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Abstract: This work presents an overview of the summability of divergent series and fractional finite
sums, including their connections. Several summation methods listed, including the smoothed sum,
permit obtaining an algebraic constant related to a divergent series. The first goal is to revisit the
discussion about the existence of an algebraic constant related to a divergent series, which does
not contradict the divergence of the series in the classical sense. The well-known Euler–Maclaurin
summation formula is presented as an important tool. Throughout a systematic discussion, we
seek to promote the Ramanujan summation method for divergent series and the methods recently
developed for fractional finite sums.

Keywords: divergent series; summation methods; Euler–Maclaurin summation formula; Ramanujan
summation; fractional finite sum

1. Introduction

The sum was probably the first mathematical operation that humans performed and
abstracted, and the properties of finite sums are well known. The symbol used to shortly
represent a sum is due to L. Euler, who introduced the symbol Σ. Indeed, in 1755, he wrote:
“summam indicabimus signo Σ”, which means, we indicate a sum with the sign Σ [1–3]. This
succinct notation, known as sigma notation, was rarely used for some time. A.-L. Cauchy,
in his celebrated Cours D’Analyse of 1821 [4,5], used sums in the expanded form. The sigma
notation started to spread after being adopted by J.-B. Fourier in 1822 to express sums [3,6].

The expression ∑n
k=1 f (k) is used to shortly indicate a sum that has exactly the terms

f (k) with index k covering all integers between, including the limits 1 and n [7]. The sigma
notation is a compact notation with properties that simplify algebraic operations [7,8] and is
suitable for denoting sums with an infinite number of terms. For infinite sums, called series,
the currently used definition is due to Cauchy [4,5], who also introduced the definition of
convergent and divergent series. The concepts about series, as well as the conditions of
convergence in the classical sense (i.e., in the Cauchy’s sense), are today well established,
and the meaning of sequences, partial sums, and the convergence and divergence of
sequences and series are included in many textbooks used in undergraduate courses.

Classically, when someone analyzes a series, the first question is “Is this series conver-
gent? (in the classical sense)”. If the series is convergent, then the second question is “To
which value does the series converge?”. According to Cauchy, if a series does not converge
in the classical sense, then it is divergent. Two types of divergent series are possible: those
that grow in absolute value without limit, and those that are bounded but whose sequence
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of partial sums does not approximate any specific value (eventually oscillates infinitely).
When a given series is divergent in the classical sense, a third question arises: “Is it still
possible to obtain any useful information from this series?”. The answer to this question
can be “yes”, provided an adequate summation method (SM) is used.

The objectives of this manuscript are (i) to present several SM that allow the extracting
of a single algebraic constant related to each divergent series, including the smoothed sum
method [9]; (ii) to solve some discrepancies about the use and correctness of these SM,
including the Ramanujan summation [10–12]; and (iii) to illustrate the concept of fractional
finite sums [13–16] and their associated techniques of applicability.

This manuscript is organized as follows: Section 2 gives fundamental concepts of
divergent series and introduces several methods of summability that allow obtaining
specific and useful information, namely an algebraic constant related to each divergent
series, including the smoothed sums method. Section 3 covers the Ramanujan summation,
including the concept of the Ramanujan coefficient of a series. Section 4 discusses topics
related to the concept of fractional finite sums and introduces recent methods developed
for their evaluation. Section 5 draws some connections between these summability theories.
Section 6 is dedicated to some conclusions. Figure 1 presents a mind map of the structure
of summability theories, including the names of the main contributors to each covered
theory and the years of the registered contributions.

Series Divergent
Series

Ramanujan
Summation

Convergent
Series

Many mathematicians, mainly:
•A.-L.Cauchy (1821)—Cours

D’Analyse

Several authors, including:
•L.Euler—The Euler SM
•N.H.Abel (1826)—The Abel SM
•E.Cesàro (1890)—The Cesàro SM
•E.Borel (1901)—The Borel SM
•M.Riesz (1915)—The Riesz means
•N.E.Nörlund (1920)—The Nörlund means
•G.H.Hardy (1949)—The book Divergent

Series
•T.Tao (2010)—The smoothed sum method

•S.Ramanujan—The first ideas
•G.H.Hardy (1949)—Some rigorous

statements
•B.Candelpergher (2017)—Recent

development of the theory

Fractional
Finite Sums

•L.Euler (1755)—The first example
•S.Ramanujan—Some notes
•M.Müller; D.Schleicher (2005, 2010,

2011)—The first systematic theory
• I.M.Alabdulmohsin (2018)—Extension

to more general functions

Figure 1. Mind map of the structure. Lists of the main contributors/year of contribution.
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Remark 1. To help avoid misunderstanding with the summation methods and their notations
throughout this overview, we introduce the following form for denoting a sum: when the sum is
considered in the classical sense, we only use the symbol ∑, but to represent another specific SM, we
include left superscript letters. For example, the symbol Ab∑ is written to specify that the sum is in
the Abel sense.

Remark 2. In this manuscript, we only deal with SM in the context of Archimedean algebra. An
example of summability theory in non-Archimedean algebra [17] is the ultrametric summability
theory [18], which uses general matrix transformations in the ultrametric analysis [19,20]. Some-
times, the summation methods that use matrices are attributed to Andree and Petersen [21], who
gave conditions for matrices to have properties of convergence similar to those of sequences, but the
topic was discussed previously by Hardy [22]. Interested readers can find more information about
matrix methods of summation in [23–26]. Ultrametric summability theory and matrix methods of
summations are not covered in this manuscript.

2. Divergent Series and Summation Formulae

Before recalling the definition of a divergent series, it is convenient to mention the
definitions of series and convergent series. The current concept of series and convergent
series is due to Cauchy [4,5], who considered a series as a sequence of values a0, a1, a2, · · ·
derived from each other according to a known law. Cauchy considered the sequence
(sn)n∈N of the sums of the nth initial terms of the sequence (an)n∈N described by

sn = a0 + a1 + · · ·+ an . (1)

He stated that an infinite series ∑∞
n=0 an is convergent if the limit of partial sums sn

exists and is equal to one well-determined numeric value s.
When a given series is convergent in Cauchy’s sense, it is written ∑∞

n=0 an = s, and s
is considered the sum in the classical sense of the series. Still, according to Cauchy, when a
given series is not convergent, it is said to be divergent.

The existence of one algebraic constant related to a divergent series is naturally related
to its asymptotic expansion and does not contradict the fact that such a series diverges in
the classical sense. In the following section, we present the general requirements for an SM
to make sense. We also list several SM, which in many cases allow one to obtain one single
algebraic constant related to a given series, usually mentioned as “the sum” of the series.

2.1. About a General Summation Method

According to Hardy [22], the development of the theory of divergent series is based
on adequate generalizations of the limit of a sequence. Usually, an auxiliary sequence of
linear means of the partial sum sn is used.

We say that two SM are consistent with each other when a given series has the same
sum by both methods. [22]. Between two consistent SM, the strongest is the one that can
sum more series, i.e., the stronger method includes the other one [16,22].

An SM should have the properties: (i) regularity, which occurs when the value as-
signed to a series by the SM agrees with its sum in the classical sense [16,22,27]; (ii) linearity,
when for α, β ∈ C, we have [12,22,27]

∞

∑
n=0

(αan + βbn) = α
∞

∑
n=0

an + β
∞

∑
n=0

bn; (2)

(iii) range property [27], that is, the method can attribute a specific numeric value to at least
one divergent series; and (iv) stability, when the method presents the classical translation
property [12,16]:

∞

∑
n=0

an = a0 +
∞

∑
n=0

an+1. (3)
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However, according to Candelpergher [12], we must not consider this property if we adopt
other definitions of summation procedures, in addition to the traditional limit of partial
sums (see Section 3).

According to Hardy [22], we can use any linear transformation T , of the averages
type, to define a procedure that aims at the summation of series, and classical methods of
summation that use means of partial sums can be summarized as follows [12,22].

Let us consider T a topological space and l an accumulation point of T (if T = N, then
l = +∞, and if T = [0, 1), then l = 1). Moreover, let

(
pn(t)

)
n∈N be a family of sequences

satisfying the convergence of the series ∑∞
n=0 pn(t) for all t ∈ T . Then, a T -SM can be

defined by

T
∞

∑
n=0

an = lim
t→l

∞

∑
n=0

pn(t)sn

∞

∑
n=0

pn(t)
, (4)

when such a limit exists, the series ∑∞
n=0 an is said T -summable. These general summation

methods are linear and present the classical translation property. In [22], Hardy established
the necessary and sufficient conditions about the sequences

(
pn(t)

)
n∈N, so that a general

method coincides with the classical sum when we consider a convergent series ∑∞
n=0 an.

2.2. The Cesàro Summation Method

The Cesàro SM, or the Cesàro means, is the first systematic and coherent averaging
process for evaluating the sum of divergent series [22,28]. For a series ∑∞

n=0 an, the Cesàro
mean (of first order) is defined by [22,27,29]

Ce(1)
∞

∑
n=0

an = lim
n→∞

( 1
n + 1

n

∑
k=0

sk

)
= lim

n→∞

( s0 + s1 + s2 + · · ·+ sn

n + 1

)
, (5)

when such a limit exists. For convergent series, if the sequence of partial sums (sn)n∈N has
a limit s when n→ ∞, the Cesàro mean Ce∑∞

n=0 an must have the same limit. The Cesàro
means have the properties of regularity, linearity, and stability [22], and have applicability,
for example, in Fourier series [30–32].

It is possible to consider the Cesàro means of superior orders [22,29]. For m > 1, if
we denote the partial sums of mth order of the series ∑∞

n=0 an by s(m)
n = s(m−1)

0 + s(m−1)
1 +

s(m−1)
2 + · · ·+ s(m−1)

n , then we can write

Ce(m)

∞

∑
n=0

an = lim
n→∞

( 1
n + 1

n

∑
k=0

s(m−1)
k

)
, (6)

or, expressing them in terms of ak, we have

Ce(m)

∞

∑
n=0

an = lim
n→∞

(
m!

(n + 1)m

n

∑
k=0

(
n− k + m

m

)
ak

)
. (7)

The Cesàro means and the Hölder arithmetic means of mth order have similar defini-
tions [22,33]. The difference is that the Cesàro means of order m have only one division,
contrary to the m divisions in the Hölder mean of order m, one at each step [22]. A series
∑∞

n=0 an is Hölder summable to a value s, of order m, when the following limit exists:

Ho(m)

∞

∑
n=0

an = lim
n→∞

s(m)
n = lim

n→∞

(
s(m−1)

0 + s(m−1)
1 + · · ·+ s(m−1)

n

n + 1

)
= s . (8)
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The Cesàro means can also be defined for noninteger orders [22,34]. If r > −1, then
defining the partial sums of noninteger r-order of the series ∑∞

n=0 an by

s(r)n =
n

∑
k=0

(
n− k + r

r

)
ak =

n

∑
k=0

Γ(n− k + r + 1)
Γ(r + 1)Γ(n− k + 1)

ak , (9)

where Γ is the gamma function [35,36]. Observing that the asymptotic approximation
(n+r

r ) ∼ nr/r! remains valid for nonintegers arguments r, that is, with the expression [22]

Γ(n + r + 1)
Γ(r + 1)Γ(n + 1)

∼ nr

Γ(r + 1)
(10)

holding, then the Cesàro means of order r can be defined by

Ce(r)
∞

∑
n=0

an = lim
n→∞

(
Γ(r + 1)

nr

n

∑
k=0

(
n− k + r

r

)
ak

)
, (11)

when such a limit exists.

2.3. The Nörlund Means

Considering a sequence (pn) of positive terms that satisfies

pn

∑n
k=0 pk

→ 0, (12)

the Nörlund means of a series ∑∞
n=0 an can be defined by [22,37,38]

N o
∞

∑
n=0

an = lim
n→∞

( pna0 + pn−1a1 + · · ·+ p0an

∑n
k=0 pk

)
, (13)

when such a limit exists. A particular case of the Nörlund definition are the Hutton
means [22]:

Hu
∞

∑
n=0

an = lim
n→∞

sn−1 + sn

2
. (14)

The Nörlund means can be seen as a generalization for the Cesàro means. If pn = 1
for all n, then the Nörlund means coincide with the Cesàro means of first order. If k > 0
and if

pn =

(
n + k− 1

k− 1

)
=

Γ(n + k)
Γ(k)Γ(n + 1)

, (15)

then the Nörlund means coincides with the Cesàro means of order k [22].

