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The coexistence of various low-lying deformed states in 42Ca and the α–38Ar correlations in
those deformed states have been investigated using deformed-basis antisymmetrized molecular
dynamics. Wave functions of the low-lying states are obtained via parity and angular momentum
projections and the generator coordinate method (GCM). Basis wave functions of the GCM
calculation are obtained via energy variations with constraints on the quadrupole deformation
parameter β and the distance between α and the 38Ar clusters. The rotational bands built on the
Jπ = 0+

2 (1.84 MeV) state as well as the Jπ = 0+
3 (3.30 MeV) state are both reproduced. The

coexistence of two additional K π = 0+ rotational bands is predicted; one band is shown to be
built on the Jπ = 0+

3 state. Members of the ground-state band and the rotational band built on
the Jπ = 0+

3 state contain α–38Ar cluster structure components.
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1. Introduction

Drastic structural changes initiated by low excitation energies are a significant characteristic of
nuclear systems, and the coexistence of deformed states and cluster structures is a typical phe-
nomenon. In the mass number region A ∼ 40, low-lying normal-deformed (ND) and superdeformed
(SD) bands with many-particle–many-hole (mp–mh) configurations have been confirmed experi-
mentally in 36,38,40Ar [1–3], 40Ca [4], 42Ca [5,6], and 44Ti [7]. The SD band in 36Ar, ND and SD
bands in 40Ca, and SD band in 44Ti are considered to have configurations of 4p8h, 4p4h, 8p8h, and
8p4h, respectively, relative to the sd-shell double-closed structure. Coupling of the cluster structure
components in deformed states such as the α-cluster structure in the ND band of 40Ca [8–11] and
the ground-state band in 44Ti [8,9,12] has also been investigated.

In 42Ca, deformed states with mp–mh configurations and clustering behavior have been observed
experimentally, and the rotational band built on the Jπ = 0+

2 (1.84 MeV) state (K π = 0+
2 band) has

been observed [5,6]. This rotational band has a large moment of inertia that is similar to those of the
SD bands in 36Ar and 40Ca, scaled by A5/3 [6], which is proportional to the square of the quadrupole
deformation parameter β in the liquid-drop model. In contrast to the small level spacings, the in-
band E2 transition strengths are rather weak and are of the same order as those of the ND band
in 40Ca. With regard to α-cluster structures, strong population to the Jπ = 0+

1 and 0+
3 (3.30 MeV)
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states has been observed in α-transfer reactions to 38Ar, and the ratios of the cross sections of α

and 2n transfer reactions suggest that the Jπ = 0+
2 and 0+

3 states have configurations of 6p4h and
4p2h, respectively [13]. Theoretically, the α + 38Ar orthogonality condition model (OCM) describes
4p2h states with α–38Ar cluster structures, but a rotational band with a 6p4h configuration is not
obtained in low-lying states [14]. To understand the structures in 42Ca, various deformations with
mp–mh configurations and clustering should be taken into account, but such a study has never been
performed. The structures of low-lying states in 42Ca have not yet been clarified.

This paper aims to clarify the structures of excited deformed bands in positive-parity states
of 42Ca by focusing on the coexistence of rotational bands with mp–mh configurations. The
α–38Ar cluster correlations in low-lying deformed states are also discussed. To discuss the
coexistence and mixing of deformed and cluster structures, the generator coordinate method (GCM)
is used.

This paper is organized as follows: In Sect. 2, the framework of this study is explained briefly. In
Sect. 3, the results of energy variation to obtain the GCM basis are shown. In Sect. 4, the coexistence
of various deformed states and their structures are discussed. In Sect. 5, the relations between E2
transition strengths and particle–hole configurations are discussed. Finally, conclusions are given in
Sect. 6.

2. Framework

In this section, the framework of the study is explained briefly. Details of the framework are provided
in Refs. [15–17].

