International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 062017 doi:10.1088/1742-6596/119/6/062017

Managing ATLAS data on a petabyte-scale with DQ2

Miguel Branco', David Cameron?, Benjamin Gaidioz', Vincent
Garonne!, Birger Koblitz!, Mario Lassnig'®, Ricardo Rocha!, Pedro
Salgado', Torre Wenaus?, on behalf of the ATLAS Collaboration

! European Organization for Nuclear Research (CERN), CH-1211 Geneve, Switzerland

2 Department of Physics, University of Oslo, P.b. 1048 Blindern, N-0316 Oslo, Norway

3 Distributed and Parallel Systems, University of Innsbruck, A-6020 Innsbruck, Austria
4 Physics Application Software, Brookhaven National Laboratory, NY-11973, USA

E-mail: mario.lassnig@cern.ch

Abstract. The ATLAS detector at CERN’s Large Hadron Collider presents data handling
requirements on an unprecedented scale. From 2008 on the ATLAS distributed data
management system, Don Quijote2 (DQ2), must manage tens of petabytes of experiment data
per year, distributed globally via the LCG, OSG and NDGF computing grids, now commonly
known as the WLCG. Since its inception in 2005 DQ2 has continuously managed all experiment
data for the ATLAS collaboration, which now comprises over 3000 scientists participating from
more than 150 universities and laboratories in 34 countries. Fulfilling its primary requirement
of providing a highly distributed, fault-tolerant and scalable architecture DQ2 was successfully
upgraded from managing data on a terabyte-scale to managing data on a petabyte-scale. We
present improvements and enhancements to DQ2 based on the increasing demands for ATLAS
data management. We describe performance issues, architectural changes and implementation
decisions, the current state of deployment in test and production as well as anticipated future
improvements. Test results presented here show that DQ2 is capable of handling data up to
and beyond the requirements of full-scale data-taking.

1. Introduction

1.1. Overview

The ATLAS Distributed Data Management (DDM) project was established in spring 2005 to
develop the system Don Quijote 2 (DQ2), drawing on operational experience from a previous
generation of data management tools. The foremost design objective was to achieve the
scalability, robustness and flexibility required to meet the data handling needs of the ATLAS
Computing Model. This means the complete dataflow of the experiment from raw data
archiving through global managed production and analysis to individual physics analysis at
home institutes. The ATLAS Computing Technical Design Report [5] defines the scope of the
DDM system, henceforth DQ2, as:

The scope of the system encompasses the management of file-based data of all types
(event data, conditions data, user-defined filesets containing files of any type).

Within this scope, the distributed data management system needs to make the distinction
between two types of data handling: production and users data. This distinction is necessary
because of their different usage patterns in the system. DQ2 is therefore the primary responsible

(© 2008 IOP Publishing Ltd 1

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 062017 doi:10.1088/1742-6596/119/6/062017

for bookkeeping of file-based data. Other systems may extend DQ2 functionality, such as
an external metadata system, but synchronisation may be necessary as DQ2 is the ultimate
and reliable source for ATLAS file-based data. These distinct activities on file-based data are
therefore defined the following.

e Production activities are well-defined and include data acquisition and export,
rereconstruction and Monte Carlo production and is managed either at the collaboration
or physics group level.

e User activities include retrieval of subsets of production data as well as management of data
produced by individual users.

Consequently the responsibilities of DDM are

(i) to provide the functionality required for bookkeeping of all file-based data.

(ii) manage movement of experiment data across sites and optionally user data, thus
implementing the the production dataflow described in the ATLAS computing model.

(iii) enforce access controls and manage user quotas.

DQ2 owns all ATLAS storage areas dedicated for production and optionally some areas
reserved for users. Individual users and production managers own data itself but DQ2 is always
able to change any existing control rights for data under DQ2-managed areas.

DQ2 is also the primary user and main responsible for managing all data handling resources,
that is storage areas and network bandwidth, in order to guarantee an acceptable service level
for its activities while allowing a minimal share for unmanaged activities.