2.4. The Abel Summation Method

For an increasing sequence (λn)n∈N of non-negative terms, if the series ∑∞
n=0 an(e−x)λn

is convergent for all x > 0, then the series ∑∞
n=0 an is Abel summable [22,39], and we write

Ab
∞

∑
n=0

an = lim
x→0+

∞

∑
n=0

an(e−x)λn , (16)

when this limit exists. In the case λn = n, the known formula

Ab
∞

∑
n=0

an = lim
x→1−

∞

∑
n=0

anxn (17)

is recovered [16,22].



Mathematics 2021, 9, 2963 6 of 37

A particular case of the Abel SM, where λ0 = 0 and λn = n log(n) for n ≥ 1, is the
Lindelöf SM, defined by

Li
∞

∑
n=0

an = lim
x→0+

∞

∑
n=0

an n−x n , (18)

when such a limit exists [16,22,40]. The Mittag-Leffler SM [22,41] is similar to the Lindelöf
one, but is not a particular case of the Abel SM. The Abel SM can assign a value for a larger
number of series than the Nörlund means [16,22], but is weaker than the Lambert method,
defined by

La
∞

∑
n=0

an = lim
y→0+

∞

∑
n=0

an
n y (e−y)n

1− (e−y)n , (19)

when such a limit exists [22].
When a series converges in the Cesàro sense, then it also converges in the Abel sense

to the same limit [42,43]. An interesting example of a series that converges in the classical
sense, but is not Abel summable, is given in [44]. In physics, the Abel SM is known as
adiabatic regularization [45].

2.5. The Euler Summation Method

The simplest form of an SM due to Euler emerged from Euler’s work with power
series of the type ∑∞

n=0 anxn [22,46,47]. In a similar way to the Abel SM, Euler considered
the function f (x) = ∑∞

n=0 anxn of complex variable, regular in an open set containing the
origin and the point z = 1, and considered f (1) = s the sum of the series. If the limit s
exists when x → 1, then s is the sum of the series in the Euler sense. Considering an = 2n

in this context, it is relevant the identity (1− 2x)(1 + 2x + 4x2 + 8x3 + · · · ) = 1, valid for

all x. This leads to f (x) = 1 + 2x + 4x2 + 8x3 · · · = 1
1− 2x

, which results in Eu
∞

∑
n=0

2n = −1

when x → 1. The generalized Euler SM, depending on q, is derived after multiplying f (x)
by x. Let us suppose that the series ∑∞

n=0 anxn+1 converges for x small. The series ∑∞
n=0 an

is Euler summable for all q > 0, and we write

Eu(q)
∞

∑
n=0

an =
∞

∑
n=0

1

(q + 1)n+1

n

∑
k=0

(
n
k

)
qn−kak , (20)

if the last series is convergent [22]. For q = 1, the known formula

Eu(1)
∞

∑
n=0

an =
∞

∑
n=0

1
2n+1

n

∑
k=0

(
n
k

)
ak (21)

is recovered, and for q = 0, we obtain the sum in the classical sense [22]. For alternating
series, where an = (−1)n−1g(n), the Euler summation formula is given by [12,16]

Eu(1)
∞

∑
n=0

an =
∞

∑
n=0

(−1)n

2n+1

n

∑
k=0

(
n
k

)
(−1)n−kg(k) . (22)

2.6. The Borel Summation Methods

For a series ∑∞
n=0 an of complex numbers with partial sums given by sn = ∑n

k=0 ak

(and with s0 = 0), supposing that the series
∞

∑
n=0

tn

n!
sn is convergent for every t > 0, the

weak Borel sum of the series ∑∞
n=0 an (exponential method) is defined by

Bo
∞

∑
n=0

an = lim
t→+∞

e−t
∞

∑
n=0

tn

n!
sn , (23)
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when such a limit exists [22,48]. More generally, if a series ∑∞
n=0 anzn of complex terms

with partial sums given by sn(z) =
n

∑
k=0

akzk is such that e−t
∞

∑
n=0

tn

n!
sn(z) converges, then we

say that the weak Borel sum converges at z ∈ C.

If the series
∞

∑
n=0

tn

n!
sn is convergent for every t > 0, the function s : t 7→ e−t

∞

∑
n=0

tn

n!
sn is

an entire function, and thus, the series ∑∞
n=0 an is Borel summable (integral method) with

Bo
∞

∑
n=0

an =
∫ +∞

0
e−t
( ∞

∑
n=0

tn

n!
an

)
dt , (24)

if the integral is convergent. More generally, if the integral
∫ +∞

0
e−t
( ∞

∑
n=0

tnzn

n!
an

)
dt con-

verges, then we say that the Borel sum converges at z ∈ C [12,22].
It is important to observe that, although there is a relationship between the two Borel

SM, they are not equivalent [22].
The Borel integral method is the most known process of mean defined by integral

functions. Other integral methods, not included in this manuscript, are the Valiron’s
method (a generalization of the Borel method) and the moment constant method [22].
The Borel SM has a wide range of applications, playing an important role in asymptotic
analysis and semiclassical methods. For example, it is used in the context of Wentzel-
Kramers-Brillouin (WKB) theory to find approximate solutions to certain linear differential
equations [49–51] and in the study of the 1-D Schrödinger equation [52–54]. Moreover, the
resurgence theory [55–59] is an important generalization of Borel SM.

2.7. The Riesz Means

The Riesz’s typical means are generalizations of certain types of means, concerning
summable integrals [22,60]. Let us consider (λn)n∈N an increasing sequence of non-negative
terms. Defining a species of analogous continuous of the partial sums of a series ∑∞

n=0 an by

sn,λ(x) :=
( n

∑
k=0

ak

)
λ

(x) = a0 + a1 + · · · an = sn , for λn < x ≤ λn+1, (25)

with sn,λ(x) = 0 for x ≤ λ0, for a continuous variable ω and µ > 0 we define

s(µ)λ (ω) =
( n

∑
k=0

ak

)(µ)
λ

(ω) =
µ

ωµ

∫ ω

0

( n

∑
k=0

ak

)
λ

(x) (ω− x)κ−1 dx . (26)

Then, applying partial integration, we obtain

s(µ)n,λ(ω) =
( n

∑
k=0

ak

)(µ)
λ

(ω) =
1

ωµ

∫ ω

0
(ω− x)µ dsn,λ(x) =

bωc

∑
λk=λ0

(
1− λk

ω

)µ
ak . (27)

Supposing that s(µ)n,λ(ω)→ s when ω → ∞, the series ∑∞
n=0 an is Riesz summable to s,

and we write

Ri
∞

∑
n=0

an = lim
ω→∞

s(µ)n,λ(ω) = lim
ω→∞

( bωc
∑

λk=λ0

(
1− λk

ω

)µ
ak

)
= s . (28)

The Riesz’s typical means are regular [22]. The Riesz arithmetic means are obtained
from Equation (28) if λn = n. When λn = log(n + 1) and µ = 1, the Riesz mean is
equivalent to the logarithmic mean [22].
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2.8. Some Examples

We present some sums evaluated under specific SM for series that are divergent in the
classical sense.

The Grandi’s series ∑∞
n=0 (−1)n = 1− 1 + 1− 1 + · · · is summable under several

methods. As examples, we cite:

Ab
∞

∑
n=0

(−1)n = Eu
∞

∑
n=0

(−1)n = Ce
∞

∑
n=0

(−1)n = Bo
∞

∑
n=0

(−1)n =
1
2

. (29)

The Euler alternating series ∑∞
n=0 (−1)n+1n = 1− 2 + 3− 4 + · · · is Abel- and Euler-

summable:
Ab

∞

∑
n=0

(−1)n+1n = Eu
∞

∑
n=0

(−1)n+1n =
1
4

. (30)

The geometric series with ratio 2, ∑∞
n=0 2n = 1 + 2 + 22 + 23 + · · · , is Euler summable

and
Eu

∞

∑
n=0

2n = −1 . (31)

Even with the various SM presented in this section, many series remain not summable
(or are not summable under some specific SM). As a simple example, the Euler’s series
∑∞

n=0 n is not Abel summable, Euler summable, or Cesàro summable.

2.9. The Euler–Maclaurin Summation Formula

The Euler-Maclaurin summation formula (EMSF) expresses a finite sum whose general
term is given by a function f (n), n ∈ N, in terms of the integral and the derivatives of the
function f (x), x ∈ R. The theory of this formula is more related to the asymptotic aspects
of a series than with their classical sum. However, due to its importance in many branches
of analysis, Hardy has dedicated the last chapter of [22] to this approach. The first entry is
exactly

n

∑
m=1

f (m) ∼
∫ n

a
f (x)dx + C +

1
2

f (n) +
∞

∑
r=1

(−1)r−1 Br

(2r)!
f (2r−1)(n) , (32)

for a ∈ (0, 1], where Br are the Bernoulli numbers (Hardy did not consider the null
Bernoulli numbers). For x large, the function f must have enough regularity. In addition,
the derivative f (k)(x) must decrease when k increases. The constant C = C f in Formula (32)
is called the Euler–Maclaurin constant of f [22]. More information about the Bernoulli
numbers can be found in [7,61–64]. In general, Formula (32) is not an identity, but instead,
it is a proximity relation.

The EMSF has this name because it was derived independently by Euler and by
Maclaurin [65–68]. The idea of Euler was announced in 1732-3 and published in 1738
in [65]. Euler began to observe that to each discrete sum S(s, n) of powers of integers ks,
it was possible to associate a continuous analogue in an integral form: the integral of the
function xs of the real variable x [47]. It is clear that, in general, for a given function f (x),
the values for the discrete sum and for the integral are different. The question is “How do
these values differ?” [47].

Many distinct ways to obtain the EMSF were proposed. One example comes from the
discrete calculus given in [7], among others (see, e.g., [7,8,22,64,69,70]).

For a function f ∈ C∞, the EMSF is given by

n−1

∑
k=a

f (k) =
∫ n

a
f (x) dx− 1

2
f (x)

∣∣∣n
a
+

∞

∑
m=1

B2m

(2m)!
f (2m−1)(x)

∣∣∣n
a

, (33)
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where Bm are the Bernoulli numbers and a, n ∈ N, with a < n. Note that in Formula (33),
the upper limit of the sum is n− 1, and the upper limit of the integral is n [47]. In addition,
a common representation of the EMSF, with the same bound limits on the left side, is
given by

n

∑
k=a

f (k) =
∫ n

a
f (x) dx +

1
2
(

f (n) + f (a)
)
+

∞

∑
m=1

B2m

(2m)!
f (2m−1)(x)

∣∣∣n
a

. (34)

Note that the last series in (33) or (34) can diverge, because Bernoulli numbers are
present, beginning with small values, but growing fast [22].

For functions f (x) that are not infinitely differentiable, but only of class Cr, the EMSF
is given by

n−1

∑
k=a

f (k) =
∫ n

a
f (x) dx +

(B1

1!
f (x)

∣∣n
a +

B2

2!
f ′(x)

∣∣n
a + · · ·+

Br

r!
f (r−1)(x)

∣∣n
a

)
+ Rr . (35)

The formula (35) includes a remainder term Rr, introduced by Poisson in 1823 [71].
The main task, in many situations, is precisely to evaluate the remainder term Rr. The exact
formula for the remainder term was obtained by several authors. The following expression
is due to Kač [72]:

n−1

∑
k=a

f (k) =
∫ n

a
f (x) dx +

r

∑
k=1

Bk
k!
(

f (r−1)(n)− f (r−1)(a)
)
−
∫ n

a

Br({1− t})
r!

f (r)(t) dt , (36)

where Br(·) are the periodic Bernoulli polynomials with index r [73], and {x} denotes the
fractional part of x ∈ R, i.e., {x} := x− bxc, with bxc denoting the integer part of x ∈ R.

Other summation formulae, similar to (36), are also known. Let us consider the Euler
polynomials En(x), obtained from

2ext

et + 1
=

∞

∑
n=0

En(x)
tn

n!
, (37)

where the Euler numbers En are given by En = 2nEn(1/2), and the periodic Euler poly-
nomials En(·) can be defined similarly to the periodic Bernoulli ones. The Euler-Boole
summation formula (EBSF) can be defined as [74]:

n−1

∑
m=a

(−1)m f (m + h) =
1
2

r−1

∑
k=0

Ek(h)
k!

(
(−1)n−1 f (k)(n)− (−1)a f (k)(a)

)
+

1
2(m−1)!

