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Abstract We construct a new stellar compact object model
in the regime of anisotropic pressure using the framework
of gravitational decoupling via minimal geometric deforma-
tion, with the particularity that the seed solution used is the
known Kohler—Chao-Tikekar cosmological solution. As an
extra condition to close the Einstein’s field equations result-
ing for this construction, we use a generalised complexity fac-
tor for self-gravitating spheres to the well-known Wyman Ila
solution. The resulting model fulfils the fundamental physi-
cal acceptability stellar conditions for a compactness factor
of a pulsar SMC X-1. The stability of the model is also inves-
tigated.

1 Introduction

The construction of new stellar compact object models is not
an easy task since we need to solve Einstein’s Field Equations
(EFE) and figure out their non-linearity. We can not avoid
this particularity since the Newtonian theory of gravitation is
obsolete in the study of these stellar remnants, so we have to
deal with the EFE. The extreme conditions in the interior of
these astrophysical objects are so significant that the use of
advanced tools of general relativity is mandatory; even other
physics branches such as plasma physics, nuclear physics,
quantum mechanics, and others are needed, but at the same
time the characteristics of these compact objects make them
into very interesting systems of study [1-5].

Since K. Schwarzschild published the first interior solu-
tion of EFE for a homogeneous perfect fluid sphere in 1916
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[6], interest in developing new stellar interior models has
grown with time until the actuality. In fact, it is an active area
of research within the general relativity and astrophysics of
stellar objects. In the first approximation, the interior of the
stellar remnants was considered isotropic fluids; however,
there are several phenomena that make this assumption inad-
equate for modelling real stellar compact objects; between
them we can mention high density ( > 10° g/cm3) [7-9],
viscosity [10-12], the existence of a superfluid core [13-15],
strong magnetic fields [16-26], several types of phase tran-
sitions [27-29], pion condensation [30-32], as so on [33—
46]. It is demonstrated in [47] that any initially isotropic
arrangement can become anisotropic due to dissipative flows,
energy density inhomogeneities, or the emergence of shear
in a relativistic fluid. Furthermore, anisotropic fluid distribu-
tions have to exist throughout the last stages of star evolu-
tion, since dissipative flows are expected to accompany these
events.

The assumption of local anisotropy inside stellar objects
dates back to 1922 in [48], where it is suggested that
anisotropy can be important in the stellar structure, as well as
suggested by Lemaitre in 1933 [49]. After, in 1974, Bowers
and Liang presented a seminal work in studying analytically
the influence of anisotropic in compact objects [50]. In this
regard, several works have been developed since this pio-
neering work, aiming to generate methods for creating new
models of stellar objects as well as to study their main charac-
teristics from the perspective of general relativity [51-122].
Among these methods, a novel framework known as Grav-
itational Decoupling (GD) has been developed to generate
new interior solutions in the regime of anisotropic pressure,
using an existing isotropic solution as a starting point (called
“seed” solution into de GD) [123-125]. This method has a
particularity of solving the problem of EFE with multiple
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gravitational sources in an analytic way; in specific, when
two sources are considered in EFE (one known and other
unknown), it is widely used in order to obtain new mod-
els through what is called minimal geometric deformation
(MGD) [126,127], as well as extended minimal geometric
deformation (MGDe) [128]. Examples of use of this method
with such purpose are [129-163].

Furthermore, the GD has been applied alongside the novel
concept of complexity for self-gravitating spheres, developed
by L. Herrera [ 164—166] in order to solve the EFE and obtain
new stellar models. This concept is based on the existence
of a scalar of structure defined through the matter sector of
an interior solution, which permits defining the simplest sys-
tem as an isotropic fluid and others as more complex, which
deviate from the simplest one since they have anisotropy and
inhomogeneity in energy density. The simplest system has
the assignment of vanishing complexity, but there are systems
that are no perfect fluid but also have vanishing complexity.
It happens since isotropy balances with the energy density.
When this factor is zero (vanishing complexity) is used as
an equation of state in order to obtain new interior solutions,
examples of research that use this vanishing condition are
[167-181].