1.2. Requirements

DQ2 operates on the worldwide LHC computing grid infrastructure (WLCG). It consists of three
different grid flavours, the Open Science Grid (OSG) in North America, EGEE LHC Computing
Grid (LCG) in Europe and NorduGrid (NDGF) in Scandinavia. WLCG spreads over 10 large
Tier-1 centres globally and their associated smaller Tier-2 centres, constituting more than 200
sites with more than 3000 users. Since these grid flavours all have different middlewares DQ2
must provide a layer to interface with all of them.

The amount of data produced by the ATLAS detector is expected to be around 1 terabyte
per day, with the whole experiment summing up to nearly 20 petabytes per year and increasing.
This includes data from the detector, reprocessed data as well as user-generated data. The
following entries in DQ2 are expected:

e 0(4000) new datasets from trigger and data acquisition (TDAQ) with datasets defined per
run and physics stream as well as datasets for logfiles per day.

e O(1500) new datasets from monte-carlo simulation per day. User data is less clear — a very
rough estimate is in the order of monte carlo numbers.

e O(1) versions per dataset.
e O(100) files per dataset.

e [t is expected that the majority of the datasets will be on a state where the latest dataset
version is closed or the dataset is frozen.

e O(100) data-transfers at any moment per site.
e O(100) sites providing storage for ATLAS as dataset locations.
e O(100) ATLAS users and O(10) groups.

In the following section we present the basic concepts of the system and its constituents to
match these requirements. After that we give a detailed look of the implementation of all the
components and show their performance.

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 062017 doi:10.1088/1742-6596/119/6/062017

2. Concepts
2.1. Datasets
The primary concept of the distributed data management system is the dataset, as shown in
figure 1. A dataset is an aggregation of data, typically spawning more than one physical file,
that are processed together and serve collectively as input or output of a computation or data
acquisition process.

Datasets have the following distinct advantages.
Datasets provide the granularity of data handling that
users typically manipulate thus providing a primary
grouping for data. The alternative would be knowing
individually the state, location or metadata associated
with each constituent, that is a file, of a set of datafiles.

Dataset Name

Version 1

This would require additional work for the user and Fion
would be more error prone. By having the dataset as

the primary data handling concept, the architecture Version 2 «—— Version 0
enforces this unit of data to be handled, that is File 1
transferred, together and consistently, thus improving File 2

scalability. This accommodates expectations that the
system will have less datasets entries than data files.
It is often necessary to have efficient usage of network
transfer channels and interaction with external storage
layers. This means having bulk operations and datasets Figure 1. Dataset schema
therefore provide the unit for the bulk. An example is

storing RAW data — during reprocessing each dataset

of RAW data must be recalled from tape together.

2.2. Dataset properties
Datasets as used for ATLAS also have certain distinct properties:

Versioning Datasets always have a version. When the dataset is first created, the initial version
is automatically created and assigned to the dataset. Datasets may have multiple versions
to support discrete changes, for example by addition of new data, to its content. A fixed
version 0 (zero) always points to the latest version.

Immutability Datasets hold a mutability state which can be open, closed or frozen. A dataset
is said to be open when the latest version of the dataset is open. New data can be added to
the dataset, that is new content is appended to the latest version of the data set. Existing
content, part of the latest or previous version, can also be removed. A dataset is said to
be closed when the latest version of the dataset is closed. No content can be added while
a new version is not created for the dataset and left open again. A dataset is said to be
frozen when the latest version is closed and no new versions can be added. The dataset is
completely immutable and cannot be versioned anymore to support discrete changes in its
content.

2.8. Dataset operations
Constituents of a datasets are files. Changes to a dataset are typically done by:

e Appending new content to the latest open dataset version.
e Removing existing content of the latest open dataset version.

e Adding new dataset versions.

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 062017 doi:10.1088/1742-6596/119/6/062017

Appending new content The typical use-case is to append new content to a dataset.
Datasets always have a latest version, called version 0. We assume all updates to the
dataset are done to the latest version, similar to a versioning control system. If the dataset
is closed, a new version is created first before any new content is added. The latest dataset
version is assumed to contain the most up-to-date validated content for the given dataset.

