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Titre : Autour de Supergravité par l’Anomalie Composée et l’Amplitude en Théorie de Cordes
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Résumé : Dans ce projet de thèse, nous étudions le rôle joué par l’anomalie dû à la connexion com-
posée dans les théories de supergravités dans l’espace-temps à huit dimensions. Ce genre d’anomalie
est en effet engendrée par la structure quotient d’espace des champs moduli de la supergravité là où
le nombre des super-charges posent des contraintes rigoureux. Notre accomplissement principal est de
proposer des termes supplémentaires pour annuler cette anomalie dans la théorie de supergravité en
huit dimensions avec seize supercharges. Ces termes, en outre, peuvent être considérés comme une
manifestation des corrections provenant de la théorie de super-cordes et nous montrons par des calculs
explicites qu’une amplitude sur une boucle dans la théorie de cordes correspondante reproduit ces ter-
mes. Motivés par cette démonstration de la cohérence entre la supergravité et la théorie de cordes, nous
proposons un seuil mathématique pour la compactification de ces théories dans huit dimensions vers
six dimensions sur une sphère en présence des branes de co-dimension 2. Ceci est une simulation de
compactification sur une surface K3 à l’aide des branes. Nous montrons que la présence d’anomalie
composée ne peut être justifiée que par des branes de co-dimensions deux. Nous discutons la dualité
entre la théorie Heterotic et la théorie-F sous la lumière de 7-branes et puis la compactification des su-
pergravités de dix dimensions sur K3 en présence des 5-branes. Tous cela nous ouvrent nouvelles voies
pour étudier des aspects non-perturbatives de la théorie de cordes. Nous concluons avec un calcul sur
deux boucles dans la théorie de cordes Heterotic de dix dimensions qui n’était pas beaucoup exploré
dans la littérature.
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Title : Composite Anomaly in Supergravity and String Amplitude Comparison
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Abstract : We examine the structure of composite anomaly in maximal and half-maximal super-
gravity theories especially in eight space-time dimensions. The number of super-charges dictates the
structure of the coset space of the moduli fields of the theory which in turn engenders the composite
anomaly in such theories. Our main achievement lies in proposing counter-terms for such anomalies.
These terms are of stringy nature and we show by explicit 1-loop amplitude calculations in correspond-
ing string theories that those counter-terms are consistently provided by string amplitude. In the light
of non-perturbative higher dimensional theories like F-theory, the anomaly cancelling counter-terms are
seen to be related to co-dimension two branes e.g. 7-branes. We then use these results of 8-dimensional
theories to provide for supergravity theories in six-dimensions by compactifying on a sphere in the pres-
ence of 5-branes. This is in fact a simulation of K3 compactification and our knowledge of composite
connection provide us with threshold conditions to achieve such compactifications. All these analysis
provide for greater insight into the non-perturbative regime of string theory. We then conclude with a
calculation of 2-loop Heterotic string amplitude which has been very less explored in the literature.
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Résumé en Français

La théorie quantique des champs (QFT) a reconnu un énorme succès en étant le
moyen pour décrire la structure microscopique des interactions fondamentales de la
nature, notamment l’interaction électrofaible et l’interaction forte qui constituent le
modèle standard des particules élémentaires. Cet accomplissement de la QFT tente à
prédire une description quantique de l’interaction gravitationnelle. Ce dernier, au
niveau macroscopique, est décrit par l’équation d’Einstein dont la conception est
fondée sur l’idée de la courbure de l’espace-temps. Par conséquence, une quan-
tification de l’espace-temps semble conceptuellement non-faisable. Néanmoins, la
théorie quantique de la gravité propose l’existence d’un quanta, nommé graviton,
comme porteur de l’interaction gravitationnelle dont la superposition cohérente re-
construit la courbure d’espace-temps : c’est dans l’esprit de la théorie quantique de
l’électromagnétisme, dont le porteur d’interaction est le quanta, nommé photon dont
la superposition cohérente donne lieu aux champs magnétique de puissance gigan-
tesque. La théorie quantique de gravitation subit un défaut sérieux pour être clas-
sifiée comme une « bonne théorie quantique des champs » ; cette théorie n’est pas
renormalizable. Ce défaut provient du fait que le quanta d’interaction, le graviton,
en soi-même engendre la courbure de l’espace-temps. Or, dans des interactions avec
d’autres particule, la prescription traditionnelle de quantification à la Feynman im-
pose l’interaction dans un point particulier dans l’espace-temps. Cette prescription
n’est donc point conforme avec la nature de graviton. La théorie de cordes propose
un point de vu radical pour éviter cette difficulté de la gravité quantique : elle re-
jet l’idée du point mathématique des particules naturelles et la remplace par une
seule corde. L’axiome est que les particules observées dans les microstructures des
interactions fondamentales ne sont que des différentes modes de vibrations de cette
corde. Les interactions entre différentes particules sont vues comme interactions en-
tre les cordes en différentes modes de vibration dont la description à la Feynman soit
décrite par une membrane dans l’espace-temps. C’est alors la singularité provenant
de la localisation du graviton soit remédiée. De plus, la théorie des cordes, en outre
qu’une théorie quantique de gravitation complètement renormalisée, est aussi une
théorie qui a l’essence d’unifications des quatre forces fondamentales de la nature.
Le besoin pour trouver une telle unification est bidirectionnelle. D’une part, le mod-
èle standard n’est pas une théorie complète en soi-même, c’est qui soit signalé par le
problème de saveurs lourdes, le problème de matière noire et l’énergie noire. D’autre
part, la théorie de gravitation basée sur l’équation d’Einstein ne peut pas expliquer
l’entropie des trous-noirs. C’est donc une théorie plus générale semble exister dont
une approximation soit le modèle standard et une réalisation macroscopique soit la
description Einsteinienne de la gravité. La versatilité de la théorie des cordes semble
apporter des réponses aux toutes ses questions. Cependant la « limitation » dite de
cette théorie soit sa richesse. En effet, cette théorie vit dans un espace-temps de di-
mension dix. Pour qu’on puisse tirer des conclusions sur la phénoménologie, il faut
compactifier les six dimensions spatiales sur une variété compactes. La propriété
géométrique contrôle fortement le modèle final, aperçu après la compactification.
Notamment, la brisure de la supersymétrie, le nombre des champs scalaires sans
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masse etc. sont fortement dictés par la structure géométrique de cette variété com-
pacte. L’une des voies principales dans la recherche dans la théorie des cordes est
d’étudier la propriété géométrique de la compactification.

Dans l’espace-temps de dix dimensions, il existe cinq différentes théories des
cordes. Bien que cela semble gênant en face de la philosophie de l’unification, en
tenant compte aux effets non-perturbatifs, il ne reste qu’une seule théorie, définie
dans l’espace-temps à onze dimensions, la théorie M qui engendre, dans les régimes
perturbatifs les cinq théories des cordes. Cette relation entre différentes théories des
cordes et leur origine non-perturbative commune depuis théorie-M est appelé la du-
alité dans la littérature de la théorie des cordes.

Etant donné que la théorie des cordes est une généralisation des interactions de
point de vu des « particules » vers des objets ayant des dimensions finis, dans une
échelle d’énergie très faible là où on ne peut pas percevoir la longueur physique des
cordes élémentaires, la physique semblera celle des interactions particulaires. C’est
donc dans la basse énergie, en dimension dix, les actions effectives des théories des
cordes reproduisent celles des théories quantiques de gravité avec supersymétrie,
dite la supergravité. Cette correspondance entre la théorie des cordes et la super-
gravité n’est pas aussi évident lorsqu’on compactifie certaines dimensions spatiales.
L’ensemble des théories de la supergravité admissible dans un espace-temps de di-
mensions strictement inférieurs à dix soit plus large que des théories de supergrav-
ités qui peuvent être récupérées depuis la compactification des théories des cordes.
Cette identification d’origine permet de suivre la compatibilité et les contraintes sous-
jacents des théories des cordes ainsi retrouver les options des supergravités plus
rigoureuses dans différents dimensions d’espace-temps. L’un des buts principaux
de ce projet de thèse est de comparer l’action effective de la supergravité avec celle
obtenue depuis la limite de basse énergie de la théorie de corde en huit dimensions.

Les calculs des interactions du côté de la théorie des cordes sont plus faciles à ef-
fectuer par rapport aux calculs des amplitudes des interactions dans la supergravité
et donc il est plus facile à tirer les corrections quantiques aux équations classiques
de la gravité depuis la théorie des cordes. Néanmoins, ces corrections quantiques
dans l’action effective de la supergravité soit plus difficile à expliquer de manière
physique. Dans ce projet de thèse nous comparons l’amplitude entre les gravitons
par les méthodes de calcul perturbatif dans la théorie de cordes et les corrections
quantique dans la théorie des supergravités qui sont de l’origine d’anomalie dans
ces dernières théories quantiques des champs. Effectivement, les anomalies dans
une théories quantique des champs est le manque de la symétrie classique du sys-
tème. Les puissants théorèmes d’indices donnent les corrections quantiques à ajouter
à l’action effective pour remédier ce manque de symétrie. Nous montrons par des
calculs explicits qu’en des théories des supergravités en huit dimensions avec seize
super-charges, il existe une anomalie engendrée par la structure quotient d’espace
de moduli et puis la correction quantique qu’on doit ajouter à l’action effective est
reproduit par le calcul d’amplitude dans la théorie des cordes correspondantes.

L’anomalie dont on vient de parler précédemment dans la supergravité est un peu
particulier. Nous considérons plutôt les théories des supergravités ayant des champs
moduli paramétrisant l’espace quotient SL(2,R)/U(1). La théorie en considération a
la symétrie globale SL(2,R) pour les participant bosonique tandis que les fermions
acquièrent une charge sous la jauge Abélienne U(1). Ces fermions chargés donne
lieu aux interactions ou amplitudes a une boucle qui ne conservent pas la symétrie
U(1) des fermions. On ajoute à l’action effective un terme dont la variation annule
le résidu anomal provenant des fermions chargés. Or, la jauge Abélienne ne dépend
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que sur un facteur de phase si bien que le terme correctif, contenant le même fac-
teur comme un champ de la théorie ne peut pas être considéré comme une correction
physique. On regard alors la variation des paramètres de la partie SL(2,R) en tant
que des fonctions du facteur de la phase Abélienne. En autre, la quantification de
charge dans la théorie des cordes correspondante brise la symétrie SL(2,R) à un
sous-groupe discret SL(2,Z) et donc on remplace le facteur de phase dans le terme
correctif par une fonction modulaire SL(2,Z). En vue de cette construction du terme
correctif, on baptise ce dernier comme le terme correctif d’anomalie composée.

Nous avons rencontré ce genre de démarche par Green et Gaberdiel qui ont tester
la théorie de supergravité type IIB dans l’espace-temps à dix dimensions et d’où ils
ont tenté à tirer une relation avec la théorie-F, une généralisation non-perturbative
de la théorie de corde de type IIB. Cette dernière théorie est une théorie qui décrit de
manière non-perturbative la réaction des éléments nommé 7-branes sur la géométrie
de l’espace sous-jacent. Le résultat de cette analyse nous a tenter à proposer un cou-
plage de type Wess-Zumino pour les 7-branes dans le régime non-perturbatif. Pour
cela il nous faudrait examiner la théorie de supergravité en huit dimensions avec
seize supercharges car c’est la théorie qui décrit l’interaction (gravité) quantique de
la matière reposant sur les 7-branes.

Nous donc commençons notre investigation sur la théorie de supergravité D=8,
N=1 pour pouvoir extraire les informations sur la propriété non-perturbative de
7-brane ce qui nous permettrai à gagner plus d’informations sur la théorie-F. La
difficulté formidable devant nous est qu’il y a peu d’outils mathématiques à notre
disponibilité pour explorer le régime non-perturbatif de la théorie quantique de grav-
ité. Heureusement, la théorie dont nous explorons, permets d’avoir une version
duale purement perturbative, la théorie Heterotique compactifiée sur un tore. La lim-
ite supergravité de cette théorie a pour son espace de moduli l’espace SO(2, n)/SO(2)×
SO(n). Cette espace n’a pas une partie SL(2,R)/U(1) pour pouvoir posséder une
anomalie composée. Néanmoins, le groupe SO(2, n) possède un sous-groupe SL(2,R)
et la partie SO(2) qui est équivalent avecU(1) rend les fermions de la théorie chargés.
Ce dernier est encore responsable pour une anomalie dans la théorie. Cette fois ci, on
ne peut pas écrire toute de suite un terme pour annuler l’anomalie composée dû au
SL(2,Z) car ceci n’est pas le groupe de quotient dans ce cas mais on peut restaurer
la partie SL(2,Z) de la symétrie SO(2, n) de la théorie. Nous examinons l’anomalie
composée dans le cas de n=18 c’est-à-dire la théorie Heterotique compactifiée sur
un tore sans ou avec les lignes de Wilson ce qui donne lieu aux groupes de jauges
SO(32), E8 × E8, SO(16)2 et SO(8)4.

Après avoir calculer les termes dû à l’anomalie composée, nous essayons à con-
clure leur connexion avec la théorie-F. Pour la première observation, nous démon-
trons que ces termes sont aussi bien reproduits par un calcul sur un boucle dans la
théorie de cordes. Ce genre de calcul dans la théorie de cordes n’est pas neuf dans la
littérature mais une interprétation physique par la notion d’anomalie dans la super-
gravité est un apport original que nous avons porté. Pour la deuxième observation,
nous démontrons que ces termes d’anomalie sont fortement liés aux fermions rési-
dent sur 24 les 7-branes qui sont les éléments dans la théorie-F dans ce cas. En effet,
nous démontrons une relation avec les modes de cordes tirer entre les deux de ce
genre de branes. Cependant, nous ne pouvons point conclure comment ce genre de
termes soient liés aux couplages de type Wess-Zumino de 7-branes.

Dans la course de l’investigation de la théorie Heterotique compactifiée sur un
tore, nous avons procéder à un genre de compactification particulière de la théorie-F.
En effet, la théorie Heterotique compactifiée sur un tore est duale avec la théorie-F
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compactifiée sur une surface K3. Si bien que la théorie-F soit génériquement non-
perturbative, nous ne pouvions point compactifiée cette théorie sur une surface K3
mais on procède différemment. Nous utilisons du fait que la théorie-F est la limite
non-perturbative de la théorie de cordes type IIB en dix dimensions d’espace-temps,
dans presque le même sens que la théorie-M soit la limite non-perturbative de la
théorie type IIA. Alors, nous compactifions la théorie type IIB sur une sphère avec
le champ axio-dilaton variable. Pour que cette compactification soit compatible avec
la supersymétrie, il nous faut ajouter 24 7-branes dans le fond. Ceci nous donne une
simulation de la compactification sur une K3 elliptique dont la base est une sphère.
Nous allons donc proceder à un même genre de compactification des théories N=1
et 2 dans la dimension D=8 vers les théories D=6, N=1 et N=2. La technique de
compactification à l’aide des branes que nous avions utilisé est considérée comme
la compactification non-géométrique à cause de présence des branes. Nous procé-
dons dans la voie similaire pour compactifier la théorie D=8, N=1 sur une sphère en
présence des 24 5-branes cette fois-ci. Ceci nous emmène à une conclusion spectac-
ulaire : cette technique de compactification non-géométrique est compatible avec les
contraintes de supergravité de dimensions d’espace-temps six si les modes massives
de la théorie dans la dimension supérieure perdent la masse et contribuent dans la
théorie. Bien que le mécanisme exacte par laquelle les modes massives de multi-
plets de supergravité deviennent sans masse à cause des 24 singularités du fond,
désignant les positions de 24 5-branes nous n’est pas encore claire, nous concluons
que cette tactique de compactification peut donner lieu aux théories de supergrav-
ités dans D=6 avec 8 supercharges couplées avec des jauges de Yang-Mills SO(32),
E8×E8, SO(16)2 et SO(8)4 ce qui n’ont pas été étudier dans la littérature auparavant.

Après avoir étudier la théorie de supergravité dans les dimensions d’espace-
temps dix, huit et six de manière respective, nous nous intéressons au calcul d’amplitude
aux 2-boucles dans la théorie Heterotique dans dimensions dix. Ce genre de calcul
ont été effectué pour les théories type IIA et IIB ainsi que pour la théorie Heterotique
avec la méthode de calcul proposée par D’Hocker et Phong. Nous faisons une fusion
de cette nouvelle méthode avec le calcul d’amplitude par la méthode hyperelliptique.
Notre but était de découvrir la propriété de groupe Sp(4) et l’apparence des fonctions
modulaires comme ceci était pour le calcul à une boucle. Notre résultat, cependant,
est si compliqué dans la forme qu’on ne peut pas conclure sur ses propriétés modu-
laires. Ce travail, nous voulons persuader dans le futur.

En conclusion, nous avons investigué la relation entre la théorie de cordes et la
théorie de supergravité en huit dimensions d’espace-temps. Nous avons expliqué le
terme dû au calcul à une boucle dans la théorie de cordes par le terme nécessaire pour
annuler l’anomalie composée dans la théorie de supergravité correspondante. Cette
relation, nous avons permit à conclure sur le positionnement de 7-branes lorsqu’on
considère la théorie duale c’est-à-dire la théorie-F compactifiée sur une surface K3
elliptique. Ensuite, nous étudions la compactification non-géométrique des théories
D=8, N=1 vers la dimension six en présence des 5-branes en concluons la possibilité
d’avoir la théorie couplée avec nouvelle jauge de type Yang-Mills. Finalement, nous
faisons une fusion de la méthode de la projection fermionique et la définition hyper-
elliptique pour calculer l’amplitude aux deux boucles dans la théorie Heterotique en
dix dimensions dix. Ces travaux ouvrent les voies pour une étude plus profonde sur
les aspets non-perturbatifs de la théorie de cordes.
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Chapter 1

Introduction

1.1 Quantization of gravity and quest for unification

Quantum field theory has proven to be of spectacular success in the description of
three of the fundamental interactions of nature, namely the electromagnetic interac-
tion plus the strong and weak nuclear forces. The field theory description exploits
the elements of symmetry of the theory concerned and with powerful conservation
principles, for example the conservation of Noether’s current, dictates the physics.
As a matter of fact, the three interactions mentioned above are described by a renor-
malizable gauge field theory where the gauge symmetry is SU(3) × SU(2) × U(1).
This is the celebrated Standard Model of particle physics which has been verified
upto extreme accuracy in the high energy physics experiments. The modern ap-
proach to quantum field theory is the description of the quantized theory in terms of
an effective action which is valid only upto a certain energy scale. What makes the
standard model successful is that, being a renormalized theory it retains its power of
prediction even in the higher energy regimes. The field interactions are successfully
described by the so called perturbative expansion which is at the heart of particle
collision experiments. Another important aspect of Standard Model is that it unifies
the weak nuclear interaction and the electromagnetic interaction. One would not ex-
aggerate in saying that almost all the success of classical physics and modern physics
lies on the idea of unification. Maxwell’s idea of unifying electricity and magnetism,
Einstein’s effort of unifying space and time plus the geometry with electro-magneto-
mechanical dynamics, quantum mechanics unifying electromagnetic interaction with
matter-wave duality giving rise to quantum electrodynamics are only a few examples
of this long endeavour of science. It is thus intriguing to look for a quantum field the-
ory description of the last of the four fundamental interactions, Gravity.

Einstein’s classical theory of general relativity has been proven, in its own credit,
to be extremely successful in describing all known celestial dynamics plus the so
called concordance model (that is the ΛCDM model) of cosmology which describes
the history of the universe from the Big-Bang nucleo-synthesis up to present day.
Very recently, the signal of gravitational wave has been claimed to have been de-
tected (with an experimental set up that draws a formidable accuracy of 10−23/

√
Hz

from the quantum electromagnetic coherence of laser!) which was one of the aston-
ishing prediction of Einstein’s theory of general relativity.

The naive approach of the quantization of the gravitational field fails to the disap-
pointment of the scientific community. The description of general relativity contains
in its Einstein-Hilbert action, the Planck energy parameter, which derives itself in
turn from Newton’s gravitational constant and the smallness of the latter renders the
quantum description of gravity non-renormalizable: that is to say, the description of
gravitational interaction in terms of exchange of its quanta, called the graviton, does
not retain its predictive power if the energy scale of interaction is boosted. One can
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Chapter 1. Introduction

nevertheless gather valuable information from such quantum gravity interactions by
properly dealing with the singularities.

It is in fact not just an aesthetic question to find a quantum description of grav-
ity or to find a unified framework describing all four fundamental interactions but
it happens to be, for modern physics, an immediate necessity because both Stan-
dard Model and the concordance model of cosmology have their own deficiencies.
To mention a few for the Standard Model, this theory requires almost 20 parame-
ters whose values are needed to be fixed by experimental input. Some of these pa-
rameters are needed to be fine-tuned upto very non-practical degrees of accuracy,
which is the so-called hierarchy problem of Standard Model. In addition, the Stan-
dard Model does not give satisfactory answers to neutrino mass spectrum and the
strong CP problem. An ingenious way to answer the hierarchy problem is to appeal
to the supersymmetry, which puts both bosonic and fermionic degrees of freedoms
in terms of an underlying symmetry of the quantum theory. This set-up provides
bosons and fermions of same quantum characters thereby adding elements to solve
for the hierarchy problem. Moreover, the localization of supersymmetry gives rise to
a supersymmetric theory of quantum gravity, called supergravity which is however
again crippled with non-renormalizability issues, but its degree is milder to that of
naive quantum gravity. In the observable world, supersymmetry is not manifest and
thus this symmetry should be broken at the phenomenological energy scale. Thus
instead of discouraging, it cues to look forward for the physics at the energy scales
higher than that of common interactions which might reveal these interesting sym-
metry structures.

The principal defect of cosmology based on Einstein’s relativity lies on the fact
that it does not account for the dark matter and dark energy of the universe. It is
predicted that the unobserved supersymmetric partners of known particles might
provide an answer for the dark matter. Even though, Einstein’s equations cannot
explain the discrepancy between the theoretically predicted value of dark energy
content with the observed value. Singular objects in gravity also point to the limita-
tions of the classical set-up of general relativity. Black-holes provide such examples:
at classical level, the event horizon of black-holes causally disconnects the rational
regime of space-time geometry. In fact, the collapse of massive gravitating objects
towards singularity breaks the very notion of classical geometry itself. If one should
consider the quantum effects like Hawking radiation, the rupture due to event hori-
zon poses a puzzle for the loss of information.

It is thus clear that a consistent description of gravity should submit itself to a
quantum description and that the Standard Model physics should be thought of as
a limit of a more fundamental theory. These two aspects hint towards a theory of
everything and string theory comes out to be the most promising candidate for such
a unification.

String theory revolutionizes the understanding of fundamental interactions in
that, instead of particles, it is based on the dynamics of the one-dimensional objects
called string. The only free parameter (apart from those arising from the compactifi-
cation, to be explained shortly) this theory requires is its length scale and thus provid-
ing for the essence of the unification at its very foundation. Consistency of string dy-
namics however seems to require ten space-time dimensions instead of four but this
is not discouraging as the very old idea of Kaluza-Klein compactification accounted
for unification of gravity and electromagnetism quite successfully. Incorporating this
idea with string theory one finds many a interesting scenarios for the phenomeno-
logical four-dimensional physics. String theory draws upon powerful tools of con-
formal field theory, classical geometry and even way to geometrize physical degrees
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of freedom to answer for supersymmetry breaking, black-hole thermodynamics and
above all an unified quantum theory of gravity which is completely renormalized.
In addition, the effective action of string theory seems to give in low energy limit
the effective action of supergravity actions in ten dimensions. The understanding of
the non-perturbative aspects of string theory has also been vastly improved by the
incorporation of soliton-like branes in the theory.

1.2 What this thesis stands for?

Any quantum theory of fields draws heavily upon symmetries of the theory. It is
in fact the symmetry of the theory that dictates the interaction part of the quantum
theory. Thus the loss of symmetry in any quantum theory should be investigated
closely. It happens to be that after quantization of a classical field theory, the clas-
sical symmetry is lost due to the incorporation of quantum corrections arising from
the dynamical interactions of the fields. This is what we call anomaly. We have
stated previously that consistent string theories require ten space-time dimensions
to live in. One can however compactify this theory to lower dimensions for exam-
ple eight, six, four etc. The supersymmetric structure of the string theory dictates
specific group coset structure to the space parametrized by the massless scalar fields
of the corresponding supergravity theory. It has been observed that if the group
coset contains Abelian factors the fermions of the theory might get charged under
this Abelian factor and their interaction might give rise to anomalous quantum cor-
rection to the effective supergravity theories. The standard process of curbing such
anomalies is to find a counter-term whose anomalous variation would cancel the
anomaly due to quantum correction. This might smell like a fine-tuning of the quan-
tum theory. However, string theory in fact automatically provides for such anomaly
cancelling counter-terms. Our motivation and achievement in this thesis is to look
into the quantum anomalies in supergravity theories in eight space-time dimensions
with maximal and half-maximal supersymmetry. The meaning of "maximal" and
"half-maximal" supersymmetry shall be made clear in due course of time: for in-
stance, we can say that for a supersymmetric theory of quantum gravity to have
states not higher than spin-2, which is graviton, only a certain maximal number of
fermionic superpartners for a given bosonic degree of freedom are allowed. In case
such a maximum number of super-partners are present, we say that the theory has
maximal supersymmetry. If however only half of those super-partners stay in the
theory we call it half-maximal. The anomaly counter-term for the coset structure
mentioned above reveal an important structure in terms of discretization of the coset
group. Such mechanism has been observed long ago but has never been tested con-
sistently in eight-dimensional supergravity theories. Our achievement in this thesis
is to examine the class of such discrete anomalies and find the origin of the anomaly
cancelling counter-term from string theory amplitudes. This examination provides
important insight into the effect of higher dimensional solitonic branes into the su-
pergravity effective actions. All such results culminate into providing further direc-
tions of research into the so-called F-theory, which is generically a non-perturbative
theory. We observe further how the coset structure of eight dimensional supergravity
theories put stringent constraint on the compactification of such theories down to six
dimensions in the presence of branes of particular kind. Thus in this thesis, instead
of delving deep into the phenomenological prospect of string theory, we concentrate
upon the consistency of string theory in higher dimensions. We finally launch our-
selves into the academic interest of two-loop string amplitude.
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1.3 Outline of the thesis

We conclude this introductory chapter with the structure of the thesis. We start by
describing the necessary concepts of supersymmetry and supergravity in chapter
2 where we also introduce the concept and mathematical tools for the analysis of
anomaly in quantum theory. In chapter 3 we give a brief yet self-consistent introduc-
tion to the string theory along with the non-pertutbative theories like M-theory and
F-theory. A large part of this thesis is devoted to the computation of string ampli-
tude and hence we also provide some details of the process of amplitude calculation
in string theory. Next in chapter 4 we start reviewing the origin of discrete anomaly
in 10-dimensional string theory and its interpretation in terms of non-perturbative
aspects related to branes. From this motivation we compute anomalies in eight di-
mensional supergravity theories in chapter 5 and provide the computations of string
one-loop calculation to corroborate our conclusion that string theory accounts for
the quantum consistency of the low energy supergravity effective action. In this
course, we discover an interesting paradigm of compactification with aid of the non-
perturbative degrees of string theory which we apply for the compactification to-
wards six-dimensions in chapter 6. Finally in chapter 7 we shall discuss the par-
ticularity of two-loop Heterotic string amplitude in the light of newly developed
method for evaluating the path-integral measure. This was a subject studied long
before however never accomplished with the correct form of path integral except in
a few references. We retake this computations in order to pave way for further study
in this direction.

The work presented in this thesis is based on the following publications

1. Discrete anomalies in supergravity and consistency of string backgrounds: R
Minasian, S SASMAL, R Savelli, arxiv: 1611.09575 [hep-th], Published in JHEP
1702 (2017) 025, DOI: 10.1007/JHEP02(2017)025.

2. One loop amplitude for Heterotic string on T 2: S SASMAL, arxiv: 1611.09808
[hep-th].
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Chapter 2

Supersymmetry and Supergravity

We shall begin our discussion with a very compact review of supersymmetry and
supergravity theories in dimensions greater than 4. The reason behind this is that we
shall show in certain supergravity theories, there are quantum anomalies and that the
counter-term to be included in the supergravity effective action to curb those anoma-
lies are in fact provided by string theory loop amplitudes. Therefore to prepare the
ground we give a very precise introduction to supersymmetry and supergravity the-
ories in 11 and 10 space-time dimensions to be able to make comparison with string
theory and M-theory later. For more details, we refer to the standard texts of Wess
& Bagger [1] and West [2]. Here we shall outline the importance of supersymme-
try algebra as being an extension to that of the Poincaré algebra and the promotion
of supersymmetry to a local symmetry to give rise to the supersymmetric quantum
gravity that is supergravity. We then provide the low energy effective actions to 11
and 10 dimensional supergravity theories. We then discuss the coset space structure
of the scalar fields living in supergravity theories and the possibility of gauging some
coset degrees of freedom. This in turn shall be of immense importance for the discus-
sion of chapter 4, 5 and 6 where the gauging of Abelian factors in the denominator
of the coset shall be responsible for rendering the theory anomalous. We shall thus
also give a brief introduction to anomalies in quantum field theory and the way to
calculate them from the perspective of index theorems and characteristic classes.

2.1 Supersymmetry

Our discussion in course of this thesis shall be centered on supersymmetric theories
where the bosonic degrees of freedom are related to the fermionic degrees of free-
dom with aid of operators whose algebra extends that of the Poincaré algebra. The
importance of supersymmetry in standard model phenomenology is of course colos-
sal, however we are studying the theories with supersymmetry because it poses very
stringent constraints on QFT and in particular in string theory which makes the anal-
ysis simpler. Let us introduce the idea of supersymmetry as an extention of Poincaré
invariance. Consider any quantum field theory (on a flat Minkowski metric back-
ground) with the space-time Lorentz invariance described by the Poincaré algebra

[Pµ, Pν ] = 0, (2.1)
[Pµ,Mρλ] = ηµλPρ − ηµρPλ,
[Mµν ,Mρλ] = ηµλMνρ + ηνρMµλ − ηµρMνλ − ηνλMµρ.

There can be internal symmetries in the theory for example the symmetry under a
group in gauge field theories whose generators follow the Lie algebra

[Ta, Tb] = f cabTc (2.2)
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where f cab are the so-called structure constants of the Lie algebra of the symmetry
group. The generators Ta commute with the generators Pµ and Mµν of the Poincaré
algebra. This is due to a no-go theorem proposed by Coleman & Mandula [3] stat-
ing that for the QFT in question having a non-trivial S-matrix where all continuous
symmetries are described by Lie algebras, the space-time and internal symmetries of
S-matrix do not mix

[Pµ, Ta] = 0, [Mµν , Ta] = 0. (2.3)

To evade the Coleman-Mandula theorem and the restriction it poses on the symme-
tries of the theory, we may relax the assumption that these symmetries are described
by ordinary Lie algebras and allow for graded Lie algebras or super-algebras. This is
most readily done by introducing a set of fermionic generators Qα, Q̄α satisfying the
anti-commutation relation

{Qα, Q̄β} = 2PµΓµαβ (2.4)

with α, β the spinor indices. These generators, called the supercharges mix with the
Poincaré generators and internal symmetry generators according to

[Mµν , Qα] = (Γµν)βαQβ, (2.5)
[Pµ, Qα] = 0.

Thus the bosonic and fermionic fields transform into each other by supersymmetry
transformation, in infinitesimal schematic form

δφ ∼ ε̄ψ, δψ ∼ Γµε∂µφ (2.6)

where ε is the fermionic supersymmetry transformation parameter. Some theories
have multiple supersymmetries with generators QIα parametrized by an index I =
1, · · · , N where N is the number of supersymmetries of the theory. In this case the
supersymmetry algebra generalizes and the algebra with the internal symmetry is
also non-trivial

{QIα, Q̄Jβ} = 2δIJPµΓµαβ + ZIJδαβ, (2.7)

[Ta, Q
I
α] = (tI)ABQ

B
α . (2.8)

The first line in above is the extension of the supersymmetry algebra with the term
ZIJ called the central charge commuting with all other generators. For the moment
we shall neglect this factor and shall discuss the emergences of central charges in 10D
supersymmetry multiplets and RR-forms in string excitations. The second equation
(2.8) denotes the representation of the internal symmetry in terms of supercharges.
This symmetry of the supercharges is called the R-symmetry. Supersymmetry re-
groups bosonic and fermionic degrees of freedom according to helicity states as they
are created from the vacuum. In the next section, we shall demonstrate the mass-
less representation of supersymmetry algebras in diverse dimensions and the related
supermultiplets.

2.2 Supersymetry algebra in various dimensions

The construction of massless representation of the supersymmetry algebra in D-
space-time can be accomplished with the following algorithm. First note that in D
space-time dimensions, the Dirac-spinors contain 4 = 2bD/2c complex components.

10



2.2. Supersymetry algebra in various dimensions

The Weyl, Majorana or both conditions can be imposed on the Dirac-fermions re-
ducing the effective number of spinor components (by half, half and one-quarter
respectively). For the massless representation of interest, one passes to the light-like
frame where for the momentum states look like Pµ = (−E,E, 0, · · · , 0) and thus
the little group is SO(D-2). Hence the massless representation of the supersymmetry
should be built up from the representation of SO(D-2). To this end, the fermionic os-
cillators can be grouped into 4 pairs of annihilation and creation operators (bI , b†I),
I = 1, · · · ,4 and the vacuum |0 > is such that it is annihilated by all the annihilation
operators bI |0 >= 0. Thus applying the creation operators to the vacuum we can
create the representation of the Clifford algebra forming a spinor of SO(24) with 24

components . One then embeds the irreps of the little group SO(D-2) into SO(24)
to determine the massless representation. It may be noted that the representation so
constructed should not have helicity states with helicity greater than 2 as otherwise
the theory cannot be coupled consistently with gravity. This restricts the maximal
dimensions of supersymmetric and Lorentz invariant theory to be D ≤ 11 so that the
maximal number of supercharges in any dimensions is 32. We are in fact assuming
in advance the presence of graviton states in the massless representation of super-
symmetry. In fact, in the next section, we shall argue that supersymmetry, which is
a global symmetry of the QFT concerned can be promoted to a local symmetry and
then it couples automatically to the gravity states present in the massless represen-
tation of the supersymmetry algebra. The resulting theory is known as supergravity.
Before discussing the supergravity, we construct the massless representations of su-
persymmetry in 11 and 10 dimensions.

Supersymmetry in D=11
The spinor representation in 11D has 32 complex non-zero components. How-

ever, in dimensions D = 1, 3 mod 8, the Majorana condition can be imposed thereby
giving only 16 complex non-zero components i.e. 24 = 16 or 4 = 8. The Clifford
algebra has thus 28 = 256 states arranged in a Dirac spinor 256 of SO(16) which can
be decomposed into two irreps 1281 and 1282. Embedding the little group SO(9) into
SO(16), we thus get from the state 128 1 → 44 + 84 so that we get the graviton state
gµν as the state 44 and an anti-symmetric 3-form Cµνρ as the state 84. The rest 1282

state is the spin-(3/2) gravitino state ψµ. Thus we get the gravity multiplet in 11D
gµν , Cµνρ and ψµ.

Supersymmetry in D=10
In dimensions D = 2 mod 8, the fermions are Majorana-Weyl and thus a spinor,

for example in 10D has 16 real components. The condition of 32 maximal super-
charges thus allow the maximal supersymmetry N=2 in 10D with 32 supercharges
and the minimal supersymmetry N=1 with 16 supercharges.

Let us first construct the supermultiplets in the minimal N=1 case. The little
group is SO(8) and the fermion from the 24 with 4 = 4 transforms as a spinor 16
of SO(8)=SO(24). Thus embedding the little group irreps 8V and 8+ according to
16 → 8V + 8+ we see that we can construct a vector multiplet containing gauge bo-
son 8V and positive chirality gaugini 8+. Next consider the multiplet obtained from
the tensor product 8V × (8V + 8+) = 35 + 28 + 1 + 56+ + 8− containing graviton
(35), anti-symmetric 2-form (28), 1 scalar (1), positive chirality gravitino 56+ and a
fermion 8− of negative chirality. This multiplet, because it contains spin-2 graviton,
is called the gravity multiplet.

For N=2, we now have two spinors in 16 of the spinor automorphic group
SO(24) = SO(8). We can however embed the Majorana-Weyl 8 spinors of the lit-
tle group SO(8) in two ways : we can have 16 → 8V + 8+ for both the 16 such
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that the irreps of SO(8) spinor states 8+ in both of N=2 are of same chirality or have
16 → 8V + 8+ for one and 16 → 8V + 8− for the other supercharge. The former case
is said to be type IIB whereas the latter is called the type IIA.

The spectrum of type IIB is (8V + 8+)× (8V + 8+) = 1 graviton gµν in 35+ 2-form
Bµν in 28 + scalar φ in 1+ two gravitini ψµi in 2 × 56+ + in two fermions λi 2 × 8− +
another scalar C0 in 1 + another two-form C2 in 28 + 4-form C4 in 35.

The spectrum of type IIA is (8V + 8+)× (8V + 8−) = 1 graviton gµν in 35+ 2-form
Bµν in 28 + scalar φ in 1+ two gravitini ψµ and ψ̄µ in 56+ +56−+ two fermions λ and
λ̄ in 8+ + 8− + 1-form C1 in 8V + 3-form C3 in 56.
We shall discuss more about these spectrums in the next section in the context of
supergravity.

2.3 Supergravity

The end of the discussion in the previous section might seem like adding cart before
horse as we have described the supergravity multiplets before describing supergrav-
ity. The reason is that in localizing the supersymmetry thereby promoting the full
super-Poincaré symmetry to a local one necessarily leads to a theory of quantum
gravity and the connection one-form to construct the covariant derivative for the
gauged theory will now be played by gravitino. Let us make this statement more
clear.

A general super-Poincaré transformation is of the form

δλφ = iλφ (2.9)

where φ is any bosonic field in the theory and the infinitesimal transformation pa-
rameter λ is of the form

λ =
1

2
λabMab + ξaPa + ε̄αQ

α (2.10)

in terms of the super-Poincaré generators (2.1) and (2.4) (ε being the infinitesimal
fermionic constant parameter). Note that we are using latin indices for the Poincaré
generators to emphasize that they are evaluated in a flat-background whereas the
greek indices shall denote the curved background which incorporates the graviton
in the metric as quantum fluctuations. Thus in short we are implicitly using the
vielbein formalism where the curved metric in terms of flat metric is

gµν(x) = eaµ(x)ebν(x)ηab (2.11)

with eaµ being the vielbein. In this formalism the curved space covariant derivative
acting on spinors ψ (in case of ordinary general relativity)

Dµψ = ∂µψ − i
1

4
ωabµ Γabψ (2.12)

with ωabµ being the so called spin connection and Γab being the spinor representa-
tion of the Lorentz generators Mab. The vanishing of the torsion in general relativity
dictates the relation

deaµ + ωabµ ∧ eaµ = 0 (2.13)

between spin connection and vielbein thereby fixing spin connection in terms of the
latter. Going back to (2.9), in case one promotes a global symmetry to a local one, one
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introduces a gauge field or a connection 1-form Aµ such that it transforms according
to

δλAµ = ∂µλ− i[Aµ, λ] (2.14)

and hence the covariant derivative of φ defined as

Dµφ = (∂µ − iAµ)φ (2.15)

transforms in the same way as φ. For the super-Poincaré symmetry at hand the lo-
calization needs the connection one-form

Aµ =
1

2
ωabµ Mab + eaµPa + ψ̄µαQ

α (2.16)

where along with the familiar spin connection for Lorentz transformations, vielbeins
for translations we have to use the gravitino field ψµα for the supersymmetry trans-
formations. For example the supersymmetry transformation of the gravitino in the
local gauge shall now be (using (2.14))

δλψµ = ∂µε− i
1

4
ωabµ Γabε+ i

1

4
λabΓabψµ (2.17)

where now all the parameters ε, λab and ξa are functions of space-time coordinates
x. In case there is a gauge symmetry in the theory, its connection also appears in
the supersymmetry variation of the fermions like in (2.17) giving the charges of the
fermions under such couplings. One can then define the super-Poincaré covariant
derivative

Dµφ = ∂µφ− i
1

2
ωabµ Mabφ− ieaµPaφ+ ψ̄αµQαφ (2.18)

from which one can compute the curvature

R = dA− iA ∧A (2.19)

to derive the Riemann tensor Rµναβ(e, ω, ε) which depends upon all the connection
components. Conditions, similar to those of the vanishing torsion, however more
complicated in case with fermionic parameters, are to be imposed which make spin
connection to be determined completely by vielbein and gravitino i.e. ω ≡ ω(e, ψ).
Imposing this into the Riemann curvature brings out, from the second order formal-
ism of gravity (where one starts typically with an action S =

∫
trR2 and then uses

the torsion constraints to reduce it to the familiar Einstein-Hilbert action S =
∫
R),

one gets the Einstein-Rarita-Schwinger action

S =
1

2κ2

∫
ddx(R− 1

2
ψ̄µΓµνρDνψρ). (2.20)

With these preliminaries, we are now ready to address the the supergravity effective
actions in 11 and 10 dimensions.
Let us first write the low energy effective action for the 11D supergravity containing
graviton gµν , gravitino ψµ and a 3-form Cµνρ. The effective action is [4, 5]

S11 =
1

2κ2
11

∫ [
R ∗11 1− 1

2
G ∧ ∗11G−

1

6
C3 ∧G4 ∧G4

]
(2.21)

− 2π

(4πκ2
11)1/3

∫
C3 ∧X8.
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withG4 = dC3, κ2
11 is the 11-D gravitational coupling constant and the eight form (re-

lated to M5 brane anomaly [6, 7], (see M-theory in 3.7)X−8 = 1
192(2π)4

[
TrR4 − 1

4(TrR2)2
]
.

In 10D, the type IIA supergravity multiplet contains the graviton gµν , anti-symmetric
2-form Bµν , a scalar called dilaton φ, a 1-form Cµ, a 3-form Cµνρ, two Majorana-Weyl
gravitini ψiµ (i=1, 2) of opposite chirality and two Majorana-Weyl fermions (dilatini)
λi of opposite chirality. The effective action of this theory is [9]

SIIA =
1

2κ2
10

∫
{R − 1

2
(∇φ)2} ∗10 1

− 1

2κ2
10

∫
1

12
e−φH3 ∧ ∗10H3 +

1

2
eφ/2F4 ∧ ∗10F4 +

1

4
e3φ/2F2 ∧ ∗10F2

+
1

4κ2
10

∫
B2 ∧ dC3 ∧ dC3 (2.22)

where
F2 = dC1, H3 = dB2, F4 = dC3 − C1 ∧H3. (2.23)

The action (2.22) can be seen as a circle compactification of the eleven-dimensional
supergravity action (2.21) and this relation will be useful to define the relation be-
tween type IIA string theory and M-theory subsequently.

The type IIB supergravity multiplet contains graviton gµν , anti-symmetric 2-form
Bµν , a scalar called dilaton φ, another scalar C0 called axion, another two-form C2

and a 4-form C4 plus two Majorana-Weyl gravitini ψiµ, (i=1, 2) of same chirality and
two Majorana-Weyl dilatini λi of same chirality but opposite to that of the gravitini.
The effective action is

SIIB =
1

2κ2
10

∫
{R − 1

2

∂µτ∂
µτ̄

τ2
2

} ∗10 1− 1

12
G3 ∧ ∗10Ḡ3 −

1

2
F5 ∧ ∗10F5 (2.24)

+
1

2i

∫
C4 ∧G3 ∧ Ḡ3,

where the dilaton field φ and the axion C0 makes up the complex axio-dilaton scalar
τ = C0 + ie−φ and

H3 = dB2, F3 = dC2, G3 = i
F3 + τH3√

τ2
, F5 = dC4 + C2 ∧H3. (2.25)

The action (2.24) is incomplete in the sense that the equations of motions derived
from it does not provide the self-duality condition of the F5 i.e.

F5 = ∗F5. (2.26)

The condition (2.26) should be provided separately with the effective action or one
can use somewhat different forms of the type IIB action, as discussed by Schwarz [8]
and Howe et al. [9] which incorporates the above self-duality condition within it so
as to provide it as an equation of motion. The usefulness of using the form (2.24)
for the effective action is that it makes the global SL(2,R) symmetry of the action
manifest as proposed by Schwarz [10]. In fact, considering a matrix representative of
SL(2,R)

M =

(
a b
c d

)
, ad− bc = 1, a, b, c, d ∈ R (2.27)
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2.3. Supergravity

such that it acts on the axio-dilaton field as

τ → aτ + b

cτ + d
(2.28)

and that the 2-forms B2 and C2 transform as a doublet under SL(2,R)(
C2

B2

)
→
(
a b
c d

)(
C2

B2

)
(2.29)

whereas the metric, the 4-form fieldC4 remain invariant, the action (2.24) is seen to be
invariant under SL(2,R) transformation. This symmetry, in string quantization level
shall be discretized leading to the so-called S-duality of type IIB string theory and
its eventual geometrical meaning in terms of F-theory in sections 3.6.3 and 3.8. One
more important remark is that the presence of chiral fermions and self-dual forms
apparently makes this theory anomalous (see section 2.5) however a direct compu-
tation of the anomaly polynomial shows that the fermionic anomaly is countered by
that of the self-dual form and thus the theory is anomaly free. The moduli space of
the theory, that is the manifold parametrized by the scalars φ and C0 is of the form
SL(2,R)
U(1) and the composite connection due to the U(1) factor in the coset denominator

seems to make the theory anomalous in a very particular manner. This point shall be
the essence of this thesis and shall be discussed in details in chapters 4, 5.

Finally we come to the discussion of 10D N=1 supergravity theory. The super-
gravity multiplet contains a gravity multiplet with graviton gµν , 2-form Bµν , dilaton
φ and a Majorana-Weyl Gravitino ψµ and a Majorana-Weyl dilatino λ which is by the
way, of opposite chirality to that of the gravitino. There is however a vector multiplet
too in the theory with gauge bosonsAµ and Majorana-Weyl gaugini χ of same chiral-
ity as of gravitino. The consistent coupling of vector and gravity multiplet leads to
anomaly which can only be resolved by the Green-Schwarz mechanism (see section
5.1) as discussed by Green & Schwarz [11], if the gauge group of the theory is of di-
mensions 496 and should not have any independent 6th order Casimir invariant i.e.
TrF 6 should be decomposable in terms of TrF 4 and TrF 2 (F is of course the gauge
field-strength). The only gauge groups allowing for these two conditions are SO(32),
E8 × E8, U(1)496 and E8 × U(1)248. Of these, the first one describe the type I theory,
the second and third choice denote respectively SO(32) and E8 × E8 Heterotic the-
ories and the last two options are possible only from the pure supergravity point of
view and cannot be seen to have relations with consistent superstring theories. These
two latter theories however are trivial in the sense that all Abelian gauge traces in the
anomaly polynomial (see 2.61 of section 2.5) are zero and hence the effective anomaly
is just for the gravity part only. Thus the groups U(1)496 and E8 × U(1)248 are not
considered for any useful supergravity vacua. In fact in 10D there are 5 consistent
supergravity vacua (type IIA, type IIB, Heterotic SO(32) and E8 × E8 plus type I)
which are low energy effective theories of 5 consistent string theories in 10D. Below
we give the effective action for the D=10, N=1 supergravity theory to which we shall
add loop contributions in course of this work

SD=10, N=1 =
1

2κ2

∫
{R − 1

2
(∇φ)2} ∗10 1− 1

12
e−φH3 ∧ ∗10H3 −

1

2
e−φ/2tr(F2 ∧ ∗10F2).

(2.30)
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Chapter 2. Supersymmetry and Supergravity

2.4 Composite connection in supergravity

Supersymmetry and thus also supergravity multiplets seem to accommodate certain
types of scalar fields (called the moduli by some abuse of the word), which are re-
quired to parametrize certain types of coset manifolds of the form G/H called the
moduli space of the theory. The allowed forms of G and H depend on the particu-
lar supersymmetry algebra. It will be clear after our exposition to string theory and
duality therein that the numerator group G is the so-called U-duality group whose
discrete version gives rise to an exact symmetry after (string)quantization whereas
the denominator is regarded as the gauge symmetry of the theory. In particular, the
supersymmetry variations of all fermionic fields, inert under G, involve the gauge
composite connection corresponding to H. To make this point clear, consider a given
group G and a subgroup H ⊂ G. The right coset G/H is defined as the set of equiv-
alence classes of elements of G under the right action of H that is the set of points
g ∈ G modulo the identification g ∼= gh for all h ∈ H . Now let the group manifold
of the coset G/H be of real dimensions n(=dimG-dimH) and let ϕα, α = 1, · · · , n be
n coordinates parametrizing the coset manifold: these are in fact the real scalars in
the supersymmetry theory concerned. From these scalars, one can form a G-valued
matrix L with rigid symmetry under left multiplication with elements g ∈ G

L→ g−1L. (2.31)

L is called the coset representative which has the local symmetry under right multi-
plications with elements h ∈ H

L→ Lh(ϕ) (2.32)

where the elements h are dependent on the coordinates ϕ (we are using the conven-
tions of Salam & Strathdee [12]). In this construction, the choice of L is not unique
and to isolate the physical degrees of freedom we can choose L as a particular func-
tion of ϕ thereby fixing the gauge. The rigid symmetry of L (2.31) does not preserve
this gauge choice and thus the complete transformation of L under G becomes

L(ϕ)→ g−1L(ϕ)h(ϕ, g) (2.33)

with h(ϕ, g) being an element of H selected so that the transformation retains the
functional form of L.
To bring forward the notion of composite connection, consider the G-valued left in-
variant Maurer-Cartan form constructed from the coset representative L

L−1dL = AiHi + V aKa. (2.34)

The G-valued one form A = AiαHidx
α is the connection one-form parametrizing the

tangent space rotations of the representative with respect to H while V = V i
αHidx

α

defines an orthonormal frame on the coset space and is identified with the coset viel-
bein. Note also that Hi are the generators of the Lie algebra of the subgroup H while
Ka are those for the group G/H . The following transformation of the Maurer-Cartan
form corroborates to these identifications

L−1∂αL→ h−1(Aα + ∂α)h+ h−1Vαh. (2.35)

The Maurer-Cartan form is very helpful in constructing the kinetic term of the scalars
ϕα in the supergravity effective action. The scalar fields ϕα(x) define a map from
the space-time manifold with coordinates xµ to the coset manifold. Thus the ϕ

16



2.4. Composite connection in supergravity

dependent transformations h(ϕ) are associated with x dependent transformations
parametrized by h(x). We can thus pull-back the one-form A and V to the space-time
manifold via

Qµ = Aα∂µϕ
α, Pµ = Vα∂µϕ

α (2.36)

and write the pull-back of the Maurer-Cartan form (2.34)

L−1∂µL = Qµ + Pµ. (2.37)

In (2.37) Qµ is the antisymmetric part of L−1∂µL and Pµ is its symmetric part. From
these connections, one can construct the following Lagrangian density for the scalars
ϕ which is invariant under rigid G transformation as well as under local H transfor-
mation

L =
1

2
tr(PµP

µ) (2.38)

which describes the non-linear sigma model Lagrangian in supergravity effective
action.

We illustrate the above with the example of SL(2,R)/SO(2) coset space which
occur in 10 and 8 dimensional supergravity theories. The coset space is parametrized
by 2 real scalarsU1 andU2 which can be combined into a complex scalarU = U1+iU2.
The coset representative L is in matrix form (following the results from Gilmore [13])

L =
1√
U2

(
U2 −U1

0 1

)
(2.39)

with the inverse

L−1 =
1√
U2

(
1 U1

0 U2

)
. (2.40)

From this we construct the Maurer-Cartan form

L−1dL = − 1

2U2

(
0 dU1

−dU1 0

)
− 1

2U2

(
−dU2 dU1

dU1 dU2

)
(2.41)

from which we read the composite U(1) connection

Qµ = −∂µU1

2U2
(2.42)

and the vielbein

Pµ = − 1

2U2

(
−∂µU2 ∂µU1

∂µU1 ∂µU2

)
(2.43)

which, in turn, gives the following scalar kinetic term in the Lagrangian

L =
∂µU∂

µŪ

4U2
2

. (2.44)

We shall see in course of this work that in case when H contains U(1) factors, the
fermions of the theory are coupled with the U(1) composite connection (2.42) giving
rise to chiral anomalies as discussed by Marcus [14]. We shall describe the anomaly
in QFT in the next section.
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Chapter 2. Supersymmetry and Supergravity

2.5 Anomaly in supergravity

Anomaly in quantum field theory is the loss of classical symmetry in the quantized
theory. Anomalies in QFT are seen to arise from the 1-loop regularization. Consider
for example a 1-loop diagram with chiral states flowing inside the loop as loop mo-
mentum states. The UV regularization (e.g. Pauli-Villars) shall interfere with the
gauge symmetry of the chiral states and shall give rise to current non-conservation
when the effect of such 1-loop amplitude is taken as correction to the effective action.
Another easier way to realize the anomaly is to see the path-integral formulation of a
QFT which possess at the classical level certain local symmetry. In the path-integral
quantization, the classical action still retains the symmetry but the path integral mea-
sure is not invariant under the classical symmetry: this gives rise to the phase varia-
tion of the path-integral which is in turn identified as the anomalous phase variation
or anomaly for short.
Let us demonstrate this in mathematical terms (our analysis closely follows the steps
of the standard references on anomaly in QFT as in Peskin & Schroeder [15], Alvarez-
Gaumé & Witten [16], Alvarez-Gaumé & Ginsparg [17] and Bilal [18]). Consider a
theory with a set of fields φr which has at classical level the local symmetry under
the transformation

φr → φ′r = φr(x) + δφr(x) = φr(x) + εα(x)F rα(x, φ(r)) (2.45)

such that the classical action be invariant

S[φr + εα(x)F rα] = S[φr]. (2.46)

The integration measure in path-integral formulation is not invariant and acquires a
phase as

D[φr]→ D[φr + εα(x)F rα] = D[φr]eiε
α
∫
Aα . (2.47)

It will be helpful to see the relation of the anomalous phase variation Aα in terms of
the quantum effective action (the generator of the 1-PI diagrams in field theory) Γ[φ]
to reproduce the so-called anomalous Taylor-Slavnov identities. First consider the
generating functional of connected diagrams W [J ] which can be defined by

eiW [J ] =

∫
D[φr]eiS[φr]+i

∫
Jr(x)φr(x). (2.48)

Under the transformation (2.45) the variation of (2.48) is given by

eiW [J ] =

∫
D[φr]eiS[φr]+i

∫
ddxJr(x)φr(x) →

∫
D[φ′r]eiS[φ′r]+i

∫
ddxJr(x)φ′r(x) (2.49)

=

∫
D[φr]eiS[φr]+i

∫
ddxJr(x)φr(x)

[
1 + iεα

∫
ddx (Aα(x) + JrF

r
α(x, φ))

]
.