However, the option to explore the possibility to construct
new stellar models with a non-vanishing complexity factor
is also plausible. In fact, some stellar models have been con-
structed with this characteristic; this idea was first success-
fully developed by J. Andrade and E. Contreras in [182],
where a family of stable stellar compact models were con-
structed with a complexity as a generalisation of the well-
known Tolman IV solution [183] through the use of GD via
MGD. After that, the stability of such solutions was analysed
in [184] using the gravitational cracking concept [185]. Sub-
sequently, the seminal work mentioned before, an interesting
ultracompact anisotropic star with a polynomial complex-
ity factor, was constructed also in the framework of GD via
MGD by M. Carrasco and E. Contreras [186]. Moreover, M.
Zubair presented two new families of anisotropic solutions
for static spherically symmetric stellar systems with a poly-
nomial complexity factor in [187], as well as a new analogue
of the Durgapal-Fuloria model [71] under the condition of
a complexity factor as a generalisation of the complexity of
the same Durgapal-Fuloria model in [188]. Recently, a new
family of stellar interior solutions in the anisotropic regime
of pressure using the framework of GD via MGD with a com-
plexity factor as a generalization of complexity of the Wyman
IIa solution [189] were constructed in [190]. Even an ener-
getic interaction between Einstein’s universe and a generic
gravitational source like Tolman IV complexity factor has
been studied in [191].

Given the limited number of these kinds of stellar models,
itcan open a new way to construct new stellar models that can
have an interesting behaviour since they are more complex
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than those that are constructed with the vanishing complexity
condition. Now, in this manuscript, we construct a new model
with a generalisation of complexity like Wyman Ila solution
(with n = 1) using the framework of GD via MGD with
the particularity that the seed solution is the Kohler—Chao—
Tikekar cosmological solution [192,193]. We construct this
new interior solution in order to extend the solutions with
non-vanishing complexity, as well as show another solution
obtained through the use of GD framework from a cosmo-
logical solution as a seed, which is not usual because the seed
solution habitually is an isotropic solution. Throughout this
manuscript, we will be using natural units where G = ¢ = 1.

2 Gravitational decoupling via minimal geometric
deformation

The GD solves EFE
1
Rp.v - Eg;wR = SJTT,LL\M (D

for an effective static and spherically symmetric system
whose space-time is given by the metric

ds® = e'dt* — &*dr? — r?(do* + sin® 0d¢>), )

with the particularity that
T =TS + Oy, 3)

where v and A are functions depending only on the radial
coordinate r, T,f(s) = diag [,0(”, —p¥, —p,(S), —pt(s)] is
a known gravitational source (called seed source), ®,, is
unknown source (additional source), and « is a dimensionless
constant that measures the influence of the additional source
on the first one (for detailed explanation of GD via MGD see
Ref. [126]).

Now using Eq. (2) in EFE (1), the following matter sector
is obtained:

1 1 A
0 —_
87{T0=r—2—e)‘<r—2—7), “
1 1 (1 v/
87TT1:’3—€ r_2+7 , (5)
ef)‘, V/_)\./
8nTi = - <2v” +v2 -V +2 ) . (6)
r

So we can identify the effective density

10 =p=p" +6), @)
the effective radial pressure

T =p,=p -6y, ®)
and the effective tangential pressure

T} =T} = p, = p\° — 03, ©)
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which clearly leads to the effective anisotropy

m=p —p. (10)

Now, the solution of EFE (1) when T}, = ,E‘i) (namely
when o = 0) is given by

ds® = é6di> — etdr? — r?(d6* + sin® 0d¢?), (11)

which should deform by the presence of the source ©,, in
the following way

v=_§+ag, (12)
et =e*+af, (13)

where f and g are functions only of radial coordinate r
called “deformations functions”. In this case, we shall con-
sider f # 0 and g = 0 (MGD case). Deforming the seed
metric given by Eq. (11) through f deformation and explor-
ing the consequences of the effect of ©,,, on T,ﬁ,) is the key
of idea of GD through MGD.

