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SUMMARY

This thesis is concerned with the modelling of galaxy clusters, applying these models to real and
simulated data using Bayesian inference, and the development of Bayesian inference algorithms
applicable to a wide range of astrophysical problems.

I present a comparison of mass estimates for 54 galaxy cluster candidates from the second
Planck catalogue (PSZ2) of Sunyaev—Zel’dovich sources. I compare the mass values obtained
with data taken from the Arcminute Microkelvin Imager (AMI) radio interferometer system
and from the Planck satellite. The former of these uses a Bayesian analysis pipeline that para-
meterises a cluster in terms of its physical quantities, and models the dark matter & baryonic
components of a cluster using Navarro-Frenk-White (NFW) and generalised-NFW profiles re-
spectively. The mass estimates derived from Planck data are obtained from the results of the
Bayesian detection algorithm PowellSnakes (PwS). I also analyse simulated AMI data with in-
put values based on PwS mass estimates.

I then compare three cluster models using AMI data for the 54 cluster sample. The two
observational models considered only model the gas content of the cluster. To compare the
physical and observational models I consider their posterior parameter estimates, including the
calculation of a metric defined between two probability distributions. The models’ fit to the
cluster data is evaluated by looking at the Bayesian evidence values.

Improvements to the physical modelling of galaxy clusters are then considered, either by
relaxing some of the assumptions underlying the physical model, or by introducing a new profile
for the dark matter component of clusters. The resultant models are compared with the physical
model introduced previously.

The final part of the cluster analysis work focuses on Bayesian analysis using a joint likeli-
hood function of data from both AMI and the Planck satellite simultaneously. The results of this
joint analysis are compared with those obtained from the individual likelihood analyses using

simulated data and with real data taken from the 54 cluster sample.



Finally, a new Bayesian inference algorithm based on nested sampling is presented. The
algorithm, named the "geometric nested sampler", is an adaption of the Metropolis-Hastings
nested sampler and makes use of the geometrical interpretation of sets of parameters to sample
from their domains efficiently. The geometric nested sampler is tested on several toy models as
well as a model representing the emission of gravitational waves from binary black hole mergers.
The results obtained using the geometric nested sampler are compared with those from popular

nested sampling algorithms.
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CHAPTER

INTRODUCTION

1.1 Galaxy clusters

In the local Universe and out to redshifts of around two, clusters of galaxies are observed as
massive gravitationally bound structures, often roughly spherical and with very dense central
cores (see reviews by e.g. Rosati, Borgani, & Norman 2002, Voit 2005, Allen, Evrard, & Mantz
2011, and Giodini et al. 2013). It is over eighty years ago that it was first postulated that a galaxy
cluster’s mass is dominated by dark matter (Zwicky 1933 and Zwicky 1937). More recently it
has been shown that dark matter contributes ~ 90% of the cluster mass (see e.g. Vikhlinin et al.
2006 and Komatsu et al. 2011). Stars, gas and dust in galaxies, as well as a hot ionised intra-
cluster medium (ICM) make up the rest of the mass in a cluster, with the latter being the most
massive baryonic component. The galaxies emit in the optical and infrared wavebands, whilst
the ICM emits in X-ray via thermal Bremsstrahlung and also interacts with cosmic microwave
background (CMB) photons via inverse Compton scattering. This last effect is what is known as
the Sunyaev—Zel’dovich (SZ) effect (Sunyaev & Zeldovich 1970).

1.2 The Sunyaev—Zel’dovich effect

The SZ effect is particularly strong in the cluster ICM, where temperatures range between 107 —

10% K. The nature of the CMB spectrum means that the effect leads to an increase in intensity at
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frequencies above 217 GHz and a decrease for frequencies below (Figure 1.1). The measurement
of the SZ surface brightness increment / decrement has the crucial characteristic that it is redshift
independent (see Section 2.2). The SZ effect has the additional advantage over X-ray analysis,
that it only depends on the electron number density linearly (see Section 2.2), whereas X-ray
Bremsstrahlung emission is proportional to electron number density squared. This means that SZ
can in practice be used to analyse a cluster at higher radius. The Planck telescope (Section 1.3)
and the Arcminute Microkelvin Imager radio interferometer system (AMI, see Section 1.4) both

observe galaxy clusters by measuring the SZ effect.

1.3 Planck mission

The Planck mission® is a European Space Agency (ESA) mission, whose primary objective is to
investigate the CMB. The Planck telescope was a space telescope which was launched in May
2009 and deactivated in October 2013. The combination of Planck’s low-frequency and high-
frequency instruments (LFI and HFI) provides nine frequency channels in the range 37 GHz —
857 GHz. The LFI has angular resolutions of 33, 24, and 14 arcminutes at respective frequencies
of 30, 44, and 70 GHz. The HFI has angular resolutions of 10, 7.1, and 5.5 arcminutes at 100,
143, and 217 GHz and 5.0 arcminutes at each of 353, 545, and 857 GHz. For more information
on the Planck telescope I refer the reader to the Scientific Programme of Planck (The Planck Col-
laboration 2006). In addition to all-sky coverage, Planck has its own advantages for SZ work:
a very wide range of frequency channels, polarisation capability, and a channel at the 217-GHz
null frequency of SZ all help to remove contamination from synchrotron, Bremsstrahlung and
dust emissions. Of particular importance for the work described here are the Planck cluster-
catalogues (see Planck Collaboration XXIX 2014, Planck Collaboration XXXII 2015 and Planck
Collaboration XXVII 2016 for papers relating to catalogues PSZ1, PSZ1.2 and PSZ2 respect-
ively, where ‘PSZX’ refers to the X Planck SZ catalogue). These provide e.g. cluster candidate
positions, redshift (z) values (see Section 3.3), integrated Comptonisation parameter (¥) values
and mass (M) estimates. PSZ2 is the most recent all-sky Planck cluster catalogue, and is the one

which I refer to unless stated otherwise.

%http://www.esa.int/Planck/.
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Figure 1.1: Radiation intensity as a function of frequency. Note the dashed line
represents the incident radiation, whilst the solid line represents the energy-boosted
inverse Compton scattered radiation. Taken from Carlstrom, Holder, & Reese (2002).
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SA LA

Antenna diameter 3.7m 12.8 m
Number of antennas 10 8
Baseline lengths (current) 5-20m 18— 110 m
Primary beam FWHM (at 15.7 GHz) 20.1 arcmin 5.5 arcmin
Typical synthesised beam FWHM 3 arcmin 30 arcsec
Flux sensitivity 30mlys'/? 3 mlys!/?

Table 1.1: Summary of AMI characteristics. Both arrays measure the same linear

polarisation.

1.4 AMI

AMI is an interferometer system near Cambridge, designed for SZ studies (see e.g. Zwart et al.
2008). It consists of two arrays: the Small Array (SA), optimised to couple to SZ signal, with
an angular resolution of ~ 3 arcmin and sensitivity to structures up to = 10 arcmin in scale; and
the Large Array (LA), with angular resolution of ~ 30 arcsec, which is largely insensitive to SZ,
and is used to characterise and subtract confusing radio-sources (see Section 2.5.1). Both arrays
operate at a central frequency of ~ 15.7 GHz and, at the time the AMI data for this paper were
taken, with a bandwidth of ~ 4.3 GHz, divided into six channels. Both arrays actually operate
over the wide frequency range of ~ 12.0 — 18.0 GHz for sensitivity, and the correlator splits
this range into eight separate channels each approximately 0.72 GHz wide to reduce chromatic
aberration over the fields of view to manageable levels. However, due to satellite interference
at the lower end of the spectrum, data from the bottom two channels are excluded, giving the
effective bandwidth of 4.3 GHz across six channels mentioned above). A summary of AMI’s
characteristics is given in Table 1.1. More detail on AMI is given in Section 2.1.1. Note that
AMI has recently received a new digital correlator (Hickish et al. 2018), but all data used in this

thesis were obtained by the system with its analogue correlator.

1.5 Remainder of this thesis

In Chapter 2 I give an overview of the theory underlying various topics which are heavily relied
upon throughout the thesis: interferometry, measuring the SZ effect, galaxy cluster modelling,
and Bayesian inference.

In Chapter 3 I apply a cluster model to data from AMI of clusters detected by Planck, and com-

pare the results with those obtained directly from Planck data. I also analyse simulated cluster
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data whose inputs are based on the mass estimates obtained from Planck data, to see if AMI
simulations & the cluster model are capable of inferring the correct cluster masses.

Chapter 4 presents the results of a cluster model comparison for the sample of 54 clusters con-
sidered in the previous Chapter; for the three models I compare the parameter estimates and
Bayesian evidence values obtained for each cluster.

A new cluster model is presented in Chapter 5 which uses an Einasto profile to model the dark
matter component of a cluster. By looking at cluster parameter profiles, and performing Bayesian
analysis on simulated & real data, I compare the new model with the one presented in Chapter 2.
Chapters 6 and 7 detail further attempts to enhance galaxy cluster modelling. I first try to re-
lax the mass assumption associated with the models detailed in Chapters 2 and 5, and plot the
resulting mass profiles for a range of clusters (Chapter 6). I then try to incorporate non-thermal
pressure into the cluster models in Chapter 7, and plot the resultant parameter profiles.

In Chapter 8 I introduce a joint AMI-Planck analysis method, which revolves around evaluat-
ing the likelihood functions associated with each instrument simultaneously. I then present the
results of this method applied to both simulated and real datasets, and compare with the results
obtained from conducting the individual instrument analyses separately.

An overview of Monte Carlo sampling methods is given in Chapter 9. This includes an introduc-
tion to nested sampling, the method upon which the algorithm presented in Chapter 10 is based
on. I also explain briefly how samples can be used to approximate the distribution from which
they originate.

In Chapter 10 I provide the motivation & technical details of the nested sampling algorithm I
have created and refer to as the "geometric nested sampler". I apply the algorithm to several toy
models & to an astrophysical application (detecting gravitational waves from a black hole binary

merger system), and compare its performance with pre-existing nested sampling algorithms.

1.6 Conventions

A ‘concordance’ flat ACDM cosmology is assumed: Qy = 0.3, Q4 = 0.7, Qr =0, Q¢ = 0,
h =0.7, Hy = 100 h km s™! Mpc™!, o3 = 0.8, wg = —1, and w, = 0. The first four para-
meters correspond to the (dark + baryonic) matter, the cosmological constant, the radiation, and
the curvature densities respectively. £ is the dimensionless Hubble parameter, while Hy is the
Hubble parameter now and o7 is the power spectrum normalisation on the scale of 8 2~! Mpc
now. wg and w, are the equation of state parameters of the Chevallier-Polarski-Linder paramet-
erisation (Chevallier & Polarski 2001).






CHAPTER

INTRODUCTORY THEORY

2.1 Interferometry

In addition to the advantage of high angular resolution from long baselines, interferometers
possess a number of advantages over single-dish telescopes, particularly for CMB work. Among
these are their relative insensitivity to atmospheric emission (see e.g. Watson et al. 2003), the
ease with which systematic errors such as ground spill (Lay & Halverson 2000) can be dealt
with; and radio-source contamination (see e.g. Grainger et al. 2002) can be kept to a minimum.
Furthermore, the angular sensitivity of an interferometer can be fine-tuned by adjusting baseline
lengths.

To understand how an interferometer works, consider a two-antenna system similar to the
one constructed by Ryle and Vonberg (Ryle & Vonberg 1948). Figure 2.1 shows two antennas
on an east-west baseline of length b tracking a visible patch of sky which, initially, meets three
conditions: (i) contains only one radio-source; (ii) this source is at the centre of the tracked
patch; and (iii) this source is unresolved by the interferometer. At hour angle 6 (as defined in
Figure 2.1), the voltages V| and V, measured by each antenna at time ¢ are

V= Vpel @r+kbsin®)

. 2.1
V2 = V()elwt,

where Vj is the signal voltage amplitude, w is the angular frequency of the source radiation
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Figure 2.1: Simple east-west single baseline interferometer tracking a patch of sky
containing a single radio-source. For a baseline » and a source at angle 6 from the
vertical axis, the wavefront has to travel an additional distance b sin 8 to the further
antenna. Image taken from Zaroubi (2013).

being observed and k is the corresponding wavenumber. The wz-dependent parts are removed
and the correlator multiplies the remaining components of 2.1 together to give a response, termed
visibility, proportional to

eikb siné)’ (22)

in which the constant of proportionality (including V2, the effects of integration time, dish area
and so on) which in practice is evaluated by observation of a bright, unresolved radio-source with
well known properties. Unless the observing bandwidth 4w is very low (and thus the coherence
length 27¢c/w is very long), the baseline must be ‘phased up’ by inserting an additional path
equivalent to b sin 6 into the interferometer arm which the radiation hits first. This compensates
for the extra path cAt = b sin § involved in the other arm.

We now relax condition (ii). If the source is offset from the pointing centre by an angle a,

the extra path becomes b sin(6 + ). The path compensation is set for the pointing centre so that
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multiplying the equivalent expressions of 2.1 now gives a visibility proportional to

eikb(sin(@ﬂx)—sin )

— eikba cos 0 (2'3)

B

using the small angle approximation for a.
We now relax condition (iii). The response to a source, which has a top-hat surface-brightness
distribution in a-space of width 4a and centred on «, is averaged over Aa, giving a response

proportional to
1
- ’
elkba cos@ do’
da
2

2.4)
kbAa cos 0
2

da J_

= sinc | ———
Thus sources with a large angular size on the sky (da > kbcos6) are resolved out by the
interferometer since sinc(x) — 0 as x — oo.

One can similarly examine the effect of the observing bandwidth. Repeating the above

analysis for k gives
Ak

1 > ik’bacos@ ’
ﬂ i e dk
2 (2.5)
. (abAk cos 9)
= Sinc T .

So a large enough bandwidth also causes the signal to fall, this time due to chromatic aberration.
This explains the need for independent frequency channels which are a feature of AML.
Finally, replacing condition (i) by a surface-brightness distribution /(6, @), and incorporating

the primary beam function A(a), gives a visibility proportional to

f f f A(@) (0, a") &K' s q9’da’dk’. (2.6)

2.1.1 AMI interferometry

The compensation for the path-length differences between each antenna and the cluster having
been done in cables, the analogue correlator multiples the signal from each antenna at time ¢
by the signal at times ¢t — 74t,t — 64t,...,t,....,t + 74t,t + 84¢t; Fourier transforming these lag
products gives the amplitude and phase values of each of eight frequency channels. A problem
with the analogue correlator is that each timelag Ar = Al/vgyp is not the same because each
A1, nominally 25 mm, varies by some 5-10% because the circuit boards providing the Als have

non-uniform relative permittivities and thicknesses.
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Thompson, Moran, & Swenson (2011) discuss cross-correlator performance in terms of

cross-correlation correlation coefficient p,
[ (a; = (ai))(aj = (a;))dt
V[ (@i = a2t [ (aj = Cap))di

Q2.7)

where a; is the instantaneous voltage from antenna i, and () denotes average over the few-second
integration time 7, and the integrals are over 7. However, radio astronomy cross-correlators do
not measure the denominator of equation 2.7; what they do measure, for each lag, is effectively
the numerator. The signal power is described as Aexp(i¢) where A is "amplitude" and ¢ is
"phase". The noise power is that from the front-end amplifiers, the atmosphere, and the CMB.
The signal in the cross-correlation increases coherently over time, so the signal energy increases
as time, while the noise increases incoherently so the noise energy increases as time'/2. 7 is
chosen such that over it, signal energy < noise energy. For the measurements over 7 to be
meaningful, you want each receiver chain, from each front-end amplifier to correlator input,
to produce a power that is stable over the whole (typically 6-8 hour) observation run. This is
achieved with automatic gain controls designed to keep the power going into each correlator
input constant. (Note that neither the gains of the receiver chains nor the output powers have to
be the same — astronomical calibration deals with this).

However, ensuring the power at a correlator input is maintained at a constant level will bias
measurements if, for example, the weather changes: cloud, rain, and raindrops on the receiver
cover all emit at GHz-frequencies, thus raising (compared with fine weather) the noise power
and so lowering the signal. This effect is (ideally) removed by the noise injection system (at
Cambridge misleadingly called the ‘rain gauge’) which works as follows. Low-level noise (of
power = 1% of the power due to front-end amplifier, CMB and atmosphere), of constant mean
power and known signature P(¢) is injected into the waveguide that feeds the astronomical signal
into the front-end amplifier. At each correlator input, the noise power due to P(¢) is extracted
by synchronous detection and compared with the total noise power so that the noise power

due to front-end amplifier, CMB and atmosphere, which determines the system temperature, is

measured.

2.2 Measuring the SZ effect with an interferometer

For a small field size, an interferometer samples from the two-dimensional complex visibility

plane u, also known as the u-v plane, where u and v are orthogonal projected baselines in units of



2.2. Measuring the SZ effect with an interferometer 11

observing wavelength. For a given frequency v the quantity measured by an interferometer cor-
responds (see equation 2.6) to the Fourier components of the sky brightness distribution 7, (u).

I, (u) is given by the weighted Fourier transform of the surface brightness I, (x),

I,(u) = f " A, (X)), (x)e¥ "> d2x, (2.8)

where x is the position in the sky relative to the phase centre and A, (x) is the primary beam
of the (identical) antennas for a given frequency; note that / and A here are parameterised in
terms of spatial coordinates rather than angular. The positions at which I, (#) are sampled from
is therefore determined by the physical orientation of the antennas.

The change in CMB surface brightness due to the thermal SZ effect in a galaxy cluster is
given by (see e.g. Birkinshaw 1999)
0B,

2.9
oT T=Tcwms 9

6101,1/ = TCMByfv

where the last factor is the derivative of the blackbody spectrum with respect to temperature eval-
uated at the temperature of the CMB, which at present is Tcyp = 2.728 K (Fixsen et al. 1996).
The surface brightness per unit frequency of blackbody radiation is given (see e.g. Kogure &

Leung 2007) by
2hpv? 1
2 ehvikeT _ 1’

B,(T) = (2.10)

where h,, is the Planck constant and kg is the Boltzmann constant. Hence the derivative is given

by
OB, 2h2v4 v /keT o
OT |r=Tcys - CZkBTCZIMB (ehvv/ksT _ 1)2° )

The function f, expresses the spectral dependence of the SZ signal and is derived from the
Kompaneets equation (Kompaneets 1957). Relativistic treatments of f, have been considered
in e.g. Rephaeli (1995), Itoh, Kohyama, & Nozawa (1998), Challinor & Lasenby (1998), Noz-
awa, Itoh, & Kohyama (1998), and Pointecouteau, Giard, & Barret (1998), by incorporating
relativistic terms into the Kompaneets equation. Relativistic effects may be important in clusters
where the ICM temperatures are high. Indeed Arnaud et al. (1994) and Markevitch et al. (1996)
have shown that electrons in the ICM can reach energies above 10 keV. Challinor & Lasenby
show that these effects lead to a small decrease in the SZ effect. However, Rephaeli argues that
the non-relativistic treatment of Compton scattering adopted in Zeldovich & Sunyaev (1969)
remains valid at frequencies well below the CMB peak value. For the observing frequencies of

AMI (~ 15 GHz), it can be assumed that this condition holds. Furthermore Rephaeli claims that
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for the unmodified Kompaneets equation to be valid, the optical depth of the cluster 7, must be
sufficiently large to justify using a diffusion approximation for the scattering process. It is clear
that at AMI observing frequencies h,v < mec* where m, is the mass of an electron; and so
the photons can be assumed to scatter in the Thomson limit. In this limit the scattering rate is
oc orne where ot is the Thomson scattering cross-section and n,. is the electron number density

in the ICM. Thus the optical depth is given by

T:fne(r)a'le, (2.12)

where r is the radius from the galaxy cluster centre and the integral is along the line of sight.

The non-relativistic form for f, is given by

Jfv = X coth(X/2) — 4, (2.13)
where
hpv
= . (2.14)
ksTcmB

Referring back to equation 2.9, y is the Comptonisation parameter which is the number of colli-
sions multiplied by the mean fractional change in energy of the photons per collision, integrated
along the line of sight. On average the electrons in the ICM transfer an energy kpTu(r)/mec?
to the scattered CMB photons, where 7, (r) is the temperature of an electron in the ICM. In the

Thomson scattering regime described above this leads to

orks

> fTe(r)ne(r)dl. (2.15)

y =
MeC

If the electron gas is assumed to be ideal, then in terms of the gas pressure P, (r), the Compton-

isation parameter is given by

y= (TTsze(r)dl. (2.16)
MmMeC

(S

Combining equations 2.11, 2.13, & 2.16 one obtains the following expression for 61, ¢ in the

non-relativistic limit

5L = 201(ksTemp) X4 eX
W R X - 1)2

[X coth(X/2) — 4] f P.(r)dl. 2.17)

Thus for a given cluster 61, is independent of z. Since the Fourier transform is a linear operator
o1, ¢ can be substituted directly into equation 2.8 to calculate o1 v.cl
Bartlett & Silk (1994) noted that the total Comptonisation parameter Y, which is the integral

of y over the solid angle d2 subtended by the galaxy cluster is proportional to the volume
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integral of the gas pressure. Y can be written in terms of spherical coordinates as

% " ’ 7 ’
Viph phys () = — ZZ f Po(r')4nr? dr', (2.18)
e 0

Note that ¥ph,phys(r) has dimensions [lengthz]. Yipu(r) = Yophphys(7) /Di (where Dy is the
angular diameter distance to the cluster), which has dimensions [angle?] and is the quantity
referred to in this thesis unless stated otherwise. Thus ¥pp, phys measured out to large r is, with

caveats, the total thermal energy of the cluster.