Removing existing content It is possible to remove content from a dataset. This is required
when, between versions of the same dataset, the user wishes to remove some of its
constituents, for example some files in a dataset were found to be invalid and should be
removed from all future versions, starting from the version where the removal was requested.
Removing content from a dataset is only possible to the latest open dataset version. The
request to remove a file is not restricted to the newly added files, but may be for any
file currently part of that dataset version. The restriction to removing content is that
content can only be removed from the latest open dataset version. Nevertheless, the user
may remove files that are not only in that particular open dataset version, but are part of
any of the previous versions. It is possible to re-add an element to a dataset which had
been removed from a previous version. This is equivalent to adding new content to the
dataset. Since dataset-transfers can be in progress whilst the latest dataset version is open
it is possible for the system to schedule the movement of a particular file, which in the
meantime has been removed from the latest open dataset version. The movement will still
be done but the file may be discarded later by external consistency checks.

Dependency on a dataset version Dependency on a particular version of a dataset does not
imply that the latest version of a dataset is usable for the same purposes. Dataset contents
can change, files added or removed, between versions of a dataset so locating the latest
version of a dataset does not necessarily retrieve all files in the dataset. If a dataset version
contains a certain file it is not guaranteed the latest version will still contain it. Additionally,
the same file can be removed and re-added between dataset versions. Nevertheless a user or
application can always depend on the contents of a closed dataset version or frozen dataset.

2.4. Files
Files are the basic system units and they are immutable. They are identified by their respective
globally unique identifier (GUID) and human-readable logical file names (LFN).

Files cannot be updated. For each update, a new file must be written and a new GUID and
LFN must be created if the file is already registered on DQ2.

A one-to-one mapping must exist between an LFN and a GUID in DQ2. Any attempt to
register a new GUID with a different LEN will fail if the LEFN was already registered, is associated
with a different GUID as being part of a datasets in the system.

A file may be added to a dataset version and removed in a later version. Nevertheless, it
exists in the system and therefore it is possible to retrieve the old version. Therefore a user
cannot re-use the same LFN for newer versions of the same file. The new version will have a
new GUID. To avoid this problem the user can create a new LFN, for example by appending an
attempt number to the LFN.

Similarily a user cannot re-use a dataset name in DQ2. If a dataset is removed the name
becomes unusable in the future. If this were not the case it would not be possible to guarantee
provenance for any dataset: the dataset name would not refer to the initial dataset but to a
newly created one. To avoid this problem the user can either create a new dataset version and
disregard the previous version or create a new dataset with a new name.

2.5. Distribution
DQ2 seamlessly uses multiple Grid resource providers, minimising dependencies on grid-specifics
to facilitate deployment and operation. Therefore, DQ2 requires knowledge of all DDM managed

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 062017 doi:10.1088/1742-6596/119/6/062017

storage, including the role of each site (Tier-1, Tier-2) as well as the mapping between sites (Tier-
1 and Tier-2 association as well as Tier-1 to Tier-1 pairing for reprocessing). Tier-3 sites are not
managed by DQ2. These are only used within the scop of end-user activities and not as final
storage areas for ATLAS. Each storage area managed by DQ2 is identified uniquely as a DDM
site, for example CERNPROD, LYONDISK or NDGFT1TAPE.

3. System architecture

The design as shown in figure 2 layers a

set of loosely coupled components over a

foundation of basic file handhng Grid mid- [Commandiine Tools] [Enduser Tools] [Production System]
dleware. These provide logical organisa-
tion at dataset level, supporting in a flex-
ible way the data aggregations by which [
data is replicated, discovered and analysed
globally. A combination of central book-
keeping services, distributed site services
and agents handle data transferring, book- Common
keeping and monitoring. Implementation Framework
approaches were carefully chosen to meet
performance and robustness requirements.
Fast and lightweight remote procedure calls
to web-services to the bookkeeping cata-
logues facilitate this requirement on the wLcG
central service.

The local site services transfer datasets
based on information polled from the
central catalogues and feedback status
of ongoing transfers to the monitoring
services. Users interact mostly with the
dataset catalogues through end-user tools, to define and lookup datasets as well as request
subscriptions to datasets. The monitoring services provide user tools, including web interfaces,
to follow up the status of each individual file and dataset transfer and provide an overall view of
the status of datasets in the distributed system. Monitoring services also provide the mechanisms
to deduce the overall state of the DQ2 services at each site.