So if we use Eq. (13) on the system (4)—(6), we obtain two
subsystems of differential equations:

One related with T,

1 1 W
8rp® = — — N (—2 - i) : (14)
r r r
1 1 v/
) _— _ - 4
smp = &+ M<r2 n r), (15)
— i /A
Snpt(s) = eT (2\)” +v? =+ L T H ) , (16)
r

and the second one related with ®

0_
! 1 v/
870l = —f (~+2), (18)
r r
I I 2
s = —L (o v2r 22 2L (v 2). a9
4 r 4 r

Furthermore, the contracted Bianchi identities ensure that
the Einstein tensor G, = Ry, — %R guv 1s divergence-free.
Then, by Eq. (1), we can derive the covariant conservation
of the energy—momentum tensor as follows:

V,TH =0, (20)

which in turn in its explicit form is the well-known Tolman—
Oppenheimer—Volkoff (TOV) equation

dpr
dr

1 2
= —Ev/(,o—{—pr)—l——(]?r = Do) 2D
r

This equation is valuable as it describes stellar equilibrium
by balancing radial pressure, gravitational forces, and the
contribution of anisotropy.

Therefore, we can decouple the EFE system (4)—(6) into
two systems analytically, hence the name of the GD method.
It is easy to see the problem translated now as found f, for
which it is necessary to give some extra condition, such as an
equation of state or some geometric condition. In this work,
we will provide the system with a non-vanishing complexity
factor as an extra condition to solve the problem.

3 Complexity of self-gravitating spheres

In general, the concept of complexity in physical systems
is not entirely straightforward. Complex systems are often
characterised by time-dependent interactions among their
numerous components, leading to behaviour that is intricate,
non-trivial, and often surprising [194—197]. In such a sense,
the idea of complexity is not an easy task to define and mea-
sure for a particular system. Particularly, in this work, we will
employ a concept of complexity recently proposed by L. Her-
rera for static and spherically symmetric self-gravitational
systems [164—166]. The idea of such a complexity concept is
based on the existence of a particular structure scalar (called
Yrr) that appears in the orthogonal splitting of the Riemann
tensor [198,199]. This factor is explained by physical quan-
tities that define the internal structure of the physical system
from a relativistic point of view in the following way:

4w [T 4,
Vrr=gxn - 7 /0 o (mdn, 22)

namely, itis defined through the inhomogeneity and anisotropy
(IT = p, — py) of the stellar system. Moreover, this quantity
called “complexity factor” in certain ways is like an indica-
tor of “complexity” for these stellar systems since it is zero
for the most simplest system of isotropic fluid distribution
(with p = constant and IT = 0), and it can increase for the
systems that deviate from the simplest configuration. In fact,
this scalar can be considered a relative variable that indi-
cates the degree of ambiguity in our comprehension of the
self-gravitating system [191,200]. Also, it is advantageous to
express this complexity factor in terms of the interior solution
metric as

e

Vrp = T (VQ+rx —rv)—=2rn"), (23)

which can be found using Eqs. (4)—(6) in (22).

It is worth noting that Eq. (22) reveals that there may
exist systems that may have vanishing complexity (namely,
Yrr = 0) when the inhomogeneity of the energy density is
compensated by anisotropy in the following way

.
1
21 = — / n’p (n)dn, (24)
0

r
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which reveals that there are systems with this condition of
zero complexity but that are not necessarily isotropic fluids.
In fact, recently three intriguing formalisms have been cre-
ated in order to construct solutions with this particular prop-
erty [201-203], which makes it a novel and useful tool for
building new interior solutions. However, this is not the only
way in which the concept of complexity is useful for con-
structing new interior solutions, but rather it is also possible
to assign particular values of non-zero complexity factors,
as, for example, generalisations of already known interior
solutions.