∫ n

a
f (r)(x)Er−1({h− x})dx ,

(38)

where h ∈ (0, 1). Formula (38) is due to Boole [75] and is adequate fpr alternate series.
Strodt [76] indicated a unified approach to obtain the EMSF and the EBSF, which was
explored in more detail by Borwein in [74]. Other periodic generalizations for the EMSF
are given, for example, by Berndt [73], Berndt and Schoenfeld [77], and Rane [78].

Hardy [22] established a relationship between the Euler–Maclaurin constant C( f )
that appears in Formula (32), and the Ramanujan summation (RS) of the series ∑∞

n=1 f (n)
(denoted by Hardy as (R, a)), and wrote

f (1) + f (2) + · · ·+ f (x) + · · · = C( f ) (R, a) , (39)

for 0 < a ≤ 1. This, apparently, gives another definition to the “sum” of a divergent series,
in a different sense from previous sums recalled in this section. Hardy has chosen the
symbol R due to Ramanujan. In this manuscript, in order to uniformize the notation, we
replace the symbol (R, a) by Ra∑∞

n=1. The RS is considered in Section 3.
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2.10. The Smoothed Sum Method

In 2010, T. Tao introduced the concept of smoothed sums in his blog [79] (see also
Section 3.7 of [9]) as a tool able to give an interpretation for the strange values assigned
to divergent series by some SM, such as, for example ∑∞

n=1 1 = − 1
2 . The smoothing

sum method is not usually discussed in textbooks but appears in Chapter 2 of [80]. Such
a technique accomplishes an important task in asymptotic analysis and semiclassical
methods [81]. It is used, for example, to evaluate sums [82]. The argument is that it is
simpler to deal with expressions of the type ∑∞

n=1 a(n)η(n) than evaluating asymptotically
sums of type ∑∞

n=0 a(n). The smooth function η utilized must vanish or decay fast for n
larger than a fixed integer n0.

Is relevant the concept of big-O and small-o notation, introduced by P. Bachmann [83]
and diffused after E. Landau [84]. Let f , g be two functions in adequate domains. If the ratio
| f (x)|/|g(x)| remains bounded by some constant C > 0 when x → ∞, then f is asymptot-
ically limited by g, and we can write f (x) = O

(
g(x)

)
. If lim

x→∞

(
| f (x)|/|g(x)|

)
= 0, then f

is asymptotically smaller than g, and we have f (x) = o
(

g(x)
)
. If lim

x→∞

(
| f (x)|/|g(x)|

)
= 1,

then f is asymptotically equal to g, and we write f (x) ∼ g(x). These notations found great
applicability in computer programming [7,85]. More about the big-O notation can be seen
in [8,86,87].

Tao [9] considered initially the convergent sum ∑∞
n=1 1/n2 with the classical interpre-

tation, where the partial sum sn converges to π2/6 as n→ ∞. In other words, for a large
fixed integer n, we have

n

∑
k=1

1
k2 =

π2

6
+ o(1), (40)

where o(1) denotes a quantity asymptotically limited by 1 that vanishes as n→ ∞. With
the known integral test, Tao estimated that

n

∑
k=1

1
k2 =

π2

6
+ O

( 1
n

)
, (41)

where O(1/n) denotes a quantity asymptotically smaller than 1/n and concluded that
π2/6 is the constant term of the asymptotic expansion of the partial sums of ∑∞

n=1(1/n2).
Exploring the partial sums to found the coefficient of the asymptotic expansion was
sufficient in this case. However, in general, it is not so simple, due to the discrete nature of
the partial sums and to their discontinuities at the integer values of n, which can introduce
undesirable artifacts. For convergent series, such artifacts are dominated by the term o(1).
For divergent series, this is not the case [9].

To find adequate asymptotic expansions for divergent series, Tao [9] proposed replac-
ing the abruptly truncated partial sums sn = ∑n

k=1 ak, for n large enough, by smoothed
sums of the type

∞

∑
k=1

η
( k

n

)
ak , (42)

where η is a cutoff function, which is bounded with compact support, domain in R+, equal
to 1 at k = 0, and with other suitable smoothness conditions. The traditional partial sums
correspond to the function η in (42) replaced by the characteristic function 1[0,1], which is
not a smoothed function. An example of a cutoff function C∞ is given by [47]

η(x) =

{
exp

(
1− 1

1−x2

)
, if 0 ≤ x ≤ 1

0, if x > 1 .
(43)

For absolutely convergent series, the choice of the smooth function does not affect the
value of the sum, due to the dominated convergent theorem [9,82]. However, considering
smoothed sums can improve the properties of convergence for a divergent series.
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An example of an SM, interpreted as a smoothed sum, is the Cesàro summation
of first-order (5), when we consider the cutoff function η(x) := (1− x)+ in the series
(42). This is not a smooth cutoff function in a literal meaning because a discontinuity
in x = 1 is present in the derivative [9]. Santanter [47] clarifies that the cutoff function
η(s) is a continuous variable function, which is used to weight the nth smoothed sum
with η(x) evaluated in discrete values. For the Cesàro summation, these weights are
η
( 0

n+1
)
, η
( 1

n+1
)
, η
( 2

n+1
)
, · · · , η

( n−1
n+1
)
, η
( n

n+1
)
, which indicate that an adequate definition

of smoothed partial sums of a series is given by

sη
n = η

( 0
n + 1

)
a0 + η

( 1
n + 1

)
a1 + η

( 2
n + 1

)
a2 + · · ·+ η

( n
n + 1

)
an . (44)

Alternatively, we can write (replacing n + 1 with n) the previous expression as

sη
n :=

∞

∑
k=0

η
( k

n

)
ak , (45)

which is, thanks to the compact support of the cutoff function, a finite sum for each value n.
The smoothed sum by η of the series ∑∞

n=0 an is then defined taking the limit n→ ∞ in the
smoothed partial sums:

Sm
∞

∑
n=0

an := lim
n→∞

sη
n = lim

n→∞

∞

∑
k=0

η
( k

n + 1
)
ak . (46)

It is not adequate to interpret a smoothed partial sum in the classical sense of increasing
the value of one term into the value of the previous partial sum. Instead, it is better
to consider the smoothed partial sum as an arrangement of the terms ak with weights
depending on n, which only approximates the value of the sum when n→ ∞ [47].

Considering smooth cutoff functions η, for any fixed s = 1, 2, · · · and for an integer n
large enough, Tao [9] deduced the following version for the truncated EMSF:

∫ n

0
f (x) dx =

1
2

f (0) +
n

∑
k=1

f (k) +
s+1

∑
m=2

Bm

m!
f (m−1)(0) + O

(
n‖ f (s+2)‖∞

)
, (47)

where ‖ f (S+2)‖∞ = sup
x∈R

∣∣ f (s+2)(x)
∣∣, and the complete EMSF:

∫ n

0
f (x) dx =

1
2
(

f (0)− f (n)
)
+

n

∑
k=1

f (k) +
∞

∑
m=2

Bm

m!
(

f (m−1)(0)− f (m−1)(n)) . (48)

Applying Formula (47) to the sum of powers of integers ∑∞
n=1 ns with some fixed

smooth cutoff function η, Tao [9] showed that, for a value of s fixed, it holds that

∞

∑
k=1

η
( k

n

)
ks = − Bs+1

s + 1
+ Cη,s ns+1 + O

( 1
n

)
, (49)

where Cη,s is a constant given by the finite integral Cη,s :=
∫ ∞

0 xsη(s) ds. Essentially, Cη,s is
the Mellin transform of the smooth function η [88,89]. The constant term that appears in
the asymptotic expansion (49) corresponds to the values obtained by analytic continuation
of the series and under another consistent method of summation [9].

Santander [47] highlighted the question “How the values of a discrete sum and an
integral differ over the same function f (x)?” and, in order to answer he revisited the
model f (x) = xs, for any value of s fixed. Therefore, he evaluated the smoothed sums
sη

n = ∑∞
k=0 η

( k
n
)
ks, where η is a cutoff function with appropriate properties and n (initially

integer) denotes a real number. Santander compared the smoothed sum with the value
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of the integral
∫ ∞

1 xs dx using the EMSF with remainder (36). Using the short notation
Fn,s(x) := η(x/n)xs for the associated smoothed function, Santander wrote

∞

∑
k=0
Fn,s(k) =

∫ ∞

0
Fn,s(x)dx +

1
2
Fn,s(0)−

s+1

∑
m=2

Bm

m!
F (m−1)

n,s (0)−
∫ ∞

0

Bs+1({1−t})
(s+1)!

F (s+1)
n,s (t)dt. (50)

Taking n→ ∞ in Equation (50) and analyzing the asymptotic behavior of each term,
he obtained

∞

∑
k=0

η
( k

n

)
ks η∼

∫ n

0
η
( k

n

)
ks dx + 0− Bs+1

s + 1
+ O

( 1
n

)
, (51)

where
η∼ indicates the asymptotic expansion considering the smoothed sum. At this point,

Santander recovered the asymptotic expansion given in (49), here written as

∞

∑
k=0
Fn,s(k) ∼ Cη,s ns+1 − Bs+1

s + 1
+ O

( 1
n

)
. (52)

When the asymptotic expansion expressed in (52) is compared with the Bernoulli
formulae for the discrete sums of powers of integers [47,90]

n

∑
k=0

ks =
1

s + 1
ns+1 +

1
2

ns +
1

s + 1

(s+1
2

)
B2ns−1 +

(
s+1

4

)
B4ns−3 + · · ·+

(
s+1
s−1)Bs−1n2

(s+1
s )Bsn

, (53)

it is possible to see the unwanted artifacts cited by Kowalski [82] and Tao [9], which are
introduced by the discontinuity of the cutoff function (that, for the Bernoulli formulae, is
the characteristic function).

In the asymptotic expansions (52), namely

for s = 0 : 1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n

∼ Cη,0 n− 1
2
+ O

( 1
n

)
for s = 1 : 1 + 2 + 3 + · · ·+ N ∼ Cη,1 n2 − 1

12
+ O

( 1
n

)
for s = 2 : 1 + 22 + 32 + · · ·+ n2 ∼ Cη,2 n3 − 0 + O

( 1
n

)
for s = 3 : 1 + 23 + 33 + · · ·+ n3 ∼ Cη,3 n4 +

1
120

+ O
( 1

n

)
...

...

(54)

we can identify the values that are assigned by the divergent series ∑∞
k=0 ks by several SM.

It is now clear that values given for these divergent series by other regular SM are just the
constant terms in the asymptotic expansion of series in the context of smoothed series.

From expression (52), it follows that

∞

∑
k=0

η
( k

n

)
ks −

∫ n

0
η
( k

n
)
xs dx

η∼ − Bs+1

s + 1
+ O

( 1
n

)
. (55)

Omitting the cutoff function η and taking n→ ∞, we obtain

∞

∑
k=0

ks −
∫ ∞

0
xs dx

η∼ − Bs+1

s + 1
, (56)

that is, an expression showing that the values assigned by several methods of summability
to the series ∑∞

n=0 ns are the difference between the discrete infinite sum of the terms an = ns

and the integral
∫ ∞

0 xs dx, where a(x) = xs is the real value of the function associated to
general term an = ns of the series.
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In a general way, this example indicates that, if one considers an SM T consistent
with a smoothed summation and a series ∑∞

n=0 an, which is T -summable with a finite sum

given by T
∞

∑
n=0

an (where the general term an is associated with a function a(x)), then in the

relation
T

∞

∑
n=0

an
η∼

∞

∑
k=0

ak −
∫ ∞

0
a(x) dx , (57)

the T -sum can be interpreted as the difference between the series and the integral. There-
fore, we have an answer to the question about how the values of a discrete sum and an
integral over the same function f (x) differ. Such interpretation can be possible even if the
integral

∫ ∞
0 a(x) dx and the series ∑∞

n=0 an diverges in the classical sense. This problem is
revisited in Section 3.

2.11. Additional Examples: Power Sums, Riemann Zeta Function, and Some Applications

The sum of powers of natural numbers was an object of interest for centuries and was
studied by seminal researchers, such as Euler, who obtained numerical approximations for
many sums, using a generating function technique [70]. For finite sums of type

sn(s) =
n

∑
k=0

ks, n, s ≥ 0 , (58)

specific formulae are presently known, besides the general Faulhaber’s expression [61,91–93]:

sn(s) =
n

∑
k=0

ks =
1

s + 1
ns+1 +

1
2

ns +
s

12
ns−1 + · · ·+ Bs n . (59)

Series of powers of natural numbers are divergent in the classical sense. However, in
the context of smoothed sums, it is possible to assign a real value to any series (as sought by
Euler [46,70,94]). As an example of applicability and interpreting the value of the constant
term in the asymptotic expansion (in the context of the smoothed sums) as the “sum” of the
series, it is possible to assign for the Euler series ∑∞

n=0 n, for ∑∞
n=0 1 and for the harmonic

series ∑∞
n=1 n−1, respectively, the values [47]

Sm
∞

∑
k=0

k = − 1
12

, Sm
∞

∑
k=0

1 = − 1
2

and Sm
∞

∑
k=1

1
k
= γ , (60)

where γ = 0.57721... is the Euler–Mascheroni constant [22,89]. In particular, the sum
1 + 2 + 3 + · · · = − 1

12 , sometimes attributed to Ramanujan, appears widely in string
theory as a result of a renormalization process [95].