2.1. Wave function

The wave functions in low-lying states are obtained by using the parity and angular momentum
projection (AMP) and the GCM with deformed-basis antisymmetrized molecular dynamics (AMD)
wave functions. A deformed-basis AMD wave function |�〉 is a Slater determinant of Gaussian wave
packets that can deform triaxially such that

|�〉 = Â|ϕ1, ϕ2, . . . , ϕA〉, (1)

|ϕi 〉 = |φi 〉 ⊗ |χi 〉 ⊗ |τi 〉, (2)

〈r|φi 〉 = π−3/4(det K)1/2 exp

[
−1

2
(Kr − Zi )

2
]

, (3)

|χi 〉 = χ
↑
i | ↑〉 + χ

↓
i | ↓〉, (4)

|τi 〉 = |π〉 or |ν〉, (5)

where Â denotes the antisymmetrization operator, and |ϕi 〉 denotes a single-particle wave function.
|φi 〉, |χi 〉, and |τi 〉 denote the spatial, spin, and isospin components, respectively, of each single-
particle wave function |ϕi 〉. The real 3 × 3 matrix K denotes the width of the Gaussian single-particle
wave functions that can deform triaxially, which is common to all nucleons. The Zi = (Zix , Ziy, Ziz)

are complex parameters to denote the centroid of each single-particle wave function in phase
space. The complex parameters χ

↑
i and χ

↓
i denote the spin directions. Axial symmetry is not

assumed.
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2.2. Energy variation

Basis wave functions of the GCM are obtained via the energy variation with a constraint potential
Vcnst after projection onto positive-parity states,

δ

(
〈�+|Ĥ |�+〉
〈�+|�+〉 + Vcnst

)
= 0, (6)

|�+〉 = 1 + P̂r

2
|�〉, (7)

where Ĥ is a Hamiltonian, and P̂r denotes the parity operator. The energy variation is performed by
solving time evolution equations,

d X

dt
= −μX

∂

∂ X

(
〈�+|Ĥ |�+〉
〈�+|�+〉 + Vcnst

)
, (8)

dK
dt

= −μK
∂

∂K

(
〈�+|Ĥ |�+〉
〈�+|�+〉 + Vcnst

)
, (9)

where X denotes a complex parameter, and μX and μK are positive numbers. After a sufficient
number of time steps, a local minimum energy state is obtained. In practice, Eq. (9) is solved
after a transformation to diagonalize the K matrix. The variational parameters are K, Zi , and χ

↑,↓
i

(i = 1, . . . , A). The isospin component of each single-particle wave function is fixed as a proton (π )
or a neutron (ν). Initial wave functions are generated randomly. The Gogny D1S force is used as the
effective interaction.

To obtain deformed and cluster structure wave functions, two types of constraints Vcnst are used:
the quadrupole deformation parameter β of the total system and the distance d between α and 38Ar
clusters,

Vcnst =
{

vβ(β − β0)
2

vd(d − d0)
2

. (10)

Here β is the matter quadrupole deformation parameter. The distance d between α and 38Ar clusters
is defined as the distance between the centers of mass of α and 38Ar clusters,

d = |Rα-38Ar|, (11)

Rα-38Ar =
⎛
⎝1

4

∑
i∈α

− 1

38

∑
i∈38Ar

⎞
⎠Re(K−1Zi ), (12)

where i ∈ α and 38Ar mean that the i th nucleon is contained in α and 38Ar clusters, respectively. It
should be noted that the spatial center of the single-particle wave function |ϕi 〉 is Re(K−1Zi ). Details
of the constraint of intercluster distance are provided in Ref. [17]. When sufficiently large values are
chosen for vβ and vd , the resultant values β and d become β0 and d0, respectively.

2.3. Generator coordinate method

After performing the constraint energy variation for |�+〉, we superpose the optimized wave func-
tions by employing the quadrupole deformation parameter β and the distances d between α and 38Ar
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clusters, ∣∣∣�J+
M

〉
=
∑

K

P̂ Jπ

M K

(∑
i

f β
i K

∣∣∣�β
i

〉
+
∑

i

f d
i K

∣∣∣�d
i

〉)
, (13)

where P̂ Jπ

M K is the parity and total angular momentum projection operator, and |�β
i 〉 and |�d

i 〉 are
optimized wave functions with β and d constraints for the constrained values β = β

(i)
0 and d = d(i)

0 ,
respectively. The integrals over the three Euler angles in the total angular momentum projection oper-
ator P̂ J

M K are evaluated by numerical integration. The numbers of sampling points in the numerical
integration are 23, 27, and 23 for α, β, and γ , respectively. Here the body-fixed x-, y-, and z-axes
are chosen as 〈x2〉 ≤ 〈y2〉 ≤ 〈z2〉 for γ < 30◦ wave functions and 〈x2〉 ≥ 〈y2〉 ≥ 〈z2〉 for γ > 30◦

ones in the case of β-constrained wave functions. In the case of d-constrained wave functions, the
z-axis is chosen as the vector that connects the α and 38Ar clusters. The coefficients f β

i K and f d
i K are

determined by the Hill–Wheeler equation,

δ

(〈
�J+

M

∣∣∣∣Ĥ
∣∣∣∣�J+

M

〉
− ε

〈
�J+

M

∣∣∣∣�J+
M

〉)
= 0. (14)

Then we get the energy spectra and the corresponding wave functions that are expressed by the
superposition of the optimum wave functions, {|�β

i 〉} and {|�d
i 〉}.