4 New stellar model

In this section, we will apply the GD through the MGD, start-
ing from the cosmological solution of Kohler—Chao-Tikekar
as a seed solution and also making use of an extra condi-
tion of the Wyman Ila type complexity factor to find a new
anisotropic interior solution.

First, the metric of the cosmological solution of Kohler—
Chao-Tikekar is given by

¢’ = A+ Br?, (25)
2
et = ﬂ (26)
A+ Br?’

where A and B are constants. After that, we will obtain the
deformation function f through the use of Eq. (13) in (23)
giving us the following differential equation:

1 2 -
v,f,+2(v,,_\)_+v_)f+2e_
r r o

. l)/ U/2 M/U/ 4
N A +=Vrr =0, 27)
r r 2 o

which can be solved if we know the functions v, u and the
value of VrFr. The values of v and w are done by the seed
metric (25) and (26), and the value of )y is obtained as a
generalisation of the complexity factor of the known solution
of Wyman Ila (with n = 1) given by the following metric
components

e’ = (ap — bor?)?, (28)
e =1+ cor’(ag — 3bor?) 32, (29)

where ag, by and ¢ are constants. So using these metrics in
(23), the following complexity factor is obtained:

Vyp = 2Bcr? (30)
= (A =3B
which can generalise easily as
2
arr
Vrr = 575 (3D
(az + a3r?)

@ Springer

where a; is an arbitrary constant with dimension of length_4,
ay is an arbitrary dimensionless constant, and a3 is an arbi-
trary constant with dimension of length~2. Therefore, using
this value of YVrr given by (31) in Eq. (27), we obtain

f= (A+Br2)

3ay 1 :|
X — +co |,
[2a3 Ba (ar + a3r2)2/3 (A+2Br?)a 0

(32)

where ¢y is an integration constant, which for purposes of
regularity of the effective matter sector, it has to be

_ 2a§/3a33 —3a1A

co =
2aa§/3a3AB

(33)

Now, using the values of (32) and (26) in Eq. (13), we obtain
the effective space-time of our new stellar model

e’ = A+ Br?, (34)

(az-{-a3r2)2/3 (2a§/3a3B—3Aa1)
e’ 73 + 3ay
_, Aa;

et = ) (35)
2a3B (az + a3r2)2/3

and with these metric components in EFE (4)—(6), the effec-
tive matter sector is obtained as

- aj02(r) 6B
a, “a3Br2o1(r)3/3 A
= — , 36
P 6 (36)
3 (alAggm — 2By 3a1r293<r>>
pr=——" = (37)
16772
5Br2—2A _ _ 9 ) 6B
i (1991(r)5/3 &t 03Q1(7)5/3) A
= , 38
Pt 167 (38)
where 01 (r) = a3 +azr?, 02(r) = —Aa§/3a3r2 + 3Aa§/3 —

3401135 + 503 ayBr + 945

1 1
r)=—5 — —>73.
03(r) ag/z 0123

Br? —9Br?g(r)° and

Furthermore, it is necessary to ensure the continuity of the
space-time of our system on the surface of the stellar compact
object, namely, the space-time given by (34) and (35) must
match smoothly with the Schwarzschild exterior solution

oM oM\ !
ds? = <1 - —) dt* — <1 - —> dr?
r r
—r?d6? — r*sin” 0d¢?, (39)

where M is the total mass of the stellar compact object. Also,
we have to ensure that the effective radial pressure matches
with zero pressure outside the stellar object, namely

Prir=r =0, (40)
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where R is the radius of the compact star. So applying these
conditions to our model we obtain

2a2/3a ar + azR? 2/3 M2R™*
a= M . (6/5[ : ) 2\2/3 2/3\’ S
(1= 3 (1= %) (@2 + a8 —a3F)
A—1_ %M 42)
M
B = e (43)

From the above, it follows that % #* % and % * %.

