
q 2,/—dctQpiyyqiyy 27 (wyw; + X @) Q) X (i) 3+

The first term integrates to

1 / (w.(RTN R).w) (X @ dn=3 X)) duw, dw; (XD a3 XDV Q5 iy N i)
: DX - ) 3-
2T Jwi=o (wiw; + X5, QW X i) 2\/=detQijpijn(n — 2) (X{fj}Q(”)X{fj}>

and the second one to

iJ) An—3 i N . . . ij) qn—3 ij ~ ~
1 / (XD BX DN X G N'X gy )dwidwy (XD PXOD) (X (5 N X 5)
. .. n+2 - id n
211 wy= (wiwj + X{Z«}}Q(l])X{ZA]}) 2 2./ —detQ{”}{U}n(X{;j}Q( J)X{Z’}}) 2

204



Leading singularities at 6 points

At n = 6, we can have leading singularities which correspond to the three box
diagrams shown in Figure E.1.

We label the leading singularities by the Feynman parameters of the cut prop-
agators. by associating x; with the propagator (ABii + 1). Thus (ijkl) cor-
responds to the leading singularity which results from setting (ABi — 1i) =
(ABj — 1j) = (ABk — 1k) = (ABIl — 11) = 0. In this notation, the list of

singularities is
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X N . Xe N\ X N

4
6 5 5 6 5

Figure E.1: One-mass, two-mass easy and two-mass hard singularities

One mass (1456), (3456), (1234), (6123), (5612), (2345)

Two mass easy (1356), (6245), (5134), (4623), (3512), (2461)

Two mass hard (3461), (4512), (5623)

The 1-loop, n— point amplitude of N' =4 SYM is a sum over all one - mass and
two-mass easy leading singularities. Thus the numerator of the full amplitude

is constrained to make all the two mass hard singularities vanish and to make
all the other singularities equal. The six point amplitude in momentum twistor

space must have the form

(ABX)(ABY)
/AB (AB12)(AB23)(AB34)(AB45)(AB56)(AB16)

for some bitwistors X and Y. The corresponding object in Feynman parameter

space looks like

/ (XdX)(X.N.X)
(X.Q.X)*

where the quadric Q;; = ¢;; = (i — 1ij — 1j) and the numerator is a symmetric
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tensor with coefficients to be determined. We can simplify the denominator by

making the transformation x; — y;x; with

y = (\/ 25436 \/ 415936 \/ 415926 \/CI13C]15C]26 \/ 413926 \/ 4254913 )
C]13CZ15Q267 4113412561267 Q1SQ25Q367 9%46125%6’ Q1SQ2SQS6’ q15926936

This transforms the denominator into X.QQ.X — x1x3 + x1204 + 2125 + w1204 +

ToX5+ToZe+UsT3T5+T3T6+UsTsTe With uy = qoaqis/(qasq1a), U2 = ¢35926/(q36425)
and uz = Q4GQ13/((]14(]36)-
We demand that all two-mass hard leading singularities vanish and that all

the rest are equal to 1. This places some constraints on the numerator N.
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Feynman parametrizing the 1-loop MHV

integrand

In this appendix, we provide the details of Feynman parametrizing the complete

one-loop MHV integrand for planar NV = 4 SYM. As explained in Section 3.6,
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the one-loop integrand is given by

A =3 (i)

i<j<i

More concretely, the expression for the amplitude at n points is

AMHV / ( - 1 (AB(n12 N i — lii + 1)) (x13)
AB

; (ABn1)(AB12)(ABx)  (ABi— li){ABii+ 1) ) + cyclic

ANV = / <(n123>(*12> I (ABii+1) = (12n— n)(x1n)  [] (ABii+1)

i#n,1,2 i#l,n—1,n

+ nzl AB(n120k —1kk + 1)) (x1k) [ (ABii+1) )

i#k—1k,1,n

(ABx) H ABii+1
=1

Combining all the terms in the cyclic sum,

MHV N 1 n ) )
A ~ (ABx) I (ABii + 1) (2;<*”+ ) ] (ABii+ 1) — 11+ 1 +2)

i£l—1,1,1+1

+ Xn: 2 (MEYAB(I -1l +1)N (k—1kk+1))  [] (ABii+ 1>)

k=1 I=k+2 itk—1,k,1—1,l

We can proceed with Feynman parametrization using embedding space tech-

niques. The following formula is useful

(ABY))...(ABY,_3)  rp d p .
(AB12)...(ABnl)(ABx) (Yl'dW) <Y”_3'dW> (W.W)? (F.1)
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with W = """ aglii + 1) + |ln) + 2f).