We recall that a series summable to a value s under any method remains summable
to s under smoothed sums, as illustrated by the examples given before, and that, under
smoothed sums, remains with the same known values:

Sm
∞

∑
k=0

(−1)k =
1
2

, Sm
∞

∑
k=0

(−1)k+1k =
1
4

, and Sm
∞

∑
k=0

2k = −1 . (61)

For the following example, it is convenient to remember the definition of the Riemann
zeta function ζ(s) and some formulae for its analytic continuation. The Riemann zeta
function can be defined by Formula [89]

ζ(s) =
∞

∑
n=1

1
ns , (62)
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where n goes through all integers (this formula is due to Euler and Riemann, who have
considered real and complex values to the variable s, respectively [47]), or by the expression

ζ(s) = ∏
p

(
1− 1

ps

)−1
, (63)

where p goes through all prime number [89]. When s ∈ C, i.e., s = Re(s) + i Im(s), the
Dirichlet series [60,96] is convergent for the half-plane Re(s) > 1, and at any finite region
in which Re(s) ≥ 1 + δ, δ > 0, it is uniformly convergent. Therefore, it is possible to define
ζ(s) as an analytic function, regular for Re(s) > 1. The infinite product present in the
second definition is also absolutely convergent for the half-plane Re(s) > 1. These two
forms of the Riemann zeta function can be seen as analytic equivalents of the fundamental
theorem of arithmetic, which uniquely expresses an integer as a product of primes, and
is revealing of the importance of the Riemann zeta function ζ(s) in the theory of prime
numbers [89]. More about the Riemann zeta function (including historical aspects) is
reported in [89,97–99].

The Riemann zeta function ζ(s) admits analytic continuation and is regular for all
s except for a simple pole at s = 1, with residue 1. Methods to obtain such analytic
continuation can be seen in [22,47,89]. Titchmarsh [89] discussed the analytic continuation
for the Riemann zeta function using the following functional equation:

ζ(s) = 2sπs−1 sin
(1

2
sπ
)

Γ(1− s) ζ(1− s) , (64)

having an approximation near s = 1 that can be obtained by

ζ(s) =
1

s− 1
+ γ + O(|s− 1|) . (65)

A method due to Riemann [89] uses the fundamental formula

ζ(s) =
1

Γ(s)

∫ ∞

0

xs−1

ex − 1
dx (Re(s) > 1) (66)

and the integral I(s) =
∫

C

zs−1

ez − 1
dz, where C is an adequate line contour that excludes the

poles, to show that for Re(s) > 1, it holds that

ζ(s) =
e−1πsΓ(1− s)

2πi

∫
C

zs−1

ez − 1
dx . (67)

This expression defines an analytic continuation of ζ(s) over the whole s-plane. The
simple pole in s = 1 is the unique possible singularity because the integral I(s) (convergent
for any infinite region) vanishes in the singularities of Γ(1− s) [89]. An analytic expansion
to the Riemann zeta function, obtained throughout the EMSF, can be found in [22,47].

Another analytic continuation for the Riemann zeta function is given by Tao [9], in the
context of smoothed sums. For ∑∞

k=1 η
( 1

n
) 1

ks , the asymptotic expansion yields

∞

∑
k=1

η
( k

n

) 1
ks = ζ(s) + Cη,−s

(
n1−s)+ O

(
1/n

)
, (68)

for complex number ζ(s). It is important to remember that such number ζ(s) does not
depend of the chosen cutoff η. It follows that

ζ(s) = lim
n→∞

( ∞

∑
k=1

1
ks η
( k

n

)
− Cη,−s

(
n1−s)) (69)



Mathematics 2021, 9, 2963 15 of 37

can be interpreted as a new definition for ζ(s) in the half-plane R(s) < 1 [9]. Observing
that Cη,−s

(
n1−s) = ∫ n

1 x−sη(x/n) dx− 1/(s− 1) holds for n large enough, Tao proposed

ζ(s) =
1

s− 1
+ lim

n→∞

( ∞

∑
k=1

1
ks η
( k

n

)
−
∫ n

1
x−sη

( x
n

)
dx
)

(70)

as one version of analytical continuation for the Riemann zeta function ζ(s), valid for
Re(s) < 1 and for Re(s) > 1 [9]. Thus, Tao used the concept of smoothed sums to present a
new definition of ζ(s) that holds on the complex plane and that recovers the asymptotic
expansion presented in (65) near s = 1.

Considering the analytic continuations for Riemann zeta function ζ(s) and evalu-
ating them in the context of the smoothed sums for s = 0,−1,−2, · · · , it is possible to
conclude that

ζ(0) = − 1
2

; ζ(−1) = − 1
12

; ζ(−2) = 0; · · · ; ζ(s) = − Bs+1

s + 1
; · · · (71)

where the assigned values are the constant terms obtained in the asymptotic development
of the smoothed sum [47]. We recall that, for the treatment of the Riemann zeta function, a
careful analysis of convergent or divergent series (depending on the domain) and related
topics is needed [12].

As the last examples in this section, we cite some applications in physics. Wreszin-
ski [100,101] applied the smoothed sum method to revisit the simplest Casimir effect, for
perfect conducting parallel plates [102–105]. He obtained, for the total energy density ut

per unit of surface, the finite value −(π2h c)/(720 d3), where h is the Planck constant, c
is the speed of light, and d is a small distance between the plates. This result agrees with
the leading term of the asymptotic expansion obtained by using the EMSF but without the
residual divergence that remains under another type of analysis. Zeidler [106] used the
zeta regularization technique, similar to the smoothed sum method, to evaluate the sum of
divergent series in quantum field theory.

Other techniques of regularization are also used in physics to extract finite and relevant
information from infinities obtained theoretically, for example, from divergent series. Some
examples can be seen in [107–111].

3. Ramanujan Summation

Srinivasa Ramanujan was an Indian mathematician with a singular history and singu-
lar works. Short biographies about S. Ramanujan can be found in the frontmatter of [11,112].
Details about his life and research can be found, for example, in [113–115]. The collected
papers of S. Ramanujan were published in 1927 (reprinted in [11]). His notebooks were
published in full in [10] as a facsimile, and have commented editions in [112,116–124].

S. Ramanujan introduced an SM in his second notebook, chapter VI [10,112], herein
called RS. The RS is different from the Ramanujan’s sum, a useful tool in number theory
(see [11] (Chapter 21) or [125,126]). The RS is not a sum in the classical sense: the functions
to sum are not considered discrete functions (as sequences), but instead, they are interpo-
lated by analytic functions. Ramanujan established a relationship between the summability
of divergent series and infinitesimal calculus [112].

It is convenient to remember that the writings of Ramanujan were often imprecise,
and sometimes, his conclusions were not correct. Most of such imprecisions were revisited
by many mathematicians [12,16,22,112] and, according to Berndt [112], Hardy has given
firm foundations to Ramanujan’s theory of divergent series in [22]. Still according to
Berndt [112], the RS has his basis in a version of the EMSF (32), and highlights a property
called by Ramanujan as “constant” of the series: C( f ), in Equations (32) and (39). Hardy
warned that the RS “have a narrow range and demand great caution in their application” [22],
and Berndt said that “readers should keep in mind that his findings frequently lead to incorrect
results and cannot be properly described as theorems” [112].
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The SM in Section 2 is of the sequence-to-sequence or sequence-to-function transfor-
mation type [27]. Another way to generalize the concept of summation was introduced in
1995 by Candelpergher [127], briefly summarized as follows: let there be a complex vector
space V, a linear operator A : V → V, and a linear transformation v0 : V → C. An element
f ∈ V is called a generator of a complex sequence (an)n∈N if an = v0(An f ) for all n ∈ N. A
given series ∑∞

n=0 an can be formally written as

∞

∑
n=0

an =
∞

∑
n=0

v0(An f ) = v0

( ∞

∑
n=0

An f
)
= v0

(
(I − A)−1 f

)
= v0(R) . (72)

Since R ∈ V exists, the unique solution for the equation

(I − A)R = f , (73)

is obtained under proper conditions that assure unicity [127].
Using such algebraic framework, the classical sum is recovered choosing V as the space

of convergent complex sequences, A as the shift operator [7,8] acting on the sequences, v0
as the linear transformation that associates each sequence with its first term, and with the
additional condition lim

n→∞
rn = 0 (where (rn)n∈N = R) [127].

In [127], Candelpergher explains the RS as follows: The space V contains certain
analytic functions. For any f ∈ V, the linear operator A satisfies A f (x) = f (x + 1). The
linear transformation v0 is defined by v0( f ) = f (1). The indexation of the terms f (n) of
the series begins at n = 1 (n ∈ N). Equation (73) leads to the difference equation

R(x)− R(x + 1) = f (x) (74)

and, choosing an adequate solution R f for (74), the RS is defined by

Ra
∞

∑
n=1

f (n) = R f (1) . (75)

Applying the Laplace transform, Candelpergher et al. [128] established the existence
and uniqueness for the solution of Equation (74). Delabaere [129] used the Borel and the
Laplace transforms to obtain a unique solution for the difference Equation (74). In [12],
Candelpergher uses the algebraic framework to deal with RS.

3.1. Ramanujan Constant of a Series

In Chapter VI of his second notebook [10,112], Ramanujan wrote

ϕ f (x) = f (1) + f (2) + · · ·+ f (x) (76)

to describe a kind of interpolation function for the partial sums sn = ∑n
m=1 f (m). He

also used the additional condition ϕ f (0) = 0. Probably, Ramanujan used a version of
the EMSF (32) to write an asymptotic expansion for the function ϕ f as follows:

ϕ f (x) = C( f ) +
∫

f (x) dx +
1
2

f (x) +
∞

∑
k=2

B2k
(2k)!

f (2k−1)(x) , (77)

where the constant C( f ) is present, called by Ramanujan “the constant of the series”, and
loosely speaking, “the center of gravity of a series” [112]. The Bernoulli numbers Bk grow
rapidly, but the last term in the formula (77) converges because the series of the coefficients

B2k
(2k)! is convergent.
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Candelpergher [12] used the EMSF with remainder (35), for functions f ∈ C∞(R+),
to write

n

∑
k=1

f (k) = Cr( f ) +
∫ n

1
f (x) dx +

f (n)
2

+
r

∑
k=1

B2k
(2k)!

f (2k−1) f (n)−
∫ ∞

n

B2r+1({x})
(2r + 1)!

f (2r+1)(x) dx ,

(78)

where

Cr( f ) =
f (1)

2
−

r

∑
k=1

B2k
(2k)!

f (2k−1)(1) +
∫ ∞

1

B2r+1({x})
(2r + 1)!

f (2r+1)(x) dx , (79)

with Br({·}) denoting the periodic Bernoulli polynomials with index r and Bk standing for
the Bernoulli numbers. Supposing that f ∈ C∞ and that the last integral in Equation (79) is
convergent for r large enough, the constant Cr( f ) is not dependent on r and can be replaced
by C( f ) [12].