5 Physical analysis of the obtained model

In this section, we analyse the physical behaviour of our
model using the compactness factor of the pulsar SMC X-1
(u = = 0.19803) [204] as a reference. The parameter a;
is held constant at 0.50, while the parameter a3 is varied.
Specifically, we consider the following values for a3 = 0.70
(black line), 0.71 (blue line), 0.72 (red line), and 0.73 (violet
line). These constants have been calibrated to yield a physi-
cally acceptable interior solution, though they were not ini-
tially assigned based on specific physical reasoning. How-
ever, this flexibility allows readers to experiment with alter-
native values, including varying compactness, making the
model highly adaptable and applicable to systems beyond
SMC X-1. This analysis is necessary to determine the plau-
sibility of the new model, as it behaves like a compact star
supported by the anisotropic fluid. Therefore, we need to
check whether the model satisfies the physical acceptability
conditions detailed in [205].

In this regard, we plot the behaviour of both metric compo-
nents (34) and (35) in Figs. 1 and 2. We can observe that both
potentials are regular and positive definite inside the stellar
object. Moreover, the temporal component ¢” is a monoton-
ically increasing function of the radial coordinate r, while
e~* decreases monotonically with r. Also, we verify that
e”|,—o = constant and e ~*|,—o = 1. This behaviour of the
metric coefficients is consistent with the interior space-time
of a real stellar object.

After this, we plot the profile of the matter sector of our
new model {p, p,, p;} in Figs.3, 4, and 5. We observe that
these physical quantities are regular and positive in the inte-
rior of the stellar object. They are monotonically decreasing
functions of r, having their maximum values at the stellar
centre. Note that the radial pressure vanishes at the stellar
surface, which is consistent with the fact that there is nothing
outside the stellar system. Also, we checked that p; > p,
inside the stellar system. However, both pressures are equal
just at the stellar centre (see Fig.6). This behaviour of the
matter sector is exactly what would be expected inside a
realistic stellar object.

0.60+
0.55+
N
© 0.50¢

0.45¢

0.40°L.

r/R

Fig. 1 Temporal component of the metric

1.0/
0.9'

T

. 0.8

0.7}

0.6 ‘ ‘ ‘ ‘ "
0.0 0.2 0.4 0.6 0.8 1.0
r/R

Fig. 2 Radial component of the metric profile

0.09¢

0.08;

0.07;

0.06+

0.05¢

0.04¢

Fig. 3 Density energy profile

On the other hand, from an energetic point of view, it is
confirmed that our interior solution satisfies the dominant
energy conditions (DEC)

p > prand p > p;, (44)

and as well the strong energy condition (SEC) (see Figs.7,
8,9)

0 > pr+2p;. (45)

@ Springer
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0.006/ 0.08
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) T 0.06/
Q
0.002¢ 0.05}
0.04;
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Fig. 5 Tangential pressure profile r/R
Fig. 8 p — p; profile
0.0015¢
0.07
s 0.0010+
I . 0.06}
Q Q
~
0.0005¢ I
|°~ 0.05-
Q
0.0000/ - ‘ 0.04"
0.0 0.2 0.4 0.6 0.8 1.0
R
r/ 0.03:. . . . . E
. . 0.0 0.2 0.4 0.6 0.8 1.0
Fig. 6 Local anisotropy profile R

Thus, our interior solution effectively models a compact star
supported by an energetically realistic anisotropic fluid.

Also, we verify if the sound velocities inside the stellar
object do not surpass the causal limit of light velocity in
vacuum (¢ = 1), namely

dp;

d
Pro land0<v = [P -1, (46)
dp

0

0<v =

It is clearly verified in Figs. 10 and 11. Also, we verify that
the profile for redshift function z = g, 2 _ 1 of our model

@ Springer

Fig. 9 p — p, — 2p; profile

is a monotonously decreasing function of radial coordinate
r (see Fig.12). Likewise, we can observe that the redshift
value on the surface is far from exceeding the universal limit
of Zpouna = 5.211 [206].