2.3 Cluster model selection

To determine 61, one must select a model which calculates the electron temperature (equa-
tion 2.15) or pressure (equation 2.16) profile of a cluster. The AMI consortium has implemented
a number of cluster models over the years. Marshall, Hobson, & Slosar (2003) considered the
Navarro-Frenk-White (NFW) profile (Navarro, Frenk, & White 1995) as a cluster mass model;
their model assumes spherical symmetry and hydrostatic equilibrium, and is used in a joint ana-
lysis between SZ and gravitational lensing data (see e.g. Schramm & Kayser 1994 for how
lensing can be used to investigate cluster properties). Marshall also used the Beta model (Cava-
liere & Fusco-Femiano 1976, 1978) to model the cluster gas profile; the Beta model is another
spherically symmetric model, but is purely empirical. Feroz et al. (2009) (from here on FF(09)
built on this work, but concentrated on modelling multi-frequency SZ data with the Beta model,
but using the hydrostatic equilibrium assumption to derive an expression for the cluster mass.
Most recently Olamaie, Hobson, & Grainge (2012) (MO12) presented a new, physical model to
describe the baryonic matter as well the dark matter component in order to give a more thorough

treatment of the make-up of galaxy clusters; I refer to this as a physical model.

2.4 A physical model for AMI data

2.4.1 Model assumptions

The model presented here is largely based on the one introduced in MO12 but includes the adap-
tions mentioned in Sections 2.4.4 and 3.2. For any model it is important to know the underlying
assumptions which allow it to be valid. The four main assumptions in the physical model are as

follows.
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e The cluster is spherically symmetric. This means that the cluster can be parameterised
in terms of the scalar radius r (rather than its vector equivalent r) from the centre of the
cluster.

e The cluster is in hydrostatic equilibrium up to radius r,qg (defined below). This means at
any radius up to rpgo the outward pushing pressure force created by the pressure differen-
tial at that point must be equal to the gravitational binding force due to the mass enclosed
within that radius (see e.g. Bahcall & Sarazin 1977, and equation 2.30 below).

e The gas mass fraction fg,s(r) is much less than unity up to radius g, so that the total
mass is M (ra00) = Mam(r200). Consequently the total mass out to rygp is given by the
integral of the dark matter density along the radius of the cluster (see equation 2.23 below).

e The cluster gas is assumed to be an ideal gas, so that the electron temperature can be

trivially represented in terms of its pressure.

2.4.2 Dark matter profile

The model uses an NFW profile (Navarro, Frenk, & White 1995) the dark matter density as a

function of cluster radius r,
Ps

(£)(1+£)"

where p is an overall density normalisation coefficient and r is a characteristic radius defined

Pdm(r) = (2.19)

by rs = rapo/c200 and is the radius at which the logarithmic slope of the profile dIn p(r)/dInr
is —=2. rygo is the radius at which the average cluster density is 200 X peit(2). Perit(z) is the
critical density of the Universe at the cluster z which is given by peit(z) = 3H (z)?/87G where
H (z) is the Hubble parameter (at the cluster redshift) and G is Newton’s constant. o is the
concentration parameter at this radius. Following Olamaie, Hobson, & Grainge (2013), we can
calculate cpgo for an NFW dark matter density profile taken from the expression in Corless, King,
& Clowe (2009)

€200 = (2.20)

1+z 1014h_1MSun

here, Mgy, denotes units of solar mass. The 1/(1 + z) factor comes from Wechsler et al. (2001)

5.26( M (r200) )‘0'1

and is obtained from N-body simulated dark matter halos between z = 0 and z = 7. The
remainder of the relation was derived in Neto et al. (2007) by fitting a power-law for c;qg to
N-body simulated cluster data. Note that the sample used in Neto et al. (2007) was assumed to
contain clusters that are relaxed. In equation 2.20 M () is the mass enclosed at radius rqg.

Thus for given values of z and M (r200), c200 can be calculated.
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2.4.3 Electron pressure profile

Following Nagai, Kravtsov, & Vikhlinin (2007), the generalised-NFW (GNFW) model is used

to parameterise the electron pressure as a function of radius from the cluster centre

Pei

(er)C (1 + (er)a)(b_C)/a’

where Pe; is an overall pressure normalisation factor and r, is another characteristic radius,

Pe(r) =

2.21)

defined by r, = rs00/cs00. The parameters a, b and ¢ describe the slope of the pressure profile
atr/rp = 1, r/rp, > 1 and r/r, < 1 respectively. For values r/r, < 1 the logarithmic
slope (dIn Pe(r)/dInr) converges to —c. For values For values r/r, > 1 the logarithmic slope
converges to —b. The value of a dictates how quickly (in terms of r) the slope switches between
these two values, and in the limit that a tends to zero, the logarithmic slope is —(b + ¢)/2
for all r. Note that Nagai, Kravtsov, & Vikhlinin (2007) choose to parameterise the pressure
profile with the GNFW model because it closely matches the observed profiles of the Chandra
X-ray clusters and results of numerical simulations in their outskirts. In addition to this, the
gas pressure distribution is primarily determined by the gravitationally dominant dark matter
component (which is fitted with the NFW profile), they argue that it makes sense to parameterise
the pressure profile using the generalised NFW model.

Consistent with many of the Planck follow-up papers (see e.g. Planck Collaboration XI 2011)
and with MO12 the slope parameters are taken to be a = 1.0620, b = 5.4807 and ¢ = 0.3292.
These ‘universal’ values are from Arnaud et al. (2010) and are the GNFW slope parameters
derived for the standard self-similar case using scaling relations from a REXCESS sub-sample
(of 20 well-studied low-z clusters observed with XMM-Newton), as described in appendix B
of the paper (Bohringer et al. 2007). I also use the Arnaud et al. value for the concentration
parameter csoo = rs00/rp of 1.156. I note however that in Perrott et al. (2015) (from here on
YP15) using simulations it was shown that the disagreement between Planck and AMI parameter

estimates may indicate pressure profiles deviating from the ‘universal’ profile.

2.4.4 Model calculations

The three cluster model input parameters required to calculate the electron pressure given by
equation 2.21 in the physical model are M (r00), 2, and fgas(7200). feas(7200) is the fraction of

the total mass attributed to the gas mass up to radius r,g9. Note that in general the total mass out



16 Chapter 2. Introductory theory

to r4 is given by
4n

3

Hence rygo can be calculated from M (r,q0), and the mass can be determined at other (known)

M(r4) = — Aperic(2)r7. (2.22)

radii (e.g. rs00)-

2.4.4.1 Total enclosed mass

Another analytical solution for M (r) can derived using the third assumption stated above. Using

equation 2.19, M (r) is given by

-
M(r):f 47t paen (r" )" dr’
0

r ”
Psr ’
= f dr—————dr (223)
"

’ 7’ 2
E)(1+£)
-1
= 4rpyrd [1n(1+r1) - (1 +r7) ]
S

Hence an expression for ps can be obtained by equating 2.22 and 2.23, setting r = rpgo and

solving for p;
Perit(2)

) [1n(1+’%)—(1+ )‘1]'

(2.24)

200 (r200 3
=300

1200
One can then obtain an expression rsqg as follows. Equating 2.22 and 2.23 at rsg and substituting

in the expression for pg gives

3 -1 3 1
( s ) ln(1+r500)—(1+ s ) :é( Ls ) 1n(1+r200)—(1+ s ) . (2.25)
7500 rs r'500 2 \r200 r 200

Following Hu & Kravtsov (2003), there is an analytic mapping from ryqg to r500. Consider the

equation
5
g(rs/rs00) = Eg(rs/rzoo), (2.26)
where
g(x) =M +xH-1+x7". (2.27)
Equation 2.26 requires that g(rs/rs00) be inverted so that

7

5
—— =x(gs00 = = f(rs/r200) | » (2.28)
7500 2
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where
-1/2

— +2 . 2.29
6 8500 (2.29)

2
x(gs500) = [a18550 +

Here p = a> +a3 In gsgo+a4(In g500)2, and the four fitting parameters correspond to a; = 0.5116,
a, = —0.4283, a3 = —3.13 x 1073 and a4 = —3.52 x 107>, This gives a fit to better than 0.3%
accuracy for 0 < cp00 < 20 and is exact in the limit that cy00 — 0. Once rsog has been calculated

rp can be calculated from r, = r500/c500-

2.4.4.2 Hydrostatic equilibrium

This requires
dPy(r GM,
_5’( ) (G, (2.30)
r r

where pg(r) is the gas density and M (r) is the total mass within radius r of the cluster. The gas

pressure Pg(r) can be related to the electron pressure as

HePs(r) = e Pe(r), (231

where p. is the mean gas mass per electron and p, is the mean mass per gas particle. Mason &
Myers (2000) state that for a plasma with the cosmic helium mass fraction Cyge = 0.24 and the
solar abundance values in Anders & Grevesse (1989), then pe = 1.146 and gy = 0.592 in units

of proton mass.

2.4.4.3 Gas density, mass, and temperature
Substituting equations 2.23 and 2.31 into 2.30 and solving for p4(r) gives

ﬂePei 1

Hg 47TG,OSI’3
r

m(1+2)-(1+ §)“ (2.32)

—-c a1—-(1+(b-c)/a) a
S O N I S
Tp Tp Fp

From this the gas mass M, (r) can be calculated

pg(r) =

X

My(r) = f ' drpg(r'yr®dr. (2.33)
0
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Note however that this integral must be solved numerically. Nevertheless, we can determine
Pei since we know M (r200), feas(r200) and ra00 (Mg(r200) = feas(r200)M (r200). Evaluating

equations 2.32 and 2.33 at rp0o and solving for Pe; gives the following expression

u
Pei = ’u_ngerMg(FZOO)
(&3

frgoo r/3 (r/)—c‘
0 m(1+Z)-(1+5)" \p

1

r\aq-(1+(b-c)/a) r\a
cm) ] )
Tp Tp

The radial profile of the electron number density is given by ne(r) = pg(r)/pe. Assuming

X

(2.34)

an ideal gas equation of state, the electron temperature T (r) is therefore given by

An .G psr
Te<r)=<—“g p)

kg

In(1+7)-(1+ %)_1 (2.35)

r

PGS

which is also equal to the gas temperature Ty (r).

X

-1
X

B

The gas mass can be determined numerically from equation 2.33 as

P 1
My (r) :M_3
Hg G,Os"s
r r/3
X — (2.36)

b In(1+Z2)-(1+5%)

’\ ¢ /\a1-(1+(b=c)/a) S\a
<) =G PG -

Fp Fp p

2.4.4.4 Determining SI cly

Once rp and Pe; have been calculated, the pressure profile can be used in equation 2.16 to cal-
culate the Comptonisation parameter which in turn can be used to calculate 6/, using equa-
tion 2.9. 61, can be Fourier transformed to get the quantity comparable to what an interfero-

meter measures, so that the physical model can be used to analyse data obtained with AMI.
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2.5 Recognised radio-sources and general noise contributions

In addition to the SZ decrement, visibilities measured by AMI also contain contributions from
radio-sources, primordial CMB anisotropies, and instrumental noise. As defined in Hobson &

Maisinger (2002), each visibility measured by an interferometer consists of two components
Vo (ui) = L (ui) + N, (), (2.37)

where I, (u;) contains both the contribution from the cluster SZ effect and from the identified
radio-sources, and N, (u;) contains the contributions from unidentified radio-sources, primordial

CMB and instrumental noise.

2.5.1 Recognised radio-sources

The LA has been (see e.g. Franzen et al. 2011) and is being used to measure the 15.7-GHz
source count. The LA is used to measure radio-sources (without contamination from the SZ
effect since the cluster is resolved out), whilst the SA simultaneously measures the combined SZ
and source signals.

The visibility of each recognised radio-source, assuming for illustration that it is unresolved
by the LA, is

Irs. (1) = f Ay (2)8, (X)8(x5)e P ) d2x = 8, (x15) Ay (Xrs)e'™?, (2.38)

where S, (x) is the source flux density at point x relative to the phase centre, ¢ = 27U - X
The variation in source flux density across the AMI observing band is taken account of via the

spectral index @, where

S, = So (l) , (2.39)
Vo

where v is some reference frequency and Sy is the corresponding source flux density.
2.5.2 General Noise Contributions
2.5.2.1 Instrumental noise

The main source of instrumental noise is Johnson noise. This refers to the thermal agitation of
the charge carriers in any circuit (Nyquist 1928), and in the context of interferometry, the front-

end receivers of the antennas. The antennas are cooled to mitigate this effect, but the remaining
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contribution is non-negligible. For a given bandwidth Av , the root mean square of the Johnson

noise voltage from a single antenna is given by (see e.g. Thompson, Moran, & Swenson 2011)

O Johnson = \/4kBTsysRAV, (2.40)

where Ty is the system temperature and R is the antenna impedance. Note that when limited to

a finite bandwidth, Johnson noise is approximately Gaussian (see e.g. Barry et al. 2004).

2.5.2.2 Primordial CMB

Anisotropies in the temperature of the CMB were predicted as early as Silk (1967) among others,
and Smoot et al. (1992) provided the first clear statistical evidence of their existence and Han-
cock et al. (1994) provided the first direct evidence of individual spatial structures in the CMB.
These anisotropies can be separated into two categories: primordial and late time anisotropies.
An example of the latter type is the SZ effect. Primordial anisotropies refer to fluctuations in
the CMB that have been present since the surface of last scattering (which occurred at z ~ 1100
ort ~ 4 x 10° years over a period of 4z ~ 60). On angular scales visible from the ground
the acoustic peaks and troughs are the most significant features in the CMB power spectrum.
When the Universe was radiation dominated, non-baryonic dark matter began to collapse under
gravity to form potential wells?, but baryonic matter could not clump due to pressure opposition
from Thompson scattering of photons by electrons given that there were 10° photons per baryon.
During recombination the acoustic oscillations imprint the CMB, after recombination the atoms
fall into the non-baryonic dark matter potential wells. Acoustic peaks and troughs relate to the
waves oscillating in the baryon-photon plasma before recombination occurred. Each successive
peak refers to the number of times the wave compressed before the radiation-matter decoupling,
and is visible at decreasing angular scale. In this work, the power spectrum for CMB primordial
anisotropies is determined via maximum-likelihood methods as written in Hobson & Maisinger
(2002) using the results from Hinshaw et al. (2013).

2.5.2.3 Background unrecognised radio-sources

Although the LA is used to identify radio point sources with flux densities > Sy, (Where Siim
is a limiting flux density that is usually taken as 4 X o~ and o is the resultant RMS noise in
the summed LA data on the particular sky patch), a large enough number of sources with flux

densities < Sjm can be a significant contaminant. This type of noise is often referred to as source

4This only applies to matter that was in causal contact.
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confusion. Scheuer (1957) showed that if such sources obey a power-law number-flux density
relation (n,,(S) = dN, (> §)/dS « kSY where k & y are dimensionless constants), then for a
random distribution of unresolved radio-sources in the sky, the source confusion noise is given
by
Stim
02 = f §%n, (S)dS. (2.41)
0

v and k were determined empirically in Davies et al. (2011) from the 10C survey tobe y = —1.80
and k = 376 when n, (S) is quoted in units of Jy~! sr™!, so that when Sj;y, is taken to be 300 pJy
(for a standard length AMI cluster observation) o’fonf =0.185 Jy?sr!.

2.6 Bayesian inference

2.6.1 Parameter estimation

Given a model M and a data vector 9, one can obtain model parameters (also known as input

parameters or sampling parameters) @ conditioned on M and P using Bayes’ theorem:

P(D|O, P(©
PO|D.M) = ( |P(/;A)?M§ lM), (2.42)

where P (@D, M) = P (@) is the posterior distribution of the input parameter set, P (D@, M) =
L (0) is the likelihood function for the data, P (@| M) = 7 (0) is the prior probability distribu-
tion for the model parameter set, and P (D|M) = Z (D) is the Bayesian evidence of the data.

The evidence can be defined as the factor required to normalise the posterior over the sampling
parameter space:

Z (D) = fi: (0) 7 (©) do, (2.43)

where the integral is carried out over the N-dimensional parameter space. For the models using
AMI data considered here, the input parameters can be split into two subsets, (which are as-
sumed to be independent of one another): cluster parameters @) and radio-source or ‘nuisance’

parameters @.;.

2.6.2 Model comparison

While it is the posterior distribution which gives the model parameter estimates from the prior
information and data, it is Z (9) which is crucial to performing model selection. The nested

sampling algorithm, MurTiINEsT (Feroz, Hobson, & Bridges 2009) is a Monte Carlo algorithm
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which calculates Z (9) by making use of a transformation of the N-dimensional evidence integ-
ral into a one-dimensional integral that is much easier to evaluate. The algorithm also produces
samples from £ (@) as a by-product, meaning that it is suitable for both the parameter estimation
and model comparison aspects of this work. Nested sampling will be discussed in more detail
in Section 9.4. Comparing models in a Bayesian way can be done by considering the following.

The probability of a model M conditioned on D can be calculated using Bayes’ theorem

PO P
PM|D) = ( l;\?z))) (M). (2.44)

Hence for two models, M; and M, the ratio of the models conditioned on the same dataset is

given by
PMiID) _ P(DIM) P (M)

P(M|D)  P(DIMy) P(My)’
where P(M;)/P(M,) is the a-priori probability ratio of the models. We set this to one, i.e. we

(2.45)

place no bias towards a particular model before performing the analysis. Hence the ratio of the
probabilities of the models given the data is equal to the ratio of the evidence values obtained
from the respective models (we have defined Z;(D) = P (D|M;)). The evidence is simply
the average of the likelihood function over the sampling parameter space, weighted by the prior
distribution. This means that the evidence is larger for a model with larger areas in its parameter
space having higher likelihood values. Moreover, a larger parameter space, either in the form
of higher dimensionality or a larger domain, results in a lower evidence value, all other things
being equal. Hence the evidence penalises more complex models over basic (lower dimension-
ality / smaller input parameter space domains) ones which give an equally good fit to the data.
Thus the evidence automatically implements Occam’s razor: when you have two competing
theories that make exactly the same predictions, the simpler one is the better. Jeffreys (1961)
provides a scale for interpreting the ratio of evidences as a means of performing model compar-
ison (Table 2.1). A value of In(Z1/Z>) above 5.0 (less than —5.0) presents "strong evidence"
in favour of model 1 (model 2). Values 2.5 < In(Z1/Z3) < 5.0 (-5.0 < In(Z1/Z2) < -2.5)
present "moderate evidence" in favour of model 1 (model 2). Values 1 < In(Z;/Zz) < 2.5
(-2.5 < In(Z1/Z») < —1) present "weak evidence" in favour of model 1 (model 2). Finally,
values —1.0 < In(Z,/<Z>) < 1.0 require "more information to come to a conclusion” over model

preference.
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In(Z1/Z>) Interpretation Probability of favoured model
<1.0 better data are needed <0.75

<25 weak evidence in favour of M; 0.923

<5.0 moderate evidence in favour of M 0.993

>5.0 strong evidence in favour of M, > 0.993

Table 2.1: Jeffreys scale for assessing model preferability based on the In = log, of
the evidence ratio of two models.

2.7 Parameter prior distributions

Prior distributions incorporate the prior knowledge we have on the sampling parameters used
in Bayesian inference. The prior parameter space for AMI cluster analysis consists both of
parameters associated with the cluster 7(@.;) and those associated with each identified radio-
source m(60). If one assumes that the cluster parameters are separable from those associated

with each recognised radio-source, then the total prior distribution is given by
7(0) = 1(0c) | | 7(O10), (2.46)
i

where i labels each recognised radio-source. The prior distributions assigned to the cluster para-
meters will be discussed in the Sections where the Bayesian analyses carried out are introduced
(i.e. Sections 3.2, 4.2, 5.1.0.7, and 8.3.1).

2.7.1 Radio-source prior distributions

Following FF09, each source can be parameterised by four variables: its position on the sky (xs,
¥rs), 1ts measured flux density at some reference frequency vy, Sis,0, and its spectral index ays.

Assuming these are independent, then for source i
7(Ors,i) = (Xps,i )T (Vrs, i) (Sts,,0,i )T (s, i) (2.47)

Delta functions are applied to the prior distributions on x.s and y,s, due to the LA’s ability to
measure spatial positions to high accuracy: m(xy) = 6(Xrs, LA), T(Yrs) = 6(Vrs,1.a). Delta pri-
ors were also set on S50 & ays (centred on the values measured by the LA), if the measured
Sis,0 was less than four times the instrumental noise associated with the observation, and the
source was more than 5 arcminutes away from the SA pointing centre: 7(Ss,0) = 0(Sts,0,LA)>
m(ars) = 0(ars, 1La). Otherwise, a Gaussian prior was set on S ¢ centred at the LA measured

value with a standard deviation equal to 40% of the measured value (o0 = 0.4 X S5.0.0.4):
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p(o)

Figure 2.2: Spectral index distribution adapted from Waldram et al. (2007) from the
9C survey of radio-sources.

7(Sts,0) = N (85,0, LA>071s,0). The spectral index @, was modelled using the empirical distribu-

tion determined in Waldram et al. (2007): nw(ays) = W (ays) and is shown in Figure 2.2.