When a divergent series is related with an algebraic constant by some SM, it is possible
to make the Ramanujan constant of a series (RCS) agree with such an algebraic constant. It
is enough to choose a = 0 in the formulae for the RCS written by Hardy [22]. Choosing
a = 0, then, for functions f ∈ Cr(R+) such that Br({1− x}) f (r)(x) is integrable on (0, n)
for all n ∈ N, the RCS depending on r is given by

Cr( f ) = −
∫ 1

0
f (x) dx +

f (1)
2
−
br/2c

∑
k=1

B2k
(2k)!

f (2k−1)(1) +
∫ 1

0

Br(1− x)
r!

f (r)(x) dx , (80)

where Br(·) denotes the Bernoulli polynomials with index r. For functions f ∈ C∞, the
RCS is given by

C( f ) = −
∫ 1

0
f (x) dx +

f (1)
2
−

∞

∑
k=1

B2k
(2k)!

f (2k−1)(1) . (81)

3.2. The Definition of Ramanujan Summation

According to Candelpergher [12], the start point to define the RS is the interpolation
function ϕ f given in (76), probably conceived by Ramanujan for the series ∑∞

n=1 f (n),
satisfying the difference equation

ϕ f (x)− ϕ f (x− 1) = f (x) , (82)

as well as the additional condition ϕ f (0) = 0. The EMSF (78) can be used to write the
function ϕ f in the asymptotic expansion as

ϕ f (n) = C( f ) + f (n)− R f (n) , (83)

where C( f ) is as given in Equation (79) and the function R f can be written as

R f (n) =
f (n)

2
−

r

∑
k=1

B2k
(2k)!

f (2k−1) f (n) +
∫ +∞

n

B2r+1({x})
(2r + 1)!

f (2r+1) f (x) dx−
∫ n

1
f (x) dx . (84)

For a given series ∑∞
n=1 f (n), since R f (1) = C( f ) = Ra∑∞

n=1 f (n), the constant R f (1)
also receives the denomination RCS [12].
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Remark 3. In [12], Candelpergher selected a = 1 for the parameter in the RCS formulae as written
by Hardy [22]. However, if the parameter a = 0 is chosen, the formulae (80)–(81) hold for the RCS,
and Equation (84) can be naturally replaced by

R f (n) =
f (n)

2
−

r

∑
k=1

B2k
(2k)!

f (2k−1) f (n) +
∫ n

0

B2r+1({x})
(2r + 1)!

f (2r+1) f (x) dx−
∫ n

0
f (x) dx , (85)

remaining valid the relation R f (1) = C( f ) = Ra∑∞
n=1 f (n) established by Candelpergher [12].

Candelpergher [12] also established a more precise definition of R f . From (82), (83),
and (85), a natural candidate to define the RS of a given series ∑∞

n=1 f (n) is an analytic
function R that satisfies the difference equation

R(x)− R(x + 1) = f (x) (86)

and the initial condition

R(1) = Ra
∞

∑
n=1

f (n) . (87)

To uniquely determine the solution R, an additional condition is needed. Suppos-
ing that R is a smoothed-enough solution of the difference Equation (86) for all x > 0,
Candelpergher [12] obtained the additional condition∫ 2

1
R(x) dx = 0 . (88)

Remark 4. When the choice of the parameter is a = 0, the additional condition (88) must be
replaced by ∫ 1

0
R(x) dx = 0 . (89)

However, in agreement with the choice of Candelpergher [12], in the sequence of this section,
we write

∫ 2
1 R(x) dx = 0 for the additional condition.

We must note, however, that even defining R as the solution of the difference Equa-
tion (86) subject to the initial condition (87) and the additional condition (88), the unique-
ness of the solution cannot yet be established, because any combination of periodic func-
tions can be added. The latest hypothesis about R to guarantee its uniqueness is that R
should be analytic for all x ∈ C, such as Re(x) > 0, and of exponential type α < 2π. A
given function g, analytic for all x ∈ C, such as Re(x) > a, is of the exponential type with
order α (g ∈ Oα), if there exists some constant C > 0 and an index 0 < β < α such that [12]

|g(x)| ≤ Ceβ |x|, ∀ x ∈ C with Re(x) > a . (90)

Candelpergher [12] established that for f ∈ Oα, where α < 2π, there exists a unique
function R f ∈ Oα, solution of Equation (86) which satisfies (87) and (88), given by

R f (x) = −
∫ x

1
f (t) dt +

f (x)
2

+ i
∫ ∞

0

f (x + it)− f (x− it)
e2πt − 1

dt . (91)

Let there be a function f ∈ Oα where α < π. Considering Equation (91), the RS for
the series ∑∞

n=1 f (n) can be defined by

Ra
∞

∑
n=1

f (n) := R f (1) , (92)

where R f is the unique solution inOα of Equation (86) satisfying the additional condition (88).
Moreover, from Equation (91), it follows that
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Ra
∞

∑
n=1

f (n) =
f (1)

2
+ i

∫ ∞

0

f (1 + it)− f (1− it)
e2πt − 1

dt . (93)

The function R f was called by Candelpergher the fractional remainder of the function
f . The restriction over f ∈ Oα from α < 2π to α < π is taken to guarantee the unicity of
R f .

Remark 5. If the parameter a is chosen as 0, from Equations (80)–(81) and (85), the bound limits
in the first integral of the Equation (91) are 0 and x. This includes a new term in Equation (93), as
follows:

Ra
∞

∑
n=1

f (n) = −
∫ 1

0
f (t) dt +

f (1)
2

+ i
∫ ∞

0

f (1 + it)− f (1− it)
e2πt − 1

dt . (94)

3.3. Some Properties of the Ramanujan Summation

The RS is linear [12]. Moreover, Candelpergher [12] established a relation between the
RS and the sums in the classical sense. For a function f ∈ Oπ satisfying

lim
n→∞

f (n) = 0 and lim
n→∞

∫ ∞

0

f (n + it)− f (n− it)
e2πt − 1

dt = 0 , (95)

it is a necessary and sufficient condition for the series ∑∞
n=1 f (n) to converge that the

integral
∫ ∞

1 f (t) dt is convergent. In this case, it holds

Ra
∞

∑
n=1

f (n) =
∞

∑
n=1

f (n)−
∫ ∞

1
f (x) dx . (96)

For a function f ∈ Oπ , the unusual shift property holds

Ra
∞

∑
n=1

f (n + 1) = Ra
∞

∑
n=1

f (n)− f (1) +
∫ 2

1
f (x) dx , (97)

which does not agree with the usual translation property. More generally, for f ∈ Oπ with
Re(x) ≥ 0, the general shift property holds

Ra
∞

∑
n=1

f (n + x) = Ra
∞

∑
n=1

f (n)− ϕ f (x) +
∫ x+1

1
f (t) dt, (98)

which, for a integer m > 0, reduces to

Ra
∞

∑
n=1

f (n + m) = Ra
∞

∑
n=1

f (n)−
m

∑
n=1

f (n) +
∫ m+1

1
f (x) dx . (99)

The Formulae (97)–(99) show that the RS does not satisfy the usual shift property [12].

3.4. About the Algebraic Framework

In what follows, we give some extra details about the general algebraic framework
introduced by Candelpergher with the goal of unifying the classical SM and the RS [12,127].
Under such general framework, the usual shift property appears as a particular case of a
more general property satisfied by the RS.

A summation space T = (V, A, v0, v∞) is composed by a complex vector space V, a
linear operator A : V → V, and two linear auxiliary operators v0 : V → C and v∞ : V → C.
An one-dimensional subspace of V is composed by the solutions of the equation Ag = g
and is generated by an element α ∈ V that satisfies v0(α) = 1 = v∞(α). If, for a given
function g ∈ V, is valid that v0(Ang) = 0, for all n ≥ 0, then g = 0.

A complex sequence (an)n∈N is generated by a function f ∈ V if it is possible to write
an = v0(An f ) for all n ≥ 0. The element f ∈ V that generates the sequence (an) is unique.
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For example, the constant sequence with an = 1 for all n ≥ 1 is generated by a function
α ∈ V, since Anα = α and v0(α) = 1. If a sequence (an) is generated by a function f and
another sequence (bn) is generated by another function g, then for any constants α and β,
the sequence (αan + βbn) is generated by the element α f + βg.

Considering a summation space T = (V, A, v0, v∞), a complex sequence (an) gener-
ated by a function f ∈ V, and supposing that there exists a function R f ∈ V satisfying

R f − AR f = f and v∞(R f ) = 0 , (100)

the series ∑∞
n=0 an is T -summable [12]. The T -sum is defined by

T
∞

∑
n=0

an = v0(R f ). (101)

In [12], Candelpergher presents two examples. The first is the ordinary summation,
which is recovered with the summation space Ca = (V, A, v0, v∞), where V is the vector
space composed by all convergent complex sequences a = (an)n∈N, and A is the shift
operator defined by

A : (u0, u1, u2, · · · ) 7→ (u1, u2, u3, · · · ) (102)

and the auxiliary operators are given by

v0 : (u0, u1, u2, · · · ) 7→ u0 and v∞ : (u0, u1, u2, · · · ) 7→ lim
n→∞

un . (103)

The additional condition must be v∞(R) = 0. Then, if the sequence of partial sums
∑n

k=0 ak is convergent, then it is possible to write

T
∞

∑
n=0

an =
∞

∑
n=0

an = lim
n→∞

n

∑
k=0

ak , (104)

to recover the usual sum of a convergent series [4,5].
The second example is the RS. The indexing is given from n = 0, with ∑∞

n=1 f (n) =
∑∞

n=0 an and an = f (n + 1). The summation space is Ra = (Oπ , A, v0, v∞), where Oπ is
the vector space, and A is the operator given by

A f (x) = f (x + 1) (105)

and the auxiliary operators are

v0( f ) = f (1) and v∞( f ) =
∫ 2

1
f (t) dt . (106)

The additional condition v∞(R f ) = 0 is replaced by the condition
∫ 2

1 R f (t) dt = 0.
Considering this algebraic framework, the definition (92) is recovered [12].

A general SM is linear [12,127]. Moreover, a general shift property can be established
for a general SM, as follows [12]. If a function f ∈ V is the generator for a sequence (an)n∈N,
then for any fixed integer n ≥ 1 holds

T
∞

∑
k=0

a(k+n) =
T

∞

∑
k=0

ak −
n−1

∑
k=0

ak +
n−1

∑
k=0

v∞(Ak f ) , (107)

where, for n = 1, there remains only T ∑∞
n=0 an+1 = T ∑∞

n=0 an − a0 + v∞( f ).
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If beyond the algebraic framework, the additional condition is also required: “if
v∞(g) = 0 then v∞(Ag) = 0”, then instead of the general property (107), the usual shift
property is recovered

T
∞

∑
k=0

a(k+n) =
T

∞

∑
k=0

ak −
n−1

∑
k=0

ak , (108)

which agrees with the usual translation property (3), when n = 1, and which is valid
for several SM but is not verified by the RS. On the other hand, the RS verifies the shift
property given in (97), which is not valid for other SM. However, both the shift properties
given in (108) and in (97) are particular cases of the more general shift property given
in (107) for a general SM T [12].

4. Fractional Finite Sums

An fractional finite sum (FFS) can be seen as a mathematical tool that generalizes
discrete finite sums and products for summation limits in the complex plane.

The first example known of an FFS is due to Euler [1,130], who obtained a sum with a
rational amount of terms from a method to introduce functions. Euler presented the sum:

−1/2

∑
ν=1

1
ν
= −2 ln(2) . (109)

According to the symbols used in this manuscript, we introduce the notation F r∑
y
ν=x f (ν)

to denote an FFS where the bounds of the sum can be real or complex numbers.
The FFS also appears in the Ramanujan notebook [10,12,112], but only in 2005, M.

Müller and D. Schleicher [13–15] introduced an adequate formulation to the problem. They
considered expanding the limits of the sum to complex values and clarified the meaning
of a sum of type F r∑x

ν=1 f (ν), where x ∈ R or C. More recently, Alabdulmohsin [16] has
expanded these ideas, covering FFS of a more general class of functions.

4.1. Fractional Finite Sums, According to Ramanujan

Fractional finite sums have their modern origin in Chapter VI of Ramanujan Notebook,
entries 4.i–4.iii [10,12,112], where Ramanujan introduces sums with a fractional number
of terms [73]. In [12], an FFS is related both to the RS of a series (see Section 3) and to the
function ϕ f given in Equation (76), called by Candelpergher the fractional sum for the
function f .