DQ2

Client API]

Site Services

Central Catalogues

LHC Computing Grid

Open Science Grid]

l NorduGrid]

Figure 2. System overview

3.1. Central catalogues

The content catalogue stores the mapping between files and dataset versions and also relevant
information regarding files such as its GUID, LFN, size and checksum. This information is
particularly important when finding good sources of a file or when verifying the integrity of a
file transfer. This central storage of file metadata makes it possible to enforce a LEN-ATLASwide
uniqueness and also to enforce a unique mapping between a GUID and a LFN. Internally the
content catalogue only keeps a record of the changes done on each dataset version. This reduces
significantly the amount of table and index disk space used by the database.

The repository catalogue stores information regarding dataset attributes such as name, owner,
creation date, state and its versions.

The location catalogue stores the dataset replicas. The dataset replica is managed at the
version level since the files contained in them may differ. If the site has all files of a version the
replica is registered as complete. Otherwise it is marked as incomplete if it only has part of the
dataset version.

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 062017 doi:10.1088/1742-6596/119/6/062017

The subscription catalogue stores users requests for dataset transfers to their sites. This
catalogue is polled regularly by the site services. Afterwards the site services will look for
sources to copy the files and issue transfer requests.

The central catalogues had to deal with a massive content increase in the last 6 months.
The number of files increased by 15% to over 19.5 million and the number of datasets increased
by 45% to over 300.000. Also, the emergence of very large datasets with more than 20000 files
posed a problem. This forced to change the implementation significantly. Each of the catalogues
is implemented as a standalone web service with its own relational database back-end.

The web-services installation depends on the Apache web server and its Python and GSI
modules (mod python and mod gridsite). Clients can contact the catalogues through regular
HTTP requests. All requests which add or modify information are done through a secure
request and authorisation is given according to the users grid certificate attached to the request.
The relational database back-end is implemented using Oracle and runs on the ATLAS Oracle
production service at CERN.

We have a redundant load-balanced installation of the web-services. Two machines, running
centrally at CERN, are hosting the web services plus a third one which provides the load
balancing service.

Each of the web-services only have one endpoint. The translation of the client request is done
through the inspection of the following parameters:

API This parameter is used to provide backwards compatibility for older clients.
operation This parameter contains the operation the client wants the catalogue to perform.

tuid This is a transaction universally unique identifier so that client requests can be mapped
more accurately to server-side operations in the log files.

The response of the server is in accordance with the HT'TP standard codes. The 200 status
code is returned to the client unless an error occurs in which the status code 500 is returned
instead. In case of success, the response is a regular Python structure, either a list or a dictionary;
otherwise the error response will be a pickled Python exception class. We also provide client
components to contact these catalogues directly. The client components are Python classes
which expose the catalogue API to the user. Their main advantage is that the user can use
the catalogues just like he was using a regular Python module. The client components are
implemented using Python classes which construct the correct HTTP request for the user.
There is a generalised client class which provides functionality needed by the clients to build
HTTP requests. Those are

Build GET and POST HTTP requests.

Load GRID certificate for secure requests.

Map DELETE request into a secure GET request.
e Map PUT request into a secure POST request.

This generalised client class then calls a curl/pycurl flavoured component whose responsibility
is to

(i) Convert the request into a curl command.

)
(ii) Send the request to the server.
(iii) In case of success convert the response to a Python structure.
)

(iv) In case of failure pickle the response to build the exception class instance and use a Python
raise instruction to return the error to the user.

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 062017 doi:10.1088/1742-6596/119/6/062017

3.2. Site services

The local site services are an autonomous agent based framework with concurrent Python agents
acting on an MySQL database with an InnoDB backend. One instance of the site services can
serve multiple sites if needed. In the current setup at CERN one installation serves a cloud,
that is a Tier-1 and all its Tier-2s, for production use. A separate installation is providing all
Tier-0 to Tier-1 export transfers.

All managed data movement in DQ2 is automated using a subscription methodology. The
idea is that a site subscribes to a dataset and DQ2 site service agents resident locally act to pull
a new dataset as well as keep the sites copy of the dataset up to date with respect to any changes
that might be made to the dataset over time globally. Data movement is triggered from the
destination side, such that local uploading can be done using site-specific mechanisms if desired,
with no requirement that other sites are aware of these specialised mechanisms. A number of
independent agents per site are involved in the data movement process to perform the principal
steps of the movement process:

e Fetching the set of logical files to be transferred on the basis of the dataset content minus
any files already present locally.

e Replica resolution to find the available file replicas via the dataset location catalogue,
content catalogue and local replica catalogues.

e Allocation of the transfers across available sources according to policy into file transfer
service (FTS) channels.

e Bulk reliable transfer using FTS.
o File- and dataset-level verification of the transfers.