3. GCM basis obtained by energy variation

Figure 1 shows the energy curves as functions of β, which are obtained by the energy variations with
the constraint on β. Harmonic-oscillator (HO) quanta of obtained wave functions for protons and
neutrons, Nπ and Nν , respectively, are (Nπ , Nν) = (0, 0), (2, 0), (2, 2), and (4, 2) on and close to
the β-energy surface relative to the lowest-allowed state. The Nτ (τ = π or ν) are defined as

Nτ =
〈∑

i∈τ

[
1

2
(Kr̂i )

2 + 1

2

(
K−Tk̂i

)2
]〉

− 3

2
nτ − N0τ , (15)

where nπ and nν denote proton and neutron numbers, respectively, and N0π and N0ν denote
HO quanta of the lowest-allowed states for protons and neutrons, respectively. The (0, 0), (2, 0),
(2, 2), and (4, 2) configurations correspond to configurations of [(p f )2]ν , [(sd)−2(p f )2]π [(p f )2]ν ,
[(sd)−2(p f )2]π [(sd)−2(p f )4]ν , and [(sd)−4(p f )4]π [(sd)−2(p f )4]ν , respectively, which in total
are the 2p, 4p2h, 6p4h, and 8p6h configurations, respectively. The 4p2h, 6p4h, and 8p6h states
have local minima at β ∼ 0.3, 0.4, and 0.5, respectively. Deformations of the protons and neutrons
are similar across the whole β region. The 4p2h, 6p4h, and 8p6h states form triaxially deformed
structures. Several wave functions that differ in their particle–hole configurations are obtained in a
common β value, which are at local minima on the energy-surface plane with a constraint on the β

value. In practice, they are obtained by two steps. First, initial wave functions of the energy variation
are generated randomly, and optimized wave functions are obtained for each deformation parame-
ter β. Second, the optimized wave functions are set to initial wave functions for different β values.
Density distributions of the wave functions at local minima with 2p, 4p2h, 6p4h, and 8p4h con-
figurations are shown in Figs. 2(a)–(d), respectively; these distributions do not have significant neck
structures.

Through the AMP, largely deformed states gain higher binding energies, and the energy of the
local-minimum state for the 6p4h configuration projected onto the Jπ = 0+ state becomes lower
than that for the 4p2h configuration. The order of the local-minimum energies is the reverse of that
before the AMP.
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Fig. 1. The energy curves as functions of the quadrupole deformation parameter β for positive-parity (dashed
lines) and Jπ = 0+ (solid lines) states. Circles, triangles, crosses, and squares indicate the 2p, 4p2h, 6p4h,
and 8p6h configurations, respectively (see text).

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Density distributions of (a) 2p (β = 0.13), (b) 4p2h (β = 0.28), (c) 6p4h (β = 0.43), and (d) 8p6h
(β = 0.53) wave functions obtained with the quadrupole deformation parameter β constraint, and (e) A- and
(f) B-type wave functions obtained with the intercluster distance constraint (d = 5.0 fm).

The upper panel of Fig. 3 shows energy curves of α–38Ar cluster structures as functions of
intercluster distance between α and 38Ar clusters obtained by energy variations with the α–38Ar
intercluster-distance constraint. In the calculations, two types, called A and B types, of α–38Ar clus-
ter structure wave functions are obtained that differ in the orientation of the 38Ar clusters. An 38Ar
cluster has a two proton-hole configuration relative to the sd-shell double-closed structure. Proton
holes of 38Ar clusters in A- and B-type wave functions are in parallel and orthogonal directions to
an α cluster, respectively. In the small intercluster-distance region, the A type has similar energies
to the minimum energy on the β-energy surface. But the B type is still excited, and the energies
are similar to those at the local minimum of the 4p2h configuration of β-energy curves. The lower
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Fig. 3. (Upper) Solid and dashed curves show energies of α–38Ar cluster structures for A and B types (see text),
respectively, as functions of intercluster distance. (Lower) Solid and dashed curves show harmonic oscillator
quanta for A and B types (see text), respectively, relative to the lowest-allowed state in 42Ca as functions of
intercluster distance. Open and closed symbols are for protons and neutrons, respectively.