The modified current conservation law then reads as

εα
∫
ddx (Aα(x)+ < F rα(x, φ) >J) = 0. (2.50)
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2.5. Anomaly in supergravity

Next, note that with current Jr the 1PI effective action Γ[φ] is the Legendre transform
of the connected Green’s function W [J ] according to

Γ[φ] = W [J ]−
∫
ddxφrJr(x) (2.51)

so that

Jr(x) = −δΓ[φ]

δφr
(2.52)

thus the Taylor-Slavnov identity (2.50) becomes∫
ddxεαAα(x) ≡ δAΓ[φ] =

∫
ddxεαF rα(x)

δΓ[φ]

δφr
=

∫
ddxδφr

δΓ[φ]

δφr
(2.53)

where in the last equation we have used (2.45). This states that in the presence of
anomalies, the anomalous phase variation of the path-integral measure is same as
the variation of the effective action.
For a theory with chiral matter coupled to some gauge field Aαµ with the Lagrangian

L = −1

4
FαµνF

αµν + Lmatter (2.54)

where F = dA + A ∧ A is the (non-Abelian or Abelian whatever it may) gauge field
strength and the matter Lagrangian

Lmatter = ψ̄ /Dψ = ψ̄(/d+A)ψ (2.55)

is such that the classical matter current reads

Jαµ =
∂Lmatter

∂Aαµ
. (2.56)

(Note that D is the covariant derivative in the anti-Hermitian formalism which we
shall explain shortly.) Instead of the 1PI effective action Γ[φ], one can use the current
effective action Γ̃[A] where the external legs in the interaction Feynman diagrams are
composed of matter currents instead of particle states. The definition of Γ̃[A] is given
by

eΓ̃[A] =

∫
DψDψ̄ei

∫
ddxLmatter . (2.57)

Using the steps of derivation of Taylor-Slavnov identity (2.53) for Γ[ψ] now for the
current effective action Γ̃[A] we get

δAΓ̃[A] =

∫
ddxεαDµ

(
δΓ̃[A]

δAαµ

)
=

∫
ddxεαDµ (Jµα) =

∫
ddxεαAα(x). (2.58)

Thus (2.58) shows that the non-conservation of matter current due to correction terms
from interactions is proportional to the anomaly as defined in (2.47).
In case of chiral fermions, the Atiyah-Patodi-Singer index theorem (or in a different
guise, the Witten index theorem) relates the covariant derivative of matter current∫
Dµ (Jµα) in (2.58) to the Dirac index ind( /D) and hence the anomalous phase varia-

tion A too is related to the latter [19, 20, 21, 22, 23, 24, 25]. To be precise, the so-called
anomaly polynomial for a theory in (real) dimensions d=2r is a 2r+2 form polynomial
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Chapter 2. Supersymmetry and Supergravity

I2r+2 whose descents I2r+1 and Q1
2r are defined by

I2r+2 = dI2r+1, (2.59)
δI2r+1 = dQ1

2r. (2.60)

The APS index theorem then states [16, 17]

A = −
∫
Q1

2r. (2.61)

Throughout this work, we shall be working in the Hermitian format for the gauge
fields which is convenient in case of calculating and using chiral gauge charges. This
formalism is different from that of the standard references of [16, 17] so that we list
below our convention and that of Alvarez-Gaumé & Ginsparg [16] and the conver-
sions between these two conventions

Table 1: Gauge theory dictionary
Group quantities Anti-hermitian Hermitian Relation

convention of
[16]

Generators Ta ta iTa = ta

Transformation
of field φ

in a rep. of G δvφ = −vφ δεφ = iεφ iv = ε;
va = εa

Gauge connection A′ = AaT
a A = Aat

a iA′ = A;
Aa = Aa

Gauge connection δA′ = dv + [A′, v] δA = dε− i[A, ε]
variation

Gauge field-strength F ′ = FaT
a F = Fat

a iF ′ = F ;

Gauge field-strength F ′ = dA′ +A′ ∧A′ F = dA− iA ∧A

F variation δF ′ = [F ′, v] δF = −i[F, ε]

Covariant derivative D = d+A′ D = d− iA

In any QFT it is the chiral fermions who participate in the anomalous couplings
due to the index theorems. The (anti)self-dual forms being tensor products of chi-
ral fermion states are also responsible for generating the anomaly. We give below the
appropriate index formuli for the anomaly polynomials. We shall give a brief review
of characteristic classes used below in appendix A.

1. Spin-1/2 fermion anomaly polynomial:

I1/2 = (2π)× [Â(Md)]× [ch(−iF )] , (2.62)
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2.5. Anomaly in supergravity

where

Â(Md) = 1 +
1

12 (4π)2
trR2 +

1

(4π)4

[
1

360
trR4 +

1

288
(trR2)2

]
+

1

(4π)6

[
1

5670
trR6 +

1

4320
trR4 trR2 +

1

10368
(trR2)3

]
+ . . . (2.63)

and
ch(−iF ) =

∑
k=0

1

k!(2π)k
TrF k. (2.64)

2. Gravitino (Spin-3/2) anomaly polynomial:

Id3/2 = (2π)× [Â(M)][Tr(e
iR
2π )− 1]× [ch(−iF )]

= (2π)× [ch(−iF )]

×
[
(d− 1) +

d− 25

12 (4π)2
trR2 +

1

(4π)4

(
d+ 239

360
trR4 +

d− 49

288
(trR2)2

)
+

1

(4π)6

(
d− 505

5670
trR6 +

d+ 215

4320
trR4 trR2 +

d− 73

10368
(trR2)3

)
+ . . .

]
. (2.65)

3. Self-dual form:
Iform = (2π)× [L̂(Md)]× [−x

4
] , (2.66)

where

x =

{
1 if the base fermions are Weyl or Majorana,
1/2 if the base fermions are Majorana-Weyl

(2.67)

and

L̂(Md) = 1− 1

6 (2π)2
trR2 +

1

(2π)4

(
− 7

180
trR4 +

1

72
(trR2)2

)
+

1

(2π)6

(
− 31

2835
trR6 +

7

1080
trR4 trR2 − 1

1296
(trR2)3

)
+ . . . (2.68)

We end our discussion with a few examples of Chern-Simons forms and descents
forms:

1. TrF = dQ1, Q1 = TrA, δQ1 = TrdΣ(x), Q1
2 = TrΣ(x).

2. TrF 2 = dQ3, Q3 = Tr(A ∧ F − i1
3A

3), δQ3 = TrdΣ(x)(dA), Q1
4 = TrΣ(x)(dA).

3. TrF 3 = dQ5, Q5 = Tr(A∧F 2− 1
2A

3F + 1
10A

5), δQ5 = TrdΣ(x)(dAdA− i1
2dA

3),
Q1

6 = TrΣ(x)(dAdA− i1
2dA

3).
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Chapter 2. Supersymmetry and Supergravity

In the next chapter we shall introduce the general features of string theory and the
relation of supergravity vacua with string vacua.
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Chapter 3

Perturbative and non-perturbative
aspects of string theory

Despite the success of supergravity as a quantum field theory of gravity, the loop
amplitudes are still crippled with UV divergences. Heuristically, the origin of such
divergence is that in a local theory of point particles, interactions take place at defi-
nite spacetime events which effectively means that spacetime is probed to arbitrarily
high resolution when virtual states are considered in the path integral that defines the
quantized theory. A natural way of remedy is to consider the motion of an extended
object rather than a particle and the simplest one being a string. The string dynamics
were known to include a spin-2 mode corresponding to graviton and the correspond-
ing theory of quantum gravity thus obtained is not only free from UV divergences
but has only one parameter namely its length ls =

√
α′ = 1.22 × 1019 GeV which

makes it by far the most promising candidate for the unified theory of everything.
The propagation of string in space-time has two distinct topologies: we can have
closed strings or open strings, the world-sheet swept by the former being a cylinder
while for the latter it is sheet with two boundaries. It is a generic feature of string
theory that one of the oscillation modes of the closed string is associated to mass-
less spin-2 particle that is graviton and that for an open string one finds a massless
spin-1 particle which is interpreted as gauge boson. Gravitational and Yang-Mills in-
teractions are thus unified thanks to the two different topologies of the string. Open
strings can however always join to make closed strings so that closed strings and
hence gravity must always be included in a sensible string theory. The quantum the-
ory of relativistic strings is much more constrained than that of relativistic particles
because symmetries determine the dynamics of the string completely. The absence of
quantum anomaly and stability of vacuum single out five fundamental (super)string
theories in 10 space-time dimensions. When non-perturbative arguments are taken
into account, these five theories are seen to be limits of a single unifying theory, called
the M-theory. The requirement of 10 spacetime dimensions for consistent string the-
ories may seem unrealistic, but the argument to bring about the effective 4 spacetime
dimensional physics is to compactify the 6 extra space-dimensions in a compact man-
ifold, the volume of which is still beyond the scope of the penetrative resolution of
high energy experimental set-ups. When compactified on compact manifolds, the
seemingly different 5 string theories are seen to be related to each other. Such re-
lations is called as duality in string theory. As we shall discuss further, there are
dualities which relate non-perturbative aspects of a string theory to the perturbative
aspect of another, thereby providing the tool to probe into the non-perturbative as-
pects of string theory. Much of this thesis shall rely upon the duality of Heterotic
string theory compactified on a torus with that of F-theory compactified on a K3 sur-
face, a Calabi-Yau 2-fold. In the rest of this chapter, we shall present and explain
the fundamental notions of string theory and the non-perturbative theories like M-
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Chapter 3. Perturbative and non-perturbative aspects of string theory

and F-theory to pave the way for the subsequent discussions. Our introduction will
thus be minimalist and for the more mathematical details and subtle issues of string
quantization, we shall refer to the standard textbooks like Green, Schwarz & Witten
[26], Polchinski [27], Kiritsis [28].

3.1 Worldsheet perspective of (super)string

A covariant description of the string motion is furnished by the embedding of its
world-sheet Σ in spacetime. The latter is usually referred to as target space which is
of d-spacetime dimensions with Minkowsky signature (−+ + · · ·+︸ ︷︷ ︸

d−1

). In a flat coordi-

nate system xµ, µ = 0, 1, · · · , d− 1, the world-sheet is described by a set of functions
Xµ(τ, σ) where τ, σ are respectively the time and space coordinates on Σ.

σ

τ

Σ worldsheet

d-Dimensional Target space

FIGURE 3.1: An impression of string propagation in target space

Generalizing the action of the relativistic point particle, one might write down the
action of the relativistic string as proportional to the the volume of the world-sheet:
the action thus obtained is called the Nambu-Goto action

SNG = − 1

2πα′

∫
Σ
dτdσ

√(
∂Xµ

∂τ

∂Xµ

∂σ

)2

−
(
∂Xµ

∂τ

∂Xµ

∂τ

)(
∂Xµ

∂σ

∂Xµ

∂σ

)
(3.1)

In the above, T = 1
2πα′ is the string tension. Although a classical description of string

dynamics is easily furnished by the action (3.1), the difficulty lies in the quantization
because (1) of the square root, (2) the Hamiltonian is zero so that kinematical con-
straints exclusively govern the dynamics. One thus seeks the classically equivalent
Polyakov action

SP =
1

4πα′

∫
d2σ
√
−hhαβηµν∂αXµ∂βX

ν (3.2)

with ηµν the Minkowski target-space-metric, hαβ is a Lorentzian metric on the world-
sheet Σ and h = det(hαβ). At the classical level, the world-sheet metric hαβ enters
algebraically and can be removed with aid of the equations of motion, thereby get-
ting back the Nambu-Goto action (3.1). The Polyakov action (3.2) can be visualized
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3.1. Worldsheet perspective of (super)string

as 2D quantum gravity coupled with d scalar fields Xµ(τ, σ).
The Polyakov action is invariant under the following transformation and hence

have the following symmetries (note that in the following the small case Greek in-
dices from the beginning of the alphabet e.g. α, β, γ, δ etc are used to denote the two
world-sheet indices while the letters like µ, ν etc are used for target space indices)
(1) Diffeomorphism symmetries: Under the reparametrization σα → σ′α(σ) of the
world-sheet coordinates σα = τ, σ the metric hαβ transforms according to

hαβ(σ)→ h′αβ(σ′) =
∂σγ

∂σ′α
∂σδ

∂σ′β
hγδ(σ) (3.3)

or in the infinitesimal form where ξα = σ′α − σα

δhαβ = ∇αξβ +∇βξα. (3.4)

The change in the target space scalars Xµ are of the form

δXµ = ξα∂αX
µ. (3.5)

The group of such reparametrizations is called the diffeomorphism group Diff(Σ).
(2) Weyl resaclaing invariance: Under the scale transformation of the metric hαβ

hαβ(σ)→ h′αβ(σ) = e2Λ(σ)hαβ(σ), (3.6)

or in the differential form
δhαβ = 2Λ(σ)hαβ. (3.7)

The group of all such rescaling is called Weyl(Σ).
(3) Poincaré invariance: Under the usual Poincaré transformation of the target-space-
time scalars Xµ

Xµ → X ′µ = ΛµνX
ν +Xµ

0 , ηµνΛµκΛνλ = ηκλ. (3.8)

Among all of the above symmetries, Weyl symmetry is particular only to string dy-
namics and this is one reason why strings are chosen at first place to smear out the
point-like interactions of quantum gravity theory. Weyl symmetry in string theory is
precious for the following reason: the world-sheet metric hαβ has three independent
degrees of freedom which is the same number of parameters for the diffeomorphism
(2) plus Weyl invariance (1) so that one can gauge fix hαβ locally to the flat metric
ηαβ ; this is indeed needed because the metric hαβ is not physical as is demonstrated
by the classical equivalence of the Polyakov and Nambu-Goto action. The absence of
Weyl symmetry would then imply the presence of non-physical degrees of freedom
in the theory and thus in the quantization of the Polyakov action, the lack of the Weyl
symmetry induces an anomaly which can only be cancelled if the space-time dimen-
sion d be equal to 26 for pure bosonic strings.

Even after gauge fixing the world-sheet metric, one is left with unfixed symme-
tries due to diffeomorphisms and admits an infinite number of charges. This prop-
erty allows one to use the powerful methods of conformal field theory (CFT) to com-
pute in particular perturbative interactions of string theory.

So far we have discussed only the world-sheet perspective of bosonic strings liv-
ing in 26 space-time dimensions. To include fermions in the target space (and also
to get rid of the negative square-mass tachyonic excitation living in the spectrum of
the quantized bosonic string), one considers the Polyakov action (3.2) this time with
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Chapter 3. Perturbative and non-perturbative aspects of string theory

scalars Xµ along with two 2D Majorana-Weyl world sheet fermions ψµ, ψ̄µ of oppo-
site chirality coupled (in Weyl invariant way of course) to 2D superconformal gravity.
The new action will be (with 2d-gravitino χa and 2d gamma matrices γa)

SP =
1

4πα′

∫
d2σ
√
−h
[
hαβηµν∂αX

µ∂βX
ν +

i

2
hαβηµνψ̄

µ/∂ψν +
i

2
(χ̄aγ

bγaψµ)(∂bXm− i
4
χ̄bψ

µ)

]
(3.9)

which possess the diffeomorphism and Lorentz invariance as in (3.4) and (3.8) as well
as the supersymmetric generalization of the Weyl invariance (the super-Weyl trans-
formation) plus the 2D N=(1,1) supersymmetry transformations which intertwines
the world-sheet bosonic and fermionic degrees of freedom. Once more the theory
allows for residual diffeomorphism invariance after necessary gauge fixing and it is
described by N = (1, 1) super-conformal field theory (sCFT). The demand to have
the Weyl symmetry in quantized theory necessitates the spacetime dimensions d=10.

The generic solution to the equations of motion arising from the gauge-fixed clas-
sical Polyakov action (i.e. hαβ fixed to flat ηαβ) for the closed string is of the form

Xµ(τ, σ) = Xµ
L(τ+σ)+Xµ

R(τ−σ), ψµ(τ, σ) = ψµ(τ+σ), ψ̄µ(τ, σ) = ψ̄µ(τ−σ) (3.10)

with
Xµ(τ, σ + 2π) = Xµ(τ, σ) as σ + 2π ∼ σ. (3.11)

Thus the dynamics of the string can be analysed in terms of right-moving that is
holomorphic on the variable σ− = (τ − σ) and left-moving that is holomorphic
on the variable σ+ = (τ + σ) where the two sectors do not have any local interac-
tions. The left-moving and right-moving sectors are related only via considerations
about the global topology of the world-sheet. This shall in fact enables us to use
N=(0,1) supersymmetry in 2D world-sheet theory where only the right moving sec-
tor is supersymmetric and the left-moving sector is bosonic. This is at the heart at the
construction of Heterotic string theory which we shall consider in the next section.
Consistent quantization of closed string determines the target-space metric gµν along
with anti-symmetric 2-form Bµν plus a scalar φ called the dilaton.

Let us end this section with a very brief discussion of open and unoriented strings.
Open string dynamics can again be described by the Polyakov action (3.2), however,
instead of identification (3.11) of σ coordinate of closed strings, we need to impose
two boundary conditions

Neumann: ∂σX
µ|σ=0,π = 0, (3.12)

Dirichlet: ∂τX
µ|σ=0,π = 0 (3.13)

where we have σ coordinate to vary from 0 to π. The Neumann condition above
is consistent with the string equations of motions derived from the Polyakov action
as well as with the Poincaré symmetry of target-space however Dirichlet condition,
though compatible with equations of motion, is not compatible with the Poincaré
invariance. Thus in case of the latter, one needs to add extra objects at the ends of
open strings to absorb the excess momentum: these are called the D-branes which
we shall discuss in detail in section 3.4. One can even add non-dynamical degrees
of freedom at the end of open strings, called the Chan-Paton factors, in complete
consistency with world-sheet and target-space symmetries. Chan-Paton factors i, j,
i, j = 1, · · · , N can be added to each end of open strings and the world-sheet thus
seen to carry a U(N) gauge symmetry. Consistent quantization of open string dy-
namically determines a U(N) gauge fieldAµ and the scalar dilaton φ. In the fermionic
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sector, one gets the gaugini.
The other important ingredient in string theory is the unoriented string. Consider

for example the closed string theory with the following world-sheet coordinate (τ , σ)
transformation

τ ′ → τ, σ′ → 2π − σ. (3.14)

This transformation changes the orientation of the world-sheet and thus can be at-
tributed to the action of an operator Ω. Keeping then the massless states which are
invariant under the action of Ω gives rise to string theory known as unoriented string
theory. For example, an oriented closed string theory contains gµν , Bµν and φ in the
massless excitation modes (to be discussed in the next section) whereas the unori-
ented closed string does not contain the antisymmetricBµν field due to its odd parity
under Ω operation. Similarly, the unoriented open string sector contains no Abelian
field Aµ whereas the oriented open strings do.

3.2 String theories in 10D

Let us now explore the vacua of consistent string theories in 10 spacetime dimen-
sions. For the closed string the world-sheet is a cylinder and therefore we require the
scalars Xµ to be periodic along the spatial direction σ that is

Xµ(τ, σ + 2π) = Xµ(τ, σ). (3.15)

Since any physical observable is quadratic in fermions, for ψµ we can choose either
periodic or anti-periodic boundary conditions which are referred to as Ramond and
Neveu-Schwarz sector respectively

Ramond: ψµ(τ, σ + 2π) = ψµ(τ, σ), (3.16)
Neveu-Schwarz: ψµ(τ, σ + 2π) = −ψµ(τ, σ). (3.17)

The fermions above are ψ(σ+) or ψ̄(σ−) as we are discussing the 2D N=(1,1) su-
persymmetry. To preserve the Lorentz invariance, one is forced to choose the same
periodicity for all values of µ but one is free to chose different periodicities for left-
and right- movers. Thus for the case of N=(1,1) supersymmetry, we have four sec-
tors (R,R), (R,NS), (NS,NS), (NS,R) while for the N=(0,1) case we have two sectors
(NS,NS) and (R, NS).

There is one more constraint to be applied to the above sectors of string states:
that is due to Gliozzi-Scherk-Olive or GSO projection in short. In principle, this is a
grading according to fermion number operators F (the definition of F depends on
the R and NS sectors accordingly) which grades the R and NS sector according to
eigenstates of the operator (−1)F which gives rise to four classes in each right and
left moving sectors: R± times NS±. The consistent grouping of left and right mov-
ing sectors should take place so that we get supersymmetric spectrum for the target
space fields. Indeed spacetime supersymmetry is the rational behind the consistency
of the GSO truncation1. The truncation requires the NS sectors in both left and right
moving sector be NS+ while one can choose left moving and right moving R sectors
to be of opposite parity R+ and R− giving rise to type IIA theory or both of the same
parity e.g. R+ giving the type IIB theory in 10D.

1From a more mathematical point of view, the GSO projection is dictated by the modular invariance
of string partition function. We shall elaborate more on modular invariance of string partition function
later.
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Chapter 3. Perturbative and non-perturbative aspects of string theory

We have already discussed the field content of type IIA and type IIB theories in
the 10D supergravity discussion 2.2. We give it here once more for convenience

Type IIA: (NS+, NS+)→ gµν , Bµν , φ,
(NS+, R−)→ ψµ, λ,
(R+, NS+)→ ψ̄µ, λ̄,
(R+, R−)→ C1, C3.

Type IIB: (NS+, NS+)→ gµν , Bµν , φ,
(NS+, R+)→ ψµ, λ,
(R+, NS+)→ ψµ, λ,
(R+, R+)→ C0, C2, C4.

As we see, the (NS, NS) sectors are same in both the theories while from the
(NS,R) and (R,NS) sector we get two opposite chirality gravitiniψµ, barψµ and fermions
λ, λ̄ in type IIA while in type IIB the two gravitini are of same chirality as well as the
two fermions (note that in 10D all fermions are considered in Majorana-Weyl basis).

Let us now discuss the Heterotic string theory. This is also a closed string theory
with N=(0,1) world-sheet supersymmetry so that only the right moving (σ− holo-
morphic) sector is supersymmetric and lives in 10D target space while the left mov-
ing sector is purely bosonic and lives in 26 spacetime target space. In order to make
a consistent theory out of left and right moving sectors, one needs to compactify
the extra 16 space dimensions in the right moving sectors in a compact space of 16
dimensions or in a lattice of 16 dimensions. The modular invariance of the string
partition function (we shall discuss the modularity of the string partition function
in due course) dictates that this lattice should be unimodular and self-dual. In 10D
there are only two such 16 dimensional lattices Γ16 at our disposal: that is of group
Spin(32)/Z2 and E8 × E8. Thus in the massless spectrum we obtain

(NS+, NS+)→ gµν , Bµν , φ,
(R+, NS+)→ ψµ, λ,
(NS+,Γ16)→ Aµ,
(R+,Γ16)→ λµ.

The effect of combing the 16 world-sheet scalars on the gauge lattice Γ16 gives
rise to the vector multiplet (Aµ, λµ) with Aµ transforming in the adjoint representa-
tion of either SO(32) or E8 × E8. Thus we get the 10D heterotic string theory with
gauge group either SO(32) (called HO in short) or E8 × E8 (called HE in short). It
is worthwhile to note that the GSO projection automatically removes the negative
mass-squared tachyonic state from the string spectrum.

It remains to discuss the superstring theory of the open strings. We have how-
ever noted that as open strings can join to form a closed string, any consistent string
theory should contain closed strings. The way to include both open and closed string
in a consistent theory is to have a theory of unoriented closed and open strings. One
takes the theory of unoriented closed string: the problem with this theory is that the
one-point diagram of creation of a closed string state out of vacuum. The Poincaré
invariance of the theory requires the amplitude of such a process to be coupled to the
RR form C10. Such diagrams are known as tadpoles and the non-vanishing ampli-
tude of such processes indicates the instability of the vacuum. The way out of this
difficulty is to include unoriented open strings in the theory which also have tadpole
due to cross-cap coupling with RR forms but the amplitude is just opposite to that of
the closed unoriented diagram. Moreover, the orientation projection kills half of the
supersymmetry so that to construct a superstring theory, one takes the orientation
projection of type IIB theory in 10D and couples it with the unoriented open string
theory the massless spectrum of which includes gauge bosons in the adjoint repre-
sentation of SO(32). This is called the type I theory having SO(32) vector multiplet
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as in HO (along with gaugini) theory plus one graviton, one dilton, one 2-form, one
gravitino and one dilatino in gravity multiplet.

It is interesting to note that in 10 spacetime dimensions, the vacua of consistent
supergravity theories (2.2, 2.3) is exactly the same as that of the consistent superstring
theories. In lower dimensions however, the consistent supergravity vacua is larger
than the ones obtained from the compactifications of string theory and the super-
gravity vacua not constructible from the stringy ones are called the swampland.

3.3 String interactions and effective actions

Once the particle states of QFT are replaced by string excitation states, one can also
replace the world-line construction of Feynman diagrams of the interaction by the
world-sheet diagrams. The problem with the infinite precision of the probing of
space-time interaction point is now resolved by the smearing of the interaction posi-
tion which, in string interaction, lies on a patch of world-sheet (see figure 3.2). Thus

Infinite precision
 probing of 
interaction point

Smearing of interaction point
 in stringy interaction

Quantum Gravity String Theory

FIGURE 3.2: Quantum gravity interaction vs String interaction

the non-renormalization problem of the quantum gravity is resolved in string the-
ory. As a consistent description of the second quantization of the string theory is still
lacking, one however has to look for the conformal field theory description of the
Polyakov action (3.2) which, as mentioned earlier, can also be thought as the theory
of 2D gravity coupled to target space scalars and fermions. Even after gauge fixing
the symmetries (3.3), (3.6) of this action, there remain infinite number of conserved
charges which allow for the CFT description of dynamical string interaction. We shall
be considering mostly the interaction of closed oriented strings and for the world-
sheet diagrams, we shall take the initial and final string states to be on shell and at
infinity. Under conformal transformations, the world-sheet Feynman diagrams can
be transformed to a compact surface of genus g with the initial and final string states
at infinity represented as punctures on these surfaces (see figure 3.3). The equiva-
lent of Lehmann-Symanzik-Zimmermann (LSZ) reduction formalism in string theory
states that the punctures i.e. the initial and final string states are to be represented by
a quantum wave function, which are called the vertex operators and that the string
S-matrix components are to be calculated for each world-sheet diagram of a given
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In/Out String state
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Vertex Operators
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FIGURE 3.3: String Feynman diagrams

conformally inequivalent topology by the time ordered product of these vertex oper-
ators on the world-sheet surface. Just as in case of ordinary QFT we need to sum over
all possible S-matrix elements for a set of given initial and final states to determine
the so-called Green’s function of those states, in string theory we need to sum over
all possible topologically inequivalent world-sheet surfaces with vertex operators in-
serted to compute the stringy Green’s function. Each S-matrix elements are then the
string scattering amplitudes. It is however very difficult to compute string ampli-
tudes beyond spherical (i.e. zero loop genus zero) and toroidal (i.e. one loop genus
one) topologies (we shall give details of the 2-loop computation in chapter 7). Before
we address the amplitude results, which in turn provide for the stringy correction
terms in the low energy supergravity effective actions, we shall briefly discuss the
complexity of gauge fixing the partition function obtained from the Polyakov action.

3.3.1 Scattering amplitudes in string theory

Let us start by giving the expression of the string partition function. Recall that in an
ordinary QFT of some set of fields φi described by a free plus interaction Lagrangian
L + L′, one gets the n-point Green’s function G(φ1, · · ·φn), i.e. the complete interac-
tion of n fields as

G(φ1, · · ·φn) =
< 0|TSφ1 · · ·φn|0 >

< 0|S|0 > (3.18)

with S being the S-matrix obtained from the interaction LagrangianL′. These Green’s
functions are also conveniently found from the variation of the so called partition

30



3.3. String interactions and effective actions

function Z defined by

Z[φi] = N

∫
D[φi]ei

∫
(L+L′) = N

∫
D[φi]eiS (3.19)

where S =
∫

(L + L′) is the action of the theory. From the partition function Z, one
gets the Green’s function using

G(φ1, · · ·φn) =
δnZ[φi, σi]

δσ1 · · · δσn , (3.20)

= N

∫
D[φi]eiSφ1 · · ·φn (3.21)

with σi some auxiliary fields in the functional formalism of QFT [15]. Thus all the
details of the interacting field theory is contained in the partition function Z. In
string theory, one can similarly write the partition function

Zs =

∫ DXDh
Diff×Weyl

eiSP (X,h), (3.22)

=
∑

inequivalent topologies

∫ DXDh
Diff×Weyl

eiSP (X,h), (3.23)

=
∑
χ

Zχ. (3.24)

In the first line of (3.22), we have used the Polyakov action (3.2) and have divided
the integral measure by the volume of diffeomorphism and Weyl symmetry in order
to have finite path integral measure. In fact it is well-known from the QFT of gauge
theory that unfixed gauge symmetry makes the path-integral infinite and one needs
to imply for example Faddeev-Popov method of gauge fixing. In the second line of
(3.22) we have broken the S-matrix elements as sum over CFT inequivalent world-
sheet topologies and the partition function for each such topologies, characterized by
the Euler characteristic χ, we writeZχ. The Euler characteristic for a closed orientable
surface is defined by χ = 2 − 2g where g is the number of handles or genus in the
topology. In case of a non-compact (non)orientable world-sheet topology, we find
χ = 2−2g−b−cwhere b is the number of boundaries and c the number of cross-caps.
Thus when we shall speak of tree level, one loop level closed string string amplitudes,
we shall have in back of our mind the topology of sphere and torus respectively. To
complete the analogy with the QFT Green’s function, we write the on-shell initial and
final string states represented by the vertex operators Vi(ki, σi) which carry quantum
state ki (say momentum) and are to be inserted at the positions σi = (τi, σi) on the
world-sheet diagram. The expression for the Green’s function then looks like

G(1, · · · , n) =
∑

inequivalent topologies

∫ DXDh
Diff×Weyl

eiSP (X,h)
n∏
i

∫
d2σiVi(ki, σi). (3.25)

The implementation of the Faddeev-Popov gauge fixing method to choose for a
gauge slice of diffeomorphism and Weyl symmetry necessitates the introduction of
Faddeev-Popov determinant and the ghost states coming there-from. We shall only
sketch the facts instead of giving detailed mathematics. Recall from the discussion
of symmetries of the Polyakov action for a closed oriented bosonic string have the
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diffeomorphism and Weyl symmetries, the infinitesimal form of which are

δhαβ = ∇αξβ +∇βξα. (3.26)

and
δhαβ = 2Λ(σ)hαβ. (3.27)

Such symmetries of the world-sheet metrics hαβ define the so-called moduli space
for a given topology

M =
G

Diff×Weyl
(3.28)

where G is the space of all world-sheet metrics hαβ for a given topology. For example,
the genus one world-sheet is a torus which is parametrized by a complex structure
τ . Any torus is however invariant under the SL(2,Z) transformations

τ → aτ + b

cτ + d
,

(
a b
c d

)
∈ PSL(2,Z) =

SL(2,Z)

Z2
. (3.29)

Thus though the complex structure is à priori allowed to take values in the upper
half-planeH2, the moduli space is the fundamental domain

F =
H2

PSL(2,Z)
. (3.30)

The space F is thus parametrized by the complex scalar τ . In case of complicated
topologies, there may be a subgroup of Diff×Weyl which leaves the metric invariant
and is called the conformal Killing group (CKG in short). The infinitesimal elements
of CKG are called the conformal Killing vectors (CKV) which generate infinitesimal
Diff ×Weyl changes in the metric hαβ . The way to quantify the CKVs is to combine
the infinitesimal Diff×Weyl changes of the metric in the following form

δhαβ = ∇αξβ +∇βξα − hαβ∇µξµ + (2Λ(σ)−∇µξµ)hαβ (3.31)

= (P̂ ξ)αβ + (2Λ(σ)−∇µξµ)hαβ (3.32)

where we define the operator P̂ and its adjoint P̂ † as

(P̂ ξ)αβ = ∇αξβ +∇βξα − hαβ∇µξµ, (3.33)

(P̂ †δh)µ = −2∇νδhµν . (3.34)

The CKVs are transformations such that δhαβ = 0 and the trace of this equation gives
the conformal Killing equation

(P̂ ξ)αβ = 0. (3.35)

Also the zero modes of P̂ † i.e. δh such that

(P̂ †δh)µ = 0 (3.36)

are in fact deformations which cannot be compensated by Diff×Weyl symmetry. The
elements of KerP̂ are the CKVs while the elements of KerP̂ † are called the moduli
deformations or metric moduli. The Riemann-Roch theorem on the world-sheet re-
lates them to the Euler characteristic χ = 2− 2g according to

dimKerP̂ − dimKerP̂ † = 3χ (3.37)
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which in turn states that for an orientable compact topology with genus g

dimKerP̂ † =


0, if g = 0,

2, if g = 1,

6g − 6, if g ≥ 2.

(3.38)

The process of gauge fixing is in fact completely specified by manipulation of the
CKVs and metric moduli. If the moduli space contains only CKVs, then the gauge
fixing of the amplitude can be done by adjusting the vertex positions. This is the
case for spherical topology or tree level closed string amplitude. If there are metric
deformations in the moduli space then one needs a further step. It can be shown that
the Faddeev-Popov Jacobian to be included in the path integral (3.22) for the gauge
fixing is given by

∆FP =
√
P̂ P̂ † (3.39)

in the operator form. This inclusion in the path integral is in fact equivalent to the
inclusion of the bc-ghost system [27] in the Polyakov action

Sbc =
1

2π

∫
d2σb∂c̄ (3.40)

where b and c are anti-commuting bosonic fields (that is why they are ghosts).
In case of super-string theory, in addition to the bc-ghost system, another ghost

system, the βγ-system (commuting fermionic fields) should be included in order to
account for the full supersymmetric Polyakov action (3.9). The moduli space M
(3.28) is now to be understood as a super-moduli space.

The sum of Polyakov action (3.2) and bc-ghost action S = SP + Sbc (or bc- plus
βγ-system in super-string case) possess the Becchi-Rouet-Stora-Tyutin (BRST) sym-
metry. This is in fact an implicit effect of the Faddeev-Popov gauge fixing method and
is the elegant alternative to the Gupta-Blauler gauge fixing conditions. In short, in the
Gupta-Blauler method (for Abelian gauge theories), one truncates the physical states
in order to decouple the non-physical states (e.g. ghost states) from the spectrum of
the physical theory. In case of non-Abelian gauge symmetries, one asks for the phys-
ical states to be BRST invariant thereby decoupling the non-physical states out of the
physical spectrum. In string amplitude computations, one thus needs to implement
the BRST invariance, that is the string amplitudes should be BRST invariant. This is
rather easily achieved in super-string amplitude computation by introducing the so
called picture changing operators (PCO) O(ki, σi) in the Green’s function (3.41)

G(1, · · · , n) =
∑

inequivalent topologies

∫ DXDh
Diff×Weyl

eiSP (X,h)
n∏
i

∫
d2σiVi(ki, σi)

m∏
j

O(kj , σj).

(3.41)
This is once more equivalent to evaluating the string amplitude of states represented
by n vertex operators Vi(ki, σi) along with b and c ghost operators. The algorithm of
picture formalism in string amplitude [29] is the following: for a string loop ampli-
tude on a genus g world-sheet with nB bosonic vertices in -1 picture i.e. vertex with
BRST charge -1, the BRST consistency condition for the amplitude forces one to insert
N = 2g−2+nB picture changing operators. One then coincides these PCOs with the
bosonic vertices provided that the complex structure of the string world-sheet allows
for such coincidence (for example an infinitesimal patch of the world-sheet around
the bosonic vertex position accommodates the insertion of the PCO such that they
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come infinitely close together). If N = nB i.e. for genus one case, all the vertices now
become zero picture BRST vertices. If N < nB i.e. for genus zero case, nB−2 vertices
turn to zero picture and 2 remaining states in -1 picture. In case of genus g ≥ 2 there
are more picture changing operators than the physical vertices. One thus needs fur-
ther considerations to solve for the ambiguities arising from the PCO insertions. We
shall address this issue in chapter 7.

The 10D string theories with N=2 supersymmetry contains states from NS-NS
sectors. In an amplitude computation, one needs to consider the PCO insertions for
each NS sectors separately. We shall discuss the particularities of string 1-loop am-
plitudes in course of this work and shall provide the details for the vertex operators,
kinetic structures, partition functions, fermionic characters in terms of world-sheet
SL(2,Z) genus-one modular functions in due places. The goal for the above gen-
eral discussion was to make the foundation for the more complicated discussion of
two-loop amplitudes in chapter 7.

3.3.2 String coupling to background fields and low energy effective action

Starting from the Polyakov action (3.2)

Sp =
1

4πα′

∫
d2σ
√
−hhαβηµν∂αXµ∂βX

ν (3.42)

with the target space metric assumed the flat Minkowski one i.e. ηµν , one finds,
after the quantization of string excitations, the massless modes contain the graviton
gµν which, from the general relativity perspective, is the fluctuation around the flat
metric i.e.

Gµν = ηµν + gµν . (3.43)

The coherent superposition of graviton creates the generic curved background sim-
ilar to the photon reconstruction of macroscopic electro-magnetic field. Thus the
consistent background for Polyakov action should couple with gµν as well as with
Bµν and the dilaton field φ so that it becomes

SP =
1

4πα′

∫
d2σ

[√
−hhαβgµν(X) + εαβBµν(X)

]
∂αX

µ∂βX
ν+

1

4π

∫
d2σ
√
−hR(2)φ(X),

(3.44)
where R(2) is the Ricci-scalar of the intrinsic world-sheet metric hαβ . Note that the
coupling of dilaton field in the above is dictated by the diffeomorphism and Weyl
invariance of the original Polyakov action. This coupling is however not consistent
with the Weyl invariance if the higher order corrections, that is, the string loop cor-
rections to the Polyakov action are taken into account. The Weyl anomaly in the
non-linear sigma model (3.44) is controlled by three β- functions βGµν , βBµν , βφ and the
Weyl consistency is restored if those functions in the variables of Ricci-tensor Rµν of
the target space metric gµν , the field strength dB2 = H3 and φ derivatives vanish. The
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resulting equations are in fact

βGµν
α′

= Rµν −
1

4
HµνρH

µνρ + 2∇µ∇νφ = 0, (3.45)

βBµν
α′

= −1

2
∇ρ
[
e−2φHµνρ

]
= 0, (3.46)

βφ

α′
=

3

2

[
4(∇φ)2 − 4�φ−R+

1

12
H2

]
= 0 (3.47)

and they can be thought of as equations of motions coming from the action

Stree =
1

κ2

∫
10
d10x

√
−det(G)e−2φ

[
R+ 4(∇φ)2 − 1

12
H2

]
(3.48)

which can be compared with the 10D supergravity actions (2.22), (2.24) and (2.30)
with κ2 = e2<φ>α′4 being the 10D gravitational constant. The factor < φ > is the
vacuum expectation value of φ such that φ =< φ > +Φ. To make the comparison
more clear, we absorb the exponential factor inside the metric with gEµν = e−

Φ
2 gµν to

bring the action (3.48), said to be in string frame, to Einstein frame

SEtree =
1

2κ2

∫
10
d10x

√
gE
[
R− 1

2
(∇Φ)2 − e−Φ 1

12
H2

]
. (3.49)

The reason we have inserted the label "tree" in (3.48) and (3.49) is that the same action
can be obtained from tree level string scattering amplitude. This is evident also from
the dilaton factor e−2φ in (3.48) which is indicative of the fact that the action is a result
of sphere amplitude for closed strings. This point of string coupling constant shall
be discussed in more detail in the next section. We conclude this section by pointing
out that the low energy effective action of the string massless modes can be derived,
at the lowest order in perturbation theory by CFT arguments as presented above or
from direct tree level amplitude calculation and the action so obtained is same as that
for the supergravity effective action in the first order formulation. This corroborates
our previous assertion that supergravity theories in 10D are in fact low energy limits
of 10D string theories.

3.3.3 String loop expansion in gs and α′

The coupling of the dilaton field φ in the background coupled Polyakov action (3.44)
dictates the string coupling constant. Consider the coupling 1

4π

∫
d2σ
√
hR(2)φ(X)

with φ(x) replaced by its constant vacuum expectation value < φ > so that

1

4π

∫
d2σ
√
hR(2) < φ(X) >=< φ(X) > χ (3.50)

where χ is the Euler characteristic of the world-sheet: χ = 2 − 2g − c − b where g
stands for genus, b for boundaries and c for cross-caps. For oriented closed strings b
and c are zero and a tree level amplitude, that is a spherical world-sheet with vertex
functions of incoming and outgoing modes shall have χ = 2. At 1-loop level, i.e. for
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a torus diagram χ = 0 and negative for higher loop terms. In the Euclidean formula-
tion of Feynman path integral, the scattering amplitude shall have the structure

< out|in >=
∑

world-sheet topologies

∫
[DX][Dh]

diff × Weyl invariance
e−SP VinVout. (3.51)

Thus it is easy to see that each topology shall be weighted by the factor e−<φ(X)>χ

in the path integral and comparison with ordinary QFT (e.g. QED) (or most readily,
writing the Green’s function (3.51) in terms of sum over string S-matrix elements)
shows that gs = e<φ(X)> shall act as the coupling constant of the string perturbation
theory in the world-sheet Feynman diagrams. The power of gs in the string frame
effective action thus determines the order of the perturbation: for example, the effec-
tive action (3.48) of the previous section can be recovered from tree level amplitude
of closed strings as χ = 2. We shall see for one loop, the string coupling constant
appears to be gs = e<φ(X)>0 = 1. Thus the string S-matrix can be seen as an expan-
sion in gs when gs << 1 and is called the perturbative expansion. A string theory is
non-perturbative or strongly coupled if gs > 1.
Next looking at the gravitational constant κ2 = g2

sα
′4 with α′ = l2s , we see that the tree

level effective action in string frame (3.48) or in the Einstein frame (3.49) takes into ac-
count the string length scale ls within the definition of Einstein-Hilbert action of 10D
supergravity. In fact, in natural units, the action should be dimensionless and thus
looking at (3.49) we see that the denominator comes with a length scale dependence
(ls)

8 which is counter-balanced with (ls)
10 in d10x and (ls)

−2 from each of R, H2,
(∇Φ)2. Hence each of the latter terms are called two-derivative terms and the action
(3.49) is called "two-derivative" action. When one incorporates the corrections due
to higher loops into the effective action, one sees the emergence of higher-derivative
terms. For example, in one loop, as we shall see in the course of this work, the effec-
tive action receives correction of the form

S =
1

α′

∫
d10xR4 (3.52)

An example of such terms can be readily seen from the CP-even partners of the
anomaly polynomials as given in section 2.5 for the 10D case. To make contact with
the Einstein Hilbert action (3.49) one thus needs to incorporate in the denominator of
(3.52) the gravitational constant κ2 and the modified Einstein-Hilbert action would
look like

S =
1

2κ2

∫
d10x

[
R+ α′3R4 + ...

]
(3.53)

Thus the correction term, which in this case is of 8-derivative, can be seen as an ex-
pansion in α′ parameter. The higher derivative corrections from still higher loops are
then further terms in the expansion in α′. Note that α′ denotes the stringy nature of
correction, that is one delves the supergravity effective action from string perspec-
tive with an energy resolution to visualize the stringy emergence of gravity. In case
the energy resolution too low, the stringy nature cannot be detected and corrections
of order α′ cannot be "felt" at the low energy effective interaction. We shall devote
the main contribution of this work to the α′3 corrections to 10D and 8D supergravity
theories.
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3.4. Branes in string theory

3.4 Branes in string theory

The massless spectrum of 10D string theories contain p-form fields e.g. the NS-NS 2
form B2 and RR forms in type II theories. These fields couple to extended objects in
a similar manner to the 4D electromagnetic field couple to point charges. The natural
objects which are charged under (p+1)-formCp+1 are p-branes, extended objects with
p spatial dimensions. A point particle thus corresponds to a zero-brane and a string
corresponds to a one-brane. The natural or minimal coupling of Cp+1 to a p-brane is
given by

Sp = Qp

∫
p−brane world volume

Cp+1 (3.54)

which generalizes the ordinary gauge theory coupling of point particle source that is

S =

∫
dDxAµj

µ (3.55)

where the current jµ =
∫
dτδD(xµ−Xµ(τ))∂τX

µ(τ) withXµ(τ) labelling the location
of the point particle. For p-brane the equivalent of point particle charge density is Qp
which is the string tension for one-brane and brane tension (mass per unit volume)
for p-branes with p ≥ 2. One can also define the magnetic dual C̃D−p−3 for a given
field Cp+1 by the Hodge dual of the field strength Fp+2 by

∗ dCp+1 = ∗Fp+2 = F̃D−p−2 = dC̃D−p−3 (3.56)

where D is the dimension of the space-time. Thus the dual form couples to (D-p-
4)-branes or Cp+1 couples "magnetically" with (D-p-4)-branes with magnetic charge
Q′D−p−4. A Dirac quantization similar to that of 4D case relates the electric and mag-
netic charges according to

QpQ
′
D−p−4 ∈ 2πZ. (3.57)

Of the important branes in string theory, the Dp-branes are of particular interest. For
theories with open strings, suitable boundary conditions for the equations of mo-
tion obtained from Polyakov action are to be imposed on Xµ and there are two such
conditions: (1) the Neumann condition: ∂σXµ|σ=0,π = 0 and (2) Dirichlet condition:
Xµ|σ=0,π =const. One can impose these boundary conditions independently at each
end-point of the open string and along different directions in space-time. The impo-
sition of Dirichlet boundary condition on an endpoint breaks the Poincaré invariance
on the directions of constant Xµs. Thus for example imposing Neumann condition
in p+1-directions and Dirichlet conditions in D-p-1 orthogonal directions require this
end of open string to lie on a (p+1)-dimensional subspace of target space. Such a
subspace is referred to as a Dp-brane. In the world-volume of each Dp-brane lives
a U(1) gauge field and when N such branes coincide the open strings stretched be-
tween them give rise to the gauge enhancement U(1)n → U(n) (we defer from a
general discussion of Chan-Paton factors as these notions will be of minimal use in
the rest of the thesis: for more information we refer to Polchinski [30] and Bachas [31]
lecture notes).

Dp-branes are in fact the objects of type II theories which are charged under RR-
forms. They can also be obtained from the supergravity equations of type II theories.
Here however, we discuss their BPS (Bogomolny-Prasad-Sommerfeld) nature. In fact
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Chapter 3. Perturbative and non-perturbative aspects of string theory

the 10D supersymmetry algebra of different string theories can be extended with ten-
sorial central charges so that the supersymmetry algebra has the structure

{QAα , QB†β } = −2δABPµΓµαβ − 2iZABµ1···µp+1
(Γµ1 · · ·Γµp+1)αβ (3.58)

where the operators ZABµ1···µp+1
are the central charges which commute with Q’s and

behave as tensors with respect to the generators of the Lorentz group. Their com-
mutation with the Hamiltonian makes them proportional to p-brane charges. These
branes are BPS states because they saturate the BPS condition "brane tension≥maxi-
mal eigenvalue of Z matrix". The BPS states are absolutely stable at a generic point of
moduli space because its decomposition to daughter states would violate the simul-
taneous conservation mass and charges. These BPS branes however preserve only a
fraction of the original supersymmetry because of the central charges Z.

The effective action for Dp-branes is given by the Dirac-Born-Infeld action which
describes the coupling of Dp-brane world-volume degrees of freedom to the bulk
NS-NS fields by

SDBI = −Tp
∫
p+1

dp+1ξe−φ
√
−det(gab +Bab + 2πα′Fab) (3.59)

where φ is the dilaton restricted to brane, ξa are the brane world-volume coordinates,
gab and Bab are the pull-backs of bulk metric and B2 field

gab =
∂Xµ

∂ξa
∂Xν

∂ξb
gµν , Bab =

∂Xµ

∂ξa
∂Xν

∂ξb
Bµν . (3.60)

Finally Fab is the gauge field strength of the Abelian field living in the brane world-
volume. The brane tension Tp is equal to

Tp = (2π)−p(α′)−
p+1

2 g−1
s (3.61)

which is also equal to the RR charge µp of Dp-brane.
In addition to the DBI action, there is a Chern-Simons action for Dp-branes which

are related to the cancellation of anomaly due to the chiral matter living in the inter-
section of two branes. This is given by [32, 33, 34, 35]

SDWZ = µp

∫ ∑
n

Cne
F
√
Â(RT )/Â(RN ) |p+1−form (3.62)

where
∑

nCn is the formal sum of the RR potentals pulled-back to Dp-brane world-
volume, F = 2πα′F − B with F being the gauge-field strength living on the Dp-
brane world-volume and B is the NS-NS 2-form field pulled-back to the brane world-
volume. R = 4π2α′R is the normalized curvature (T and N respective for the tangent
and normal bundle) and the square-root of Dirac genus is given by√

Â(R) = 1− (4π2α′)2

48
p1(R) +

(4π2α′)4

2560
p2

1(R)− (4π2α′)4

2880
p2(R) + . . . (3.63)

with p1(R) = − 1
8π2TrR

2, and p2 = 1
4(2π)4 [1

2(TrR2)2 − TrR4].

Apart from Dp-branes, another important BPS state in string theory is the NS5-
brane which is magnetic dual of fundamental (or perturbative) string according to
(3.56) and couples magnetically to NS-NS two form B2 with which the perturbative
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string couples electrically. The tension of NS5 brane is T5 = (2π)−5α′3g−2
s which

is heavier than the corresponding D5-brane in (3.61). The world-volume theory of
NS5 brane contains D=6 N=1 supergravity hypermultiplet (to be described fully in
chapter 6).

We shall end this section with a discussion of orientifold planes. Although a
consistent discussion of orientifold planes require knowledge of T-duality which we
shall discuss in section 3.6.1, we present it here for the sake of better classification.
The idea is related to the orientofold projection which is a world-sheet operator Ω
implementing a parity transformation on world-sheet coordinates

ΩXµ(τ, σ)Ω−1 = Xµ(τ, 2π − σ) (3.64)

for the closed strings with σ ∼ σ+ 2π. For closed strings, the original coordinates are
Xµ = Xµ

L(σ+) + Xµ
R(σ−) and their T-dual coordinates (see section 3.6.1) are X ′µ =

X ′µL (σ+) − X ′µR (σ−). Thus the action of world-sheet parity (3.64) exchanges right-
moving coordinates Xµ

L(σ+) with the left-moving Xµ
R(σ−) sectors and for the dual

coordinates X ′m

X ′µ(τ, σ)↔ −X ′µ(τ, 2π − σ) (3.65)

which can be thought of as a product of a world-sheet and a space-time parity op-
erations. Taking now n-space-dimensions (xµ, µ = 0, · · · , n) out of D=10 to have
the even parity as in (3.64) and the rest 10-n (xm, m = 10 − n, · · · , 9) coordinates to
have parity odd property (3.65), one can see that the string excitation modes (mass-
less) decomposes under the eigenstates of the Ω operator e.g., for the metric and
anti-symmetric states ([30])

gµν(xµ,−xm) = gµν(xµ, xm), gµm(xµ,−xm) = −gµm(xµ, xm), (3.66)
gmn(xµ,−xm) = gmn(xµ, xm),

Bµν(xµ,−xm) = −Bµν(xµ, xm), Bµm(xµ,−xm) = Bµm(xµ, xm), (3.67)
Bmn(xµ,−xm) = −Bmn(xµ, xm).

The T-dual space-time is then seen to have the geometry of the R10−n/Z2 quotient
space and the resulting target-space theory is given by Rn × R10−n/Z2, the origin
of R10−n/Z2 corresponds to an n-dimensional subspace of R1,9 fixed under the Z2

parity operation. The projection or orientation-parity operation also necessitates the
inclusion of unoriented strings in the theory. The effect of these are accounted by the
inclusion of non-dynamical orientifols planes or O-planes for short: for the case of
10-n dual coordinates, the O-plane is of dimension 10-n. Orientifold planes are not
dynamical in the sense that no string modes are tied to it to represent fluctuation of
its shape. In case of orientifold compactification with D-branes, one observes that
the cancellation of RR-tadpoles needs the O-planes to couple with RR-forms in CP-
odd manner: intuitively, the Chern-Simons coupling of RR-forms with D-branes as
in (3.62) shows that to counter-balance the net RR-flux one needs to add O-planes
within the stack of D-branes having Chern-Simons action of the form [32, 36, 34, 35]

SOp± = ±µ′p
∫ ∑

n

Cn

√
̂L(RT /4)/ ̂L(RN/4) |p+1−form, (3.68)

with µ′p = 2p−5µp and√
L̂(R/4) = 1 +

(4π2α′)2

96
p1(R)− (4π2α′)4

10240
p2

1(R) +
7(4π2α′)4

23040
p2(R) + . . . . (3.69)
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In the next section we shall elaborate in more details the compactification paradigm
in string theory.

3.5 Compactification in string theory

The consistency of the string theory requires it to live in a target spacetime of di-
mensions 10 where the string dynamics determines the gravitational degrees of free-
dom dynamically. In order to make contact with the 4D standard model physics
with possibly minimal supersymmetry, it is thus necessary to require that the dy-
namically determined space-time geometryM10 should allow for the product form
M10 = Md ×Mc whereMd is Minkowski space of dimension d< 10 (for the phe-
nomenological purpose d=4 in fact) and Mc is a compact manifold of dimension c
such that c + d = 10. To escape the detection by the actual resolution of high energy
physics experiment, the size ofMc must be smaller than the length scale probed by
such experiments. We are also assuming implicitely that we are admitting the meth-
ods of the classical geometry in a limit where the length scale is much bigger than
the string length scale ls. In fact various string dualities, like T-duality suggest that
the notion of stringy geometry which is different from the geometry probed by point
particle. In the latter case, one needs to consider geometrization of the internal string
degrees of freedom. The space-time solution of the formM10 =Md ×Mc are not in
general supersymmetry preserving but can leave a set of original supersymmetry pa-
rameters preserved. There are phenomenological and technical reasons to consider
compactifications which leave some supersymmetry unbroken at the TeV scale. For
example, it can explain the existence of rather light scalar fields (like the Higgs boson)
by protecting their mass from large quantum corrections. Such a solution is invariant
under supersymmetry if the infinitesimal transformations of the background fields
vanish. In particular the supersymmetric variation of fermionic fields determine the
shape of compact manifold Mc. Take for example the gravitino variation which is
schematically (see for example (2.17) in section 2.3)

δεψM = ∇M ε+ · · · (3.70)

where ∇M is the covariant derivative on spinors and ε is a supersymmetry parame-
ter. In a vacua in which all matter fields are set to zero, there shall remain a fraction of
supersymmetry preserved if and only if there exists non-trivial solution to the Killing
spinor equation ∇M ε = 0. In order for such a solution to exist for the Killing spinor
equation, one decomposes the 10D spinor ε into d and c dimensional spinor in the
factorized form ε = εd

⊗
ηc. Putting this into the Killing spinor equation ∇M ε = 0

one finds∇dη = 0 where the spinor covariant derivative∇d is now constructed from
the internal metric gmn of the manifoldMc. This equation in turn implies the Ricci
tensor Rmn of the internal manifold to vanish. Thus the requirement for the unbro-
ken supersymmetry requires the Ricci flatness of the internal manifoldMc.