2.8 The likelihood function

The likelihood function gives the probability of observing data given a set of parameter values.
In the case of AMI observations, the data are visibilities observed by AMI and the parameters
are those described in the previous Section. Following Hobson & Maisinger (2002) and FF09,
it is convenient first to place the N, observed complex visibilities V, (u;) into a data vector

d, for each frequency channel (six channels in the case of the analogue correlator AMI data),
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ordered such that

Re[V, (u;)] (i < Nyis,y)
d, ;= (2.48)
Im[Vv(ui—Nvisyv)] (Nvis,v +1<i< 2Nvis,v)‘

Similarly, one can define the noise vectors n, containing only the contributions to the noise com-
ponents N, (u;). Section 2.5.2 explains the three contributors to N, (u;). We take the likelihood
to be Gaussian

£(®) = %e‘é*’z. (2.49)
Here y? is a measure of the goodness-of-fit of the model to the data (which is simply the con-

catenation of data vectors d,, for all v) d and the predicted data dP(0):

x* =Y (d, - d(©)'C}) (dy - d,(0)). (2.50)

v,v’

d’(0) is assumed to consist of the signal measured from the cluster and recognised radio-
sources. C, ,r = (nvn3,> is the covariance matrix of the visibilities. Assuming instrumental
(Section 2.5.2.1), CMB (Section 2.5.2.2), and confusion (Section 2.5.2.3) noise are independent

of each other, C, , can be written as
i CMB £
C,, = CS‘SV +C, .+ Cff’s (2.51)

Note that the instrumental noise associated with AMI observations is measured, and so does not
need to be predicted. For further information on all three sources of noise, see FF09 Section 5.3

and Hobson & Maisinger (2002). Zy is a normalisation factor given by
Noi 1
Zy = 2m)™|Cl2, (2.52)

where Ny is the total number of visibilities observed over all six frequency channels.






CHAPTER

PHYSICAL MODELLING OF CLUSTERS DETECTED BY

PLANCK

YP15 present the results of the AMI follow-up of clusters detected by Planck— this follow-up is
analysed using the ‘observational model’, which parameterises a cluster in terms of its integrated
Comptonisation parameter ¥ and angular scale 8. YP15 find that these AMI estimates for Y
are consistently lower than the values obtained from Planck data, and conclude that this may
indicate that the cluster pressure profiles are deviating from the ‘universal’ one. I use the physical
model described in Section 2.4 with data obtained from AMI of clusters detected by Planck
(including ones which were detected after the analysis in YP15 was carried out). I also consider
the cluster mass estimates given in the PSZ2 Planck cluster catalogue (Planck Collaboration
XXVII 2016) and compare them with the values obtained using AMI data. Furthermore I use
the PSZ2 mass estimates as inputs to simulations which are then analysed in the same way as real
AMI observations. The work discussed in this Chapter has been published in MNRAS (Javid et

al. 2019), and has been modified post-referee comments.

3.1 Selection and observation of the cluster sample

PSZ2 contains 1653 cluster candidates detected in the all-sky 29 month mission. The initial

cluster selection criteria for AMI closely resembles that described in YP15, with a few modific-

27
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Parameter Minimum value Maximum value
Declination 20.31° 86.24°

z 0.045 0.83

S/N 4.50 28.40

Msz (x10™ Mgyp) 1.83 10.80

Table 3.1: Minimum and maximum values for a selection of parameters taken from
PSZ2 for the AMI sample of 199 clusters.

ations as follows.

e The lower z limit z < 0.100 was relaxed here, to see how well AMI data can constrain
physical model parameters at low redshift. However it is important to realise that the
sample at z < 0.100 were not observed specifically for the purpose of this work, but were
part of other observation projects.

e The Planck signal-to-noise ratio (S/N) lower bound was reduced to 4.5.

e The automatic radio-source environment rejection remained the same. However the manual
rejection was done on a map-by-map basis— see Section 3.5.

¢ Note that the observation declination limits 20° < ¢ < 87° were kept.

This led to an initial sample size of 199 clusters, The maximum and minimum values of some
key parameters for this sample from the Planck catalogue are given in Table 3.1. Note that
Mgz is taken in PSZ2 as the hydrostatic equilibrium mass M (r5q), assuming the best-fit Y — M
relation.

The pointing strategy for each cluster was as follows. Clusters were observed using a single
pointing centre on the SA, which has a primary beam of size =~ 20 arcmin FWHM, to noise
levels of < 120 uJy beam™'. To cover the same area with the LA, which has a primary beam
of size ~ 6 arcmin FWHM, the cluster field was observed as a 61-point hexagonal raster. The
noise level of the raster was < 100 uJy beam™! in the central 19 pointings, and slightly higher
in the outer regions. The observations for a given cluster field were carried out simultaneously
on both arrays, and the average observation time per cluster was ~ 30 hours. The observations
were carried out between 2013 and 2015, and so they began before the PSZ2 catalogue was
published. This means that the AMI pointing centre coordinates in general were not the same
as those published in the final Planck catalogue which was released in 2015. This is discussed
in the context of the cluster centre offset parameters in Section 3.2. Data from both arrays were
flagged for interference and calibrated using the AMI in-house software package REDUCE.
Flux calibration was applied using contemporaneous observations of the primary calibration
sources 3C 286, 3C 48, and 3C 147. The assumed flux densities for 3C 286 were converted from
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Parameter Prior distribution

Xe N (0”,60")

Ye N (0”,607)

Z 6(ZPlanck)

M(ra00)  U[0g(0.5 x 10" Mgy,),log(50 x 10" Mgy,)]
Faas(7200) N (0.13,0.02)

Table 3.2: Cluster parameter prior distributions. ¢ denotes a Dirac delta function, U
is a uniform distribution and N is a normal distribution (parameterised by its mean
and standard deviation).

Very Large Array total-intensity measurements (Perley & Butler 2013) and are consistent with
the Rudy et al. (1987) model of Mars transferred onto an absolute scale, using results from the
Wilkinson Microwave Anisotropy Probe. The assumed flux densities for 3C 48 and 3C 147 were
based on long-term monitoring with the SA using 3C 286 for flux calibration. Phase calibration
was applied using interleaved observations of a nearby bright source selected from the VLBA
Calibrator survey (Petrov et al. 2008); in the case of the LA, a secondary amplitude calibration

was also applied using contemporaneous observations of the phase calibration source on the SA.

3.2 AMI data analysis

The likelihood function given by equation 2.49, along with all the preceeding calculational steps
covered in Chapter 2 are calculated using our AMI Bayesian data analysis pipeline, McApam.
Referring back to the prior distributions defined in Section 2.7, the cluster sampling parameters

for the physical model are

(@) = w(M(r200))7(fgas(r200)) 7 (2) 7 (x)m(ye)- (3.1

X and y, are the cluster centre offsets from the SA pointing centre, measured in arcseconds. The
prior distributions assigned to the cluster parameters are the same as the ones used in Olamaie,
Hobson, & Grainge (2013), but with an alteration to the mass limits. Upon running McApam on
data from a few of the Planck clusters, it was found that the posterior distributions of M (r2¢9)
were hitting the lower bound 1 X 10" Mgy, used in Olamaie, Hobson, & Grainge (2013). Hence
for this analysis the lower limit on M (r;99) was decreased. Table 3.2 lists the type of prior used
for each cluster parameter and the probability distribution parameters.

I note here that M (rsgp) (the AMI mass estimate I compare with those obtained in PSZ2)

is not a sampling parameter of the physical model, but it can be calculated by evaluating equa-
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tion 2.22 at r = rsqp. 'soo is calculated as part of the steps to determine the pressure profile given

by equation 2.21, and so this does not cause any calculation overheads.

3.3 PSZ2 redshift values

The values of zpjanck used for each cluster’s z prior distribution were taken to be the values stated
in PSZ2. Catalogue z values are measured in the optical / infrared or X-ray, with major input
from the Sloan Digital Sky Survey (York et al. 2000). A number of cluster catalogues have been
extracted from these data (see e.g. Hao et al. 2010, Wen, Han, & Liu 2012, and Rykoft et al.
2014), providing estimates of both spectroscopic and photometric z values, the reliability of the
latter values falls as z increases. In the X-ray part of the spectrum, the Meta-Catalogue of X-
ray detected Clusters of galaxies, or MCXC (Piffaretti et al. 2011) has a substantial number of
matches with the Planck-catalogue clusters. The MCXC is from the available catalogues based
on the ROSAT All-Sky Survey (Voges et al. 1999) as well as serendipitous X-ray catalogues
(see e.g. Gioia et al. 1990). MCXC contains only clusters with measured z, but does not state
the redshift type or source. Further sources of Planck catalogue clusters candidate zs are the
Russian-Turkish Telescope (Planck Collaboration Int. XXVI 2015) and the ENO telescopes in
the Canary Islands (Planck Collaboration Int. XXXVI 2016); for each z these state whether it

was obtained photometrically or spectroscopically.

3.4 PSZ2 methodology for deriving cluster mass estimates

For comparison with the mass values obtained with AMI data, I look at the PSZ2 mass estim-
ates obtained from Planck data and the requisite scaling relations. The mass values published
in PSZ2 are derived from data from one of three detection algorithms: MMF1, MMF3 (both of
which are extensions of the matched multi-filter algorithm suitable for SZ studies (MMF, see
Haehnelt & Tegmark 1996, Herranz et al. 2002 and Melin, Bartlett, & Delabrouille 2006), over
the whole sky) & PowellSnakes (PwS, Carvalho et al. 2012). The former two rely on multi-
frequency matched-filter detection methods, whilst PwS is a fully Bayesian method. Since the
PwS methodology most closely matches the Bayesian analysis pipeline used for AMI data, I
focus on the cluster parameter values from PwS. PwS will described in more detail in Sec-
tion 8.1.3.2 where I carry out Bayesian analysis on AMI and Planck datasets simultaneously,

which requires extensive use of the algorithm.
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The observable quantity measured by Planck is the integrated Comptonisation parameter
Y. As described in Section 5 of the PSZ2 paper (Planck Collaboration XXVII 2016), for each
cluster candidate there is a two-dimensional posterior of the integrated Comptonisation para-
meter within the radius 5rspg, ¥ (5r500) and the angular scale radius of the GNFW pressure, 6,
(= rp/Da). The values for Y (5rs00) published in PSZ2 are obtained by marginalising over 6,
and then taking the expected value of Y (5rsq). I refer to this value as ¥jnarg (57500). As described
in Sections 5.2 and 5.3 of Planck Collaboration XXVII (2016), this ‘blind” measurement of the
integrated Comptonisation parameter may not be reliable when the underlying cluster pressure
distribution deviates from that given by the GNFW model. To overcome this, a function relating
Y (5rs00) and 6, is derived in an attempt to provide prior information on the angular scale of the
cluster based on X-ray measurements and earlier Planck mission samples. I refer to this function

as the slicing function.

3.4.1 Derivation of the slicing function

The scaling relations considered here are given in Planck Collaboration XX (2014). Of partic-
ular importance to deriving the slicing function, are the Y (r500) — M (rs500) and 8s5p9 — M (r500)

relations. The first of these is given by

2
M} _ 10-0-1920.02

E(Z)—2/3

1.79+0.08
(1- b)M(Fsoo)] ’ (3.2)

6 x 1014 Msun

10-4Mpc?

where E(z) = \/ Qm(1 +2)3+ Q4 and is equal to the ratio of the Hubble parameter eval-
vated at redshift z to its value now for a flat ACDM Universe. The factor in the exponent
—2/3 arises from the scaling relations between mass, temperature and Comptonisation para-
meter given by equations 1-5 in Kravtsov, Vikhlinin, & Nagai (2006). (1 — b) represents
a bias factor, which is assumed in Planck Collaboration XX (2014) to contain four possible
observational biases of departure from hydrostatic equilibrium, absolute instrument calibra-
tion, temperature inhomogeneities and residual selection bias. Its value is calculated to be
(1-0b) = 0.80f8:8% from numerical simulations as described in Appendix A.4 of Planck Col-
laboration XX (2014). Equation 3.2 uses the fitting parameters from the relation between Yx
(the X-ray ‘analogue’ of the integrated Comptonisation parameter see e.g. Kravtsov, Vikhlinin,
& Nagai 2006, Yx(rs00) = My(rs00)Tx where M, is the cluster gas mass within rsoo and Tx
is the spectroscopic temperature in the range [0.15,0.75]r500) and the X-ray hydrostatic mass,
Muyg(rso0) (Which is equal to (1-b) M (r500)), established for 20 local relaxed clusters by Arnaud

et al. (2010) to give the relation between the X-ray mass proxy My, (rso0) and M (rs00). Finally,
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the fitting parameters for the Y (rso0) — My, (rs00) relation are obtained empirically from a 71-
cluster sample consisting of SZ data from the Planck Early SZ clusters (Planck Collaboration XI
2011), of Planck-detected LoCuSS clusters (Planck Collaboration Int. III. 2013) and from the
XMM-Newton validation programme (Planck Collaboration IX 2011), all with X-ray data taken
from XMM-Newton observations (Willis et al. 2013 and Mehrtens et al. 2012).

The 6500 — M (r509) relation is based on the equation M (r599) = 500 X 4?” pcrit(z)rgoo and is

(-0)Msoo 1" 5[ Da
0 | A | .
3x 1014 MSUD] (@ 1500 Mpe 3-3)

Equations (3.2) and (3.3) can be solved for (1 — b)M (rs00) and equated to give Y (r500) as a

given by
h

~2/3
Bs500 = 6.997 [ﬁ}

function of 95

500 ]5.410.2[ h :|3.60¢0.13 (3 4)

Yirsw) = [6.997 0.7

E(Z)4‘26i0'13D:}4iO'2 l

1019-29£0.54 Mpc3.4¢0.2

where Y (rs5p9) is in sr. Assuming a GNFW pressure profile, Y (r500) can be converted to the

corresponding value of Y (5rsgp), through the relation

(cs500)* . 3=c E)

Y(rso0) _ B(1+(C500)a7 —<, 2=
Y (5r500) B(MJ—C ;3)

1+(5¢500)¢° a ’ a

(3.5)

where B(x,y,z) = fOx ¥~1(1-1)?~1dt is the incomplete beta function. For the GNFW parameter
values used in equation 2.21, equation 3.5 gives a value of 0.55. Similarly, 6599 can be related

to 6, through the relation 6, = 050/ cs00.

3.4.2 Mass estimates

For a given cluster, the resulting ¥ (5r500) function is used to ‘slice’ the posterior, and the value
where the function intersects the posterior ‘ridge’ is taken to be the most reliable estimate of
Y (5rs500), given the external information. The posterior ridge (see Figure 3.1) is defined to be the
value of Y (5rso0) which gives the highest probability density for a given 6,. The error estimates
are obtained by considering where the slicing function intersects with the ridges defined by
the 68% maximum likelihood confidence intervals for Y (5rs0) at each 6. Y (Srsoo) is then
converted to Y (r500) using the the reciprocal of the value given by equation 3.5, and this is used
to derive a value for M (r500) using equation 3.2, but with the (1 — b) term excluded. The bias
term is not included in the M (rsqp) calculation because it has already been accounted for in the

slicing function. Note that this value of M (rsg9) is what is referred to as Mgz in PSZ2.
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Figure 3.1: Example of the posterior slicing methodology for cluster
PSZ2G228.16+75.20. The black solid line represents the ‘ridge’ (i.e. the most prob-
able value of Y (5rsq0) for each 6;) of the posterior. The upper dashed curve represents
the upper boundaries of the 68% maximum likelihood confidence interval on Y (5r5¢9)
for each value of 6,, and the lower dashed curve corresponds to the lower boundaries.
The red dotted curve is the slicing function.

3.5 Obtaining AMI mass estimates

First I describe how I arrived at a final sample of clusters for which the AMI mass estimates are

compared with those derived from Planck data.
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3.5.1 Final cluster sample
3.5.1.1 Well constrained posterior sample

McApam was used on data from the initial sample of 199 clusters. MurTINEsT failed to produce
posterior distributions for two clusters. These clusters were surrounded by high flux, extended
radio-sources. Of the 197 clusters for which posterior distributions were produced, 73 clusters
show good constraints (adjudged by physical inspection) on the sampling parameters M (r2qp),
Seas(r200), Xc and y¢; with zs ranging from 0.089 to 0.83.

I illustrate a ‘well constrained’ posterior distribution (for cluster PSZ2G184.68+28.91) in
the first half of Figure 3.2, plotted using GETDist® (a kernel density estimation algorithm, which
is described in Section 9.5.2). In contrast the second half of Figure 3.2 is an example of a cluster
(PSZ2G121.77+51.75) which shows poor constraints on mass as the posterior distribution is
peaked at the lower boundary of the mass sampling range (5 x 10'* Mg,,) which could not be
classed as a detection within our mass prior range. I also note that in the latter case the mass

posterior largely resembles the prior distribution.

3.5.1.2 Moderate radio-source environment sample

For the 197 cluster sample, AMI data maps were produced using the software package AIPS®
using the automated CLEAN procedure with a limit determined using IMEAN. Source-finding
was carried out at four o on the LA continuum map, as described in Davies et al. (2011) and
Franzen et al. (2011). For each cluster both a non-source-subtracted and a source-subtracted
map was produced. The values used to subtract the sources from the maps were the mean
values of the one-dimensional marginalised posterior distributions of the sources’ position, flux
and spectral index produced by McApam. Maps of the 73 cluster sample were inspected in
detail. It was found that for seven of these clusters, even though the posterior distributions were
well constrained, that the radio-source and primordial CMB contamination could bias the cluster
parameter estimates in an unpredictable way. In these cases it was found that the subtracted maps
contained residual flux close to the cluster centre, from either radio-sources (some of which were
extended), radio-frequency interference, or CMB. PSZ2G125.37-08.67 is an example of one of
these clusters and its non-source-subtracted and source-subtracted maps are shown in Figure 3.3.

I thus arrived at a 66 cluster sample.

2"http ://getdist.readthedocs.io/en/latest/.
bh‘ctp ://aips.nrao.edu/.
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Figure 3.2: Posterior distributions derived from AMI data for the sampling paramet-
ers: M(r200); feas(r200); Xc & Y. The contoured maps show the two-dimensional
posteriors for the different pairs of parameters. The contours represent the 95% and
68% mean confidence intervals, with the green crosses denoting the expected value
of the joint distributions. The four one-dimensional plots are the marginalised pos-
teriors corresponding to the variable given at the bottom of the respective column.
The red curves are the prior distributions on the relevant parameters. Each green line
is the expected value of the distribution. Posterior distributions in (a) show narrow
distributions on the cluster mass, with the domain spanning feasible mass values for a
galaxy cluster (cluster PSZ2G184.68+28.91). In such cases the posteriors are said to
be well constrained. The mass posteriors in (b) show that the data imply unphysical
values for its mass, as the posterior distribution is hitting the lower bound of the prior
(5 x 1013 Mgy,) at almost its peak value (cluster PSZ2G121.77+51.75). The distribu-
tion also resembles the uniform in log-space prior assigned to M (). In such cases
the posteriors are said to be poorly constrained with respect to the mass estimates.

3.5.1.3 Well defined cluster-centre sample

The posteriors of x. and y. give the position of the modelled cluster centre relative to the actual
SA pointing centre used for the observation. For seven of the 66 cluster sample, it was found that
the mean posterior values of x. and y. changed dramatically between different runs of McApam
(on the same cluster data), by up to 70 arcseconds in either direction, leading to differences in
mass estimates of up to 70%. The estimates for these clusters are not reliable, since the model
was creating a completely different cluster between runs, and so these clusters were excluded

leaving a 59 cluster sample. For the remaining clusters, the change in M (rp00) between runs was
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Figure 3.3: (a) Unsubtracted map produced from AMI observation. Contours are
plotted at +(2,3,4,...,10)x the r.m.s. noise level, and dashed contours are negat-
ive. (b) Source subtracted map produced from AMI observation. The O denotes the
McAbam-determined centre of the cluster (posterior mean values for x. and y.). Here
‘+’ signs denote radio-source positions as measured by the LA which were assigned
delta priors on their parameters, whilst ‘X’ denote sources which were assigned priors
as described in Section 2.7.1.

much smaller than the standard deviation of the corresponding posterior distributions. Figure 3.4
shows the subtracted map for PSZ2G183.90+42.99, which we consider to be an example of
a cluster with an ill-defined centre. The map shows three flux decrement peaks close to the
cluster centre. Movement of the centre between these peaks with the current source environment
modelling would lead to a change in the size of the predicted cluster, and consequently different

mass estimates each time.

3.5.1.4 PwsS detected cluster sample

For five of the 59 cluster sample, the data available on the Planck website® did not contain a
detection using the PwS algorithm, and so no mass estimates based on PwS data could be cal-

culated. Hence the final sample size for which I present the mass estimates from both AMI and

‘https://pla.esac.esa.int/pla/catalogues.
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Figure 3.4: Subtracted map of cluster with ill-defined centre. The cluster is clearly
offset from the observation pointing centre (middle of the map), and the lobes to the
bottom and the top left of the cluster cause the centre position to be ambiguous.

Planck data is 54.

It is important to realise that selection biases are introduced in reducing the sample size
from 199 to 54. In particular, selecting only the clusters which showed good AMI posterior
constraints means that clusters corresponding to a signal too faint for AMI to detect, clusters

with large enough angular size for AMI’s shortest baselines not to be able to measure the signal
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from the outskirts of the cluster ("resolved clusters"), and clusters where the radio-source and
CMB contamination dwarfs the signal of the cluster, are all likely to have been excluded from
the sample to some extent. In addition, removing the seven clusters with an ill defined centre

likely removes some unrelaxed clusters from the sample.

3.6 AMI and PSZ2 mass estimates

The AMI and PSZ2 parameter estimates for the 54 clusters are given in Table A.1 in Appendix A.
The clusters are listed in ascending order of z. Note that whether a redshift is photometric or
spectroscopic is stated in the fifth column. All AMI values are the mean values of the corres-
ponding parameter posterior distributions, with the error taken as the standard deviation. The
estimates of the sampling parameters are included for comparison with each other, and with
the sampling prior ranges and associated parameters given in Table 3.2. The AMI values for
M (rs500) are given for comparison with the corresponding PSZ2 estimates. Two values for the
PSZ2 mass estimates are given, Mpj, marg(7500) and Mpi, siice (7500)- Mp1, marg (F500) corresponds to
the mass given by the Y (rso0) — M (rso0) relation when the marginalised integrated Compton-
isation parameter is used as described in Section 3.4. The uncertainties associated with these
Y values are taken as the standard deviations of the marginalised posteriors. Mp, slice (*500) 1S
detailed in Section 3.4.2; its associated errors are calculated from the Y (5r509) values where the
slicing function intersects with the two ridges formed by the 68% maximum likelihood confid-
ence interval values of the Y (5rs509) probability densities over the posterior domain of 6.
Figure 3.5 shows M (r209) as a function of z. Excluding the clusters at z = 0.089, 0.4 and 0.426,
there is a steepening in mass between 0.1 < z < 0.5 before it flattens off at higher z. This result
is consistent with the PSZ2 mass estimates presented in Planck Collaboration XXVII (2016).