panel of Fig. 3 shows HO quanta for protons and neutrons, respectively, relative to the lowest-allowed
state in 42Ca. At small intercluster distance, the A type goes to the lowest-allowed state, whereas the
proton parts of the B type are 2�ω excited, which is the 4p2h configuration. This is because pro-
tons on the direction of an α cluster are occupied in the sd-shell in the B-type 38Ar clusters. Owing
to the Pauli principle, two protons are in the p f -shell even at small α–38Ar intercluster distances.
Density distributions of A- and B-type wave functions with d = 5.0 fm are shown in Figs. 2(e) and
(f), respectively. They have two spatially localized subsystems corresponding to α and 38Ar clusters,
which show α–38Ar cluster structures. The shapes of the 38Ar clusters are distorted due to intercluster
interaction, although the ground state of 38Ar is almost spherical.

4. Coexistence of various rotational bands

4.1. Level scheme

Figure 4 shows the level scheme of the positive-parity states in 42Ca up to the Jπ = 8+ states obtained
via the AMP and the GCM. The GCM bases are deformed-structure wave functions with configu-
rations of 2p, 4p2h, 6p4h, and 8p6h obtained via energy variations with the β constraint and the
α–38Ar cluster structure wave functions obtained via energy variations with the α–38Ar intercluster-
distance constraint set to a maximum of 9.0 fm. Wave functions that contain more than 0.5% of the
J+K components 〈P̂ J+

K K 〉 are adopted in the GCM basis for each J K to avoid numerical errors in
the AMP. The convergence of the GCM calculation was confirmed by a comparison with a restricted
set of basis wave functions (the energies of the states listed in Fig. 4 change by less than 0.3 MeV
when the number of basis wave functions is halved). Three K π = 0+ rotational bands coexist in the
excited states, called ND1, ND2, and SD.

Figure 5 shows squared overlaps of the Jπ = 0+ states and the Jπ = 0+ components of wave
functions obtained by energy variation with the β constraint for the GS, ND1, ND2, and SD bands.
The dominant components of the ND1, ND2, and SD states have 6p4h, 4p2h, and 8p6h configu-
rations, respectively, and the quadrupole deformation parameters of their dominant components are
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Fig. 4. The experimental and theoretical level schemes in 42Ca.

Fig. 5. Squared overlaps of Jπ = 0+ states in the GS (solid), ND1 (dotted), ND2 (dot-dashed), and SD bands
(dashed), and Jπ = 0+ components of wave functions obtained by energy variation with the β constraint.
Circle, triangle, cross, and square symbols are for the 2p, 4p2h, 6p4h, and 8p6h wave functions, respectively.

β = 0.43, 0.28, and 0.53, respectively. The ground-state (GS) band has a 2p configuration. The theo-
retical level spacings of the GS band are underestimated, although the GS band is considered to have
a simple [( f7/2)

2]ν structure. This underestimation does not affect the qualitative properties of the
ND1, ND2, and SD bands because the particle–hole configurations of their dominant components are
very different from those of the GS band. The underestimation may be caused by insufficient treat-
ment of the pairing effect. In the present study, the pairing effect is not taken into account directly,
although the effects are in principle included by superposition of wave functions. In some GCM
bases, time-reversal symmetry is broken since it is not assumed in the present framework. But the
level scheme does not change when time-reversal pair wave functions are adopted in the GCM basis,
which means that time-reversal symmetry is restored by the AMP and GCM.

The present results suggest the existence of side bands of the ND1, ND2, and SD bands due to
triaxial deformation. ND1S1 and ND1S2 are side bands of the ND1 band whose dominant K com-
ponents are |K | = 2 and 4, respectively. The ND2S and SDS bands are side bands of the ND2 and
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Fig. 6. Squared overlaps of the Jπ = 0+
GS (solid), 0+

ND1 (dotted), 0+
ND2 (dot-dashed), and 0+

SD (dashed) states
and the α–38Ar cluster structure wave functions as functions of the distance between α and 38Ar clusters. Open
and closed symbols are for A- and B-type wave functions, respectively.