We shall not explore the vast variety of compactification to Ricci-flat spaces for
compactification but shall only sketch the circle and toroidal compactification which
we shall use in the thesis. Amongst the interesting cases of Calabi-Yau compactifica-
tion we shall emphasize on the K3 surface.
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3.5.1 Circle compactification

The simplest example of compactification is obtained by choosing a one-dimensional
internal space with the topology of a circle. Thus the background manifold of D=d+1
space-time dimensions can be written in the product formMD =Md×S1 whereMd

is the d-dimensional Minkowski space-time. Consider the compactification ansatz

Gµ̂ν̂dx̂
µ̂dx̂ν̂ = gµνdx

µdxν +R2dy2 (3.71)

where careted indices x̂µ̂, µ̂ = 0, · · · , d are D=d+1 dimensional coordinates of the
manifoldMD and the non-careted indices xµ, µ = 0, · · · , d−1 are that of d-dimensional
Minkowski space Md. The coordinate "y" parametrizes the circle with the identifi-
cation y ∼ y + 2π and R is the radius of the compactification circle of circumference
2πR. In general, the metric functions gµν , R are allowed to depend on xµ and y. How-
ever, in order to retain only the zero-modes of excitation, one restricts to the case
where gµν , R depend only on the external coordinates xµ. Under this assumption
the D=d+1 dimensional fields φ̂(x, y) which depend on both external coordinates xµ

and the internal coordinate y, should be decomposed in the Fourier expansion with
x-dependent coefficients because of the identification y ∼ y + 2π. Thus for a real
scalar φ̂ we get

φ̂(x, y) =
∑
n∈Z

φ(n)(x)einy. (3.72)

the Fourier coefficients φ(n)(x) are interpreted as d-dimensional scalar fields and are
referred to as Kaluza-Klein (KK for short) modes of φ̂. If we suppose that the dynam-
ics of φ̂ in D=d+1 dimensions is governed by the massless Klein-Gordon equation
Gµ̂ν̂∂

µ̂∂ν̂ φ̂ = 0 , the reduction to the d-dimension dynamics of KK modes according
to (3.72) is governed by the equation

gµν∂
µ∂νφ(n)(x)− n2

R2
φ(n)(x) = 0. (3.73)

Thus the zero-mode φ(0) is a free massless scalar in d dimensions, while excited
modes are massive modes of mass mn = n/R. We also note the mode expansion
basis function [einy]n∈Z are the set of complete and orthogonal eigenfunctions of the
internal Laplacian gyy∂y∂y such that

gyy∂
y∂yeiny = − n

2

R2
einy (3.74)

This feature will be recurrent in compactification to more complicated internal mani-
fold where the higher dimensional fields are expanded into eigenfunctions of suitable
differential operator in the internal space and the modes associated to non-vanishing
eigenvalues are massive with mass inversely proportional to the typical length scale
of the internal geometry.
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3.5.2 Toroidal compactification

For a general toroidal compactification that is where the internal manifold Mc =
T c =

∏c
1 S

1, the metric ansatz for the reduction is

Gµ̂ν̂ =

(
gµν +AiµGijA

j
ν GijA

j
µ

GijA
j
ν Gij

)
(3.75)

with the careted indices for the D-dimensional manifold, non-careted greek indices
are used for the non-comapact D-c dimensional Minkowsky space-time and latin
indices for the c dimensional internal torus manifold T c. Using this ansatz the reduc-
tion of the D-dimensional Einstein Hilbert action yields the following action in D-c
dimensions (see for example Bailin & Love [37])∫

dDx
√
det(Gµ̂ν̂)R̂→

∫
dD−cx

√
det(g)

[
R− 1

4
∂µφ∂

µφ+
1

4
∂µGij∂

µGij − 1

4
GijF

i
µνF

jµν

]
(3.76)

in the above, F iµν = ∂µA
i
ν − ∂νAiµ is the field strength of the Aiµ gauge fields origi-

nating from the metric and φ = log(detGij). In particular the case of two torus T 2 is
important as we shall use T 2 compactification quite a lot in this work. Its metric is
specified by its complex structure U = U1 + iU2 and volume V2 such that

Gij =

(
g88 g89

g89 g99

)
=

(
R2

1 R1R2cosω
R1R2cosω R2

2

)
=

V

U2

(
1 U1

U1 |U |2
)
. (3.77)

where R1 and R2 are the radii of the two one-cycles of the torus and ω is the angle of
inclination between these two directions: see figure 3.4. Thus the compactification of

ω

R1

R2

FIGURE 3.4: Torus complex structure and radii

the higher dimensional Einstein-Hilbert action on T 2 yields∫
dDx

√
det(Gµ̂ν̂)R̂→

∫
dD−2x

√
det(g)

[
R− 1

4
∂µV ∂

µV +
∂µU∂

µŪ

4U2
2

+ · · ·
]

(3.78)

3.5.3 Calabi-Yau compactification

A more complicated example of the compact internal spaces are the Calabi-Yau man-
ifolds (CY for short) which are compact n-complex dimensional Kähler Ricci-flat
manifold with holonomy SU(n). The restriction of holonomy group to SU(n) instead
of general SO(2n) endows the CY manifolds the property that the compactification
upon such manifolds preserves only half of the original supersymmetry. In case of
circle and torus compactification, there were no such constraint on the holonomy
group and thus compactification on such internal manifolds breaks no supersymme-
try. From the phenomenological point of view, CY 3-folds are of immense importance
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because compactification of 10D string theories upon CY 3-folds yields the 4D theo-
ries. We shall however concentrate mostly on the CY 2-fold K3 surface.

A K3 surface is a Calabi-Yau 2-fold with vanishing first Chern class c1(K3) = 0
and holonomy SU(2). The geometric informations of any CY manifold are contained
in the Hodge numbers hp,q, which are the dimensions of the Dolbeault cohomology
groups (hp,q = dim(Hp,q))

Hp,q =
space of ∂̄ − closed (p,q) forms
space of ∂̄ − exact (p,q) forms

(3.79)

and satisfy
hp,q = hq,p, hp,q = hn−q,n−p, hp,p > 0. (3.80)

For any connected CY manifold h0,0 = 1 and h0,n = hn,0 = 1 whereas hp,0 = 0 for
p 6= 0, n (we refrain from giving detailed proofs of these relations which can be found
in the standard references of Eguchi, Gilkey & Hanson [38], Nakahara [39], Nash &
Sen [40]). The Hodge numbers are represented conveniently in Hodge diamond as
in figure 3.5 (example for a CY-3-fold).

h0,0

h1,0 h0,1

h1,1 h0,2h2,0

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

FIGURE 3.5: Hodge diamond for a CY 3-fold

Using the natural inner product < η1, η2 >=
∫
CY η1 ∧ ∗η2 for (p,q)-forms η1, η2 ∈

Hp,q one can define the adjoint operators ∂† and ∂̄† for ∂ and ∂̄ respectively and
construct the two Laplacians

4∂ = ∂∂† + ∂†∂, 4∂̄ = ∂̄∂̄† + ∂̄†∂̄. (3.81)

A (p,q)-form Xp,q is called4∂̄ harmonic if

4∂̄ Xp,q = 0 (3.82)

and are in one-to-one correspondence with the generators of Hp,q(K).
A somewhat coarser information of geometry of the complex manifold is con-

tained in the de Rham cohomology defined with respect to the exterior derivative d.
The r-th cohomology group Hr(K) of 2n-dimensional manifold K is the space

Hr =
space of d-closed r-forms
space of d-exact r-forms

. (3.83)

The dimension of Hr is known as r-th Betti number br which are in fact

br =
∑
r=p+q

hp,q (3.84)

in terms of Hodge numbers (3.79). The Laplacian on p-forms can be written in terms
of exterior derivative as

4 = (d+ ∗d∗)2. (3.85)
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A p-form Xp is harmonic if4Xp = 0 and are in one-to-one correspondence with the
generators of Hp(K). Finally, the Euler characteristic of the manifold K is expressed
as

χ(K) =
2n∑
r

(−1)rbr. (3.86)

In case of K3 the Hodge numbers are h1,1 = 20, h2,0 = h0,2 = 1, h1,0 = h0,1 = 0,
h2,2 = h0,0 = 1 and hence for K3 we have χ = h1,1 + 2h0,0 + 2h0,2 = 24 in terms of
Hodge numbers.

For a generic field Φ in the higher dimensional theory, whose dynamics, say, is
governed by an equation

DDΦ = 0 (3.87)

in D-dimensions with DD some D-dimensional differential operator. Under decom-
positionMD =Md × CYn such thatMd a Minkowski space and CYn be a compact
Calabi-Yau n-fold such that D = d + 2n the differential operator decomposes as
DD = Dd + Dn. the solution for the d-dimensional fields can now be obtained by
taking the product ansatz Φ = φd ⊗ fm where fm are the eigenfunctions of the CY
differential operator Dn so that

Dnfm = m2fm. (3.88)

Then the dynamics of the KK modes φd are governed by

(Dd +m2)φmd = 0. (3.89)

For the reduction of symmetric tensor fields like gµν , the corresponding Laplace op-
erator is the Lichnerowicz operator.

In case of a complex Kähler manifold (and therefore for a CY manifold CYn) the
differential operatorDn for the internal manifold can be shown to be de Rham Lapla-
cian (3.85) (upto sign). Therefore the the number of massless modes of the KK reduc-
tion over CY manifold is provided by the Betti numbers (or with Hodge numbers)
which were defined in (3.84).

One more point of interest is the moduli space of the internal manifold Mc. It
is defined as the space of metric deformations which preserve the internal manifold
Mc. The scalars parametrizing the moduli space appear as massless scalars in the ac-
tion of the reducedMd theory. For example, in circle compactification, the radius of
the circle R is a free parameter and appear in the lower dimensional theory as a free
massless scalar. In case of T 2 compactification, the reduced action (3.78) contains the
kinetic term ∂µU∂µŪ

4U2
2

for the complex structure U which is a moduli of T 2. In case of
CY n-fold, there are two different class of moduli called the complex structure mod-
uli and Kähler moduli which are deformations of the CY metric δgab preserving the
Calabi-Yau condition. It can be shown that the total moduli space of CY metrics is a
direct product of complex moduli space and Kähler moduli space with dimensions
h2,1 and h1,1 respectively.

In case of K3 surface (h2,1 = 0), the harmonic forms can be split into self-dual
and anti-self-dual forms with respect to the 4D metric defined on it. There are 19
self-dual forms out of 20 (1,1) forms and 3 anti-self-dual forms from the combination
of 1 (1,1) form with (0,2) and (2,0) forms. The moduli space of K3 is 58 dimensional
with 20 (=h1,1) real parameters specifying the Kähler class and 38 real or 19 complex
parameters specifying the complex structure.
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3.6 Duality in string theory

Although there are 5 different string theories in 10D, compactifying these theories on
some suitably chosen compact manifolds, one can get same lower dimensional theo-
ries from two different 10D theories. This particularity of string theory is called the
duality. Duality relations map the string coupling constant, the data of the shape and
size of the compactification manifold and various other background fields of differ-
ent string theories. In cases it happens to be that perturbative regime of one string
theory compactified on a certain manifold is dual to the perturbative regime of an-
other string theory compactified on a certain manifold. There are also cases where the
strong-coupling regimes of some theory is mapped to the weak-coupling regime of
some other theory thereby providing tools for probing the non-perturbative physics
of the former theory. In the paradigm of effective theory, one also needs to consider
the non-perturbative aspects of the theory too, and for the case of string theory, it
is thus necessary to consider the non-perturbative M-theory and F-theory to gain
complete knowledge string interactions (in terms of low energy effective action). We
shall discuss the M-theory and F-theory in better details in subsequent sections. For
instance we shall discuss the well known T-duality, S-duality and U-duality relations
amongst string theory. The duality network between different string theories is in
fact complemented by the inclusion of the compactifications of M and F-theory. We
give a schematic view of the duality relations in figure 3.6.

3.6.1 T-duality

T-duality is the acronym for "target space duality" which relates string compactifica-
tions on spaces that admit continuous isometries. The classic example of this duality
is the duality between compactification of type IIA string theory on a circle of radius
R and the compactification of type IIB in the dual circle of radius α′/R. As a matter
of fact, taking the X9 space dimension to be the compactification circle for type IIA
theory, one finds the following identification

X9(τ, σ + 2π) = X9(τ, σ) + 2πwR (3.90)

where the integer w denotes the winding number, i.e., the number of times the closed
string wraps the compactified dimension. The compactification along X9 space-
dimension leads to the quantization of the momentum in the 9th dimension

p9 =
n

R
. (3.91)

The closed string sectors are now labelled by the couple (n,w). Compactifying the
type IIB theory on the dual circle of radius R′ = α′

R in fact exchanges the winding
number w of type IIA with the momentum number n of type IIA and vice versa. The
Kaluza-Klein mass level is given by

m2 =
( n
R

)2
+

(
wR

α′

)2

+ oscillator modes. (3.92)

Thus under the exchange of (n,w) couple and the radius R ↔ α′/R one obtains the
same tower of states in 9D.

One can also repeat the same argument for the Heterotic SO(32) string theory
compactified on a circle which happens to be dual to the compactification of E8×E8

Heterotic theory on the dual circle. In this case, the particular point of interest is that
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11-Dimension
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FIGURE 3.6: String and SUGRA duality network

one has to consider the Wilson lines along the compactification circle which breaks
both SO(32) and E8 × E8 theory to the subgroup SO(16) × SO(16). The T-duality
relation then relates the compactification along dual radius as in case of type II theo-
ries along with the exchange of momenta and winding numbers plus the reordering
of the non-zero Wilson lines along the compactification circle.

In case of open strings, the exchange of winding and momenta numbers inter-
changes Neumann and Dirichlet boundary conditions 3.12. As a result, a Dp-brane
in i-th direction is turned into a D(p-1) brane localized at a point along the dual ī−th
direction and vice versa. In case of a stack of N coincident Dp-branes, the informa-
tion about the relative positions of the dual D(p-1) branes is included in Wilson lines
which is a non-trivial constant vacuum expectation value of the i-th component of
the non-Abelian gauge field living on the branes.
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3.6.2 S-duality

S-duality is the acronym for "self-duality" or "strong/weak duality" which relates the
perturbative regime with the non-perturbative regime of the same or another theory
respectively. In the weak coupling limit, the non-perturbative states e.g. D-branes
or other BPS states become massive and decouple from the theory whereas in the
strong coupling limit they become light and participate in the effective action. The
strong-weak duality thus relates the fundamental strings of the perturbative theory
to the non-perturbative states e.g. D1 branes of the dual strongly coupled theory. The
example of the strong/weak duality case is the duality between the strongly coupled
type I theory with that of the weakly coupled SO(32) Heterotic theory in 10D. The
classic example of self-duality is in fact provided by the 10D type IIB theory which
we shall discuss below in detail and this shall pave the way for the discussion of
F-theory in section 3.8.

3.6.3 S duality of type IIB string theory

Low energy effective actions of superstring theories in 10D are that of the effective
actions of the supergravity theories in 10D. In case of type IIB, the supergravity effec-
tive action is invariant under SL(2,R) action while the superstring effective action is
invariant only under the discrete subgroup SL(2,Z) due to the quantization [10].

The effective action of type IIB theory in string frame is

SIIB =
1

2κ2

∫
d10x
√
g10

[
e−2φ

(
R+ 4∂µφ∂µφ−

1

2
|H3|2

)]
(3.93)

−
∫

1

12
G3 ∧ ∗10Ḡ3 +

1

2
F5 ∧ ∗10F5

+
1

2i

∫
C4 ∧G3 ∧ Ḡ3,

Changing towards the Einstein frame with the metric redefinitions

gEµν = e−Φ/2gµν (3.94)

and with the complex combination of axion and dilaton field: called the axi-dilaton
field collectively

τ = C0 + ie−Φ (3.95)

plus the combination of field strengths of B2, C2 and C4

H3 = dB2, F3 = dC2, G3 = i
F3 + τH3√

τ2
, F5 = dC4 + C2 ∧H3 (3.96)

as usual (see (2.24)), the type IIB effective action can be recast in the form

SIIB =
1

2κ2
10

∫
M10

R∗1− 1

2

dτ ∧ ∗dτ̄
τ2

2

− 1

2
G3 ∧ ∗Ḡ3−

1

4
F5∧∗F5−

i

2
C4∧G3∧Ḡ3. (3.97)

The above action is now can be seen to be invariant under the action of SL(2,R):
using the SL(2,R) matrix(

a b
c d

)
∈ SL(2,R), ad− bc = 1, (3.98)
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under which the axi-dilaton field τ transforms as

τ → aτ + b

cτ + d
(3.99)

and the B2 and C2 fields rotate into one another(
C2

B2

)
→
(
a b
c d

)(
C2

B2

)
(3.100)

the action is invariant provided that the Einstein frame metric and the RR four form
C4 and hence the field strength F5 are invariant. Semi-classical arguments suggest
that only the discrete subgroup SL(2,Z) of the classical invariance group SL(2,R)
can be realized in the quantum theory. In fact the B2 field couples electrically to the
fundamental type IIB string F1 with field strength dB2 and the path integral quanti-
zation of the theory imposes that the flux

∫
X3 dB2 should be quantized i.e.∫

X3
dB2 ∈ Z (3.101)

where X3 is any 3-cycle in space-time. Similar argument shows that C2 field couples
electrically with the D1 brane, called the D-string in type IIB and its flux should also
be quantized in accordance with the consistency of the path integral quantization∫
X3 dC2 ∈ Z. Thus both B2 and C2 are integrally quantized and in view of their

inter-mixing under SL(2,R) as in (3.100), only the SL(2,Z) subgroup preserves the
quantization conditions.
The group SL(2,Z) is generated by the transformations

T =

(
1 1
0 1

)
, S =

(
0 1
−1 0

)
(3.102)

which act on τ as
τ −→

T
τ + 1, τ −→

S
−1

τ
. (3.103)

In a simple background with C0 = 0 the S transformation above implies

gs →
1

gs
(3.104)

which is in fact the weak/strong duality that is weakly coupled perturbative theory
is mapped to a strongly coupled non-perturbative theory. In the case at present both
the theories happen to be type IIB: the weakly coupled one being the theory of F1
strings while the strongly coupled one being that with the D1 string. In the weak
coupling limit D-branes do not participate in the dynamics as they acquire infinite
tension. For finite or large coupling, one can consider the dynamical BPS objects that
can be thought of as bound states of F1 and D1 strings called the (p,q)-strings and
couple electrically to B2 with charge p and to C2 with charge q. Thus a (1,0) string is
the fundamental string while (0,1) string is a D1 brane. The expression for the tension
of the (p,q) string is

τ(p,q) =
|p+ τq|√

τ2
(3.105)
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which is SL(2,Z) invariant if under SL(2,Z) the charges (p,q) transform as

(
p q

)
→
(
p q

)(a b
c d

)−1

(3.106)

from which p
∫
B2 + q

∫
C2 is also seen to be invariant. Fundamental strings can end

on D1-brane so that (p,q) strings can have several prongs, a configuration referred to
as string junctions [41, 42, 43].

Under SL(2,Z) transformation, NS5 branes are mixed with D5 branes much sim-
ilar to the mixing of fundamental strings and D1 branes. D3 branes are unaffected
by SL(2,Z) as they are self-dual under the action of the latter group. A D7 brane
couple magnetically to C0 = Reτ which transforms non-trivially under SL(2,Z) as
in (3.103). Thus one expects the presence of (p,q)-7 branes on which a (p,q) string can
end.

3.6.4 U-duality

We end this section with the discussion of U-duality. So far we have seen the per-
turbative connection between type IIA and IIB theories on a circle and the non-
perturbative connection of type IIB with itself. As we shall discuss in the next section,
these two aspects can be unified via the compactification of the non-perturbative M-
theory which is an eleven-dimensional theory. In short, the low-energy limit of M-
theory compactified on a circle yields type IIA theory in 10D. We shall also elaborate
that the torus compactification of M-theory explains the SL(2,Z) symmetry of type
IIB, i.e. compactify on a torus to get type IIA in 9D and then decompactify along the
dual one-circle of the torus. It turns out that under further compactification on tori of
type II theories, the perturbative T-duality symmetries mix with the non-perturbative
symmetries inherited from M-theory and generate a larger duality symmetry called
the U-duality. We illustrate this point once more with type II theories. Compactifica-
tion of type II theories on torus T 2 of complex structure U = U1 + iU2 and of volume
V2 happen to have the perturbative symmetry under the exchange of complex struc-
ture U with the Kähler structure T = B89 + iV2 which is the complexification of
the torus volume V2 with the scalar B89 obtained from the compactification of the
type II B2 field on with both of its legs on the two one-cycles of the torus (which are
along the 8th and 9th space-dimensions). The resulting perturbative symmetry being
SL(2,Z)T×SL(2,Z)U . However, it happens to be that the SL(2,Z)T symmetry mixes
with the SL(2,Z)τ symmetry of the type IIB theory yielding for the larger symmetry
SL(3,Z). Therefore, the U-duality group becomes SL(3,Z)× SL(2,Z)U .

In the next sections we shall explore M-theory and F-theory and their connection
with type II and Heterotic theories in better details thereby providing proofs of the
duality network 3.6.

3.7 M-theory: relation with type IIA and Heterotic theory

Looking at the effective action of type IIA supergravity (2.22) and that of the 11D
one (2.21), we see that the former is the circle compactification of the latter. To see
this relation in string theoretic level, we note that the NS-NS two form B2 couples
electrically to the perturbative type-IIA string and magnetically with the NS5-Brane,
the RR 1-form C1 can couple electrically to D0 branes (or particles) and magnetically
to D6 branes. Finally the RR three form C3 can couple electrically to a membrane
and magnetically to four-branes. The emergence of an eleventh dimension can be

49



Chapter 3. Perturbative and non-perturbative aspects of string theory

seen from the spectrum of D0 branes of type IIA. The D0 brane tension or mass is
given by τD0 = 2π√

α′gs
and these states can form bound states whose energy is just

the sum of the energy of the constituents i.e. a bound state of n D0 branes has mass
nτD. This seems like a tower of equally spaced massive states that become light as
the string coupling constant increases and thus can be interpreted as a Kaluza-Klein
spectrum of a circle compactification. Thus the effective type IIA field theory is a
dimensional reduction of the 11D supergravity with the g11,11 component of the 11D
metric identified with the type IIA string coupling (this can be easily verified using
the circle compactification ansatz as in section 3.5.1). Thus taking the string coupling
constant gS →∞ type IIA theory becomes 11D theory whose low energy limit is the
11D supergravity: this 11D non-perturbative theory is known as M-theory [44, 45,
46].

M-theory contains the three form that can couple to a membraneM2 and its mag-
netic dual 5-brane M5. An M2 brane not winding around the circle is equivalent to
the type IIA D2 brane coupling to the three form C3. Also the M2 brane wrapped
around the circle becomes the perturbative type IIA string coupling electrically with
Bµν . Wrapping the M5 brane around the compactification circle provides the D4
brane coupling magnetically to C3 (the D6 brane of the type IIA theory can be ex-
plained as KK monopole) [31].

There is an interesting relation between M-theory and type IIB theory [47]. We
have seen that type IIB string compactified on a circle of radius R is dual to type IIA
theory compactified on a circle of dual radius α′/R. The latter is dual to M-theory
compactified on a circle. Thus M-theory compactified on a torus T 2 is expected to be
dual to type IIB theory compactified on a circle. The construction of 10D type IIB the-
ory from M-theory can be seen from the following: compactify M-theory on a torus
of complex structure U = U1 + iU2 which can be characterized by the radii of the two
one cycles R1 and R2 of the torus by U1 = R2

R1
cosω, U2 = R2

R1
sinω (see 3.4). The type

IIA compactification circle may be identified with sayR1 then shrink this one-cycle to
zero size while keeping the complex structure U fixed. The complex structure gives
rise to the axi-dilaton field U = U1 + iU2 = C0 + ie−φ while compactification of C3

RR form of M-theory compactified to C1 decompactifies to C2 in 10D and the uncom-
pactified C3 gives rise to the RR form C4. The 10D metric is automatically recovered
from the non-shrinked R2 cycle of the torus. Thus one recovers the type IIB theory in
10D.

3.7.1 Heterotic theory from M-theory: Horava-Witten mechanism

A classic example of orbifold compactification which provides an impressive demon-
stration of the role played by anomaly cancellation is provided by the Horava-Witten
mechanism in M-theory compactified on S1/Z2 giving rise to E8 × E8 Heterotic the-
ory in 10D [48, 49]. The compactification on this orbifold results in a chiral spectrum
which is crippled with anomaly, the way out to cancel these anomalies is through the
introduction of 10D vector multiplets on the orbifold fixed planes and the anomaly
cancellation condition fixes the gauge group on each fixed plane to be E8. The dy-
namics of the resulting theory corresponds to a strongly coupled version of E8 × E8

Heterotic string theory. Let us compactify the 11D supergravity on a circle which can
be taken as the compactification of the 11th space-time dimension that is x10. Next
imply the Z2 parity transformation acting on x10 as Z2 : x10 → −x10. From the re-
duction of 11D metric gMN one gets gMN → (gµν , gµ,10, g10,10) = (gµν , Aµ, φ). From
the reduction of 11D 3-form C3 one gets CMNP → cµνρ, Bµν . However, under the
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Z2 parity operation cµνρ → −cµνρ. Thus we have to mod this state out of the spec-
trum. From the 11d gravitino, we get 10D gravitino and a dilatino: ψM → ψ+

µ , χ
−.

The parity even spectrum in 10D theory is then gµν , Bµν , φ, ψ+
µ , χ

− which is the spec-
trum of the gravity multiplet of the 10D N=1 supergravity theory. The appearance
of the chiral fermions in the theory gives rise to the chiral anomaly. The proposition
of Horava-Witten mechanism to curb this anomaly is to introduce 10D N=1 vector
multiplet (Aµ, λ

+) in each of the orbifold fixed planes or on the two boundaries with
Aµ transforming under the adjoint representation of a gauge group G1,2. The total
anomaly of the gravity multiplet i.e. the bulk anomaly (using the anomaly index
polynomials given in (2.65) and (2.62))

Ibulk
12 =

1

2
Id=10

3/2 − 1

2
Idilatino1/2 (3.107)

=
2π

2(4π)6

[−495

5670
trR6 +

225

4320
trR4trR2 − 63

10368
(trR2)3

]
− 2π

2(4π)6

[
1

5670
trR6 +

1

4320
trR4trR2 +

1

10368
(trR2)3

]
= − 2π

2(4π)6

[
496

5670
trR6 − 224

4320
trR4trR2 +

64

10368
(trR2)3

]
(3.108)

The anomaly from the boundary vector multiplet

I
boundary
12 = (dim(G1) + dim(G2))

2π

2(4π)6

[
1

5670
trR6 +

1

4320
trR4trR2 +

1

10368
(trR2)3

]
+

2π

2(4π)4

TrF 2
1 + TrF 2

2

2(2π)2

[
1

360
trR4 +

1

288
(trR2)2

]
+(2π)

[
TrF 4

1 + TrF 4
2

2× 4!(2π)4

trR2

12(4π)2

]
+(2π)

[
TrF 6

1 + TrF 6
2

2× 6!(2π)6

]
(3.109)

The total anomaly is the sum of the bulk and two boundary terms (3.107) and (3.109)

Id=10,N=1
12 = Ibulk

12 + I
boundary
12

=
2π

2(4π)6
{(dim(G1) + dim(G2))− 496

5670
trR6

+
224 + (dim(G1) + dim(G2))

4320
trR4trR2

+
(dim(G1) + dim(G2))− 64

10368
(trR2)3

+

[
1

180
trR4 +

1

144
(trR2)2

]
(TrF 2

1 + TrF 2
2 )

+
1

18
trR2(TrF 4

1 + TrF 4
2 ) +

4

45
(TrF 6

1 + TrF 6
2 )}

(3.110)

The anomaly term above can be cancelled according to the Green-Schwarz anomaly
cancellation in 10D N=1 supergravity theory [50, 51, 52] (see section 5.1 for more
details). The requirement is that the anomaly polynomial I12 can be factorised as
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I4 × I8 so that one can write the counter-term

Sc =
g2
s

κ2

∫
B2 ∧ I8 (3.111)

with B2 transforming non-trivially under the gauge and Lorentz transformation ac-
cording to

δB2 =
κ2

g2
s

Q1
4 (3.112)

where I4 = dI3 and δI3 = dQ1
4 according to (2.59) with gs is the Heterotic string cou-

pling constant so that the anomalous phase variation due to the factorized anomaly
polynomial, (using the descent equations (2.59))

A =

∫
δI4 ∧ I8 =

∫
Q1

4 ∧ I8 = −δSc (3.113)

is cancelled by the gauge-gravity variation of the counter-term (3.111). Thus to use
this mechanism, the requirements are that trR6 term must vanish i.e. (dim(G1) +
dim(G2)) = 2 × 248 and that the 6th order Casimir invariant TrF 6 (Tr in adjoint)
must be decomposed in terms of 4th order and 2nd order Casimirs TrF 4 and TrF 2.
These conditions are in fact met by choosing the gauge group G1,2 at each boundary
to be E8 and thus one recovers the E8 ×E8 Heterotic theory in 10D. Using the gauge
group E8 living at each boundary we get the factorized anomaly polynomial

I12 =
2π

2(4π)6

1

6
(trR2 + trF 2

1 + trF 2
2 ) ∧ (3.114)

(trR4 +
1

4
(trR2)2 + trR2(trF 2

1 + trF 2
2 )− 2trF 2

1 trF
2
2 + 2(trF 2

1 )2 + 2(trF 2
2 )2)

so that the form of the anomaly cancelling term is

Sc =
g2
s

κ2

∫
B2∧(trR4+

1

4
(trR2)2+trR2(trF 2

1 +trF 2
2 )−2trF 2

1 trF
2
2 +2(trF 2

1 )2+2(trF 2
2 )2)

(3.115)
It is not difficult to see that the anomaly cancelling counter-term (3.115) is essen-

tially furnished by the compactification of M-theory. Recall that the effective action
of the 11D supergravity contains the following Chern-Simons terms in its effective
action [6, 7]

S11 ⊃ −
1

2κ2
11

∫
1

6
C3 ∧G4 ∧G4 −

2π

(4πκ2
11)1/3

∫
C3 ∧X8. (3.116)

The X8 term in the above is X8 = 1
192(2π)4 (trR4 − 1

4(trR2)2). The restriction or the
boundary condition on G4 term for the consistency of the vector multiplet leaving in
the boundary surface reads as

G4|i-th boundary =
κ2

g2
s

(trF 2
i +

1

2
trR2) (3.117)

which is in fact at the heart of the relation (3.112). However, G4 = dC3 so that solving
for C3 from (3.117) gives

C3 = Ω3 + dO2 (3.118)
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where Ω3 is the descent from 1
2 trR

2 + TrF 2 such that (A being the gauge connection
and ω the spin-connection (2.12))

Ω3 = Q3 = Tr(Ai ∧ Fi − i
A3

3
) +

1

2
tr(ω ∧R− iω

3

3
) (3.119)

hence the gauge gravity variation of C3 is

(δgauge + δgrav)C3 =
κ2

g2
s

d(TrΣidAi +
1

2
trvdω). (3.120)

Now compactifying the Chern-Simons term (3.116) of M-theory on the interval S1/Z2

enforcing the boundary condition (3.117) for both the boundaries with C3 → B2 give
rise to the term

Sc =
κ2

g2
s

∫
B2 ∧ (G4|1 ∧G4|2 +X8) =

g2
s

κ2

∫
B2 ∧ I8 (3.121)

which is exactly the desired anomaly cancelling term (3.115). Thus we see the com-
pactification of M-theory on S1/Z2 gives rise to E8 × E8 Heterotic theory in a self-
consistent manner.

We shall refer to the amplitude computation in Horava-Witten background in
section 5.5.

3.8 F-theory: relation with type IIB and Heterotic theory

The relation between M-theory and type IIA theory shows that the non-perturbative
compactification of type IIA theory can be described by the suitable compactification
of M-theory. Likewise, the theory which describes the non-perturbative compacti-
fication of type IIB string theory is called the F-theory [53, 54, 47]. F-theory is the
geometrization of the SL(2,Z) symmetry of type IIB string theory which we have
noted in section 3.6.3. This symmetry in conventional type IIB is global and to de-
fine F-theory one has to gauge or localize this particular symmetry. The SL(2,Z)
transformation properties hint to the symmetry of a torus and thus localization of
SL(2,Z) would mean to have elliptic fibration or torus fibration on a certain mani-
fold. Let us view this idea more clearly. Consider an elliptically fibered Calabi-Yau
manifoldM with a 2 × d-real dimensional base B (that is a base of complex dimen-
sions d) obtained by defining torus fiber at each point of the base manifold so that
the manifold M is of real dimensions 2d+2. Now in conventional type IIB string
theory, the axio-dilaton field is taken to be constant and in particular at weak cou-
pling (gs << 1). Instead if we now compactify type IIB theory on the base manifold
B such that the torus fiber is identified with the varying axio-dilaton field, that is,
if we denote U(z1, · · · , z2d) = U1(z1, · · · , z2d) + iU2(z1, · · · , z2d) to be the complex
structure of the torus fiber at the point on the base manifold defined by the coordi-
nates (z1, · · · , z2d) and we identify this varying complex structure with the varying
axio-dilaton field τ(z1, · · · , z2d) = τ1(z1, · · · , z2d) + iτ2(z1, · · · , z2d) i.e.

U(z1, · · · , z2d) = τ(z1, · · · , z2d) (3.122)

then the above compactification of type IIB on B is said to define the compactification
of F-theory on the manifoldM.

The generic non-perturbative property of F-theory seems to be forbidding for any
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perturbative information to be drawn out of it. However certain compactification
of F-theory are dual to compactifications of other perturbative theories and we can
exploit these duality relations to shed light on F-theory and its properties. In partic-
ular we shall be exploring the duality between F-theory compactified on elliptically
fibered K3 and Heterotic string theory compactified on a torus T 2 both leading to
D=8 N=1 supergravity theories in low-energy limit.

It is worthwhile to note that geometrization of the SL(2,Z) symmetry of type IIB
gives a 12 dimensional appearance to F-theory. One should however bear in mind
that the 2D "torus" in question is a book-keeping device only used to visualize the
elliptic nature of the fibration [55].

In what follows, we shall concentrate mostly on the K3 compactification of F-
theory and the generalization to compactification on other elliptically fibered Calabi-
Yau can be accomplished easily. An important feature of type IIB SL(2,Z) symmetry
is the presence of (p,q)-strings which couple electrically with (B2, C2) fields and the
presence of (p,q) 7-Branes which couple magnetically to the axio-dilaton field τ ac-
counting for the non-trivial monodromy transformations of the τ while encircling the
7-branes. In fact, encircling the 7-brane position on the transverse space, the axion
field changes by C0 → C0 + 1. Because of this coupling the 7-branes backreact on
the geometry and F-theory can be thought of as a geometric framework to incorpo-
rate seven-branes in a type IIB compactification in a fully consistent, backreacted and
non-perturbative way.

Consider an elliptically fibered K3 with base CP1. This fibration can be defined
by the Weierstrass model

y2 = x3 + f(z)x+ g(z) (3.123)

with the discriminant
∆ = 4f3 + 27g2 (3.124)

where z, z̄ are the complex coordinates on CP1, f and g are respectively 8 and 12
degree polynomials in z. The complex structure of the torus (the varying axio-dilaton
field of type IIB compactified on CP1) varies over the base space CP1 according to the
relation

j(τ(z)) =
4(24f(z))3

27g2(z) + 4f3(z)
=

24∏
i=1

(z − zi). (3.125)

where j is the Leech-j function defined in appendix B. There are 24 point on the CP1

where the torus fiber degenerates (see figure 3.7) and are in fact point where ∆ = 0.
These are infact the positions of the 7-branes on CP1. The 7-brane solution to type IIB
supergravity equations of motion can be inferred from the compactification of type
IIB on CP1 with the metric ansatz [56]

ds2 = −dx2
0 + dx2

1 + · · ·+ dx2
7 + eφ(z,z̄)dzdz̄︸ ︷︷ ︸

CP1

. (3.126)

The presence of 7-branes can be seen also intuitively: the first Chern class of the base
CP1 is non-zero: c1(CP1) = 2 and this cannot be a supersymmetry preserving back-
ground. The remedy is to add 7-branes to the theory which sit at arbitrary points zi on
CP1 and otherwise fill the 7+1 non-compact space-time dimensions (figure 3.7). From
the Wierestrass description above, the zi positions of the 7-branes are in fact roots of
the polynomial ∆ = 0 which is of degree 24 and thus there are 24 singular points on
CP1 i.e. 24 7-branes in the theory each contributing to −1/12 to the first Chern class
due to their back-reaction on the geometry. This combination 24× −1

12 = −2 combines
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b
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Singular Fibers
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CP 1

T 2

K3

24 7-Branes extending over 7+1 dimensions

FIGURE 3.7: An impression (inspired from [57]) of elliptically fibered
K3

with that of c1(CP1) providing a consistent background for compactification.
The D7-branes are co-dimension-2 branes in the above theory i.e. branes with 2

transverse direction and they couple electrically to C8 (dual to C0 scalar) and mag-
netically to C0 according to

d ∗ F9 = dF1 = δ7(z, z̄) (3.127)

whereF1 andF9 are the field strengths ofC0 andC8 respectively and δ7 = δ(z)δ(z̄)dz∧
dz̄ is a source two-form on CP1 which is the support of those branes. The magnetic
coupling of C0 with 7-branes result in the fact that encircling any of the support point
zi i.e. position of 7-brane on CP1 induce a non-trivial monodromy that is a transfor-
mation of the field τ → aτ+b

cτ+d (this is similar to the Dirac string in 4D electromagnetic
theory). In fact from the asymptotic solution of the equation (3.125) it can be shown
that in the neighborhood of a D7-brane, one must have a non-constant string cou-
pling of the form τ(z) = 1

2πi ln[z− zi]. For a generic (p,q)-7 brane (of which D7 branes
are the category (1,0) as discussed in 3.6.3), encircling its position once induces a
monodromyM(p, q) written in SL(2,Z) matrix form [57]

M(p, q) =

(
1 + pq q2

p2 1− pq

)
∈ SL(2,Z) (3.128)

The global consistency condition requires that the total monodromy on CP1 base
must be trivial

24∏
i=1

M(pi, qi) = 1 (3.129)
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which forbids all 24 branes to be of (1,0)-type.
A given pair of 7-branes is said to be mutually local if their monodromies com-

mute i.e. when k in
p1q2 − p2q1 = k ∈ Z (3.130)

is equal to zero. In that case, the pair of branes can be treated simultaneously at weak
coupling. In case k 6= 0 then the pair cannot be treated simultaneously at weak cou-
pling. Thus we see that if one considers each brane carrying a U(1) gauge group in
the world volume, the gross effect will result in a U(1)24 theory, but because of the
constraint (3.129) a maximum of 18 mutually commuting monodromies are permit-
ted and hence there cannot be more than 18 U(1) factors in the full theory. This is
where the duality with heterotic string theory on T 2 comes into play. Compactify-
ing Heterotic string theory on a T 2 with all the Wilson lines switched with non-zero
vacuum expectation values gives rise to U(1)18 gauge group 16 of which come from
the Wilson line and the rest two from the compactification of 10D metric gµν and Bµν
fields. In terms of scalar fields of the theory, the moduli space of Heterotic on T 2 is

M =
SO(2, 18)

SO(2)× SO(18)
(3.131)

which is parametrized by 18 complex scalars, two from the torus moduli T and U and
the rest 16 from the Wilson lines. In the context of F-theory on K3, the polynomials
f(z) and g(z) (which are respectively of order 8 and 12 with respect to z) have 18 inde-
pendent free complex parameters thereby confirming the duality with the Heterotic
theory.

In the context of Heterotic string compactified on T 2 it is known that the 10D
gauge group can be broken (or left unbroken) by appropriate switching of the Wil-
son lines. In the context of F-theory on K3, this is explained with coincidence of the
singularities that is the enhancement of gauge symmetry when more than one singu-
lar points out of 24 zis coincide. This is defined according to the Kodaira classification
of singularities which we represent (in a brief format) in the table below

Table 2:Kodaira classification of elliptic singularities
Type Gauge symmetry 7-Brane content
An U(n+ 1) An+1

Dn+4 SO(2n+ 8) An+4BC
E6 E6 A5BC2

E7 E7 A6BC2

E8 E8 A7BC2

Instead of the classic discussion about these singularities (see for example [47, 53,
57, 58]) we discuss the gauge theory enhancement mechanism due to stretched open
strings [59, 60].

When n D7-branes come to the same point on CP1, the open strings those are
stretched between them in all n(n-1) possible ways, become massless and give rise to
the enhancementU(1)n → U(n). In case of generic (p,q)-7 branes it can be shown that
these branes allow only the same (p,q)-charged strings to end on them [61]. However,
if a given stack of 7-branes contains for example orientifold 7 planes, which inverts
the (p,q) charges of the open strings, then two 7-branes of different charges may be
connected by an open string through complicated path. We exemplify the above
statement with SO(2n+ 8) and E8 groups below.

We denote the fundamental 7-branes participating in the scenario to be A brane
(monodromy (1,0)) which is in fact a D7-brane, B brane (monodromy (3,1)) and C
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brane (monodromy (1,1)). Looping a fundamental string around a path encircling
a B and a C brane changes the charge from (1,0) to (-1,0). The sign of the charges
are related to the gauge charges of the ends of the open string on the 7-branes and
hence they are related to the orientations of the string. Thus, at weak-coupling limit
an ensemble of BC brane acts as an orientifold plane. This ensemble of BC brane
commute with the monodromy of that of 4 A branes according to (3.130). To construct
a stack of branes giving rise to SO(2n + 8) gauge theory, one needs n + 4 A branes
and a B and a C brane i.e.

An+4BC → SO(2n+ 8) (3.132)

The perturbative group for the above configuration is SU(n + 4) × U(1) where the
U(1) factor lives on the open string stretched between B and C branes and SU(n+ 4)
is due to the enhancement of n+4 coincident A branes. However, the strings which
encircle the BC ensemble once get their charges inverted and couple to different A
branes giving rise to the enhancement SU(n + 4) → SO(2n + 8). We shall discuss
the particular cases of F-theory on K3 with gauge theory SO(16)2 and SO(8)4 in
chapter 5 and draw relation to this brane scenarion in terms of amplitude results of
Heterotic string compactified on T 2. Note that the above analysis forbids the gauge
group SO(32) which can be obtained from 10D SO(32) heterotic theory compactified
on T 2 with all Wilson lines switched to zero. In F-theory on K3 context, one needs
n=16 and the total of 18 branes for such a configuration which is equal to the allowed
number of commuting monodromies. Thus the singularity with 18 coincident brane
destroys the triviality condition of the normal bundle of K3 and we consider only the
K3 surfaces with trivial normal bundle.

The case of SO(8)4 is of particular interest as it remains on a constant coupling
slice of the moduli space that is τ = arbitrary constant [62]. In particular one can
take the T 4/Z2 orientifold limit of K3 and the compactification of type IIB theory on
T 2/Z2 orientifold. The constant coupling can be taken to be in the weak coupling
limit thereby providing a perturbative probe into the F-theory.

To construct the E8 singularity one needs 7 A branes, one B brane and 2 C branes
i.e.

A7BC2 → E8. (3.133)

The perturbative subgroup is SU(7)× SU(2)× U(1) which is enhanced to E8 by the
open strings stretched between different A branes encircling the BC (one of the two C
branes) ensemble plus the open strings stretched between the two C branes encircling
once the charge reversing ensemble A4B. This is in particular T 4/Z6 orientifold limit
of K3, the compactification of F-theory on which provides E8 × E8 singularity. The
corresponding Heterotic theory isE8×E8 Heterotic theory compactified on a T 2 with
all Wilson lines switched to zero.
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Chapter 4

Discrete anomaly in maximal
supergravity

In this chapter we shall setup the most important keystone of this thesis: the dis-
crete anomaly in supergravity theories. Our motivation to look for such anomalies
and study the anomaly couterterm in those theories came from the original article by
Green & Gaberdiel [63] where the SL(2,Z) anomaly in type IIB supergravity in D=10
is analyzed and its possible interpretation in terms of F-theory was given. As we
shall elaborate the origin of such anomaly due to the chiral coupling of the fermions
to the composite abelian factor in the factor H of the scalar cosetG/H and the process
of generating a counterterm, which we have coined as the Green-Gaberdiel coun-
terterm, we shall see that the couterterm in D=10 type IIB supergravity is a strong
reminiscent of the higher derivative coupling to 7-branes which are in fact the essen-
tial building blocks of F-theory. With our knowledge of the article Bachas, Bain &
Green [64] where the authors discussed similar anomaly generating chiral couplings
of the fermions in D=4, N=4 supergravity theory and its combination with a bosonic
anomaly due to the presence of a self-dual two-form field, a result of the Montonen-
Olive duality [65, 66, 67] giving rise to the D-instanton induced strongly coupled
world-volume higher derivative coupling of the D3 branes, we endeavoured to draw
a similar conclusion for the strong coupling limit of the D7-brane world-volume cou-
pling from the anomaly analysis of D=10 type IIB supergravity. The task is ambitious
one in view of the monodromy of the 7-branes which we have discussed in section
3.8. We shall be eventually led to consider supergravity theories in D=8, N=1 Yang-
Mills theories to draw satisfactory conclusions which in turn yet pose open questions
about open string modes stretched between 7-branes while considering the duality
between Heterotic string compactified on T 2 and F theory on K3 in section 5.4.

Another important aspect of such composite anomalies in D=8 dimensional su-
pergravities is that the anomaly cancelling counterterm is essentially furnished by a
one loop string amplitude calculation where one allows only the massless modes to
circulate in the string loop, that is the string threshold corrections. This is one of our
main achievements in the course of this work, especially in D=8, N = 1 supergravi-
ties coupled with a gauge group of rank 16. This correspondence between discrete
anomaly in supergravity and string one loop amplitude will be studied in greater
detail for the case of Heterotic strings compactified on T 2 in the next chapter. We
shall however illustrate the analysis in case of type II strings compactified on T 2 and
its relation with M-theory at the end of this chapter.

We shall thus begin by considering discrete anomaly in D=10 type IIB theory and
its possible relation to F theory and 7-branes and conclude this chapter by drawing
comparison between discrete anomaly in D=8, N=2 supergravity, the corresponding
string amplitude and M theory compactified on T 3.

59



Chapter 4. Discrete anomaly in maximal supergravity

4.1 The Green-Gaberdiel counterterm

The 10D type IIB supergravity theory has a global SL(2,R) symmetry. The SL(2,R)
group manifold can be parametrized by a complex scalar τ = τ1 + iτ2 (identified
with the axio-dilaton field) taking values in the upper half plane, and a real (angular)
scalar 0 ≤ φ ≤ 2π, which is a pure-gauge degree of freedom charged under the local
symmetry group U(1) ⊂ SL(2,R). The scalar manifold of the theory, i.e. the coset
space SL(2,R)/U(1), is then usually described by the following vielbein

V a
i =

1√−2iτ2

(
τ̄ e−iφ τeiφ

e−iφ eiφ

)
. (4.1)

Under a general SL(2,R)× U(1) transformation, the vielbein V a
i transforms as

V ′ai = AabV
b
j u

j
i , (4.2)

where A is the SL(2,R) matrix

A =

(
a b
c d

)
, a, b, c, d ∈ R, ad− bc = 1, (4.3)

and u is

u =

(
e−iΣ 0

0 eiΣ

)
, 0 ≤ Σ ≤ 2π , (4.4)

which thus shifts φ as φ → φ + Σ. The composite U(1) connection is locally the
SL(2,R)-invariant combination (see section 2.4)

Qµ = ∂µφ−
∂µτ1

2τ2
, (4.5)

so that its U(1) field strength takes the local form

F = dQ =
dτ ∧ dτ̄

4iτ2
2

. (4.6)

The two gravitini form a complex conjugate pair which carry charges±1
2 under U(1),

and the two dilatini form a complex conjugate pair of opposite chirality and carry
charges ±3

2 . Due to these chiral couplings, the theory may suffer from an anomaly
for the U(1) gauge symmetry. At the perturbative level, this anomaly can be detected
from one-loop hexagon diagrams containing at least one composite gauge field (4.5).
Alternatively, it can be seen to descent from a 12-form anomaly polynomial, which,
according to the rules summarized in section 2.5, takes the form:

I12 =
F 2

2π

[
2X−8 (R) +

p1(R)

48

(
F

2π

)2

− 1

32

(
F

2π

)4
]
, (4.7)

where we defined

X±8 (R) =
1

192(2π)4

(
trR4 ± 1

4
(trR2)2

)
, (4.8)

in terms of the 10D Einstein-frame curvature two-formR, and p1(R) = −1
2 trR

2/(2π)2

is the first Pontryagin class. The absence of an F 0-term in the expression (4.7) is
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clearly due to the well-known freedom of the type IIB theory from pure local gravi-
tational anomalies. Moreover, the absence of a linear term in F implies that the new
U(1) anomaly vanishes for a pure supergravity theory (i.e. without brane sources).
Indeed, if no 7-brane is present, F is an exact form and, because of its composite struc-
ture (4.6), it squares to zero. On the contrary, when 7-branes are there, the expression
(4.6) is only valid away from them, because the background value of τ undergoes
monodromies around such sources.

From the anomaly polynomial (4.7) one deduces the anomalous phase variation
of the partition function

A = −
∫

Σ

[
2X−8 (R) +

p1(R)

48

(
F

2π

)2

− 1

32

(
F

2π

)4
]
F

2π
, (4.9)

which can clearly be cancelled by the addition of the following counterterm in the
10D action:

Sφ =

∫
φ

[
2X−8 (R) +

p1(R)

48

(
F

2π

)2

− 1

32

(
F

2π

)4
]
F

2π
. (4.10)

Upon fixing the gauge (say by setting φ ≡ 0), symmetries will be realized non-
linearly. Nevertheless, one can still describe the transformation properties of all
fermion fields as local phase shifts, by specifying their charge under the U(1) gauge
symmetry. This is achieved simply by exploiting the property of the vielbein (4.1)
to convert SL(2,R) indices into U(1) indices. The result is that, in the gauge fixed
theory, any field Ψ with charge q under the local U(1) will have the following trans-
formation under SL(2,R):

SL(2,R) 3
(
a b
c d

)
: Ψ −→ eiqΣ(τ)Ψ with Σ(τ) = −arg(cτ + d) . (4.11)

Therefore, in a gauge fixed formulation, one needs to add to the 10D action
an appropriate counterterm compensating for the non-trivial transformation of the
fermion path integral measure under (4.11). The quantum theory is expected to
be symmetric only under the discrete subgroup SL(2,Z) ⊂ SL(2,R), and hence
anomaly cancellation requires a Chern-Simons-like counterterm with suitable mod-
ular properties, such as

S10
GG = i

∫
ln

(
η(τ)j̄1/12(τ̄)

η̄(τ̄)j1/12(τ)

)[
2X−8 (R) +

p1(R)

48

(
F

2π

)2

− 1

32

(
F

2π

)4
]
F

2π
. (4.12)

The η and j functions are defined in appendix B whose modular properties we note
below for convenience

log η(τ + 1) = log η(τ) + i
π

12
, (4.13)

log η(−1

τ
) = log η(τ)− iπ

4
+
log τ

2
(4.14)

j(τ + 1)

j̄(τ̄ + 1)
= e−4iπ j(τ)

j̄(τ̄)
, (4.15)(

j(−1/τ)

j̄(−1/τ̄)

)1/12

= −
(
j(τ)

j̄(τ̄)

)1/12

. (4.16)
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Note that, as explained in [63], anomaly cancellation is not enough to completely fix
the modular function of the counterterm. Here we adopt the choice proven in [63] to
be consistent with compactications of the 8D theory.

4.1.1 F theory on K3 and 7-brane coupling

We shall now argue that the Green-Gaberdiel counter-term (4.12) codifies the struc-
ture of higher-derivative R4 couplings on D7-brane world-volumes in the regime of
strong string coupling. To this end, we shall confine our attention to the piece

S10
GG = i

∫
ln

(
η(τ)j̄1/12(τ̄)

η̄(τ̄)j1/12(τ)

)[
2X−8 (R)

] F
2π

(4.17)

of the Green-Gaberdiel term which encodes the compactification of F-theory on K3
where the vacuum expectation value of the axi-dilaton field < τ > is only allowed to
vary on the 2-sphere CP1 in the space-time decompositionM10 = M8 × CP1 of the
D=10 type IIB string theory, the relation of which with F-theory we have detailed in
section 3.8. The terms proportional to F 3 and F 5 in (4.12) are relevant in the cases of
compactification of F-theory on Calabi-Yau fourfold and sixfold respectively which
we shall not discuss in this thesis.

In view of the simple form of the U(1) field strength (4.6) F = dQ = dτ∧dτ̄
4iτ2

2

we have F ∧ F = 0 so that the anomaly 12-form polynomial (4.7) vanishes auto-
matically. Nevertheless, if we still write down the anomaly cancelling counter-term
(4.17), the trivial form of the U(1) field strength renders this term harmless, that is its
S ∈ SL(2,Z) variation is a total derivative

δSS =
i

2π

∫
ln
(τ
τ̄

)
X−8 ∧ F (4.18)

=
−1

π

∫
arg(τ)d(X7)dQ (4.19)

=
−1

π

∫
d (θd(X7)dQ)− d (X7d [ln|τ |] d [ln|sin(θ)|]) (4.20)

where we have used θ = arg(τ), F = dQ andX−8 = dX7 in the above. Hence its pres-
ence is harmless in the effective action as there is no anomaly to cancel: we remember
that the SL(2,Z) variation of the counter-term is meant to cancel the U(1) induced
SL(2,Z) anomaly. The field strength F will represent a non-trivial cohomology class
only in the presence of 7-branes. To show this we take back the lines of our previous
discussion of the relation between type IIB in D=10 and the formulation of F-theory
there-from (following the discussion of Greene, Shapere, Vafa & Yau [56]).

The low energy effective action of type IIB theory (neglecting for the moment the
matter contributions from the NS-NS and RR 2-form potentials and the self-dual RR
4-form potential)

S10D
IIB =

1

2κ2
10

∫
M10

R ∗ 1− 1

2

dτ ∧ ∗dτ̄
τ2

2

(4.21)

=
1

2κ2
10

∫
M10

R ∗ 1− Lmatter (4.22)

where in the second line of above we have written the kinetic term of the axi-dilaton
field as the matter Lagrangian. We remember once more that this action is invariant
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under the SL(2,Z) transformation

τ → aτ + b

cτ + d
. (4.23)

Next we take the metric ansatz

ds2 = −dx2
0 + dx2

1 + · · ·+ dx2
7 + eφ(z,z̄)dzdz̄︸ ︷︷ ︸

CP1

(4.24)

for the decomposed space-timeM10 =M8×CP1 so as to obtain solution of the action
(4.21) corresponding to compactifications of F-theory on elliptic K3 over the base
space CP1 ≡ S2. We set τ = τ(z) a holomorphic function over the affine coordinates
z = x8 + ix9 on CP1. The only non-trivial Riemann tensor is

R89 = −
(
∂2

8φ

2
+
∂2

9φ

2

)
dx8 ∧ dx9 (4.25)

so that the Ricci scalar is

R = −
(
∂2

8φ

2
+
∂2

9φ

2

)
e−φ. (4.26)

Hence the only non-zero component of the Einstein tensor is (here ∂ = ∂x8 + i∂x9)

G00 = −2e−φ∂∂̄φ = −e−φ
(
∂2

8φ+ ∂2
9φ
)
. (4.27)

Next, the stress-tensor from the metric ansatz (4.24) and the action (4.21) is

T = Tµν = − 2√
g8

δ
√
g8Lmatter

δgµν
. (4.28)

However, using the Cauchy-Riemann conditions of holomorphicity of τ we get the
only non-zero component of the stress-energy tensor

T00 =
e−φ

2τ2
2

∂τ ∂̄τ̄ . (4.29)

Einstein equation of motion relates the Einstein tensor (4.27) with the stress-energy
tensor (4.29) so that, for the first Chern class of CP1 we get

c1 =

[
i

2π
trR

]
= − i

2π
2∂∂̄φdx8 ∧ dx9 = − 1

8πτ2
2

dτ ∧ dτ̄ =
i

2π
F (4.30)

so that the non-trivial vacuum profile for the axi-dilaton induces a non-trivial Ricci
curvature. Thus in the presence of 7-branes, the Green-Gaberdiel anomaly cancelling
term is relevant. Indeed, we have argued in section 3.8 that F-theory compactifica-
tion on K3 are a class of vaccua preserving half of the original 32 supercharges in D=8
and involves exactly 24 7-branes localized on the CP1 [56] of which only 18 are mo-
bile due to certain global constraints. We shall show that the Green-Gaberdiel term
(4.17) is sensitive to these gravitational constraints in section 5.4.

We would now like to point out another intriguing implication of the 10D SL(2,Z)
anomaly cancellation. We will indeed argue that the Green-Gaberdiel counterterm
(4.12) codifies the structure of higher-derivativeR4 couplings on D7-brane worldvol-
umes in the regime of strong string coupling. The story is analogous to the one of R2

couplings on D3-branes [64], whose expression for any value of the string coupling
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Chapter 4. Discrete anomaly in maximal supergravity

is dictated by the cancellation of an SL(2,Z) anomaly of the N = 4 Maxwell theory
living on the D3-brane. Here, however, things are more involved, as D7-branes are
not singlets under SL(2,Z). But F-theory teaches us how to handle this problem:
as long as gravitational effects are concerned, at strong coupling the physics of D7-
branes is completely codified by a non-Ricci-flat 10D bulk geometry together with a
non-trivial axio-dilaton profile. Therefore from this perspective it is very reasonable
to look at 10D SL(2,Z) anomaly cancelation to seek for the strong coupling comple-
tion of R4 terms on D7-branes. In the following we provide strong evidence that the
counterterm (4.12) plays the role of such a completion.