I now focus on the comparison between AMI and Planck mass estimates. Note that Planck
Collaboration XXVII (2016) do not provide any means for estimating M (rqp) from their data,
as rpqp is the distance related to the scale radius (200 = c200 X 7s) for the NFW dark matter profile
given by equation 2.19, which they do not incorporate into their modelling process. Figure 3.6
gives the AMI and two Planck estimates for M (rs5p9) vs the row number, in Table A.1. I have
not used z as the independent variable in this plot for clarity. The row number is monotonically
related to z, as Table A.1 is sorted by ascending z. From Figure 3.6 it is clear that AMI under-
estimates the mass relative to both PSZ2 values. In fact M (r500) is lower than Mpy_ gjice (7'500) in
37 out of 54 cases. M(rsoo) is lower than Mpj marg(7500) in 45 out of 54 cases. 31 of the AMI

masses are within one combined standard deviation of Mp_ glice (7'500), While 46 are within two.
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Figure 3.5: Plot of M (ryo0) derived from AMI data using physical modelling vs
redshift for the sample of 54 clusters.

Four clusters have discrepancies larger than three combined standard deviations. Three of these
clusters are at relatively low redshift (< 0.25), whilst one is at z = 0.43.

It is also noteworthy that Mpy, mare (7500) 18 larger than Mpy, gjice(7500) in 47 out of 54 cases. This
implies that the additional information obtained from X-ray data incorporated in the slicing func-
tion consistently predicts a lower mass cluster than from the Planck SZ data alone.

Figure 3.7 shows the ratios of the mass estimates between the three different methods. The most
obvious thing to note is that the ratio of PSZ2 masses is consistently greater than one, which
again emphasises the fact that the marginalisation method attributes a much higher mass to the
clusters than the slicing method. Furthermore, the ratio of AMI mass to the marginalised mass
is small at medium redshift, which suggests that the marginalised mass is systematically high in

this range. This graph also emphasises that the AMI mass and the slicing methodology mass are



40 Chapter 3. Physical modelling of clusters detected by Planck

the most consistent with one another.

3.7 AMI simulations with PSZ2 mass inputs

To investigate further the discrepancies between the mass estimates, it was decided to create
simulated data based on the PSZ2 mass estimates obtained from the slicing methodology, which
were then ‘observed’” by AMI. The data from these simulated observations were analysed the
same way as the real data. The simulations were carried out using the in-house AMI simulation
package ProriLE, which has been used in various forms in e.g. Grainge et al. (2002), Davies et
al. (2011), Olamaie et al. (2012) and Olamaie, Hobson, & Grainge (2013). The input paramet-
ers for the simulation— which uses the physical model to create the cluster— are the sampling
parameters of the model. Since Planck Collaboration XXVII (2016) does not give a method
for calculating M (ryo0) it was calculated as follows. First 5o was calculated by solving equa-
tion 2.22 with M (r4) = Msz and r,4 = rsg. 290 can be determined from r5g, but we note that
the function mapping from rygg to rsgg is non-invertible, thus oo had to be calculated by solving
equation 2.25 iteratively. M (r299) can then be calculated by evaluating equation 2.22 at rqg.
As well as the values of M (ryqp) derived from PSZ2 mass estimates, values for the other inputs
were also required. T used fgas(r200) = 0.13, 2 = Zpjanck, and x¢ = y. = 0 arcsec.

The objective of these simulations was to see whether we could recover the mass input into the
simulation to create a cluster using the physical model, ‘observed’ by AMI and then analysed
using the same model. I tried this for the four sets of simulations described below.

For each simulation different noise / canonical radio-source environment realisations (where rel-
evant) were used each time. Due to the large sample size this should not affect any systematic
trends seen in the results, and it avoids having to pick a particular realisation to be used in all the

simulations.

3.7.1 Simulations of clusters plus instrumental noise

For each cluster, M (rg9) was calculated and Gaussian instrumental noise (Section 2.5.2.1) was
added to the sky. The RMS of the noise added was 0.7 Jy per channel per baseline per second,
a value typical of an AMI cluster observation. Figure 3.8 shows the map produced from the
simulated data of cluster PSZ2G044.20+48.66 plus this instrumental noise. The mass estimate
derived from the Bayesian analysis of this cluster is 0.56 standard deviations above the input

value.
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Figure 3.6: Plot of M(rs500) vs row number of Table A.1 for three different cases:
the value derived from AMI data using the physical model, Mami(r500); the value
derived from Planck data using the marginalised value for Y (57500), Mpi, marg(7500)
and the value derived from Planck data using the slicing function value for Y (5r5¢),
Mpy_ glice (1500). The row number is monotonically related to z, as Table A.1 is sorted by
ascending z. The points with circular markers correspond to clusters whose redshifts
were measured photometrically (as listed in Table A.1).

Figure 3.9 shows the difference between the input masses and the ones recovered from run-
ning the simulated observations through McAbawm, visualised using a histogram. All but three
of the clusters lie within one standard deviation of the input mass, and even these clusters
(PSZ2G154.13+40.19, PSZ2G207.88+81.31 and PSZ2G213.39+80.59) give an output mass
1.01, 1.26 and 1.08 standard deviations below the input mass.
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Figure 3.7: Plot of M(rsgp) ratios vs row number of Table A.l for
three different cases:  Mawmi(7500)/Mpl, marg (*500); Mami(rs00)/Mpy, slice(¥500) and
Mp1, marg (Y500) /Mp, stice (7500). The points with square markers correspond to clusters
whose redshifts were measured spectroscopically, and the circular markers correspond
to photometric redshifts (as listed in Table A.1).

3.7.2 Simulations further adding confusion noise and primordial CMB

Confusion noise is defined to be the flux from radio-sources below a certain limit (see Sec-
tion 2.5.2.3, here Scons = 0.3 mly). In this Section all radio-source realisations only contribute
to the confusion noise. However in Sections 3.7.3 and 3.7.4 sources above Sonr are included.
The confusion noise contributions (see e.g. Section 5.3 of FF09) were sampled from the probab-
ility density function corresponding to the 10C source counts given in Davies et al. (2011), and
placed at positions chosen at random. Similarly, the primordial CMB (Section 2.5.2.2) realisa-
tions were sampled from an empirical distribution (Hinshaw et al. 2013), and randomly added

to the maps.
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Figure 3.8: Unsubtracted map produced from simulated AMI data of cluster
PSZ2G044.20+48.66, including instrumental noise.

Figure 3.10 shows the map produced from the simulated data of cluster PSZ2G044.20+48.66,
including the three noise contributions. The mass estimate derived from the Bayesian analysis
of this cluster is 0.22 standard deviations above the input value. The differences between out-
put and input masses are shown in Figure 3.11. This time eight out of the 54 clusters cannot
recover the input mass to within one standard deviation. In all eight of these cases, the mass is

underestimated with respect to the input value. Five of the outlier values correspond to clusters
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Figure 3.9: Normalised histogram of the differences between the input and output
masses of the AMI simulations including the cluster and instrumental noise only, in
units of standard deviations of the output mass.

at low redshift (z < 0.2). This suggests that the confusion and CMB noise may be causing AMI
to systematically underestimate the cluster masses, and may explain why AMI mass estimates

were consistently lower than those obtained by Planck for the real data.

3.7.3 Simulations further adding a canonical radio-source environment

The third set of simulations included detectable radio-sources (Section 2.5.1, which formed a
canonical radio-source environment. They were created in the same way as with the confusion
noise described above, but with higher flux limits so that in reality, the LA would have been able
to detect them. The upper flux limit was set to 25 mJy.

Figure 3.12 shows the map produced from the simulated data of cluster PSZ2G044.20+48.66,
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Figure 3.10: Unsubtracted map produced from simulated AMI data of cluster
PSZ2G044.20+48.66, including instrumental, confusion and CMB noise.

including a canonical source environment and background noise. The mass estimate derived
from the Bayesian analysis of this cluster is 0.51 standard deviations below the input value.
Figure 3.13 shows that the canonical radio-source environment have little effect on the mass
estimation relative to Section 3.7.2, as there are still 8 clusters which give mass estimates greater
than one standard deviation away from the input value. Note that in this case, the outliers

occurred across the entire range of redshifts, which suggests that in Section 3.7.2 the low redshift
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Figure 3.11: Normalised histogram of the differences between the input and output
masses of the AMI simulations, in units of standard deviations of the output mass.
This is the case for instrumental, confusion and CMB noise contributions.

trend was just a coincidence.

3.7.4 Simulations with LA observed radio-source environment plus

instrumental, confusion and CMB noise

The final set of simulations included the radio-source environment measured by the LA during
the real observation for each cluster. These are only estimates of the actual source environ-
ments, and are only as reliable as the LA’s ability to measure them. Figure 3.14 shows the maps
produced from the real & simulated data of cluster PSZ2G044.20+48.66. The mass estimate de-
rived from the Bayesian analysis of the simulated dataset is just 0.08 standard deviations above

the input value.
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Figure 3.12: Unsubtracted map produced from simulated AMI data of cluster
PSZ2G044.20+48.66, including a canonical radio-source environment as well as in-
strumental, confusion and CMB noise.

Figure 3.15 shows that including the LA observed radio-source environment has a large effect
on the results, as this time there are 16 clusters which are more than one standard deviation away
from the input mass. Furthermore, three of these overestimated the mass relative to the input, the
first time we have seen this occur in any of the simulations. A possible source of bias could be
due to for example, the empirical prior on the spectral index incorrectly modelling some radio-

sources. Another source of bias could be the position of a source relative to the cluster, and the
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Figure 3.13: Normalised histogram of the differences between the input and output
masses of the AMI simulations, in units of standard deviations of the output mass.
This is the case for a canonical radio-source environment as well instrumental, confu-
sion and CMB noise contributions.

magnitude of the source flux. For example, if a high flux radio-source is close to the centre of
the galaxy cluster, then even a slight discrepancy between the real and the modelled values for
the source could have a large effect on the cluster parameter estimates.

I now compare these results to the simulations in YP15 (which concluded that the underes-
timation of the simulation input values could be due to deviation from the ‘universal’ profile, see
Figure 23a in the paper). The results of the large cluster simulations (total integrated Compton-
isation parameter = 7 x 10° arcmin® and 0p = 7.4 arcmin) in YP15 seem biased low at a more
significant level than those in Figure 3.15, as in the former case less than half of the clusters
recover the true value within two standard deviations. For the smaller clusters however, YP15

found a slight upward bias in the simulation results, but this is probably smaller in magnitude
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Figure 3.14: (a) Unsubtracted map produced from real AMI data of cluster
PSZ2G044.20+48.66. (b) Unsubtracted map produced from simulated AMI data of
PSZ2G044.20+48.66, including the real source environment (as measured by the LA)
as well as instrumental, confusion and CMB noise. The peak flux in the simulation
has been underestimated relative to the real observation by ~ 25%. This could be due
to the source sitting on a negative decrement caused by background noise, or it could
be from the cluster decrement.

than the bias found in this Section.

3.7.5 Statistics of results of real and simulated data

Looking at the histograms produced in Sections 3.7.1, 3.7.2, 3.7.3, and 3.7.4, in the last three
cases it is apparent that there is a negative skew in the data, i.e. the output masses are negatively
biased relative to the input masses. The skews calculated from the samples associated with the
four histograms are —0.17, —1.30, —0.91, and —0.96 respectively in units of standard deviations
of the output mass. This suggests that the inclusion of confusion and CMB noise bias the cluster
mass. I also calculate the median values of these histograms, and compare them with the medians
corresponding to the real AMI and PSZ2 masses given in Figure 3.6. The median values for the
four histograms are —0.24, 0.09, —0.27 and —0.34 respectively in units of standard deviations of

the output mass. For the real data the median values for (Mawmi(7500) — Mp1, marg (7500)) /0 am1 and
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Figure 3.15: Normalised histogram of the differences between the input and output
masses of the AMI simulations, in units of standard deviations of the output mass.
This is the case for the real radio-source environment as measured by the LA, with
instrumental, confusion and CMB noise contributions.

(Mani(rs00) — Mpy, stice (F500)) /0 amr are —1.57 and —0.56. It makes sense to compare the second
of these real data values with those obtained from the simulations, as it was Mpy, slice (7500) Which
was used to derive the input masses. The fact that the median from the real data is greater in
magnitude than the values from the simulations implies in general, our simulations can recover
their input values with better agreement than that obtained between real AMI estimates and those
obtained from Planck data using the slicing function methodology. This seems plausible as you
would expect that inferring results from data which was created using the same model used in
the inference would be more accurate than results from data taken from two different telescopes,
which use different models in their inference. Furthermore the simulation medians tell us that

AMI is capable of inferring the masses derived with the slicing methodology, if the cluster is
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created using the model used in the inference and assuming there are no large discrepancies

between the real and simulated AMI observations.

3.8 Conclusions

We have made observations of galaxy clusters detected by the Planck space telescope, with the
Arcminute Microkelvin Imager (AMI) radio interferometer system in order to compare mass
estimates obtained from their data. I analysed this data using the physical model described in
Section 2.4, following largely the data analysis method outlined in Feroz et al. (2009). This
allowed us to derive physical parameter estimates for each cluster, in particular the total mass
out to a given radius. I have also calculated two mass estimates for each cluster from Planck’s
PowellSnakes detection algorithm (Carvalho et al. 2012) data following Planck Collaboration
XXVII (2016) (PSZ2), and found the following.

e For the AMI mass estimates of Planck selected clusters there is generally a steeping in the
mass of galaxy clusters as a function of redshift, which flattens out at around z ~ 0.5.

o AMI M (rs5p9) estimates are within one combined standard deviation of the PSZ2 slicing
function mass estimates for 31 out of the final sample of 54 clusters. However, the AMI
masses are lower than both PSZ?2 estimates for 37 out of the 54 cluster sample.

e The PSZ2 mass estimates derived from the marginalised Y — 6 posteriors are larger than
those which use the slicing function in 47 out of 54 cases. This suggests that the X-ray
data which form the basis of the slicing procedure predict lower cluster masses relative to
what the SZ Planck data alone find.

To investigate further the possible biasing of AMI mass estimates, I created simulations
of AMI data with input mass values from the PSZ2 slicing methodology. I considered four
different cases for the simulations: 1) galaxy cluster plus instrumental noise; 2) galaxy cluster
plus instrumental plus confusion & CMB noise; 3) galaxy cluster plus instrumental, confusion
& CMB noise, plus a randomly positioned radio-source environment; 4) galaxy cluster plus
instrumental, confusion & CMB noise, plus the radio-source environment recognised by the LA
in the real observations. These simulated datasets were analysed in the same way as the real
datasets, and I found the following.

e For case 1), the physical model recovered the input mass to within one standard deviation

for 51 of the 54 clusters. The three which did not give an underestimate relative to the

masses input to the simulation.
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For case 2), eight of the simulations gave results which were more than one standard
deviation lower than the input values. This highlights the effect of incorporating the noise
sources into the error covariance matrix rather than trying to model the associated signals
explicitly.

Case 3) shows similar results to case 2), which implies that ‘ideal’ radio-sources placed
randomly in the sky have little effect on cluster mass estimates.

However in case 4) with real source environments, 16 simulations did not recover the input
mass to within one standard deviation. This suggests that real radio-source environments,
which can include sources with high flux values, and often sources which are located
very close to the cluster centre, introduce biases in the cluster mass estimates. In real
observations there are also additional issues (the sources are not ‘ideal’), such as sources
being extended and emission not being circularly symmetric on the sky.

Cases 2), 3) and 4) give distributions of output — input mass which are negatively skewed.
Thus AMI mass estimates are expected to be systematically lower than the PSZ2 slicing
methodology values.

The median values of the distributions of output — input mass of the simulations in each
of the four cases are smaller in magnitude than those obtained from comparing AMI and
PSZ2 estimates from real data. This is expected as I used the same model to simulate and
analyse the clusters in all four cases.

Compared to the results of simulations of large clusters carried out in Perrott et al. (2015),
which test the robustness of the ‘universal’ pressure profile, the case 4) bias appears rel-
atively small in magnitude, and in the same direction (downward). When comparing the
case 4) results with the small cluster simulations of Perrott et al. (2015), the latter shows
a relatively small bias in the opposite direction.

The simulated and real data medians also indicate that while the simulations have shown
that AMI mass estimates are systematically low, this does not fully accommodate for
the discrepancies in the results obtained from the real data. This suggests that there is a
systematic difference between the AMI & Planck data and / or the cluster models used to
determine the mass estimates (which generally leads to PSZ2 estimates being higher than
those obtained from AMI data).



CHAPTER

COMPARISON OF PHYSICAL AND OBSERVATIONAL GALAXY

CLUSTER MODELLING USING AMI DATA

This Chapter provides a follow-up to Chapter 3 in which I performed Bayesian inference on
data obtained with the Arcminute Microkelvin Imager (AMI) array to derive estimates of phys-
ical properties of clusters that have been detected by Planck. I now focus on the observational
properties of clusters obtained from telescopes such as AMI and Planck which measure the SZ
effect: the angular radius 6, and the integrated Comptonisation parameter Y. For the sample con-
sidered in the previous Chapter, we compare observational parameters derived from the physical
model with those obtained from two observational models similar to the one described in YP15
and Olamaie et al. (2012), using data from AMI. I also compare the different models using
Bayesian analysis as described in Section 2.6.2, as well as with another technique presented
here (see Section 4.3.2). The work discussed in this Chapter has been submitted to MNRAS and

is under review (Javid et al. 2018).

4.1 Physical model estimates of observational parameters

Y can be calculated using the physical model (PM from here on in this chapter) presented in
Section 2.4, by first calculating P.(r) and then calculating Y (r) using equation 2.18. 6 and r

are related through 8 = r/D4. The prior distributions used are the same as the ones used in the

53
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previous Chapter.

4.2 Observational models

Here I consider two observational models, observational model I (OM I) and observational
model II (OM II). They are based on the model used in YP15. They use the same GNFW
profile (given by equation 2.21) to model the gas content, but with the slope parameters stated in
Section 2.4; they take into account only the cluster gas — they do not explicitly model the dark
matter component. They work in angular rather than physical sizes. Like the PM, they also use
equation 2.18 to calculate Y. However, the calculation steps are different. We start be evaluating
equation 2.18 in the limit that r — oo. It can be shown that for the GNFW pressure profile this

gives (see Appendix B.1 for a derivation of this result)

r 4rPyDa@3or I (<) I (23
lim Yipn(r) = Yo = lim —— f Po(rYdnr?dr’ = — 20 P (5) (%) (4.1)
r—oo r—co mec2 0 }’nec2 all (b;c)
a
where I'(x) is the Gamma function and 6, = r,/Da. Note that for finite r (and thus 6)
4nPsiDpGRoT [0 (97 \*C g\ 4\ c~D)/a
Yipn(60) = —f — 1+[— de’. 4.2)
mec? o \6p 0

Both equations have a common (unknown) factor Da Pe;. Hence for given (i.e. input) values of
Yior and 6,, equation 4.1 can be solved for D Pe; and then equation 4.2 can be solved for finite 6
numerically. Furthermore the OMs assume that the cluster is spherically symmetric and that the
cluster gas can be described by the equation of state of an ideal gas. The OMs have four cluster

input parameters: Yo, 6p , xc and y.. They differ only in the prior distributions they use.

4.2.1 Observational model I prior

The priors used on Y, and 6, are the same as the ‘new’ priors used in YP15. These were de-
rived from the Planck completeness simulations (Planck Collaboration XXIX 2014) as follows.
The simulations were produced by drawing a cluster population from the Tinker mass function
(Tinker et al. 2008) and using the scaling relations in Planck Collaboration XI (2011) to obtain
observable quantities. This cluster population was injected into the real Planck data and a sim-
ulated union catalogue was created by running the Planck detection pipelines on this simulated
dataset. An elliptical Gaussian function was then fitted to the posterior of Yo and 6, in log space.

Hence the prior has the Planck selection function implicitly included in it.
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Parameter Prior distribution
Xc N (0”,60")
Ve N (0",607)

log(Yior), log(6p) N((-2.7,0.62),(0.29,0.12),40.2°)

Table 4.1: Observational model I input parameter prior distributions. Note that the
Gaussian elliptical function on log(¥o;)—log(6,) is parameterised in terms of the mean
in both dimensions, the respective standard deviations and the offset of the principle
axes from the vertical and horizontal axes measured clockwise.

Parameter Prior distribution

Xc N (0”,60)

Ye N(07,60")

gp ([/{[log(ep, min(Z)),log(ep, max (2))]
Yoot (L{[log(xot, min(Z))’log(Ytot, max(2))]

Table 4.2: Observational model II input parameter prior distributions.

For consistency, the same cluster centre priors were used in both observational models as in the
PM. The priors for OM I are summarised in Table 4.1.