SD bands, respectively, with dominant components of |K | = 2. The ND2 and SD bands, and the side
bands of the ND1, ND2, and SD bands, are theoretical predictions; candidate states have not yet been
observed.

4.2. α–38Ar cluster correlations

To analyze the α–38Ar cluster structure correlations in the low-lying rotational bands, squared over-
laps of the band-head states and α–38Ar cluster structure components were calculated for the GS,
ND1, ND2, and SD bands, as shown in Fig. 6. The Jπ = 0+

GS and 0+
ND2 states have a large amount

of A- and B-type α–38Ar cluster structure components, respectively, at large intercluster distances as
well as at small distances. The particle–hole configurations of the A- and B-type α–38Ar cluster struc-
ture wave functions are equal to the the dominant particle–hole configurations of the Jπ = 0+

GS and
0+

ND2 states, respectively, in the small intercluster-distance region, which shows that the particle–hole
configurations of cluster wave functions at small intercluster distances are important for coupling to
deformed states. The Jπ = 0+

ND1 and 0+
SD states have a small amount of α–38Ar cluster structure

components for any intercluster distance. The distributions of squared overlaps are similar up to the
high-spin state in each band.

4.3. E2 transition strengths

The B(E2) values of the in-band transitions in the theoretical ND1, ND2, and SD bands and the
experimental K π = 0+

2 band in Weisskopf units are listed in Table 1. The theoretical values for
the ND1 band are within the error of the experimental values for the K π = 0+

2 band. The in-band
B(E2) values from the higher-spin state of the ND2 band are smaller, which is caused by mixing
of components other than the 4p2h configuration in higher-spin states. The B(E2) values of the SD
band are much larger than those of the ND1 and ND2 bands.

4.4. Band assignment

The amount of α–38Ar cluster components (Fig. 6), particle–hole configurations of dominant com-
ponents, and the in-band transition B(E2) values (Table 1) indicate that the ND1 band and the ND2
band head correspond to the experimental K π = 0+

2 band and Jπ = 0+
3 state, respectively. The large
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Table 1. Theoretical and experimental B(E2) values in Weisskopf
units BW.u. = 8.67 e2 fm4 (Ii and I f indicate initial and final states,
respectively). Experimental values are taken from Refs. [5,18].

Ii I f B(E2)

theory 2+
ND1 0+

ND1 28.55

4+
ND1 2+

ND1 33.12

6+
ND1 4+

ND1 38.45

2+
ND2 0+

ND2 29.02

4+
ND2 2+

ND2 24.70

6+
ND2 4+

ND2 24.61

2+
SD 0+

SD 82.12

4+
SD 2+

SD 107.99

6+
SD 4+

SD 130.18

experiment 4+
2 2+

2 57 ± 42

(K π = 0+
2 band) 6+

2 4+
2 50+35

−16

amount of α–38Ar cluster components in the Jπ = 0+
ND2 state reveals that this state corresponds to

the experimental Jπ = 0+
3 state because of strong populations to the Jπ = 0+

3 state by α-transfer
reactions to 38Ar [13], which are sensitive to α–38Ar cluster structure components. The ND1 states
have a small amount of α–38Ar cluster structure components and similar in-band B(E2) values to
those of the experimental K π = 0+

2 band, which indicates that the ND1 band corresponds to the
experimental K π = 0+

2 band. The particle–hole configurations of the ND1 (6p4h) and ND2 (4p2h)
bands are consistent with those of the Jπ = 0+

2 and 0+
3 states, respectively, suggested by the results of

an α-transfer experiment [13]. The members of the ND2 band apart from the band head and those of
the SD band have not yet been observed. The members of the ND2 band could possibly be observed
by a combination of α-transfer reactions and γ -spectroscopy experiments, because the ND2 band
contains a large amount of α–38Ar cluster structure components and has large in-band B(E2) values.

This full-microscopic model reveals the coexistence of three low-lying rotational K π = 0+ bands
with 6p4h, 4p2h, and 8p6h configurations in 42Ca, but the α + 38Ar OCM, which is a semi-
microscopic model, produces only one K π = 0+ rotational band with a 4p2h configuration in the
low-lying states. Full-microscopic models treating clustering and various deformations with mp–mh
configurations are required to understand the low-lying structures in 42Ca. A unified treatment of
clustering and deformation is important for studying nuclear structures.