To this end, we first take a weak string coupling limit gs = 〈τ2〉−1 → 0 of (4.12)
and bring the coupling down to 8D by using, as before,

∫
S2 F/2π = −2 (all higher

F -powers being zero). We thus obtain:

2π

∫
τ1X

−
8 (R) , (4.31)

where we have used that in this limit ln
(
η(τ) j̄1/12(τ̄)

η̄(τ̄) j1/12(τ)

)
→ iπτ1

2 .
Let us now compare (4.31) with the weak coupling expectation of the higher-

derivative couplings to the Ramond-Ramond axion τ1. To do that we have to com-
pute the total D(-1)-brane charge induced by the brane content of the theory. In a
regime of weak coupling the 24 7-branes arrange themselves in 4 O7−-planes and 16
D7-branes plus 16 D7-images [62]. Since an integral (mobile) D(-1)-brane charge is
made up of a pair D(-1)/image-D(-1) brane, we must compute it on the orientifold
double cover of the 2-sphere. We use the well known formulae for the induced brane
charges [32, 33], which for a single Dp-brane (with trivial normal and gauge bundle)

read ΓDp
−1 = 2π

√
Â(R) and for a single O7−-plane (with trivial normal bundle) read

[32, 36, 34, 35] ΓO7
−1 = −16π

√
L̂(R/4) (see sections 2.5, 3.4 for the relevant defini-

tions). In addition to that, there is a density of D3-brane charge which (if part ofM8

is compactified) needs to be added to cancel the one induced by the 24 7-branes. This
amounts to p1(R)/2. Of course these D3-branes also induce D(-1)-brane charge and,
if we take into account that too, we obtain the following axion coupling:∫

τ1

(
32× ΓD7

−1 + 4× ΓO7
−1 +

p1(R)

2
× ΓD3

−1

)
(4.32)

=
2π

192(2π)4

∫
τ1{32× 1

32× 15

[
8trR4 + 5(trR2)2

]
−4× 1

16× 15

[
5(trR2)2 − 28trR4

]
− (trR2)2

2
}

=
2π

192(2π)4

∫
τ1

(
trR4 +

1

4
(trR2)2 − (trR2)2

2

)
= 2π

∫
τ1X

−
8 (R) ,

i.e. exactly what is predicted by the 10D SL(2,Z) anomaly cancelation.
This remarkable match comes with an annoying puzzle which remains to be ex-

plained: Why should the F-theory coupling (4.12) “know" about D3-branes, which
do not backreact on the axio-dilaton. Notice that the D3-brane contribution, i.e. the
last piece in the l.h.s. of (4.32), just flips the sign of (trR2)2 in (4.8) from + to −. The
sign flip could presumably be explained in an alternative way, by a suitable redef-
inition of the Ramond-Ramond four-form potential C4. Such a redefinition, at any
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4.2. Discrete anomaly in D=8, N=2 supergravity

value of the string coupling, should look like

C4 −→ C4 +
i α′2

192(2π)
ln

(
j(τ)

j̄(τ̄)

)
trR2

(2π)2
, (4.33)

which respect the SL(2,Z) invariance of C4. Operating this redefinition adds an
additional contribution to the induced D(-1)-brane charge on D7-branes and explains
the sign flip from − to + when going to weak coupling, without relying on explicitly
added D3-branes. We hope to clarify this issue in the future.

4.2 Discrete anomaly in D=8, N=2 supergravity

We now turn to the case of type IIB theory compactified on a T 2 with complex struc-
ture U = U1 + iU2 which is T-dual to the type IIA theory compactified on a T 2 under
the exchange T ↔ U where T is the Kähler structure T = B89 + iVT 2 .
The moduli space of the theory is

SL(2,R)

U(1)
× SL(3,R)

SO(3)
, (4.34)

where the first factor is parametrized by U .
The field content of this 8D theory is given by [68, 69] a gravity multiplet com-

prising 1 graviton gµν , 2 gravitino ψaµ(a=1,2), 6 vectors Aµ, 2 dilatini λi, 4 gaugini χi,
7 real scalars φ, 3 2-forms Aµν and 1 3-form Aµνρ.
The supergarvity effective action contains covariant derivatives of the form (recall
the sugra covariant derivative (2.18)) [68, 70, 69]

Dµψν = Dµψν −
i

2
Qabµ Tabψν −

i

2
Qµγ

9ψν (4.35)

Dµλ = Dµλ−
i

2
Qabµ Tabλ−

3i

2
Qµγ

9λ (4.36)

Dµχi = Dµχ
i +

i

2
εjabQ

ab
µ ε

icdTcdχ
j − 3i

2
Qabµ Tabχ

i +
i

2
Qµγ

9χi (4.37)

where Qµ is the composite U(1) connection of the coset factor SL(2,R)
U(1) (not to be con-

fused with the supercharges) and Qabµ is the composite SO(3) connection of the coset
factor SL(3,R)

SO(3) (Tab being the SO(3) generators). Dµ is the ordinary covariant deriva-
tive Dµ = ∂µ− i1

2ω
ab
µ Mab− ieaµPa+ ψ̄αµQα containing the super-Poincaré connections.

Thus the fermions have chiral couplings (with respect to the γ9 projection) with re-
spect to the composite U(1) connection and hence, as in the case of D=10 type IIB
supergravity with scalar coset SL(2,R)

U(1) shall induce an SL(2,Z) anomaly.
The U(1) charges of the gravitini, dilatini and gaugini are respectively (they are

all positive chiral): 1
2 , 3

2 and −1
2 . The self dual 4-form field strength is initially un-

charged under U(1) but charged under SL(2,R). As discussed by Basu [69] Bossard
& Verschinin [71], and Marcus [14], this self-dual 4-form can be manipulated to be-
come charged under the U(1) for the quantum consistency and thus carry charge 1.
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Hence the total anomalous phase variation is [71]

A = −
∫ [

2× 1

2
Id=8

3/2 − 4× 1

2
I1/2 + 2× 3

2
I1/2 −

1

2(2π)4
L̂(R)

]
Σ(x) (4.38)

= − 1

16(2π)4

∫ (
trR4 − 1

4
(trR2)2

)
Σ(x).

As in section 4.1 we first write a U(1) counter-term

SU(1) =
1

16(2π)4

∫
φ

(
trR4 − 1

4
(trR2)2

)
, (4.39)

where φ is the U(1) parameter of the SL(2,R) matrix transforming under U(1) as
φ → φ + Σ. One then gauge fixes the U(1) in terms of the parameter U (T in case of
type IIA) φ ≡ φ(U). The counter-term (4.39) is now not invariant under the SL(2,R)
as

δφ = − i
2
ln

(
cU + d

cŪ + d

)
. (4.40)

Once more the quantum theory is expected to be symmetric only under the discrete
subgroup SL(2,Z) ⊂ SL(2,R) and thus we can write a counter-term of the form
(using the modular properties listed in (4.13))

SIIB =
i

24× 16(2π)4

∫ (
ln

(
η24(U)

η̄24(Ū)

)
+ ln

(
j(U)

j̄(Ū)

))(
trR4 − 1

4
(trR2)2

)
(4.41)

=
i

2

∫ (
ln

(
η24(U)

η̄24(Ū)

)
+ ln

(
j(U)

j̄(Ū)

))
X−8 ,

with

X−8 =
1

192

(
trR4 − 1

4
(trR2)2

)
. (4.42)

Though the anomalous variation (4.40) is cancelled by the ln
(
η24(U)
η̄24(Ū)

)
piece only, the

reason of adding a modular invariant ln
(
j(U)
j̄(Ū)

)
term is to hinder the decompactifi-

cation limit of (4.41) as this U(1) anomaly and its counter-term are local and relevant
to D=8 only and should not give rise to any contributions in the higher dimensions.
This is because the massless particles states which flow in the anomaly generating
one-loop amplitude in D=8 are not the same as the massless states which flow in
the anomaly generating (if there exists any) one-loop amplitude in D=10. In the
lower dimensions it shall only provide a non-anomalous correction term in the ef-
fective action. For the case of complex structure U we note from (B.16) that in the
decompactification limit ln

(
η24(U)
η̄24(Ū)

)
= iπU1

6 → 0 so that even leaving the counter-

term as i
2

∫
ln
(
η24(U)
η̄24(Ū)

)
X−8 shall serve the two-fold purpose: first to provide the

SL(2,Z)/U(1) counter-term and second to have no decompactification limit. How-
ever in view of the T-duality, i.e. U ↔ T exchange, we add the modular invariant
ln
(
j(U)
j̄(Ū)

)
term so that in the T dual side there shall be no risque of decompactifica-

tion.
In the case of type IIA on T 2 we get by T-duality (T ↔ U )

SIIA =
i

24× 16(2π)4

∫ (
ln

(
η24(T )

η̄24(T̄ )

)
+ ln

(
j(T )

j̄(T̄ )

))(
trR4 − 1

4
(trR2)2

)
(4.43)

=
i

2

∫ (
ln

(
η24(T )

η̄24(T̄ )

)
+ ln

(
j(T )

j̄(T̄ )

))
X−8 ,
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4.2. Discrete anomaly in D=8, N=2 supergravity

The above terms (4.41) and (4.43) provide α′3 term in the D=8, N=2 Supergravity
effective action are consistent with M-theory and with the string amplitude results as
we shall now show.

4.2.1 Comparison with 5-point String amplitude and M-theory

Before comparing our result with the string theory amplitude which have been cal-
culated by Kiritsis & Pioline [72] and the steps of which we have rephrased in the
appendix 4.2.2 at the end of this chapter, we first note that the reduction of the 5-
Brane anomaly cancelling term in M-theory action (2.21) − 1

(2π)2(α′)3/2

∫
C3 ∧X−8 on

a circle S1 gives

SM5 = − 2πls

(2π)2(α′)3/2

∫
B2 ∧X−8 . (4.44)

in type IIA theory in D=10. Next compactifying this type IIA theory on a 2-torus T 2

of complex structure U and Kähler moduli T to get

SD=8,N=2A = −(2π)

∫
B89 ∧X−8 (4.45)

= −(2π)

∫
T1 ∧X−8 (4.46)

Now we T-dualize on one cycle of the torus, which amounts to the exchange U ←→
T to get the following in the type IIB theory compactified on a torus of complex
structure U

SD=8,N=2B = −(2π)

∫
U1X

−
8 (4.47)

The above terms (4.45) and (4.47) provide the “trivial orbit" (of SL(2,Z)) term in the
D=8, N=2 string amplitude in type IIA and type IIB case respectively as we shall see
now. It is thus instructive to write the string threshold result as the sum of “trivial
orbit" plus “regularised 1-loop level" where the latter comes from the contributions
of the degenerate and non-degenerate orbits of SL(2,Z) from the decomposition of
the Γ2,2 lattice in the partition function under trivial, degenerate and non-degenerate
orbits of SL(2,Z). It is this “regularized 1-loop" term which shall correspond to the
SL(2,Z) terms (4.45) and (4.47) because of the fact that the infra-red divergence in
string theory corresponds to the quantum anomaly in the corresponding supergrav-
ity theory.

Now we quote the result of the CP-odd part of the string threshold calculation
as given in appendix 4.2.2 and [72] along with the “trivial orbit" plus “regularised
1-loop level" decomposition of the result.

SCP−oddIIA = −N
∫

(4πT1)

[
trR4 − 1

4
(trR2)2

]
︸ ︷︷ ︸

trivial orbit

(4.48)

+N

∫
i

(
ln

(
η24(T )

η̄24(T̄ )

)
− 4iπT1

)[
trR4 − 1

4
(trR2)2

]
︸ ︷︷ ︸

“Reg. 1-loop"

= N

∫
i

(
ln

(
η24(T )

η̄24(T̄ )

))[
trR4 − 1

4
(trR2)2

]
︸ ︷︷ ︸

total amplitude

.
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SCP−oddIIB = −N
∫

(4πU1)

[
trR4 − 1

4
(trR2)2

]
︸ ︷︷ ︸

trivial orbit

(4.49)

+N

∫
i

(
ln

(
η24(U)

η̄24(Ū)

)
− 4iπU1

)[
trR4 − 1

4
(trR2)2

]
︸ ︷︷ ︸

“Reg. 1-loop"

= N

∫
i

(
ln

(
η24(U)

η̄24(Ū)

))[
trR4 − 1

4
(trR2)2

]
︸ ︷︷ ︸

total amplitude

.

By noting that the U-linear term in q-expansion of ln
(
j(U)
j̄(Ū)

)
is −4iπU1 we can

conclude that the supergravity result (4.45) and (4.47) are consistent with the string
amplitude result (4.48) and (4.49) apart from the non-harmonic terms which arise
from the complete q-expansion of ln

(
j(U)
j̄(Ū)

)
and ln

(
j(T )
j̄(T̄ )

)
. We also note that the

functions of T and U in front of the “regularised 1-loop term"s in (4.48) and (4.49)
respectively do not have the correct modular property to cancel the SL(2,Z) anomaly
but this lack of proper modular transformation stems from the fact that we had split
the amplitude integral into three orbits of SL(2,Z) thereby distributing the modular
invariance of the property into 3 different orbits. The sum of the contributions from
all the orbits should bear the correct modular property which is the case for the total
amplitude as we can see from complete result given in the last lines of (4.48) and
(4.49).

4.2.2 Five point string amplitude for type II strings on T 2 : a complemn-
tary review

In this subsection we summarise the steps of one-loop string amplitude calculation
for type II strings compactified on a T 2. Though the amplitude calculation has been
carried out in great detail in [72] we summarize the steps here to make the decompo-
sition of the amplitude in terms of the trivial, degenerate and non-degenerate orbits
of the world-sheet SL(2,Z) and thereby justifying the interpretation of (4.48) and
(4.49). Different notions of the world-sheet fermionic characters and the construction
of the string partition function have been detailed in chapter 5 in course of construc-
tion of elliptic genus in case of Heterotic strings (and also in chapter 3). Thus here we
give only a very compact mathematical details of the computation.

From world-sheet point of view, we have N = (1, 1)2 super-conformal field the-
ory (SCFT) whose action is the supersymmetric Polyakov action 3.9

SP =
1

4πα′

∫
d2σ
√
hhαβηµν

[
∂αX

µ∂βX
ν +

i

2
ψ̄µ/∂ψν

]
. (4.50)

In this string theory, we have two space-dimensions compactified on the torus T 2

with complex structure U and volume V2 = T2. From the world-sheet point of view,
these two space-scalars are wrapped inside a two dimensional lattice Γ2,2 whose
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character, in the absence of Wilson lines, can be written as

Γ2,2 =
T2

τ2

∑
A∈ML(2,Z)

exp

[
−2πiTdet(A)− πT2

τ2U2
|(1 U)A

(
τ
1

)
|2
]

=
∑

~m,~n∈ZN

qP
2
L/2q̄P

2
R/2.

(4.51)
with

p2
L =

|Um1 −m2 + Tn1 + TUn2|2
2T2U2

, (4.52)

p2
L − p2

R = 2mIn
I , (4.53)

m1,m2, n1, n2 ∈ Z. (4.54)

The string partition function is

Zd=8 type K =
iV8

4(2πls)10

∫
F

d2τ

τ2
2

1

(
√
τηη̄)8

1

2

1∑
a,b=0

(−1)a+b 1

2

1∑
ā,b̄=0

(−1)ā+b̄+Kāb̄ θ
4 [ab] θ̄

4 [āb̄]

η4η̄4
Γ2,2.

(4.55)
where K = 1, 0 stands for type IIA and type IIB respectively.

Next we have the vertex operators for the NS-NS massless states (i.e. dilaton,
Graviton and B-field):

V µν−1,−1(z, z̄) =
gclosed
l2s

ψµ(z)ψ̄ν(z̄)eip.X(z,z̄)(∂Xαψα(0))(∂̄Xβψ̄β(0)). (4.56)

V µν0,0 (z, z̄) =
2gclosed
l2s

[∂Xµ(z, z̄) + ip.ψ(z)ψµ(z)]
[
∂̄Xν(z, z̄) + ip.ψ(z̄)ψ̄ν(z)

]
eip.X(z,z̄).(4.57)

We also note that while computing the amplitude with the vertex functions inserted
with the partition function, one should contract the above vertices with appropriate
polarization tensors. For example, for a graviton vertex the vertices V µν in (5.30)
above should be contracted with a transverse symmetric traceless polarization tensor
eµν and the Riemann tensor (calculated for a gravitational fluctuation around a flat
background) can be retrieved from the momentum representation

Rαβγδ =
1

2
[eαγpβpδ − (α↔ β)− (γ ↔ δ) + {(α, γ)↔ (β, δ)}] . (4.58)

We shall also need the vertex operators for the moduli which can be chosen in (0,0),
(-1,-1), (0,-1) or (-1,0) ghost picture (see chapter 12 of Polchinski [27] for details) given
by

V0,0(φi, p, z, z̄) = vIJ(φi)
[
∂XI(z, z̄) + ip.ψ(z)ψI(z)

]
(4.59)[

∂̄XJ(z, z̄) + ip.ψ(z̄)ψ̄J(z)
]
eip.X(z,z̄).

V−1,−1(φi, p, z, z̄) = vIJ(φi)ψ
I(z)ψ̄J(z̄)eip.X(z,z̄) (4.60)[

∂Xαψα(0) +GKL∂X
K(0)ψL(0)

][
∂̄Xβψ̄β(0) +GKL∂̄X

K(0)ψ̄L(0)
]
.

V−1,0(φi, p, z, z̄) = vIJ(φi)ψ
I(z) (4.61)[

∂̄XJ(z, z̄) + ip.ψ(z̄)ψ̄J(z)
][

∂Xαψα(0) +GKL∂X
K(0)ψL(0)

]
.

V0,−1(φi, p, z, z̄) = exchange I and J in the above (4.62)
and then take complex conjugate of the whole expression.
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In the above

vIJ(φi) =
∂(GIJ +BIJ)

∂φi
. (4.63)

=⇒ (4.64)

v(T ) = − i

2U2

(
1 U
Ū |U |2

)
,

v(U) =
iT2

U2
2

(
1 Ū
Ū Ū2

)
. (4.65)

Note that the derivative with respect to moduli in vIJ plays the role of killing the
massless modes in the loop calculation which is necessary to make comparison with
supergravity anomaly because in the latter arises from the supergravity one loop
calculation with massless particles circulating inside the loop. The string amplitude
to be calculated is

A =

∫
F

d2τ

τ2
2

4∏
i=1

〈
∫
d2zi
π

εiᾱiαiV
ᾱiαi(pi, zi, z̄i)︸ ︷︷ ︸

4 graviton vertices

∫
d2z5

π
Vφ(p5, z5, z̄5)︸ ︷︷ ︸

one moduli vertex φ=T or U

〉, (4.66)

We shall only evaluate the CP-odd part of the threshold correction above as the
anomaly polynomial (4.41) involves the wedge product and hence an ε8 tensor. This
CP-odd part comprises of odd-even and even-odd parity with respect to the left and
right moving world-sheet fermions so that the moduli vertex will be chosen respec-
tively (−1, 0)-picture or (0,−1)-picture. The following identities will determine the
moduli vertex insertion1

〈Vφ〉 = (4.67)

vIJ(φ)〈ψI ∂̄XJGKL∂X
KψL〉 =

χφ
πτ2

∂φΓ2,2 χφ =

{
1, φ = T,U

−1, φ = T̄ , Ū .

Or vIJ(φ)〈ψ̄I∂XJGKL∂̄X
Kψ̄L〉 =

σφχφ
πτ2

∂φΓ2,2. (4.68)

Hence the moduli vertex insertion can be integrated out using
∫
d2z5
τ2

= 1. We need to
find momenta in eighth order, i.e. O(p8) in order to reconstruct 4th order topological
quantities in Riemann tensor. For the fermionic contraction, in the odd side one will
get the ε8 tensor and θ [11] → 2πη3 and shall gather p4 order by this process. In any
even side we shall use the contraction of the 4-fermionic pairs p.ψψ of the NS-NS
vertex operators to give us rest p4 order of momenta. This constructions provides us
with the t8 tensor structure, which when combined with ε8 tensor gives

? 1ε8t8R
4 = 24trR4 − 6(trR2)2 (4.69)

where ?1 denotes the D=8 differential volume element and the terms R4 or R2 are
to be understood in terms of wedge product. The contraction of the fermionic pairs

1Note that our presentation for the construction of the string partition function is minimal i.e. it
affords a smooth flow of reading with enough technical materials for its self-sufficiency. The detailed
theoretical introduction can be found in the standard text of Green, Schwarz & Witten [26], Polchinsky
[27], Francesco, Mathieu & Senechal [73].
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yields in the summation of the spin-structure summation yielding position indepen-
dent −1

2(2πη3)4 factor. Thus the final amplitude shall be2

A = N(trR4 − 1

4
(trR2)2)

∫
F

d2τ

τ2
∂φΓ2,2 (4.70)

= N(trR4 − 1

4
(trR2)2)∂φ

∫
F

d2τ

τ2
Γ2,2 (4.71)

where in the last line we have taken the derivative ∂φ with respect to moduli φ out so
as to account for the loop amplitude with only massless states circulating inside the
loop. Now we can evaluate the integral on the fundamental domainF of world-sheet
SL(2,Z) using ∫

F

d2τ

τ2
Γ2,2 = −log(T2|η(T )|4U2|η(U)|4), (4.72)

upto an irrelevant IR ambiguity . We shall however decompose the Γ2,2 lattice in
terms of the SL(2,Z) orbits as follows: the lattice Γ2,2 is of the form

Γ2,2 =
T2

τ2

∑
A∈ML(2,Z)

exp

[
−2πiTdet(A)− πT2

τ2U2
|(1 U)A

(
τ
1

)
|2
]

=
∑

~m,~n∈ZN

qP
2
L/2q̄P

2
R/2.

One then decomposes the 2 × 2 matrices A in the lattice sum into the orbits of
PSL(2,Z) (see [74, 75, 76]) :

Orbits Defining properties Canonical representative
Invariant A = 0 ( 0 0

0 0 )

Degenerate A 6= 0; detA = 0
(

0 j
0 p

)
; j, p 6= 0.

Non-degenerate A 6= 0; detA 6= 0
(
k j
0 p

)
; 0 ≤ j < k; p 6= 0.

The modular integration will now look like

A = V8T2 × {
∫
F

d2τ

τ2
2︸ ︷︷ ︸

Trivial orbit

(4.73)

+

∫
strip-boundary of PSL(2,Z)

d2τ

τ2
2

∑
(j,p)6=(0,0)

e
− πT2
τ2U2

|j+pU |2

︸ ︷︷ ︸
Degenerate orbit

+ 2

∫
C+

d2τ

τ2
2

∑
0≤j<k,p 6=0

e−2πiTpke
− πT2
τ2U2

|kτ+j+pU |2

︸ ︷︷ ︸
Non-degenerate orbit

}.

The integral on the trivial orbit is just the volume of the domain F which is given by∫
F

d2τ

τ2
2

=
2π

3
. (4.74)

2 The world-sheet torus complex structure is τ (not to be confused with 10D type IIB axio-dilaton
field).
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Next we shall use the following result of [74] to find the harmonic part from the
integral on the strip-boundary of PSL(2,Z)∫

strip-boundary of PSL(2,Z)

d2τ

τ2
2

∑
(j,p) 6=(0,0)

e
− πT2
τ2U2

|j+pU |2 (4.75)

=

[
logU2|η(U)|2 +

πU2

6

]
+ terms with VT 2 in denominator.

To determine the non-volume suppressed part of the amplitude coming from the
non-degenerate orbit, we use the integral [74], [77]

T2

∑
0≤j<k,p 6=0

e−2πiTpk

∫
C+

d2τ

τ2
2

e
− πT2
τ2U2

|kτ+j+pU |2
c0 (4.76)

=
∑
j

∑
k>0,p>0

e2πikpT

k|p| c0 + cc. + volume suppressed terms.

Thus we find the form of the integral given in (4.48) and (4.49)

SCP−oddIIA = −N
∫

(4πT1)

[
trR4 − 1

4
(trR2)2

]
︸ ︷︷ ︸

trivial orbit

(4.77)

+N

∫
i

(
ln

(
η24(T )

η̄24(T̄ )

)
− 4iπT1

)[
trR4 − 1

4
(trR2)2

]
︸ ︷︷ ︸

“Reg. 1-loop"

= N

∫
i

(
ln

(
η24(T )

η̄24(T̄ )

))[
trR4 − 1

4
(trR2)2

]
︸ ︷︷ ︸

total amplitude

.

SCP−oddIIB = −N
∫

(4πU1)

[
trR4 − 1

4
(trR2)2

]
︸ ︷︷ ︸

trivial orbit

(4.78)

+N

∫
i

(
ln

(
η24(U)

η̄24(Ū)

)
− 4iπU1

)[
trR4 − 1

4
(trR2)2

]
︸ ︷︷ ︸

“Reg. 1-loop"

= N

∫
i

(
ln

(
η24(U)

η̄24(Ū)

))[
trR4 − 1

4
(trR2)2

]
︸ ︷︷ ︸

total amplitude

.
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Chapter 5

Discrete anomalies in half-maximal
Supergravity and string amplitude

We now come to the core chapter of this thesis where we shall be discussing the U(1)
composite connection induced SL(2,Z) anomaly in case of D = 8, N = 1 supergrav-
ity theories which are obtained from D = 10 Heterotic theories with gauge groups
SO(32) or E8×E8 compactified on a torus T 2 with or without Wilson lines. We shall
come to the conclusion that in these theories, the anomaly cancelling term in the su-
pergravity effective action is provided from a string theory one loop computations
like the anomaly cancelling Green-Schwarz term in D = 10, N = 1 supergravity
theories which is also obtained from a string 1-loop computation. Such anomaly
cancelling terms shall provide us with α′3 terms in the supergravity effective action.
We shall start the discussion of this chapter with a brief introduction to the Green-
Schwarz mechanism [50] in D = 10, N = 1 theory and the construction of the elliptic
genus [78, 79] which we shall be using extensively in computing the string ampli-
tudes in the case of Heterotic string theory compactified on a torus T 2. We shall then
give an account of the tentative 7-Brane interpretation of these terms in the light of
the duality between F-theory on K3 and Heterotic on T 2. Next we shall look for a
possible M-theory origin of these α′3 correction terms in the perspective of recently
developed Horava-Witten background amplitude computation [80], a work which is
ongoing at the time of writing this thesis. The last two sections however are only
openings towards further work and hence shall pose more questions than providing
new answers.

5.1 The Green-Schwarz term in D=10, N=1 supergravity ef-
fective action

The massless spectrum of D = 10, N = 1 supergravity contains the gravity multiplet
with 1 graviton gµν , 1 anti-symmetric 2-form Bµν , 1 real scalar: dilaton φ, 1-gravitino
ψ+
µ , 1 dilatino ξ− and a vector multiplet with gauge bosons Aµ in the adjoint repre-

sentation of a gauge group G of dimensions n plus n gaugini λ+
i (i = 1, · · ·n). The

± signs for the fermions denote their chiralities. The rank of the gauge group G in
case of the Heterotic theories in D = 10 is needed to be 16 because in the construc-
tion of the Heterotic string one has a supersymmetric right moving sector living in
10-spacetime dimensions however the non-supersymmetric left moving sector lives
in 26-spacetime dimensions. To make the theory consistent one thus needs to comb
the extra 16 (= 26− 10) space-dimensions on a compact lattice ΓG of dimensions 16:
hence the rank of the ensuing gauge group be 16. The modular invariance of the par-
tition function of such theory puts the further constraint that ΓG should be unimodu-
lar (i.e. the dual of the lattice be equal to the lattice itself) and thus further restricting
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Chapter 5. Discrete anomalies in half-maximal Supergravity and string amplitude

the gauge group G to be either SO(32) or E8 × E8. The constraint of unimodularity
of the lattice however breaks down when one compactifies the heterotic theories to
lower dimensions because the departure from the modular invariance of the lattice
can be compensated by the toroidal lattice Γn,n so that the string partition function in
lower dimensions remain modular invariant. The constraint of rank(G) = 16 how-
ever have to be maintained. This is why we are allowed to break theD = 10 Heterotic
gauge group G10 = SO(32) or E8 × E8 to G8 = SO(32), E8 × E8, SO(16) × SO(16),
SO(8)4, E8 × E7 × U(1) etc in D < 10.

Returning back to the discussion of Heterotic string theory in D = 10, we see
that the chiral fermions ψ+

µ , ξ− and λ+ engender gauge-gravity type anomaly in the
supergravity theory. The amount of the anomaly can be easily computed using the
anomaly polynomials listed in section 2.5. The 10 + 2 dimensional anomaly polyno-
mial is

Id=10,N=1
12 =

1

2
Id=10

3/2 − 1

2
Idilatino1/2 +

1

2
Igaugino1/2 |adj(G) (5.1)

=
2π

2(4π)6

[
n− 496

5670
trR6 +

224 + n

4320
trR2trR4 +

n− 64

10368
(trR2)3

]
+

1

180
trR2TrF 2 +

1

144
(trR2)2TrF 2 +

1

18
trR2TrF 4 +

4

45
TrF 6

In the above "Tr" denotes the group traces in adjoint representations while "tr" de-
notes group traces in fundamental representation. The way to compensate for this
anomaly is to factorise the anomaly polynomial as

Id=10,N=1
12 = I4 × I8 (5.2)

and use the gauge-gravity variation of the 2-form field B2 to compensate for the
gauge-gravity descent factor for I4 (see (2.59) for the descent formalism in computing
the anomaly). For the factorisation (5.2) to happen, one needs to chose the gauge
group G such that (i) the trR6 term vanishes and (ii) the 6th order Casimir TrF 6

should be reducible in terms of the 2nd and 4th Casimir that is

n = 496 (5.3)
TrF 6 = aTrF 2TrF 4 + b(TrF 2)3. (5.4)

The above two conditions are satisfied by the gauge groups G = SO(32), E8 × E8,
E8 × U(1)248 and U(1)496. The condition of rank(G) = 16 however restricts one’s at-
tention only to the case G = SO(32) and E8 × E8 which were found in the Heterotic
string argument for the consistency of spacetime dimensions and the modular invari-
ance of the partition function. This hints to the intricate relation between anomaly in
supergravity and modularity in string theory. We shall come back to this issue in the
next section.

From (5.1) using for G = SO(32) we get

Id=10,N=1
12 =

1

768(2π)5
{(trR2 + trF 2)

×(trR4 +
1

4
(trR2)2 + trR2trF 2 + 8trF 4)} (5.5)

=
1

768(2π)5
I4I8 (5.6)
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5.1. The Green-Schwarz term in D=10, N=1 supergravity effective action

where we have transformed the adjoint traces "Tr" in terms of the fundamental trace
"tr" for the group SO(32)

TrF 2 = 30trF 2, T rF 4 = 24trF 4 + 3(trF 2)2, T rF 6 = 15trF 4trF 2. (5.7)

Doing the gauge-gravity descent only for the I4 part, we get the anomalous phase
variation:

AGS = − 1

768(2π)5

∫
(trvdω + trΣdA)I8 (5.8)

using

I4 = (trR2 + trF 2) = dQ3, (5.9)

Q3 = tr(A ∧ F − i

3
A3) + tr(ωR− i

3
ω3), (5.10)

δQ3 = trΣdA+ trvdω. (5.11)

This anomaly will be cancelled effectively by the G-S action

SGS =
1

192(2π)5α′

∫
B2 ∧ I8 (5.12)

=
1

192(2π)5α′

∫
B2 ∧ (trR4 +

1

4
(trR2)2 + trR2trF 2 + 8trF 4) (5.13)

if the gauge-gravity variation of the 2-form B is

(δYM + δgrav)B2 =
α′

4
(trΣdA+ trvdω). (5.14)

The I8 part is invariant under the gauge-gravity variation as it is composed of the
invariant forms from F and R.

Indeed, the consistent coupling of the B-field happens through the modified field
strength H = dB − α′

4 (QYM3 +Qgrav3 ). This gives us the following Bianchi identity

dH = −α
′

4
(trR2 + trF 2). (5.15)

For the gauge group E8 × E8 we shall have two copies of the gauge field strength
F1 and F2 for two different E8s. However, E8 does not have a vector representation
so it is standard to define its trace trF 2

E8
in "fundamental" by using that of the group

SO(32) so that they have a uniform effect in the Green-Scharz term of the Heterotic
theory. Thus we have

TrF 2
E8

= 30trF 2
E8
, T rF 4

E8
=

1

100
(TrF 2

E8
)2 = 9(trF 2

E8
)2. (5.16)

Working out the anomaly polynomial as before, we get

Id=10,N=1
12 = I4 ∧ I8, (5.17)

I4 = trR2 + trF 2
1 + trF 2

2 , (5.18)

I8 = trR4 +
1

4
(trR2)2 + trR2(trF 2

1 + trF 2
2 )

−2trF 2
1 trF

2
2 + 2(trF 2

1 )2 + 2(trF 2
2 )2. (5.19)

75



Chapter 5. Discrete anomalies in half-maximal Supergravity and string amplitude

5.2 Green-Schwarz term from string 1-loop amplitude: Ellip-
tic genus

In this section we shall repeat the computations of Green & Schwarz[50] and Lerche,
Nilsson, Schellekens & Warner [78] showing that the Green-Schwarz anomaly can-
celling term (5.12) is provided by the 1-loop 5 point amplitude computation in Het-
erotic string theory when the string amplitude is traded for the higher derivative
correction term for the low energy effective action (i.e. D = 10, N = 1 supergarvity
with gauge group G = SO(32) or E8 × E8). The calculation of string amplitude and
the process of the construction of the elliptic genus is a very classical technique [78,
79]. We, however, outline the process because it shall help to understand the am-
plitude result of the case Heterotic string theory compactified on T 2 with minimal
effort. We also wish to emphasize that both string 1-loop and 2-loop computations
have been carried out in the language of hyperelliptic functions [81, 82, 83, 84, 85,
86, 87, 88, 89, 90, 91]. The superiority of using the elliptic genus lies in the fact that
by construction it gives the relative numerical factors between different components
e.g. for 1-loop case between trR4, (trR2)2, trR2trF 2, (trF 2)2 and trF 4 etc whereas
piecewise calculation of these amplitudes does not fix this relative numerical factors
so easily. For the comparison of the string loop amplitude with anomaly polynomi-
als these numerics however is indispensable. In fact the genus-1 elliptic genus can
be shown to be the same as the anomaly generating functional [79]. For the genus
two case, 1-loop anomaly is not a constraint at all as the local anomaly is a result
of the UV divergence of the 1-loop Feynman diagrams in quantum field theory. It
is à priori not clear what form of "anomaly" might occur in case of 2-loop Feynman
diagrams in the quantum field theory perspective as the renormalization is already
notoriously difficult. Hence in case of genus-2 amplitude, we shall content ourself
by only providing a possible construction of such amplitude results which were not
explored much in the literature.

For the Heterotic string theory, the world-sheet quantum description is the d =
2, N = (1, 0) superconformal field theory or N = (1, 0)2 SCFT for short so that
the right moving (holomorphic) sector is supersymmetric but the left moving (anti-
holomorphic) sector is only bosonic. Calculation for the 1-loop string amplitude ne-
cessitates this CFT on the world-sheet torus of complex structure τ = τ1 + iτ2 with
τ2 ≥ 0 and volume=1. The metric of the torus is:

gij =
1

τ2

(
1 τ1

τ1 |τ |2
)
. (5.20)

The torus coordinates are σi, i = 1, 2.
The moduli space of the inequivalent tori is the fundamental domainF = H2/PSL(2,Z)
and the generic form of the partition function for a torus of complex structure τ ∈ F
is

Z =

∫
e−S = Tr

[
qL0−c/24q̄L̄0−c/24

]
, (5.21)

the trace is over all of the spectrum (here q = e2πiτ andL0(L̄0) is the (anti)holomorphic
Hamiltonian and c/24 factor is the shift in central charge due to toric CFT). The
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5.2. Green-Schwarz term from string 1-loop amplitude: Elliptic genus

Polyakov action for N = (1, 0)2 SCFT is of the form1

S =
1

4πα′

∫
dσ
√
g

[
gab∂aX

µ∂bX
ν +

i

2
ψ∂̄ψ

]
, (5.22)

where Xµ are bosonic spacetime coordinates and ψ is a Majorana-Weyl fermion in
d = 2 world-sheet conformal field theory. This theory has a manifest Z2 symmetry
ψi → −ψi.
In the NS-sector we have vacuum and vector representation with the following affine
characters with respect to the affine parameters vi (note that while constructing the
partition function, we will set vi = 0, the only reason to use the affine characters
instead of true characters is to make the difference between various representation
manifest)2:

χvac−rep.(vi) =
1

2

N/2∏
i=1

θ3(vi)

η
+

N/2∏
i=1

θ4(vi)

η

 . (5.23)

χvect−rep.(vi) =
1

2

N/2∏
i=1

θ3(vi)

η
−
N/2∏
i=1

θ4(vi)

η

 . (5.24)

Our convention for the τ−functions have been detailed in the appendix B.
The vacuum of the Ramond sector is fermionic and hence we get two spinor rep-

resentation in this sector: the positive-chiral S representation and negative-chiral C
representation. Their affine characters are:

χS(vi) =
1

2

N/2∏
i=1

θ2(vi)

η
+ e−iπN/4

N/2∏
i=1

θ1(vi)

η

 . (5.25)

χC(vi) =
1

2

N/2∏
i=1

θ2(vi)

η
− e−iπN/4

N/2∏
i=1

θ1(vi)

η

 . (5.26)

Fermions on a torus can have a combination of periodic (P) and anti-periodic (A)
boundary conditions along the two cycles of the torus (see figure 5.1).

a circle

b circle

FIGURE 5.1: One cycles of the torus

1The N = (1, 0)2 SCFT also contains a 2d gravitino but for instance we do not need its explicit
appearance in the Polyakov action.

2In all of the following q = e2πiτ .
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We use a=0,1 to denote A, P boundary condition along the first cycle and b=0,1
to denote A, P boundary condition along the second cycle. Then the above equations

defining the characters can be expressed as combination of
θ[ab]
η , using the convention

that θ [00] = θ3, θ [01] = θ4, θ [10] = θ2, θ [11] = θ1.
The (P,P) spin structure is called the odd spin structure and one immediately sees

that θ [11] = θ1 = 0 which is due to the presence of zero modes of the fermionic
determinant. Hence, in CP-odd sector, one soaks up the fermionic zero modes with
an N-point correlator giving rise to εa1···aN and θ1 replaced by θ′1 = 2πη3(τ). Using
these characters values of the world-sheet fermions, we can right down the partition
function of the 10-dimensional Heterotic string for toric CFT

Zd=10 heterotic =
iV10

4(2πls)10

∫
F

d2τ

τ2
2

1

(
√
τ2ηη̄)8

1

2

1∑
a,b=0

(−1)a+b+ab θ
4 [ab]

η4

Γ̄16

η̄16
, (5.27)

where Γ̄16 is the lattice of Spin(32)/Z2 or E8 ×E8. In terms of the genus-1 Eisenstein
series, these lattices are

Γ̄O(32)/Z2
=

1

2

∑
a,b=0,1

θ̄ [ab]
16 = Ē8 = Ē2

4, (5.28)

Γ̄E8×E8 =

1

2

∑
a,b=0,1

θ̄ [ab]
8

2

= Ē4 × Ē4. (5.29)

We now come to the vertex functions for different massless excitations of the Het-
erotic string. The NS-NS massless state vertices (i.e. dilaton, Graviton and B-field) in
respectively -1 ghost and zero-ghost pictures are3

V µν
−1 (z, z̄) = e−φ

√
2gclosed
l2s

ψµ(z)∂̄Xν(z, z̄)(∂Xαψα(0))eip.X(z,z̄). (5.30)

V µν
0 (z, z̄) =

2gclosed
l2s

[∂Xµ(z, z̄) + ip.ψ(z)ψµ(z)] ∂̄Xν(z, z̄)eip.X(z,z̄). (5.31)

For the gauge-Bosons:

V a,ν
−1 (z, z̄) = e−φ

√
2gclosed
l2s

ψν(z)J̄a(z, z̄)(∂̄Xαψ̄α(0))eip.X(z,z̄). (5.32)

V a,ν
0 (z, z̄) =

2gclosed
l2s

[∂Xν(z, z̄) + ip.ψ(z)ψν(z)] J̄a(z, z̄)eip.X(z,z̄) (5.33)

J̄a is an anti-holomorphic O(32) or E8 × E8 current which are normalized as
〈Ja(z1)Jb(0)〉 = δab. We also note that while computing the amplitude with the
vertex functions inserted with the partition function, one should contract the above
vertices with appropriate polarization tensors. For example, for a graviton vertex
the vertices V µν in (5.30) above should be contracted with a transverse symmetric
traceless polarization tensor eµν and the Riemann tensor (calculated for a gravita-
tional fluctuation around a flat background) can be retrieved from the momentum
representation

Rαβγδ =
1

2
[eαγpβpδ − (α↔ β)− (γ ↔ δ) + {(α, γ)↔ (β, δ)}] . (5.34)

3 The e−φ factor is due to the bosonisation with a chiral scalar field φ.
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Similarly, for the B-field, the related polarization tensor εµν will be an anti-symmetric
tensor and for the gauge bosons one introduces a polarization vector εµ such that
pµεµ = 0 and εµεµ = 1.
Finally we give the expressions for the 2-point Green’s function in case of the toric
SCFT necessary to apply the Wick’s theorem in case of 5-point amplitude:

〈Xµ(z1, z̄1)Xν(z2, z̄2)〉 = gµν 4 (z1 − z2, z̄1 − z̄2) (5.35)

≡ −gµν log{e−2π
[Im(z1−z2)]2

τ2 |θ1(z1 − z2)

θ′(0)
|2}.

〈∂̄Xµ(z1, z̄1)∂Xν(z2, z̄2)〉 = −gµν ∂̄∂ 4 (z12, z̄12) = − π
τ2
gµν . (5.36)

〈∂̄XI(z1, z̄1)∂XJ(z2, z̄2)〉 = pIRp
J
L. (5.37)

〈ψµ(z1)ψν(z2)〉 [ab] = gµν
θ [ab] (z12)θ′(0)

θ [ab] (0)θ1(z12)
. (5.38)

〈p1.ψ(z1), ψµ(z2)〉〈ψν(z1), p2.ψ(z2)〉 = pµ1p
ν
2〈ψ(z1)ψ(z2)〉2. (5.39)

With these preparations we are now ready to compute the 5-point string amplitude
of 1 B-field with 4 gravitons, 4-gauge bosons and 2 gravitons + 2 gauge-bosons

A = V10

4∏
i=1

〈
∫
d2zi
π

eiαiβiV
αiβi(pi, zi, z̄i)︸ ︷︷ ︸

4 graviton/gauge vertices

∫
d2z5

π
εµνV

µν(p5, z5, z̄5)︸ ︷︷ ︸
one B vertex

〉 (5.40)

In (5.40) zi, i = 1, · · · 4 are the (world-sheet) positions of the gauge/gravity vertex
insertions while z5 is the position of the B-field vertex. To compare with the anomaly
structure (5.12) we need to calculate the CP-odd amplitude, that is the amplitude
containing a spacetime ε−tensor. For this, we are bound to use 1-vertex in (-1)-ghost
picture for which we choose the B-vertex and the rest in zero-ghost picture as given
in (5.30)4.

In CP-odd sector, one soaks up the fermionic zero modes with an N-point cor-
relator giving rise to εa1···aN and θ1 replaced by θ′1 = 2πη3(τ) (that is the character
sum

∑1
a,b=0(−1)a+b+abθ4 [ab] to contribute only θ4

1 which is replaced by (2π)4η12(τ)).
Hence, a 5-point function (1 vertex in -1-picture) gives the following structure in CP-
odd sector

〈: (∂Xψ)(∂̄Xψ) :︸ ︷︷ ︸
B-vertex in -1 picture

: p.ψψ :: p.ψψ :: p.ψψ :: p.ψψ :︸ ︷︷ ︸
4 graviton vertices in zero picture

〉 −→ 2ε10〈∂X∂̄X〉p4. (5.41)

Using the contractions given in (5.35) we can integrate out the 〈∂X∂̄X〉 part at
the z5 vertex which gives∫

d2z5 〈∂Xµ∂̄Xν〉(p5, z5, z̄5) =

∫
d2z5

τ2
pµpν = Bµν (5.42)

4For a string loop amplitude on a genus g world-sheet with nB bosonic vertices in -1 picture and nF
fermionic vertices in -1/2 picture, the BRST consistency condition for the amplitude forces one to insert
N = 2g − 2 + nB + nF /2 picture changing operators (PCO) (see e.g. [27]) which transforms each -1
ghost vertex to a zero vertex. In case of CP-odd sector, one needs to add another extra PCO.
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where we have used our convention

∂

∂z
=

1

2
(∂1 − i∂2),

∂

∂z̄
=

1

2
(∂1 + i∂2). (5.43)

d2z = idz ∧ dz̄ = 2dz1dz2. (5.44)∫
d2z

τ2
= 1. (5.45)∫

F
d2τ/τ2

2 = 2π/3. (5.46)

From the structure of the Riemann tensor in momentum mode (5.34) (and similarly
for gauge group) it is clear that if we want terms containing eight derivatives, that is
terms like trR4, trF 4 etc, we need 8 powers of momentum from the 5-point Green’s
function (5.40). p4 term is obtained from the 5 pairs of fermions contracted in the
CP-odd case as stated in (5.41). We thus need to extract further p4 term from the 4-
point piece

∏4
i=1〈

∫
d2zi
π eiαiβiV

αiβi(pi, zi, z̄i)︸ ︷︷ ︸
4 graviton/gauge vertices

of the amplitude (5.40). Each such vertex

operators contain term of the form ∂X∂̄Xie
ip.X(zi) so that we have to expand the

exponential part and extract relevant powers of p. We shall consider first the pure
gravity sector and then the gauge sector.
Consider the general n-point function (with n-even) of the form

n∏
i=1

〈
∫
d2zi
π
eαiβiV

αiβi(pi, zi, z̄i)〉 =

∫ n∏
i=1

d2zi
π
〈eαiβi∂Xαi ∂̄Xβieip.X(zi)〉 (5.47)

=

∫
d2zi
π

n∏
1≤i<j

eαiβig
αiβie−pi.pj4

ij/2.

In the first line of (5.47) we have used the bosonic 2-point correlator

〈Xα(z1, z̄1)Xβ(z2, z̄2)〉 = gαβ4(z1−z2, z̄1−z̄2) ≡ −gαβlog{e−2π
[Im(z1−z2)]2

τ2 |θ1(z1 − z2)

θ′(0)
|2}.

(5.48)
In the second line we have used the Wick contraction (or the Koba-Nielsen formula)

〈
4∏
i=1

eipi.X(zi)〉 =
4∏

1≤i<j
e−pi.pj4

ij/2, (5.49)

and 〈∂̄Xµ(z1, z̄1)∂Xν(z2, z̄2)〉 ∼ gµν .
Now expanding the exponential part in (5.47) we come across the following integral∫

d2z1 · · · d2zn 4 (z1, zn) · · · 4 (zn−1, zn). (5.50)

However given the form of the correlator 4(zi, zj) the above integral is divergent:
so that using suitable regularization for the correlator (see for example [78]) one can
evaluate the integral∫

n even
d2z1 · · · d2zn 4 (z1, zn) · · · 4 (zn−1, zn) = (τ2)n

¯̂
Gn(τ̄) (5.51)
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with

Ĝ2m(τ) = −(2πi)2m

(2m)!
B2mE2m (5.52)

for m > 1. For m = 1 we have

Ĝ2 = 2π2B2E2 −
π

τ2
. (5.53)

This departure from the holomorphicity for the integral of the two-point function is
due to the regularization process of the integral. Here E2m is the Eisenstein series
of 2m and B2m is the 2m−th Bernoulli number (see appendix B for the details on
Eisenstein series). Using this result the n-point function can be recast in the form

n∏
i=1

〈
∫
d2zi
π
V αiβi(pi, zi, z̄i)〉 =

n∏
i=1

d2zi
π
〈
∫
∂Xαi ∂̄Xβieip.X(zi)〉 (5.54)

=

∫
d2zi
π

n∏
1≤i<j

e−pi.pj4
ij/2

= exp

[
−
∞∑
m=1

1

2m
tr (R)2m (2πi)2m

(2m)!
B2mE2m

]
.

The term exp
[
−∑∞m=1

1
2m tr (R)2m (2πi)2m

(2m)! B2mE2m(τ̄)
]

is the gravitational elliptic

genus. Note that the term 1
2m inside the exponential is added by hand as in the

expansion (5.54) any particular contraction is counted 2m times. The piece m = 1
being non-holomorphic, we factor this term out as

exp

[
−
∞∑
m=1

1

2m
tr (R)2m (2πi)2m

(2m)!
B2mE2m(τ)

]
(5.55)

= exp

[
trR2

(2π)2

Ê2(τ̄ , τ2)

48

]
︸ ︷︷ ︸

I4

× exp
[
trR4

(2π)4

E4

27 32 5
(τ̄)

]
︸ ︷︷ ︸

I8

×exp
[
−
∞∑
m=3

1

2m
tr (R)2m (2πi)2m

(2m)!
B2mE2m(τ̄)

]
.

In this elliptic genus we have marked the pieces I4 and I8 because these terms pro-
vide those corresponding factors in the factorized Green-Schwarz anomaly cancelling
(5.1) term as we shall show in an instance. But before that we shall compute the gauge
part elliptic genus.
Once more for the CP-odd amplitude we use a (-1)-ghost B vertex and 4 zero-ghost
gauge vertices whose expressions are listed in (5.30) and (5.32). One needs to saturate
ten-fermionic modes from the total correlator similar to the expression (5.41) that is

〈: (∂Xψ)(∂̄Xψ) :︸ ︷︷ ︸
B-vertex in -1 picture

: p.ψψ :: p.ψψ :: p.ψψ :: p.ψψ :︸ ︷︷ ︸
4 gauge vertices in zero picture

〉 −→ 2ε10〈∂X∂̄X〉p4 (5.56)
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from which we gather p4 order of momentum and the B-state can be integrated out
as in ∫

d2z5 〈∂Xµ∂̄Xν〉(p5, z5, z̄5) =

∫
d2z5

τ2
pµpν = Bµν . (5.57)

To reconstruct 4th order terms in gauge field strength of the form trF 4 etc. we need
to gather another p4 order in momentum. One might tempted to act like we have
done for the case of graviton vertex, trying to collect order p4 from the exponential
piece of the gauge boson vertex

V a,ν
0 (z, z̄) =

2gclosed
l2s

[∂Xν(z, z̄) + ip.ψ(z)ψν(z)] J̄a(z, z̄)eip.X(z,z̄). (5.58)

There is however another term which can supply momentum orders, namely the
gauge lattice character function Γ̄16. We remember that the 16 extra left moving
bosonic degrees of freedom have been confined in this 16-dimensional lattice so as to
make the theory consistent as a whole. These extra 16 left moving momentum states
can be seen if we rewrite the covariant expression for the lattice [92, 78, 76]

Γ̄16 =
∑

q̄p
2
L , (5.59)

where the sum is over all vectors −→p L whose basis is composed by the root vectors
of the (i) O(16) × O(16) in case of E8 × E8 and (ii) O(32) in case of SO(32). Thus
in our manipulation for the exponential as in the case of gravitons, we must include
these momentum modes. The scalar product on the lattice however is defined in
terms of the generators HI of the Cartan subalgebra of the gauge group G whereas,
in the exponential part of the vertices the scalar product is with respect to the space-
time metric. We thus have to make an orthogonal change of basis and write the
momentum as

pj =
∑
I

kIjH
I . (5.60)

The vertex contraction for the 4-gauge bosons, (taking care only of the exponential
part as the current pieces contract according to 〈Ja(z1)Jb(0)〉 = δab) gives rise to

4∏
i=1

〈
∫
d2zi
π

Γ̄16εαiV
αi(pi, zi, z̄i)〉 =

4∏
i=1

d2zi
π
〈
∫ ∑

q̄p
2
Leip.X(zi)〉 (5.61)

=
∑

q̄p
2
Lek.pL .

In the last line, we have integrated the position vectors out by replacing them with
their Fourier components with respect to the lattice momenta. Now the expression∑
q̄p

2
Lek.pL can be seen as the "gauged" character of the lattice, that is

∑
q̄p

2
Lek.pL =

[
1

2

4∑
l=1

16∏
i=1

θl(ui, τ̄)

]
, (5.62)

where ui, i = 1, · · · , 16 are the skew-eigenvalues of the gauge field strength tensor F
of SO(32) such that

16∑
i=1

uni =
(i)n

2
trFn, (5.63)
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and ∑
q̄p

2
Lek.pL =

[
1

2

4∑
l=1

8∏
i=1

θl(vi, τ̄)

]
, (5.64)

with vi, i = 1, · · · , 8 are the skew-eigenvalues of the gauge field strength tensor F of
E8 (for each copy of E8 × E8) such that

8∑
i=1

vni =
(i)n

2
trFn. (5.65)

The quantities defined in (5.62) and (5.64) are called the gauge elliptic genus for
SO(32) and E8 × E8 respectively.
Combining the pure gravity elliptic genus (5.55) and the pure gauge elliptic genus
(5.62) we find the total elliptic genusA(q̄ = e2πiτ̄ , R, F ) for 1-loop Heterotic (G=SO(32))
string amplitude

A(q̄, R, F ) (5.66)

= exp

[
trR2

(2π)2

Ê2(τ̄ , τ2)

48

]
︸ ︷︷ ︸

I4

× exp
[
trR4

(2π)4

E4(τ̄)

27 32 5

]
︸ ︷︷ ︸

I8

(5.67)

×exp
[
−
∞∑
m=3

1

2m
tr (R)2m (2πi)2m

(2m)!
B2mE2m(τ̄)

]
×
[

1

2

4∑
l=1

16∏
i=1

θl(ui, τ̄)

]
,

with

16∑
i=1

u2
i = −1

2
trF 2, (5.68)

16∑
i=1

u4
i =

1

2
trF 4 (5.69)

etc. For G = E8 × E8 we find similarly

A(q̄, R, F1, F2) (5.70)

= exp

[
trR2

(2π)2

Ê2(τ̄ , τ2)

48

]
︸ ︷︷ ︸

I4

× exp
[
trR4

(2π)4

E4(τ̄)

27 32 5

]
︸ ︷︷ ︸

I8

(5.71)

×exp
[
−
∞∑
m=3

1

2m
tr (R)2m (2πi)2m

(2m)!
B2mE2m(τ̄)

]

×
[

1

2

4∑
l=1

8∏
i=1

θl(ui, τ̄)

]
×

1

2

4∑
n=1

8∏
j=1

θn(vj , τ̄)

 ,
this time with the skew eigenvalues ui, i = 1, · · · 8 for the first E8 and vj , j = 1, · · · 8
for the secondE8. Note that in the very first lines of (5.66) and (5.70) we have inserted
the values of the Bernoulli numbers B2 = 1/6 and B4 = −1/30.

From the above elliptic genera (5.66) and (5.70) we need to extract the 8-form
polynomial on R and F to draw the conclusion about matching anomaly. To "gauge"
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the gauge group lattice part
[

1
2

∑4
l=1

∏16
i=1 θl(ui)

]
etc. we shall use the following iden-

tities realting θ functions and Eisenstein series given in appendix B (B.7) (a standard
proof of which can be found in Abramowitz & Stegun [93]

θ2(ν|τ)

θ2(0|τ)
= exp

{ ∞∑
k=1

(2πi)2kB2kν
2k

(2k + 1)!− (2k)!

[
E2k(q)− 22kE2k(q

2)
]}

(5.72a)

θ3(ν|τ)

θ3(0|τ)
= exp

{ ∞∑
k=1

(2πi)2kB2kν
2k

(2k + 1)!− (2k)!
[E2k(q)− E2k(−

√
q)]

}
(5.72b)

θ4(ν|τ)

θ4(0|τ)
= exp

{ ∞∑
k=1

(2πi)2kB2kν
2k

(2k + 1)!− (2k)!
[E2k(q)− E2k(

√
q)]

}
(5.72c)

where Bk are the Bernoulli numbers: B2 = 1/6, B4 = −1/30, B6 = 1/42. The 8-form
elliptic genera are then

A(q̄, R, F )SO(32) =
E3

4

27325

trR4

(2π)4
+
Ê2

2E
2
4

2932

(trR2)2

(2π)4
(5.73a)

+
trR2trF 2

2832(2π)4

(
Ê2E4E6 − Ê2

2E
2
4

)
+
trF 4

(2π)4
+

(trF 2)2

2932(2π)4

(
E3

4 − 2Ê2E4E6 + Ê2
2E

2
4 − 2732η24

)
,

A(q̄, R, F )E8×E8 =
E3

4

27325

trR4

(2π)4
+
Ê2

2E
2
4

2932

(trR2)2

(2π)4

+
trR2(trF 2

1 + trF 2
2 )

2832(2π)4

(
Ê2E4E6 − Ê2

2E
2
4

)
+
trF 2

1 trF
2
2

2832(2π)4

(
Ê2

2E
2
4 − 2Ê2E4E6 + E2

6

)
(5.73b)

+
(trF 2

2 )2 + (trF 2
2 )2

2832(2π)4

(
E3

4 − 2Ê2E4E6 + Ê2
2E

2
4

)
.