With all the acceptability conditions verified for our
model, we can confidently infer that it is a physically relevant
model capable of representing the compact star system SMC
X-1. While our analysis focused on the SMC X-1 system, the
developed model is adaptable to other compact systems with
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Fig. 10 Radial sound velocity profile
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Fig. 11 Tangential sound velocity profile
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0.45; 1
N

0.40¢ ]

0.35¢ 1
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0.0 0.2 0.4 0.6 0.8 1.0

Fig. 12 Redshift profile

different compactness factors. This flexibility enhances the
applicability of our model to a broad range of stellar systems.

Additionally, it is important to study the stability of the
model against various criteria, such as convective motion,
gravitational anti-collapse, and gravitational cracking, in
order to assess its overall stability.

Thus, in Fig. 13, we plot the profile of o” in order to anal-
yse the response of the stellar object in the presence of the
convective fluid movement in its interior. We must then con-
sider the criterion that, for the fluid inside the stellar object to

0.1} /\
0.0

-0}

-0.2}

-0.3¢

0.0 0.2 0.4 0.6 0.8 1.0
r/R

Fig. 13 p” profile

satisfy the buoyancy principle, it should meet the following
condition [207]:

o’ <. 47)

By satisfying the above condition, we ensure that any fluid
element will tend to return to its original position, indicat-
ing stability against convection. As a result, the fluid element
does become buoyant and does not continues to sink. Sim-
ilarly, Fig. 13 illustrates the contrast between the system’s
highly stable inner layers and the less stable outer layers.
This fluid behaviour is crucial for preventing mass accumu-
lation at the centre of the stellar system, thereby avoiding
a potential gravitational collapse caused by the buildup of
mass that does not fulfil the buoyancy principle.

Also, we plot the profile of the adiabatic index ' =
% v2 in Fig. 14 in order to analyse its behaviour, and deter-
mine if the model is stable against gravitational collapse. For
such purpose, itis necessary that the adiabatic index I should

be greater than a critical value I'. = %‘ + %u, namely

r>T.. (48)

This essential value is contingent upon the internal structure
and force balance of the stellar compact object. Otherwise,
a minor disturbance can develop exponentially and cause
gravitational collapse if I" falls below the critical threshold
[".. This is because there is insufficient pressure response to
compression to resist gravitational forces (for detailed infor-
mation about this condition see Refs. [208,209]). Thus, we
have checked that for the values of parameters a> and a3
set in this work, our model is unstable against gravitational
collapse in the inner regions of the stellar compact object.

Furthermore, it is worth determining the potential zones
within the stellar compact object that are stable against grav-
itational cracking, that are areas where the appearance of
fractures is not likely. These are given by the fulfilment of
[210]

—1<v’-vr<o. (49)

@ Springer
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10/

0.0 0.2 0.4 0.6 08 1.0

Fig. 14 T profile
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0.04+
0.02+

2
"

I 0.00
—0.02
—0.04
—0.06

0.0 0.2 0.4 0.6 0.8 1.0
Fig. 15 v,2 — vf profile

Thus, we plot the profile of vt2 - vr2 in Fig. 15, from where
it is easy to check that the stable zones coincide with the
inner shells of the stellar compact object. This suggests that
the outer layers of the stellar compact object are prone to
fractures, while the inner layers may indicate the presence of
a solid core surrounded by a less rigid crust.

6 Discussion and conclusions

The complexity of the EFE poses challenges in finding
analytical solutions for static, spherically symmetric space-
times. This has driven extensive research in theoretical stellar
astrophysics to develop novel stellar models. Several meth-
ods have been proposed, with the GD approach being a signif-
icant breakthrough. This approach enables the determination
of exact solutions for the interior structure of stellar configu-
rations using a particular linear transformation that converts
the EFE into a new reference frame.