5. Particle–hole configurations and E2 transitions

The in-band B(E2) values, deformations, and particle–hole configurations in the ND1 and ND2
bands found here indicate that the in-band B(E2) values are more sensitive to the proton particle–hole
configurations than to deformations, which are not necessarily related to the B(E2) values. Indeed, for
ND1 and ND2 bands with the same proton particle–hole configurations, (sd)−2(p f )2, the calculated
in-band B(E2) values are similar although their dominant components have different quadrupole
deformations of β = 0.40 and 0.28, respectively. This is inconsistent with a simple collective model
in which the B(E2) values are proportional to β2. Experimental B(E2) values of the in-band transi-
tions in the ND band in 40Ca, whose proton particle–hole configurations are also (sd)−2(p f )2, are
similar to the theoretical B(E2) values of the ND1 and ND2 bands in 42Ca. As the Nilsson orbits
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show, particle–hole configurations are strongly related to deformation, but a careful consideration of
both the particle–hole configurations and deformation are required for understanding the structures
of deformed states.

6. Conclusions

In conclusion, the structures of the deformed states in 42Ca have been investigated using deformed-
basis AMD and the GCM by focusing on the coexistence of various rotational bands with mp–mh
configurations and α–38Ar clustering. In the excited states, three K π = 0+ bands, ND1, ND2, and
SD, are obtained, which have dominant 6p4h, 4p2h, and 8p6h configurations, respectively. The ND1
band corresponds to the experimental K π = 0+

2 band, while the ND2 and SD bands have not yet
been observed. The band head of the ND2 band corresponds to the experimental Jπ = 0+

3 state. The
B(E2) values of the in-band transitions of the ND1 band are consistent with experimental data. The
members of the GS and ND2 bands contain a large amount of α–38Ar cluster structure components,
which is consistent with results that show that the Jπ = 0+

1 and 0+
3 states are strongly populated by

38Ar(6Li, d) reactions. Particle–hole configurations of the dominant components of the GS and ND2
bands are consistent with the suggestions of the α-transfer to 38Ar experiment. E2 transitions are
more sensitive to proton particle–hole configurations than to deformation. It is necessary to employ
full-microscopic calculations and consider both clustering and various deformations with mp–mh
configurations to understand the low-lying states in 42Ca.

Acknowledgements

The author thanks Dr Y. Kanada-En’yo and Dr M. Kimura for careful proofreading and valuable comments.
Thanks are also given to Prof. H. Horiuchi, Prof. K. Ikeda, Dr E. Ideguchi, and Dr M. Niikura for fruitful discus-
sions. This work was supported by JSPS KAKENHI Grant Number 25800124 and the University of Tsukuba
Research Infrastructure Support Program. Numerical calculations were conducted on the T2K-Tsukuba at
the Center for Computational Sciences, University of Tsukuba and the RIKEN Integrated Cluster of Clusters
(RICC).

References
[1] C. E. Svensson, A. O. Macchiavelli, A. Juodagalvis, A. Poves, I. Ragnarsson, S. Åberg, D. E. Appelbe,

R. A. E. Austin, G. C. Ball, M. P. Carpenter, E. Caurier, R. M. Clark, M. Cromaz, M. A. Deleplanque,
R. M. Diamond, P. Fallon, R. V. F. Janssens, G. J. Lane, I. Y. Lee, F. Nowacki, D. G. Sarantites, F. S.
Stephens, K. Vetter, and D. Ward, Phys. Rev. C, 63, 061301 (2001).

[2] D. Rudolph, A. Poves, C. Baktash, R. A. E. Austin, J. Eberth, D. Haslip, D. R. LaFosse,
M. Lipoglavšek, S. D. Paul, D. G. Sarantites, C. E. Svensson, H. G. Thomas, J. C. Waddington,
W. Weintraub, and J. N. Wilson, Phys. Rev. C, 65, 034305 (2002).

[3] E. Ideguchi, S. Ota, T. Morikawa, M. Oshima, M. Koizumi, Y. Toh, A. Kimura, H. Harada,
K. Furutaka, S. Nakamura, F. Kitatani, Y. Hatsukawa, T. Shizuma, M. Sugawara, H. Miyatake, Y. X.
Watanabe, Y. Hirayama, and M. Oi, Phys. Lett. B, 686, 18 (2010).