In the above, all group traces “tr" are in fundamental or vector representation.
We now finalize the computation of the amplitude (5.40)

A = V10

4∏
i=1

〈
∫
d2zi
π

eiαiβiV
αiβi(pi, zi, z̄i)︸ ︷︷ ︸

4 graviton/gauge vertices

∫
d2z5

π
εµνV

µν(p5, z5, z̄5)︸ ︷︷ ︸
one B vertex

〉 (5.74)

= V10ZA(q̄, R, F ) ∧B2

= V10

∫
F

d2τ

τ2
2

1

(
√
τ2ηη̄)8

η12(τ)

η4(τ)
(τ2)4A(q̄, R, F )

η̄16
∧B2

= V10

∫
F

d2τ

τ2
2

A(q̄, R, F )

η̄24
∧B2.

A few explanations are in order: in the second line above we have made the partition
function (5.27) to appear explicitly and the fact that in CP-odd amplitude we have
saturated 5-pairs of fermionic modes giving rise to the ε10 tensor which gives rise to
the wedge product with B2 field as well as wedge product in the polynomial struc-
tures insideA(q̄, R, F ). Next we write the complete expression of Z as Zd=10 heterotic =

iV10
4(2πls)10

∫
F
d2τ
τ2
2

1
(
√
τ2ηη̄)8

1
2

∑1
a,b=0(−1)a+b+ab θ

4[ab]
η4

Γ̄16
η̄16 with θ4 [ab] contributing η12 in the
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CP-odd case. We also find the factor (τ2)4 in the numerator from the 4-point vertex
integral (5.51). Cancellation of the holomorphic η functions in numerator and de-
nominator happens and gives rise to the final line in (5.74). To evaluate the final line
of (5.74) we use the integration formuli for the integration of modular functions on
the fundamental domain F of SL(2,Z) below [94, 78]

I(a, b, c) ≡
∫
F

d2τ

τ2
2

Êa2E
b
4E

c
6

η24p
(τ), (5.75)

where 6p = a+ 2b+ 3c, and thus (5.76)

I(0, 0, 0) =
2π

3
,

I(0, 3, 0) = 2535π,

I(0, 0, 2) = −2537π,

I(1, 1, 1) = −253π,

I(2, 2, 0) = 253π,

I(3, 0, 1) = −253π,

I(4, 1, 0) = 2535−1π,

I(6, 0, 0) = −2537−1π.

The final 5-point amplitude for the Heterotic SO(32) and E8×E8 theories are respec-
tively

ASO(32) = V10B2 ∧
(
trR4 +

1

4
(trR2)2 + trR2trF 2 + 8trF 4

)
, (5.77)

AE8×E8 = V10B2 ∧ {(trR4 +
1

4
(trR2)2 + trR2 (5.78)

(trF 2
1 + trF 2

2 )− 2trF 2
1 trF

2
2 + 2(trF 2

1 )2 + 2(trF 2
2 )2}.

These are, when traded to the supergravity effective action for the D=10, N=1 Het-
erotic SO(32) and E8 × E8 theories, respectively the same anomaly cancelling terms
which we have encountered before in (5.9) and (5.17). In fact one can show by us-
ing the index theorems relating anomalies and characteristic classes that the elliptic
genus for string 1-loop is same as the anomaly generating functions [92]. The quan-
tum theoretical (that is the supergravity) anomaly is the result of the UV divergence
of the related QFT and the loss of classical symmetry in course of renormalization.
The string theory amplitude, on the other hand is free from UV divergence but might
suffer the lack of modular non-invariance due to the IR modes circulating in the
string loop. Going towards the low energy limit, this departure from modularity
translates itself to the UV divergence of the limiting supergravity theory.

A note about the CP-even sector of the above amplitude may be of interest. In
case of 16-supercharges one finds certain super-invariants whose bosonic parts are
[95, 74, 72]
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I1 = t8trF
4 − 1

4
ε10B2trF

4, (5.79a)

I2 = t8trF
2TrF 2 − 1

4
ε10B2trF

2trF 2, (5.79b)

I3 = t8trR
4 − 1

4
ε10B2trR

4, (5.79c)

I4 = t8trR
2trR2 − 1

4
ε10B2trR

2trR2, (5.79d)

I5 = t8trR
2trF 2 − 1

4
ε10B2trR

2trF 2. (5.79e)

We see our familiar CP-odd terms as 5-particle states like B2 ∧ trR4 etc. The CP-even
partners are in fact 4-point Green’s functions pieces whose tensor structure is the
familiar t8 tensor defined to be

tijklmnpq = −1

2
εijklmnpq − 1

2
[(gikgjl − gilgjk)(gmpgnq − gmqgnp) (5.80)

+(gkmgln − gknglm)(gpigqj − gpjgqi)
+(gimgjn − gingjm)(gkpglq − gkqglp)]
+

1

2
[gjkglmgnpgqi + gjmgknglpgqi + gjmgnpgkqgil

+45 more terms by anti-symmetrizing on(ij), (kl), (mn), (pq)]

We end this section with the effective action of SO(32) Heterotic theory incorporating
corrections upto 1-loop. This effective action does not receive any further loop cor-
rections as it is associated with the anomaly cancelling mechanism. Thus in D=10,
the tree level plus 1-loop level effective action is given in string frame by [96, 97]

Stree + 1-loop =

∫
d10x
√
Ge−2φ{R+ 4(∂φ)2 − 1

12
H2
µνλ +

1

8
(TrF 2 − trR2) (5.81)

− 1

28
t8(TrF 2 − trR2)2 +

ζ(3)

3.29
(t8t8R

4 − 1

8
ε10ε10R

4)

−
∫
d10x
√
G

1

4
β(t8X8)}.

The term J0 = t8t8R
4 − 1

8ε10ε10R
4 is the bosonic part of a d=10, N=1 super-invariant

and

X8 = 32TrF 4 − 4TrF 2trR2 + 4trR4 + (trR2)2 (5.82)

β =
1

3× 214 × π5
. (5.83)

In the next section we shall discover this interesting relation between string one-
loop amplitude and supergravity anomalies for the case of D=8, N=1 theories cou-
pled with rank-16 Yang-Mills gauge groups.

5.3 Discrete anomaly in D=8, N=1 supergravity and string
amplitude comparison

After making ourselves familiar with the construction of the Heterotic elliptic genus
we now turn to the computation of discrete anomalies in supergravity theories and
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compare the string theory amplitude, a course which we have explored for the max-
imal supergravity theories in D=10 and D=8 in chapter 2. This time we consider
D=8 theories with half-maximal, that is, with 16 supercharges. We obtain this type
of theories by compactifying Heterotic theories with gauge group either SO(32) or
E8 × E8 with or without Wilson lines on a T 2 down to D=8. The T-duality relation
between the HO and HE string theories, discussed in section 3.6.1, tells us that if we
break one of the gauge groups between SO(32) andE8×E8 with symmetrical Wilson
line cofigurations, then one might rearrange the Wilson lines to reach the same new
group from the other one. This point we shall explore when we shall be dealing with
the gauge groups SO(16)×SO(16) and SO(8)4 in D=8. We shall however restrict our
attention for the time being to the cases where the new gauge group does not con-
tain any U(1) factors(we shall try to sketch some complexities regarding the groups
U(1)16 and E8 × E7 × U(1) while discussing the duality relationship between Het-
erotic on T 2 and F theory on K3). Generically, T 2 compactifications of the Heterotic
string theories have the following contents in their massless spectrum: [98]

The gravity multiplet: 1 graviton gµν , 1 antisymmetric 2-form Bµν , 1 gravitino
ψiµ, 2 graviphotons AIµ, 1 dilatino χi, 1 real scalar φ.

n vector multiplet: n photons LJν , n gauginos λiJ , n× 2 real scalars φJ .
The 2n real scalars φJ parametrize the coset space SO(2,n)

SO(2)×SO(n) . For the cases when
the D=8 N=1 Yang-Mills gauge group G8 does not contain any factor of U(1) we get
only n=2 abelian vector multiplets (from the reduction of metric gµν and the 2-form
Bµν). We also get the scalars Kähler structure T = B89 + iV2 and the complex struc-
ture U = U1 + iU2 of the torus T 2 from the reduction of NS-NS sector bosons and
they parametrize the coset space SO(2,2)

U(1)×U(1) .
To clarify the notation further, we start with Heterotic string theories in 10 space-

time dimensions and compactify the 8-th and 9-th space dimensions to form the torus
T 2. The torus metric is specified by

Gij =
T2

U2

(
1 U1

U1 |U |2
)
, Bij =

(
0 T1

−T1 0

)
(5.84)

with T2, U2 ≥ 0 . T1 = B89 is the B2 field with both its legs on the toric cycles while
T2 = V2 is the volume of this space-torus.

For the generic n vector multiplet case, the fermions have chiral coupling to the
U(1) of the coset SO(2,n)

SO(2)×SO(n) [98]. The representative vielbein metric L as discussed

in section 2.4 for the case of SO(2,n)
SO(2)×SO(n) whose form, in terms of the 2n scalars φJ is

[13]

L = exp

(
0 φ
φT 0

)
=

 cosh
√
φφT φ

sinh
√
φTφ√

φTφ

φT
sinh
√
φφT√

φφT
cosh

√
φTφ

 (5.85)

with φ being a n× 2 matrix composed of the 2n real scalars φJ

φ =


φ1 ψ2

ψ3 ψ4

...
...

ψ2n−1 ψ2n

 . (5.86)
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The Maurer-Cartan form looks like

L−1∂µL =

(
Qbµa P iµa
P aµi Qjiµ

)
(5.87)

where Qµab (a, b = 1, · · ·n) is the composite SO(n) connection and Qµij (i, j = 1, 2) is
the composite SO(2) ≡ U(1) connection. The local supersymmetry actions contain
the covariant derivatives of the fermionic fields

Dµψν = Dµψν +
1

4
ωµrsγ

rsψν +
1

2
iγ9Qµψν , (5.88)

Dµχ = Dµχ+
1

4
ωµrsγ

rsχ− 1

2
iγ9Qµχ, (5.89)

DµλJ = DµλJ +
1

4
ωµrsγ

rsλJ +
1

2
iγ9QµλJ +QJµaλJ (5.90)

with Dµ the super-Poincaré covariant derivative (2.18).
The supergravity action is invariant under the composite chiral U(1) transforma-

tions

δψν =
1

2
Σ(φ)γ9ψν , (5.91)

δχ = −1

2
Σ(φ)γ9χ, (5.92)

δλJ =
1

2
Σ(φ)γ9λJ . (5.93)

Thus working in the Weyl basis for the fermions in D=8, we read of the U(1) charges5

of the positive chiral gravitino, negative chiral dilatino and positive chiral gaugini
to be a11 1

2 . Note that, in case the coset space is SO(2,2)
U(1)×U(1) so that the D=8 gauge

group G does not contain any U(1) factor, the fermions of the theory chiral couplings
to one of the two U(1)s of the coset: this is evident from the form of the covari-
ant derivatives given in (5.88) above. Since in this type of compactification there
is an exchange symmetry between T and U we can discuss the ensuing SL(2,Z)
anomaly (discussed in chapter 2) in terms of either of these two moduli and there
will be corresponding counterterm involving the other moduli as well. The ex-
change symmetry between T and U is in fact the result of the perturbative symmetry
O(2, 2,Z) = SL(2,Z)T × SL(2,Z)U o Z2 of the T-duality group.

Let us first discuss the SL(2,Z) anomaly in case of SO(2,2)
U(1)×U(1) coset following

the Green-Gaberdiel method discussed in chapter 4. Using the U(1) charges of the
fermions and the index formuli in section 2.5 we find the following anomalous phase
variation of the path integral under the composite U(1)m (m is either T or U )

A = −
∫

Σ

32(2π)4

[
(248 + dimG)

[
trR4

360
+

(trR2)2

288

]
− (trR2)2 +

1

6
trR2TrF 2 +

2

3
TrF 4

]
(5.94)

5Note that our convention for the γ9 matrix, which we have adhered to from the convention of
calculating anomaly polynomials in accordance with Alvarez-Gaumé & Ginsparg [16] is negative of
the convention used in Salam & Sezgin [98].
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where the "Tr" means group traces in the adjoint of the gauge group G.
Following the Green-Gaberdiel method we can write the following U(1) counter-

term

S =

∫
ξm

32(2π)4

[
(248 + dimG)

[
trR4

360
+

(trR2)2

288

]
− (trR2)2 +

1

6
trR2TrF 2 +

2

3
TrF 4

]
(5.95)

with ξm transforms as ξm → ξm + Σm under the U(1)m transformation. ξm however
is not a physical field of the supergravity theory as we have mentioned in the case
of Green-Gaberdiel anomaly for D=10 type IIB supergravity. We thus have to gauge
fix it in terms of the discrete U-duality group SO(2, 2,Z). This group however does
not afford any one dimensional non-trivial representation like SL(2,Z). Neverthe-
less, one can exploit the local isomorphism of the continuous group SO(2, 2,R) =
SL(2,R) × SL(2,R) and write the following non-trivial SL(2,Z) transformation of
the "gauged" U(1) field ξm

δξm = − i
2
ln

(
cm+ d

cm̄+ d

)
. (5.96)

Hence we can write a sum of two SL(2,Z) counter-terms for T and U and sum them
up so that we can retrieve the perturbative symmetry group SL(2,Z)T ×SL(2,Z)U o
Z2. Hence we shall propose the following α′3 CP-odd correction term in D=8, N=1
supergravity coupled with a Yang-Mills gauge group G

SHet on T 2 =
i

24

∫ (
ln

(
η24(T )

η̄24(T̄ )

)
+ ln

(
j(T )

j̄(T̄ )

)
+ ln

(
η24(U)

η̄24(Ū)

)
+ ln

(
j(U)

j̄(Ū)

))
Y8,

(5.97)
where

Y8 =
1

32(2π)4

[
(248 + dimG)I1/2 − (trR2)2 +

1

6
trR2TrF 2 +

2

3
TrF 4)

]
. (5.98)

By explicit calculation we shall show that this term is also reproduced in the CP-odd
sector of the 5-point string amplitude with 1 U(1)m current (m= T or U) and 4 gravi-
tons, 4 gauge bosons, 2 gravitons plus 2 gauge bosons. Because this term in 1-loop
amplitude is related to the anomaly counter-term in supergarvity, this term does not
receive any further renormalization from higher string loops.

In the general case of n vector multiplet with the coset SO(2,n)
SO(2)×SO(n) , the U(1) cur-

rent can be chosen to be generated by any of the n-complex scalars. In that case
we can follow the procedure of "gauging" the n scalars [98] to obtain the subgroup
SO(1, 2) × H ⊂ SO(2, n) with H being an (n-1)-dimensional compact subgroup
of SO(2, n) and then noting the isomorphism SO(1, 2) ' SL(2,R) we can write a
SL(2,Z) counter-term for the gauge fixed scalar. As the gauge fixed scalar can be
any of the n-complex scalars, we can write a sum of n such counter-terms.

In the case of 5-point amplitude calculation in string theory side we have just two
changes to incorporate in our development of the string amplitude and elliptic genus
whose construction have been detailed in section 5.2. Instead of B2 field we have to
insert the vertex operator for the U(1) current generated by T or U moduli whose
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form is given by

V0(φi, z, z̄) = vIJ(φi)
[
∂XI(z, z̄) + ip.ψ(z)ψI(z)

]
(5.99)

∂̄XJ(z, z̄)eip.X(z,z̄).

V−1(φi, z, z̄) = vIJ(φi)ψ
I(z)

[
∂Xαψα(0) +GKL∂X

K(0)ψL(0)
]

(5.100)

∂̄XJ(z, z̄)eip.X(z,z̄).

respectively for the zero-ghost and the (-1)-ghost picture and the moduli vertices are

vIJ(φi) =
∂(GIJ +BIJ)

∂φi
. (5.101)

=⇒ (5.102)

v(T ) = − i

2U2

(
1 U
Ū |U |2

)
,

v(U) =
iT2

U2
2

(
1 Ū
Ū Ū2

)
. (5.103)

These are simply NS sector vertices for the Heterotic string as given in (5.30) but
with proper moduli polarization tensor given by vIJ . Next in this string theory, we
have two space-dimensions compactified on the torus T 2 with complex structure U
and volume V2 = T2. From the world-sheet point of view, these two space-scalars
are wrapped inside a two dimensional lattice Γ2,2 whose character, in the absence of
Wilson lines, can be written as

Γ2,2 =
T2

τ2

∑
A∈ML(2,Z)

exp

[
−2πiTdet(A)− πT2

τ2U2
|(1 U)A

(
τ
1

)
|2
]

=
∑

~m,~n∈ZN

qP
2
L/2q̄P

2
R/2.

(5.104)
with

p2
L =

|Um1 −m2 + Tn1 + TUn2|2
2T2U2

, (5.105)

p2
L − p2

R = 2mIn
I , (5.106)

m1,m2, n1, n2 ∈ Z. (5.107)

This lattice has to be included in the string partition function so that in D=8, the new
string partition function reads

Zd=8 heterotic on T 2 =
iV8

4(2πls)8

∫
F

d2τ

τ2
2

1

(
√
τηη̄)6

1

2

1∑
a,b=0

(−1)a+b+ab θ
4 [ab]

η4

Γ2,2Γ̄16

η2η̄2η̄16
.(5.108)

In case there are non-zero Wilson lines along the Y α
I , I=1,2 denoting the 1-cycles

of the torus T 2 and α = 1, · · · , 16 denoting the Cartan components of the Cartan
subalgebra of original gauge group G = SO(32) or E8 × E8 of the D=10 theory, the
effect of the Wilson lines Y α

I (α = 1, 2 denoting the two 1-cycles of the torus and
I = 1, · · · , 16 the 16 roots of Cartan lattice) are to be included in the gauge lattice Γ16
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according to [99, 28]

Γ16(T,U, Y αI ) =
T2

τ2

∑
A∈ML(2,Z)

m1,m2,n1,n2∈Z

exp

[
−2πiTdet(A)− πT2

τ2U2
|(1 U)A

(
τ
1

)
|2
]

×
1∑

a,b=0

16∏
I=1

eiπ(mαY
α
I Y

β
I nβ−bnαY

α
I )θ̄

[
a−2nαY

α
I

b−2mβY
β
I

]
(0, τ̄). (5.109)

Therefore, one has to gauge the lattice according to the new D=8 gauge group G8.
There is however one conceptual difference in the string one loop calculation in D=8
case than in D=10 case. Because of the compactification, the particle, especially the
fermion spectrum contains a whole mass tower of Kaluza-Klein states from the re-
duction of the massless states in D=10 theory. In the supergravity one loop computa-
tion, all these massive and the massless states will be circulating in the supergravity
loop. However, the supergravity anomaly arising from one loop calculation is due to
the loop divergence of the massless states only: the massive tower divergence can be
renormalized without disturbing the classical symmetry. Thus, if we wish to find the
corresponding anomaly cancelling terms from the string loop amplitude, we have to
integrate out the contribution from the massive modes. This type of amplitude and
the correction there-from is called the threshold correction. The implementation of
this principle of integrating out the massive states is however relatively easy for the
CP-even amplitude. We have noted that the vertex operator of the moduli (5.101)
contains a derivative with respect to the moduli ∂m. By manipulating this deriva-
tive out of the final SL(2,Z) integral, we can keep only the contribution from the
massless modes. To find the CP-odd case, we have to find a suitable integrability
condition from the form of the threshold correction in CP-even amplitude as mere
use of the tensor super-invariants (5.79) does not suffice to relate the moduli depen-
dent functions in CP-even and CP-odd amplitudes. We shall illustrate this process in
detail in case of SO(32) and E8 × E8 and subsequently use the same in case of the
gauge groups SO(16)×SO(16) and SO(8)4. But before doing so we give the generic
form of the 1-loop amplitude below.

The string amplitude in the CP-even sector will be of the form

A =

∫
F

d2τ

τ2
2

4∏
i=1

〈
∫
d2zi
π

εiᾱiαiV
ᾱiαi(pi, zi, z̄i)︸ ︷︷ ︸

4 gauge/graviton vertices

∫
d2z5

m
Vm(p5, z5, z̄5)︸ ︷︷ ︸

one moduli vertex m=T or U

〉, (5.110)

where all vertex operators are in zero-ghost picture,

V0(R) =
2gclosed
l2s

[∂Xµ(z, z̄) + ip.ψ(z)ψµ(z)] ∂̄Xν(z, z̄)eip.X(z,z̄) (5.111)

V0(F ) =
2gclosed
l2s

[∂Xν(z, z̄) + ip.ψ(z)ψν(z)] J̄a(z, z̄)eip.X(z,z̄). (5.112)

To construct 8-derivative terms we again need momenta of eighth order i.e. O(p8).
Consider then the part ip.ψψ part of the gauge/graviton vertex: we get p4 order
directly from the fermionic contractions of the 4 fermion-couples in 4 gauge/graviton
vertices. This will contribute to the t8 tensor structure in the kinematical factor of
the amplitude. The spin-structure-sum of the fermionic 2-point functions with the θ
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piece of the partition function yields again a position independent η12 factor:

1

2

∑
(a,b) even:(0,0),(0,1),(1,0)

(−1)a+bθ4 [ab]

4∏
i,j

θ [ab] (zij)θ
′(0)

θ [ab] (0)θ1(zij)
= −1

2
(2πη3)4. (5.113)

The rest p4 order can be obtained from the exponential parts of the gauge/ gravity
vertices leading to the gauge elliptic genus similar to (5.62)

E(F ) =
1∑

a,b=0

16∏
I=1

eiπ(mαY IαY
I
β n

β−bnαY Iα )θ̄
[
a−2nαY Iα
b−2mβY Iβ

]
(vi, τ̄) (5.114)

in which we have inserted the Wilson lines too and the gravity elliptic genus similar
to (5.2)

E(R) = exp

[
trR2

(2π)2

Ê2(τ̄ , τ2)

48

]
× exp

[
trR4

(2π)4

E4

27 32 5
(τ̄)

]
(5.115)

×exp
[
−
∞∑
m=3

1

2m
tr (R)2m (2πi)2m

(2m)!
B2mE2m(τ̄)

]

We thus do not need any momentum mode from the moduli vertex and it can be
combined with the Γ2,2 lattice to give

〈V (m)〉 =
1

πτ2
∂mΓ2,2 (5.116)

and we can perform the z5 integral using∫
Σ
d2z5

1

τ2
= 1. (5.117)

Thus we are led to the CP-even amplitude

A = V8t8

∫
F

d2τ

τ2
2

A(q,R, F )|8-form (5.118)

with A(q,R, F ) being the combined gauge gravity elliptic genus

A(q,R, F ) = E(R)E(F )|8-form. (5.119)

Now to integrate the massive modes out and denote the threshold correction to be
4CP-even, then

∂m 4CP-even |Gravitational = 4t8V8∂m

∫
F

d2τ

τ2
2

Γ2,2A(q,R)|8−forms (5.120)

=⇒
4CP-even|Gravitational = 4t8V8

∫
F

d2τ

τ2
2

Γ2,2A(q,R)|8−forms.

The calculation of the CP-odd part is quite similar as above but with the necessary
changes: 4-fermionic couples contracted to ε8 tensor, the θ1 replaced by (2πη3) and
using the moduli vartex in -1-picture. The moduli vertex can again be integrated out
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combining it with the Γ2,2 lattice using this time the following identities

〈Vm〉 = (5.121)

vIJ(m)〈ψI ∂̄XJGKL∂X
KψL〉 =

χm
πτ2

∂mΓ2,2 χm =

{
1, m = T,U

−1, m = T̄ , Ū .

Or vIJ(m)〈ψ̄I∂XJGKL∂̄X
Kψ̄L〉 =

σmχm
πτ2

∂mΓ2,2. (5.122)

The final CP-odd amplitude will be of the form

A = 2iε8V8

∫
F

d2τ

τ2
2

∂mΓ2,2A(q,R, F )|8−forms. (5.123)

The extraction of the threshold correction is now a little delicate [100, 101, 102]:
noting the threshold correction as ΘCP-odd, we have to demand that this correction
should reverse its sign according to the insertion of the moduli m or its complex con-
jugate m̄ so that the identities (5.121) and the contraction with ε-tensor be consistent
with each other and form the super-invariant complex function with the CP-even
threshold4CP-even. Thus we need to have

∂mΘ = −i∂m 4CP-even (5.124)
∂m̄Θ = i∂m̄ 4CP-even . (5.125)

If the functional dependence of the CP-even threshold coefficient 4CP-even be holo-
morphic in T and U, the above integrability condition gives rise to

Θ = Im4CP-even . (5.126)

We shall however find, as in the case of loop amplitude in type II theories on T 2 case
(section 4.2.2)4CP-even is not completely holomorphic in T and U. We shall need the
functional form of the amplitude 4CP-even in (5.118) to clarify the process of integra-
bility further. We postpone it for the moment and shall come back to it once we have
the amplitude results.

In the following subsections, we shall explore the anomaly counter-terms (5.97)
for the case of D=8, N=1 supergravity coupled to the gauge groupsG = SO(32), E8×
E8, SO(16)2 and SO(8)4.

5.3.1 Case 1: G= SO(32) and E8 × E8

The anomaly counterterm

For the case of SO(32) and E8×E8 we use once again the group trace rules to convert
the adjoint traces "Tr" to the fundamental traces "tr" in the formula (5.97) and (5.98).
We restate the group traces once again

TrF 2
SO(N) = (N − 2) trF 2

SO(N) (5.127a)

TrF 2
E8

= 30 trF 2
E8

(5.127b)

TrF 4
SO(N) = (N − 8) trF 4

SO(N) + 3 (trF 2
SO(N))

2 (5.127c)

TrF 4
E8

=
1

100
(TrF 2

E8
)2 = 9 (trF 2

E8
)2. (5.127d)
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As E8 does not have a vector representation, it is standard to define its trace trF 2
E8

in
"fundamental" by using that of the group SO(32) so that they have a uniform effect
in the Green-Schwarz term of the D=10 Heterotic theory with gauge group either
SO(32) or E8 × E8 [11].
Hence the Y8 polynomial in (5.98) takes the form

Y
SO(32)

8 =
1

32(2π)4

(
31

15
trR4 +

19

12
(trR2)2 + 5trR2trF 2 + 2(trF 2)2 + 16trF 4

)
,

(5.128a)

Y E8×E8
8 =

1

32(2π)4

(
31

15
trR4 +

19

12
(trR2)2 + 5trR2(trF 2

1 + trF 2
2 ) + 6((trF 2

1 )2 + (trF 2
2 )2)

)
.

(5.128b)

Putting this in (5.97) we get the following α′3 correction terms in D=8, N=1, G =
SO(32) and E8 × E8 effective action

SSO(32) =
i

768(2π)4
× { (5.129)∫ (

ln

(
η24(T )

η̄24(T̄ )

)
+ ln

(
j(T )

j̄(T̄ )

))
×(

31

15
trR4 +

19

12
(trR2)2 + 5trR2trF 2 + 2(trF 2)2 + 16trF 4

)
+

∫ (
ln

(
η24(U)

η̄24(Ū)

)
+ ln

(
j(U)

j̄(Ū)

))
×(

31

15
trR4 +

19

12
(trR2)2 + 5trR2trF 2 + 2(trF 2)2 + 16trF 4

)
}.

SE8×E8 =
i

768(2π)4
× { (5.130)∫ (

ln

(
η24(T )

η̄24(T̄ )

)
+ ln

(
j(T )

j̄(T̄ )

))
×(

31

15
trR4 +

19

12
(trR2)2 + 5trR2(trF 2

1 + trF 2
2 ) + 6((trF 2

1 )2 + (trF 2
2 )2)

)
+

∫ (
ln

(
η24(U)

η̄24(Ū)

)
+ ln

(
j(U)

j̄(Ū)

))
×(

31

15
trR4 +

19

12
(trR2)2 + 5trR2(trF 2

1 + trF 2
2 ) + 6((trF 2

1 )2 + (trF 2
2 )2)

)
}.

Comparison with 5-point String amplitude

We now compare the above results (5.129), (5.130) with the SO(32) and E8 × E8 5-
point string amplitude [74]. We first evaluate the CP-even amplitude, the process
of which has been sketched before. The CP-even threshold amplitude has the form
(5.118)

A = V8t8

∫
F

d2τ

τ2
2

Γ2,2A(q,R, F )|8−forms, (5.131)
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where the elliptic genus6 are the same as in (5.66) and (5.70)

A(q,R, F )SO(32) =
E3

4

27325η24

trR4

(2π)4
+

Ê2
2E

2
4

2932η24

(trR2)2

(2π)4
(5.132a)

+
trR2trF 2

2832(2π)4

(
Ê2E4E6

η24
− Ê2

2E
2
4

η24

)

+
trF 4

(2π)4
+

(trF 2)2

2932(2π)4

(
E3

4

η24
− 2Ê2E4E6

η24
+
Ê2

2E
2
4

η24
− 2732

)
,

A(q,R, F )E8×E8 =
E3

4

27325η24

trR4

(2π)4
+

Ê2
2E

2
4

2932η24

(trR2)2

(2π)4

+
trR2(trF 2

1 + trF 2
2 )

2832(2π)4

(
Ê2E4E6

η24
− Ê2

2E
2
4

η24

)

+
trF 2

1 trF
2
2

2832(2π)4

(
Ê2

2E
2
4

η24
− 2Ê2E4E6

η24
+
E2

6

η24

)
(5.132b)

+
(trF 2

2 )2 + (trF 2
2 )2

2832(2π)4

(
E3

4

η24
− 2Ê2E4E6

η24
+
Ê2

2E
2
4

η24

)
.

In view of the above elliptic genus, the amplitude A can be viewed as the sum of
integrals of the type

I(T,U) =

∫
F

d2τ

τ2
2

Γ2,2(T,U)Φ(q)

with Φ(q) being the modular form coefficient of each of the 8-form components trR4,
(trR2)2, trR2trF 2, trF 4 and (trF 2)2 . We then use the q-expansion (with q = e2πiτ )
of Φ(q)

Φ(q) =
∞∑

n=−1

cnq
n, (5.133)

and decomposes the 2× 2 matrices B in the lattice sum

Γ2,2 =
T2

τ2

∑
B∈ML(2,Z)

exp

[
2πiTdet(B)− πT2

τ2U2
|(1 U)B

(
τ
1

)
|2
]

=
∑

~m,~n∈ZN

qP
2
L/2q̄P

2
R/2.

(5.134)
into the orbits of PSL(2,Z) (see [74, 75, 76])7 :

Orbits Defining properties Canonical representative
Trivial B = 0 ( 0 0

0 0 )

Degenerate B 6= 0; detB = 0
(

0 j
0 p

)
; j, p 6= 0.

Non-degenerate B 6= 0; detB 6= 0
(
k j
0 p

)
; 0 ≤ j < k; p 6= 0.

6All group traces "tr" are in fundamental or vector representation.
7More sophisticated methods for such SL(2,Z) integration calculations are available for example

Florakis & Pioline [103], Angelantonj, Florakis & Pioline [104, 105]. We are however demonstrating the
orbit decomposition method because it is easy to use in case of Wilson lines switched on.
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The modular integration will now look like

I = V8T2t8 × {
∫
F

d2τ

τ2
2

A(q,R, F )︸ ︷︷ ︸
trivial orbit

(5.135)

+

∫
strip-boundary of PSL(2,Z)

d2τ

τ2
2

∑
(j,p)6=(0,0)

e
− πT2
τ2U2

|j+pU |2
A(q,R, F )

︸ ︷︷ ︸
degenerate orbit

+ 2

∫
C+

d2τ

τ2
2

∑
0≤j<k,p 6=0

e−2πiTpke
− πT2
τ2U2

|kτ+j+pU |2
A(q,R, F )︸ ︷︷ ︸

non-degenerate orbit

}.

To determine the leading part (non-volume suppressed part) of the amplitude com-
ing from the degenerate orbit, that is to evaluate the integral∫

strip-boundary of PSL(2,Z)

d2τ

τ2
2

∑
(j,p)6=(0,0)

e
− πT2
τ2U2

|j+pU |2
c0, (5.136)

where c0 is the coefficient of q0 of the q expansion of the elliptic genus A(q,R, F ), we
use result of [74] to obtain the following harmonic part∫

strip-boundary of PSL(2,Z)

d2τ

τ2
2

∑
(j,p)6=(0,0)

e
− πT2
τ2U2

|j+pU |2
c0 (5.137)

=

[
logU2|η(U)|2 +

πU2

6

]
c0 + terms with VT 2 in denominator

Note that the seemingly non-harmonic logU2 piece in (5.137) comes from taking the
appropriate renormalization scheme against the infra-red divergence of the above
amplitude calculation.
To determine the non-volume suppressed part of the amplitude coming from the
non-degenerate orbit, we use the integral [74], [77]

T2

∑
0≤j<k,p 6=0

e−2πiTpk

∫
C+

d2τ

τ2
2

e
− πT2
τ2U2

|kτ+j+pU |2
c0 = (5.138)

∑
j

∑
k>0,p>0

e2πikpT

k|p| c0 + cc. + volume suppressed terms.

We then sum up the leading order non-volume suppressed terms from all the
three orbits which gives us

I(T,U) =

∫
F

d2τ

τ2
2

Γ2,2(T,U)Φ(q) (5.139)

=
πT2

3
[c0 − 24c−1] +

[
logU2|η(U)|2 +

πU2

6

]
c0 +

[
logT2|η(T )|2 +

πT2

6

]
c0

+non-harmonic terms with T s2 in denominator with s=1, 2.
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Using the above plus the q−expansion of different modular functions which we have
summarized in (B.13) in appendix B we find the CP-even amplitude for SO(32)

A
SO(32)
CP-even = V8T2N

π

24
t8

(
trR4 +

1

4
(trR2)2 + trR2trF 2 + 8trF 4

)
︸ ︷︷ ︸

Trivial orbit

(5.140)

+ V8N
1

48

[
logU2|η(U)|2

]
× t8

(
31

15
trR4 +

19

12
(trR2)2 + 5trR2trF 2 + 2(trF 2)2 + 16trF 4

)
︸ ︷︷ ︸

Harmonic term from the degenerate orbit

+ V8N
1

48

[
logT2|η(T )|2 +

πT2

6

]
× t8

(
31

15
trR4 +

19

12
(trR2)2 + 5trR2trF 2 + 2(trF 2)2 + 16trF 4

)
︸ ︷︷ ︸

Harmonic term from the non-degenerate orbit

+ non-harmonic terms.

Similarly, using the elliptic genus for E8 × E8 we find

AE8×E8
CP-even = V8T2N

π

24
t8

(
trR4 +

1

4
(trR2)2 + trR2(trF 2

1 + trF 2
2 )− 2trF 2

1 trF
2
2 + 2(trF 2

1 )2 + 2(trF 2
2 )2

)
︸ ︷︷ ︸

Trivial orbit

(5.141)

+ V8N
1

48

[
logU2|η(U)|2

]
× t8

(
31

15
trR4 +

19

12
(trR2)2 + 5trR2(trF 2

1 + trF 2
2 ) + 6((trF 2

1 )2 + (trF 2
2 )2)

)
︸ ︷︷ ︸

Harmonic term from the degenerate orbit

+ V8N
1

48

[
logT2|η(T )|2 +

πT2

6

]
× t8

(
31

15
trR4 +

19

12
(trR2)2 + 5trR2(trF 2

1 + trF 2
2 ) + 6((trF 2

1 )2 + (trF 2
2 )2)

)
︸ ︷︷ ︸

Harmonic term from the non-degenerate orbit

+ non-harmonic terms.

Next we determine the CP-odd amplitude from the above CP-even amplitude. It
is clear from our discussion of the CP-odd threshold following (5.121) that the ten-
sor structure in terms of the 8-form components trR4, (trR2)2, trR2trF 2, trF 4 and
(trF 2)2 remain the same, only the t8 tensor is now replaced by the ε−tensor so that
each "tr" includes "wedge" products as in the anomaly polynomial (5.9), (5.17), (5.97)
and (5.98). However the coefficients depending on U and T moduli have to be treated
carefully according to the discussion following (5.121) which we shall complete here.
The CP-odd coupling has to be of odd parity in accordance with the insertion of
holomorphic or anti-holomorphic moduli (5.124). As the CP-even coefficients are
T2 in the trivial orbit part and logm2|η(m)|2 (m=T, U) in the leading harmonic parts
coming from the degenerate and non-degenerate parts in (5.140) and (5.141) and are
not holomorphic in m, we can not integrate the equations (5.124). Instead we write
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the CP-odd threshold in the form

Θ = Ω1 ∧ (i∂TT2dT − i∂T̄T2dT̄ ) + Ω2 ∧ (i∂mlogm2|η(m)|2dm− i∂m̄logm2|η(m)|2dm̄) (5.142)

where Ω1 and Ω2 are Chern-Simons 7-forms such that, in case of G=SO(32)

dΩ1 =

(
trR4 +

1

4
(trR2)2 + trR2trF 2 + 8trF 4

)
(5.143)

dΩ2 =

(
31

15
trR4 +

19

12
(trR2)2 + 5trR2trF 2 + 2(trF 2)2 + 16trF 4

)
. (5.144)

Doing a partial integration in (5.142) we find the following form of the CP-odd (lead-
ing order) amplitude in case of G=SO(32)

A
SO(32)
CP-odd = V8T2N

π

24

(
trR∧4 +

1

4
(trR2)∧2 + trR∧2trF∧2 + 8trF∧4

)
︸ ︷︷ ︸

Trivial orbit

− 1

T2
Ω1 ∧ dT1 (5.145)

+V8N
1

48

[
ln

(
η24(U)

η̄24(Ū)

)]
(

31

15
trR∧4 +

19

12
(trR2)∧2 + 5trR∧2trF∧2 + 2(trF 2)∧2 + 16trF∧4

)
− 1

U2
Ω2 ∧ dU1

+V8N
1

48

[
ln

(
η24(T )

η̄24(T̄ )

)
− 4iπT1

]
×
(

31

15
trR∧4 +

19

12
(trR2)∧2 + 5trR∧2trF∧2 + 2(trF 2)∧2 + 16trF∧4

)
− 1

T2
Ω2 ∧ dT1

+volume suppressed terms.

The above amplitude (5.145) gives rise to the following α′3 term in the effective action
(where we also note that T = B89 + iVT 2 = T1 + iT2)

S
SO(32)
amp =

1

192(2π)3

∫
B89

(
trR∧4 +

1

4
(trR2)∧2 + trR∧2trF∧2 + 8trF∧4

)
︸ ︷︷ ︸

Trivial orbit

(5.146)

+
1

4× 192(2π)4

∫ [
ln

(
η24(U)

η̄24(Ū)

)]
×(

31

15
trR∧4 +

19

12
(trR2)∧2 + 5trR∧2trF∧2 + 2(trF 2)∧2 + 16trF∧4

)
+

1

4× 192(2π)4

∫ [
ln

(
η24(T )

η̄24(T̄ )

)
− 4iπT1

]
×
(

31

15
trR∧4 +

19

12
(trR2)∧2 + 5trR∧2trF∧2 + 2(trF 2)∧2 + 16trF∧4

)
.

In the above, the term in the first line, which comes from the trivial orbit is in fact
the T 2 reduction of the Green-Schwarz term of the D=10, N=1, G=SO(32) Heterotic
theory (5.9)[11]

SGS =
1

192(2π)5α′

∫
B2 ∧

(
trR∧4 +

1

4
(trR2)∧2 + trR∧2trF∧2 + 8trF∧4

)
(5.147)

Next we compare the remaining terms in (5.146) with the α′3 term (5.129) for this
theory that we got from anomaly consideration and we see that apart from the j-
function part (whose decompactification limit for T2 → ∞ is −4πiT1) we have the
exact matching between the string amplitude result and the anomaly counter-term
in supergravity action. The matching is in fact the result of the fact that the low
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energy limit of the 5-point 1-loop string amplitude is the inverse of the supergravity
1-loop amplitude and that the IR divergence in the string loop amplitude renders
itself to the quantum anomaly in the low energy effective action.
For E8 × E8 case we find similarly

SE8×E8
amp =

1

192(2π)3

∫
B89{trR4 +

1

4
(trR2)2 + trR2(trF 2

1 + trF 2
2 ) (5.148)

−2trF 2
1 trF

2
2 + 2(trF 2

1 )2 + 2(trF 2
2 )2}

+
1

4× 192(2π)4

∫ [
ln

(
η24(U)

η̄24(Ū)

)]
×(

31

15
trR4 +

19

12
(trR2)2 + 5trR2(trF 2

1 + trF 2
2 ) + 6((trF 2

1 )2 + (trF 2
2 )2)

)
+

1

4× 192(2π)4

∫ [
ln

(
η24(T )

η̄24(T̄ )

)
− 4iπT1

]
×
(

31

15
trR4 +

19

12
(trR2)2 + 5trR2(trF 2

1 + trF 2
2 ) + 6((trF 2

1 )2 + (trF 2
2 )2)

)
.

Once more this can be compared with (5.130) which matches apart from the j-function
and the terms in the first two lines are the T 2 reduction of theE8×E8 Green-Schwarz
term

SGS =
1

192(2π)5α′

∫
B2∧

(
trR4 +

1

4
(trR2)2 + trR2(trF 2

1 + trF 2
2 )− 2trF 2

1 trF
2
2 + 2(trF 2

1 )2 + 2(trF 2
2 )2

)
.

(5.149)

5.3.2 Case 2: G= SO(16)× SO(16)
The anomaly counter-term and group traces

Now we consider D=10 Heterotic string theory with gauge group E8 ×E8 compacti-
fied on a T 2 with Kähler structure T = B89+iVT 2 and complex structure U = U1+iU2

and with the following Wilson line on T 2

Y 1
i = (04,

1

2

4

, 04,
1

2

4

), Y 2
i = (08, 08), i = 1, · · · , 16, (5.150)

so that the gauge group is broken to SO(16) × SO(16) in D=8. One can of course
rearrange the 8 non-zero values of the Wilson lines so that one can start from SO(32)
gauge group in D=10 and again obtain SO(16)× SO(16) in D=8.

First we discuss the group decomposition E8 ×E8 ⊃ SO(16)× SO(16) which we
shall find extremely useful to understand the string amplitude part.
For the decomposition E8 × E8 ⊃ SO(16)× SO(16) we have

248 ⊕ 248 = (120,1) ⊕ (1,120)︸ ︷︷ ︸
adjoint rep. of SO(16)×SO(16)

⊕ (128,1) ⊕ (1,128)︸ ︷︷ ︸
spinor rep. of SO(16)×SO(16)

. (5.151)

The rules for transcribing group trace “Tr" in the adjoint representation towards the
group trace “tr" in the fundamental representation for SO(N) groups [106, 107]

TrF 2
SO(N) = (N − 2) trF 2

SO(N) , (5.152)

TrF 4
SO(N) = (N − 8) trF 4

SO(N) + 3 (trF 2
SO(N))

2 . (5.153)
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For the (128,1) ⊕ (1,128) representation, we write the traces formula

tr128F
2
1 + tr128F

2
2 = 16trF 2

1 + 16trF 2
2 , (5.154a)

tr128F
4
1 + tr128F

4
2 = 6(trF 2

1 )2 + 6(trF 2
2 )2 − 8trF 4

1 − 8trF 4
2 . (5.154b)

For the sake of completeness, we also provide the branching rule for the decomposi-
tion SO(32) ⊃ SO(16)× SO(16)

496 = (120,1) ⊕ (1,120)︸ ︷︷ ︸
adjoint rep. of SO(16)×SO(16)

⊕ (16,16)︸ ︷︷ ︸
cospinor rep. of SO(16)×SO(16)

. (5.155)

For the (16,16) representation, we write the traces formula

tr(16,16)F
2 = 16trF 2

1 + 16trF 2
2 , (5.156a)

tr(16,16)F
4 = 16trF 4

1 + 16trF 4
2 + 6(trF 2

1 )(trF 2
2 ). (5.156b)

Adapting formula (5.98) to the adjoint representation (120,1) ⊕ (1,120) of SO(16)2

and using the trace-conversion formulae (5.152) we can write the 8-form polynomial
for the case G = SO(16)2 as follows

Y
SO(16)2

8 =
1

32(2π)4

(
488

360
trR4 +

200

288
(trR2)2 +

7

3
trR2

2∑
i=1

trF 2
i +

16

3

2∑
i=1

trF 4
i + 2

2∑
i=1

(trF 2
i )2

)
.

(5.157)
In the following we shall compare this supergravity result with the string amplitude
calculation.

Comparison with 5-point String amplitude

We now elaborate the process of the CP-even 5-point string amplitude for the SO(16)×
SO(16) following the lines of Gutperle [108] where the pieces of the calculation have
been provided e.g. the coefficient of trR4, trF 4 and (trF 2)2 for the non-degenerate
orbit (5.135). We shall provide the CP-even part of the amplitude in the leading order
non-volume suppressed harmonic forms in trivial, degenerate and non-degenerate
orbits.
The amplitude will be derived from

A = V8t8

∫
F

d2τ

τ2
2

Γ2,2A(q,R, F )|8−forms, (5.158)

where Γ2,2 is the T 2 lattice sum as before

Γ2,2 =
T2

τ2

∑
B∈ML(2,Z)

exp

[
2πiTdet(B)− πT2

τ2U2
|(1 U)B

(
τ
1

)
|2
]

=
∑

~m,~n∈ZN

qP
2
L/2q̄P

2
R/2

(5.159)
with B being the 2× 2 matrix

B =

(
m1 n1

m2 n2

)
. (5.160)

The form of the elliptic genus A(q,R, F ) shall depend on the spin structure as we
shall describe shortly and hence there are 3 different elliptic genus for trivial, degen-
erate and non-degenerate orbits which we shall note byAtrivial(q,R, F ),Adegenerate(q,R, F )
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and Anon-degenerate(q,R, F ) respectively. The general elliptic genus is obtained [78]
from the gauging of

A(q,R, F ) =
1

η24
Exp

(
trR2

(2π)2

Ê2

48

)
× Exp

(
trR4

(2π)4

E4

27325

)
×

2∑
a,b=1

θ8 [ab]︸︷︷︸
SO(16)1

× θ8
[
a+m1
b+n1

]︸ ︷︷ ︸
SO(16)2

.

(5.161)
We have summarised our convention of Jacobi theta functions in appendix B. The
labels SO(16)1 and SO(16)2 in (5.161) denote the gauging of the theta functions ac-
cording to two SO(16)s.
The trivial orbit is characterised by B = 0 so that the elliptic genus will be

Atrivial(q,R, F ) =
E3

4

27325η24

trR4

(2π)4
+

Ê2
2E

2
4

2932η24

(trR2)2

(2π)4
(5.162)

+
trR2(trF 2

1 + trF 2
2 )

2832(2π)4

(
Ê2E4E6

η24
− Ê2

2E
2
4

η24

)

+
trF 2

1 trF
2
2

2832(2π)4

(
Ê2

2E
2
4

η24
− 2Ê2E4E6

η24
+
E2

6

η24

)

+
(trF 2

1 )2 + (trF 2
2 )2

2832(2π)4

(
E3

4

η24
− 2Ê2E4E6

η24
+
Ê2

2E
2
4

η24

)
.

The degenerate orbit is characterised by B 6= 0, det(B) = 0, for which choose the
two following sectors

B(1) =

(
0 2j
0 p

)
, B(2) =

(
0 2j + 1
0 p

)
, j, p ∈ Z. (5.163)

For the gauging, we use the identities (B.7) and the definitions of Eisenstein series
given in (B.6) plus the combinations f1, f2, f3 of theta functions

f1 = θ4
3 + θ4

4, f2 = θ4
2 − θ4

4, f3 = −θ4
2 − θ4

3. (5.164)

The elliptic genus for degenerate orbit is then

Adegenerate(q,R, F ) =
trR4

(2π)4

E4

27325η24

(
B(1)

4∑
a=2

θ16
a +B(2)2θ8

3θ
8
4

)
(5.165)

+
(trR2)2

(2π)4

Ê2
2

2932η24

(
B(1)

4∑
a=2

θ16
a +B(2)2θ8

3θ
8
4

)

− trR
2(trF 2

1 + trF 2
2 )

2832(2π)4η24
{2B(1)(Ê2E4E6 − Ê2

2E
2
4)−B(2)(Ê2θ

8
3θ

8
4)(f2 + f3 + 2Ê2)}

+
trF 4

1 + trF 4
2

273(2π)4η24
{B(1)(−θ16

2 θ4
3θ

4
4 + θ16

3 θ4
2θ

4
4 − θ16

4 θ4
2θ

4
3) +B(2)(θ8

3θ
8
4(θ4

2θ
4
4 − θ4

2θ
4
3))}

+
(trF 2

1 )2 + (trF 2
2 )2

2932(2π)4η24
{B(1)

4∑
a=2

θ16
a (Ê2 + fa−1)2 +B(2)θ8

3θ
8
4

[
(f2 + Ê2)2 + (f3 + Ê2)2

]
}

+
(trF 2

1 )(trF 2
2 )

2832(2π)4η24
{B(1)

4∑
a=2

θ16
a (Ê2 + fa−1)2 +B(2)θ8

3θ
8
4

[
(f2 + Ê2)2 + (f3 + Ê2)2 − 9θ8

2

]
}.
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In the above elliptic genus the B(1) and B(2) act as operators such that in the ampli-
tude integration (5.158) one should take into account the values of the matrix B as
given in (5.163).

Finally we come to the non-degenerate orbit (B 6= 0, det(B) 6= 0) whose matrix
representative is

B =
(
k j
0 p

)
; 0 ≤ j < k; p 6= 0.

We have to use the following 4 sectors of this representative matrix because of the
spin structure (5.161)

B(1) =

(
2k 2j
0 p

)
, B(2) =

(
2k 2j + 1
0 p

)
, (5.166)

B(3) =

(
2k + 1 2j

0 p

)
, B(4) =

(
2k + 1 2j + 1

0 p

)
, 0 ≤ j < k, j, k, p ∈ Z.

The elliptic genus for the non-degenerate orbit is then

Anon-degenerate(q,R, F ) = (5.167)

trR4

(2π)4

E4

27325η24
{B(1)

4∑
a=2

θ16
a +B(2)2θ8

3θ
8
4 +B(3)2θ8

2θ
8
3 +B(4)2θ8

2θ
8
4}

+
(trR2)2

(2π)4

Ê2
2

2932η24
{B(1)

4∑
a=2

θ16
a +B(2)2θ8

3θ
8
4 +B(3)2θ8

2θ
8
3 +B(4)2θ8

2θ
8
4}

− trR
2(trF 2

1 + trF 2
2 )

2832(2π)4η24
{(2B(1)(Ê2E4E6 − Ê2

2E
2
4)−B(2)(Ê2θ

8
3θ

8
4)(f2 + f3 + 2Ê2)

−B(3)(Ê2θ
8
2θ

8
3)(f1 + f2 + 2Ê2)−B(4)(Ê2θ

8
2θ

8
4)(f1 + f3 + 2Ê2)}

+
trF 4

1 + trF 4
2

273(2π)4η24
{B(1)(−θ16

2 θ4
3θ

4
4 + θ16

3 θ4
2θ

4
4 − θ16

4 θ4
2θ

4
3) +B(2)(θ8

3θ
8
4(θ4

2θ
4
4 − θ4

2θ
4
3))

+B(3)(θ8
2θ

8
3(θ4

2θ
4
4 − θ4

3θ
4
4)) +B(4)(θ8

2θ
8
4(−θ4

3θ
4
4 − θ4

2θ
4
3))}

+
(trF 2

1 )2 + (trF 2
2 )2

2932(2π)4η24
{B(1)

4∑
a=2

θ16
a (Ê2 + fa−1)2 +B(2)θ8

3θ
8
4

[
(f2 + Ê2)2 + (f3 + Ê2)2

]
+B(3)θ8

2θ
8
3

[
(f1 + Ê2)2 + (f2 + Ê2)2

]
+B(4)θ8

2θ
8
4

[
(f1 + Ê2)2 + (f3 + Ê2)2

]
}

+
(trF 2

1 )(trF 2
2 )

2832(2π)4η24
{B(1)

4∑
a=2

θ16
a (Ê2 + fa−1)2 +B(2)θ8

3θ
8
4

[
(f2 + Ê2)2 + (f3 + Ê2)2 − 9θ8

2

]
+B(3)θ8

2θ
8
3

[
(f1 + Ê2)2 + (f2 + Ê2)2 − 9θ8

4

]
+B(4)θ8

2θ
8
4

[
(f1 + Ê2)2 + (f3 + Ê2)2 − 9θ8

3

]
}.

Once again in the above, the terms B(i) with i = 1, 2, 3, 4 denote the sector operators
so that one takes into account correctly the values of the matrix elementsB according
to the convention (5.166).
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The complete amplitude is then

A = T2V8t8 × {
∫
F

d2τ

τ2
2

A(q,R, F )trivial (5.168)

+

∫
strip-boundary of PSL(2,Z)

d2τ

τ2
2

∑
(n1,n2) 6=(0,0)

e
− πT2
τ2U2

|n1+n2U |2A(q,R, F )degenerate

+2

∫
C+

d2τ

τ2
2

∑
0≤n1<m1,n2 6=0

e−2πiTpke
− πT2
τ2U2

|m1τ+n1+n2U |2A(q,R, F )non-degenerate},

= Atrivial + Adegenerate + Anon-degenerate (5.169)

The trivial orbit amplitude gives

Atrivial = T2V8t8
1

(2π)4
{trR4 +

1

4
(trR2)2 + trR2(trF 2

1 + trF 2
2 ) (5.170)

− 2trF 2
1 trF

2
2 + 2(trF 2

1 )2 + 2(trF 2
2 )2}

To evaluate the degenerate amplitude, we q-expand the modular function in the el-
liptic genus (5.165) and take the constant coefficients which we have noted in (B.13)
which shall provide the harmonic part of the amplitude. In this respect we also note
that we can sum up the contributions of B(1) and B(2) sectors in (5.163) so that the
sum run in the complete set of integers for n1 and n2 so that the CP-even modular
coefficient will be logU2|η(U)|2 (the logU2 follows from the renormalization scheme).
Also we note that the sum of the coefficients of 1/q is zero so that there are no poles
in q. Using (5.137) we find the harmonic part of the CP-even amplitude coming from
the degenerate orbit

Adegenerate =
1

(2π)4
logU2|η(U)|2V8t8{

488

360
trR4 +

200

288
(trR2)2 +

7

3
trR2(trF 2

1 + trF 2
2 )

(5.171)

+
16

3
(trF 4

1 + trF 4
2 ) + 2((trF 2

1 )2 + (trF 2
2 )2)}.