4.2.2 Observational model II

The priors on Y, and 6, in OM Il incorporate the spectroscopic or photometric redshift of each
cluster. From the z and M (r200) priors of the PM and for fgas(r200) = 0.13, upper and lower
bounds on Y and 6, are calculated using the PM. Note that ¥, and 6, are assumed to be a-
priori uncorrelated, unlike in OM 1. For the lowest redshift cluster (z = 0.0894), these limits
are 0y min = 4.24 arcmin, 6, max = 19.04 arcmin, Yo min = 1.06 X 10~* arcmin® and Yot max =
0.19 arcmin?; for the highest redshift (z = 0.83) cluster these limits are 6, min = 0.67 arcmin,
Op, max = 3.01 arcmin, Yo min = 5.7 X 107 arcmin® and Yiot, max = 0.01 arcmin?. It clear that
z has a large effect on the PM calculations, as it is used to calculate the angular scale from r
through 68 = r/Da(z) where Da(z) is the angular diameter distance of the cluster at redshift
z, and to convert the units of Y. It is also used to calculate cyo9 which affects the scale of the
self-similar dark matter density profile, and the normalisation constant pg in equation 2.19 is
proportional to pcit(z). The priors for OM II are summarised in Table 4.2. Note that in using
the PM calculations to calculate the prior limits, we have made the assumptions underlying the
PM that OM I is not subject to (i.e. hydrostatic equilibrium up to radius ry09 and fg,s is much

less than unity up to the same radius).
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4.3 AMI model comparisons

I now use AMI data to compare the PM, OM I and OM II, and begin by comparing their observa-
tional parameter estimates. Secondly I introduce a metric which measures the ‘distance’ between
probability distributions. In this context the distance is measured between the (Y (rs00), 8500)
posterior distributions of the three models. Finally the models are compared using the evidence
ratios introduced in Section 2.6.2. The results obtained from these analyses are given in Ap-
pendix B, which lists the values obtained for the 54 cluster sample in ascending order of z.

I emphasise the notation used for Y. For consistency I parameterise Y by r for all three mod-
els (Y = Y(r)). For the PM, Y (r) has units [lengthz]; to convert this to the more conventional
[anglez] we divide by DE‘: Y(r) - Y(r) /D124 as mentioned in Section 2.2. The Y value given
by an OM is naturally in units of [angle?]; when I refer to Y (r) in the context of the OMs I

equivalently mean Y (8).

4.3.1 Physical and observational models Y values comparison

Figure 4.1 shows the posterior mean values for Y (rs599) for the three models used on the same
AMI datasets. I first note that the errors associated with the OM estimates are generally lar-
ger than those with the PM. Secondly it appears that the OM 1 Y are less strongly correlated
with z than those from the PM and OM II. This may be because OM I contains no explicit z-
information, and in fact its only reliance on z is from the simulated and empirical datasets used
to fit its prior distribution, but the same prior is used for all clusters, and so the dependence on
redshift is very weak.

I now compare the results from the three models pairwise. Note that when we refer to the disper-
sion between values in units of standard deviations, we are referring to the combined standard
deviation of the two Y values. When comparing PM and OM I values of Y, just 15 clusters are
within one standard deviation, 27 within two and 18 are more than three standard deviations
away from each other. The same comparison between PM and OM II gives corresponding val-
ues of 23, 40 and 5. This implies that the dispersion between OM II and PM is much smaller
(especially in the extreme cases), and shows the importance in the choice of priors. Table 4.3
gives a summary of the dispersion of the PM with respect to the OMs. Figure 4.2 shows the
fractional difference between the Y values for the three models, and shows that the PM estimates
are generally much higher than both OM values at low z. However, in general the PM yields

lower Y estimates compared to the OMs (PM underestimates Y relative to OM I and OM II 35
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Figure 4.1: Plot of Y (r500) obtained from AMI data using the physical and observa-
tional models vs row number of Table B.1. The points with circular markers corres-
pond to clusters whose redshifts were measured photometrically as opposed to spec-
troscopically. For clarity purposes the first row is not plotted due to its relatively large
value (Y (rsp0) ~ 10 arcmin?).

Model comparison (Yp, =) [Yom — Yal/opmem <1 YoM — Y l/opmam; <2 1Yom = Y, l/opmas, > 3

Yomr 15 27 18
Yomu 23 40 5

Table 4.3: Difference between physical model mean values for Y (r509) & observa-
tional model mean values, measured in units of the physical model Y (r5p9) standard
deviation. The numbers in the columns correspond to the number of clusters out of
the sample of 54 which satisfy the criterion specified in the respective header.

and 36 times respectively).

Looking at the dispersion between OM I and OM 11, 36 clusters are within one standard
deviation, four within two and just four are more than three standard deviations away from each
other. This implies that OM II seems to be in reasonable agreement with the two other models

(usually in between the values from the other models).
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Figure 4.2: Plot of Y (rs99) ratio vs row number of Table B.1 for three different

cases:  Ypm(rs500)/Yom 1(rs00); Yem(rs00)/Yom m(rso0) and Yom 1(rs00)/ Yom 1(rs00)-
The points with square markers correspond to clusters whose redshifts were measured
spectroscopically, and the circular markers photometrically (as listed in Table B.1).

4.3.2 Earth Mover’s distance

The Earth Mover’s distance (EMD), first introduced in Rubner, Tomasi, & Guibas (1998) is
a "distance" function defined between two distributions. In the case where these distributions
integrate over all space to the same value (e.g. they are probability distributions), the EMD is
given in terms of the first Wasserstein distance (Levina & Bickel 2001). A common analogy
used to describe the EMD is the following: if the probability distributions are interpreted as two
different ways of piling up a certain amount of earth, and the amount of earth at position x;
and x; belonging to each probability distribution at those points are Py(x;) and P>(x;), then
the EMD is the minimum cost of moving one pile into the other, where the cost of moving each
"spadeful” is taken to be the mass of each spadeful (f;;) X the distance by which it is moved

(lxi—xj!). For discrete two-dimensional probability distributions P & P,, with two-dimensional
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domains x; & y;, then the EMD between these probability distributions dgmp (P1, P2) is defined

to be the minimum value of

m n
W(PLP) = Y > fijlxi = yjl (4.3)

i=1 j=1
with respect to distance and f;;. Here m and n are the number of values in the domains of P; and
P, respectively and f;; are the ‘flow’ of probability density from P;(x;) to P,(y;). Different
implementations of the algorithm use different distance measures, but we use the Euclidean

distance in equation 4.3. The f;; are subject to the following constraints

fii201<i<ml<j<n (4.4)
D fip=Pixi), L <i<m; 4.5)
=1
Zfij =Py, 1 <j<m (4.6)
i=1

N f= D A=Y Py =1, @7

For a more detailed account of the EMD see Levina & Bickel (2001).

4.3.3 Application of EMD

The EMD metric is applied to the different pairs of models using Gary Doran’s wrapper® for
Yossi Rubner’s algorithm (Rubner, Tomasi, & Guibas 1998). Before running the algorithm the
(Y (rs00), Os00) posteriors are normalised so that the metric is not skewed towards 65 (the use of
Euclidean distances in the EMD algorithm, are obviously misrepresentative if the dimensions are
not normalised). Each dimension is normalised to the range [0, 1] by performing the following

transformations

0500 — 0500, min Y (r500) — Ymin(r500)
;Y (rs00) — .
0500, max — 9500, min Yinax (500) — ¥min (7'500)

0500 — (4.8)

The values for 6500, min, 500, max> Ymin(*500) and ¥max(rs00) are deduced by considering all of
the values of Y (rso0) and 6, from the posteriors obtained from the three models at once, to

ensure that all posterior values are normalised by the same factor. The larger the value of the

https://github.com/garydoranjr/pyemd.
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Statistic demp (Ppm, Pom1)  demp(Pem, Pomi)  demp(Pomi,Pomn)  union
mean 0.093 0.067 0.057 0.072
standard deviation 0.057 0.050 0.077 0.064
median 0.076 0.051 0.027 0.051
min 0.020 0.013 0.006 0.006
max 0.225 0.297 0.514 0.514

Table 4.4: Summary of EMD values calculated between the Y (r509) — 0500 posterior
distributions from all three model pairs, and their union.

EMD, the ‘further away’ the distributions are from each other. The EMD was calculated for
each cluster with each pair of models (giving 3 x 54 = 162 distances in total). The full set
of EMD values calculated can be found in Table B.2 in Appendix B. Table 4.4 provides a sum-
mary of demp (Pem, Pom1), demp (Pomt, Pom), demp (Pem, Pomin), and the union of the three.
Concerning both mean and median, the posteriors are most discrepant between the PM and OM
I, followed by PM and OM II. However it is interesting to note that the two largest EMD val-
ues come from dgmp (Pomir, Pomi) and demp (Pem, Pomir) cases, with values 0.514 and 0.297
respectively. Furthermore these are from the same cluster, which is at the lowest z (= 0.0894).
This suggests that incorporating z information into an observational model for very low redshift
clusters has a significant effect. Ignoring the lowest redshift cluster (or by looking at the median
value, which is skewed less by outliers), it is clear that of the three models, OM I and OM II
posteriors are most in agreement with each other. Figure 4.3 shows the Y (rs509), 6500 posterior
distributions created using GETDist (with the 95% and 68% confidence intervals plotted), for the
highest and lowest EMD values obtained from the 162 values calculated. Both of these come
from OM II — OM I comparisons.

Figure 4.4 shows dgmp(Ppm,Pomi) vs z from which it is apparent that there is a negative

correlation between dgyp and z.

4.3.4 Physical and observational models comparison

As described in Section 2.6.2, one can perform a model comparison, by comparing the Bayesian
evidence values calculated when the models were applied to the same (AMI) datasets. We can
also define the detection ratio of a model as the ratio of the evidences of the ‘data’ and ‘null-
data’ runs. The first of these corresponds to modelling the cluster, background and detectable
radio-sources. The null-data run models everything but the cluster. The ratio of these evidences

therefore gives a measure of the significance that the cluster has in modelling the data. Note that
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Figure 4.3: (a) Highest dgmp value Y(rsgo) — 6s00 posteriors for cluster
PSZ2G044.20+48.66 at z = 0.0894. (b) Lowest dpmp value Y (rso0) — 0500 pos-
teriors for cluster PSZ2G132.47-17.27 at z = 0.341. For both triangle plots, the top
graph shows the marginalised 050 posteriors for OM II and OM I. The bottom right
graph shows the marginalised Y (r500) posteriors. The bottom left graph shows the
two-dimensional Y (rsgg) — 500 posteriors from which the EMD is calculated. The
contours represent the 95% and 68% confidence intervals. Note that the parameters in
the plots are not normalised, but the ones in the distance calculations are normalised
by transforming the parameters as discussed in the text. For all of the plots, the green
crosses / lines are the mean values of the OM 1 posteriors (the smaller values in (a))
and the red crosses / lines are the mean values of the OM II posteriors (the larger val-
ues in (a)). For Figure (b), the mean values for Y (rsgg) are so close together that the
lines cannot be distinguished.

the null-data run is the same for all three models considered here, as they only differ in the way
they model the galaxy cluster itself. Table B.2 in Appendix B gives the log of a detection ratio,
In(Z;/ Znun) for each of the three models, and the ratios between the different pairs of models,

In(Z;/Z;) where Z; and Z; are one of Zpm, Zomi or Zowmi, for each cluster.
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Figure 4.4: Earth Mover’s distance calculated between Y (r509) — 0500 posteriors for
PM and OM II, versus z for the 54 clusters. The crosses indicate the point— they are
not error bars.

4.3.4.1 Physical model and observational model I

The data favour OM I over the PM for 50 of the 54 clusters. Though in 36 of the 50 cases
log(Zpm/Zomi) is between minus one and zero, which according to the Jeffreys scale means
"more data are needed to come to a meaningful conclusion". (see Table 2.1). A further 12
of these had log(Zpm/Zomr) values between —2.5 and —1 which can be interpreted as "weak
preference” in favour of OM I, whilst no clusters had a value of log(Zpm/Zowmr) less than minus
five ("strong preference" in favour of OM I). The largest absolute value for the ratio was actually
in favour of the PM with In(Zpm/Zom1) = 4.73 £0.23 (for the lowest z cluster) which suggests
"moderate preference" towards the PM. There is no correlation between log(Zpm/Zomr) and z.
Figure 4.5 shows the prior space for the observational parameters corresponding to the PM with

the lowest and highest z values in the sample.
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Figure 4.5: (a) Lowest z (= 0.0894) prior parameter space for Y (rs9) — 6500 using the
PM. (b) Highest z (= 0.83) prior parameter space for Y (rso9) — 6509 for the PM and
OM II. Note the scales on the axes are different for each plot, and the green vertical
lines represent the mean values.

4.3.4.2 Observational models I & I

Similarly, OM I is favoured over OM II for 53 clusters, but with 14 cases having 0 < log(Zomi/Zomi) <
1. Again the highest absolute value came from the lowest redshift cluster, highlighting the im-
portance of z information at such a low z value. Since these models have the same input para-
meters, it is easier to compare their sampling parameter spaces. Figure 4.6 shows the prior range
of (Y (rs500), Os00) for OM 1. Around 68% of the prior mass (i.e. the inner contour in the Figure)
is bounded roughly by Y (rs00) = 2 X 103 arcmin? and 6500 = 10 arcmin. The 95% contour
gives upper bounds of Y (rsgp) = 4 X 1073 arcmin® and 6509 ~ 15 arcmin. In comparison the
OM II prior ranges for the lowest redshift cluster are 6599 = [4.9, 19.0] arcmin and Y (rsqg) =
[0.006, 1.0] x 107! arcmin?, and for the highest redshift cluster are 8599 = [0.8, 3.5] arcmin,
Y (rs00) = [0.003, 5.0] x 10~3 arcmin?. The ratio of the upper and lower limits for 6 and Y are
approximately 4.5 and 1.8 x 10 across all clusters. This suggests that the ratio of the bounds
of the parameter space for each cluster does not change for the OM II, but that the sampling
space is shifted depending on z. Note that even though the sampling parameters for the obser-

vational models are Y and 6, these are related to Y (r509) and 6509 by constant factors, and so
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Figure 4.6: Two-dimensional prior probability distribution of Y (r500) and 6sgg for
OM 1, which is based on Planck data as detailed in Section 4.2.1.

comparisons made on both are equivalent.

4.3.4.3 Physical model and observational model II

Comparison of PM and OM II, the models which incorporate redshift information into their pri-
ors leads to interesting results. For 43 clusters, the PM is preferred over OM II. However for all
of these clusters log(Zpm/Zomm) is less than one, meaning that none of them give "conclus-
ive" model preference. There are only three clusters which give "weak evidence" in favour of
a model (OM II). These are the clusters at redshift z = 0.144, 0.341, 0.5131 with ratio values
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—1.88, —1.06, —1.16 respectively. The fact that data from 51 clusters do not provide any "con-
clusive" preference between PM and OM II, suggests that these models are equally well suited

for the current data, even though their parameter estimates are often not in such agreement.

4.4 Conclusions

For the cluster sample analysed in the previous Chapter, I compare the parameter estimates
obtained from different physical and observational models applied to AMI data using Bayesian
analysis. The physical model (PM) used is as described in Section 2.4, and the observational
models (OM I and OM II) are based on the one described in Perrott et al. (2015). I have focused
on comparisons of Y (rsgp) and found the following.

e The PM generally yields lower estimates of Y relative to the observational models, apart
from at low z where the reverse is true.

e For two thirds of the sample, the OM I and OM II estimates are within one combined
standard deviation of each other.

To investigate further the discrepancies between the three models, we computed the Earth Mover’s
distance between the two-dimensional posterior distributions in Y (rs500), 0500 space, for each
model pair. This gives a measure of the ‘distance’ between the respective probability distribu-
tions. I then compared the evidence values obtained from the Bayesian analysis of the AMI
data using the different models, referring to the Jeffreys scale to form conclusions on model
preference, and found the following.

e Based on the Earth Mover’s distances calculated for each cluster, the posteriors are most
discrepant between the PM and OM I models when the sample was considered as a whole,
followed by PM and OM I1.

e The two largest discrepancies come from the lowest-z cluster, one between PM & OM 1
and one between OM II & OM I, suggesting that z information at very low z can have a
large effect on the different models.

e The distance between posteriors from PM and OM II clearly decreases with increasing
z. This suggests that the difference between physical and observational model parameter
estimates, provided the latter also includes z information, is reduced at higher z.

e When comparing Bayesian evidence values, OM I is preferred over PM for 50 of the
clusters, although only 14 of these showed either "weak" or "moderate" preference to
OM I (the remaining 36 being "inconclusive"); however the highest log(evidence ratio)

actually favours the PM ("moderate" preference) and occurs for the lowest-z cluster.
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e Similarly, OM lis preferred to OM Il in 53 of the cases. 14 suggested more data are needed
to come to a "meaningful" conclusion, while the remaining 39 clusters showed "weak" or
"moderate" preference for OM 1. This suggests that OM I is the preferred model in more
cases relative to OM 1II than when OM I is compared with PM.

e For 43 of the clusters, PM is preferred over OM II; however in all of these cases, the
Jeffreys scale suggests "no conclusion can be made without more data", and only three

clusters give any "conclusive" preference (a "weak" preference in favour for OM II).



CHAPTER

PHYSICAL MODELLING OF GALAXY CLUSTERS USING

EINASTO DARK MATTER PROFILES

This Chapter provides an alternative to the physical model presented in Section 2.4. The physical
model described previously uses an NFW profile (Navarro, Frenk, & White 1995) for the dark
matter component of the galaxy cluster, which is derived from N-body simulations of galaxy
clusters. Einasto (1965) gives an empirical profile for dark matter halos. Previous investigations
comparing the two dark matter profiles using simulated data (see e.g. Dutton & Maccio 2014,
Meneghetti et al. 2014, Klypin et al. 2016 and Sereno, Fedeli, & Moscardini 2016) have shown
that the Einasto model provides a better fit. In particular, Sereno, Fedeli, & Moscardini (2016)
showed for weak lensing analysis of clusters that the NFW profile can overestimate virial masses
of very massive halos (> 10" Mgyn/h where Mgy, is units of solar mass and # is the reduced
Hubble constant) by up to 10%.

It is these previous analyses which have motivated us to derive a physical galaxy cluster
model for interferometric SZ data which uses the Einasto profile to model the dark matter com-
ponent of the cluster. I also compare the parameter estimates and fits of the NFW & Einasto
models for the cluster A611 with data obtained with AMI, and with simulations created with
both Einasto and NFW profiles. The work discussed in this Chapter is currently being published
in MNRAS (Javid et al. 2018). Note the paper includes post-referee changes.

67
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5.1 Einasto physical model

The physical model presented here (PM II) follows the same calculational steps as the model
presented in Section 2.4 (PM I) to calculate §1.,, but with an Einasto profile replacing the
NFW one used for the dark matter component. Below we derive the relevant equations for the
Einasto case. Furthermore PM 11 is subject to the same assumptions as PM I listed in Section 2.4.

The three input parameters required to calculate 61, ¢ for either PM are M (r200), fgas(7200)s
and z. A fourth input parameter is required for the PM II which we call the Einasto parameter

Ein, Which is also described below.

5.1.0.4 Dark matter profile

Assuming an Einasto profile (Einasto 1965), the dark matter density profile for a cluster pgm pm

2 r QEin
Pdm,PM II = P-2 €Xp "o s -1]], (5.1)

is given by

where agi, is a shape parameter, r_; is the scale radius where the logarithmic derivative of the
density is —2 (analogue to ry in the NFW model, but note that in general r_, # rs), and p_p
is the density at this radius. The parameter ag;j, controls the degree of curvature of the pro-
file. The larger its value, the more rapidly the slope varies with respect to r. In the limit that
agin — 0, the logarithmic derivative is —2 for all r. It is tempting to assume that the Einasto
profile is capable of providing a better fit due to the fact that the Einasto profile has an extra de-
gree of freedom (three for the Einasto profile, two for the NFW), the shape parameter. However
Klypin et al. (2016) claims that this is not strictly true, as the Einasto profile was seen to give a
better fit to simulated dark matter haloes even with agi, fixed. The asymptotic values of the log-
arithmic slope for the two profiles are as follows: as r — 0 then d In pgm pm1(r)/dInr — —1 and
dIn pgmpmu(r)/dIlnr — 0. Asr — oo thendIn pgm pmi(r)/dInr — =3 and dIn pgm pmu(r)/dInr —
—o0. The magnitude of agj, determines how quickly the slope changes between the two asymp-
totic values. Throughout this work when I refer to the NFW or Einasto model, I really mean the
physical model which uses the NFW or Einasto model when considering the dark matter density
profile.

Referring back to equation 5.1, the ratio ryo9/r—7 is defined as the concentration parameter cpgg.
Dutton & Maccio (2014) determines an analytical form for cpgo as a function of total mass and

redshift for Einasto profiles based on simulations similar to those described in Maccio et al.
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(2007) and Maccio, Dutton, & van den Bosch (2008)

M (r200)

vyl B 5.2
10121~ Mgy )

log (c200) = j(2) + k(2) logg [

where j(z) = 0.459 + 0.518 exp(—0.49z'3%%) and k(z) = —0.13 + 0.029z. The fitting is said
to be accurate in the redshift range [0,5]. To calculate p_, we must make the assumption stated
for PM I, that the total mass enclosed at rpgg is approximately equal to the enclosed dark matter

mass. That is
M (r200) = Mam(r200) + Mg(r200) ~ Mam(r200), (5.3)

where Mgm (r200) and My (r200) are the dark matter and gas masses. With this assumption we can

say that for any r < ryg0

M(r) ~ f 471" pam. pmu (') dr’
0

Anpar’

. \3/aEin
“Em) i (5.4)

2 exp (2/Ein) (—
(Ein 2

3 2 ro\@En
')’ ) - )
@Ein XEin \7-2

where y [a,x] = fox t“~le~"dt is the incomplete lower gamma function. The steps taken to get

X

this result are given in Appendix C.1. Equation 2.22 can be evaluated at rpg9 and equated with

equation 5.4 evaluated at the same radius to obtain the following solution for p_,

200 {1200\’ 1
fo) =T (&) Perit(2) X . \3/@Ein
[l/a/Ein exp (2/agin) ("S‘“) ]

(5.5)
1

X .
7 (2]
Y Q@Ejn > @Ein \ 72

Equivalently, equation 5.4 can be evaluated at rpgg and set equal to the known value of M (r2¢9)

to determine p_;. Figure 5.1 shows the logarithmic dark matter density profiles as a function of
r for a cluster at z = 0.15 with M (r200) = 1 X 105 Mgy and fgas(r200) = 0.12 for PM I and PM
II for the agj, values: 0.05, 0.2, 2.0. It is clear that the Einasto profiles diverge the most from

each other at low r and for the high ag;, value at high r as well.