The site services utilise a non-hierarchical fairshare algorithm that tries to divide slots
according to the number of file transfers and not according to filesize. This would cause very
large files to congest the channels. The algorithm then measures the state of active transfers
against its own queue for F'T'S channel allocations.

A particularity in ATLAS is that there are a lot of small files so complete fairsharing
while guaranteeing high throughput can not be trivially implemented using traditional queuing
algorithms. At times there are over 2 million files in the queue ready to be transferred which
need to be reorganised if files can be transferred on empty channels. This process is in contrast
to short timeouts and short queues but enables the site services to keep the queues full and fair
whenever possible. This process is called late reshuffling.

If errors occur, the failover mechanism is a retrial strategy with exponential backoff. The
element causing the problem is taken off its queue and reinserted at a later time at its previous
position, regardless of how the queue changed in the meantime.

Allocation to FTS channels always tries to perform on connected sites according to the
ATLAS Computing Model. Connected sites are Tier-1 to each Tier-1 and Tier-2s to each Tier-
1. The allocation agent chooses the source-destination channel that has the least number of
attempts from that particular source and if there are multiple replicas then decides to take the
one with the shortest queue. If that is not possible we fallback to multi-hop transfers.

In accordance with the ATLAS TDAQ DQ2 supports a special case in data integrity. DQ2
supports the insertion of data movement requests even before the data actually exists. The
production system will provide the data at a certain point time and therefore early optimisation
of the FTS channel allocation queue is made possible.

3.3. Monitoring

The monitoring service is a contribution by the ARDA project. It is based on a centralized
service that receives HT'TP requests, storing the monitoring events, per dataset, on a relational
backend, based on Oracle. Please refer to the publication by Rocha et al. (2007).

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 062017 doi:10.1088/1742-6596/119/6/062017

4. DQ2 in production

The DDM operations group must keep data integrity and provide routine data transfer, data
monitoring and data access to the ATLAS physics community. The data transfer priorities
are defined by the collaboration management, data preparation and physics coordinators. The
data transfer between the ATLAS detector and Tier-0, though, is not the responsibility of
the DDM operations group. The regional DDM operations group includes the regional DDM
operations coordinator and people working for each Tier-2 associated with their Tier-1. The
group structure and organisation can be different from region to region but each group provides
help to the ATLAS physics community, manages DQ2 and does DQ2 deployment. Together
they are responsible for

e data transfer monitoring and control.

e data rerouting in case of Tier-1/Tier-2 or transfer channels instability.

e resolving data transfer errors and providing first line expertise.

e reporting data transfer problems to the Computing Operations Coordinator.
e data exchange between Tier-1s during RAW data reprocessing

e deployment of DQ2 releases

e 24/7 support of central DDM operations facilities

e support of the DDM Savannah user-requests portal.

e keep data integrity, in particular clean obsolete datasets and files entries from LFC/LRC
and DDM catalogues.

e help ATLAS users to transfer their data. Regional teams in particular for the physicists
from geographically closed Universities and Laboratories. communication with developers
and providers (both ATLAS and WLCG) and CERN

e Networking personnel (NetOps).

DDM operations is considered as a primary job for the above teams during data-taking and
global tests. Primary means that during data-taking and tests the operations team supports
ATLAS Computing Shifts and provides help in case of data-transfer failures, contacts networking
and computing experts to solve the problems with data transfer channels, storage system,
disk space, daily checks of data transfer logs, defines tools necessary for DDM operation and
monitoring and communicates with the DQ2 development team.