Finally for the non-degenerate amplitude we again q-expand the modular func-
tions in the elliptic genus (5.167) and check that there is no pole in q. Next we
note that the leading term in the harmonic part for B(1) and B(2) sectors are the
same and is equal to

[
logT2|η(2T )|2 + πT2

3

]
. We then sum the constant coefficients

which shall provide the leading term (which are not volume suppressed) in the har-
monic part. The constant coefficients in B(3) and B(4) are the same and hence the
sum over m1, n1 and n2 can be extended to the complete Z with the contribution[
logT2|η(2T )|2 − logT2|η(T )|2 + πT2

6

]
. Once again, we evaluate the CP-even integral

using (5.138) and the leading term (harmonic) in the non-degenerate amplitude will

103



Chapter 5. Discrete anomalies in half-maximal Supergravity and string amplitude

be (we write only the non-volume suppressed harmonic part of the amplitude)

Anon-degenerate = (5.172)
1

(2π)4

[
logT2|η(2T )|2 +

πT2

3

]
V8t8{

488

360
trR4 +

200

288
(trR2)2 +

7

3
trR2(trF 2

1 + trF 2
2 )

+
16

3
(trF 4

1 + trF 4
2 ) + 2((trF 2

1 )2 + (trF 2
2 )2)}

+
1

2(2π)4

[
logT2|η(2T )|2 − logT2|η(T )|2 +

πT2

6

]
×

V8t8{256

(
trR4

360
+

(trR2)2

288

)
+

8

3
trR2(trF 2

1 + trF 2
2 )

− 16

3
(trF 4

1 + trF 4
2 ) + 4((trF 2

1 )2 + (trF 2
2 )2)}

Finally, to extract the CP-odd amplitude from the above CP-even amplitude, we de-
ploy the same technique of moduli integrability (see discussion following (5.140) of
the previous sub-section 5.3.1) and we get

Acp-odd = Atrivial +Adegenerate +Anon-degenerate (5.173)

with

Atrivial = T1

(
trR4 +

1

4
(trR2)2 + trR2

2∑
i=1

trF 2
i − 2trF 2

1 trF
2
2 + 2

2∑
i=1

(trF 2
i )2

)
,

(5.174)

Adegenerate =
1

96(2π)4
ln

(
η24(U)

η̄24(Ū)

)(
488

360
trR4 +

200

288
(trR2)2 +

7

3
trR2

2∑
i=1

trF 2
i

+
16

3

2∑
i=1

trF 4
i + 2

2∑
i=1

(trF 2
i )2

)
, (5.175)

Anon-degenerate =
1

96(2π)4

[
8iπT1 − ln

(
η24(2T )

η̄24(2T̄ )

)](
488

360
trR4 +

200

288
(trR2)2 +

7

3
trR2

2∑
i=1

trF 2
i

+
16

3

2∑
i=1

trF 4
i + 2

2∑
i=1

(trF 2
i )2

)
+

(5.176a)

+
1

192(2π)4

[
−4iπT1 + ln

(
η24(2T )

η̄24(2T̄ )

)
− ln

(
η24(T )

η̄24(T̄ )

)]
×

×
[

256

(
trR4

360
+

(trR2)2

288

)
+

8

3
trR2

2∑
i=1

trF 2
i −

16

3

2∑
i=1

trF 4
i + 4

2∑
i=1

(trF 2
i )2

]
.

(5.176b)
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The above expressions translate into the following α′3 corrections to the 8D effec-
tive action

S
SO(16)
amp =

∫ [
N1Atrivial +N2Adeg. +N3Anon-deg.

]
, (5.177)

with appropriate normalization factors N1, N2, N3. As usual, the trivial orbit term
(5.174) is the same as the T 2 reduction of the Heterotic Green-Schwarz term, as can
be most easily seen by starting from the E8 ×E8 one in (5.149). The degenerate orbit
term (5.175) and the first piece of the non-degenerate orbit term (5.176a) involve ex-
actly the same 8-form polynomial dictated by anomaly cancelation (5.157). Note that
the modular coefficients in front do not appear to have the correct modular prop-
erties to cancel the corresponding anomalous SL(2,Z) phase variations, but this is
only an artefact of having split the amplitude in three different orbits and of having
adopted appropriate renormalization schemes [74]. Finally, the second piece of the
non-degenerate orbit term (5.176b) is the contribution from the massive vector mul-
tiplets in the (128,1) ⊕ (1,128) representation of SO(16)2, as can be verified using the
trace formulae (5.154a), (5.154b).

One can of course make a totally analogous analysis starting from SO(32), and
using the branching rules (5.155) and the trace formulae (5.156a).

5.3.3 Case 3: G= SO(8)4

Anomaly cancelling term and group trace

Finally we come to the case of the D=8, N=1 theory with gauge group SO(8)4 which
can be obtained from D=10, N=1 theory with gauge group either SO(32) or E8 × E8

compactified on a T 2 with appropriate Wilson lines along the two 1-cycles of the
torus. Following the reasoning outlined in 5.3 we can write the composite anomaly
cancelling term for the gravitino and gaugini in the adjoint representation of SO(8)4

as follows

SSO(8)4 =
i

768(2π)4
× { (5.178)∫ (

ln

(
η24(T )

η̄24(T̄ )

)
+ ln

(
j(T )

j̄(T̄ )

))[
trR4 +

1

4
(trR2)2 + trR2

4∑
i

trF 2
i +

4∑
i

2(trF 2
i )2

]

+

∫ (
ln

(
η24(U)

η̄24(Ū)

)
+ ln

(
j(U)

j̄(Ū)

))[
trR4 +

1

4
(trR2)2 + trR2

4∑
i

trF 2
i +

4∑
i

2(trF 2
i )2

]
}

As in the case of SO(16)× SO(16) we shall now discuss the group traces originating
from the group decompositions SO(32) → SO(8)4 and E8 × E8 → SO(8)4 which
shall prove indispensable to understand the string loop amplitude.
For the decomposition E8 ⊃ SO(8)2 we have

248 = (28,1) ⊕ (1,28)︸ ︷︷ ︸
adjoint rep. of SO(8)×SO(8)

⊕ (8,8)︸︷︷︸
bifundamental rep. of SO(8)×SO(8)

(5.179)

⊕ (8,8)’︸ ︷︷ ︸
spinor rep. of SO(8)×SO(8)

⊕ (8,8)”︸ ︷︷ ︸
cospinor rep. of SO(8)×SO(8)

.
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Thus the complete decompositionE(1)
8 → SO(8)(1)×SO(8)(2) plusE(2)

8 → SO(8)(3)×
SO(8)(4) gives

248⊕ 248 =(28,1,1,1)⊕ (1,28,1,1)⊕ (1,1,28,1)⊕ (1,1,1,28) (5.180)
⊕ (8,8,1,1)⊕ (1,1,8,8)
⊕ (8,8,1,1)′ ⊕ (1,1,8,8)′

⊕ (8,8,1,1)′′ ⊕ (1,1,8,8)′′.

For the decomposition SO(32)→ SO(8)(1)×SO(8)(2)×SO(8)(3)×SO(8)(4) we have

496 =(28,1,1,1)⊕ (1,28,1,1)⊕ (1,1,28,1)⊕ (1,1,1,28) (5.181)
⊕ (8,8,1,1)⊕ (1,1,8,8)
⊕ (8,1,8,1)⊕ (1,8,1,8)
⊕ (1,8,8,1)⊕ (8,1,1,8).

From the decomposition (5.180) we see that E(1)
8 → SO(8)(1) × SO(8)(2) plus E(2)

8 →
SO(8)(3)×SO(8)(4) has a preferred trF 2

1 trF
2
2 and trF 2

3 trF
2
4 interaction. The T-duality

exchanges the spinor and co-spinor representation with the bi-fundamental repre-
sentations and we shall see that this fact appears in the string 1-loop elliptic genus as
the orbifold shift [109] which gives the mixed interaction of the type trF 2

1 trF
2
3 and

trF 2
1 trF

2
4 etc. even if one starts with the decomposition E(1)

8 → SO(8)(1) × SO(8)(2)

and E(2)
8 → SO(8)(3) × SO(8)(4).

We finally summarize the trace formuli for different states

Tr28F
2 = 6trF 2, T r28F

4 = 3(trF 2)2, (5.182a)

tr(8,8)F
2 = 8trF 2

1 + 8trF 2
2 , tr(8,8)F

4 = 8trF 4
1 + 8trF 4

2 + 6trF 2
1 trF

2
2 , (5.182b)

tr(8,8)′F
2 = tr(8,8)′′F

2 = 8trF 2
1 + 8trF 2

2 , (5.182c)

tr(8,8)′F
4 = tr(8,8)′′F

4 = 3(trF 2
1 )2 + 3(trF 2

2 )2 + 6trF 2
1 trF

2
2 − 4trF 4

1 − 4trF 4
2 .

(5.182d)

Before moving towards comparing the supergravity result (5.178) with the string the-
ory amplitude, we note that the U(1) polynomial in (5.178) has an interesting rewrit-
ing as follows [

trR4 +
1

4
(trR2)2 + trR2

4∑
i

trF 2
i +

4∑
i

2(trF 2
i )2

]
(5.183)

=

[
trR4 − 1

4
(trR2)2

]
+

4∑
i=1

[
1

2
trR2 + 2trF 2

i

]2

.

We see that X−8 =
[
trR4 − 1

4(trR2)2
]

polynomial appears in the context of type II
theories and M5 branes while the decomposition (5.183) has a strong note of Horava-
Witten like machanism [48, 49] (see section 3.7.1). We shall try to give more light on
this issue in future.

String amplitude with G= SO(8)4

Finally we come to the case of the D=8, N=1 theory with gauge group SO(8)4 which
can be obtained from D=10, N=1 theory with gauge group either SO(32) or E8 × E8

compactified on a T 2 with appropriate Wilson lines along the two 1-cycles of the
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torus. We shall, for the moment use the same q-expansion method [77] as in the case
of SO(16)× SO(16) (5.3.2).
As before, the amplitude has the generic form

A = V8t8

∫
F

d2τ

τ2
2

Γ2,2A(q,R, F )|8−forms, (5.184)

where Γ2,2 is the T 2 lattice sum

Γ2,2 =
T2

τ2

∑
B∈ML(2,Z)

exp

[
2πiTdet(B)− πT2

τ2U2
|(1 U)B

(
τ
1

)
|2
]

=
∑

~m,~n∈ZN

qP
2
L/2q̄P

2
R/2

(5.185)
with B being the 2× 2 matrix

B =

(
m1 n1

m2 n2

)
. (5.186)

To define the elliptic genus we shall start with the D=10 N=1 E8×E8 Heterotic string
compactified on a T 2 with the Wilson line

Y 1
i = (04,

1

2

4

, 04,
1

2

4

), Y 2
i = (04,

1

2

4

, 04,
1

2

4

), i = 1, · · · , 16, (5.187)

so that the gauge group decomposition E
(1)
8 → SO(8)(1) × SO(8)(2) and E

(2)
8 →

SO(8)(3) × SO(8)(4) applies. Thus the elliptic genus is obtained by gauging

A(q,R, F ) =
1

η24
Exp

(
trR2

(2π)2

Ê2

48

)
× Exp

(
trR4

(2π)4

E4

27325

)
(5.188)

×
2∑

a,b=1

θ4 [ab] θ
4
[
a+m2
b+n2

]︸ ︷︷ ︸
SO(8)(1)×SO(8)(2)

× θ4
[
a+m1
b+n1

]
θ4
[
a+m1+m2
b+n1+n2

]︸ ︷︷ ︸
SO(8)(3)×SO(8)(4)

.

In the above (5.188) we have labelled the theta functions by SO(8)(1) × SO(8)(2) and
SO(8)(3)×SO(8)(4) to denote that those functions are to be “gauged" accordingly by
the 4 copies of SO(8)s. We now decompose the integration by now familiar method
of the decomposition to trivial, degenerate and non-degenerate orbit. The elliptic
genus for the trivial orbit (B = 0) shall be

Atrivial(q,R, F ) = (5.189)

E3
4

27325η24

trR4

(2π)4
+

Ê2
2E

2
4

2932η24

(trR2)2

(2π)4
+
trR2

∑4
i=1 trF

2
i

2832(2π)4

(
Ê2E4E6

η24
− Ê2

2E
2
4

η24

)

+
(trF 2

1 trF
2
3 + trF 2

2 trF
2
4 + trF 2

1 trF
2
4 + trF 2

2 trF
2
3 )

2832(2π)4

(
Ê2

2E
2
4

η24
− 2Ê2E4E6

η24
+
E2

6

η24

)

+

∑4
i=1(trF 2

i )2

2832(2π)4

(
E3

4

η24
− 2Ê2E4E6

η24
+
Ê2

2E
2
4

η24

)

+
trF 2

1 trF
2
2 + trF 2

3 trF
2
4

2732(2π)4

(
E3

4

η24
− 2Ê2E4E6

η24
+
Ê2

2E
2
4

η24

)
.
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For the degenerate orbit (B 6= 0 and det(B) = 0) we choose the following sectors

B(1) =

(
0 2j
0 2p

)
, B(2) =

(
0 2j
0 2p+ 1

)
, (5.190)

B(3) =

(
0 2j + 1
0 2p+ 1

)
, B(4) =

(
0 2j + 1
0 2p

)
, 0 ≤ j < k, j, k, p ∈ Z.

The sectors B(2), B(3) and B(4) in (5.190) generate the orbifold shifts which mix the
SO(8)1 and SO(8)2 with SO(8)3 and SO(8)4 which arise from the decomposition of
a different E8. The elliptic genus for the degenerate orbit is

Adegenerate(q,R, F ) = (5.191)

trR4

(2π)4

E4

27325η24

B(1)
4∑
a=2

θ16
a +

4∑
j=2

B(j)2θ8
3θ

8
4

+
(trR2)2

(2π)4

Ê2
2

2932η24

B(1)
4∑
a=2

θ16
a +

4∑
j=2

B(j)2θ8
3θ

8
4


− trR

2
∑4
i=1 trF

2
i

2832(2π)4η24
{2B(1)(Ê2E4E6 − Ê2

2E
2
4)−

4∑
j=2

B(j)(Ê2θ
8
3θ

8
4)(f2 + f3 + 2Ê2)}

+

∑4
i=1 trF

4
i

273(2π)4η24
{B(1)(−θ16

2 θ4
3θ

4
4 + θ16

3 θ4
2θ

4
4 − θ16

4 θ4
2θ

4
3) +

4∑
j=2

B(j)(θ8
3θ

8
4(θ4

2θ
4
4 − θ4

2θ
4
3))}

+

∑4
i=1(trF 2

i )2

2932(2π)4η24
{B(1)

4∑
a=2

θ16
a (Ê2 + fa−1)2 +

4∑
j=2

B(j)θ8
3θ

8
4

[
(f2 + Ê2)2 + (f3 + Ê2)2

]
}

+
trF 2

1 trF
2
2 + trF 2

3 trF
2
4

2832(2π)4η24
{B(1)

4∑
a=2

θ16
a (Ê2 + fa−1)2 +B(2)θ8

3θ
8
4

[
(f2 + Ê2)2 + (f3 + Ê2)2

]
+

4∑
j=3

B(j)
[
(f2 + Ê2)2 + (f3 + Ê2)2 − 9θ8

2

]
}

+
trF 2

1 trF
2
3 + trF 2

2 trF
2
4

2832(2π)4η24
{B(1)

4∑
a=2

θ16
a (Ê2 + fa−1)2 +B(3)θ8

3θ
8
4

[
(f2 + Ê2)2 + (f3 + Ê2)2

]
+(B(2) +B(4))

[
(f2 + Ê2)2 + (f3 + Ê2)2 − 9θ8

2

]
}

+
trF 2

1 trF
2
4 + trF 2

2 trF
2
3

2832(2π)4η24
{B(1)

4∑
a=2

θ16
a (Ê2 + fa−1)2 +B(4)θ8

3θ
8
4

[
(f2 + Ê2)2 + (f3 + Ê2)2

]
+(B(2) +B(3))

[
(f2 + Ê2)2 + (f3 + Ê2)2 − 9θ8

2

]
}.

Once again in the above, the B(i)s remind one to take into account the different sec-
tors as in (5.190) while performing the final integration in (5.184).
Finally for the non-degenerate orbit (B 6= 0, det(B) 6= 0), we have to use the follow-
ing sectors [77]

B(1) =

(
2k 2j
0 2p

)
, (5.192)

B(2,1) =

(
2k 2j
0 2p+ 1

)
, B(2,2) =

(
2k 2j + 1
0 2p+ 1

)
, B(2,3) =

(
2k 2j + 1
0 2p

)
B(3) =

(
2k + 1 2j

0 2p

)
, B(4) =

(
2k + 1 2j + 1

0 2p

)
, 0 ≤ j < k, j, k, p ∈ Z.

The sector B(2) has been divided in 3 subsectors B(2,1), B(2,2), B(2,3) because of the
spin structure in the elliptic genus (5.188). To shorten the notation we shall use

B(2) = B(2,1) +B(2,2) +B(2,3), (5.193)
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in the elliptic genus for the non-degenerate orbit (below) whenever the modular co-
efficients in front of B(2,k), k = 1, 2, 3 are same. We finally get the following elliptic
genus for the non-degenerate orbit

Anon-degenerate(q,R, F ) =
trR4

(2π)4

E4

27325η24
{B(1)

4∑
a=2

θ16
a +B(2)2θ8

3θ
8
4 +B(3)2θ8

2θ
8
3 +B(4)2θ8

2θ
8
4}(5.194)

+
(trR2)2

(2π)4

Ê2
2

2932η24
{B(1)

4∑
a=2

θ16
a +B(2)2θ8

3θ
8
4 +B(3)2θ8

2θ
8
3 +B(4)2θ8

2θ
8
4}

− trR
2
∑4
i=1 trF

2
i

2832(2π)4η24
{(2B(1)(Ê2E4E6 − Ê2

2E
2
4)−B(2)(Ê2θ

8
3θ

8
4)(f2 + f3 + 2Ê2)

−B(3)(Ê2θ
8
2θ

8
3)(f1 + f2 + 2Ê2)−B(4)(Ê2θ

8
2θ

8
4)(f1 + f3 + 2Ê2)}

+

∑4
i=1 trF

4
i

273(2π)4η24
{B(1)(−θ16

2 θ4
3θ

4
4 + θ16

3 θ4
2θ

4
4 − θ16

4 θ4
2θ

4
3) +B(2)(θ8

3θ
8
4(θ4

2θ
4
4 − θ4

2θ
4
3))

+B(3)(θ8
2θ

8
3(θ4

2θ
4
4 − θ4

3θ
4
4)) +B(4)(θ8

2θ
8
4(−θ4

3θ
4
4 − θ4

2θ
4
3))}

+

∑4
i=1(trF 2

i )2

2932(2π)4η24
{B(1)

4∑
a=2

θ16
a (Ê2 + fa−1)2 +B(2)θ8

3θ
8
4

[
(f2 + Ê2)2 + (f3 + Ê2)2

]
+B(3)θ8

2θ
8
3

[
(f1 + Ê2)2 + (f2 + Ê2)2

]
+B(4)θ8

2θ
8
4

[
(f1 + Ê2)2 + (f3 + Ê2)2

]
}

+
trF 2

1 trF
2
2 + trF 2

3 trF
2
4

2832(2π)4η24
{B(1)

4∑
a=2

θ16
a (Ê2 + fa−1)2 +B(2)θ8

3θ
8
4

[
(f2 + Ê2)2 + (f3 + Ê2)2

]
−(B(2,2) +B(2,3))2832η24 +B(3)θ8

2θ
8
3
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]
+B(4)θ8

2θ
8
4

[
(f1 + Ê2)2 + (f3 + Ê2)2
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a (Ê2 + fa−1)2 +B(2)θ8

3θ
8
4

[
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2θ
8
3

[
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+
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2832(2π)4η24
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The complete CP-even amplitude will be (see (5.135) for the integration domains)

A = Atrivial + Adegenerate + Anon-degenerate (5.195)

with

Atrivial = T2V8t8{trR4 +
1

4
(trR2)2 + trR2

4∑
i=1

trF 2
i (5.196)

−2trF 2
1 trF

2
3 − 2trF 2

1 trF
2
4 − 2trF 2

2 trF
2
4 − 2trF 2

1 trF
2
3 + 4trF 2

1 trF
2
2 + 4trF 2

3 trF
2
4 + 2

4∑
i=1

(trF 2
i )2}

being the trivial orbit amplitude. Note that by recombining the SO(8)1 with SO(8)2

and SO(8)3 with SO(8)4 we find back the T 2 reduction of theE8×E8 Green-Schwarz
term (5.149).
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We now collect the constant parts of the q-expansion of the modular functions in
the degenerate and non-degenerate elliptic genus from (B.13), verify that there are
no poles and then use the integral (5.137) to evaluate the non-volume suppressed
harmonic part of the degenerate amplitude and (5.138) to evaluate the non-volume
suppressed harmonic part of the the non-degenerate amplitude in the CP-even sector.

Adegenerate = (5.197)
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.

Anon-degenerate = (5.198)
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We note that the 8-form polynomial

Y8 =

[
trR4 +

1

4
(trR2)2 + trR2

4∑
i

trF 2
i +

4∑
i

2(trF 2
i )2

]
(5.199)

is due to the fermions transforming under the adjoint representation (28, 1, 1, 1) ⊕
(1, 28, 1, 1) ⊕ (1, 1, 28, 1) ⊕ (1, 1, 1, 28) of the SO(8)4 and the CP-odd partner of the
above provides with the discrete SL(2,Z) anomaly cancelling counter-term in D=8,

110



5.3. Discrete anomaly in D=8, N=1 supergravity and string amplitude comparison

N=1 supergravity with gauge group G = SO(8)4. The other two 8-form polynomials

Y ′8 = {2× 64

(
trR4

360
+

(trR2)2

288

)
+

4

3
trR2

4∑
i=1

trF 2
i (5.200)

+2× 2

3
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trF 4
i + 3trF 2

1 trF
2
2 + 3trF 2

3 trF
2
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)
} (5.201)

Y ′′8 = {256

(
trR4
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+

(trR2)2
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)
+
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3
trR2
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trF 2
i (5.202)

+
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1 trF
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2 + 6trF 2

3 trF
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)
}

are respectively the contributions from the massive vector multiplet transforming
under the bi-fundamental representations (8, 8, 1, 1) ⊕ (1, 1, 8, 8) and (co)spinor rep-
resentations (8, 8, 1, 1)′ ⊕ (1, 1, 8, 8)′ respectively. The last few pure gauge terms in
(5.198) are due to the orbifold shifts [110, 109].

Calculating string amplitude with Hecke operators

We now deploy the elegant method of Hecke operator to evaluate the degenerate
plus non-degenerate CP-even amplitude Adegenerate +Anon-degenerate which have been
carried out by Kiritsis, Obers & Pioline in [109] and in the guise of modular identities
by Lerche & Stieberger [110]. We complement the calculation of [109] where only the
Γ−2 subgroup (of SL(2,Z)) invariant part has been computed using the Hecke im-
age HΓ−2

of the Γ−2 invariant part of Adegenerate + Anon-degenerate in (5.197) and (5.198).
We compute the Γ+

2 and Γ0
2 invariant parts of (5.197) and (5.198) using the method

of Hecke operators HΓ+
2

and HΓ0
2
. We shall see that in the pure gravitational and in

mixed gauge gravity part we can separate the contribution from the adjoint repre-
sentation (5.199) and the total contribution from 6 sets of bi-fundamental states like
(8, 8, 1, 1) etc. but in the pure gauge part we cannot separate these contributions: in-
stead the sum from the 3 subgroups Γ−2 , Γ+

2 and Γ0
2 of SL(2,Z) we shall retrieve the

total pure gauge contributions which have been investigated in detail in [110].
We now describe the method in brief. For exclusive details we refer to [109]. We

note that subgroups Γ−2 , Γ+
2 and Γ0

2 are the invariant subgroups of θ2, θ4 and θ3 mod-
ulo the phase and weight factors. Now using the (B.10) and (B.11a), (B.11b), (B.11b),
(B.11d) summation identities we can decompose theB(1) part in both degenerate and
non-degenerate elliptic genus (5.191) and (5.194) into sum of the form

B(1)(· · · ) = B(1)θ8
3θ

8
4(· · · ) +B(1)θ8

2θ
8
3(· · · ) +B(1)θ8

2θ
8
4(· · · ). (5.203)

One can now combine the part B(1)θ8
3θ

8
4(· · · ) with B(2), B(3) and B(4) sectors (5.190)

in the degenerate elliptic genus (5.191) and B(2,1), B(2,2) and B(2,3) sectors (5.192) in
the non-degenerate elliptic genus (5.194). The sum over θ8

3θ
8
4(· · · ) is then of the form∫

F−

d2τ

τ2
2

Γ2,2(2T,U ; 2τ)Φ−(τ) (5.204)

where Φ−(τ) is Γ−2 invariant modular function and we restrict the integral domain
to F− which is the fundamental domain of Γ−2 subgroup and is a 6-fold cover of
the SL(2,Z) fundamental domain F . One can now change the variable 2τ = ρ and
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unfold the integral (5.204) to the fundamental domain F of SL(2,Z) by the following
unfolding∫

F−

d2τ

τ2
2

Γ2,2(2T,U ; 2τ)Φ−(τ) =

∫
F

d2ρ

ρ2
2

Γ2,2(2T,U ; ρ)

(
Φ−(

ρ

2
) + Φ−(− 1

2ρ
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ρ+ 1

2
)

)
=

∫
F

d2ρ

ρ2
2

Γ2,2(2T,U ; ρ)HΓ−
2

Φ−(ρ) (5.205)

where in the last line we have used the definition of the Hecke operator for the Γ−2
subgroup.
We then combine the θ8

2θ
8
3(· · · ) piece in (5.203) with theB(3) sector of the non-degenerate

elliptic genus to get the following combination of the partitions function∫
F+

d2τ

τ2
2

Γ2,2(2T,U ; τ/2)Φ+(τ) (5.206)

where Φ+(τ) is Γ+
2 invariant modular function and we restrict the integral domain to

F+ which is the fundamental domain of Γ+
2 subgroup (F+ is also a 6-fold cover ofF).

We make the change of variable τ/2 = ρ and unfold the integral to the fundamental
domain F to make appear the Hecke operator HΓ+

2
for the Γ+

2 subgroup∫
F+

d2τ

τ2
2

Γ2,2(2T,U ; τ/2)Φ+(τ) =

∫
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)
(5.207)

=

∫
F

d2ρ

ρ2
2

Γ2,2(2T,U ; ρ)HΓ+
2

Φ+(ρ).

It now rests to combine the θ8
2θ

8
4(· · · ) piece in (5.203) with the B(4) sector of the non-

degenerate elliptic genus to get the following combination of the partitions function∫
F0

d2τ

τ2
2

Γ2,2(T,U ; (τ + 1)/2)Φ0(τ) (5.208)

where Φ0(τ) is Γ0
2 invariant modular function and we restrict the integral domain

to F0 which is the fundamental domain of Γ0
2 subgroup (and is a 3-fold cover of

F). Making the change of variable (τ + 1)/2 = ρ and unfold the integral to the
fundamental domain F to make appear the Hecke operator HΓ0

2
for the Γ0

2 subgroup∫
F0

d2τ
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2
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Φ0(ρ) (5.209)

=

∫
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Φ0(2ρ− 1) + Φ0(− 1

2ρ− 1
) + Φ0(− 1

2ρ
)

)
.

Now to get the harmonic part of the CP-even amplitude, we pick up the constant
parts of the Hecke images of the related modular functions which we are enlisting
below in (5.210), (5.211), (5.212) and (5.213)

1
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HΓ−
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)]
= 3456

HΓ0
2

[
θ8

2θ
8
4E4

η24

]
= 384, HΓ0

2

[
E2

2

η24
θ8

2θ
8
4

]
= 384, (5.213)
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Combining these we find the result for degenerate and non-degenerate amplitude

Adegenerate + Anon-degenerate = (5.214)
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4 } (5.215)

+
1

(2π)4

[
lnT2|η(4T )|2 − 2lnT2|η(2T )|2 + ln

(
U2|η(U)|2

)]
× t8{trF 2

1 trF
2
4 + trF 2

2 trF
2
3 }. (5.216)

From the above, we recognise the composite anomaly cancelling polynomial (5.199)
in pure gravity and gauge-gravity sector in part "adjoint of SO(8)4" (5.214) and the
part "bi-fundamental and bi-spinor states in" corresponds to the pure gravity and
gauge-gravity coupling of states in (8, 8, 1, 1)⊕ (1, 1, 8, 8), (8, 8, 1, 1)′⊕ (1, 1, 8, 8)′ and
(8, 8, 1, 1)′′ ⊕ (1, 1, 8, 8)′′ representations. However the pure gauge sector irons down
the contributions from these representations to give the last terms in (5.214). One
can also check that there is a "local conservation" of coefficients e.g. for trR4/(27325)
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terms in both methods with constant coefficients and Hecke operators the total nu-
merical coefficients are same if one sums them in the respective sectors

2× 744 = 2× 360 + 2× 384︸ ︷︷ ︸
Hecke metheod

= 2× 360 + 2× 128 + 2× 256︸ ︷︷ ︸
adjpoint + bi-fundamental + spinor reps.

. (5.217)

One can check the other numerical coefficients for the 8-forms (trR2)2, (trF 2)2, trR2trF 2

and trF 4. There is a nice interpretation for the modular forms in front of the pure
gauge sector 8-forms as discussed in [110] and they correspond to the C4 and C0−C8

exchange between four D4 branes in the dual F-theory on K3 description in Sen limit
[62].

5.4 Chasing duality with F-theory on K3 at α′3 level

Now that we have new data from Heterotic on T 2 side, we can take up the discus-
sion of the relation between ten dimensional Green-Gaberdiel term (4.17) in Type IIB
theory and F-theory by using the duality of the latter compactified on K3. As we
have mentioned in section 4.1.1 F-theory compactifications on K3 are a class of type
IIB vacua preserving minimal supersymmetry in D=8 and involving 24 7-branes lo-
calised on the base CP1 in case of elliptically fibered K3. We have also mentioned in
section 3.8 that not all of these 24 7-branes are mobile due to global obstructions as
described by Douglas & Argyres [111, 112, 113]. We shall show that the structure of
the Green-gaberdiel term "knows" about these gravitational constraints.

Consider first the case of Heterotic string compactified on T 2 with Wilson lines
switched on such that the gauge group is U(1)18. In the dual F-theory on K3 side,
this corresponds to 18 dynamical 7-branes (out of 24) giving rise to the U(1)18 gauge
group in a generic region of the moduli space. The moduli space of the theory is
the coset SO(2,18)

SO(2)×SO(18) and the fermions of the theory are chirally charged under the
SO(2) as before. The anomaly counter-term resulting from the general formula (5.97),
(5.98) is

S8 =
i

24

∫ (
ln

(
η24(T )

η̄24(T̄ )

)
+ ln

(
j(T )
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η̄24(Ū)

)
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(
j(U)

j̄(Ū)

))
× 1

32(2π)4

[
11

15
trR4 − 1

12
(trR2)2

]
. (5.218)

Remarkably, the quartic polynomial in 8D Riemann tensor appearing in (5.218) is
exactly reproduced by adding the the contributions of 24 punctures to the polynomial
X−8 in (4.17) fixed by the 10D anomaly cancelation, an observation made in the article
by Green & Gaberdiel [63]. More precisely, using the equality of F/2π with the first
Chern class c1 of the CP1 base, one integrates F/2π to −2 on the base 2-sphere and
then one adds a term due to 24 punctures, as if each one of them would contribute a
dynamical gaugino of charge 1

2 and one obtains

4X−8 (R) + 24× 1

2
Â(M8)|8−form =

1

32(2π)4

[
11

15
trR4 − 1

12
(trR2)2

]
, (5.219)

where Â(M8) = 1
(2π)4

[
trR4

360 + (trR2)2

288

]
is the A-roof genus (see section 2.5).

Now we take up the case of HE theory compactified on a T 2 without any Wilson
line so that the resulting 8D theory shall have the gauge groupE8×E8. We remember
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once more that the gauge group SO(32) cannot be realized in the scenario of F-theory
compactification on elliptically fibered K3 with trivial normal bundle which we are
studying here. We have already detailed the supergravity anomaly generated by the
chiral coupling with the composite U(1) in (5.130). We now look at the dual F-theory
side. For the enhancement of the gauge group, one needs to have 2 stacks of 10 7-
branes with 7 D7-branes and 2 B brane and a C brane of respective monodromies
(1,0), (3,1) and (1,1) (see section 3.8). From the property of the Douglas-Argyres sin-
gularities (D-A in short) in this set-up, we know that the rank of the gauge group (due
to open strings stretched between 7-branes in each stack) is related to the number of
branes present in the stack by [60, 112, 113]

number of brane = rank(G) + number of D-A singularities. (5.220)

For each stack of E8 we have rank(E8)=8 and the number of branes =10 so that in
each stack we have 2 Douglas-Argyres type singularities which do not participate
in gauge enhancement and would contribute like isolated punctures having a dy-
namical gaugino of 1/2 charge. We thus have total 20 branes accounted, 10 each in
2-stacks of which 4 are of Douglas-Argyres type. The rest 4 (=24-20) are also isolated
7-branes accounting for the U(1)2 graviphotons of the dual Heterotic theory. The
16 branes, 8 in each stack, which contribute to the gauge enhancement, would con-
tribute a dynamical gaugino of charge 1/2 but this time in the adjoint representation
of the gauge group E8 for each stack. Combining all these, we see again that the
form of the anomaly polynomial of the supergravity side (5.148) is again reproduced
by the combination of 10D Green-gaberdiel term X−8 and the enhanced plus isolated
punctures according to(

31

15
trR4 +

19

12
(trR2)2 + 5trR2(trF 2

1 + trF 2
2 ) + 6((trF 2

1 )2 + (trF 2
2 )2)

)
= 4X−8 +

1

2

∑
i=1,2

Â(R,Fi)|8 +
1

2
× 8× Â(R)|8 (5.221)

with

Â(R,F )|8 = ch(−iF )Â(R)|8 (5.222)

= dim(G)
1

(2π)4

[
trR4

360
+

(trR2)2

288

]
+

1

96(2π)4
trR2trF 2 +

1

24(2π)4
trF 4

accounting for each E8 gauge singularity with total rank of G =8+8=16 and
dim(G)=248+248=496 (with trF in fundamental representation).

Similar conclusion can be drawn for the 8D gauge group SO(16)×SO(16) where
the 20 branes out of 24, align themselves in 2 stacks of 10 branes each consisting
of 8 D7-branes and one B and C brane each. The number counting for the branes
goes like-wise, i.e. 16 branes, 8 in each stack participating in gauge enhancements,
contributing 1

2Â(R,F ) in each stack in the adjoint representation of SO(16) and the
rest 8 isolated singularities contributing to 1

2Â(R) so that in total we recover again the
anomaly polynomial for the SO(16)× SO(16) theory (with dim(G)= 128+128=256)

1

32(2π)4

(
488

360
trR4 +

200

288
(trR2)2 +

7

3
trR2

2∑
i=1

trF 2
i +

16

3

2∑
i=1

trF 4
i + 2

2∑
i=1

(trF 2
i )2

)

= 4X−8 +
1

2

∑
i=1,2

Â(R,Fi)|8 +
1

2
× 8× Â(R)|8. (5.223)

For SO(8)4 case we have 4 stacks with 4 D7 branes and a B and C branes each. How-
ever, due to the Sen-limit of constant coupling slice, the B and C branes come up
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infinitely close together to give rise an O7− plane in each stack so that, in each stack,
effectively there are 5 7-branes of which only 4 (D7-) branes (along with their orien-
tifold images) take part in gauge enhancement and there are two isolated singular-
ities of O7− type and Douglas-Argyres type (here, different to the case of E8 × E8

and SO(16) × SO(16) the 4(=24-20) isolated singularities live inside 4 stacks each).
Hence one more we have the counting of 16 punctures contributing to 1

2Â(R,F ) in
each stack in the adjoint representation of SO(8) and the rest 8 isolated singularities
contributing to 1

2Â(R) so that once again (dim(G) = 4× 28 = 112)[
trR4 +

1

4
(trR2)2 + trR2

4∑
i

trF 2
i +

4∑
i

2(trF 2
i )2

]

= 4X−8 +
1

2

4∑
i=1

Â(R,Fi)|8 +
1

2
× 8× Â(R)|8. (5.224)

At this point one might ask if the α′3 correction terms in supergravity effective ac-
tion that we have obtained for different gauge groups in equations (5.130), (5.157)
and (5.178) can provide us with the strong coupling versions of the D7 brane world-
volume Wess-Zumino actions that we have outlined in section 3.4 in equations (3.62)
and (3.68) which we are quoting here once more for convenience

D7 =
1

192× 32× 15(2π)3

[
8trR4 + 5(trR2)2

]
(5.225)

O7 =
1

192× 16× 15(2π)3

[
5(trR2)2 − 28trR4

]
. (5.226)

For different gauge groups we have different brane configurations and thus it is
tempting to try to relate the strong coupling completion of above with (5.130), (5.157),
(5.178). The resolution of this question remains however to be answered. In the weak
coupling limit, the 7-brane couplings are seen to be related to the reduced Green-
Schwarz term (5.12) that is the trivial orbit part in the string amplitude computation
rather than to the degenerate and non-degenerate parts which are clearly related to
the composite anomaly. To illustrate this point, we first take the case of SO(8)4 where
we can use the Sen-limit paradigm to consider the weak coupling regime and use the
formuli (5.225) in full confidence. The world-volume coupling of 16 D7-branes along
with their orientifold images and 4 O7− planes gives

S7−branes = 16D7− 4O7− (5.227)

=
1

192(2π)3

∫
C0[

(
TrR4 +

1

4
(TrR2)2

)
+ 4

4∑
i=1

(
8trF 4

i + trF 2
i TrR

2
)
].

Combining the 4 volumina of 4 copies of SO(8) one retrieves the volumina of SO(32)
or E8 × E8 accordingly and giving rise to the 10D Green-Schwarz terms (5.12) and
(5.17) reduced on T 2 (an observation originally due to Lerche [57]).

In case of SO(16)×SO(16) we have 2 stacks each having 8 D7 branes and a B and
C brane each. This situation does not live in a constant coupling slice of the generic
moduli space so that we cannot say that the B and C branes combine into anO7 plane.
However, anticipating the lift to 9-dimensions and thus choosing monodromy cycle
sufficiently large so that the B and C brane can be approximated to behave like an
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O7− plane we have the Wess-Zumino coupling

16D7 − 2O7 = (5.228)
1

192(2π)3

∫
C0[trR4 +

1

4
(trR2)2 + trR2(trF 2

1 + trF 2
2 )− 2trF 2

1 trF
2
2 + 2(trF 2

1 )2 + 2(trF 2
2 )2].

Once more combining the world-volumina of 2 SO(16)s we recover the Green-Schwarz
term for either SO(32) or for E8 × E8.

It is interesting to ask whether the complete Green-Gaberdiel polynomial (4.12)
might have a 12-dimensional origin. It can be shown that the complete Green-Gaberdiel
polynomial in 10D (4.12)

S10
GG = i

∫
ln

(
η(τ)j̄1/12(τ̄)

η̄(τ̄)j1/12(τ)

)[
2X−8 (R) +

p1(R)

48

(
F

2π

)2

− 1

32

(
F

2π

)4
]
F

2π
. (5.229)

cannot be derived from a 12D polynomial of Riemann curvatures tensors using the
adjunction formula applicable to elliptically fibered K3. Existence of such a 12-form
would have provided with a term in the effective action of "12D" F-theory. Such a
term term does not exist as we shall illustrate below.

For a smooth elliptically fibered CY manifold M of complex dimensions d, one
finds one finds the following relation between its total Chern class C(M) and that of
the d-1 (complex)dimensional base manifold B i.e. C(B) plus a top form ω on the fiber
such that ω ∧ ω = −c1(B) ∧ ω:[47]

C(M) = C(B)
(1 + 2c1(B))(1 + 2c1(B) + 2ω)(1 + 3c1(B) + 3ω)

(1 + 6c1(B) + 6ω)
. (5.230)

From the adjunction formula above, one can write down the Chern classes ci(M) in
terms of the chern classes ci(B) and ω as follows:

c1(M) = 0 (5.231)
c2(M) = c2(B) + 11c1(B)2 + 12c1(B) ∧ ω, (5.232)
c3(M) = c3(B)− c1(B)c2(B)− 60c1(B)3 − 60c1(B)2ω, (5.233)
c4(M) = c4(B)− c1(B)c3(B) + 12c1(B)2c2(B) + 360c1(B)4 (5.234)

+360c1(B)3ω + 12c1(B)c2(B)ω,

c5(M) = c5(B)− c1(B)c4(B) + 12c1(B)2c3(B)− 72c1(B)3c2(B)− 2160c1(B)5 (5.235)
−2160c1(B)4ω − 72c1(B)2c2(B)ω + 12c1(B)c3(B)ω,

c6(M) = c6(B)− c1(B)c5(B) + 12c1(B)2c4(B)− 72c1(B)3c3(B) + 432c1(B)4c2(B) (5.236)
+12960c1(B)6 + 12960c1(B)5ω + 432c1(B)3c2(B)ω − 72c1(B)2c3(B)ω + 12c1(B)c4(B)ω.

Now we try to lift the Green-Gaberdiel anomaly counter-term (4.12) to a possible
12-d CP-odd coupling. We shall only deal with the topological polynomial part and

leave aside the fate of the modular function ln
(
η(τ)j̄1/12(τ̄)

η̄(τ̄)j1/12(τ)

)
aside for instance. We

first start with a linear combination of 12-forms created out of Pontryagin classes pi
defined on a 12-manifold

R6 ∼ ap3(R) + bp2(R)p1(R) + cp1(R)3. (5.237)

We then use the expressions of pis in terms of the Chern classes ci of the 12-d CY
manifold assuming that a complex structure exists on the manifold (see appendix A).
Then we use the adjunction formuli (5.231) to break from 12-d forms to 10-d forms so
that the structure becomes R6 → R4 ∧ c1(B). Noting that the base manifold is of real
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Chapter 5. Discrete anomalies in half-maximal Supergravity and string amplitude

dimension 10, all terms not involving c1(B) are trivial by dimensionality. Then one
converts Chern classes in terms of trR and the fact c1(B) = i

2πF and compares with
the Green-Gaberdiel term (4.12). This gives us a system of linear equations in a, b, c
which does not allow for a consistent solution. Thus one needs further study to find
the meaning of the Green-Gaberdiel term in 10D type IIB theory in terms of 7-branes.

5.5 A lift to D=9 and comparison of amplitude in Horava-
Witten background

An interesting aspect of the CP-even 1-loop string amplitude in case of Heterotic
string compactified on a T 2 is that in the decompactification limit towards nine space-
time dimensions the CP-even partner of the composite anomaly cancelling counter-
term like (5.130), (5.157), (5.178) exists but not towards the 10-dimensions. The lo-
cality of the anomaly cancelling term makes them meaningful only in the relevant
dimensions that is in 8D whereas in 10D it does not exist at all. Its non-vanishing
limit in 9D is however not related to anomaly as there is no chiral coupling of the
fermions but as we shall discuss further below this might have a possible explana-
tion in terms of recently developed string amplitude in Horava-Witten background
[80].

First let us consider the case of string 1-loop amplitude for Heterotic SO(32)
string theory compactified on a torus T 2. We have evaluated the CP-even amplitude
in (5.140) which we write once again for the convenience

A
SO(32)
CP-even = V8T2N

π

24
t8

(
trR4 +

1

4
(trR2)2 + trR2trF 2 + 8trF 4

)
︸ ︷︷ ︸

Trivial orbit

(5.238)

+ V8N
1

48

[
logU2|η(U)|2

]
× t8

(
31

15
trR4 +

19

12
(trR2)2 + 5trR2trF 2 + 2(trF 2)2 + 16trF 4

)
︸ ︷︷ ︸

Harmonic term from the degenerate orbit

+ V8N
1

48

[
logT2|η(T )|2 +

πT2

6

]
× t8

(
31

15
trR4 +

19

12
(trR2)2 + 5trR2trF 2 + 2(trF 2)2 + 16trF 4

)
︸ ︷︷ ︸

Harmonic term from the non-degenerate orbit

+ non-harmonic terms.

Next suppose that the T 2 in the case above have radiiR1 andR2 along the two cycles
and the angle between them be ω. We can then write the T 2 metric and its volume
and complex structure in terms of R1, R2 and ω as follows

Gij =

(
g88 g89

g89 g99

)
=

(
R2

1 R1R2cosω
R1R2cosω R2

2

)
=

V

U2

(
1 U1

U1 |U |2
)
, (5.239)

V = R1R2sinω, U1 =
R2

R1
cosω, U2 =

R2

R1
sinω. (5.240)
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We use the above to decompactify the CP-even amplitude (5.140) by taking ω =
π
2 and R2 = V1 such that V9 = V8R2 and V10 = V8R1R2 become the normalized
world-volumes in D=9 and D=10 respectively. In this limit U1 = 0 , U2 = R2/R1,
logU2|η(U)|2 = −πU2

6 and the limit of the amplitude (5.140) gives

A
SO(32)
CP-even = V9R1Nt8

π

24

(
trR4 +

1

4
(trR2)2 + trR2trF 2 + 8trF 4

)
(5.241)

+V9N
1

48

1

R1
t8

(
31

15
trR4 +

19

12
(trR2)2 + 5trR2trF 2 + 2(trF 2)2 + 16trF 4

)
+non-harmonic terms.

We can compare the above with the direct calculation of the string amplitude in D=9
as is calculated in [97]

A
SO(32)
CP-even = V10{Nt8

(
trR4 +

1

4
(trR2)2 + trR2trF 2 + 8trF 4

)
(5.242)

+
N1

R2
1

t8

(
31

15
trR4 +

19

12
(trR2)2 + 5trR2trF 2 + 2(trF 2)2 + 16trF 4

)
+
N2

R4
1

t8
(
3(trF 2)2 + 5trR2trF 2 + 2(trR2)2

)
+
N3

R6
1

t8
(
trR2 + TrF 2

)2}
and we see that the first two lines match as they should. The polynomials in the 3rd
line of (5.242) are also present in the volume suppressed part of (5.140). In both (5.241)
and (5.242) the first line is the circle compactification of the CP-even Green-Schwarz
term and the second line contains the CP-even partner of the SL(2,Z) anomaly can-
celling term in D=8 as we have seen.

The above observation has an interesting interpretation in terms of the Horava-
Witten mechanism applied to M-theory compactified on S1/Z2 × S1 [48, 49, 80]. We
have described the Horava-Witten mechanism in section 3.7.1 where we have de-
scribed the compactification of M-theory on the interval S1/Z2 giving rise to the
E8 × E8 Heterotic theory in 10D. Compactification of M-theory on S1/Z2 × S1 now
can be thought of as compactification of M-theory with appropriate state truncation
under the Z2 in the presence of two stacks of D8 branes. Recently, an analysis of
string amplitude have been carried out partially in this background [80] where it
was shown that the 9D bulk gives rise to the term X−8 in case of 1-loop 4 graviton
amplitude. One then expect to have 1-loop 4 graviton amplitude at the two bound-
aries, that is, at the stacks of D8 branes giving rise to a contribution of the form ∆i(R)
(i=1,2 for two boundaries) which was not calculated in the reference [80] and is un-
derway at the time of writing this thesis. These brane stacks also accommodate E8

gauge fields within and hence one also get mixed gauge-gravity amplitude and 4
gauge bosons one-loop amplitudes residing in the boundary terms ∆i ≡ ∆i(R,F ).
We expect that the sum of the bulk 1-loop amplitude and that of the 2 boudaries pro-
vide us the 9D string amplitude or equivalently the 9D lift of the 8D string one-loop
amplitude

S(R,F ) = ∆bulk +
∑
i=1,2

∆i(R,F ). (5.243)

In this way, we recover a similarity of the 8D case of singularity contribution to the
gauge-gravity amplitude in case of F-theory on K3 (5.221) i.e. in 7-brane context and
D8 brane contribution in case of 9D M-theory on S1/Z2 × S1 case. In both cases,
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Chapter 5. Discrete anomalies in half-maximal Supergravity and string amplitude

the bulk X−8 term is completed into the anomaly cancelling term of the correspond-
ing supergravity theories: in the former the X−8 term is due to the Green-Gaberdiel
anomaly cancelling term of 10D type IIB theory (4.17) and in the latter, the X−8 term
is due to the bulk 4 graviton 1-loop amplitude or equivalently the 5-brane anomaly
cancelling term of M-theory (3.116) [6]. It is only due to the SL(2,Z) transformations
properties of the 7-branes that in 8D the anomaly cancelling terms acquire the mod-
ular function of the form

(
ln
(
η24(T )
η̄24(T̄ )

)
+ ln

(
j(T )
j̄(T̄ )

)
+ ln

(
η24(U)
η̄24(Ū)

)
+ ln

(
j(U)
j̄(Ū)

))
.

We have now completed the description of composite anomaly in D=8, N=1 su-
pergravity and we have shown that the anomaly cancelling term is effectively pro-
duced in string 1-loop threshold amplitude for the case of Heterotic on T 2. We shall
now use these results and the similarity in terms of co-dimension-2 branes to describe
non-geometric construction of half-maximal and quarter-maximal supergravity the-
ories in six dimensional supergarvities in the next chapter.
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Chapter 6

Constraints on (non)Geometric
compactification to D=6, N=(1,0)
theory

So far we have described the 10 and 8 dimensional maximal and half-maximal super-
gravity theories and the presence of composite connection anomaly therein. We have
also shown that in case of 8 dimensional theories the corresponding string 1-loop am-
plitude provides with the necessary SL(2,Z) anomaly cancelling term. Such terms
can have very intriguing interpretations in terms of M- and F-theory for the maximal
and half-maximal supersymmetries under suitable compactifications. We shall now
go one step further in the compactification down to D=6 and shall consider theories
with of 16 and 8 supercharges. The goal is to use the tadpole constraint condition of
the type (4.30) c1 = i

2πF in these theories that is inherited from the 8D theories. This
point is made more clear by considering the fact that while we have studied the 8D
cases, we had to sought for the presence of 7-branes for a compactification of 10D
string theories on a CP1 base for the F theory compactified on an elliptically fibered
K3. This is in fact the strategy we have used in section 3.8 to describe the compact-
ification of F-theory on an elliptically fibered K3 from the type IIB perpective where
the latter was compactified on the base CP1 but to provide for a supersymmetry pre-
serving background, one is forced have the co-dimension-2 branes that is 7-branes
in these cases (and particularly 24 of them) to cancel the total Ricci tensor term. In
the case of D=6, one can either consider the K3 compactification of 10D theories in-
corporating the necessary instantons (once again 24 SU(2) in case of K3) which we
call to be the geometric compactification [114, 115] or we can again use the two step
process of compactification of 10D theories to 8D theories on a T 2 and then com-
pactify on CP1 base along with 24 co-dimension-2 branes, which are now the NS5
branes: we call this process non-geometric compactification [116, 117]. We shall see
that for D=6, N=(1,0) supergravity theories the geometric compactification put strong
constraints of the possible gauge groups whereas the tadpole constraints in case of
non-geometric compactifications opens up for unexplored Yang-Mills gauge groups
in D=6, N=(1,0) theories. We shall begin with a discussion of D=6, N=(1,0) super-
garvity multiplets and the string theory realization of them. Then we shall discuss
the well known geometric compactification of 10D Heterotic theories on elliptically
fibered K3 providing for the constraints on the possible Yang-Mills theories in the
D=6, N=(1,0) supergravity theories and finally we shall describe the non-geometric
compactification of D=8, N=1 supergarvity on CP1 with NS5 branes. We shall then
conclude the chapter with the discussion of D=6, N=2 supergravities from the geo-
metric and non-geometric compactification schemes.
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6.1 Generalities of D=6, N=(1,0) supergravity

The minimal supersymmerty algebra in six dimensions is the chiral N=1 algebra
(note that we are using the Weyl basis for the supercharges, in case one uses the
Majorana-Weyl basis, one then write the supersymmetry algebra as N=2 which is
chiral and has USp(2) as R-symmetry group). The multiplets in the supergravity the-
ory are

supergravity multiplet: graviton gµν , self-dual two form B+
µν , gravitino ψ−µ ,

tensor multiplet: anti-self-dual two form B−µν , 1 real scalar φ, tensorino χ+,
vector multiplet: gauge boson Aµ and gaugino λ−,
hyper-multiplet: four real scalar ϕ with two fermions ψ+.
(The ± signs of the fermions denote their chiralities.)

A general D=6, N=1 supergravity theory coupled to matter is constructed by com-
bining one gravity multiplet with nT tensor multiplet, nV vector multiplet and nH
hypermultiplet. The nT real scalars in the tensor multiplet parametrize the coset
space SO(1,nT )

SO(nT ) while the 4nH real scalars in the hypermultiplet parametrize a quater-
nionic manifold of the form G

H×USp(2) . The allowed chices for G
H×USp(2) are [118, 119,

120, 121, 122] USp(2nH ,2)
USp(2nH)×USp(2) , SU(nH ,2)

SU(nH)×U(1)×USp(2) , SO(nH ,4)
SO(nH)×SO(3)×USp(2) , E8

E7×USp(2) ,
E7

SO(12)×USp(2) , E6
SU(6)×USp(2) , F4

USp(6)×USp(2) and G2
USp(2)×USp(2) .

The vector multiplets may belong to a gauge groupG under which the hypermul-
tiplets may be charged. The case when the gauge group does not include the USp(2)
group of the coset G

H×USp(2) (which can also be identified with the R-symmetry group
in case one considers the supercharges and fermions in the Majorana-Weyl basis), is
called the ungauged theory while in case of gauged theories the total gauge group
G contains the factors USp(2) or its U(1) subgroup as a multiplicative factor. We can
thus consider the D=6 gauge group taking the general form [58]

G = G1 ×G2 × · · ·Gk × U(1)n. (6.1)

A further quotient by a discrete group Γ may be necessary i.e. to haveG = G1×G2×
· · ·Gk × U(1)n/Γ if one soughts for the consistent quantum field theories in 4 and 2
spacetime dimension [58]. We shall neglect this issue in our analysis.

The spectrum of the general D=6, N=(1,0) supergravity model contains chiral
fermions and (anti)self-dual two forms, hence at the 1-loop level, it is plagued with
the gravity, gauge and mixed gauge-gravity anomaly. To curb this anomaly one uses
the generalized Green-Schwarz mechanism due to Sagnotti [123] which we shall re-
view briefly now.

Consider thus the D=6, N=(1,0) supergarvity with nT tensor multiplet and nH
hypermultiplet coupled to the gauge group G =

∏
iGi so that the number of vector

multiplet nV is given by the sum of the dimensions of Gi. The eight-form anomaly
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polynomial that one obtains using the index polynomials (2.62), (2.65), (2.66) is

16(2π)3I8 = trR4

(
nH − nV + 29nT − 273

360

)
+ (trR2)2

(
nH − nV − 7nT + 51

288

)
+

2

3
trR2

∑
i

TrF 2
i +

2

3

∑
i

TrF 4
i +

2

3

∑
i<j

TrF 2
i TrF

2
j (6.2)

= trR4

(
nH − nV + 29nT − 273

360

)
+ (trR2)2

(
nH − nV − 7nT + 51

288

)
+

2

3
trR2

∑
i

citrF
2
i +

2

3

∑
i

aitrF
4
i +

2

3

∑
i

bi(trF
2
i )2

+
2

3

∑
i<j

cijtrF
2
i trF

2
j . (6.3)

Note that in (6.2), we have first written the anomaly polynomial in terms of adjoint
representation ("Tr") for the gauge groups and then wrote it in fundamental repre-
sentation ("tr") using

TrF 2
i = citrF

2, (6.4)
TrF 4

i = aitrF
4
i + bi(trF

2
i )2, (6.5)

cij = cicj . (6.6)

To cancel this anomaly one wish to use the principle of the Green-Schwarz mech-
anism, i.e. the tree-level exchange of the B2 field as in 10D Heterotic theory. The
problem however in this case is the presence of nT + 1 Bα

2 fields. The Saggnotti gen-
eralization of the Green-Schwarz mechanism lies in demanding the 8-form anomaly
polynomial I8 in (6.2) to be factorised in the form

I8 =
∑
α,β

ΩαβX
α
4 X

β
4 (6.7)

where Xα
4 are the 4-forms

Xα
4 = aαtrR2 +

∑
i

bαi trF
2
i . (6.8)

The aα, bαi are known as the anomaly coefficients and transform as vectors in the
space R1,nT with symmetric product Ωαβ .The group traces "tr" are in fundamental
representattions of the respective factors Gi in G.

For the generalized factorization condition (6.9) to be met, one finds a set of con-
straints on the structures of the trR4, tr(R2)2, trR2trF 2

i , trF 4
i and tr(F 2

i )2 of the
eight-form I8 in (6.2). Notably the term trR4 and trF 4 should vanish if the 4th order
casimirs cannot be written in terms of the 2nd order Casimirs. In total we have the
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Chapter 6. Constraints on (non)Geometric compactification to D=6, N=(1,0) theory

following constraints to be satisfied

R4 : nH − nV + 29nT = 273, (6.9a)

F 4 : ai =
∑
R

xiR, (6.9b)

(R2)2 : Ωαβa
αaβ = 9− nT , (6.9c)

F 2R2 : Ωαβa
αbαi =

2

3
(ci −

∑
R

xiR), (6.9d)

(F 2)2 : Ωαβb
α
i b
β
i =

2

3
(bi −

∑
R

xiR), (6.9e)

F 2
i F

2
j : Ωαβb

α
i b
β
j =

2

3
(cicj −

∑
R,S

xijRS). (6.9f)

The xiR and xijRS denote the number of matter fields that transform in the represen-
tation R of the gauge group factor Gi and (R,S) of Gi ×Gj respectively. For groups
SU(2) and SU(3) there are no invariant 4th order invariant because

trF 4
SU(2) =

1

2
(trF 2

SU(2))
2, (6.10)

trF 4
SU(3) =

1

2
(trF 2

SU(3))
2, (6.11)

so that the condition ai =
∑

R x
i
R is absent.

