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Abstract

In order to remove vacuum cnergy of the Higgs field in the Standard Model, we
consider the version of the model, where the fundamental dimensional parameter C
in the Higgs potential A\(¢? — C?)? is replaced by the zeroth Fourier harmonic of the
Higgs ficld ¢. In this case all masses in SM are determined by the initial data of
the potential free equation of this harmonic. By consideration the extremum of the
quantum Coleman-Weinberg effective potential obtained from the unit vacuum-
vacuum transition amplitude, we get the prediction of the lowest Higgs boson mass:
my, = 138 GeV, which corresponds to renormalization constant value of the order
of the weak boson masses, i.e. the scale where all the relevant quantities in the
equation arc well defined. This result is in qualitative agreement with the result of
Ref. [18], my, > 128 £ 33, obtained from the Higgs potential stability condition.

There can be two types of parameters in the Standard Model (SM) [1] like in any
dynamic theory, fundamental parameters of the potential and the initial data of the
equations of motion. In this paper, a new version [2] of the Higgs effect [3,4] in the
SM is considered, where the constant parameter C of the potential is replaced by an
initial datum of the zeroth Fourier harmonic [5] (¢) = VLO [ d*z¢ as the averaging over the
coordinate volume Vy = [ d*z:

VHiggs(¢) =A [QSZ - 02]2 —¥ Vinertia](é) =A [¢2 - <¢>2]2 . (1)

This model corresponds to the zero value of the zeroth mode potential Viyeriai({(¢)) = 0
and the potential free (i.e. inertial) equations

(#)=0. (2)
There is a solution of these vacuum equations
(@) = Clinitial datum) = @1 ($)=0 (3)

that does not contradict the relativistic invariance of masses. Note that the zero-potential
constraint is applied to renormalized quantities. So quantum corrections at all orders are
already included. Such a choice of the potential might look rather artificial. But to our
mind it is motivated by two serious reasons: minimization of the vacuum energy and
embedding the Higgs field into cosmology. Moreover, contrary to the SM case, where the
symmetry between the components of the Higgs field is broken spontaneously due to the
special form of the potential, we break the symmetry by the initial condition (3). On the
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one hand our model correspond to a special extreme choice of parameters in the Standard
Model, while on the other hand it has particular features.

The present paper is devoted to physical consequences of this model. We claim that
this model is compatible with the present experimental data in high energy physics and
cosmological observations. Moreover, the constraint on the potential leads to a prediction
for the Higgs boson mass.

The action of the Standard Model with the choice of the Higgs field potential (1) can
be written in the form

g = / Loy = / ' [Cind + Litiges) @)

where L4 is the standard part of the Lagrangian independent of the Higgs field and
Ltiiges = 0,60"¢ — ¢ ngff + Z gV - [¢* - (9)7]° (5)

\—w——/
f |neninl(¢)
is the Higgs field dependent part. Here 3, 9 ff = D rmtp 91 [ffRffL + ijffR] and
1 22 _ L 229+u92+9’2 i
4XV:gvv = 5 wz%v, 2y wiw- T (6)
v= L ‘

are the mass-like terms of fermions and vector bosons coupled with the Higgs field; g and
¢’ are the Weinberg coupling constants, and measurable gauge bosons W y Woo Z, are
defined by the usual relations: W = A, + A2 = W!+ W}, Z, = —B, sin 0w + A3 cos By,
tan Oy = g¢'/g, where 8y is the Weinberg angle.

After the separation of the zeroth mode (@) the bilinear part of the Higgs Lagrangian
takes the form

i 1
Gl = Gon0h= () Dol + a0

In the lowest order in the coupling constant, the bilinear Lagrangian of the sum of all
fields arises with the masses of vector (W, Z), fermion (f), and Higgs (k) particles:

My = @97 Mz = £(ﬁ—)\/gz +g%, mp={($gp, m=2VA(¢) (@)
V2 V2
according to the definition of the masses of vector (V') and fermion (f) particles Lmass =
My, Ve —myff.
The sum of all vacuum-vacuum transition amplitude diagrams of the theory is known
as the Coleman — Weinberg potential [6]

Vew((#)) = ~iTrlog < 00 >(¢y= ~iTrlog [ | Gz*"[(#)IG7" 4], )
Ial
where G;A“" are the Green-function operators with Ap = 1/2 for bosons and Ap = —1 for
fermions. In this case, the unit vacuum-vacuum transition amplitude < 0|0 > " =1
¢)=¢;

means that Vo (¢;) = 0, where ¢ is a solution of the variation equation

New()|  _ T

8 (o) + a06)