In the 5 point case numerator after performing the cyclic sum is,

(x12)(5123) (AB34) (AB45) + (x23)(1234)(AB45)(AB51) + (x34)(2345)(AB51)(AB12)
+(x45) (3451) (AB12)(AB23) + (x51)(4512)(AB23)(AB34) + (x13)(ABI3)(AB45)
+(x14)(ABT1)(AB23) + (x24)(AB2A)(AB51) + (x25)(AB25)(AB34)

+(x35)(AB35)(AB12).

Eq (F.1) adapted to this case reads,

(Yi.Y3) (W) — 6(Y2.0V) (V. IV)
(W)

which yields the following Feynman parametrization for AMV.

(x12)(5123) (—6(W34) (W45)) + (x23)(1234) (—6(W45) (W51))

T (%34) (2345) (—6(W51) (W12)) + (45)(3451)(—6(W12)(W23))
H(x51) (4512) (—6(W23) (W' 34))

+(x13) [(5124) (2345)W.W — 6(W45) ((W12)(5234) + (W25)(1234))]
(x14) [—(5123) (3452) W.W — 6(1W23) ((W51)(2345) 4 (W25)(1345))]
+(x24) [(1235) (345 1) W.W — 6(W51) ((W23)(1345) + (W31)(2345))]
(%25 [—(1234) (4513)W.W — 6(1W34) ((W12)(3451) + (W31)(2451))]

+(x35) [(2341) (4512) W.W — 6(W12) ((W34)(2451) + (W42)(3451))] (F.2)

Plugging in W, this evaluates to (3.35)
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Conventions

In this appendix, we explicitly state all our conventions. We work with the
metric signature (4, —, —, —). SU(2). (of the bosons in the UV) and SL(2, C)

spinor indices are raised and lowered using
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We raise and lower the SL(2, C) as follows
2 =€)\, g = €ga A" NG = edBS\B 5\3 = egdjxd

We use the same tensor for lowering and raising the indices of the massive little

group SU(2);, with the convention
)\OJ :)\iEJ[ )\i :)\QJEJI.

Note that the Greek SL(2, C) spinor indices are raised and lowered on the left
while the Latin little group indices are raised and lowered on the right. We also

make use of angle and square spinors which are defined as

i) o= i) = AL, (=07 =27, (G2)

[i] == [i]% = X, [if == [ilf = M.
With this the momentum can be written as,

Paa = entli) [il? = erAL3 P = e (i1 i)Y = €A 5

a’ ‘o)

We follow the convention that undotted indices are contracted from top to bot-

tom while dotted indices are contracted from the bottom to the top.

@) = A [ =[G (G.3)
Glpeli) = QT pasli)™,  lpeli) = [l595715)7
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In this notation, the Dirac equation reads

<i’pi = mi[i’ pi’i] = —mi!i>

pili) = —malil - filp: = mai
We can expand AL and \4; as explained in eq.(4.16)

Ao =Aa (T 0 ¢

= VE+p¢(p) (k) +VE - pC(p) (k)

S\dl = S\a C[Jr —7a C;
=vE+p C —VE Ca
where
1 0 0
C;_ - 9 C[_ - 9 C+I - 9 C_]
0 —1 1
(o) cos g =) —sin ge*"‘z’
a\P) = s a\P) =
sin 2ei? cos ¢
2 2
() —sin gew =0 cos g
a\P) = ) a\P) = .
cos g sin ge_’¢
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With this choice, we have have the following contractions

)‘iC}i_ = )\a )‘(‘ZCI_ = T

M= MG =X (G.8)

Furthermore, using G.4 we can deduce following relations between A\ and n

PacA® = —Mila  Paall™ =M g

pao’zﬁd =mAq padj\d = —M7y (GQ)
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Amplitudes with one massless particle

and 2 equal mass particles

Three particle amplitudes involving one massless particle and two massive par-
ticles of equal mass present a difficulty. Consider the three particle amplitude

with both particles 1 and 2 having mass m, spins S; and S and a third mass-
less particle of helicity h. In order to construct such amplitudes, it is useful to

have a Lorentz invariant object which has the correct helicity weight for parti-
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cle three and is invariant under the little groups for particles 1 and 2. Unfortu-

nately, the obvious candidates vanish,

[3|p113) =2p1.ps =0 3| p213) =2p2.p3 = 0. (H.1)

The z-factors defined in massivesh solve this problem. In our paper, we adopt a
slightly different definition and notation which we explain below. For all outgo-

ing momenta, we define

(pl - pz)aa T

(pl _p2)ad a _

2m § = iy Asa
Under little group scaling of particle 3, the helicity spinors scale as Ag — t~ )3
and A3 — tAg. It follows that 23, — ¢t 2z}, and z], — t227,. An object with

t=2" under a little group scaling. This justifies the 4

helicity h transforms as
signs on the z-factors.
We can obtain explicit expressions for the z-factors by contracting eq.(H.2) with

reference spinors £ or £2.