When the above condition of the factorizations are met, one can introduce a gen-
eralized Green-Schwarz term

S =
4

α′

∫
ΩαβB

α
2X

β
4 , (6.12)

to cancel the anomaly by noting that theBα
2 fields transform inhomogeneously under

the local Lorentz and gauge transformations by (compare with 10D Heterotic case as
in (5.14))

δBα =
α′

4
(aαtrΣdA+

∑
i

bαi trvidωi) =
α′

4
(aαδQgrav3 +

∑
i

bαi δQ
Gi
3 ). (6.13)

Hence in this case the consistent coupling of the B-field happens through the modi-
fied 3-form (compare with 10D Heterotic case (5.15))

Hα
3 = dBα − α′

4
(aαQgrav3 +

∑
i

bαi Q
Gi
3 ) (6.14)

and these 3-forms satisfies the Bianchi identity

4

α′
dHα = −Xα

4 = aαtrR2 +
∑
i

bαi trF
2
i . (6.15)

Along with the above local anomaly, the 6D theory can suffer a global anomaly. Sup-
pose we have a 2n-dimensional theory with Weyl fermions in a representation of a
gauge group G with a non-trivial 2n-th homotopy group π2n(G) 6= 0. In such situ-
ations the partition function in the path integral formulation is changed by a phase
factor under non-trivial gauge transformation. Lest this phase factor is a multiple of
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6.2. Heterotic string on K3: geometric compactification

2π, the partition function becomes ill-defined. The canonical example of this is the
Witten’s SU(2) anomaly [124] in D=4 theory for which we have π4(SU(2)) = Z2 and
the phase factor in question is π so that under a non-trivial gauge transformation the
partition function changes as Z[A]→ eiπZ[A] = −Z[A].
In the 6D case the possible gauge groups that may lead to the global anomalies are
SU(2), SU(3) and G2 as

π6(SU(2)) = Z12, (6.16a)
π6(SU(3)) = Z6, (6.16b)
π6(G2) = Z3. (6.16c)

The conditions for the absence of these anomalies are in fact complementary to the
absence of ai =

∑
R x

i
R condition in the general factorization criterion in case of SU(2)

and SU(3). The gauge groups which we shall be discussing will not contain these par-
ticular groups as factors so that we can safely neglect this matter in the subsequent
discussion.

The vacua of consistent D=6, N=(1,0) theories coupled to a Yang-Mills gauge
group is constrained by the anomaly cancellation conditions and hence determined
by the number of tensor, hyper and vector multiplets. Therefore, the supergravity
vacua is larger than those obtained from the compactification of the Heterotic string
theory on K3. As we shall describe shortly in the next section, the Heterotic string
compactified on K3 can allow for enhanced gauge groups that arise from the Gepner
points of the orbifold realization of K3 [107] or from small instantons [114, 115, 117].
In the dual F-theory on Calabi-Yau 3-fold construction, one can allow for even more
complicated geometrical engineering [125] mechanisms. The vacua of consistent su-
pergravity theories which are not obtained from the string theory compactification is
called the "swampland". In what follows, we shall review the geometric compactifi-
cation of the Heterotic string on K3 and next compare the non-geometric compactifi-
cation with aid of NS5 branes to open up new possible gauge groups in D=6, N=(1,0)
supergravity theory.

6.2 Heterotic string on K3: geometric compactification

We have underlined the properties of the K3 surface in section 3.5.3. Here we state
once more the main topological quantities of K3. These are

Chern classes c2 =
1

4(2π)2
trR2, c1 =

i

2π
trR = 0, (6.17a)

Euler characteristic χ =

∫
K3

c2 = 24, (6.17b)

Pontrjagin classe p1 = − 1

2(2π)2
trR2, (6.17c)

Dirac genus Â(R) =
1

48(2π)2
trR2. (6.17d)

To these we add the well-known adjunction formula (5.231) for K3

c2(K3) = 12c1(CP1) ∧ ω. (6.18)

From these topological data, we can determine the zero-mode spectrum of the wave
operator on K3 3.5.3. The number of the harmonic p-forms is given by the Betti
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Chapter 6. Constraints on (non)Geometric compactification to D=6, N=(1,0) theory

numbers
b0 = 1 = b4, b1 = b3 = 0, b−2 = 19, b+2 = 3 (6.19)

with b−2 and b+2 are respectively the number of (anti-)selfdual two forms. The number
of zero modes of the Lichnerowicz operator is

nL = 1 + b−2 b
+
2 = 58. (6.20)

Thus the 10D graviton gives to the 6D graviton and nL = 58 scalars while the 10D B2

field gives b0 = 1 2-form B2 and b2 = b−2 + b+2 = 22 scalars upon compactification on
K3. The dilaton reduces trivially. Thus the gravity multiplet of 10D Heterotic theory
gives rise to the gravity multiplet and one tensor multiplet in 6D theory.

To analyze the reduction of 10D fermions and the 10D gauge group we note that
the net number of positive chirality zero-modes of the Dirac and Rarita-Schwinger
operator (in the presence of gauge fields) are given by the Atiyah-Singer index theo-
rems

n1/2(R,F ) =

∫
K3

Â(R)ch(−iF ) =

∫
K3

(
dim(G)

48(2π)2
trR2 +

1

2(2π)2
TrF 2

)
=

(
dim(G)

48(2π)2
V + 48

∫
K3 TrF

2∫
K3 trR

2

)
, (6.21)

n1/2(R) =

∫
K3

Â(R) = 2, (6.22)

n3/2 =

∫
K3

Â(R)
(
tr
[
e
iR
2π

])
= −40. (6.23)

In the above we have introduced the volume integral
∫
K3 trR

2 = V = 96(2π)2 for
the purpose of clarifying the inclusion of instanton modes in the gauge group which
we shall illustrate shortly. We also note that the 10D chirality operator Γ11 is decom-
posed into the same for 6D and 4D projectors as Γ11 = Γ7Γ5. The 10D fermions are
Majorana-Weyl while the 6D ones are Weyl, thus the number of positive chirality
fermions n1/2 and n3/2 must be divided by two. Thus the reduction of 10D positive
chirality gravitino gives 1 negative chirality 6D gravitino plus 20 6D hyperinos of
positive chirality and the negative chirality 10D dilatino reduces to a 6D positive chi-
ral tensorino.

Let us now analyze the reduction of the 10D gauge group and the vector multi-
plet. The modified Bianchi identity (5.15) due to the Green-Schwarz mechanism of
anomaly cancellation is

dH3 = −α
′

4
(trR2 + trF 2). (6.24)

The requirement thatH3 to be defined globally [126, 127, 128] implies that dH should
integrate to zero over any four-cycle in 10D space. Hence, assuming that we turn on
the background fields R0 and F0 only inside K3, we should get∫

K3
(trR2

0 + trF 2
0 ) = 0. (6.25)

This is satisfied if one embeds the SU(2) holonomy group of K3 in the gauge group of
the theory (SO(32) or E8 × E8). The instanton number of the resulting configuration
is

n =
1

16π2

∫
K3

trF 2
0 = −24. (6.26)
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6.2. Heterotic string on K3: geometric compactification

Due to this embedding, the 10D gauge group decomposes as

G10 → G6 × SU(2) (6.27)

to give rise to the 6D gauge group G6. The adjoint representation of G10 is then gives
rise to the sum of the Ri and Si representation of G6 and SU(2) respectively as

Dim(G10)→
∑
i

Dim(Ri, Si). (6.28)

The net number of positive chirality zero-modes of fermions transforming under rep-
resentation Si of SU(2) is given by

ni =

(
dim(Si)

48(2π)2
V + 48

∫
K3 triF

2
Si∫

K3 trR
2

)
(6.29)

= 2dim(Si)− 12ci (6.30)

where ci is the trace transformation constant triF 2 = citrF
2
0 for SU(2).

Thus for each i the 10D positive chirality gaugino gives ni 6D spinors transform-
ing inRi ofG6 according to the branching (6.28). If ni > 0 these are negative chirality
gaugini and if ni < 0 these are negative chirality hyperini. Below we exemplify the
reductions of SO(32) and E8 × E8.

Embedding of the K3 instanton charge into SO(32) gives rise to the following de-
composition

SO(32)→ (SO(28)× SU(2))× SU(2). (6.31)

The branching of the adjoint representation of SO(32) according to the above decom-
position is

496→ (378,1;1) + (1,3;1) + (28,2;2) + (1,1;3). (6.32)

The index number ni for the dimension 1, 2 and 3 representation of SU(2) are n1 = 1,
n2 = −10 and n3 = −45 respectively using the formula (6.29) with ci = 0, 1, 4 re-
spectively. Thus we have 1 negative chirality gaugino in (378,1)+(1,3) of SO(28) ×
SU(2), 10 hyperini in (28,2), 45 singlet hyperini along with their bosonic superpart-
ners. Combining these with the reduction of the 10D gravity multiplet gives rise
to 1 gravity multiplet, 1 tensor milultiplet, one vector multiplet in (378,1)+(1,3) of
SO(28) × SU(2), 10 hypermultiplets in (28,2) and 65 neutral hypermultiplets. This
spectrum is anomaly free as can be checked by inserting the numbers of different
multiplets in the formuli (6.9):

nH − nV + 29nT = (10× 28× 2 + 65)− (378 + 3) + 29 = 273, (6.33)
TrF 4

SO(28) = 20trF 4 + 3(trF 2)2 ⇒
aSO(28) = 20 = 10× 2 from 10 hypers, etc. (6.34)

In the case above, the gauge symmetry can be enhanced further by a non-perturbative
mechanism involving instantons collapsing to zero size [114, 115, 117]. These instan-
tons can be interpreted as solitonic 5-branes (to be discussed further in case of non-
geometric compactification) which carry an extra gauge symmetry factor USp(2) in
case of SO(32). The N coincident instantons give rise to an extra USp(2N) symmetry.
For N=24, one thus obtain an enhancement USp(48) while for N < 24 the full sym-
metry group is SO(N + 8)× USp(2N) in which one embeds 24-N instanton charges
within SO(32).

127



Chapter 6. Constraints on (non)Geometric compactification to D=6, N=(1,0) theory

Next we consider the case where 10D gauge group is E8×E8. In this case we can
incorporate the 24 instantons in either of the two E8s provided the total number re-
mains 24. For example we can embed all of them into only one E8 with the resulting
decomposition

E8 × E8 → (E8 × E7)× SU(2) (6.35)

with the adjoint branching according to

(248,1)) + (1,248)→ (248,1;1)) + (1,133;1) + (1,56;2) + (1,1;3). (6.36)

The multiplicities ni are as before and we get in total one gravity multiplet, one tensor
multiplet, one vector multiplet in (248,1)+(1,133) of E8 × E7, 10 hypermultiplets in
(1,56) and 65 neutral hypermultiplets. All the hypermultiplets are neutral under the
E8. The anomaly polynomial factorizes as [107]

16(2π)3I8 = (trR2 − 1

6
trF 2

E7
− 1

30
trF 2

E8
)(trR2 − trF 2

E7
+

1

5
trF 2

E8
), (6.37)

where we have used TrF 2
E8

= 30trF 2
E8

and TrF 2
E7

= 3trF 2
E7

.
The above case provides the ground for an interesting example of gauged su-

pergravity. One considers the T 4/Z8 orbifold limit of K3 and reduces the E8 × E8

heterotic theory on T 4/Z8 (this is however very much different from the models con-
sidered above as there is now no SU(2) instanton to be incorporated). The resulting
gauge group is E8 × E7 × U(1). The (1,56) hypermultiplets are now charged under
U(1) and hence the mixed gauge-gravity anomaly with gauge group E8 ×E7 × U(1)
occurs giving rise to the following factorisation of the anomaly 8-form [107]

16(2π)3I8 = (trR2 − 1

6
trF 2

E7
− 1

30
trF 2

E8
− F 2

U(1))(trR
2 − trF 2

E7
+

1

5
trF 2

E8
− 6F 2

U(1)), (6.38)

This example, which contains a U(1) factor in the gauge group will be of crucial
importance in classification of compactification schemes according to geometric or
non-geometric ones which we shall discuss in the next section.

6.3 Heterotic string on K3: Non-geometric compactification

What we call the non-geometric compactification of Heterotic on an elliptically fibered
K3 is a two step process: first compactify Heterotic theory on T 2 with complex struc-
ture U = U1 + iU2 and Kähler structure T = T1 + iT2 = B89 + iVT 2 then compactify
this theory on a base CP1 with 24 punctures which denote the positions of 24 NS5
branes. Note that this procedure is same as that of F-theory compactified on an ellip-
tically fibered K3. There the 24 punctures on the CP1 represented the positions of the
7-branes. The number 24 is again due to the fact that the c1 of CP1 is non-vanishing
and upon integration gives 2; thus to provide for a supersymmetry preserving back-
ground, one has to include codimension-2 branes, each of which provides -1/12 for
the deficite angle and therefore a set of 24 cancels the tadpole of c1(CP1). In the
perspective of 10D type IIB theory (the geometrization of the SL(2,Z) symmetry
of which was the foundation of F-theory) the codimension-2 brane is the 7-brane
whereas in the perspective of 8D theory the codimension-2 brane is the NS5 brane.
To include the NS5 branes in the compactification scenario, we need a kind of tad-
pole condition which relates the c1(CP1) to the composite connection field strengths
F (t, T̄ ) and F (U, Ū) as in the case of 10D type IIB theory (see discussion following
(4.24) in section 4.1.1). In case of 8D N=1 theory there are in fact 2 such conditions.
First, let us start with the 10D heterotic theory compactified on a T 2 with complex
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6.3. Heterotic string on K3: Non-geometric compactification

structure U . Suppose that the resulting 8D N=1 theory couples to a gauge group
E = U(1)n+2 × G where G is a product of the semisimple groups and is of rank
=16-n. The factor 2 in n+2 is due to the photons obtained from the reduction of the
metric and B2 field of 10D Heterotic theory: the rest U(1)n ×G is obtained from the
reduction of the 10D gauge group. The scalar coset is SO(2, n+ 2)/SO(n+ 2)×U(1)
and we denote the curvature of the composite U(1) connection by FQ = F (zi, Z̄i)
with zi (i = 1, · · · , n) being the complex moduli of the n abelian vector multiplets.
The general expression of FQ is complicated and does not split into the sum of indi-
vidual terms of the schematic form dzi∧dz̄i/(Im(zi))

2. Now the effective action shall
contain the 8D Ricci scalar along with the kinetic term for the U moduli

S8 ∼
∫
M8

R ∗8 1− dU ∧ ∗dŪ
4U2

2

(6.39)

where once more, for the sake of simplicity we have not included other contributions
from the B2 field and vector multiplets. Taking the metric ansatz for the compactifi-
cation on aM8 =M6 × CP1 as

ds2 = −dt2 + dx2
1 + · · ·+ dx2

5 + eφ(z,z̄)dzdz̄︸ ︷︷ ︸
CP1

(6.40)

and redoing the steps as in the discussion following (4.24) in section 4.1.1 we find the
first tadpole condition

i

2π
trR = − 1

8π

dU ∧ dŪ
U2

2

⇒

c1(CP1) =
i

2π
F (U, Ū). (6.41)

To find the tadpole condition relating the composite connection engendered by the
Kähler moduli we start with the 10D Heterotic Bianchi identity

dH = −α
′

4
(trR2 + trF 2). (6.42)

The NS5 branes are the magnetic sources of the 3-form H according to (we are ab-
sorbing the string scale factor α′

4 inside B2 for convenience)

dH3 = η(NS5) (6.43)

where η(NS5) =
∑

24 δ(CP1)dz∧dz̄∧ω is the class of 24 NS5-branes with ω being the
top form of the elliptic fiber and z, z̄ the complex coordinates of CP1. We can write
trR2 in terms of the Pontrjagin class of the tangent bundle of K3 as p1(TM) and the
trF 2 as the top Chern class of the gauge bundle c2(E) where G is the 8D gauge group
obtained from the 10D gauge group (SO(32) or E8 ×E8 with or without Wilson lines
while compactifying on the T 2). Thus the form of the 10D Bianchi identity can be
recast as

η(NS5) =
1

2
p1(TM)− c2(E) (6.44)

Now we use the adjunction formula for the elliptically fibered K3: the adjuction for
the tangent bundle gives rise to p1 = c1(CP1) ∧ ω where ω is a top form on the fiber.
The adjunction on the gauge bundle E chooses the Abelian part of the gauge group
i.e. c2(E) = c1(Ẽ) ∧ ω with Ẽ = U(1)n being the Abelian part of the gauge group E.
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Finally the class of the NS5 brane η(NS5) =
∑

24 δ(CP1)dz ∧ dz̄ ∧ dτ ∧ dτ̄ is reduced
to 12F (T, T̄ ) ∧ ω, this is because the reduction of H3 = dB2 − α′

4 (Qgrav3 + QYM3 ) will
give the connection 1-form Q(T ) = dB89

2VT2
= dT1

2T2
in 6D which couples magnetically to

the codimension-2 NS5 brane by

dQ(T ) = F (T, T̄ ) =
dT ∧ dT̄

4iT 2
2

= δNS5 (6.45)

with δNS5 = δ(CP1)dz ∧ dz̄ being the class of NS5 brane swith two legs on the trans-
verse direction i.e. on the direction of CP1. Accounting for everything in (6.44) with
adjuction reduction we find the second tadpole equation

c1(CP1) +
1

12
c1(Ẽ) =

i

2π
[F (T, T̄ )]. (6.46)

These two tadpole condition (6.41) and (6.46) puts stringent condition on the stringy
construction of D=6, N=(1,0) supergravity theories. For n=0 cases, the Abelian factor
Ẽ is absent in E and hence (6.46) dictates non-geometric compactification to quench
c1(CP1) with F (T, T̄ ). Equation (6.41) allows to build a K3 space ove CP1 base
whereas (6.46) tells that only NS5-branes participate in cancelling the curvature con-
tribution in the Bianchi identity.

In order to have geometric Heterotic realization of D=8, N=1 theory on a CP1

base, i.e. a K3 compactification, n ≥ 1 is required. Indeed, taking [F (T, T̄ )] = 0
in (6.46) one needs non-trivial Ẽ. The geometric compactification then should cor-
respond only to [F (U, Ū)] 6= 0. An example of this case is the compactification of
10D E8 × E8 Heterotic theory on the T 4/Z8 orbifold limit of K3 which we have dis-
cussed previously (E8 ×E8 → E8 ×E7 × U(1)). We have also mentioned before that
the compactification on K3 with the embedding of SU(2) instantons inside the 10D
gauge group is also geometric though in flavour it is nearer to the non-geometric one.
In the former there are 24 instantons arising from the global definition of H3 (6.26)
while in the latter, there are 24 NS5-branes acting for the magnetic sources of H3 in
the Bianchi identity (5.15).

The usefulness of the non-geometric compactification is that it allows for the re-
lization of the gauge groups which are otherwise not possible in geometric compact-
ification. This is due to the fact that the NS5-branes each contains a tensor multiplet
and a hypermultiplet [114, 127] which can be used to quench the anomaly cancelling
conditions (6.9). Let us take for example the E8 × E8 10D Heterotic theory compact-
ified on a T 2 without any Wilson line and then compactify on a CP1 with 24 NS5-
Branes each having a tensor and hypermultiplet. We see then that the cancellation
condition for trR4 term in (6.9) is satisfied

(20 + 24)︸ ︷︷ ︸
nH

− (496)︸ ︷︷ ︸
nV

+29× (1 + 24)︸ ︷︷ ︸
nT

= 273 (6.47)

for the dim(E8 × E8) = 496 and that the total number of tensor multiplet nT = 25 =
N(NS5) + 1 where N(NS5) = 24 is the number of NS5-branes. The factor 20 in nH
are 20 neutral hypermultiplets obtained from the K3 moduli. The complete anomaly
polynomial is

16(2π)3I8 = 2(trR2)2 + 5trR2(trF 2
1 + trF 2

2 ) + 6((F 2
1 )2 + (F 2

2 )2) (6.48)
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which can then be written as a sum of 25 factorized terms due to 25 Bα
2 as required

by the Green-Schwarz-Sagnotti mechanism [123] as in (6.12). Thus we get the D=6,
N=(1,0) theory coupled to E8 × E8 Yang-Mills theory which is otherwise impossible
with geometric compactification.

Next let us take the case of SO(32) gauge group. In this case however, we proceed
as before except for the fact that each NS5-brane brings along an USp(2) factor. 24
NS5 branes collapse together to give rise to the hypermultiplet in bi-fundamental
(32,24) representation of SO(32) × Sp(24) [115]. As before, the trR4 term vanishes
using (6.47) while the 24 USp(2) factors combines with the non-vanishing 4th order
invariant of SO(32) to cancel the trF 4 term as in the trace decomposition of SO(32)

TrF 4
SO(32) = 24trF 4

SO(32) + 3(trF 2
SO(32))

2 (6.49)

the trF 4
SO(32) part comes with a factor 24 and according to ai =

∑
R x

i
R relation in

(6.9) this factor is cancelled by 24 = xiR from the Sp(24).
Note that in the above two case, that is, 10D Heterotic string theories with gauge

group SO(32) and E8×E8 compactified on T 2 give in the threshold computation the
composite anomaly cancelling term along with world-sheet instanton terms. In the
presence of Wilson lines, that is 8D N=1 theory with SO(16) × SO(16) and SO(8)4

gauge groups, the string amplitude brings coupling due to massive vectors in the
spinor or bi-fundamental representations according to the branching of the respec-
tive gauge groups according to (5.151), (5.179). A similar result follows in case of
E8×E7×U(1) which can be obtained by switching only one Wilson line along one of
the 1-cycle of the compactification torus in case of compactification of E8 × E8 Het-
erotic theory. For the latter case, we have seen, the resulting 6D theory is anomaly
free (6.38) by properly taking into account the charged and neutral hyper-multiplets
arising from the compactification over CP1 with the tadpole condition (6.41). These
hyper-multiplets are otherwise massive in 8D perspective. For the case of SO(16) ×
SO(16) and SO(8)4 in 8D, we see that they give rise to anomaly free 6D theory upon
non-geometric compactification in accordance with (6.46) with trivial Ẽ only if we
include the vectors in the bi-fundamental representations as in the branching rules
(5.151), (5.179). Hence we see that the correct i.e. string theoretic massive completion
in 8D is necessary in order to obtain an anomaly free 6D compactification. Mas-
sive states that appear in T 2 compactification to 8D must become massless when the
torus degenerates to yield an elliptically fibered K3. We shall endeavour to bring
more clarification to this mechanism in future studies. It appears that G = SO(16)2

and G = SO(8)4 should admit a double realization, either with 25 tensor multiplets
or with 24 USp(2) gauge fields and hypers in bi-fundamentals (i.e. from compactifi-
cation of either E8×E8 or SO(32)). Of course the two versions match once these the-
ories are put on a circle. Eight-dimensional N=1 theories hold keys to large classes of
interesting string backgrounds, most of which cannot be seen as ordinary compact-
ifications of ten-dimensional string theories. We have argued here, that the study
of composite connections and their anomalies may provide useful insights and con-
straints in constructing these backgrounds. In the next section, we shall discuss the
(non-)geometric compactification to 6D N=2 theories.

6.4 Type II string on K3: (Non-)Geometric compactification

We shall end this chapter with a brief review of the geometric and non-geometric
compactification of type II theories on K3 which shall complement the case of the
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Heterotic compactification discussed above. The compactification of type IIA and
type IIB theories on K3 gives rise to two different supergravities in D=6 with 16 su-
percharges:
Type IIA on K3: This is the D=6, N=(1,1) supergravity containing the following mul-
tiplets

Gravity multiplet: 1 graviton gµν , two Weyl gravitini ψiµ of opposite chirality, 1
antisymmetric 2-form B2, 4 vectors Aiµ, 4 gaugini ψj 2 of which are positive chiral
and the rest negative, 1 real scalar φ.

20 Vector multiplets: each with 1 vectorAµ, 2 Weyl gaugini χ of opposite chirality
and 4 real scalars.
The 80 scalars parametrize the coset space SO(4,20)

SO(4)×SO(20) and this theory is in fact dual
to 10D Heterotic string compactified on T 4 [129, 130, 131, 116].
Next Type IIB on K3: This is the D=6, N=(2,0) supergravity containing the following
multiplets

Gravity multiplet: 1 graviton gµν , 5 self-dual anti-symmetric 2 forms Bi
2 (i =

1, · · · , 5), two negative chirality Weyl gravitini ψ−µ .
21 tensor multiplets: each having 1 anti-self-dual anti-symmetric two form B2, 5

scalars ϕj (j = 1, · · · , 5) and two positive chirality Weyl tensorini ψ+
1,2.

The 5 × 21 scalars parametrize the coset space SO(5,21)
SO(5)×SO(21) . The theory might seem

to suffer from gravity anomaly because of the gravitini and (anti-)self-dual tensor
fields. However,the combination of 4 self-dual tensor in gravity multiplet with 21
anti-self-dual tensor in tensor multiplet is what needed to cancel the contribution of
gravitini and other fermions exactly. Thus the theory obtained from the compactifi-
cation of type IIB on K3 is anomaly free.

It is intriguing to note that both type II theories compactified on a T 2 give rise
to the same supergravity theory in D=8 i.e. the N=2 supergravity theory in 8D due
to the T-duality. However, further compactification on a base CP1 with 24 singulari-
ties, i.e. the non-geometric compactification on K3 should give rise to such different
supergravity theories in 6D. We intend to discuss this point in the light of tadpole
conditions similar to the one in 10D type IIB (4.30) or the the ones in case of 8D Het-
erotic theory (6.41) and (6.46).

To derive the tadpole condition for 8D N=2 case, consider the compactification of
10D type IIB theory on a T 2 of complex structure U = U1 + iU2 and Kähler structure
T = B89 + iVT 2 . The full U-duality group is SL(2,R)×SL(3,R) but we consider only
the perturbative or the T-duality group SL(2,R) × SL(2,R). In fact the scalar coset
of the theory is SL(2,R)

U(1) ×
SL(3,R)
SO(3) . The fermions are charged under the composite U(1)

as we have discussed in section 4.2. If however one considers only the the T-duality
group one finds the SL(3,R)

SO(3) replaced by another SL(2,R)
U(1) . the fermions are not chi-

raly charged under this accidental SL(2,R) as can be seen from the supersymmetry
transformation of the fermions (4.35), e.g. for the gravitini

Dµψν = Dµψν −
i

2
Qabµ Tabψν −

i

2
Qµγ

9ψν . (6.50)

The SO(3) composite connection Qabµ can be reduced to find a U(1) connection but is
not chiraly switched due to the lack of γ9 term.

The 8D effective action in case of N=2 supersymmetry shall contain the following
terms (once again we are neglecting other bosonic and fermionic contributions for
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the sake of simplicity)

S8 ∼
∫
M8

R ∗8 1− dU ∧ ∗dŪ
4U2

2

− dT ∧ ∗dT̄
4T 2

2

. (6.51)

The difference of (6.51) above with that of the N=1 case (6.39) is that due to the su-
persymmetric constraints, both T and U moduli kinetic terms are present in (6.51).
This thing is a result of the scalar coset structure ( SO(2,n)

SO(2)×SO(n) in N=1 case whereas
SO(2)T
U(1) ×

SO(2)U
U(1) in N=2 case) dictated by the supersymmetry as discussed in section

2.4 equation (2.38).
Following the same procedure as the derivation of 10D type IIB tadpole (4.30) or

the 8D Heterotic tadpole (6.41) we propose the metric ansatz for the compactification
on a CP1 base using

ds2 = −dt2 + dx2
1 + · · ·+ dx2

5 + eφ(z,z̄)dzdz̄︸ ︷︷ ︸
CP1

(6.52)

from which the Einstein equation gives the tadpole condition

c1(CP1) = −dT ∧ dT̄
8πT 2

2

− dU ∧ dŪ
8πU2

2

=
i

2π
[F (T, T̄ ) + F (U, Ū)]. (6.53)

Contrary to the 8 supercharge case, we now have both F (T ) and F (U) present in the
tadpole condition (6.53). To construct the K3, we need to set either F (T ) or F (U) to
zero as both of them integrates to -2 ( i

2π

∫
K3 F (T, T̄ ) = −2, i

2π

∫
K3 F (U, Ū) = −2) sep-

arately. The classification of type IIB compactified on K3 or IIA compactified on K3
is done by considering which of the composite field strength is set trivial. Type IIB
compactification corresponds to the case of trivial U and type IIA compactification
corresponds to the trivial T [116].

Let us consider the above two cases separately. First let us examine the 8D N=2
supergravity compactified on CP1 with F (T ) = 0 and the 24 singularities on CP1 cor-
responding to the positions of co-dimension-2 NS5-branes. These 24 branes however
yield only 20 dimensional vectors in 6D due to the Crammer-Sherck mechanism elab-
orated in Douglas, Park & Schnell [132]. These vectors transform under SO(2, 18).
4 more vector fields comes from the reduction of the 4 neutral vectors of 8D theory
(two graviphotons and two Abelian vectors in the vector multiplet coming from the
T 2 reduction of metric gµν and B2) which transform under SO(2, 2). Thus the sym-
metry group SO(4, 20) of N=(1,1) theory is recovered from the vectors in 6D.

In the case of D=8 N=2 supergravity compactified on CP1 with F (U) = 0, one
finds instead tensors transforming in SO(2, 18) [132]. The three neutral tensor fields
B2, C2 and C4|T 2 → Cµν89 = C ′2 in 8D supergravity give rise to 3 pairs of self-dual
and anti-self-dual tensors in 6D. Thus we recover the symmetry group SO(5, 21) of
N=(2,0) theory.

It is interesting to consider the case where i
2π

∫
K3 F (T, T̄ )+F (U, Ū) = −2 i.e. both

the T and U moduli are non-trivial. We intend to study this case in future.
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Chapter 7

Two loop string amplitude and
D2R4 terms in Heterotic string

In this final chapter of this thesis we shall consider the calculation of two-loop Het-
erotic string amplitude in 10D. This computation shall complement the computation
of 10D and 8D Heterotic string theory considered in sections 5.2 and 5.3. The dif-
ference however is that here we shall compute the amplitude in the hyper-elliptic
formalism [91] contrary to the elliptic formalism of the one-loop cases. The com-
putation in the elliptic formalism have been carried out for type II theories in [133,
134, 135, 71, 136, 90, 137] giving rise to D4R4 terms and in Heterotic theory to give
D2R4 terms in [138, 90, 139, 140, 141, 142, 137, 143]. In the latter references, the
emphasize was however given to the fact that R4, F 4 terms in Heterotic theory do
not receive any renormalization from two loop computations corroborating the fact
that these terms are related to anomaly cancellation and hence should not receive
corrections beyond one-loop. The D4R4 terms in type II theories have been studied
extensively for its direct relation with the Eisenstein-series related to the U-duality
group SL(2) × SL(3) and hence providing windows for the relation between string
amplitude, instanton corrections and number theory [144]. The case of 10D Heterotic
D2R4 terms are less explored due to the lack of such connection with number theory.
The interest of studying such terms are mostly academic. However, at 2-loops, these
terms include genus-two elliptic functions i.e. Siegel modular forms as compared
to the Eisenstein series in case of one-loop elliptic genus 5.2 which are of immense
mathematical interest yet quite abstract from string or supergravity physics point of
view. For example, in 8D, as we shall see, it is quite difficult to complete the modu-
lar integral on the moduli space Sp(4) while for one loop the integral over SL(2,Z)
world-sheet moduli space was quite easy. Thus we take the course of hyperellip-
tic formalism to evaluate the multi-loop integral, a formalism which was studied in
late 80s [145, 146, 85, 86, 87, 88]. The problem with multi-loop amplitude is that the
process for the gauge fixing the conformal symmetries of the world-sheet Riemann
surface is quite complicated and the standard process of inserting ghost state ver-
tex operators along with vertex operators of the scattering states does not use up
these residual symmetries completely [90]: one has to check for the unitarity of the
S-matrix at the conclusion of computation which can prove to be a very tedious pro-
cess. A neat method of gauge fixing method was proposed by D’Hocker & Phong in
[90, 139, 140, 141, 142, 137, 143] which takes into account all these ambiguities and
can be used for loop computations beyond 2-loops. Original calculation of 4 point
amplitudes in type II and Heterotic theories implementing this chiral gauge fixed
measure has been carried out in [137] where the emphasize was once more on the
demonstration of the fact that R4, F 4 terms do not receive higher loop corrections in
case of Heterotic theory. We carry out the 2-loop computation in the hyper-elliptic
language using these chiral measures, a study originally initiated by Stieberger &
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Taylor [83, 84] to study F 6 type of coupling at two loops in Heterotic theory. We thus
endeavour to complement these references with the computation of D2R4 terms in
case of Heterotic theory.

We shall briefly describe the problem of fixing path-integral measure in string
multi-loop amplitude and demonstrate the usefulness of chiral measures in such sit-
uations. Next we shall describe the genus-2 CFT using the hyperelliptic language
and finally describe the computation ofD2R4 andD2F 4 amplitudes in 10D Heterotic
theory with comments on such amplitudes in 8D Heterotic theory.

7.1 Generalities of higher genus amplitude and method of
chiral splitting

Recall from our discussion of moduli space of world-sheet topology for the string
amplitude in section 3.3.1 that the operator that plays the key role in the gauge fixing
process is P̂ (3.33) which defines the infinitesimal diff ×Weyl transformation of the
metric hµν according to

δhµν = (P̂ ξ)µν + (2Λ(σ)−∇αξα)hµν . (7.1)

The space KerP̂ is the space of all CKVs while the space KerP̂ † is the space of all
moduli deformations. Let us also recall that the Riemann-Roch formula on the world-
sheet tells us that dimKerP̂ − dimKerP̂ † = 3χ for χ = 2 − 2g being the Euler char-
acteristic of the world-sheet topology with genus (handle) g. It happens to be that if
χ > 0, e.g. for a sphere, dimKerP̂ † = 0 which means that there are no metric moduli
and 6 CKVs so that every metric is diff×Weyl equivalent to the round metric of the
sphere CP1. In case of genus one interaction, that is a torus world-sheet, there are
2 metric moduli and 2 CKVs. The presence of CKVs needs the application of BRST
ghost insertions [29] so that the final amplitude be BRST invariant. One thus inserts
N = −χ + nB = nB numbers of picture changing operators along with nB bosonic
vertices which participate in the amplitude and with the use of 2 metric deforma-
tions, coincides the PCOs with the physical vertex positions to have a BRST invariant
amplitude. In case χ < 0, dimKerP̂ = 0 and there are no CKVs and only metric
moduli. This leads into a very subtle trouble in finding BRST invariant amplitude. If
one takes up the paradigm of PCO insertion, then the number required for a genus
g ≥ 2 interaction with nB bosons is N = −χ + nB > nB . However as there are no
CKV, we are à priori not at liberty to coincide the positions of the PCOs with that of
the physical vertices. One can however proceed to do the coincidence of PCOs with
vertices but has to be extremely careful that the final amplitude does not loose its
unitarity because of this ad-hoc application of metric deformation [145, 146]. Let us
give an example taken from the reference [83] where the authors took the course of
the 2-loop closed 10D Heterotic string amplitude to prove the non-renormalization of
F 4 terms, which we have seen in section 5.2 is related to the Green-Schwarz anomaly
cancelling mechanism and thus should remain protected from higher loop correc-
tions. The 4-point Green’s function for the amplitude would look like

A =

4∏
i=1

〈
∫
d2zi
π

eiαiβiV
αiβi(pi, zi, z̄i)︸ ︷︷ ︸

4 gauge vertices

Y (x1)Y (x2)︸ ︷︷ ︸
two rem. PCO

〉 (7.2)
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where in 〈〉 one have to include the 10D Heterotic partition function (5.27) in genus
two format. Notice also that in this situation, one starts with the picture changing
ansatz with all 4 gauge vertices in -1 picture. One next finds that for two-loop ampli-
tude one has to insert N = 2g− 2 + 4 = 6 PCOs, 4 of which one makes coincide with
4 gauge vertices to put all the vertices in zero picture (5.32)

V a,ν
0 (z, z̄) =

2gclosed
l2s

[∂Xν(z, z̄) + ip.ψ(z)ψν(z)] J̄a(z, z̄)eip.X(z,z̄). (7.3)

There however remain two extra PCOs in arbitrary positions x1, x2. This ambiguity
in the remaining PCOs need special care.

There are two ways to deal with this ambiguity. First is to use the hyper-elliptic
formalism of string amplitude [83, 85, 86, 87] and second is the chiral splitting method
of string partition function [91, 90, 139]. Let us outline both of them briefly.

Let us first start with the definition of hyper-elliptic surfaces. Suppose that a
genus g compact orientable world-sheet topology Σ has a double cover of spheres
S1 × S1 where z be the complex-coordinates on the first S1 and y being the coordi-
nates on the second. Then Σ is the two-dimensional sub-manifold of S1 × S1 given
by the equation

y2 =

2g+2∏
i=1

(z − Zi) (7.4)

for complex parameters Zi. Notice that for g=1 & 2, such a hyper-elliptic definition
(7.4) is available. In fact for genus 1 torus case, this gives the familiar Wierstass form
(3.123) y2 = x3 + fx + g where f and g are parameters (one would normally have
2g+2= 4th order polynomial in x but one can set one branch point Zi to infinity hence
getting a cubic polynomial). In case g ≥ 3, not all topologies allow for such a de-
scription, only the class called hyper-elliptic surfaces avail the privilege of such (7.4)
description. The trick used in this format to tackle the position ambiguity in (7.2)
is to coincide the extra PCO positions x1, x2 at a point x giving rise to the cumula-
tive effect I(x) which we shall state explicitly in due course. Then the integration
over gauge vertex positions

∏4
i=1

∫
d2zi
π is cast in the following form using the hyper-

elliptic form (7.4) ∫ 4∏
i=1

(x− zi)d2zi
y(zi)

(7.5)

thereby including the ambiguity in the position x inside the hyper-elliptic definition.
The form of the p8 order amplitude is then

ATrF 4 =

∫
dµ

4∏
i=1

(x− zi)d2zi
y(zi)

I(x)V i(pi, zi, z̄i) (7.6)

with dµ being the 10D string path-integral measure containing the partition Z10 and
gauge lattice Γ16 (see for example (5.27)). One can then use the correlators in hyper-
elliptic formalism to evaluate the amplitude.

The next ingenious method resolving the ambiguity is to use the chiral splitting
method. At the heart of this method lies the complexity of the structure of the su-
permoduli space. We remind ourselves that the moduli space for a bosonic string
interaction topology Σ is (3.28)

M =
G

Diff×Weyl
(7.7)

137



Chapter 7. Two loop string amplitude and D2R4 terms in Heterotic string

with G being the space of all possible metrices hµν on Σ. In case we are considering
the superstring interaction, the moduli space becomes the super-moduli space. To
understand the essence of it, consider the Polyakov action for superstring (3.9)

SP =
1

4πα′

∫
d2σ
√
hhαβηµν

[
∂αX

µ∂βX
ν +

i

2
ψ̄µ/∂ψν

]
(7.8)

which can be written in a more compact and supersymmetry coherent form using
the following super-target-space coordinates

Xµ(τ, σ) = Xµ + iθψµ(τ, σ) + iθ̄ψ̃µ(τ, σ) + θθ̄F (7.9)

with θ, θ̄ being anti-commuting Grassmann variables which also define the super-
derivatives

Dθ = ∂θ + θ∂σ, (7.10)
Dθ̄ = ∂θ̄ + θ̄∂σ̄. (7.11)

The Polyakov action then becomes

S =
1

2πα′

∫
d2σd2θDθ̄X

µDθXµ. (7.12)

The equivalence of the two forms (7.8) and (7.12) is made evident using the fact that
anti-commutation property of Grassmann integration d2θ picks out the θθ̄ term in
the expansion of the super-derivatives. In the question of diffeomorphism and Weyl
invariance of the Polyakov action, one now has to include the transformation prop-
erties of the odd variables θ, θ̄ too which are called the odd supermoduli. For the
clarification of the discussion, let us note the transformation properties of σi = (τ, σ
and θ coordinates on the world-sheet topology Σ: if σm, θm be coordinates on a patch
m of the supermoduli-space and this patch has intersection, say with another patch
n then in the intersection, the superconforal transformations are

σm = fmn(σn) + θngmn(σn)ωmn(σn), (7.13)
θm = gmn(σn) + θnωmn(σn), (7.14)

ω2
mn(σn) = ∂σfmn(σn) + gmn(σn)∂σgmn(σn) (7.15)

where ωmn(σn) is the spin-structure of Σ and fmn, gmn are even and odd transition
functions respectively. The Faddeev-Popov gauge fixing method, in this formalism,
means to choose a gauge slice such that gmn is set to zero. This leads to the transfor-
mation rules

σm = fmn(σn), θm = θnωmn(σn), ω2
mn(σn) = ∂σfmn(σn). (7.16)

The argument by D’Hoker & Phong [90, 139] states that in the absence of CKV, this
gauge choice leads to the ambiguity of PCO paradigm as the loss of odd transition
function gmn leads in turn to the non-integrability of the odd supermoduli θ which
now shares equal footing in the super-moduli measure in the string path integral dµ
in (7.6). The authors thus propose to construct the string amplitude from the chi-
ral parts of both the path-integral measure and vertex operators, thereby retaining
the the odd transition function for a given spin-structure on the world-sheet. This
is the so-called chiral-splitting of the integral measure. In this formalism, one thus
need not consider the insertion of BRST picture changing operators as the selection
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of chiral piece from the Green’s function automatically restores the BRST invariance
in addition to retaining its unitarity [140]. The method of chiral splitting is compara-
ble in principle with the GSO projection in super-string spectrum construction which
requires a systematic truncation of string excitations in order to have target space su-
persymmetry.

In our study of two-loop amplitude of Heterotic string theory we shall use the
method of chiral splitting in the hyper-elliptic formalism discussed for example in
the context of amplitude (7.6) so that we do not have to deal with the extraneous
PCO contribution I(x) which, though not ambiguous any more in hyper-elliptic for-
malism, yet does not guarantee the unitarity of the amplitude result. The admixture
of chiral splitting method in hyper-elliptic language has been recorded for example
by Stieberger & Taylor [83], Zheng, Wu & Zhu [147, 148, 149] to prove principally
the non-renormalization of R4 and F 4 terms. We complete their analysis by com-
puting the 10 derivative correction terms D2R4, D2F 4 terms in 10D Heterotic string
theory which have been accomplished by D’Hoker & Phong [137] in the language of
elliptic genus or Siegel modular forms in a quite abstract structure. We endeavour to
propose such terms in hyper-elliptic language giving in a relatively simpler form.

7.2 Geometry and CFT on 2-Torus

The principal difficulty for the study of two-loop amplitude in chiral splitting for-
malism is to be accustomed with a new yet more severe plethora of definitions. We
thus summarize the necessary definitions and CFT propagators in this section before
we use the in the next section. We do not mean to be explicit in derivation of all the
expressions which can be found in the standard references of Polchinki [27], Lerche,
Schellekens & Warner [79] ,Morozov [85], D’Hoker & Phong [91]. For the neces-
sary definitions of genus two elliptic functions, we refer to Mumford [150], Fay [151]
and also D’Hoker & Phong [141]. We start our exploration by defining the so-called
period matrix for a genus g closed orientable topology Σ. This is the direct gener-
alization of the complex structure τ of the genus-1 torus. First, the hyper-elliptic
description of 2-torus in terms of spherical double-cover yields

y(z)2 = (z − u1)(z − u2)(z − u3)(z − u4)(z − u5)(z − u6) (7.17)

with ui i = 1, · · · 6 are the branch points on the double cover. One can split the total
cover in terms of union of two branches A and B such that

rA(z) = (z − u1)(z − u2)(z − u3), (7.18)
rB(z) = (z − u4)(z − u5)(z − u6). (7.19)

An interesting fact of chiral splitting method is that the 6 picture changing operators
could be inserted in the positions of these branch points to fix the ambiguity of the
PCO positions. However, as this method does not appeal to the picture changing
ansatz, one inserts 3 ghost vertices in say rA branch factors while gauge slice are
chosen at rB branch points. We denote (according to the original reference [90] ) the
first set of points as pi, i = 1, · · · 3 and the latter qi.

Next, notice that one can chose a basis of 1-cycles on any genus g surfaces denoted
by Ai and Bi (see figure 7.1 for the a1, a2, b1 and b2 cycles on genus-2 case). One can
also define g Abelian differentials or holomorphic 1-forms Ωi(z) (with z = τ + iσ)
such that

∂z̄Ωi(z) = 0, Ωi(z̄) = 0. (7.20)
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a_1 cycle a_2 cycle

b_1 cycle b_2 cycle

FIGURE 7.1: One cycles of 2-torus

The Riemann-Roch theorem (3.37) on the surface dictates that there are exactly g such
1-forms. The basis 1-cycles Ai are chosen to be Poincaré dual to these 1-forms∮

Ai

dzΩj(z) = δij . (7.21)

One then defines the period matrix τij

τij =

∮
Bi

Ωj(z). (7.22)

The period matrix τij characterizes the complex structure of the closed oriented genus
g topology. Just as the fundamental domain of SL(2,Z) F was the space of all in-
equivalent complex structure of genus 1 case, in genus two case, this space is Sp(4,Z).
In genus two case, the 2 Abelian 1-forms are defined in the hyper-elliptic formalism
(7.4) by

Ω1(z) =
dz

y(z)
, Ω1(z) =

zdz

y(z)
(7.23)

which are however not normalized according to (7.21). We thus make the change of
basis with the matrix Kij

Kij =

∮
ai

Ωj(z) (7.24)

which gives
ωi = K−1

ij Ωj(z) (7.25)

and now these ωi(z) one-forms are the normalized Abelian differentials.
Next thing we explore is the spin-structure which are related to the spin-connection

in (7.13). In our discussion of 1-loop string amplitude in 10D Heterotic theory in sec-
tion 5.2 we have briefly described the spin-structure character (5.25). We now de-
tail that description in order to use it also in genus-2 world-sheet topology. Recall
that, in genus-1 torus case, the even and odd spin structures were according to the
world-sheet Majorana-Weyl fermions are periodic (denote periodic case by 1 and P)
or anti-periodic (denote it by 0 and A) over the basis 1-cycles Ai and Bi and the spin-
structure character was represented by the genus-1 theta functions (see appendix B
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for more details)

θ [ab] (ν|τ) =
∑
n∈Z

q(1/2)(n−a/2)2
e2πi(ν−b/2)(n−a/2). (7.26)

Remember that in genus-1 case the (P,P) spin-structure was called odd because the
character θ [11] = 0 identically.

The above can be easily generalized to the genus g case. We demonstrate the case
for g=2 where the genus-2 θ functions are described by

θ
[a1 a2
b1 b2

]
(ν1, ν2|τij) =

∑
ni∈Z2

exp (iπ(ni + ai)τij(nj + aj) + 2πi(ni + ai)(νi + bi)) .

(7.27)
As demonstrated in [141], one can construct the whole elliptic genus as in section 5.2
with aid of these genus-2 elliptic functions (7.27). The difficulty however is that such
functions does not allow for the integration of multiple correlators to some genus-2
modular functions (contrary to the genus-1 case where such integration yields Eisen-
stein series (5.47), (5.51)) and thus it is difficult to write down all the pieces of D2R4,
D2(R2)2, D2R2F 2, D2F 4 terms once in a single generator. The hyper-elliptic formu-
lation does not help either in this case as we shall see in the next section. To conclude
the discussion of spin structure, we not that there are 10 even spin structures accord-

ing to
[
a1 a2

b1 b2

]
periodic (1) and anti-periodic (0) combinations for ai and bi cycles

δ1 =

[
1 1
1 1

]
, δ2 =

[
1 1
0 0

]
, δ3 =

[
1 0
0 0

]
, δ4 =

[
1 0
0 1

]
, (7.28)

δ5 =

[
0 1
0 0

]
, δ6 =

[
0 0
0 0

]
, δ7 =

[
0 0
0 1

]
, δ8 =

[
0 0
1 1

]
,

δ9 =

[
0 0
1 0

]
, δ10 =

[
0 1
1 0

]
.

There are also 6 odd spin-structures

ε1 =

[
0 1
0 1

]
, ε2 =

[
1 0
1 0

]
, ε3 =

[
0 1
1 1

]
, (7.29)

ε4 =

[
1 0
1 1

]
, ε5 =

[
1 1
0 1

]
, ε6 =

[
1 1
1 0

]
.

The reason behind of giving such details for spin-structure is that the chirally split
measure and the fermionic propagators on the genus-2 surface depends upon these
spin structures. However we shall only consider CP-even amplitude and shall not
need the odd spin-structures εi much. The even spin-structure is however very im-
portant for our analysis and can be shown to be related to the branching (7.18) split-
ting of the double cover. One can associate a spin structure δi to the branch point sep-
aration (ui1 , ui2 , ui3 |uj1 , uj2 , uj3) where i1, j1, i2, j2, i3, j3 are permutations of u1 · · ·u6.
For the sake of completeness we provide the explicit form of this relation

δ1 → (u1, u2, u3|u4, u5, u6), δ2 → (u1, u2, u4|u3, u5, u6), δ3 → (u1, u2, u5|u3, u4, u6), (7.30)
δ4 → (u1, u2, u6|u3, u5, u5), δ5 → (u1, u3, u4|u2, u5, u6), δ6 → (u1, u3, u5|u2, u4, u6), (7.31)
δ7 → (u1, u3, u6|u2, u4, u5), δ8 → (u1, u4, u5|u2, u3, u6), δ9 → (u1, u4, u6|u2, u3, u5), (7.32)

δ10 → (u1, u5, u6|u2, u3, u4). (7.33)
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Chapter 7. Two loop string amplitude and D2R4 terms in Heterotic string

Our next step is to define the two-point Green’s functions on the genus-2 surface in
hyper-elliptic format. We remind ourselves once more that the superstring Polyakov
action we are considering, is supplemented by a bc-ghost system and and a βγ- ghost
system to apply the Faddeev-Popov gauge fixing process. The total CFT thus looks

S =
1

2πα′

∫
d2σ

(
∂Xµ∂̄Xµ + ψ∂̄ψ + b∂̄c+ β∂̄γ

)
. (7.34)

We thus need to consider the bosonic, fermionic as well as ghost correlators.
The spin-dependent fermionic correlator or the Szegö kernel takes the form

< ψµ(z1)ψν(z2) >δ= −ηµνSδ(z1, z2) = −ηµν 1

2

1

z1 − z2

rδ(z1) + rδ(z2)√
rδ(z1)rδ(z2)

, (7.35)

where

rδ(z) =
(z − ui1)(z − ui2)(z − ui3)

y(z)
(7.36)

using (7.17) and (7.18).
Next comes the scalar correlator: in the hyper-elliptic form on torus-2, it is of the

form [152]

< ∂Xµ(z1)∂Xν(z2) >= −ηµν∂z1∂z2lnE(z1, z2), (7.37)

= −ηµν
(

1

4(z1 − z2)2
+

1

4T

∂

∂z2

[
y(z2)

y(z1)

1

z1 − z2

∫
Σ
d2zd2w

(z1 − z)(z1 − w)|z − w|2
(z2 − z)(z2 − w)|y(z)y(w)|2

])
+(z1 ↔ z2).

In the above E(z1, z2) (7.37) is known as the prime-form. We shall however seldom
use the above correlator. Instead, we shall use the following important contraction
which can be derived from above

< ∂Xµ(z1)kνX
ν(z2) >= − kµ

z1 − z2
. (7.38)

Next we write down the bc-ghost propagator

< b(z1)c(z2) >δ= G2[δ](z1, z2) = −H(z1, z2) = − 1

2(z1 − z2)
(1 +

y(z1)

y(z2)
)
y(z1)

y(z2)
(7.39)

and βγ−ghost propagator

< β(z1)γ(z2) >δ= −G3/2[δ](z1, z2) = P (z1, z2) =
Ω(z2)

Ω(z1)
Sδ(z1, z2). (7.40)

It should be noted that the chiral splitting of integral measure and insertions of ghost
vertices at 3 branch points pi along with choosing the gauge slice on the other 3
branch points qi modify the form of the bc and βγ propagators (7.39), (7.40). We shall
discuss those modifications after we discuss the gauge fixed integral measure which
we are going to do in the next section.