5.1.0.5 Gas density and pressure profiles

Calculating the pressure normalisation constant (defined below) again requires the assumption

that the cluster is in hydrostatic equilibrium up to radius rg9. This means at any radius equal to
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10g10(pdm(r)) with pdm(r) in MSun/(MpC)3
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Figure 5.1: Logarithmic dark matter density profiles as a function of log cluster ra-
dius using NFW and Einasto models. Three values of the Einasto profile are used:
0.05, 0.2, and 2.0. The additional input parameters used to generate these profiles are:
2= 0.15, M(ra00) = 1 % 10" Msun) and foas(ra00) = 0.12.

or below rygg the outward pushing pressure force created by the pressure differential at that point
must be equal to the gravitational binding force due to the mass enclosed within that radius, i.e.
that equation 2.30 holds. Furthermore I follow Nagai, Kravtsov, & Vikhlinin (2007) and assume
the GNFW model given by equation 2.21 for the pressure profile, as in PM 1. However, for
all analysis presented in this Chapter (both PMs), the GNFW slope parameters are taken to be
a = 1.0510, b = 5.4905 and ¢ = 0.3081. These ‘universal’ values were taken from Arnaud et
al. (2010) and are the best fit GNFW slope parameters derived from the REXCESS sub-sample
(observed with XMM-Newton, Bohringer et al. 2007), as described in Section 5 of Arnaud et al..
I also take the Arnaud et al. value of csgp which is 1.177. Note that in the previous Chapters (as
well as in MO12) slightly different values derived for the standard self-similar case (Appendix B
of Arnaud et al.) were used (a = 1.0620, b = 5.4807, ¢ = 0.3292 and c¢5p9 = 1.156). It was
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shown in Olamaie, Hobson, & Grainge (2013) that PM I is not affected by which of these two
sets of parameters is used.

The analytical function used to convert from rygg to rsgp in PM I is specific to the NFW dark
matter profile case and so is not applicable to PM II. I have not found an analytic fitting function
for the conversion in the case of an Einasto dark matter profile and so I obtain rsg iteratively
as described in Appendix C.2. As in PM I, the pressure profile can be substituted into the
hydrostatic equilibrium equation to derive an expression for the gas density. Using equation 5.4

for M (r) gives

_ ﬂe Pei 1
Pg(’”) = _4 G 3 3/ag;
Mg 4nGp_or, [(l/aEin)eXp(z/a’Ein) (Ein/2) ”‘]
% r
— 5.6
[ ()™ oo

) T b

Note that like PM I, the gas mass M,(r) given by

My(r) = fo ' drpg(ryr'* dr’ (5.7)

must be integrated numerically. Hence fga5(r) = My (r)/M (r) does not have a closed form solu-
tion. Nevertheless, we can use equations 5.6 and 5.7 to determine Pe; since we know M (r2q9),
Seas(r200) and rygp. Evaluating equations 5.6 and 5.7 at r20 and solving for Pe; gives the follow-

ing expression

P = (&) (Gp-ar,) [M (aEin/z)”“Em] My (ra00)

He (QEin
(5.8)
X

1
[rzoo V’3 [b(%)a+c] (a+b—c)dr'
et (5) NG (G T

@Ein” @Ein \ 72 p
which must be evaluated numerically. Once P.; and rp, have been calculated, the Comptonisation

parameter and therefore 61, (| can be calculated the same way as in PM L.
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5.1.0.6 Additional cluster parameters

As stated in Section 2.4, the radial profile of the electron number density is given by n.(r) =

pg(r)/pe. Using the ideal gas assumption, the electron temperature is therefore given by

4rpsGp_or?,

Te(r):( kg

) [(1/@gin) exp 2/ agin) (@gin/2)/ 0]

Y ot o ()™ (5.9)

IR

The gas mass can be determined numerically from equation 5.7,

-1
X

which also equals 7 (r).

Mgy(r) = (&) 1 P 1
g Gp-2 [(l/aEin) exp (2/aEin) (aEin/2)3/aEm] r

Hg
r A [b (_p)a i C] (5.10)

2 (5™
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5.1.0.7 Prior probability distributions

For both PM I and PM 11 I adopt the following approach (excluding any mention of agj, in the
former case).

As in Section 3.2, the cluster parameters are assumed to be independent of one another, so that

7(Oc1) = w(agin) (M (r200))7(fgas(r200)) 7 (2) 7w (x)7w(Ye)- (5.11)

Table 5.1 lists the type of prior used for each cluster parameter and the probability distribu-
tion parameters. The values used for z and agi, will be specified on a case by case basis in
Section 5.2.2.
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Parameter Prior distribution

Xe N (0”,60")

Ye N (0”,607)

z 0(2)

M(ra00)  U[0g(0.5 x 10" Mgy,),log(50 x 10" Mgy,)]
Faas(r200) N (0.12,0.02)

QEin 6(@Ein)

Table 5.1: Cluster parameter prior distributions, where the normal distributions are
parameterised by their mean and standard deviations.

5.2 Results

5.2.1 Cluster parameter profiles

I first present the results of using the Einasto model in the profiling of cluster dark matter for a
range of different cluster input parameters, along with the equivalent results from PM 1.

I consider two input masses, M(ry0) = 1 X 10'*Msy, and M (r200) = 1 x 10 Mgy,, which
roughly span the range of galaxy cluster masses. I use z-values of 0.15 and 0.9, take fgas(r200) =
0.12 following Komatsu et al. (2011), and consider ag;j, values of 0.05, 0.2, and 2.0 — see Fig-
ure 5.1. I note that the same r range (-2 < log;,(r) < 0.5 where r is in units of Mpc) is
considered for each cluster, and thus even though each parameter profile is self-similar in r with
respect to mass and redshift, they are different for each cluster over the range of r considered

here.

5.2.1.1 Dark matter mass profiles

Figure 5.2 shows the dark matter mass profiles. The Einasto profiles are calculated using equa-
tion 5.4 and the NFW profile from the equivalent relation given by equation 2.19. Note that even
though the notation in these equations corresponds to the total mass, this is in fact just the dark
matter mass as we have used the approximation M (r) & Mgy () in deriving them. The agj, = 2
case always converges quickly as the density rapidly falls to zero, while the other three profiles
including the NFW show divergent behaviour at the largest radii considered here. The high mass
inputs result in similar profiles for the agj, = 0.05, agin = 0.2 and NFW cases, whereas the low

mass inputs result in the @i, = 0.05 case diverging somewhat more rapidly than the others.
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Figure 5.2: Dark matter mass profiles as a function of log cluster radius using NFW
and Einasto models. Values of ag;, = 0.05, 0.2, and 2.0 are used as inputs. Top row
has z = 0.15, bottom row has z = 0.9. Left column has M (ra00) = 1 X 10" Mgy,
right column has M (ry99) = 1 X 105 Msun.

5.2.1.2 Gas density profiles

Figure 5.3 shows the gas density profiles. The Einasto profiles are calculated using equation 5.6
and the NFW profile from the equivalent relation given in MO12 (equation 6). Note that when
calculating p(r) for arbitrary r, we are assuming hydrostatic equilibrium at that radius so that
equation 2.30 holds, and we have to assume that fg,s(r') ~ O for all ¥ < r so that M(r) =
Mgm(r) at this radius. The plots show that the profiles are similar for all inputs of mass and
redshift, with the agi, = 0.2 Einasto profile again most resembling the NFW profile. However,
the agjn = 2.0 profile has the highest gas density at high r for both masses and both z values.
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Figure 5.3: Logarithmic gas density profiles as a function of log cluster radius using
NFW and Einasto models. Values of agj, = 0.05, 0.2, and 2.0 are used as inputs. Top
row has z = 0.15, bottom row has z = 0.9. Left column has M (r200) = 1 x 10" Mgy,
right column has M (r9p) = 1 X 105 Mgup.

5.2.1.3 Gas mass profiles

Figure 5.4 shows M, (r) as a function of cluster radius. As in Figure 5.2 with the dark matter
mass profiles, the high mass inputs correspond to divergent behaviour at large . But for agj, =
2.0 the profile of M,(r) also shows a more noticeable such divergence. Furthermore, in all four
input parameter cases, agj, = 2.0 shows more divergent behaviour than other values of ag;, and

the NFW profile in gas mass, which is in contrast to the dark matter mass profiles.
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Figure 5.4: Gas mass profiles as a function of log cluster radius using NFW and
Einasto models. Values of agj, = 0.05, 0.2, and 2.0 are used as inputs. Top row has
z = 0.15, bottom row has z = 0.9. Left column has M () = 1 x 10'* Mg, right
column has M (ra0) = 1 x 10" Mgy,.

5.2.1.4 Gas temperature profiles

Gas temperature profiles are shown in Figure 5.5. The agj, = 2.0 is very distinctive, always

peaking at much higher r than the other three and also always much more sharply.

5.2.2 Bayesian analysis of AMI data

I now focus on applying the PM II to real and simulated AMI data, to compare the parameter

estimates and Bayesian evidences with those obtained from the PM 1.
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Figure 5.5: Gas temperature profiles as a function of log cluster radius using NFW
and Einasto models. Values of ag;, = 0.05, 0.2, and 2.0 are used as inputs. Top row
has z = 0.15, bottom row has z = 0.9. Left column has M (ra00) = 1 X 10 Mgy,
right column has M (r99) = 1 X 10" Mgyp.

5.2.2.1 Analysis of real AMI observations of A611

I conduct Bayesian analysis on data from observations with AMI of the cluster A611 at z

0.5

0.288, which has been studied through its X-ray emission, strong lensing, weak lensing and SZ

effect (see Schmidt & Allen 2007, Donnarumma et al. 2011, Romano et al. 2010 and Rumsey

et al. 2016 respectively). These studies suggest that there is no significant contamination from

radio-sources and that the cluster is close to the Tx—7sz relation for clusters in hydrostatic equi-

librium.

I first compare the posterior distributions for the input parameters (except those with -function
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Model Xc (arcsec) . (arcsec) M (rag0) (X10M Msyy,) Seas(r200) In (Z)

NFW 247+124 139=+11.5 7.84+1.24 0.129 £ 0.020 3.862944 x 10* + 0.25
Qpin =0.05 22.7+125 13.1+12.6 7.45 +1.24 0.130 £0.019 3.862921 x 10* + 0.25
@pin =02 255+12.8 149+13.0 7.67 £1.27 0.127 £0.017 3.862967 x 10* + 0.24
apin =20 243+124 143+132 6.17 +1.12 0.130 £ 0.017 3.862924 x 10* + 0.24

Table 5.2: Marginalised posterior distribution mean values and standard deviations of
physical model input parameters and Bayesian evidences associated with each model,
applied to real A611 data.

priors). The means and standard deviations of the four analyses are given in Table 5.2. As in
Section 5.2.1, agjy = 0.05 and agj, = 0.2 show similar results to PM 1. agj, = 2 gives a dif-
ferent estimate for M (rp00), and its posterior distribution is shown in Figure 5.6 along with that
obtained with the NFW profile. These posterior distributions are plotted using GETDisT and the
contours on the two-dimensional plots represent the 95% and 68% confidence intervals. The
mean mass estimates are within one combined standard deviation away from each other. How-
ever, as seen in Table 5.2 the value of In(Zgin/Znrw) imply that ‘no model is favoured by the

data’ according to the Jeffreys scale.

5.2.2.2 Simulated AMI data

Sereno, Fedeli, & Moscardini (2016) study the errors associated with fitting NFW profiles to
Einasto dark matter halos and vice versa for weak lensing studies. I conduct similar work in the
context of simulated SZ observations. The simulations were carried out using the in-house AMI
simulation package ProriLE, which has been used in various forms in e.g. Grainge et al. (2002)
and Olamaie, Hobson, & Grainge (2013).

As before I consider Einasto profiles with the agi, values 0.05, 0.2, and 2.0 plus an NFW
profile. each with M (r99) = 1 X 10" Mgy, or M(ra00) = 1 X 101 Mgy, z = 0.15 or z = 0.90
and fgs(r200) = 0.12. These 16 simulations, were analysed as in Section 5.2.2.1. Note for
all of these simulations no radio-sources, primordial CMB or confusion noise were included,
and instrumental noise was set to a negligible level. Table C.1 in Appendix C.3 summarises
the input and output values of the 16 simulations. The first column gives the model used to
simulate the cluster, with the following two columns giving the mass and z input values. For
each simulation, I analysed the data using two models, one using the NFW profile and one using

an Einasto profile. For data simulated using an NFW profile, when analysing the data with an
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Figure 5.6: Marginalised posterior distributions of physical model input parameters
for the NFW and agj, = 2.0 models applied to real A611 data. The contour plots are
the two dimensional marginalised plots of the parameters named in the corresponding
row / column. The line plots are the fully marginalised posterior distributions.

Einasto profile I used agj, = 0.2. For data simulated using an Einasto profile, when analysing
the data with an Einasto profile I set agj, equal to the value used as the input for the simulation.

In all but one of the simulations (NFW simulated with M (r209) = 1x 10" Mgy, and z = 0.9),
the Einasto posterior mean mass value was closer to the input value than the corresponding NFW
value. It’s worth nothing that a more thorough statistical treatment would involve repeating

the Bayesian analyses many times to see if these results held consistently, but this was not
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considered here. In 11 out of 16 cases the Einasto profile recovers the input mass to within
10% (interestingly, it does so for all the NFW simulated clusters). However, in only two of
16 cases does the Einasto model recover the input value within three standard deviations. This
could be due to errors associated with the simulated ‘observing’ of the cluster on a pixelated
grid, binning the data in u-v space/ frequency and then modelling the data by creating another
pixelated grid. These effects are not accounted for in the Bayesian analysis, thus leading to an
underestimate in the associated errors. Furthermore, the fact that the Einasto model recovers
the NFW simulated clusters better than when those simulations are analysed with the NFW
profile for three of the four NFW simulated clusters, could be down to the fact that the Einasto
model is more robust to the imperfections associated with the generation of the simulations.
Another source of error underestimation could be the sampling errors being underestimated in
the nested sampling algorithm as studied in Higson et al. (2017). Looking at the individual
evidence values for both Einasto and NFW models, the value is considerably lower for the high
mass simulations, In(Zjow mass/<highmass) = 3000 suggests the models fit the low mass datasets
much better when averaged over the (same) parameter sampling spaces. It is crucial to note
that when comparing evidences calculated from different datasets (specifically their ratio), we
are not looking at Pr(M|Dy)/Pr(M|D,), since the Pr(D)-like terms on the right hand side
of equation 2.44 do not cancel in this case. Nevertheless for the same model, the evidence ratio
between two different datasets does give a measure of the relative goodness of fit of the datasets
to the model. Looking at the evidence ratios between the Einasto and NFW models for a given
simulation, more data is needed to come to a conclusive decision over model preference in 10 of
the simulations. Three simulations lead to ‘substantial preference’ in favour of the Einasto model
(In (Zgin/Znrw) = 5). In two of these cases (agi, = 0.2 with M (ra00) = 1 X 10> Mgy, and z =
0.9, and agi, = 2.0 with M (r200) = 1 X 10> Mgy, and z = 0.9) the posteriors show reasonable
constraints in both the Einasto and NFW analyses (Figure 5.7 shows posterior distributions for
@gin = 2.0 with M (r200) = 1 X 105 Mgy, and z = 0.9), with the former giving better estimates of
mass and fgas(r200). The third case however (agi, = 2 simulated with M (r00) = 1 X 10" Mgyn
and z = 0.9) leads to low estimates of fya5(r200) in both cases (Figure 5.8), and a very high mass
estimate in the case of the NFW model. The two cases where the NFW model is preferred over
the Einasto also produce posteriors similar to those in Figure 5.8.

Finally, I tried running the Bayesian analysis on eight of the Finasto simulated clusters
with uniform analysis priors on agj,. These clusters corresponded to the simulations with input

values of either agj, = 0.2 or agj, = 2.0. For the former value of agj, I assigned the uniform
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Figure 5.7: Posterior distributions for cluster simulated with agi, = 2.0, M (r200) =
1 x 10 Mgy, and z = 0.9, modelled with: (a) Einasto dark matter profile, and (b)
NFW dark matter profile.
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Figure 5.9: Posterior distributions of Einasto model input parameters for: (a) agj, =
2.0, M(rpp) = 1 X 1014M5un and z = 0.15 simulated cluster, and (b) agi, = 2.0,
M (ra00) = 1 x 10" Mgy, and z = 0.9 simulated cluster.

prior U[0.05,0.35] and U[0.5,3.5] for the latter. For two of these simulations the posterior
distributions did not show much degeneracy between any of the input parameters, including
@gin. Both of these clusters had agi, = 2, M (rag0) = 1 X 10 Mgy, and z = 0.15 or z = 0.9
as inputs. Their posterior distributions are shown in Figure 5.9. Both posteriors give a mean
value for the shape parameter within one standard deviation of the input value (2.01 + 0.54 and
2.39 + 0.40), but looking at the distributions they are not sharply peaked, meaning the errors
on the estimates are quite large. Nevertheless these simulations do show the Einasto profile is
capable of recovering some information about agj,, in contrast to the efforts in MO12 to recover
¢p00 Which led to large cp00 — M (r200) degeneracies (although c;gq relates to the scale of the dark

matter profile, not its shape).

5.3 Conclusions

Based on the physical model introduced in Section 2.4 (PM I) which uses an NFW profile (Nav-
arro, Frenk, & White 1995) to model the dark matter content of galaxy clusters, I derive a new
physical model (PM II) which models the dark matter with an Einasto profile (Einasto 1965).
The Einasto profile has an additional degree of freedom compared to the NFW profile, which
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dictates the shape of the dark matter density as a function of radius. For different values of agi,
we have investigated the profiles of several physical properties of a cluster, namely the dark mat-
ter density, dark matter mass, gas density, gas mass and gas temperature. I have also provided
the equivalent profiles in the NFW case. From this I found the following.

e Of the three values of ag;j, considered, agi, = 0.2 gave the most similar profile to that
given by the NFW model (as discussed in Dutton & Maccio 2014), with the main discrep-
ancy between the two arising in the peak amplitude of the gas temperature.

e agj; = 2.0 showed the most convergent behaviour in Mgy () at high r, but the most
divergent in M (r) in the same limit.

o The gas temperature profiles were somewhat different for the ag;, values considered here.
This suggests that if one can carefully measure the temperature profile of a cluster, then
one could infer ag;, and use this in the model presented here (though one has to be aware
of cooling flow and merger activity).

Next we applied Bayesian analysis to real and simulated AMI datasets using PM I and PM II, to
compare the models’ parameter estimates and fits to the data. Using real data from cluster A611
I found the following.

e The agj, = 0.05 and agj, = 0.2 models gave very similar results to the NFW model; the
aEin = 2 model however underestimates M (ryqg) relative to the other three models.

e The Bayesian evidence values calculated from these four analyses were roughly equal,
suggesting no model provided a statistically significant fit relative to the others.

Simulating clusters with either NFW or Einasto dark matter profiles, which were then ‘observed’
by AMLI, I found the following.

e For 15 out of 16 clusters, the Einasto model recovered the input mass better than the NFW
model. The only cluster where this was not the case (NFW simulated with M (r299) =
1% 10" Mgy, and z = 0.9), the posterior distributions do not show good constraints on the
sampling parameters, and so the parameter estimates should not be used.

e The evidence values of both Einasto and NFW models are considerably lower for the high
mass simulations.

e Considering the evidence ratios between the Einasto and NFW models for a given sim-
ulation, more data is needed to come to a conclusive decision over model preference in
10 of the cases. However according to the Jeffreys scale (Jeffreys 1961), three of the
simulations gave ‘substantial’ preference towards the Einasto model; and in two of these
cases the NFW analysis did not constrain the sampling parameters as well as the Einasto

analysis. In the third case neither analysis constrained the parameters well.
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e The two clusters where the evidence ratio was in favour of the NFW model also showed
poor posterior distribution constraints.

e When allowing agj, to vary in the analysis, in two out of eight of the Einasto simulations
used the posterior distributions showed some constraints on the value of agj, which gave

estimates close to the input values.



CHAPTER

ENHANCED PHYSICAL MODELLING I: RELAXING THE

feas ASSUMPTION

As stated in Section 2.4, one of the key assumptions of the physical model (for both PM I and
PM II) is that the gas mass fraction fg,s(r) is much smaller than unity up to 9o, so that we can
say the total mass at rpg is equal to dark matter mass enclosed up to this radius. In this Chapter
we relax this assumption for both models, so that the total mass is the sum of the dark matter
and gas contributions. We refer to these new models as PMT I and PMT II which respectively

use NFW and Einasto profiles to model the dark matter content.