5. Conclusion and future work

DQ2 v0.2.10 was put into production June 2006. It featured a large rewrite of the site services
and a complete change of site services database schema as well as prototype of the monitoring
service. DQ2 v0.2.12 followed soon afterwards in production in September 2006. The main focus
was on more stable site services, in particular agent handling and replica resolution. DQ2 v0.2.13
was put into production before Christmas 2006. It featured the migration to the new monitoring
service, better source discovery and transfer retrials. DQ2 Version 0.3 was deployed for testing
in mid-February 2007 and moved into Production on June 19 2007. The main difference from
0.2 is in the central catalogues where we move away from the POOL FC interface and use
direct Oracle interfaces. The REST interface to the central catalogues has changed significantly,
using a single RPC endpoint per catalogue. We have added server side logging, a lot more
validation and means of measuring performance metrics. Site services also profit from faster
diff-queries to the content catalogue. Site services have also changed with improved transfer
retrials, proritization and a much better set of interactions with the ARDA monitoring. DQ2
Version 0.4 is moving towards release. Nevertheless it is used in testing already for all LCG
sites since it has proven to be able to cope better with higher subscription loads. It introduces

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing

Journal of Physics: Conference Series 119 (2008) 062017 doi:10.1088/1742-6596/119/6/062017
300 200
200
] 100
bt - —i]
100 fpecoccocca) R Somas DT
e - [|
——-m-- i D e T
| BV —1 | e =
0 T2 > 28 29 £ 3 o1 a2 00320 0940 10:00 10:20 10:40 1100 11:20 1140 1200 12220 1240 13:00
1 ASGC ~ CERN mFZK NDGF m RAL TRIUMF "ASGC CERN mFZK NDGF m RAL TRIUMF
mENL mCNAF mLYON PIC SARA HBNL B CNAF ELYON PIC SARA

Figure 3. Ramp-up of M4 cosmics runs and production rates (MB/sec.)

completely new database interactions by removing the SQLODbject dependency and changes to
the transfer logic.

The Tier-0 Export Exercise during Service Challenge 4 where CERN as Tier-0 shipped
simulated data to all Tier-1 centres globally showcased the systems capability. During this
month-long challenge beginning April 2007, many factors in micromanagement of data-transfers
were discovered which helped to the milestone of sustaining file transfer rates at 1 GB/sec.
Figure 3 on the right shows day-by-day average production rates. It is therefore ready for Tier-0
Export. Additionally, another metric was introduced, namely the number of files transferred,
in accordance with the usage of standard production. Here, the size of files is the bottleneck
so high throughput cannot be achieved. Nevertheless the system has shown that it can handle
transfers in the order of O(10000) files per site per day and is therefore ready for production. In
September 2007 the cosmics M4 export run proved that the whole dataflow works, as shown in
figure 3 on the left. About two million muons were measured over two weeks using the ATLAS
detector and acquired data was shipped to facilities worldwide using DQ2, reprocessed, analysed
and transferred again for archiving. The dataflow was successful without human intervention.

Therefore it can be concluded that DQ2 is capable up to and beyond the requirements of
the ATLAS Computing Model and can be considered feature-complete, high-performance and
reliable.

6. Acknowledgements
We gratefully acknowledge the contribution of Torre Wenaus to the design of DDM.

References

[1] Miguel Branco, David Cameron, Pedro Salgado, DDM Scenarios and Principles, CERN Technical Report,
Revision 1.6, 2006

[2] Miguel Branco, David Cameron, Pedro Salgado, DDM High-level User Manual, CERN Technical Report,
Revision 1.1, 2006

[3] Miguel Branco, David Cameron, Pedro Salgado, DDM Design and Implementation, CERN Technical Report,
Revision 1.3, 2006

[4] DDM Review Board, Review, CERN Technical Report, June 2007

[5] ATLAS Computing Technical Design Report, CERN Technical Report, July 2007, http://atlas-
projcomputing- tdr.web.cern.ch/atlas-proj-computing-tdr/PDF /Computing-TDR-final-July04.pdf

[6] ATLAS Computing Model, CERN Technical Report, July 2005

[7] ATLAS - The data chain works, International Science Grid This Week, 19th September 2007,
http://www.isgtw.org/?pid=1000673

[8] Ricardo Rocha et al., Monitoring the ATLAS distributed data management system, Journal of Physics:
Conference Series, IOP Publishing Ltd., Victoria BC Canada, 2007

[9] Dario Barberis et al.,, ATLAS Distributed Data Management Operations, CERN Technical Report, ATLAS
Note draft, 03 August 2006