+ (3|p1 — p2f¢] - (€lp1 — p23]

2T T B P12 7 o (e 3)

These are the same as the conventional expressions for polarization vectors of
massless particles upto a factor of % It is crucial that the z-factors are inde-
pendent of the reference spinor. To see this, consider two different definitions of

x}, with reference spinors &; and &. Their difference,

Blpr = pol&] Bl —pol&] _ Blp —p2lBll& &) _

2m[3&] 2m(3 & 2m[3&1][3 &)
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where the first equality follows from a Schouten identity and the second from
eq.(H.1).

We can build three point amplitudes using the z-factors. Here, we will focus on
the amplitude involving two spin 1 particles of mass m and a massless particle

of helicity £1. The contributing structures are

(12?73, [12)%23,  (13)[23](12)  (13)(23)(12) o (H3)

We pick our amplitudes to be (12)%z1, and [12]? zf,. This corresponds to mini-
mal coupling. For more details about this and amplitudes corresponding to mul-
tipole moments, see [116]. We can also compare these with the vertices that we

get from the usual Feynman rules (for a photon with positive helicity)

6; “(p1—pa2)€r- € + €1+ (P2 —p3) € - 6; + €2+ (ps —p1) 6;: - €1, (H.4)
where
Asa &a LI 1 nxr JiJ 1 nxu
(Eg_)aa = [3 g] (61)03012 = E /\ial)‘lz} (EQ)ﬁlﬁ' ' = E /\éﬁl)\QZ’}'

Using these definitions in eq.(H.4) and applying Schéuten identities to eliminate

the reference spinors, it reduces to

%[12] (<21> + %) = —%[12]2 (H.5)
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The following identities are useful in showing this equality

12 =1z - U0

= (12) + 5 (1P[2) - (|Pl2),

[23][31]

@B o,

[21] = 21) + max™ mx

Similarly, for a negative helicity photon we have,

~ T2 19 ([12] L 2By [3_1]) _ T gy,

2m mx 2m
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Computation of 4-particle amplitudes

In Sections [4.4.1-4.4.2], we glue together two three point amplitudes to con-
struct the four point amplitude. In cases in which the exchanged particle has

spin 1, the following identities are useful

(eaﬂewmi — I‘j‘ﬂlﬁa> = eaﬂedﬁm% — llé‘alfw.

EIQJQIa{Ilidb}Iﬂ{Jliﬁ'j2} _ ]
(L1)

1
611J1 5
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Note that the second equality can be obtained by using a property of the two

dimensional Levi Civita tensor

611J1612J2 + 611]26J2J1 + €I1J2€J1[2 - 0

(1.2)

The following identities are useful in the computation of the 4 point amplitude

in Section [4.4.1]

and

[12] = (12) — % _ 1) - %
(34) = [34] + BQL# — [34] + [ii]i{z;]
xf_zx?;; + $1_21’§r4 = ﬁ(pl — p2) . (pg —p4).
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Generators of SO(4) and the embedding
of SU(Z) X U(l)y

The representation of the generators of SU(2)x U(1) as 4x4 matrices was also

introduced in [131]. These are derived by identifying the appropriate subgroups
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of SO(4) whose generators are

00 0 O 0 010 0 -1 0 0

00 —-10 0 000 1 0 00
Al_l ) AQZZ s AgZZ

01 0 O -1 0 0 0 0 0 00

00 0 O 0 000 0 0 00

000 -1 000 O 000 O

000 O 000 -1 000 O
By =i , Ba=i , Bs=1

000 O 000 O 000 -1

100 O 010 O 001 0

The following combinations can be used to identify the SU(2) and U(1) sub-

groups
1 1
X+:ﬁ(A1+¢A2+Bl+z‘BQ), Y+:ﬁ(A1+iA2_Bl_iBZ)7
1 1
X—:ﬁ(Al—iA2+B1—iBg), Y—ZQ—ﬁ(Al—z‘Az—BﬁiBz),
1 1
X3 = 3 (A3 + Bs) , Y3 = 5 (A3 — Bs). (J.1)

It is easy to see that they satisfy two copies of the SU(2) algebra

(Xt X ]=X° [X°XT]=X", [X’ X7 ]=-X",

Yty =v? [V vt =yt [V Yy |=-YV". (J.2)

We will associate the generators X*, X3 with the symmetry SU(2).. These are

referred to as T, T2 in the paper, such that T = 2X=*. The U(1)y is a sub-
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group of the SU(2) formed by Y+, Y? and we will set 77 = 2Y3.
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