6.1 Total mass equations

Dropping the assumption that fg,5(r) << 1 we can no longer assume that M (r) ~ for 47 pam (r’)r” 2dr’,

but instead . .
M(r) = f 47 pam (r)r’? dr’ + f 47z'pg(r’)r'2 dr’. 6.1)
0 0

Using the hydrostatic equilibrium assumption given by equation 2.30 to substitute for pg(r’),

we get the following integral equation

4 r dP ’ 14
il f USRI 6.2)
0

M) = | 4rpam(rr?dr’ - :
(r) fo T Pdm (r)r = dr G a7 MG
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Differentiating equation 6.2 with respect to r gives the differential equation

dM(r)
dr

= 47 pam (r)r” - 4 dPy(r) 1
- m

G dr M) (6.3)

Assuming a GNFW profile (equation 2.21) for P, and relating it to Py using equation 2.31 the

second term on the RHS of equation 6.3 becomes

r a1—-(1+(b-c)/a) r a ~ K(I’)
“(E) ] [b(E) ”] “ue Y

Hence for PMT I (NFW dark matter profile)

Mg G M(r)

Ue 4nPy 13 ( r )_C

p

dM (r) 3 T K(r)
= 47‘[ oFs =+ 5 65
T SR V7S ©
and for PMT II (Einasto dark matter profile)
dM (r) 5 2 ro\ e K(r)
=4np_ - — -1 . 6.6
dr Tp-2r CXP [ QEin ((r_z) " M(r) 6.6)

6.2 Determining cluster profile parameters

Equations 6.5 and 6.6 are first order non-linear differential equations with dependent variable
M and independent variable r. They are subject to the boundary condition that M (ry9p) = the
value input to the model. Each equation has four unknown parameters: rg for PMT I (r_, for
PMT II), ps for PMT I (p_ for PMT II), r;, and Pe;. rs (r—2) can be calculated the same way as
previously. ps (p-) can be calculated in a similar way to previously (i.e. as in Section 2.4 for
PM I and Section 5.1.0.4 for PM II), but we now solve

Mam(r) = (1 - fgas(r))fo At pam (r')r’* dr, (6.7)

at r = rago for known M (r200) and fgas(r200). However r, can no longer be determined, since
the mapping from ryqg to rsg9 explicitly requires the assumption M (r) = My (r) for both dark
matter models. Thus P cannot be uniquely determined from the ODEs, as there is a family
of solutions of (rp, Pej) which satisfy the ODEs, and therefore the pressure profile is no longer
uniquely defined for a given set of cluster input parameters. I have thought of three ways to
overcome this issue, only one of which I pursue. Nevertheless I now give a brief note on all

three ideas.
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6.2.1 Determining r, and P; directly from constraints on M and its derivative

If we knew the value of M (r) and dM(r)/dr at two different radii then we would be able to
determine unique values of r, and Pe; directly from the ODEs. However I have not been able
to think of any sensible conditions to impose on dM(r)/dr other than dM(r — oo)/dr = 0.
Furthermore, evaluating equation 6.3 asymptotically (i.e. ¥ — 0 and r — oo) does not yield any
useful results. I therefore have not been able to use this method successfully in determining r,

and Pe;.

6.2.2 Determining r, and P.; using Lagrange multipliers

Consider the function
g(Pei,rpar):M(r)_Mdm(r)_Mg(Pei,rp,r)a (68)

which tells us that (Pej, r,) must satisfy g(Pej,rp,7) = 0 for all . Since the ODEs in Section 6.1
are derived from g(Pej,rp,7) = 0, they share the same family of solutions of (P, 7). Thus find-
ing values of (Pej,r,) which satisfy the ODEs (subject to their boundary condition on M (r209))
also satisfies g = 0 (subject to the same boundary condition). We can formulate a constrained

optimsation problem using Lagrange multipliers
f(Pei’rp) - /lg(Pei,"p’r) (69)

to find stationary points in f(Pej,7,) subject to the constraint g = O for arbitrary A. The form
of f(Pej,rp) dictates the nature of (Pej,rp) at which the stationary point(s) of equation 6.8 are
observed. For example f(Pej,rp) = (Peirp)2 would find the minimum value of the product Pe;rp
which satisfies g = 0.

I do not pursue this idea any further however, since I cannot justify using a particular form for
S (Pej,rp), and because I suspect that finding the stationary points of equation 6.9 is difficult

numerically.

6.2.3 Determining r, and P; using approximate methods

Since ps (p_2) can be (correctly) calculated from equation 6.7 for the PMTs, we can use it in the
calculational steps given by the PMs to get approximate values for rj, and Pej. The issue with this
method is that it is difficult to quantify the assumptions made, as we start off considering dark

matter and gas contributions to the total mass to calculate pg (p_»), but then have to resort to
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the M (r200) = Mam(r200) to calculate rp, and Pej. Despite this issue, I have adopted this method
(due to its simplicity) to plot the mass profiles of clusters with a range of input parameters
for illustrative purposes below. Note however that I have not implemented the PMTs into the
Bayesian analysis software McAbawm, since not being able to quantify the assumptions of the

models invalidates their use in Bayesian inference.

6.3 Mass profile plots

We now compare the mass profiles of PM I and PM 1I (calculated using equations 2.23 and 5.4
respectively), with those obtained from PMT I and PMT II (calculated using equations 6.5
and 6.6 respectively), using values for r, and Pe; obtained using the method outlined in Sec-
tion 6.2.3 for the PMTs. As in Section 5.2.1 we consider two input masses, M (rp00) = 1 X

10" Mgy, and M (ra00) = 1 x 10" Mgy, which roughly span the range of galaxy cluster masses.
We use z-values of 0.15 and 0.9, and take fga5(r200) = 0.12 following Komatsu et al. (2011).
For PM II and PMT II we consider ag;, values of 0.05, 0.2, and 2.0.

Figure 6.1 shows the profiles for low M (rp00) and z. All four profiles are similarup tor ~ 1 Mpc
(which is also = ryq), after which the NFW and Einasto profiles diverge. The two NFW profiles
(PM I and PMT I) have roughly the same shape, but start to diverge slightly at high r ( 10 Mpc)
with PM I taking higher values than PMT I. In the case of agj, = 0.05, both PM II and PMT II
diverge to large mass values at high r, with PMT II taking smaller values than PM II. ag;j, = 0.2
shows a similar relationship between PM II and PMT II, but with the two taking lower values
than PM I and PMT I at high . agj, = 2 presents an interesting result as PMT II does not appear
to converge at high r like PM II does. Note that for the Einasto dark matter profile,

3
in\eEm 1 3
lim Man(r) = 47p-2 exp(2/agin)r, (252 ™ F( ) , (6.10)
r—oo 2 QEin QEin

and so the first term on the right hand side of equation 6.2 is roughly constant at high r, meaning
the increase in mass must be from the gas component. It seems unphysical that the gas content
would contribute so much to the total mass at high r and thus questions the validity of the model
(at least for the values of r, and Pe; used here). Figures 6.2, 6.3, and 6.4 show the profiles for the
other three combinations of M (rp00) and z inputs: low mass & high z; high mass & low z and
high mass & high z, respectively. All three cases show similar results between the approximate
and full mass results to the previous case, which implies that the desparity between the two sets

of results is not dependent on the input parameters (boundary conditions imposed on the ODEs).
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Figure 6.1: Mass profiles of cluster with input parameters given in titles. PM I (NFW
dark matter profile, M (r) ~ Myn(r) approximation) and PMT I (NFW dark matter
profile, M (r) = My (r) + My(r)) are shown in the top left graph by black and red
curves respectively. The other three graphs plot PM II (Einasto dark matter profile,
M(r) = Mgm(r) approximation), and PMT II (Einasto dark matter profile, M (r) =
Mam(r) + Mg (r)) in black and red respectively, for ag;, values of 0.05 (top right), 0.2
(bottom left), and 2.0 (bottom right).

6.4 Conclusions

This Chapter relaxes the M (r200) = Mgm(7200) assumption present in the physical model presen-
ted in Section 2.4 (PM I) and the equivalent Einasto physical model (Section 5.1, PM II), to see
if this would produce more physically plausible models for clusters. I derive two new models
PMT I and PMT II based on the equation M (r) = Mun(r) + Mg(r). Both PMTs require non-

linear ordinary differential equations in M (r) to be solved. But to do this, values for r, and P;
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Figure 6.2: Mass profiles of cluster with input parameters given in title, for models
given in Figure 6.1.

need to be determined and this turns out to be a non-trivial process. I investigated three possible

ways of calculating r, & Pe; and found the following.
e Determining r, and P; directly from constraints on M and its derivative seems inplausible

as we could not justify assigning a particular value to the derivative at any finite value of
r.

Treating the problem of finding a value of r;, and Pe; from the family of solutions as a con-
strained optimsation problem (with a function f(rp, Pe;j) dictating the nature of the values
of r, and P; obtained, and the differential equations in M (r) providing the constraints)
seems promising in theory. However in practice, justifying a particular form for f(r}, Pe;)

isn’t straightforward, and I anticipate that the optimisation is difficult numerically.
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Figure 6.3: Mass profiles of cluster with input parameters given in title, for models
given in Figure 6.1.

e The third method relied on using the calculational steps of PM I and PM 1I to determine
‘approximate’ values for r, and P from ‘true’ values of rg for PMT I (r_, for PMT II)
and pg for PMT I (p_» for PMT II) calculated without the assumption that p; < Pgm.

The third method was by far the simplest and the one I used to plot the mass profiles for the
PMTs to compare with the equivalent PM profiles. From plots of the profiles we found the
following.

o The values of the input parameters M (r00) and z had very little effect on the shape or scale
of the PMT I or PMT II profiles when compared with the corresponding PM profiles.

e For the agj, = 2 case PMT II does not show the convergence in mass at high r that PM

II does. Since My (r) asymptotically converges as r — oo this implies that it is the gas
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Figure 6.4: Mass profiles of cluster with input parameters given in title, for models
given in Figure 6.1.

which is contributing to the mass increase, which seems unphysical for large r.



CHAPTER

ENHANCED PHYSICAL MODELLING II: INCLUSION OF

NON-THERMAL PRESSURE

All physical models presented so far in this thesis assume that the cluster gas pressure comes
solely from the thermal gas pressure. Cosmological simulations have long predicted that mag-
netic fields, gas bulk motion and turbulence contribute to pressure support (see e.g. Lau, Kravt-
sov, & Nagai 2009, Battaglia et al. 2010, Battaglia et al. 2011, Nagai & Lau 2011, Nagai 2011,
Battaglia et al. 2012, and Parrish et al. 2012).

Observational studies of clusters using the Chandra, Suzaku and XMM-Newton satellites have
long invoked (see e.g. Bautz et al. 2009 for cluster A1795, Reiprich et al. 2009 A2204, George
et al. 2009 PKS0745-191, Hoshino et al. 2010 A1413, Kawaharada et al. 2010 A1689, Urban
et al. 2011 Virgo and Simionescu et al. 2011 Perseus) these additional pressure sources to ex-
plain their observations. So including a non-thermal contribution to the hydrostatic equilibrium
(HSE) relation given by equation 2.30, and altering the succeeding calculational steps of the
PMs accordingly should be interesting.

In this Chapter I first give an overview of the contributors to non-thermal pressure. I then
derive physical models for both NFW and Einasto (dark matter) models and incorporate non-
thermal pressure into the HSE equation. We refer to these two models as PMN I and PMN II.
We then plot the cluster parameter profiles of PMN I & PMN II and compare with those already
obtained for PM I and PM II. Note that I do not include any modifications discussed in Chapter 6

93
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here.

7.1 Non-thermal gas pressure

Galaxies orbiting or infalling onto clusters not only stir the gas, but also make the ICM clumpier.
In the dense inner regions of clusters, these clumps only exist on short timescales as the ram
pressure (pressure exerted on a body as it moves through a fluid medium) acting on the gas is
high. At higher radii where the average cluster density is lower, orbital times are longer and
accretion of new cluster material is ongoing, clumpiness can have significant effects on the total
pressure profile. The clumpiness of the ICM depends on a number of physical processes, such as
efficient feedback, which removes gas from merging structures, and thermal conduction, which
homogenises the ICM temperature (see e.g.Dolag et al. 2004). Cosmic rays can originate from
accretion shocks and supernova explosions, active galactic nuclei (AGN), and radio galaxies (see

Brunetti & Jones 2014 for a review).

7.2 Modelling non-thermal gas pressure

7.2.1 Analytic expression for non-thermal gas pressure

Martizzi & Agrusa (2016) (from here on DM16) derive an analytic expression for the non-
thermal pressure Pp; component in galaxy clusters. They derive the function Py (r) by consid-
ering a subset of ten cosmological hydrodynamical zoom-in simulations of galaxy clusters from
the sample of Martizzi et al. (2014). The ten simulations were performed using the RAMSEs code
(Teyssier 2002) and have total masses > 10" Mgy,. Half of the subsample are relaxed according
to the criteria outlined in Section 2.1 of DM16 (based on the ratio of the velocity dispersion
of dark matter particles to the velocity dispersion of an equivalent virialised system). These
simulations do not include non-thermal contributions from cosmic rays and magnetic fields.
DM16 derive an expression for Py by evolving a cluster from high z and measuring its p,(r),
M (r), thermal pressure Py, and thermal mass M, (). From these four quantities the form of Py
can be determined from the HSE relation (equation 2.30) (assuming that Py = Py, + Py). The
following analytic expression is obtained by fitting to the simulated data using a least squares

regression

ono,m)3 ( pe(r)

Po(r) = 5.388 x 103 ( Mpe g/cm3) erg/cm’, (7.1)
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where oo, m is the radius at which the average cluster density is 200 X the average matter density
Pm(2) = 3H3/(87rG) Qum(1 + z)3. Here Hy is the Hubble parameter evaluated at z = 0. r200,m
can be calculated from r,q in a similar way to how rsg is (for the NFW case, see equations 2.25
through to 2.29, and for Einasto see Section C.2).

Expressed in ‘astronomical’ units (MslmMpc‘ls‘z), equation 7.1 can be written as

3
Pu(r) = 8 (rlf;";j‘) pe(r), (72)

where 8 = 5.658 x 1073% Mpc?s—2

7.2.2 Incorporating non-thermal pressure into the physical models
Redefining Py (r) from equation 2.31 as
Py(r) = Pin(r) + Pu(r), (7.3)

where
P .
Py (r) = — =

”g (’p) (1 + (er)a)(b_C)/a’

and re-evaluating the HSE relation with the new form of Pg(r) gives

(7.4)

dPy(r) _ d Gpg(r)M(r)
— = 3 Pe) + Pu(n)] = ——————. (7.5)
Equation 7.5 can be rearranged to give
dps() GMpOM() 1 ( Mpc ) P |1 (_) [1 N (L)“]‘“”b“‘“” [b(i)“ Ve
dr Br SOO,m 2re Hg \7200,m B|r p p "p ,

(7.6)
which is a inhomogeneous first order linear ODE with dependent variable p, (r) and independent
variable r. Since equation 7.6 includes a M (r) term, its final form depends on the dark matter
profile considered. Note that when calculating M (r) for either PMN I or PMN II we assume
M(r) = Mgy (r) as we did when profiling PM I and PM I1.

For PMN I we have the expression for M (r) given by equation 2.23 and so the differential

equation becomes

r Is -1
dpg(r) . 4G (Mpe)?pgr3 |12 (1 + r_) - (1 + 7) pu(r)

2
i Broom r (7.7)

c a1—-(1+(b-c)/a) a
L e e I o R
Mg \7200,m B |r I'p Ip




96 Chapter 7. Enhanced physical modelling II: Inclusion of non-thermal pressure

For PMN II we have the expression for M (r) given by equation 5.4 and so

dpg(r) s 47‘1’G(Mpc)3p_2ri2 exp (2/@Ein) (d%in):;/a/Ein y [ 3 2 (L)GE“‘]

QEin’ QEin \T-2
pg(r)
3 2
dr ﬂrZOO,ma/Ein r (7.8)
—c —(1+(b~-
SR SR G PR
Mg \r200m/) B |r \rp Tp Tp
For brevity we define the following constants
4nGpsrd (Mpe)?
WNFW = 3
Br00,m
47er_2r§ (Mpc)3 1 /am,\3/@En
WEin = e (Z2m) ™ expe2/anin) (1.9)
'BrZOO,m &Ein 2
He 1 ( Mpc )3
oc=——=|——]| .
Mg B \7r200,m

In fact the inhomogeneous ODEs derived above can be transformed into homogeneous ODEs as

follows. Consider a general ODE of the form

dilg—r(r) +8(r)pg(r) = f(r), (7.10)

then using an integrating factor defined by

I(r) = exp (fr g(r’)dr’) , (7.11)

equation 7.10 can be transformed into a homogeneous separable ODE which gives the result

Pg(r)l(r)—pg(ro)l(ro)=f I(r") f(r')dr’, (7.12)

ro
where ry and pg(ro) are dependent on the input parameters of the problem.
For PMN I this gives
ro
— pg(ro) (1 o

N

r r —wNrw /1’ 1 (r -C r ay-(1+(b-c)/a) P a
SR e B B o R Y
o I r rp rp rp

N

)—wNFw/r )—wNFw/Fo

pg(r) (1 + -
(7.13)
dr’.
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For PMN II the integrating factor does not have an analytical form, hence the homogeneous

form can only be simplified to

3 2

2
7\ @Ein
oo (2 E N 1
QEin ’ QEj r-2 ’” r
= Pyo f exp | WEin f — dr —,(—)
o r r rp

It is also interesting to see if the non-thermal only pressure term provides a solution to the

HSE (I have already verified this is the case for Py (r) in PM I and PM I, by deriving the relevant

r/2

2 7'\ ¥Ein 3 2 7'\ ¥Ein
Pg(l”) exp (fr wEiny [dEin ’ QEin (hz) ] dr') _ Pg(”O) exp (fro Q)Einy [Q/Ein ’ Q'Ein (hz) ] di")

(7.14)

expressions for pg(r)). Putting the expression for Py (r) into the HSE gives
1 dpg(r Mpe \* G " M@
f LIy (—pc ) —f "D ar (7.15)
ro Pg(r’) dr room/) BJr T

For the NFW dark matter profile this gives

(1 + ::_i)(wNFW/’"l)

pg(rl) = pg(r()) (7.16)

i .
1+ ?) WNFW/T0)

As was the case with the integrating factor in the full solution for the thermal and non-thermal
pressure, the Einasto dark matter profile does not give an analytic solution the non-thermal only

case

, 3 2 7\ @Ein

— . vy I:QEin ’ @Ein (rr—Z) ] ’

pe(r1) = pg(ro) exp |Wein dr'|. (7.17)
ro

r/Z

Note that since the HSE is a inhomogeneous differential equation, the solutions associated with

Py, and Py do not sum to solution asspcoated with Py = Py, + Py.

7.2.3 Determining P,; for the non-thermal case

Equation 7.7 (equation 7.8) has four unknown parameters: rs (r_2), ps (p-2), rp and Pe;. The
first three of these can be calculated in the same way as in PM I and PM II. However, as was
the case with the full mass modelling in Chapter 6, P.; cannot be calculated trivially from the
input parameters and calculations derived above for the PMNs. Hence we consider the methods
described in Sections 6.2.1, 6.2.2, and 6.2.3 which we denote method I, method II and method
III respectively.

a1-(I+(b-c)/a)
G
p

} dr’.
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Figure 7.1: p,(r) profiles for PM I and PMN 1. Each graph features both profiles
for one of the four different input parameter sets. Top row has z = 0.15, bottom row

has z = 0.9. Left column has M (ry00) = 1 X 10'* Mgy, right column has M (ry) =
1 x 10" Mgy

For method I, since there is only one unknown parameter we only need to know the value of
pg(r) and its derivative at one point. It makes sense to consider the asymptotic case (r — o) in
which case py(r) and its derivative tend to zero. However, since there is no constant term in the
ODE:g, this gives us (using equation 7.7 or 7.8) 0 = Pe; X 0 and thus P,; cannot be determined. |
have not been able to come up with any physically justified estimates for p,(r) and its derivative
at finite r, and so I do not pursue this method any further.

Method II presents the same potential difficulties as in the Chapter 6, and so I do not pursue it

here.

Method III would require us to get an approximate value for P, from the calculational steps of
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Figure 7.2: p4(r) profiles for PM II and PMN II with agj, = 0.05. Graphs are laid
out as described in Figure 7.1.

PM I and PM II. This requires us to ignore the non-thermal contribution in the HSE equation and
determine an analytic form for pg(r). As was the case in Chapter 6, this is by far the simplest
way of determining P,;, I therefore use it to obtain cluster parameter profiles for PMN I & PMN
II and compare them with those from PM I & PM 1I for illustrative purposes.

7.2.4 Boundary conditions for p.(r)

I first tried setting pg(rmax) = O where rpay is the upper limit on r used in the ODE solver.
However, this failed to generate a sensible profile for pg(r). This is expected, as such an initial
condition surely provides ‘too little’ information on the form of pg(r) to constrain its profile at

low r. I next applied the initial condition pg(rmin) = Pga(Fmin), Where pg , is the value obtained
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Figure 7.3: p,(r) profiles for PM II and PMN II with agj, = 0.2. Graphs are laid out
as described in Figure 7.1.

from PM I/ PM 1L I think this assumption is sensible, given that the non-thermal contributions
are generally thought to be less and less significant at smaller radii as pointed out in Section 7.1.
I generally found that the latter initial condition produced solution curves for pg () when solving

the ODEs given by equations 7.7 and 7.8.

7.3 Non-thermal pressure profiling

As in the previous Sections which focus on cluster profiling, I create plots for clusters with input
values of M (r200) = 1 X 10" Mgyy & M (ra00) = 1 x 1019 Mgy, and z = 0.15 & z = 0.9. For PM
IT and PMN II we consider ag;, values of 0.05, 0.2, and 2.0.
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Figure 7.4: p,(r) profiles for PM II and PMN II with ag;, = 2. Graphs are laid out
as described in Figure 7.1.