(d)=¢1
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= %) + ny <fr> —% Z(]f <V AN () <?>= 0.
if v

where < 12 >, < ff >, and < h? > are the condensates determined by the Green
functions iu [7):
< §2 o= (1 00) V), < ff >= (W ()0, (). <& ht p= (hl,(,z,')/l,( o). (1)

Finally, using the definitions of the condensates and masses (8) we obtain {he equation
of motion

(DY) = — Z”’f <FF>4d MV > g < h? > (12)
! v

In the class of constant solutions of 93(¢) = 0 all masses (8) are defined by the initial
data of this equation

(@) = dr. (13)
The nonzero solution means that there is the Gell-Mann- Oakes-Renner type relation
~Zm,<ff>+2mf<bb>=0, (14)
T b

where b stands for bosons.

If we suppose that the condensates are defined by the subtraction procedure associated
with the renormalization of masses and wave functions leading to the finite value for bosons
(b) and fermions (f) respectively

d
<bb>p (my,) = <bb>(m%,)— <bb> (A?)— (Mm%, — A*)—= < bb > (A?) =

dA?
_ mpy, My _9 (15)
(4m)? 2 6]’
~ 2m?2 ms 3
2 _ _f"'Rf Rf_ Y
< ff>p(my;) = 4m)? [log A2 2}, (16)

where A is a subtraction constant. In this case, the sum rule (14) takes the form

<h¥ > mi = —Z < ff>mp+2My <WW*>+ME < Z,2" > . (17)
']

We substitute the experimental data by the values of masses of bosons My, = 80.4034:
0.029 GeV, Mz = 91.1876+0.00021 GeV [9], and t-quark m; = 170.9£1.8 GeV [10]. In the
minimal SM [8], the three color t-quark dominates ), m% ~ 3mf because contributions
of other fermions 37, 11;.7/2:11, ~ 0.17 GeV are very small.

In Fig. I the solution of the above equation is plotted for the range 0.3 GeV < A < 100
GeV. There is no solution of Eq. (17) for 84 GeV < A < 370 GeV. The lower right
point of the plot corresponds to my, = 138 GeV. which is the best choice, since taking
renormalization constant value of the order of the weak boson masses corresponds to the
scale where all the relevant gnantities in the equation are well defined. This result is
" in qualitative agreement with the result of Ref. [18], my, > 128 + 33, obtained from the
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Figure 1: Value of the Higgs mass from Eq. (17) with the condensates defined by Eq. (15)
as a function of A.

Higgs potential stability condition. Note that the stability boundary of the potential just
corresponds to the point, we are looking at.

In general radiative corrections to the quantities in this relation within the Standard
Model are not small, first of all due to a large coupling constant of Higgs with top quark.
The corrections can be treated in the usual way, e.g. following Refs. [17, 18], since our
model formally is a partial case of the Standard Model. Note that the zero value of the
Higgs potential and relation (17) in our model should be valid in all orders of the per-
turbation theory. Implementation of higher order effects can reduce the renormalization
scale dependence. This problem will be considered elsewhere.

The choice of the parameters in the inertial Higgs potential in our model can be
motivated by the cosmological reasons. Even so that the resulting Lagrangian of the
model is practically the same as the on of SM, we get a prediction for value of the the
Higgs boson mass to be in the range 215 = 255 GeV. In this range of my, the width of
the Higgs particle is between 5 and 10 GeV. Here the main decay modes are W — ZZ
and H = WW (since Mz < my < 2my), which are quite convenient for experimental
studies [4]. The so-called “gold-plated” channel H — 4y should allow a rather accurate
measurement of m, with at least 0.1% relative error [11]. So it is important to provide
adequately precise theoretical predictions for this quantity. As concerns the production
mechanism, the sub-process with gluon-gluon fusion dominates [12] for the given range
of my, and the corresponding cross section of about 10* fb provides a good possibility to
discover the Higgs boson at the high-luminosity LHC machine.

In this way the potential free Higgs mechanism gives the possibility to solve the ques-
tion about a consistence of the nonzero vacuum value of the scalar field with the zero
vacuum cosmological energy as a consequence of the unit vacuum-vacuum transition
amplitude. The inertial motion of a scalar field corresponds to the dominance of the
most singular rigid state at the epoch of the intensive vacuum creation of the primordial
bosons [13]. As it was shown, it can be compatible with energy budget of the universe
and the Supernova data [14-16].
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