The MGD approach provides a powerful technique to
derive new interior solutions from known seed solutions. By
applying MGD to a static spherical space-time, the EFE can
be separated into two distinct sectors corresponding to the
original and additional gravitationally coupled fluid sources.

@ Springer

At this moment, we need to brief the GD approach before dis-
cussing the current research work. This approach was initially
proposed to extend the domain of an isotropic gravitational
source, which could be extended by adding the Lagrangian
density corresponding to any other fluid source into the action
function. The only point we need to highlight here is that
both the original and additional fluid sources must be grav-
itationally coupled with each other. Many such works have
been done in the literature where the isotropic solutions are
extended to the anisotropic domain. The resulting extended
solution exhibits modifications to the original seed solution,
which can be analysed to understand the impact of the addi-
tional gravitational sector and the decoupling parameter on
the behaviour of the effective system. However, in the cur-
rent study, the seed source is not taken to be isotropic interior
fluid; rather, it is an isotropic fluid cosmological configura-
tion.

The significance of anisotropy in interior solutions cannot
be minimized, as extensive cosmological studies over the past
two decades have increasingly indicated that our universe
exhibits anisotropic characteristics. Observations, such as the
subtle deviations from isotropy identified in inhomogeneous
Supernova la studies, support this notion [211-213]. In addi-
tion, various inconsistencies have emerged from different
observational data, including findings related to radio sources
[214], gamma-ray bursts [215], etc., which collectively rein-
force the idea that isotropy may not be a valid assumption
in cosmological and interior models. Observational evidence,
along with various theoretical models, strongly indicates that
the universe exhibits anisotropic properties. This realisation
emphasises the necessity of developing anisotropic solutions,
which are crucial for enhancing our understanding of various
cosmic evolutionary stages.

The complexity factor proposed by Herrera [164—166]
represents a significant advancement in understanding the
behaviour of self-gravitating systems within the framework
of general relativity. Introduced in 2018, this concept quan-
tifies the complexity of a static, spherically symmetric sys-
tem by assessing the relationship between energy density
inhomogeneity and pressure anisotropy. The complexity fac-
tor is derived from the orthogonal splitting of the Riemann
tensor, specifically utilising a traced-free scalar known as
YrF. This scalar serves as an auxiliary condition to evaluate
the deformation function of stellar configurations, establish-
ing that simpler systems with uniform energy density and
isotropic pressure have a zero complexity factor. In contrast,
systems with non-zero complexity factors indicate a depar-
ture from this simplicity, reflecting the intricate interplay of
local anisotropies and inhomogeneities. Herrera’s framework
not only enhances the theoretical understanding of compact
stellar objects but also provides a robust tool for analysing
their structure and evolution. By facilitating the exploration
of various gravitational scenarios, including those involving
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dissipative fluids, the complexity factor opens new avenues
for research in astrophysics, allowing for a more nuanced
examination of gravitational phenomena and the stability of
stellar configurations under diverse conditions. This innova-
tive approach underscores the importance of complexity in
gravitational studies, offering a fresh perspective on the intri-
cate nature of self-gravitating systems and their underlying
physical principles.

Following the above discussion, we have derived an
anisotropic extension of a particular cosmological seed solu-
tion within the context of the vanishing complexity factor. For
this, we have considered a static spherical spacetime filled
with an isotropic cosmological fluid distribution. We have
then added an extra gravitational source ©,,, and formulated
EFE that describe the overall fluid configuration, encompass-
ing both the seed and additional sources. Subsequently, we
have divided EFE into two separate sets utilising the MGD
technique. Each set of equations effectively corresponded to
its respective parent source. For the initial set that pertains
to the seed source, the Kohler—Chao—Tikekar cosmological
solution has been considered. Afterwards, we have formu-
lated the deformation function using the complexity factor
of the known solution of Wyman IIa. Once the function f
has been obtained, we determined the effective matter vari-
ables through the system (7)—(9). The Schwarzschild exterior
solution has also been utilised to find the constants associated
with the considered seed solution.