The function ϕ f can be interpreted as a function that interpolates the values of the
partial sums sn of a series ∑∞

n=1 f (n), such as the sum ϕ f (n) = f (1) + · · · + f (n) is re-
covered for any integer n > 0. For each function f ∈ Oπ , there exists a unique function
ϕ f ∈ Oπ , analytic for all x ∈ C, with Re(x) > a for some −1 < a < 0, that satisfies the
difference Equation (82) and the initial condition ϕ f (0) = 0. The function ϕ f is related
with the fractional remainder R f of a series ∑∞

n=1 f (n), defined in Equation (91), by

ϕ f (x) = R f (1)− R f (x + 1) = Ra
∞

∑
n=1

f (n)− R f (x) + f (x) , (110)

where Ra∑∞
n=1 f (n) denotes the RS of a series ∑∞

n=1 f (n). The function ϕ f is related also
with the RS (see Remark 4) by the relation

Ra
∞

∑
n=1

f (n) =
∫ 2

1
ϕ f (x) dx . (111)

Candelpergher [12] presents some examples for FFS and an integral expression for
the function ϕ f .
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4.2. Fractional Finite Sums, According to Müller and Schleicher

In 2005, Müller and Schleicher [13] introduced a natural way to extend the definition
of a classical finite sum ∑

y
ν=x f (x) to the cases where x and/or y can be real or complex

numbers. They mentioned that this method was superficially approached by Euler and
by Ramanujan, since until then, there was no systematic approach in the literature. The
starting point used was the “continued summation identity” given by

F r
b

∑
ν=a

f (ν) + F r
c

∑
ν=b+1

f (ν) = F r
c

∑
a

f (ν), (112)

which holds for a, b, c ∈ Z. According to Müller and Schleicher, the identity (112) must be
respected on any attempt to generalize for an SM. Thus, for x ∈ C and n ∈ N, a possible
SM should respect the relation

F r
n+x

∑
ν=1

f (ν) =
n

∑
ν=1

f (ν) + F r
n+x

∑
ν=n+1

f (ν) = F r
x

∑
ν=1

f (ν) + F r
x+n

∑
ν=x+1

f (ν) . (113)

Müller and Schleicher [13–15] introduced the symbol ∑→ to represent well-posed sums
with a fractional number of terms. However, in order to have an uniform notation in the
text, we use the symbol F r∑.

The last term of (113) has an integer number of terms, although the boundary sum
limits are noninteger. If a possible SM respects a “shift condition” of the type

F r
x+n

∑
ν=x+1

f (ν) =
n

∑
ν=1

f (ν + x) , (114)

then Equation (113) leads to

F r
x

∑
ν=1

f (ν) =
n

∑
ν=1

(
f (ν)− f (ν + x)

)
+ F r

n+x

∑
ν=n+1

f (ν) . (115)

For functions such that f (ν) → 0 when ν → ∞ (or for functions with a “good”
behavior when ν→ ∞), the last term in the Equation (115) tends to 0 when ν→ ∞, because
the number of terms is fixed, and it follows that

F r
x

∑
ν=1

f (ν) :=
∞

∑
ν=1

(
f (ν)− f (ν + x)

)
. (116)

The proposal for the definition (116) in the case of FFS of complex functions was
formalized in [13]. In the paper are also presented some algebraic identities, examples
of FFS and a general method to compute FFS. The work [14] discusses several identities
derived by applying FFS, as well as some identities related to the Riemann and Hurwitz
zeta function.

4.2.1. The Axioms for the Fractional Finite Sums

Müller and Schleicher [15] presented an axiomatic framework to deal with FFS. The
general context approaches a way of adding a finite quantity of values. In the following
section, x, y, z, and s denote complex numbers, while f and g represent complex functions
defined on proper subsets of C. The axioms, introduced in [15] as natural conditions, are
reproduced in the following.



Mathematics 2021, 9, 2963 23 of 37

Axiom 1M (Continued summation):

F r
y

∑
ν=x

f (ν) + F r
z

∑
ν=y+1

f (ν) = F r
z

∑
ν=x

f (ν). (117)

Axiom 2M (Translation invariance):

F r
y+s

∑
ν=x+s

f (ν) = F r
y

∑
ν=x

f (ν + s). (118)

Axiom 3M (Linearity):

F r
y

∑
ν=x

(
λ f (ν) + µ g(ν)

)
= λ F r

y

∑
ν=x

f (ν) + µ F r
y

∑
ν=x

g(ν). (119)

Axiom 4M (Consistency with the classical sums):

F r
1

∑
ν=1

f (ν) = f (1). (120)

Axiom 5M (Sums of monomials): for each k ∈ N, in C the mapping is holomorphic

z 7→ F r
z

∑
ν=1

νk (121)

Axiom 6M (Right shift continuity): if lim
n→∞

f (z + n) = 0, pointwise for any z ∈ C, then

lim
n→∞

F r
y

∑
ν=x

f (z + n) = 0. (122)

Moreover, if there exists a sequence (pn)n∈N of polynomials of fixed degree satisfying
the condition | f (z + n)− pn(z + n)| → 0 when n→ ∞, for all z ∈ C, then∣∣∣∣F r

y

∑
ν=x

f (ν + n)− F r
y

∑
ν=x

pn(ν + n)
∣∣∣∣ −→ 0. (123)

We also find an alternative version of Axiom 6M [15]: if lim
n→∞

f (z− n) = 0, pointwise

for any z ∈ C, it holds that

lim
n→∞

F r
y

∑
ν=x

f (z− n) = 0 , (124)

and a similar form for functions f that have uniform approximation by a sequence of
polynomials (left shift continuity).

For example, Axioms 1M–6M can be used to evaluate a sum of a polynomial F r∑x
ν=1 λ,

where λ ∈ C with x ∈ R. The simplest case is a sum of constants, namely F r∑1/2
ν=1 λ.

Applying successively Axioms 1M, 2M, and 4M, we obtain

F r
1/2

∑
ν=1

λ =
λ

2
. (125)

The same procedure can be extended, by linearity, to any polynomial sum with a
rational number of terms.
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4.2.2. The Unique Possible Definition for the Fractional Finite Sums

Consider P : C → C, the unique polynomial satisfying the recurrence equation
P(z)− P(z− 1) = p(z), for all z ∈ C, and the initial condition P(0) = 0 (the proof of the
unicity appears in [131]). The possible definition of the FFS of polynomials, given by

F r
y

∑
ν=x

p(ν) := P(y)− P(x− 1) (126)

satisfies the Axioms 1M–6M [15]. On the other hand, if an SM satisfies the Axioms 1M–4M,
then it also should satisfy the definition (126) for any polynomial p and for all x, y ∈ C
such as y− x ∈ Q. Additionally, if an SM satisfies the Axioms 1M–5M, then it should also
satisfy the definition (126) for any polynomial p and all x, y ∈ C [15].

To establish a definition of the FFS to a broader class of functions f : C → C, it is
necessary to require that the values of f (n) can be approximated by some sequence (pn)nN
of polynomials of fixed degree when n→ +∞. Moreover, an additional property is also
needed so that if z ∈ U ⊂ C, then necessarily z + 1 ∈ U.

A function f : U ⊂ C → C is said an fractional summable function (FSF) of degree
m (where m ∈ N ∪ {−∞}) if the following conditions are satisfied [15]: (i) if x ∈ U, then
x + 1 ∈ U; (ii) there exists a sequence (pn)n∈N of polynomials of fixed degree m, such that∣∣ f (n + x)− pn(n + x)

∣∣→ 0 when n→ +∞ , (127)

for all x ∈ U; and (iii) for all x, y ∈ U, there exists the limit

lim
n→∞

(
F r

n+y

∑
ν=n+x

pn(ν) +
n

∑
ν=1

(
f (ν + x− 1)− f (ν + y)

))
, (128)

where the sum F r∑ pn is in the sense of Equation (126). By convention, the null polynomial
has degree −∞.

Müller and Schleicher [13–15] formulated the fundamental fractional summation
formula (FFSF):

F r
y

∑
ν=x

f (ν) =
∞

∑
ν=1

(
f (ν + x− 1)− f (ν + y)

)
. (129)

Moreover, they established that it is possible to define fractional finite products by

F r
y

∏
ν=x

f (ν) := exp
(
F r

y

∑
ν=x

ln
(

f (ν)
))

, (130)

when ln( f ) is an FSF (the fractional finite products were denoted by Müller and Schleicher
in [15] as ∏

y
ν=x→ ).

The FSF formula (129) does not depend on the polynomial (pn)n∈N chosen for approx-
imating f . Moreover, the FFSF presented in Equation (129) is the unique sum that satisfies
Axioms 1M–6M for complex functions f in suitable domains [15].

4.2.3. Some Examples and Applications

Some properties and examples of FFS, presented by Müller and Schleicher [13–15],
include:

(i) the classical sum of the geometric series, which for 0 ≤ q < 1 is derived from (129) as

F r
z

∑
ν=0

qν =
∞

∑
ν=1

(
qν−1 − qν+z) =

(
1− qz+1) ∞

∑
ν=1

qν−1 =
1− qz+1

1− q
; (131)

(ii) the identity F r∏z
ν=1 ν = Γ(z + 1), which is valid for all z ∈ C\{0,−1,−2, · · · };
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(iii) the FFS of the function f (z) = 1/z, from where the relation is obtained

F r
x

∑
ν=1

1
ν

=
∞

∑
ν=1

(
1

ν+1−1
− 1

ν+x

)
=

∞

∑
ν=1

(
1
ν
− 1

ν+x

)
(132)

that, in particular, recovers (109), the example given by Euler in 1755 [130].
Other examples of the use of the theory of fractional summability can be found in

the literature. For example, Müller and Schleicher [14] use FFS to give simple proofs to
at most one of the “strange summation formulas” presented by Gosper et al. in [132].
Bender et al. [133] proposed a strategy to show that the nontrivial zeros of the Riemann
zeta functions lie in the complex line with real part 1/2. In [134], Muller uses the context
introduced in [14] to give a new construction for the operator Ĥ of [133]. Machado [135]
has analyzed a case of a system whose entropy displays negative probability, where the
FFSF (129) was used to obtain the value

S = − F r
γ

∑
ν=0

P(X = xν) ln
[
P(X = xν)

]
, (133)

for γ ∈ R, related to the distribution of quasiprobability for one “fractional toss of the
coin”. Uzun [136] obtained closed formulae for the series

Sλ,x(α) =
∞

∑
k=0

sin(2k + 2x + 1)α

(2k + 2x + 1)λ
and Cλ,x(α) =

∞

∑
k=0

cos(2k + 2x + 1)α

(2k + 2x + 1)λ
, (134)

where λ > 1, α = 2πp/q, and x ∈ C\{−(2t + 1)/2} for t = 0, 1, 2, · · · , in terms of ζ(λ, a)
(the Hurwitz zeta function [137–139]).

4.3. Fractional Finite Sums for More General Functions

Alabdulmohsin [16] presented an extension of the theory for FFS that covers a large
class of discrete functions and can be written as

f (n) = F r
n−1

∑
ν=0

sν g(ν, n), (135)

where n ∈ C, g(ν, n) is any analytic function, and (sn)n∈N is a periodic sequence. For
describing the function f (n), Alabdulmohsin selected the bounds of the sum begin at ν = 0
and to finish at ν = n− 1. This choice is reproduced here, and we use also the symbols
F r∑b

ν=a to denote an FFS. We follow [16], where the proofs can be found.
The aim of the theory is, for each sum, to find a smooth analytic function fG : C→ C,

which is the unique natural extension for all n ∈ C of the discrete function f (n). Other
objectives in [16] are to give methods to apply the infinitesimal calculus to the functions
fG(n) and to obtain the asymptotic expansion for discrete finite sums.

Alabdulmohsin defined FFS using only two of the Axioms 1M–6M proposed by Müller
and Schleicher, namely Axioms 4M and 1M, Equations (120) and (117):

Axiom 1A (Consistency with the classical definition): ∀ x ∈ C, ∀ g : C→ C, it holds
that

F r
x

∑
ν=x

g(ν) = g(x). (136)

Axiom 2A (Continued summation): ∀za, b, x ∈ C, ∀ g : C→ C, it holds that

F r
b

∑
ν=a

g(ν) + F r
x

∑
ν=b+1

g(ν) = F r
b

∑
ν=a

g(ν). (137)
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With Axioms 1A and 2A, the properties of FFS arise naturally. In particular, when
fG(n) exists, Axioms 1A and 2A produce the important recurrence equation

fG(n) = F r
n−1

∑
ν=0

g(ν) = F r
n−1

∑
ν=n−1

g(ν) + F r
n−2

∑
ν=0

g(ν) = g(n− 1) + fG(n− 1). (138)

Moreover, if a value can be assigned for the infinite sum ∑∞
ν=0 g(ν), then it follows

from Axioms 1A and 2A that one unique natural generalization of the sum F r∑n−1
ν=0 g(ν)

can be obtained for all n ∈ C. Such generalization is given by

F r
n−1

∑
ν=0

g(ν) =
∞

∑
ν=0

g(ν)− F r
∞

∑
ν=n

g(ν) . (139)

Alabdulmohsin [16] cited Müller and Schleicher; however, he observed that their
works treated only FFS for functions that do not alter the signal and have finite polynomial
order m, i.e., there exists a integer m > 0 such as g(m+1)(x) → 0 when x → ∞. The
approach proposed by Alabdulmohsin extends the results of Müller and Schleicher to other
classes of functions, with the following terminology:

• Simple finite sum (SFS): sums of type f (n) = F r
n−1

∑
ν=0

g(ν)

• Composite finite sum (CFS): sums of type f (n) = F r
n−1

∑
ν=0

g(ν, n)

• Oscillatory simple finite sum (OSFS): sums of type f (n) = F r
n−1

∑
ν=0

sν g(ν)

• Oscillatory composite finite sum (OCFS): sums of type f (n) = F r
n−1

∑
ν=0

sν g(ν, n)

When the functions added depend on one single variable, the sum is an SFS. The
CFS covers the case, where the added functions depend on the iterating variable and the
upper limit of the sum. The other cases, as the name suggests, are oscillatory: the general
term of a periodic alternating sequence (sν)ν∈N is present. For all these cases, a unique
generalization of the sum can be defined for all n ∈ C [16].