7.3 Chiral measure for two-loop amplitude

Now we shall give the daunting expressions of the chiral measure following [90].
One particularity of the gauge fixing process in this chiral splitting formalism is that
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7.3. Chiral measure for two-loop amplitude

one chooses the six branch points ui of the hyperelliptic double cover of two-torus
(7.17) to insert the PCO or equivalently one separates out y2 = rA(pi)rB(qi) into
two disjoint branches and put the b-ghost operators on 3 points pi and β−ghosts on
points qi. However, using the gauge slice selection, one can coincide one of the three
qi branch points with any of the other two and make the remaining qα, α = 1, 2 points
to live on two separate S1 of the double cover of world-sheet Σ. From this process
one gets the correlator Z between the chiral matter and superghosts

Z =
〈∏a b(pa)

∏
α δ(β(qα))〉

detωIωJ(pa)
(7.41)

where δ(β(qα)) is the Dirac-delta functions to select the positions of β ghosts on the
gauge slice. We now give the expressions of the G2 and G3/2 propagators (7.39),
(7.40) in case of particular choice of branch point gauge selection as discussed above.
We find

G2(z1, z2) = −H(z1, z2) +
∑
α=1,2

3∑
a=1

H(z2, pa)$a(qα), (7.42)

G3/2[δ](z1, z2) = −P (z1, z2) + P (z2, q1)ψ∗1(z1) + P (z2, q2)ψ∗2(z1), (7.43)

with

$1(z) = −y
2(p1)

y2(z)

(z − p2)(z − p3)

(p1 − p2)(p1 − p3)
, (7.44)

$2(z) = −y
2(p2)

y2(z)

(z − p1)(z − p3)

(p2 − p1)(p2 − p3)
, (7.45)

$3(z) = −y
2(p3)

y2(z)

(z − p1)(z − p2)

(p3 − p1)(p3 − p2)
. (7.46)

ψ∗α(z)’s are holomorphic 3
2 -differentials (similar to 1-forms Ω but constructed for the

fermions)

ψ∗α(z) = (z − qα)S(z, qα)
y(qα)

y(z)
, α = 1, 2. (7.47)

A few more quantities are needed to define for the sake of the chiral measure. They
are

f
(1)
3/2(q2) = −∂q2S(q1, q2)

S(q1, q2)
+ ∂ψ∗2(q2), (7.48)

f
(2)
3/2(q1) =

∂q1S(q2, q1)

S(q1, q2)
+ ∂ψ∗1(q1) = f

(1)
3/2(q2)|q1↔q2 , (7.49)

and

$∗1(z) =
y(p1)

y(z)

(zp1 − 1
2(z + p1)(p2 + p3) + p2p3)

(p1 − p2)(p1 − p3)

=
y(p1)

y(z)

[
1 +

1

2
(z − p1)

(
1

p1 − p2
+

1

p1 − p3

)]
, (7.50)

$∗2(z) =
y(p2)

y(z)

(zp2 − 1
2(z + p2)(p3 + p1) + p1p3)

(p2 − p3)(p2 − p1)
, (7.51)

$∗3(z) =
y(p3)

y(z)

(zp3 − 1
2(z + p3)(p1 + p2) + p1p2)

(p3 − p1)(p3 − p2)
. (7.52)
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With all these expressions behind we find the expression of the chiral measure

dµ[δ](τij) =
∏
i≤j

dτij

∫
Σ
d2zZA[δ](τij) (7.53)

which is spin-structure δ and the period matrix τij dependent. The form of A[δ](τij)
is given by

A[δ](τij) = 1 + X1 + X2 + X3 + X4 + X5 + X6 (7.54)

with

X1 + X6 =

[
−〈ψ(q1) · ∂X(q1)ψ(q2) · ∂X(q2)〉

−∂q1G2(q1, q2)∂ψ∗1(q2) + ∂q2G2(q2, q1)∂ψ∗2(q1)

+2G2(q1, q2)∂ψ∗1(q2)f
(1)
3/2(q2)− 2G2(q2, q1)∂ψ∗2(q1)f

(2)
3/2(q1)

]
, (7.55)

X2 = Sδ(q1, q2)
3∑

a=1

∑
α=1,2

$a(qα)〈T (pa)〉, (7.56)

X3 = 2Sδ(q1, q2)×
3∑

a=1

∑
α=1,2

$a(qα)

[
B2(pa) +B3/2(pa)

]
, (7.57)

X4 = 2Sδ(q1, q2)
3∑

a=1

[
∂pa∂q1 lnE(pa, q1)$∗a(q2)

+∂pa∂q2 lnE(pa, q2)$∗a(q1)

]
, (7.58)

X5 =
3∑

a=1

∑
α=1,2

[
Sδ(pa, q1)∂paSδ(pa, q2)

−Sδ(pa, q2)∂paSδ(pa, q1)

]
$a(qα) . (7.59)

In the above we also used the expressions

B2(w) = −2

3∑
a=1

∂pa∂wlnE(pa, w)$∗a(w) , (7.60)

B3/2(w) =

2∑
α=1

(
G2(w, qα)∂qαψ

∗
α(qα) +

3

2
∂qαG2(w, qα)ψ∗α(qα)

)
. (7.61)

The expression T (z) in (7.56) is the total stress tensor [27]

T (z) = −1

2
: ∂zX(z) · ∂zX(z) : +

1

2
: ψ(z) · ∂zψ(z) :

− : (∂bc+ 2b∂c+
1

2
∂βγ +

3

2
β∂γ)(z) :

≡ TX(z) + Tψ(z) + Tbc(z) + Tβγ(z) . (7.62)
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7.4. Ten-derivative terms from two-loop Heterotic string amplitude

It may be noted that the form of the chiral measure can be written in terms of elliptic
genus-2 modular forms according to

dµ[δ](τij) = dµ0[δ](τij) + dµ2[δ](τij) =
∏
i≤j

dτij

∫
Σ
d2zZA[δ](τij) (7.63)

which is spin-structure δ and the period matrix τij dependent. The two distinct pieces
dµ0 and dµ2 contribute differently to the amplitude. Their expressions in genus-2
elliptic format are

dµ0[δ](τij) = Z
∏
i≤j

dτij , (7.64)

dµ2[δ](τij) =
θ[δ](0, τij)

4Ξ6[δ](τij)

16π6χ10(τij)

∏
i≤j

dτij . (7.65)

In the above θ[δ](0, τij) is the genus-two theta functions defined in (7.27), χ10(τij) =∏
δ θ[δ](0, τij)

2 is the weight 10 Sp(4,Z) modular Siegel form (equivalent of j-function
in genus 1 case). Ξ6[δ](τij) is a complicated form of weight 6 which satisfies the
identity∑

δ

θ[δ](0, τij)
4Ξ6[δ](τij) = 2

∑
δ

θ[δ](0, τij)
16 − 1

2
(
∑
δ

θ[δ](0, τij)
8)2. (7.66)

We shall leave the expression of the measure in the elliptic-genus-two format as this
shall make the final form of the amplitude in terms of integration on the fundamental
domain F2 of Sp(4,Z) evident. Furthermore, this form is particularly suitable for
deriving different vanishing identities similar to the Riemann identities in genus-1
case.
in the next section, we shall construct the 4-particle amplitude.

7.4 Ten-derivative terms from two-loop Heterotic string am-
plitude

The needed ingredient for the amplitude computation are the vertex functions which
we take in zero picture

Gravity: V µν
0 (z, z̄) =

2gclosed
l2s

[∂Xµ(z, z̄) + ik.ψ(z)ψµ(z)] ∂̄Xν(z, z̄)eik.X(z,z̄),(7.67)

Gauge: V a,ν
0 (z, z̄) =

2gclosed
l2s

[∂Xν(z, z̄) + ik.ψ(z)ψν(z)] J̄a(z, z̄)eik.X(z,z̄).(7.68)

It should be noted that the chiral projection of measure and partition function also
bring up modifications to the vertex functions which we are neglecting in this anal-
ysis. Before discussing the functional form of the amplitude in functional form, let
us discuss the kinematical factor for the 10 derivative amplitude. The 4-vertices are
contracted according to

<

4∏
i=1

eiαiβiV
αiβi(ki, zi, z̄i) > (7.69)
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Chapter 7. Two loop string amplitude and D2R4 terms in Heterotic string

with eiαiβi the polarization states and ki the momentum to reconstruct the Riemann
tensor for the metric fluctuation or gauge fluctuation according to (5.34)

Rαβγδ =
1

2
[eαγkβkδ − (α↔ β)− (γ ↔ δ) + {(α, γ)↔ (β, δ)}] . (7.70)

We wish to find terms of the form D2R4, D2(R2)2, D2R2F 2, D2F 4 from these ampli-
tudes which are of 10 derivative level. Thus we need to extract momentum order k10.
From the structure of the vertex operators we find that order k4 can be found from
the k.ψ(z)ψµ(z)∂̄Xν(z, z̄)eik.X(z,z̄) piece from four vertices. The rest k4 order can be
retrieved from (compare (5.47) of section 5.2)

4∏
i=1

〈
∫
d2zi
π
eαiβiV

αiβi(pi, zi, z̄i)〉 =

∫ 4∏
i=1

d2zi
π
〈eαiβi∂Xαi ∂̄Xβieip.X(zi)〉 (7.71)

=

∫
d2zi
π

4∏
1≤i<j

eαiβig
αiβie−pi.pj lnE(i,j)/2.

We get the familiar t8 tensor structure from the eαγkβkδ contractions

tijklmnpq = −1

2
εijklmnpq − 1

2
[(gikgjl − gilgjk)(gmpgnq − gmqgnp) (7.72)

+(gkmgln − gknglm)(gpigqj − gpjgqi)
+(gimgjn − gingjm)(gkpglq − gkqglp)]
+

1

2
[gjkglmgnpgqi + gjmgknglpgqi + gjmgnpgkqgil

+45 more terms by anti-symmetrizing on(ij), (kl), (mn), (pq)]

and thus the k8 order gives rise to the t8R4, t8F 4 factors. The rest k2 order is to be
extracted from the exponential part eik.X(z,z̄) expanding upto the first order (the zero
order expansion is in fact the two-loop t8R

4 terms which are zero and thus gets no
quantum correction at two loops). Thus we need to include the contraction

4∑
i=1

∂Xν(z1, z̄1)ki.X(z2, z̄2) = −
4∑
i=1

kµi
z1 − z2

. (7.73)

From the Xi part in the chiral measure (7.55), there is a part ∂X(q1)∂X(q2) which
contracts in fact with ki.X(z2, z̄2) part of the vertices. Thus we shall get the modified
version of (7.73)

4∑
i=1

∂Xν(q)ki.X(zi, z̄i) = −
4∑
i=1

∑
α=1,2

kµi
qα − zi

(7.74)

Thus for two q1,2 one gets for two ∂Xν(q) in (7.73) the following k2 term

∑
α=1,2

4∑
i<j

kµi .k
µ
j

(qα − zi)(qα − zj)
=
s(z1z2 + z3z4) + t(z1z3 + z2z4) + u(z1z4 + z2z3)∏4

i=1(q1 − zi)(q2 − zi)
(7.75)

where we have used the standard definitions of the Mandelstam variable s, t, u

s = −2k1.k2 = −2k3.k4, t = −2k1.k3 = −2k2.k4, u = −2k1.k4 = −2k2.k3. (7.76)
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7.4. Ten-derivative terms from two-loop Heterotic string amplitude

The 2-derivative s, t, u terms with 8-derivative R4 terms are what called D2R4 terms
in literature.

After having described the kinetic form of the amplitude, we shall deal with func-
tional form of the amplitude. To this end, shall need to use various vanishing iden-
tities which are known as Fay’s triscent identities [151] and can be proved in the
elliptic formalism. We shall however take the expressions for these identities from
[137] without proving them.

I1 =
∑
δ

Z[δ]Sδ(q1, z1)Sδ(z1, z2)Sδ(z2, z3)Sδ(z3, z4)Sδ(z4, q2) = 0, (7.77)

I2 =
∑
δ

Z[δ]Sδ(q1, z1)Sδ(z1, z2)Sδ(z2, q2)Sδ(z3, z4)2 = 0, (7.78)

I3 =
∑
δ

Z[δ]Sδ(q1, z1)Sδ(z1, q2)Sδ(z2, z3)Sδ(z3, z4)Sδ(z4, z2) = 0, (7.79)

I4 =
∑
δ

Z[δ]Sδ(q1, q2)Sδ(z1, z2)2Sδ(z3, z4)2 = −2

4∏
i=1

$(zi), (7.80)

I5 =
∑
δ

Z[δ]Sδ(q1, q2)Sδ(z1, z2)Sδ(z2, z3)Sδ(z3, z4)Sδ(z4, z1)

= −2
4∏
i=1

$(zi). (7.81)

An important corollary of the above identities is that the following contraction in
X1 + X6 in (7.55) vanishes

< ψ(q1)ψ(q2)
4∏
i=1

ψ(zi)ψ(zi) >= 0. (7.82)

Another important quantity in the amplitudes will be the fermion stress tensor

ϕ[δ](w; z1, z2) = Sδ(z1, w)∂wSδ(w, z2)− Sδ(z2, w)∂wSδ(w, z1)

=
i

4(w − z1)(w − z2)

3∑
a=1

1

w −Aa
− 1

w −Ba
(7.83)

according to the partition (A1, A2, A3|B1, B2, B3) of branch points corresponding to
the spin-structure (7.30).

For the gauge field SO(32) orE8×E8 we need the corresponding lattice structure
in hyper-elliptic language. In elliptic format, the lattice structure is given by

ΓSO(32) =
1

2

∑
δ

θ[δ]16(0, τij), (7.84)

ΓE8×E8 =
1

2

(∑
δ

θ[δ]8(0, τij)

)(∑
δ

θ[δ]8(0, τij)

)
. (7.85)

In hyper-elliptic format, genus-2 θ functions are given by

θ[δ](0, τij) =
∏
i<j

(ui − uj)(vi − vj) = Q
1/4
δ (7.86)
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where (u1, u2, u3) and (v1, v2, v3) is a partition of the hyperelliptic branch point ac-
cording to spin-structure (7.30). Thus one can use for lattice structure the following
in hyper-elliptic format

ΓSO(32) =
1

2

∑
δ

Q4
δ , (7.87)

ΓE8×E8 =
1

2
(
∑
δ

Q2
δ)(
∑
δ

Q2
δ). (7.88)

In the following subsections we shall evaluate the terms t8trR4, t8trR2trF 2 and
t8trF

4 terms separately from the 8 fermion correlators <
∏4
i=1 e

i
αik.ψ(z)ψαi(z) >

incorporating the pieces A[δ](τij) = 1 + X1 + X2 + X3 + X4 + X5 + X6 in (7.64) and
the matter-ghost correlator Z (7.41) and simplify the terms using the identities (7.77),
(7.78), (7.79), (7.80), (7.81), (7.82) and (7.83) etc. Finally we shall multiply them with
the k2 term (7.75)

4∑
i<j

kµi .k
µ
j

(q − zi)(q − zj)
=
s(z1z2 + z3z4) + t(z1z3 + z2z4) + u(z1z4 + z2z3)∏4

i=1(q1 − zi)(q2 − zi)
(7.89)

along with k4 term from e−ki.kj lnE(i,j)/2 to get the respective t8D2trR4, t8D2trR2trF 2

and t8D2trF 4 terms.

7.4.1 D2t8R
4 term:

Let us begin by the X1 + X6 term (7.55)

X1 + X6 =
1

16π2

[
−〈ψ(q1) · ∂X(q1)ψ(q2) · ∂X(q2)〉

−∂q1G2(q1, q2)∂ψ∗1(q2) + ∂q2G2(q2, q1)∂ψ∗2(q1)

+2G2(q1, q2)∂ψ∗1(q2)f
(1)
3/2(q2)− 2G2(q2, q1)∂ψ∗2(q1)f

(2)
3/2(q1)

]
. (7.90)

The total correlator with 8 fermionic correlators <
∏4
i=1 ψ(zi)ψ(zi) > from the vertex

operators gives us

〈
4∏
i=1

ki · ψ(zi)εi · ψ(zi)〉 = K1(S(z1, z2)Sδ(z3, z4))2

+K1(Sδ(z1, z3)S(z2, z4))2

+K1(Sδ(z1, z4)Sδ(z2, z3))2

+K2Sδ(z1, z2)Sδ(z2, z3)Sδ(z3, z4)Sδ(z4, z1)

+K2Sδ(z1, z3)Sδ(z3, z4)Sδ(z4, z2)Sδ(z2, z1)

+K2Sδ(z1, z4)Sδ(z4, z2)Sδ(z2, z3)Sδ(z3, z1) (7.91)
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where K1 = 1
4K2 and K1, K2 are both constants.

Using this with X1 + X6 we get

∑
δ

Zδ〈(X1 + X6)

4∏
i=1

eiαik.ψ(z)ψαi(z)〉 (7.92)

= −
∑
δ

Zδ〈ψ(q1)ψ(q2)

4∏
i=1

eiαik.ψ(z)ψαi(z)〉〈∂X(q1)∂X(q2)〉

−(∂q1G2(q1, q2) + ∂q2G2(q2, q1))

×
∑
δ

ZδK2Sδ(z1, z2)Sδ(z2, z3)Sδ(z3, z4)Sδ(z4, z1) + permutations

−(∂q1G2(q1, q2) + ∂q2G2(q2, q1))

×
∑
δ

ZδK1(Sδ(z1, z3)S(z2, z4))2 + permutations

+2(G2(q1, q2) +G2(q2, q1))

×
∑
δ

Zδ(∂ψ∗1(q1)Sδ(q1, q2)− ∂q2Sδ(q1, q2))

×K2Sδ(z1, z2)Sδ(z2, z3)Sδ(z3, z4)Sδ(z4, z1) + permutations
+2(G2(q1, q2) +G2(q2, q1))

×
∑
δ

Zδ(∂ψ∗1(q1)Sδ(q1, q2)− ∂q2Sδ(q1, q2))K1(Sδ(z1, z3)S(z2, z4))2 + permutations.

The first term in the above correlator is zero according to (7.82)

< ψ(q1)ψ(q2)

4∏
i=1

ψ(zi)ψ(zi) >= 0. (7.93)

The next lines can be simplified using (7.80) and (7.81) and we get the final expression
for the X1 + X6 part of the k4 amplitude factor

∆1(z1, z2, z3, z4, qα, pa) + ∆6(z1, z2, z3, z4, qα, pa) (7.94)

= K2

 ∑
α=1,2

1

qα − p1

(qα − p2)(qα − p3)

(p1 − p2)(p1 − p3)
+ permutations of pi

 4∏
i=1

$(zi)

×t8
(
trR4 +

1

4
(trR2)2

)
. (7.95)
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We next consider theX5 piece in the chiral measure. Its correlation with 8 fermionic
correlators <

∏4
i=1 ψ(zi)ψ(zi) >gives

X5 <
4∏
i=1

eiαik.ψ(z)ψαi(z) > (7.96)

=
∑
δ

3∑
a=1

Zδϕ[δ](pa; q1, q2)$a(q1, q2)

×K2Sδ(z1, z2)Sδ(z2, z3)Sδ(z3, z4)Sδ(z4, z1) + permutations

+
∑
δ

3∑
a=1

Zδϕ[δ](pa; q1, q2)$a(q1, q2)

×K1(Sδ(z1, z3)S(z2, z4))2 + permutations. (7.97)

Using the expression for the fermionic stress tensor (7.83) however taking care of the
poles as Ai → pa and Bi → qα we get the X5 amplitude factor

∆5(z1, z2, z3, z4, qα, pa) = K2

3∑
a=1

$(q1)$(q2)
∏4
i=1$(zi)

(q1 − pa)(q2 − pa)
× t8

(
trR4 +

1

4
(trR2)2

)
.

(7.98)
We next look at the X4 term (7.58)

X4 = 2Sδ(q1, q2)
3∑

a=1

[
∂pa∂q1 lnE(pa, q1)$∗a(q2) + ∂pa∂q2 lnE(pa, q2)$∗a(q1)

]
(7.99)

which contains Sδ(q1, q2) term inside. The contraction with the 8 fermion term <∏4
i=1 ψ(zi)ψ(zi) > then easily gives us the following by the application of (7.80) and

(7.81)

∆4(z1, z2, z3, z4, qα, pa) (7.100)

= 2K2

3∑
a=1

[
∂pa∂q1 lnE(pa, q1)$∗a(q2) + ∂pa∂q2 lnE(pa, q2)$∗a(q1)

]
4∏
i=1

$(zi)× t8
(
trR4 +

1

4
(trR2)2

)
. (7.101)

For the purpose of simplifying the algebraic computations, we shall use the leading
singular terms in the expression of ∂pa∂q1 lnE(pa, q1)$∗a(q2) etc which shall give

∂pa∂q1 lnE(pa, q1)$∗a(q2) ∼ $∗a(q2)

4(q1 − pa)2
. (7.102)

Thus the expression for the X4 part can be recast in the form

∆4(z1, z2, z3, z4, qα, pa) (7.103)

= 2K2

3∑
a=1

[
$∗a(q2)

4(q1 − pa)2
+

$∗a(q1)

4(q2 − pa)2

]
4∏
i=1

$(zi)× t8
(
trR4 +

1

4
(trR2)2

)
.
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Next piece comes from the X3 part of the chiral measure (7.57) given by

X3 = 2Sδ(q1, q2)×
3∑

a=1

$a(q)

[
B2(pa) +B3/2(pa)

]
(7.104)

where the expressions for B2 and B3/2 are given by

B2(w) = −2
3∑

a=1

∂pa∂wlnE(pa, w)$∗a(w) , (7.105)

B3/2(w) =
2∑

α=1

(
G2(w, qα)∂qαψ

∗
α(qα) +

3

2
∂qαG2(w, qα)ψ∗α(qα)

)
. (7.106)

For the sake of simplicity of the algebra we again use the leading order singularity
of ∂pa∂wlnE(pa, w)$∗a(w) (note that we cannot directly use the approximation (7.102)
as the pas are coincident)

∂pa∂pb lnE(pa, pb)$
∗
a(pb) ∼

y(pb)

y(pa)
. (7.107)

Note that, apparent singularity arising from ∂pa∂pa lnE(pa, pa) is in fact an artefact of
the hyper-elliptic formalism which sets the branch points as ghost insertion point.
One can in principle renormalize those singularities by using appropriate delta func-
tion manipulation. In the elliptic formalism such singularities does not occur and
in fact can be shown in terms of measures dµ0[δ](τij) and dµ2[δ](τij) (7.64) that the
term in question comes about with the measure dµ0[δ](τij) which can be recombined
with pieces coming from X2 and can be recast in terms of dµ2[δ](τij) measure which
allows for further summation identities in terms of genus-two modular functions. In
a similar manner, we can expand B3/2(pa) in the vicinity pa → q1,2 to get

B3/2 =

3∑
a=1

∑
α=1,2

[
3/2

(pa − qα)2
+
∂q$

∗
a(qα)

(pa − qα)

]
−
∑
α=1,2

(
3

2(p1 − qα)2

(qα − p2)(qα − p3)

(p1 − p2)(p1 − p3)
+ permutations of pa

)
.(7.108)

Combining the results from (7.107), (7.108) and using the combination of Sδ(q1, q2)
term of X3 with the 8-fermion correlator and use identities (7.80) and (7.81) to get

∆3(z1, z2, z3, z4, qα, pa) (7.109)

= 2K2


3∑

a=1

∑
α=1,2

(−3

8
)

1

(pa − qα)2
− 1

16
(

3∑
a=1

∑
α=1,2

$∗a(qα)

(pa − qα)
)2

−
∑
α=1,2

1

2

{
1

(qα − p1)2

[
y(p2)

y(p3)
+ 3(qα − p1)

(
1

qα − p2
+

1

qα − p3

)]
× (qα − p2)(qα − p3)

(p1 − p2)(p1 − p3)
+ permutations of pa

}]}
4∏
i=1

$(zi)× t8
(
trR4 +

1

4
(trR2)2

)
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Finally we compute the X2 piece whose expression we rewrite for convenience (7.56)

X2 = Sδ(q1, q2)

3∑
a=1

$a(q)〈T (pa)〉 (7.110)

with the total stress tensor

T (z) = −1

2
: ∂zX(z) · ∂zX(z) : +

1

2
: ψ(z) · ∂zψ(z) :

− : (∂bc+ 2b∂c+
1

2
∂βγ +

3

2
β∂γ)(z) :

≡ TX(z) + Tψ(z) + Tbc(z) + Tβγ(z) . (7.111)

Similar to the case of X3 and X4 we also expand the individual stress tensors in the
limit pa → q1,2 to get the following (hiding once more the singular terms)

TX(pa) ∼
∑
α=1,2

−1

4(pa − qα)2
, (7.112)

Tψ(pa) ∼
∑
α=1,2

5

8(pa − qα)2
− 5

32

∂ψ∗1(qα)

pa − qα
, (7.113)

Tbc(pa) ∼
5

16

∑
α=1,2

1

(pa − qα)

2

− 9

8

∑
α=1,2

1

(pa − qα)2
+
∑
α=1,2

$∗a(qα)

(qα − pa)2
,(7.114)

Tβγ(pa) ∼ −
∑
α=1,2

3/2

(pa − qα)2
− ∂ψ∗1(qα)

pa − qα
− 1

8

∑
α=1,2

1

(pa − qα)

2

. (7.115)

Once again combining Sδ(q1, q2) term of X3 with the 8-fermion correlator and use
identities (7.80) and (7.81) with the expressions of stress tensors (7.112) above we get

∆2(z1, z2, z3, z4, qα, pa) (7.116)

= 2K2


3∑

a=1

∑
α=1,2

(−33

16
)

1

(pa − qα)2
+ (

3∑
a=1

∑
α=1,2

$∗a(qα)

(pa − qα)
)2 − 37

32

∂ψ∗1(qα)

pa − qα

+
∑
α=1,2

3

16

{
1

(qα − p1)2

[
1 + 3(qα − p1)

(
1

qα − p2
+

1

qα − p3

)]
× (qα − p2)(qα − p3)

(p1 − p2)(p1 − p3)
+ permutations of pa

}]}
4∏
i=1

$(zi)× t8
(
trR4 +

1

4
(trR2)2

)

The final amplitude factor will be the sum of the factors
∑6

j=1 ∆j from (7.94),
(7.116), (7.109), (7.103) and (7.98) times the k4 factor from the term

∏4
i<j=1 e

−ki.kj lnE(zi,zj)

times s(z1z2+z3z4)+t(z1z3+z2z4)+u(z1z4+z2z3)∏4
i=1(q1−zi)(q2−zi)

term to get

A(R) = K2
s(z1z2 + z3z4) + t(z1z3 + z2z4) + u(z1z4 + z2z3)∏4

i=1(q1 − zi)(q2 − zi)

4∏
i<j=1

e−ki.kj lnE(zi,zj)
6∑
j=1

∆j .

(7.117)
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7.4. Ten-derivative terms from two-loop Heterotic string amplitude

This term should then be integrated over all vertex positions zi, i = 1 · · · 4 and then
incorporating the integration over Sp(4,Z) fundamental domain F2 and the integra-
tion over genus-two world-sheet Σ with measure

dµ =

∏3
a=1 d

2pa|q1 − q2|2
|(p1 − p2)(p2 − p3)(p1 − p3)|2∏3

a=1

∏2
α=1 |pa − qα|2

(7.118)

to get the final amplitude

∆(D2R4)

= K2

∫
F2

|
∏
I<J

dτIJ |2
∫

Σ
dµ

4∏
i=1

d2zi
s(z1z2 + z3z4) + t(z1z3 + z2z4) + u(z1z4 + z2z3)∏4

i=1(q1 − zi)(q2 − zi)

e−
∑
i<j ki.kj lnE(zi,zj)

6∑
j=1

∆j × t8
(
trR4 +

1

4
(trR2)2

)
. (7.119)

In the above we have written the tensor structure t8
(
trR4 + 1

4(trR2)2
)

explicitly from
∆i.

7.4.2 D2trF 4 term:

We shall closely follow the expressions of various pieces of Xi from the previous
subsection now to calculate the pure gauge amplitude for which we have to use the
vertex

V a,ν
0 (z, z̄) =

2gclosed
l2s

[∂Xν(z, z̄) + ik.ψ(z)ψν(z)] J̄a(z, z̄)eik.X(z,z̄). (7.120)

Once again, we shall try to evaluate the amplitude on 10 order of momentum the k4

order of which is found from the 8 fermion correlator<
∏4
i=1 ψ(zi)ψ(zi)J̄(zi) >. This

correlator can be expanded in terms of Szegö kernel as

〈
4∏
i=1

ki · ψ(zi)εi · ψ(zi)J̄(zi)〉 = C1(1, 2)C1(3, 4)(S(z1, z2)Sδ(z3, z4))2 (7.121)

+C1(1, 3)C1(2, 4)(Sδ(z1, z3)S(z2, z4))2

+C1(1, 4)C1(2, 3)(Sδ(z1, z4)Sδ(z2, z3))2

+C2Sδ(z1, z2)Sδ(z2, z3)Sδ(z3, z4)Sδ(z4, z1)

+C2Sδ(z1, z3)Sδ(z3, z4)Sδ(z4, z2)Sδ(z2, z1)

+C2Sδ(z1, z4)Sδ(z4, z2)Sδ(z2, z3)Sδ(z3, z1)

where
C1(1, 2) =

1

2
tr(T a1T a2), C2 = −tr(T a1T a2T a3T a4), (7.122)

with T a1 being the representation matrices of either SO(32) or E8×E8. Note that we
also have to use the gauge lattices Γ16 (7.87), (7.88) into the amplitude factors

ΓSO(32) =
1

2

∑
δ

Q4
δ , (7.123)

ΓE8×E8 =
1

2
(
∑
δ

Q2
δ)(
∑
δ

Q2
δ). (7.124)
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Their incorporation hinders the application of the identities (7.80) and (7.81). We thus
need the following functions (according to [137])

F 2,2
4 (z1, z2; z3, z4) =

∑
δ

Sδ(q1, q2)Q4
δ(Sδ(z1, z2)Sδ(z3, z4))2, (7.125)

F 4
4 (z1, z2, z3, z4) =

∑
δ

Sδ(q1, q2)Q4
δSδ(z1, z2)Sδ(z2, z3)Sδ(z3, z4)Sδ(z4, z1),

(7.126)

F 2
2 (z1, z2) =

∑
δ

Sδ(q1, q2)Q2
δS(z1, z2)2. (7.127)

The first two functions (7.125) and (7.126) are to be used for SO(32) gauge theory
where as the last one (7.127) for the E8 ×E8 gauge group. Thus in the expressions of
the amplitude factors (7.94), (7.116), (7.109), (7.103) and (7.98) of the previous subsec-
tion, we need to replace

∏4
i=1$(zi)× t8

(
trR4 + 1

4(trR2)2
)

factor by

F 4 =
(
C1(1, 2)C1(3, 4)F 2,2

4 (z1, z2; z3, z4) + permutations zi
)

(trF 2)2

+
(
C2F

4
4

)
trF 4 (7.128)

for SO(32) case and by

F 4 =
(
C1(1, 2)C1(3, 4)F 2

2 (z1, z2)F 2
2 (z3, z4) + permutations zi

)
[(trF 2

1 )2 + (trF 2
2 )2]

+
(
C1(1, 2)C1(3, 4)F 2

2 (z1, z2)F 2
2 (z3, z4) + permutations zi

)
(trF 2

1 )(trF 2
2 )

(7.129)

forE8×E8. We shall call these termsF 4 collectively. The rest k4×k2 order momentum
can be retrieved from the exponential factor

∏4
i<j=1 e

−ki.kj lnE(zi,zj). The total k8 order
shall be used for the t8F 4 factor. For convenience, we repeat here the ∆i amplitude
factors following the previous subsection.

∆1(z1, z2, z3, z4, qα, pa) + ∆6(z1, z2, z3, z4, qα, pa) (7.130)

=

 ∑
α=1,2

1

qα − p1

(qα − p2)(qα − p3)

(p1 − p2)(p1 − p3)
+ permutations of pi

 t8F 4. (7.131)

∆2(z1, z2, z3, z4, qα, pa) (7.132)

= 2


3∑

a=1

∑
α=1,2

(−33

16
)

1

(pa − qα)2
+ (

3∑
a=1

∑
α=1,2

$∗a(qα)

(pa − qα)
)2 − 37

32

∂ψ∗1(qα)

pa − qα

+
∑
α=1,2

3

16

{
1

(qα − p1)2

[
1 + 3(qα − p1)

(
1

qα − p2
+

1

qα − p3

)]
× (qα − p2)(qα − p3)

(p1 − p2)(p1 − p3)
+ permutations of pa

}]}
t8F

4.
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∆3(z1, z2, z3, z4, qα, pa) (7.133)

= 2


3∑

a=1

∑
α=1,2

(−3

8
)

1

(pa − qα)2
− 1

16
(

3∑
a=1

∑
α=1,2

$∗a(qα)

(pa − qα)
)2

−
∑
α=1,2

1

2

{
1

(qα − p1)2

[
y(p2)

y(p3)
+ 3(qα − p1)

(
1

qα − p2
+

1

qα − p3

)]
× (qα − p2)(qα − p3)

(p1 − p2)(p1 − p3)
+ permutations of pa

}]}
t8F

4.

∆4(z1, z2, z3, z4, qα, pa) = 2

3∑
a=1

[
$∗a(q2)

4(q1 − pa)2
+

$∗a(q1)

4(q2 − pa)2

]
t8F

4. (7.134)

∆5(z1, z2, z3, z4, qα, pa) =
3∑

a=1

$(q1)$(q2)

(q1 − pa)(q2 − pa)
t8F

4. (7.135)

The final amplitude will be

∆(D2F 4)

=

∫
F2

|
∏
I<J

dτIJ |2
∫

Σ
dµ

4∏
i=1

d2zi
s(z1z2 + z3z4) + t(z1z3 + z2z4) + u(z1z4 + z2z3)∏4

i=1(q1 − zi)(q2 − zi)

e−
∑
i<j ki.kj lnE(zi,zj)

6∑
j=1

∆jt8F
4. (7.136)

Once again, we have written the tensor structure t8F 4 explicitly from ∆i.

7.4.3 D2R2F 2 term:

The last thing we need to compute is the mixed gauge-gravity part D2R2F 2. The
analysis of the two previous subsections will be used except for the fact that the 8
fermion contraction term <

∏4
i=1 ψ(zi)ψ(zi) > shall now contain 4 fermions coming

from 2 graviton vertices and the rest comes from 2 gauge vertices. We shall thus have
the k4 order 8 fermion contraction

<
2∏
i=1

ψ(zi)ψ(zi) ><
2∏
j=1

ψ(zj)ψ(zj)J̄(zj) >= (7.137)

K1C1(z3, z4)Sδ(z1, z2)2Sδ(z3, z4)2 + permutations of zi

This contraction shall give us k4 order in momentum. Combining the Sδ(z1, z2)2Sδ(z3, z4)2

factor of the Szegö kernel, we shall use the function F 2,2
4 (7.125)

F 2,2
4 (z1, z2; z3, z4) =

∑
δ

Sδ(q1, q2)Q4
δ(Sδ(z1, z2)Sδ(z3, z4))2 (7.138)
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for trR2trF 2 term in case of SO(32) gauge group. For the E8 × E8 gauge group we
shall use function F 2

2 (7.127) for each of the E8 factor

F 2
2 (z1, z2) =

∑
δ

Sδ(q1, q2)Q2
δS(z1, z2)2. (7.139)

From these we shall have the following mix gauge-gravity term

R2F 2 =
(
C1(1, 2)C1(3, 4)F 2,2

4 (z1, z2; z3, z4) + permutations zi
)

(trR2trF 2) (7.140)

for SO(32) case and

R2F 2 =
(
C1(1, 2)C1(3, 4)F 2

2 (z1, z2)F 2
2 (z3, z4) + permutations zi

)
[(trF 2

1 )+(trF 2
2 )]trR2.
(7.141)

We shall call the above terms collectively R2F 2. One point of interest needs special
mention. One can in principle, combine one S(z1, z2)2 piece withQ2

δ orQ4
δ and multi-

ply the rest Sδ(z3, z4)2 factor withZ[δ] to get the spin-structure sum
∑

δ Z[δ]Sδ(z3, z4)2×∑
δ Qδ which is identically zero. Thus the above (7.140) and (7.141) are the only non-

trivial R2F 2 forms. This is however different in genus one case.
From the above contractions we get k4 order in momentum. The rest k4×k2 order

momentum can be retrieved from the exponential factor
∏4
i<j=1 e

−ki.kj lnE(zi,zj). The
total k8 order shall be used for the t8trR2trF 2 factor. As in case of F 4, the amplitude
factors (7.94), (7.116), (7.109), (7.103) and (7.98) of the pure gauge amplitude, we need
to replace

∏4
i=1$(zi) × t8

(
trR4 + 1

4(trR2)2
)

factor by R2F 2. We give the amplitude
factors once again for convenience.

∆1(z1, z2, z3, z4, qα, pa) + ∆6(z1, z2, z3, z4, qα, pa) (7.142)

=

 ∑
α=1,2

1

qα − p1

(qα − p2)(qα − p3)

(p1 − p2)(p1 − p3)
+ permutations of pi

 t8R2F 2. (7.143)

∆2(z1, z2, z3, z4, qα, pa) (7.144)

= 2


3∑

a=1

∑
α=1,2

(−33

16
)

1

(pa − qα)2
+ (

3∑
a=1

∑
α=1,2

$∗a(qα)

(pa − qα)
)2 − 37

32

∂ψ∗1(qα)

pa − qα

+
∑
α=1,2

3

16

{
1

(qα − p1)2

[
1 + 3(qα − p1)

(
1

qα − p2
+

1

qα − p3

)]
× (qα − p2)(qα − p3)

(p1 − p2)(p1 − p3)
+ permutations of pa

}]}
t8R

2F 2.
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∆3(z1, z2, z3, z4, qα, pa) (7.145)

= 2


3∑

a=1

∑
α=1,2

(−3

8
)

1

(pa − qα)2
− 1

16
(

3∑
a=1

∑
α=1,2

$∗a(qα)

(pa − qα)
)2

−
∑
α=1,2

1

2

{
1

(qα − p1)2

[
y(p2)

y(p3)
+ 3(qα − p1)

(
1

qα − p2
+

1

qα − p3

)]
× (qα − p2)(qα − p3)

(p1 − p2)(p1 − p3)
+ permutations of pa

}]}
t8R

2F 2.

∆4(z1, z2, z3, z4, qα, pa) = 2

3∑
a=1

[
$∗a(q2)

4(q1 − pa)2
+

$∗a(q1)

4(q2 − pa)2

]
t8R

2F 2. (7.146)

∆5(z1, z2, z3, z4, qα, pa) =
3∑

a=1

$(q1)$(q2)

(q1 − pa)(q2 − pa)
t8R

2F 2. (7.147)

The final amplitude will be

∆(D2F 4)

=

∫
F2

|
∏
I<J

dτIJ |2
∫

Σ
dµ

4∏
i=1

d2zi
s(z1z2 + z3z4) + t(z1z3 + z2z4) + u(z1z4 + z2z3)∏4

i=1(q1 − zi)(q2 − zi)

e−
∑
i<j ki.kj lnE(zi,zj)

6∑
j=1

∆jt8R
2F 2 (7.148)

where we have written the tensor structure t8R2F 2 explicitly from ∆i.

7.5 Discussion of the result

We would like to compare our results with the one from elliptic formalism [137].
Below we give those expressions. For pure gravity part we have

AR4 = K

∫
F2

|∏I<J dτIJ |2
(detImτ)5χ10(τij)

∫
Σ
WR4YSe

−
∑
i<j ki.kjG(zi,zj) (7.149)

whereWR4 =
<
∏4
i=1 ∂X(zi)e

ik.X(zi)>∏4
i=1 e

ik.X(zi)
andG(i, j) the scalar Green’s function< X(zi)X(zj) >∼

ln|E(zi, zj)|2. The expression for YS is given by

3YS = (k1 − k2).(k3 − k4)∆(z1, z2)∆(z1, z2) (7.150)
+ zipermutations,

with ∆(x, y) = ω1(x)ω2(y) − ω1(y)ω2(x) , the ωi being the canonical Abelian 1-form
defined in (7.25).

For the pure gauge part, we find

AF 4 = K

∫
F2

|∏I<J dτIJ |2
(detImτ)5χ10(τij)

∫
Σ
WF 4YSe

−
∑
i<j ki.kjG(zi,zj) (7.151)
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where the WF 4 term is similar to F 4 terms in our convention (7.128), (7.129). Finally
the mixed gauge-gravity part is

AR2F 2 = K

∫
F2

|∏I<J dτIJ |2
(detImτ)5χ10(τij)

∫
Σ
WR2WF 2YSe

−
∑
i<j ki.kjG(zi,zj) (7.152)

with WF 2 = C1F
2
2 in our convention (7.127) and WR2 ∼ ∂z∂wE(z, w). Compar-

ing these results with our computation, we see that the factor YS corresponds to the
factor s(z1z2+z3z4)+t(z1z3+z2z4)+u(z1z4+z2z3)∏4

i=1(q1−zi)(q2−zi)
of our computations. Also the integral mea-

sures are corresponding. The difference is in the exponential factor e−
∑
i<j ki.kjG(zi,zj)

which is different from our e−
∑
i<j ki.kj lnE(zi,zj). However this term is accompanied

by
∑6

i=1 ∆i and one might expect that the expansion of e−
∑
i<j ki.kjG(zi,zj) might cor-

respond to our computations. Such a comparison is however very difficult and has
been shown to be a little different for type II two-loop amplitudes. We thus also
expect to find differences with our expression from that of the elliptic formalism.
Plus we remind ourselves that the hyper-elliptic formalism needs to select the branch
points as the ghost insertion points which give rise to certain artificial singularities
which we have neglected for the sake of simplicity of algebra. This thing should
account for the difference in elliptic and hyper-elliptic results.
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Conclusion

In the core of this thesis, we have explored the intricacies of the string amplitude
computations in order to find the quantum corrections to the super-string effective
action. Such corrections prove to be moduli stabilizing elements of the effective ac-
tions, that is, they provide for terms which generate mass for the massless scalars of
the string dynamics in semi-compact space-time. Our point of view to study such
corrections was to find their correlation with the supergravity anomaly cancelling
terms. Our principal discovery in this work is to unravel the potential of compos-
ite connection in supergravity and curing the anomaly it generates due to chirally
charged fermions of the theory. Composite connection engenders the class of dis-
crete anomaly, the counter-term of which is essentially furnished by string theory
when the supergravity theory in question does have stringy origin, or in other words,
if it is not stuck in the swampland. Such conditions are mathematically characterized
by tadpole constraints, in which, the composite connection of the moduli coset space
plays the key role. These quantum corrections are promising candidates for delving
in deep into the non-perturbative structure of F- and M-theory which we intend to
study in future.

We have also ventured into the (much)uncharted waters of two-loop string am-
plitude in hyper-elliptic format using the novel method of chiral projection of string
measure. Though our result does not allow for much simplification and is not quite
illuminating in form, it paves the way for study of order 5 (F 5) and order 6 (F 6)
gauge amplitude which might provide for correction terms to D-brane Born-Infeld
action. We thus intend to carry these calculations in near future having the works
presented here as a prelude.
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Appendix A

Characteristic classes and Index
polynomials

In this appendix we summarise the necessary definitions of the characteristic classes
and index polynomials which have been used extensively for the purpose of com-
puting anomaly and determining the massless spectrum in Kaluza-Klein reduction.

Let us first start by defining the Chern class and Chern character for a complex
holomorphic vector bundleGL(k,C) with k×k matrix curvature form F. By a suitable
GL(k,C) transformation, F may be brought to the diagonal form

i

2π
F = diag(x1, · · · , xk). (A.1)

Then the total Chern class c = c1 + c2 + · · · + ck is defined as the cohomology class
c ∈ H0 +H1 +H2 + · · ·+H2k as

c(V ) = det

(
1 +

i

2π
F

)
=

k∏
i=1

(1 + xk). (A.2)

Thus we get for example

c1(V ) =
i

2π
TrcF, (A.3)

c2(V ) =
1

8π2

(
TrcF

2 − (TrcF )2
)
, (A.4)

c3(V ) =
i

48π3

(
−2TrcF

3 + 3TrcFTrcF
2 − (TrcF )3

)
, (A.5)

· · · (A.6)

The Chern character is defined as

ch(F ) = Trc exp

(
i

2π
F

)
=

k∑
i=1

exi =

k∑
r=1

(i)r

r!(2π)r
TrcF

r. (A.7)

In all of the above, the Trc denotes the complex trace. We now consider the case
of real vector bundle E with curvature R which is a real anti-symmetric matrix ∈
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GL(n,R) valued form. R can be brought to a skew-diagonal form

R

2π
=


0 y1 0 · · · 0
−y1 0 0 · · · 0

0 0
. . . 0 0

0 0 · · · 0 yn
0 0 · · · −yn 0

 . (A.8)

Now we define the total Pontrjagin class

p(R) = det

(
1 +

R

2π

)
=

n∏
i

(1 + y2
i ) =

n∑
i=1

pn. (A.9)

From this we find

p1(E) = − 1

8π2
TrR2, (A.10)

p2(E) =
1

(2π)4

(
1

8
(TrR2)2 − TrR4

)
, (A.11)

· · · (A.12)

For the real bundle E, one can define its complexification by

EC = E ⊗ C ≡ V. (A.13)

Then one can write the Pontrjagin classes in terms of Chern classes as

(−1)jpj(E) =

2j∑
l=0

(−1)lcl(V )c2j−l(V ), (A.14)

that is,

p1(E) = c2
1(V )− 2c2(V ), (A.15)

p2(E) = c2
2(V )− 2c1(V )c3(V ) + 2c4(V ), (A.16)

· · · (A.17)

Note that in case of real bundle "Tr" are real traces. Now we define following poly-
nomials on real bundles

1. Hirzebruch L-sequence:

L̂(E) =
n∏
j=1

yj
tanhyj

(A.18)

= 1 +
1

3
p1 + (− 1

45
p2

1 +
7

45
p2) (A.19)

+(
2

945
p3

1 −
13

945
p1p2 +

62

945
p3) + · · ·

= 1− 1

6 (2π)2
trR2 +

1

(2π)4

(
− 7

180
trR4 +

1

72
(trR2)2

)
(A.20)

+
1

(2π)6

(
− 31

2835
trR6 +

7

1080
trR4 trR2 − 1

1296
(trR2)3

)
+ · · ·
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2. A-roof genus:

Â(E) =
n∏
j=1

yj/2

sinh(yj/2)
(A.21)

= 1− 1

24
p1 +

1

24
(

7

360
p2

1 +
1

90
p2) (A.22)

+
1

26
(
−31

15120
p3

1 +
11

3780
p1p2 −

1

945
p3) + · · ·

= 1 +
1

12 (4π)2
trR2 +

1

(4π)4

[
1

360
trR4 +

1

288
(trR2)2

]
(A.23)

+
1

(4π)6

[
1

5670
trR6 +

1

4320
trR4 trR2 +

1

10368
(trR2)3

]
+ · · ·
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Modular functions

In this appendix we provide the definitions of modular functions used through out
this work e.g. Jacobi θ functions, Dedekind eta function and Eisenstein series along
with useful identities relating them that we have used in the calculations.
Our convention for the θ function is

θ [ab] (ν|τ) =
∑
n∈Z

q(1/2)(n−a/2)2
e2πi(ν−b/2)(n−a/2), (B.1)

where a,b are real and q = e2πiτ .
We note θ1 = θ [11], θ2 = θ [10], θ3 = θ [00] and θ4 = θ [01].
Next we list different periodicity properties and modular transformations of the θ
functions (a, b ∈ Z):

θ
[
a+2
b

]
(ν|τ) = θ [ab] (ν|τ), (B.2)

θ [ a
b+2] (ν|τ) = eiπaθ [ab] (ν|τ),

θ
[−a
−b
]

(ν|τ) = θ [ab] (−ν|τ),

θ [ab] (−ν|τ) = eiπabθ [ab] (ν|τ),

θ [ab] (ν|τ + 1) = e−(iπ/4)a(a−2)θ [ a
a+b−1] (ν|τ),

θ [ab] (ν/τ | − 1/τ) =
√
−iτe(iπ/2)ab+iπν2/τθ

[
b
−a
]

(ν|τ).

We are now in position to define the Dedekind η-function:

η(τ) = q1/24
∞∏
n=1

(1− qn), (B.3)

satisfying
η(−1/τ) =

√
−iτη(τ). (B.4)

Some useful relations between the Jacobi θ-functions and the η-function are

θ2(0|τ)θ3(0|τ)θ4(0|τ) = 2η3, (B.5a)

θ12
3 − θ12

2 − θ12
4 = 48η12, (B.5b)

θ4
2 + θ4

4 − θ4
3 = 0. (B.5c)
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Now we summarise the definitions of the Eisenstein series and Leech j function

Ê2 = 1− 3

πτ2
− 24

∞∑
n=1

nqn

1− qn , (B.6a)

E4 =
1

2

4∑
a=2

θ8
a = 1 + 240

∞∑
n=1

n3qn

1− qn , (B.6b)

E8 = E2
4 =

1

2

4∑
a=2

θ16
a = 1 + 480

∞∑
n=1

n7qn

1− qn , (B.6c)

E6 =
1

2
(θ4

2 + θ4
3)(θ4

3 + θ4
4)(θ4

4 − θ4
2) = 1− 504

∞∑
n=1

n5qn

1− qn , (B.6d)

j =
E3

4

η24
=

1

q
+ 744 + · · · (B.6e)

In the process of "gauging" the elliptic genus, we shall extensively use the follow-
ing identities

θ2(ν|τ)

θ2(0|τ)
= exp

{ ∞∑
k=1

(2πi)2kB2kν
2k

(2k + 1)!− (2k)!

[
E2k(q)− 22kE2k(q

2)
]}

(B.7a)

θ3(ν|τ)

θ3(0|τ)
= exp

{ ∞∑
k=1

(2πi)2kB2kν
2k

(2k + 1)!− (2k)!
[E2k(q)− E2k(−

√
q)]

}
(B.7b)

θ4(ν|τ)

θ4(0|τ)
= exp

{ ∞∑
k=1

(2πi)2kB2kν
2k

(2k + 1)!− (2k)!
[E2k(q)− E2k(

√
q)]

}
(B.7c)

where Bk are the Bernoulli numbers: B2 = 1/6, B4 = −1/30, B6 = 1/42 and we
shall use the following combinations f1, f2, f3 in the elliptic genus

f1 = 4E2(q2)− 2E2(q) = θ4
3 + θ4

4, (B.8a)

f2 = E2(−√q)− 2E2(q) = θ4
2 − θ4

4, (B.8b)

f3 = E2(
√
q)− 2E2(q) = −θ4

2 − θ4
3. (B.8c)

E4(q)− 16E4(q2) = 5(E4(q)2 − f2
1 ) = −15θ4

3θ
4
4, (B.9a)

E4(q)− E4(−√q) = 5(E4(q)2 − f2
2 ) = 15θ4

2θ
4
4, (B.9b)

E4(q)− E4(
√
q) = 5(E4(q)2 − f2

3 ) = −15θ4
2θ

4
3. (B.9c)
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There are various summation identities involving the Eisenstein series and f1, f2, f3

which will be useful in the computation of the partition function

1

2

4∑
a=2

θa(0|τ)16fa−1 = −E4E6, (B.10a)

1

2

4∑
a=2

θa(0|τ)16f2
a−1 = E3

4 − 2732η24 = 2E2
6 − E3

4 , (B.10b)

1

2

4∑
a=2

θa(0|τ)8fa−1 = −E6, (B.10c)

1

2

4∑
a=2

θa(0|τ)8f2
a−1 = E2

4 , (B.10d)

4∑
a=2

θa(0|τ)16 = 2θ8
3θ

8
4 + 2θ8

2θ
8
4 + 2θ8

2θ
8
3, (B.11a)

4∑
a=2

θa(0|τ)16(Ê2 + fa−1) = θ8
3θ

8
4(2Ê2 + f2 + f3) (B.11b)

+ θ8
2θ

8
4(2Ê2 + f1 + f3) + θ8

2θ
8
3(2Ê2 + f1 + f2),

4∑
a=2

θa(0|τ)16(Ê2 + fa−1)2 = 2θ8
3θ

8
4(Ê2 + f2)(Ê2 + f3) (B.11c)

+ 2θ8
2θ

8
4(Ê2 + f1)(Ê2 + f3)

+ 2θ8
2θ

8
3(Ê2 + f1)(Ê2 + f2) + 2832η24,

= θ8
3θ

8
4

(
(Ê2 + f2)2 + (Ê2 + f3)2

)
(B.11d)

+ θ8
2θ

8
4

(
(Ê2 + f1)2 + (Ê2 + f3)2

)
+ θ8

2θ
8
3

(
(Ê2 + f1)2 + (Ê2 + f2)2

)
− 2932η24.

For the pure gauge part there are very remarkable trivial identities

1

283η24

(
−θ16

2 θ
4
3θ

4
4 + θ16

3 θ
4
2θ

4
4 − θ16

4 θ
4
2θ

4
3

)
= 1, (B.12)

θ8
2θ

8
3

283η24

(
−θ4

3θ
4
4 + θ4

2θ
4
4

)
= −1

3
,

θ8
3θ

8
4

283η24

(
+θ4

2θ
4
4 − θ4

2θ
4
3

)
= −1

3
,

θ8
2θ

8
4

283η24

(
−θ4

3θ
4
4 − θ4

2θ
4
3

)
= −1

3
.
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Then we enlist the q-expansions of the different modular functions used in the
elliptic genus

E4

η24

4∑
a=2

θa(0|τ)16 =
2

q
+ 1488 +O(q),

E4

η24
θ8

3θ
8
4 =

1

q
+ 232 +O(q)

(B.13)
E4

η24
θ8

2θ
8
3 = 256 +O(

√
q),

E4

η24
θ8

2θ
8
4 = 256 +O(

√
q),

E2
2

η24

4∑
a=2

θa(0|τ)16 =
2

q
+ 912 +O(q),

E2
2

η24
θ8

3θ
8
4 =

1

q
− 56 +O(q)

E4

η24
θ8

2θ
8
3 = 256 +O(

√
q),

E4

η24
θ8

2θ
8
4 = 256 +O(

√
q),

1

η24

4∑
a=2

θa(0|τ)16(Ê2 + fa−1)2 = 1152 +O(q),
θ8

3θ
8
4

η24

(
(Ê2 + f2)2 + (Ê2 + f3)2

)
= 1152 +O(q),

θ8
2θ

8
4

η24

(
(Ê2 + f1)2 + (Ê2 + f3)2

)
= 2304 +O(

√
q),

θ8
2θ

8
3

η24

(
(Ê2 + f1)2 + (Ê2 + f2)2

)
= 2304 +O(

√
q),

E2

η24

4∑
a=2

θa(0|τ)16(E2 + fa−1) = 1440 +O(q),
E2

η24
θ8

3θ
8
4(2Ê2 + f2 + f3) = −96 +O(q),

E2

η24
θ8

2θ
8
3(2Ê2 + f1 + f2) = O(

√
q),

E2

η24
θ8

2θ
8
4(2Ê2 + f1 + f3) = O(

√
q).

We now briefly discuss the large volume and decompactification limits. The
large volume limit in case of a T 2 compactification means taking the torus volume
VT 2 → ∞. However the complex structure U = U1 + iU2 remains fixed. We recall
that the compact space-time torus is formed by compactifying the 8th and 9th space
dimensions for which we have the following metric

Gij =

(
g88 g89

g89 g99

)
=

V

U2

(
1 U1

U1 |U |2
)
. (B.14)

In the decompactification limit, we will take VT 2 → ∞ and moreover impose or-
thonormality of the 8th and the 9th directions, i.e.

U2 =
V

g88
→ 1 , U1 =

g89

g88
→ 0 . (B.15)

A useful summary of the q-expansion and the relevant limits of the different modular
functions of T and U that have been used in expressions for the higher-derivative
couplings given below:

log|η(T )|2 = −πT2

6
− [θ(T ) + θ̄(T̄ )], (B.16)

θ(τ) = q +
3q2

2
+ · · · , q = e2iπτ , (B.17)

lim
τ→i∞

θ(τ) = 0, lim
V→∞

log|η(T )|2 = −πT2

6
, (B.18)

log
η(T )

η̄(T̄ )
=

iπT1

6
− [θ(T )− θ̄(T̄ )], (B.19)

lim
V→∞

(
log

η(T )

η̄(T̄ )
− iπT1

6

)
= 0. (B.20)
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Titre : Autour de Supergravité par l’Anomalie Composée et l’Amplitude en Théorie de Cordes

Mots clefs : QFT Anomalie, Supergravité, Amplitude en théorie de cordes

Résumé : Dans ce projet de thèse, nous étudions le
rôle joué par l’anomalie dû à la connexion composée
dans les théories de supergravités dans l’espace-temps
à huit dimensions. Ce genre d’anomalie est en effet en-
gendrée par la structure quotient d’espace des champs
moduli de la supergravité là où le nombre des super-
charges posent des contraintes rigoureux. Notre accom-
plissement principal est de proposer des termes supplé-
mentaires pour annuler cette anomalie dans la théorie
de supergravité en huit dimensions avec seize super-
charges. Ces termes, en outre, peuvent être considérés
comme une manifestation des corrections provenant de
la théorie de super-cordes et nous montrons par des cal-
culs explicites qu’une amplitude sur une boucle dans
la théorie de cordes correspondante reproduit ces ter-
mes. Motivés par cette démonstration de la cohérence

entre la supergravité et la théorie de cordes, nous pro-
posons un seuil mathématique pour la compactification
de ces théories dans huit dimensions vers six dimensions
sur une sphère en présence des branes de co-dimension
2. Ceci est une simulation de compactification sur une
surface K3 à l’aide des branes. Nous montrons que la
présence d’anomalie composée ne peut être justifiée que
par des branes de co-dimensions deux. Nous discutons
la dualité entre la théorie Heterotic et la théorie-F sous la
lumière de 7-branes et puis la compactification des su-
pergravités de dix dimensions sur K3 en présence des
5-branes. Tous cela nous ouvrent nouvelles voies pour
étudier des aspects non-perturbatives de la théorie de
cordes. Nous concluons avec un calcul sur deux boucles
dans la théorie de cordes Heterotic de dix dimensions
qui n’était pas beaucoup exploré dans la littérature.

Title : Composite Anomaly in Supergravity and String Amplitude Comparison

Keywords : QFT Anomaly, Supergravity, String Amplitude

Abstract : We examine the structure of composite
anomaly in maximal and half-maximal supergravity
theories especially in eight space-time dimensions. The
number of super-charges dictates the structure of the
coset space of the moduli fields of the theory which in
turn engenders the composite anomaly in such theo-
ries. Our main achievement lies in proposing counter-
terms for such anomalies. These terms are of stringy
nature and we show by explicit 1-loop amplitude cal-
culations in corresponding string theories that those
counter-terms are consistently provided by string am-
plitude. In the light of non-perturbative higher di-
mensional theories like F-theory, the anomaly cancelling

counter-terms are seen to be related to co-dimension two
branes e.g. 7-branes. We then use these results of 8-
dimensional theories to provide for supergravity theo-
ries in six-dimensions by compactifying on a sphere in
the presence of 5-branes. This is in fact a simulation
of K3 compactification and our knowledge of compos-
ite connection provide us with threshold conditions to
achieve such compactifications. All these analysis pro-
vide for greater insight into the non-perturbative regime
of string theory. We then conclude with a calculation of
2-loop Heterotic string amplitude which has been very
less explored in the literature.
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