For graphical analysis of the developed model, we have
adopted the compactness of a pulsar SMC X-1. The temporal
and inverse radial metric components have shown increasing
and decreasing profiles, respectively (Figs. 1, 2). They are
also consistent with their required condition at the centre,
i.e., €"|,—o = constant and e *|,—¢ = 1. The energy density
and both components of pressure have been found to be max-
imum in the core of the considered pulsar and monotonically
decreasing outwards (Figs. 3,4, 5). Also, the radial pressure is
observed to vanish at the spherical boundary. Since both prin-
cipal pressures are equal at the centre, their difference, known
as anisotropy, is null at this point and positive otherwise,
which indicates that there is enough pressure to counterbal-
ance the gravitational force (Fig. 6). The DEC and SEC have
been analysed and found to be positive in the whole domain,
thus we have claimed our model to be viable (Figs.7, 8, 9).
Both sound speeds have been lied in the acceptable range
(Figs. 10, 11). We have also observed the gravitational red-
shift, admitting maximum value in the core and decreasing
towards the boundary (Fig. 12). The factor p” is shown to
be negative at the center and increasing outwards (Fig. 13).
Finally, we have also analyzed the stability using adiabatic
index and cracking approach, and found the resulting interior
model to be stable in the inner shells, however it is suscepti-
ble to experience a possible gravitational collapse (Figs. 14,
15).

It is worth mentioning that since the local anisotropy
in Fig.6 is not a monotonically increasing function, it is
possible to associate it as a symptom of instability. Exam-
ples where a similar situation occurs have been found in
[160,162,170,216]), where the anisotropy is indeed not a
completely monotonically increasing function, and which at
the same time is directly related to the stability of the sys-
tem. It is expected that the anisotropy plays an important role
since it appears explicitly in the stellar equilibrium Eq. (21).

The above idea is reinforced since the anisotropy of our
model experiences adecrease around»/R = 0.6, which coin-
cides precisely with the place where there is a distinction
between stable internal zones and unstable external zones
regarding the convective motion inside the stellar object
(see Fig.6). Likewise, this is related to the v> — v? profile
(Fig. 13), where we observe that the stable zones regarding
gravitational cracking coincide with the internal layers, while
around the same radius, /R = 0.6, the external layers of the
stellar model are prone to fractures; that is, their configura-
tion tends to break and compress due to radial forces directed
inwards. Therefore, we can conclude that the external regions
of the model exhibit instability, the internal regions remain
stable. This balance of stability in the core makes the model
suitable for describing the pulsar SMC X-1 that can after col-
lapse of the outer layers, the core of the progenitor star com-
presses into an extremely dense object. Such core can consist
of exotic states of matter, including neutrons, protons, pos-
sibly hyperons, and even more exotic particles at extremely
high densities [14,217-219]. Despite the challenges in the
outer layers, the model’s ability to maintain stability in the
inner regions suggests it can effectively capture the key phys-
ical properties of this pulsar. However, we must not forget
that the model presents instability with regard to gravitational
collapse, so that even though the stellar compact object has a
very solid and stable core, it is also prone to instability in the
face of strong radial oscillations, which could presumably
generate a possible collapse.

Expanding the boundaries of our scientific understanding
often requires looking beyond the conventional and embrac-
ing novel approaches. In the realm of theoretical astro-
physics, the concept of GD has shown great promise, and its
potential applications extend far beyond the realm of typical
solutions. By delving into cosmological solutions under com-
plete geometric deformation, we can uncover new avenues
for scientific inquiry and push the limits of our current knowl-
edge. This approach not only broadens our horizons but
also opens up the possibility of discovering groundbreak-
ing insights that could revolutionise our understanding of the
universe and the fundamental forces that govern its evolution.
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