4.3.1. Simple Finite Sums

One of the first properties established for the SFS is the empty sum property: for any
SFS holds f (0) = 0.

The uniqueness of the continuous function fG(n), for n ∈ C, is established as follows:
consider an SFS f (n) = F r∑n−1

ν=0 g(ν), where the function g is analytic at the origin. If we
define a function fG,r(n) by

fG,r(n) =
{

pr(n), if n ∈ [0, 1]
g(n− 1) + fG,r(n− 1), otherwise ,

(140)

where pr(n) is a polynomial of degree r, and we require that fG,r(n) ∈ C(r−1)([0, 2]), and
then the sequence of polynomials pr(n) is unique. In particular, the limit fG(n) = lim

r→∞
fG,r(n)

is unique and satisfies the conditions fG(0) = 0 and fG(n) = g(n− 1) + fG(n− 1).
In what concerns the differentiation and integration for the SFS, Alabdulmohsin

established that (i) the derivative rule for f (n) = ∑n−1
ν=0 g(ν) is given by

f ′(n) = F r
n−1

∑
ν=0

g′(ν) + c , (141)
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for some fixed and nonarbitrary constant c = f ′(0) and (ii) the indefinite integral is given by

∫ n

0

F r
t−1

∑
ν=0

g(ν) dt = F r
n−1

∑
ν=0

(∫ ν

0
g(t) dt

)
+ c1n + c2 , (142)

for some fixed and nonarbitrary constant c1 = −
( d

dn
F r∑n−1

ν=0
∫ ν

0 g(t)dt
)∣∣

n=0 and some
arbitrary constant c2.

A function g : C→ C is said nearly convergent if lim
ν∈R;ν→∞

g′(ν) = 0 and g is asymp-

totically nondecreasing and concave. A function g also is nearly convergent if it is asymp-
totically nonincreasing and convex. An SFS f (n) = F r∑n−1

ν=0 g(ν) is said semilinear when g
is nearly convergent.

The development for performing infinitesimal calculus with FFS, besides the rules (141)
and (142), includes the formulae given in the follow-up, valid for SFS of type f (n) =
F r∑n−1

ν=0 g(ν), where the function g : C → C is regular at the origin and satisfies the
condition that the rth derivatives of g are nearly convergent for all r ≥ 0.

The function fG(n), which can be written under the Maclaurin series expansion

fG(n) =
∞

∑
r=1

cr

r!
nr, where cr = lim

n→∞

{
g(r−1)(n− 1)− F r

n−1

∑
ν=0

gr(ν)

}
, (143)

satisfies the initial condition fG(0) = 0 and the recurrence equation given in Equation (138).

As a consequence, when the series
∞

∑
ν=0

g(ν) converges absolutely, the generalization for the

sum given in the Equation (139) holds for all n ∈ C.

The function fG(n) is formally given by a series expansion around n = 0 as

fG(n) =
∞

∑
ν=0

cν

ν!
nν, where cν =

∞

∑
r=0

Br

r!
g(r+ν−1)(n)− F r

n−1

∑
j=0

gν(j) , (144)

are constants independent on n. Moreover, Bk are the Bernoulli numbers, and fG(n)
satisfies the Equation (138) and the initial condition fG(0) = 0. As a consequence, fG(n)
can be formally written as

fG(n) =
∫ n

0
g(t) dt−

∞

∑
r=1

Br

r!
g(r−1)(0) +

∞

∑
r=1

Br

r!
g(r−1)(n) . (145)

Since the EMSF is an asymptotic expansion, when g(ν) has a finite polynomial order,
it is not necessary to evaluate completely the EMSF (145), because gr+1(n) → 0 when
n→ ∞.

4.3.2. Composite Finite Sum

The results are easily extended to the case of an CFS. According to Alabdulmohsin [16],
the key is the classical chain rule of calculus, which for an CFS is written as

d
dn
F r

n−1

∑
ν=0

g(ν, n) = F r
n−1

∑
ν=0

∂

∂n
g(ν, n) +

(
d

dn
F r

n−1

∑
ν=0

g(ν, x)
)∣∣∣∣

x=n
, (146)

and that is obtained using the auxiliary function h(x, y) = F r∑
y−1
ν=0 g(ν, x). The derivative

of an CFS is decomposed into two parts, where the first part is an FFS of derivatives and
the second part is a derivative of an SFS.
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The general formula for an CFS of type f (n) = F r∑n−1
ν=0 g(ν, n) is given by

fG
′(n) = F r

n−1

∑
ν=0

∂

∂n
g(ν, n) +

( ∞

∑
r=0

Br

r!
∂r

∂mr g(m, n)
)∣∣∣∣

m=n
, (147)

where fG(n) is the unique natural extension of the discrete function f (n) to all n ∈ C and
Br are the Bernoulli numbers.

The EMSF (145) is extended to cover the CFS by

fG(n) =
∫ n

0
g(t, n) dt−

∞

∑
r=1

Br

r!

(
∂(r−1)

∂m(r−1)
g(m, n)

∣∣∣
m=0

)
+

∞

∑
r=1

Br

r!

(
∂(r−1)

∂m(r−1)
g(m, n)

∣∣∣
m=n

)
,

(148)
where the derivatives of the function fG(n) are given in (147) and the function g(·, n) is
regular at the origin (with respect to the first argument). Moreover, if the function g(·, 0) is
also regular at the origin, then the empty sum rule fG(0) = 0 continues valid.

4.3.3. The Generalized Definition of Series

In order to simplify the study of oscillating sums, Alabdulmohsin [16] introduced
a generalized definition of series, denoted by T. For a series ∑∞

ν=0 g(ν), we consider the
expansion of the function g : C→ C in the Taylor series around the origin. We adopt an
auxiliary function h defined by

h(z) =
∞

∑
ν=0

g(ν)zν , (149)

and the value h(1) is defined as the T-value of the series ∑∞
ν=0 g(ν), provided that h(z) is

analytic on [0, 1].
The generalized definition T for series is based on the SM by Abel [22] and in the

Euler method for generating functions [70] and is not related to any particular SM of series.
According to Alabdulmohsin, to obtain the T-value for a given series, it is possible to use
the Nörlund means (13) (which include the SM by Cesàro (7)), the SM by Abel (16), and the
SM by Euler (21). If a value L ∈ C is assigned to a given series under any of these methods,
then L is also the T-value. The definition T of a series is regular, linear, and stable, and all
arithmetic operations remain consistent. The T definition of series occasionally simplifies
the analysis [16].

The generalized definition T of series can be interpreted as a generalized definition of
sequence limits in the space S = (s0, s1, s2, · · · ), just interpreting the T-sequence limit as
the T-value of the series

s0 +
∞

∑
k=0

∆sk, (150)

where ∆sk = sk+1 − sk is the forward difference operator.

When a given series ∑∞
ν=0 g(ν) has a value in the T sense, the T-limit of the sequence

(g(ν))ν∈N is zero. Moreover, when an FFS of the type F r∑n−1
ν=0 g(ν) can be written as a

function fG(n), it is possible to take its T-limit when n→ ∞ for obtaining the T-value of
∑∞

ν=0 g(ν).

Alabdulmohsin introduced an SM, denoted by χ, weaker than the T-limit for series,
but strong enough to adequately evaluate several examples of divergent series [16]. Ac-
cording to Alabdulmohsin, the χ method allows an easy implementation, can converge
reasonably fast, and is able to assign a value to a larger number of divergent series.

A complex sequence (g(ν))ν∈N is said to be χ-summable if there exists the limit

L = χ
∞

∑
ν=0

g(ν) := lim
n→∞

{ n

∑
ν=0

χn(ν) g(ν)
}

, (151)
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called the χ-sum of the sequence (g(ν))ν∈N. The auxiliary sequence χn(ν) is given by

χn(0) = 1 ; χn(ν) =
ν

∏
k=1

(
1− k− 1

n

)
. (152)

The χ-limit of a complex sequence (sν)ν∈N is defined by

lim
n→∞

{
∑n

ν=0 sν pn(ν)

∑n
ν=0 pn(ν)

}
, (153)

where pn(ν) =
(
χn(ν) ν

)
, when such a limit exists.

The limit defined in (153), called the χ-limit of a given sequence, is based on the
general method of summability (4), as established by Hardy [22]. The definitions of χ-sum
(according to (151)) and of χ-limit (according to (153)) of a given series are equivalent. The
Equation (151), which can be referred to as the χ SM, is a linear and regular averaging
method that acts on the sequence of the partial sums. The χ SM is related to the generalized
definition T of series and arises in the study of polynomial approximations [16].

An example of the χ SM considers the Taylor expansion of the geometric series ∑∞
k=0 xk.

In this context, the χ-sum of the sequence (xk)k∈N for x ∈ R is 1/(1− x), if −λ < x < 1,
where λ ≈ 3.5911. For other values of x ∈ R, the sequence (xk)k∈N is not χ-summable.
This example shows that the χ SM is able to assign a value to a larger number of series
than the SM by Abel and the Nörlund means, because λ > 1.

4.3.4. Oscillatory Simple Finite Sums

Alabdulmohsin [16] derived a technique analogous to the EMSF for dealing with
oscillating sums. In the following, all series should be interpreted in the context of the
generalized definition T of series.

Given an alternating series ∑∞
ν=0 (−1)νg(ν), where for each point x0 ∈ [0, ∞), the

function g is analytic on some open disc centered at x0, and the starting point is given by
the following formal expression, equivalent to the T-value limit L for infinite sums:

L =
∞

∑
r=0

Nr

r!
g(r)(0), where Nr =

∞

∑
ν=0

(−1)ννr , (154)

where the convention 00 = 1 is needed. The constants Nr, which can be considered as
an alternating analog of the Bernoulli numbers (as well as of the Euler numbers), can be
obtained through the recurrence equation

N0 =
1
2

, and Nr = −
1
2

r−1

∑
r=0

(
r
ν

)
Nν, if r > 0 . (155)

For an alternating SFS given by f (n) = F r∑n−1
ν=0 (−1)νg(ν), T-summable to a value

L ∈ C, the unique generalization fG(n), which agrees with the polynomial approximation
method presented in (140), is given, formally, by

fG(n) =
∞

∑
r=0

Nr

r!
g(r)(0) +

∞

∑
r=0

Nr

r!
(−1)n+1g(r)(n) . (156)

The Equation (156) is an analog of the EMSF for the case of alternating sums. Addi-
tionally, for all n ∈ C, it is valid that

fG(n) =
∞

∑
ν=0

(−1)νg(ν)− F r
∞

∑
ν=n

(−1)νg(ν) . (157)
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Examples of the use of the Equation (156) are the following closed formulae for
alternating power sums:

F r
n−1

∑
ν=0

(−1)ν =
1
2
− (−1)n

2
, (158)

F r
n−1

∑
ν=0

(−1)ν ν = −1
4
+ (−1)n+1 2n + 1

4
, (159)

F r
n−1

∑
ν=0

(−1)ν νr = Nr + (−1)n+1
r

∑
ν=0

(
r
ν

)
Nν nr−ν , (160)

where Equation (160) gives a periodic analog of Faulhauber’s formula (59).
As a consequence of Equation (156), if a given alternating series ∑∞

ν=0 (−1)νg(ν) is
T-summable to some value L, where g : C→ C is a function of a finite polynomial order
m, then the value L can be obtained by

L = lim
n→∞

{
F r

n−1

∑
ν=0

(−1)νg(ν) + (−1)n
m

∑
r=0

Nr

r!
g(r)(n)

}
. (161)

In other words, the alternating SFS F r∑n−1
ν=0 (−1)νg(ν) can be represented by the

following asymptotic expression:

F r
n−1

∑
ν=0

(−1)νg(ν) ∼ L + (−1)n+1
m

∑
r=0

Nr

r!
g(r)(n) , (162)

where the last term tends to 0 when n→ ∞. This provides a method to derive asymptotic
expressions for alternating series, from which it is possible to extract an adequate value for
a given divergent series and, in some cases, to derive analytic expressions for divergent
alternating series. For example, applying the generalized definition T to the alternating
series ∑∞

ν=0 (−1)ν log(1 + ν), it is possible to obtain L =
(
log(2/π)

)
/2.