[4] E. Ideguchi, D. G. Sarantites, W. Reviol, A. V. Afanasjev, M. Devlin, C. Baktash, R. V. F. Janssens,
D. Rudolph, A. Axelsson, M. P. Carpenter, A. Galindo-Uribarri, D. R. LaFosse, T. Lauritsen, F. Lerma,
C. J. Lister, P. Reiter, D. Seweryniak, M. Weiszflog, and J. N. Wilson, Phys. Rev. Lett., 87, 222501
(2001).

[5] P. Betz, E. Bitterwolf, B. Busshardt, and H. Röpke, Z. Phys. A, 276, 295 (1976).
[6] M. Lach, J. Styczen, W. Meczynski, P. Bednarczyk, A. Bracco, J. Grebosz, A. Maj, J. C. Merdinger,

N. Schulz, M. B. Smith, K. M. Spohr, J. P. Vivien, and M. Zieblinski, Eur. Phys. J. A, 16, 309 (2003).
[7] C. D. O’Leary, M. A. Bentley, B. A. Brown, D. E. Appelbe, R. A. Bark, D. M. Cullen, S. Ertürk,

A. Maj, and A. C. Merchant, Phys. Rev. C, 61, 064314 (2000).
[8] F. Michel, S. Ohkubo, and G. Reidemeister, Prog. Theor. Phys. Suppl., 132, 7 (1998), and references

therein.

10/11

 by guest on July 7, 2014
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

http://dx.doi.org/10.1103/PhysRevC.63.061301
http://dx.doi.org/10.1103/PhysRevC.65.034305
http://dx.doi.org/10.1016/j.physletb.2010.02.031
http://dx.doi.org/10.1103/PhysRevLett.87.222501
http://dx.doi.org/10.1007/BF01412107
http://dx.doi.org/10.1140/epja/i2002-10125-6
http://dx.doi.org/10.1103/PhysRevC.61.064314
http://dx.doi.org/10.1143/PTPS.132.7
http://ptep.oxfordjournals.org/


PTEP 2014, 073D01 Y. Taniguchi

[9] T. Yamaya, K. Katori, M. Fujiwara, S. Kato, and S. Ohkubo, Prog. Theor. Phys. Suppl., 132, 73 (1998),
and references therein.

[10] T. Sakuda and S. Ohkubo, Prog. Theor. Phys. Suppl., 132, 103 (1998), and references therein.
[11] Y. Taniguchi, M. Kimura, Y. Kanada-En’yo, and H. Horiuchi, Phys. Rev. C, 76, 044317 (2007).
[12] M. Kimura and H. Horiuchi, Nucl. Phys. A, 767, 58 (2006).
[13] H. T. Fortune, R. R. Betts, J. N. Bishop, M. N. I. Al-Jadir, and R. Middleton, Nucl. Phys. A, 294, 208

(1978).
[14] T. Sakuda and S. Ohkubo, Phys. Rev. C, 51, 586 (1995).
[15] Y. Kanada-En’yo and H. Horiuchi, Prog. Theor. Phys., 93, 115 (1995).
[16] M. Kimura, Phys. Rev. C, 69, 044319 (2004).
[17] Y. Taniguchi, M. Kimura, and H. Horiuchi, Prog. Theor. Phys., 112, 475 (2004).
[18] J. A. Cameron and B. Singh, Nucl. Data Sheets, 102, 293 (2004).

11/11

 by guest on July 7, 2014
http://ptep.oxfordjournals.org/

D
ow

nloaded from
 

http://dx.doi.org/10.1143/PTPS.132.73
http://dx.doi.org/10.1143/PTPS.132.103
http://dx.doi.org/10.1103/PhysRevC.76.044317
http://dx.doi.org/10.1016/j.nuclphysa.2005.12.006
http://dx.doi.org/10.1016/0375-9474(78)90404-9
http://dx.doi.org/10.1103/PhysRevC.51.586
http://dx.doi.org/10.1143/ptp/93.1.115
http://dx.doi.org/10.1103/PhysRevC.69.044319
http://dx.doi.org/10.1143/PTP.112.475
http://dx.doi.org/10.1016/j.nds.2004.06.001
http://ptep.oxfordjournals.org/

	Introduction
	Framework
	Wave function
	Energy variation
	Generator coordinate method

	GCM basis obtained by energy variation
	Coexistence of various rotational bands
	Level scheme
	--38Ar cluster correlations
	E2 transition strengths
	Band assignment

	Particle--hole configurations and E2 transitions
	Conclusions
	Acknowledgements
	References