4.3.5. Oscillatory Composite Finite Sums

The analogue of the EMSF given in Equation (156) for alternating SFS can be general-
ized to alternating CFS (OCFS with period p = 1) of the form f (n) = F r∑n−1

ν=0 (−1)νg(ν, n),
as follows: The unique natural generalization fG(n) of f (n), which agrees with the polyno-
mial approximation method (140), is given by:

fG(n) =
∞

∑
r=0

Nr

r!

(
∂r

∂tr g(t, n)
∣∣∣
t=0

)
+ (−1)n+1

∞

∑
r=0

Nr

r!

(
∂r

∂tr g(t, n)
∣∣∣
t=n

)
. (163)

Equation (163) allows obtaining closed expressions and asymptotic expansions for
alternating CFS. For example, using the Equation (163), the following expression can be
derived:

F r
n−1

∑
k=0

(−1)k log
(

1+
k
n

)
∼ N0

0!
log
(

1+
t
n

)∣∣∣
t=0

+ (−1)n+1 N0

0!
log
(

1+
t
n

)∣∣∣
t=n

= (−1)n+1 log(2)
2

.

(164)

To cover the general case, Alabdulmohsin [16] proposed an expansion of Formula (163)
to FFS with the form F r∑n−1

ν=0 eiθν g(ν), where the exponentials are complex, i.e., with
0 < θ < 2π, by

fG(n) =
∞

∑
r=0

Θr

r!
g(r)(0)−

∞

∑
r=0

Θr

r!
eiθngr(n) , where Θr =

∞

∑
ν=0

eiθν νr . (165)



Mathematics 2021, 9, 2963 31 of 37

Additionally, it holds that

fG(n) =
∞

∑
ν=0

eiθν g(ν)− F r
∞

∑
ν=n

eiθν g(ν) . (166)

Considering an OSFS of the form F r∑n−1
ν=0 sνg(ν), where (sν)ν∈N = (s0, s1, · · · ) is a

periodic sequence of signs, with period p, then ∑∞
ν=0 sν = 0 implies that (indeed: if and

only if) the series of type ∑∞
ν=0 sν νr are T-summable. The T-sum Sr = ∑∞

ν=0 sν νr can be
obtained from the recurrence equation

S0 =
1
p

p−1

∑
ν=0

( ν

∑
k=0

sk

)
, and F r

r−1

∑
ν=0

(
r
ν

)
p(r−ν)Sν +

p−1

∑
ν=0

sν νr = 0 , (167)

and, for all n ∈ N, the function f (n) can be written as

f (n) =
∞

∑
r=0

1
r!

Sr(0) g(r)(0)−
∞

∑
r=0

1
r!

Sr
(
n mod (p)

)
g(r)(n) . (168)

Additionally, if the function g(n) has a finite polynomial order m, then it holds that

∞

∑
ν=0

sν g(ν) = lim
n→∞

{pn−1

∑
ν=0

sν g(ν) +
m

∑
r=0

Sr(0)
r!

g(r)(pn)
}

. (169)

As a consequence of Equation (168), the discrete Fourier transform [140,141] can
be used to find the unique natural expansion fG(n) for an OSFS of the form f (n) =
F r∑n−1

ν=0 sν g(ν), where sν is a periodic sign sequence, yielding:

f (n) = w0
F r

n−1

∑
ν=0

g(ν) + w1
F r

n−1

∑
ν=0

eiν/p g(ν) + · · ·+ wp−1
F r

n−1

∑
ν=0

ei(p−1)ν/p g(ν) , (170)

where the weights wm are defined by wm = 1
p ∑

p−1
ν=0 sν e−imν/p. Additionally, the unique

generalization fG(n) of f (n), which is consistent with the polynomial approximation
method presented in (140), is the sum of the unique natural expansions for each term in
Equation (170).

4.3.6. Methods to Evaluate Fractional Finite Sums

According to Alabdulmohsin, the EMSF and its analogous cannot be used to calcu-
late the FFS directly, because they can diverge rapidly. Moreover, computing the Taylor
series expansions and using them to calculate an FFS are laborious tasks. The practi-
cal methods introduced by Alabdulmohsin to obtain the values of FFS with the form
f (n) = F r∑n−1

ν=0 sν g(ν, n) for all n ∈ C are presented in the following section.
For SFS of the type f (n) = F r∑n−1

ν=0 g(ν), where g is analytic with a finite polynomial
order m, the method discussed in Subsection 4.2 can be used. Alabdulmohsin reports that
the Müller–Schleicher method is a particular case for evaluating arbitrary SFS.

For an SFS of the form f (n) = F r∑n−1
ν=0 g(ν), if fG(n) is the unique natural expansion

according to Equation (140), then, for all n ∈ C, the function fG(n) can be written as

fG(n) =
∞

∑
r=0

br(n)
r!

g(r)(s) + F r
s−1

∑
ν=0

(
g(ν)− g(ν + n)

)
, (171)
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where Equation (171) holds for all s ∈ C and br(n) = F r∑n−1
ν=0 νr is a polynomial given by

the Faulhaber’s formula (59). Moreover, if the function g has a finite polynomial order m,
then fG(n) can be evaluated by

fG(n) = lim
s→∞

{ m

∑
r=0

br(n)
r!

g(r)(s) + F r
s−1

∑
ν=0

(
g(ν)− g(ν + n)

)}
. (172)

When (sν)ν∈N is a periodic sequence of period p, since according to Equation (170) each
function of type F r∑n−1

ν=0 sν z(ν) can be decomposed into a finite sum of terms F r∑n−1
ν=0 eiθν z(ν),

then fG(n) is the unique natural expansion for f (n) presented in Equation (140), and for
all n ∈ C, the function fG(n) can be written as

fG(n) = eiθs
∞

∑
r=0

Ωr(n)
r!

g(r)(s) + F r
s−1

∑
ν=0

(
eiθνg(ν)− eiθ(ν+n)g(ν + n)

)
, (173)

where Ωr(n) = F r∑n−1
ν=0 eiθννr is an oscillating polynomial expressed by:

Ωr(n) = Θr − eiθn
r

∑
m=0

(
r
m

)
Θmnr−m , with Θr =

∞

∑
ν=0

eiθν νr . (174)

Finally, for an OCFS of type f (n) = F r∑n−1
ν=0 eiθν g(ν, n), where the function g(·, 0) is

regular at the origin with respect to its first argument and θ ∈ R is fixed, Alabdulmohsin
established that

fG(n) = eiθs
∞

∑
r=0

Ωr(n)
r!

∂r

∂sr g(s, n) + F r
s−1

∑
ν=0

(
eiθν g(ν, n)− eiθ(ν+n) g(ν + n, n)

)
, (175)

where Ωr(n) = F r∑n−1
ν=0 eiθν νr.

As an example of the applicability of the Equation (175), if the CFS F r∑n−1
ν=0 log

(
1 +

ν
n+1
)

is considered, then the function fG(n) can be written as the following limit:

fG(n) = lim
s→∞

{
n log

(
1+

s
n+1

)
+ F r

s−1

∑
ν=0

log
(

1+
ν

n+1

)
− F r

s−1

∑
ν=0

log
(

1+
ν+n
n+1

)}
. (176)

5. Discussion

In this work, some relationships between summability theories of divergent series
are highlighted. Furthermore, a notation that clarifies the sense of each summation
is introduced.

Section 2 lists several known SM that allow us to find an algebraic constant related to
a divergent series, including the recently developed smoothed sum method. The existence
of such an algebraic constant, which does not contradict the divergence of the series
in the classical sense, is the common thread of Section 2 and the connection with the
other sections.

The theory discussed in Section 3 can be considered as an extension of the summability
theories that allow finding a single algebraic constant related to a divergent series, since, if
a = 0 is chosen in the formulae given by Hardy [22], the algebraic constant is retrieved for
a wide range of divergent series. Moreover, with choices other than a = 0, the RS can be
applied for other purposes [12].

Section 4 is related to the previous sections by its precursors, Euler and Ramanujan,
and by the possibility that the algebraic constant of a series can be linked to the numerical
result of a related fractional finite sum. When we analyze the convergent series, the SM for
divergent series, and the FFS theories, a connection between such theories seems to emerge,
namely in the formulae for computing FFS given by Equations (129) and (157). According
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to such equations, to evaluate an FFS, it is necessary to compute at least one associate
series (which can be convergent or divergent). When the associate series is divergent, the
algebraic constant can replace the series, according to the discussion in Section 2.

In what follows, we give an example, attributed to Alabdulmohsin [16], which indi-
cates that the FFS is related to summability of divergent series.

The alternating FFS

f (n) = F r
n−1

∑
ν=0

(−1)ν−1 ν (177)

can be written as f (n) = F r∑n−1
ν=0 (−1)ν+1ν. In order to evaluate f (3/2), it is possible to

use the closed-form expression (159) (multiplied by (−1)), with n = 3/2, to obtain

F r
1/2

∑
ν=0

(−1)ν+1 ν = (−1) ·
(
−1

4
+ (−1)(3/2+1) 2.(3/2) + 1

4

)
=

1
4
− i . (178)

From Equation (157), it holds that

F r
1/2

∑
ν=0

(−1)ν+1 ν =
∞

∑
ν=0

(−1)ν+1 ν− F r
∞

∑
ν=3/2

(−1)ν+1ν , (179)

where the series ∑∞
ν=0 (−1)ν+1ν should be evaluated under an adequate summability

method.
Let us consider now the Euler alternating series f (n) = ∑∞

ν=0 (−1)ν−1ν, which is
divergent in the Cauchy sense. Under SM by Abel and SM by Euler, this series receives the
value 1/4. However, we verify that the value 1/4 appears in the expression (178). Then,
from Equations (178) and (179), we can conclude that

F r
∞

∑
ν=3/2

(−1)ν+1ν = i . (180)

Any SM well defined for the series F r∑∞
ν=3/2 (−1)ν+1ν must obtain such value.

This example illustrates the link that the FFS has with the algebraic constant of the as-
sociated series. Such a relationship can also be observed in the asymptotic expression (162)
for the FFS of alternating terms and is present in a more subtle way in the FFSF given in
Equation (129) for SFS.

6. Conclusions

This work presented an overview covering a wide range of summability theories. The
work started by presenting the classical summation methods for divergent series and went
up to the most recent advances in the fractional summability theory.

An important starting point for all these theories is the intuition of L. Euler, for whom
one unique algebraic value should assigned to each divergent series [46,70]. Assuming
that this Euler’s intuition is correct, given a specific divergent series, the problem becomes
how to find such a unique value. Most of the SM were developed with this purpose (see
Section 2), but unfortunately, each classic SM can obtain one algebraic value for some
divergent series but not for all.

A recent technique, which has the potential to solve the problem of identifying a
unique algebraic constant to each divergent series, is the smoothed sum method, proposed
by T. Tao [9,79], which provides a tool to obtain the asymptotic expansion of a given
series. Another method with the potential to solve this problem is the RS, whose coherent
basis was established by Candelpergher [12,127]. When the value a = 0 is chosen as the
parameter in the RCS formulae proposed by Hardy [22], it allows obtaining a unique
algebraic constant for many divergent series.
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The work of S. Ramanujan [10] (Chapter 6) is the starting point for the modern theory
of FFS and is also a natural point of intersection between the theory of FFS and several SM
whose objective is to assign an algebraic constant to a given divergent series (the RCS can
be seen as one of these methods). Another important intersection point of these theories is
the EMSF (34), from which several summation formulae are derived.

We hope this manuscript gives a comprehensive overview of the summability theories,
including the RS and the FFS. Although the sum is the simplest of all mathematical
operations, the summability theories can still produce applications. For example, the
current topics in summability are discussed in the book edited by Dutta et al. [142].
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Abbreviations
The following abbreviations are used in this manuscript:

CFS Composite finite sum
EMSF Euler–Maclaurin summation formula
EBSF Euler–Boole summation formula
FSF Fractional summable function
FFS Fractional finite sum
FFSF Fundamental fractional summation formula
OCFS Oscillatory composite finite sum
OSFS Oscillatory simple finite sum
RCS Ramanujan constant of a series
RS Ramanujan summation
SFS Simple finite sum
SM Summation method
WKB Wentzel-Kramers-Brillouin
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