7.3.1 Gas density profiles

Figures 7.1, 7.2, 7.3, and 7.4 compare the PM and PMN profiles for the NFW, agi, = 0.05,
agin = 0.2, and agj, = 2 cases respectively. The most striking feature of these graphs is the
fact that the PMN profiles have higher gas densities than their PM equivalent for radii > rg,
until they decay to = O at high r. As was the case with the PMT profiles, changing the mass / z
input parameters does not seem to effect the shape of the PMN gas density profiles. However,
unlike the comparison between the PM and PMT models, changing the input parameters here

does seem to have an effect on the level of disparity between the PM and PMN profiles.
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Figure 7.5: Ratio of Py to Py, profiles for PM I and PMN 1. Each graph features
both profiles for one of the four different input parameter sets. Top row has z = 0.15,
bottom row has z = 0.9. Left column has M (r29) = 1 x 10'* Mgy, right column has
M (ra00) = 1 % 1015 My,

7.3.2 Thermal and non-thermal pressure profiles

Once pg(r) has been determined, Py can be calculated from equation 7.2. Py, is given by
equation 7.4, and so is the same as the profiles of P, calculated for the PMs. Furthermore the
mass is still calculated using the approximation M ~ My, and so it has identical values between
the PMs and PMNs. Figures 7.5, 7.6, 7.7, and 7.8 show the ratio of non-thermal to thermal
pressure (calculated from the PMNs) for the NFW, ag;, = 0.05, agj, = 0.2, and agj, = 2 cases

respectively. Given that in simulations (Rasia, Tormen, & Moscardini 2004, Ameglio et al.
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Figure 7.6: Ratio of Py to Py, profiles for PM II and PMN II with agj, = 0.05.
Graphs are laid out as described in Figure 7.5.

2009, Piffaretti & Valdarnini 2008, and Biffi, Dolag, & Bohringer 2011), non-thermal pressure

was found to be at a maximum =~ 15% of the thermal pressure, these Figures show that the

PMNs considered here are unphysical, particularly as the value of ag;, increases. The only

profiles which give sensible values are the agj, = 0.05 cases. Here, the non-thermal pressure

does go above 20%, but only at high r, where both types of pressure should take negligibly small

values. Even though the ratio profiles look sensible for agj, = 0.05, the fact they are off by such

a large amount for the other clusters implies the models formulated here are probably unfeasible

(including the validity of the method used to determine P;), and that the case of one good result

has probably been obtained by chance. However we do note that in DM16 the ratio approaches
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Figure 7.7: Ratio of Py to Py, profiles for PM II and PMN II with agj, = 0.2. Graphs
are laid out as described in Figure 7.5.

unity for five of the ten cluster sample of simulations at r = rypo,m (see Figure 5 of DM16).
Whilst this doesn’t add any validity to the results, it does suggest that non-thermal pressure can
contribute greatly (up to =~ the majority) towards the total pressure, and thus further work on

incorporating its effect into cluster SZ models is important in improving their performance.

7.4 Conclusions

In this Chapter I incorporated non-thermal pressure into the physical models presented in Sec-

tion 2.4 (PM I) and the equivalent Einasto physical model (Section 5.1, PM II) to see if this
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Figure 7.8: Ratio of Py to Py, profiles for PM II and PMN II with agj, = 2. Graphs
are laid out as described in Figure 7.5.

would produce more physically plausible models for clusters. I derive two new models PMN I
and PMN II based on the analytical equation for non-thermal gas pressure in a cluster derived
in Martizzi & Agrusa (2016). Both PMNs require linear inhomogeneous ordinary differential
equations in pg(r) to be solved. However to do so, values for P need to be determined as in
Chapter 6. Due to its simplicity, I used the method outlined in Section 6.2.3 to determine an
approximate value for Pe;. I then solved the ODEs in p(r) for various cluster input parameters
and found the following.

e The PMN profiles have higher gas densities than their PM equivalent, until they decay to

~ 0 at high r.

10*
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e As was the case with the PMT profiles in Chapter 6, changing the mass or z input para-
meters does not seem to effect the shape of the PMN gas density profiles. However, unlike
the comparison between the PM and PMT models, changing the input parameters here
does seem to have an effect on the level of disparity between the PM and PMN profiles.

I then plotted the ratio of non-thermal to thermal pressure for different cluster inputs, to see
how the ratio compared with those obtained from simulations in the literature, and found the
following.

e For all but the agj, = 0.05 clusters, the ratio of non-thermal to thermal pressure was un-
physical, as it exceeded values well over 100% (which seems unfeasible in isolation, and
even more unreasonable when compared to the values of ~ 15% obtained in simulations).

e Even though the ratio profiles looked sensible for agj, = 0.05, the fact they were off by
such a large amount for the other clusters implies the models formulated here are probably

unfeasible, and that the case of one good result was probably obtained by chance.



CHAPTER

JOINT ANALYSIS OF AMI AND PLANCK DATA

Analysis of data obtained from different telescopes allows one to compare and verify inferences
from measurements of different quantities, are subject to different systematic errors, and are
obtained from different wavebands and on different angular scales. Simultaneous analysis of
multiple datasets can lead to results different from those obtained in the individual cases, and
can be used to investigate problems which cannot be resolved by the individual analyses.
In the context of galaxy clusters LaRoque et al. (2006) have used joint X-ray—SZ data in an
attempt to constrain the dark energy equation of state parameter w. Similarly, cosmological con-
stants have been estimated from X-ray analyses (see e.g. Vikhlinin et al. 2009 and Mantz et al.
2010), SZ measurements (see e.g. Muchovej et al. 2011, Williamson et al. 2011, and Marriage
etal. 2011) and a joint X-ray—SZ analysis (Hasler et al. 2012).
Joint analysis of data from galaxy clusters is not restricted to telescopes which measure different
quantities. Adam et al. (2015), Romero et al. (2015), Adam et al. (2016), and Romero et al.
(2017) all use SZ measurements from instruments including the Planck satellite (The Planck
Collaboration 2006), Bolocam (Sayers et al. 2013) and (Czakon et al. 2015), Green Bank tele-
scope (Korngut et al. 2011), and IRAM 30-metre telescope (Monfardini et al. 2014), that probe
different angular scales and operate over different frequency ranges, to infer profiles of cluster
parameters such as pressure, temperature and mass.

In this Chapter I carry out joint analysis of SZ data from AMI and from the Planck satellite.

Note that I conduct separate analyses on these data in Chapter 3. I apply Bayesian analysis

107
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using a joint likelihood for data from both instruments, to simulated cluster data generated with
observational and physical models (largely based on the ones introduced in Chapters 2, 4, and 5).
I analyse the resulting posterior distributions and compare them with results obtained from ana-
lysing the likelihoods for AMI and Planck separately.

I also apply the joint analysis to real data from the Planck detected cluster PSZ2G063.80+11.42,
whose mass estimates derived from AMI and Planck data in Chapter 3 showed discrepancies
with one another. Note the work in this Chapter has been published as a paper in MNRAS (Per-
rott et al. 2019), which I am a lead author of. The paper includes more information on how the
Planck simulations were generated, and presents results of analyses where the simulated data

was much better understood (and less prone to bugs).

8.1 Joint likelihood analysis

The key aspects of Bayesian inference have already been highlighted in Chapter 2. Nevertheless
it is useful to highlight how we evaluate the joint likelihood function of datasets which have

previously been analysed in isolation and with different analysis pipelines.

8.1.1 AMI data analysis

As previously, McApawm is used to calculate the posterior distribution for AMI data (see Sec-
tion 8.1.3.1).

8.1.2 Planck detection algorithms

The Y and M values published in the Planck catalogue PSZ2 are derived from data from one of
three detection algorithms: MMF1, MMF3 (Staniszewski et al. 2009; Marriage et al. 2011) and
PowellSnakes (PwS, Carvalho et al. 2012). The mass estimates presented in Chapter 3 that are
based on Planck data were calculated from the outputs of the PwS algorithm. Similarly the joint
AMI-Planck analysis here uses PwS to process the data for the Planck part of the analysis (see
Section 8.1.3.2).

8.1.3 Joint likelihood function

If one has an AMI dataset dan and a Planck dataset dpy, then the joint likelihood function for
the data is given by
L(0) = L(dam1,dp|O,.M) . (8.1)
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In this analysis we treat dn and dp; as being independent (see Section 8.4.1 for justification),

and since the Planck-predicted data only rely on the cluster parameters we can write

L(O) = Lavi (dami|O, M) Lp) (dp1|Oc, M) . (8.2)

8.1.3.1 AMI likelihood function

The form of the AMI likelihood function used here is exactly the same as the one presen-
ted in Section 2.8. Note also that the AMI covariance matrix Camry,,» is comprised of the
same components as noted in Section 2.8 (which are described in Sections 2.5.2.1, 2.5.2.2,
and 2.5.2.3), and recognised radio-sources are also treated the same way as previously described
(Sections 2.5.1 and 2.7.1) for AMI data. For clarity I note that the predicted AMI data are

denoted diMI ~(0)

8.1.3.2 PwsS likelihood function

For a single source and given observing frequency, PwS treats the data observed by Planck
as a superposition of background sky emission (including foreground emission and primordial
CMB) b,, instrumental noise n,,, and signal from the source s,.. The model for the predicted
data vector is thus

dp,, () = 5,(0c) + by + 1, . (8.3)

PwS works with patches of sky sufficiently small such that it can be assumed the noise contribu-
tions are statistically homogeneous. In this limit it is more convenient to work in Fourier space,
as the Fourier modes are uncorrelated assuming the noise contributions are Gaussian. This as-
sumption is fair in the case of instrumental noise, but more questionable for b,. The deviations
from Gaussianity of b, are discussed in Section 4.3 of the second PwS paper (Carvalho et al.
2012). Since PwS is a detection algorithm, it calculates the ratio of the likelihood of detecting
a cluster parameterised by @ and the likelihood of the data with no cluster signal (s, (O),0) =

0). Thus the log-likelihood ratioof the Fourier transformed quantities is

i [ Lp1 (Oc1)
n

T
Lp1 (Oc0) Z dPl y(Oc) CPl v dp1,y (0)

(8.4)
- Pl v (@CI)TCI;I v,v’ P] v (Oa),

where tildes denote the Fourier transform of a quantity, and Cpy .+ is the covariance matrix of

the data in Fourier space.
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A full specification of the PwS likelihood ratio is given in Carvalho, Rocha, & Hobson (2009)
and Carvalho et al. (2012).

8.2 Joint likelihood analysis hyperparameters

Lahav et al. (2000) and Hobson, Bridle, & Lahav (2002) (MHO2 from here on) introduced a
Bayesian method for determining the relative weighting of two or more independent datasets
when analysed simultaneously, while Ma & Berndsen (2014) built on this work to develop a
method which works for datasets correlated with one another. The basic idea behind the ap-
proach is to introduce additional hyperparameters @ into the Bayesian inference problem. In
other words we extend our parameter space to include not only the parameters of interest (@),

but also the hyperparameters @. Thus we have
_ LB, a0)n(0,a)

PO,a) = Z , (8.5)

where Z is now given by

Z:ffﬁ(@,a)n(@,a)dad@. (8.6)

Equations 8.5 and 8.6 tell us that to obtain the quantities of interest (£ () and Z) we have to
marginalise over the hyperparameters.
It is reasonable to assume that the parameters of the original problem and those affecting the

weighting of each likelihood are independent of one another, so the priors can be written as
1(0,a) =1(0)n(a). (8.7)

For more information on the typical priors used for @ we refer the reader to Section 4.1 of MHO2.
To see how a are incorporated into £(6) we consider two independent datasets, so that £ (6, a)
can be written as

L(O,a) = L1(0)" L(0). (8.8)

Note we have chosen for the likelihoods to have such dependence on « so that if £ and £, are

Gaussian (equation 2.49)

1
£1(0) = eI (8.9)
ZN

(and similarly for £,), then we can write

Xiint = @1X; + @2X3, (8.10)

where the y? quantities are defined by equation 2.50. Thus «| and @, control the relative

weighting of the goodness-of-fit metrics of the data.
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8.2.1 Effects of likelihood hyperparameters

The effects of including @ in Bayesian analysis are best illustrated through examples. Here
I provide a very brief overview and quote the results of the toy model considered in MHO2, to
emphasise how the inclusion of hyperparameters affects evidence and posterior estimates of joint
analyses compared with not using them (i.e. @; = @ = 1). I refer to the results obtained from
including hyperparameters as HP and those from the ‘vanilla’ method as V. The toy problem
consists of fitting a straight line through two (independent) sets of data points, and thus is a
two-likelihood (one for each set of data), two-parameter problem of inferring the gradient (m)
and intercept (c) of the line. The likelihood thus takes the form given by equation 8.8 with
O = (m,c). Several versions of the problem are considered which vary in the standard deviations

used for the likelihood functions and how the two datasets are generated.

8.2.1.1 Correct likelihood standard deviations and consistent datasets

The first example considered involves drawing points for each of the two datasets from the same
distribution, namely Gaussian distributions with standard deviations oq; = 042 = 0.1, and
mean values corresponding to the line with myq = ¢4 = 1; the same deviations are used for the
likelihood functions: 07,1 = 072 = 0.1. The resulting posterior distributions for the HP and
V cases are shown in Figure 1 of MHO2. The two methods recover the true values of m and ¢
equally well, but the V run leads to a higher evidence estimate. This is to be expected for simple
problems (for which the methods provide an equivalent fit to the data), as the added complexity

of the HP method decreases the Bayesian evidence according to Occam’s razor.

8.2.1.2 Incorrect likelihood standard deviations and consistent datasets

The second example generates the two datasets in the same way, but the standard deviations
used in the likelihoods are incorrect: 0,1 = 0.02, 072 = 0.1. Thus the predicted errors on the
first dataset are much smaller than the true values used to generate it. In this case (Figure 2 of
MHO02) the V posterior underestimates the errors on m and ¢ such that the true value is outside
the 99% probability interval; whereas the HP method results in much larger error estimates,
leading to the correct value being within the 95% confidence interval. This suggests that a
on average took relatively small values to accommodate for o, being underestimated in the
analysis. Furthermore the evidence ratio between the HP and V analyses is greatly in favour
of the former, suggesting the data are fit sufficiently better by the HP model to overcome its

additional complexity.
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8.2.1.3 Correct likelihood standard deviations with inconsistent datasets

The final scenario considered for the toy problem in MHO2 involves sampling the two datasets
from different distributions i.e. sampling two sets of data which represent different lines. This
means that there are two ‘true’ values for m and ¢ corresponding to each dataset, and so a good
inference of the data should produce a bimodal distribution with peaks at these values. They first
test this out by sampling one dataset from a distribution corresponding to 4,1 = c4,1 = 1 and the
other from mq > = 0, cq2 = 1.5. The resultant posterior distributions shown in Figure 3 of MH02
show that the V distribution is unimodal and does not contain either of the true values within its
99% probability contours, while the HP distribution is bimodal with the peaks occurring close
to the true values.

They repeat this analysis but sample from distributions corresponding to mq 1 = ¢g,1 = 1 and
mg2 = 0.7, cg2 = 0.7 and find again that the V posterior distribution is unimodal and centred
far from the true values, while HP results in a bimodal distribution with peaks in the vicinity of
the true values (but not as close as in the previous case). The evidence ratio between the V and

HP analyses suggests the latter is a more suitable model in both cases.

8.2.2 Incorporating the likelihood hyperparameters into AMI-Planck analysis

From the examples reviewed above, it is clear that inclusion of the likelihood hyperparameters
leads to inferences more representative of the data in the cases that the errors in the analysis are
underestimated or the datasets are systematically different from one another. Thus it makes sense
to include them in analyses of data obtained from telescopes operating at different frequencies
and angular scales and that are subject to different systematic errors.

However the log-ratio given by equation 8.4 is not a probability density due to the fact that it
is missing a normalisation factor proportional to cipl,v(@cl)TCEﬂv’v,cipl,v(@cl) = C. Inclusion of
the likelihood hyperparameters means that the normalisation factor of a likelihood function is
dependent on ¢, since it is marginalised over to obtain £L(@), so C = C(a) = C?.

To test whether the inclusion of C(a) was strictly needed for the hyperparameter methodo-
logy, I replicated the toy model example considered in Section 6.1 of MP02 (reviewed in Sec-
tion 8.2.1.1), ran the analysis using the ‘full’ hyperparameter likelihood functions (equation 8.9)
and also conducted the analysis using hyperparameter likelihood ratios (i.e. using the likeli-
hoods given by equation 8.9 but excluding the C® factors present in the y2s). The full likeli-
hood analysis produced a a posterior distribution similar to the one obtained in MP02 (left plot

of Figure 8.1) while the likelihood ratio analysis failed to produce posterior samples. The reason
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why likelihood ratios are incompatible with the hyperparameter method is shown graphically in
the right plot of Figure 8.1. From this plot it is clear that C® dictates the shape of the likelihood
function as well as its peak. For example around y? = 0 the normalised & = 2 curve is above the
@ = 1, while the un-normalised & = 2 curve is below it. This inconsistency generalises to all y?
and a values and thus one cannot reliably evaluate the effect of a on the analysis without know-
ing C* and hence the hyperparameters cannot be used with likelihood ratios such as the one used

by PwS. As aresult, the two likelihoods had to be weighted equally (i.e. I set @1 = a2 = 1).

8.3 Cluster models

As described in Section 2.2, a radio interferometer measure signal that is the Fourier transform
of a quantity proportional to the Comptonisation parameter y. Similarly the Planck satellite is
also sensitive SZ effect and thus measures a signal o< y. Thus the cluster models introduced
previously in this thesis which calculate a map of y can be used to calculate d",,. (@) and

AMLv
T
dgl,v(@d) .

8.3.1 Observational model

The observational model used in this Chapter (OM III) is the same as the ones introduced in
Chapter 4 other than the priors it uses.

Here I assign non-informative, independent priors to Yo and 6, (see Table 8.1), to get a better
idea of how much the joint likelihood function can constrain the parameters. The priors used for
a and b vary throughout the analysis (Table 8.1); they are either fixed at some specific value (as

was the case in OM I and OM 1I) or allowed to vary uniformly.

8.3.2 Physical models

The physical models used here are the same as the ones presented in Chapters 2 and 4 (PM I and
PM 1I) i.e. they model the cluster dark matter content using NFW and Einasto profiles respect-
ively. The prior distributions the PMS are also given in Table 8.1.

All three models can be used to calculate the profile of P.(r) which can be used to produce

a y map using equation 2.16.



114 Chapter 8. Joint analysis of AMI and Planck data

== 1 | S N
| 1 | 1 1 1 1 1
1.20 | .
1.05 | .
0.90 - i
0.75 | . '
] ] ] ] --|"; ] |\"“--. L
0.8 1. 1.2 1.4 0.75 0.90 1.05 1.20
T i
) A

a=1

not normalised, or = 2
not normalised, o = 0.5
normalised, = 2
normalised, & = 0.5

Figure 8.1: Top: Two-dimensional posterior distribution obtained from application of
likelihood hyperparameter method on toy model considered in Section 6.1 of MP02.
m and c are the gradient and intercept parameters of the toy model respectively. These
results were obtained using the likelihood functions given by equation 8.9. Bottom:
Gaussian likelihood for a range of @ values, including (normalised) or excluding (un-
normalised) C*. Note for the @ = 1 case the normalisation doesn’t depend on « since
Cla=1=0).
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Parameter Model(s) featured in Prior distribution(s)

Xc OM III, PM 1, and PM II N (0”,60")

Ve OM III, PM I, and PM 11 N (07,60")

Yoot OM I U[0.00 arcmin?,0.02 arcmin?]
Op OM III UI1.3,15']

z PM I and PM II 0(2)

M (r00) PM I and PM II U[log(0.5 X 10" Msyn),10g(50 x 10 Mgyn)]
Seas(200) PM I and PM II N(0.12,0.02)

QEin PM II O (agiy) or U[0.05,0.3]

a OM III, PM I, and PM 11 6(a) or U[0.3,3.5]

b OM III, PM 1, and PM 1I o(b) or U[3.5,7.5]

c OM III, PM I, and PM II o(c)

Table 8.1: Cluster parameter prior distributions. N denotes a normal distribution
parameterised by its mean and standard deviation, ¢ denotes a uniform distribution,
and ¢ is a Dirac delta function. In the cases where the latter is used, the values used
for the function’s argument will be stated when the analyses are carried out.

8.4 Cluster simulations

The cluster simulations were generated using the in-house package ProrILE (used in Chapters 3
and 5). For all simulations the y map of a single cluster is generated with either OM III, PM 1,
or PM 11, and primordial CMB noise is sampled from an empirical distribution (Hinshaw et al.
2013) and added at random positions to the data. At this point the data are duplicated so that
additional noise contributions specific to each telescope can be added.

For the AMI simulated data, confusion noise is added as described in Section 3.7 using the 10C
source counts given in Davies et al. (2011). Instrumental noise with an RMS value of 0.379 Jy
per channel per baseline per second is also added.

For the Planck simulated data, foreground emission and instrumental noise are added. For more
information on the Planck simulations, see Perrott et al. (2019). Finally, the data are ‘observed’

by AMI and Planck separately to generate damy, and dpy .

8.4.1 Testing the independence of the AMI and Planck datasets

p
AMIL v

other, so that the likelihoods for the two datasets can be separated. The instrumental noises

In Section 8.1.3 we made the assumption that d and dglv are not correlated with each

associated with each telescope can safely be assumed to be independent. Due to the telescopes

operating at different angular scales and frequencies, the confusion noise present in AMI data
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Figure 8.2: Two-dimensional marginalised x. — Y. and Yot — 6, posterior distributions
for a high SNR (see Section 8.5.1) cluster simulation generated using OM III. The red
contours correspond to the posterior distribution associated with the AMI and Planck
datasets which had different CMB realisations to each other, while the black ones
correspond to datasets generated with the same realisation. The star symbols indicate
the values input when generating the simulations.

and foreground emission present in Planck data are assumed to be independent of one another.
A similar argument can be applied for primordial CMB noise, nevertheless I carried out a simple
test to see if this is the case. For a given set of cluster parameters, I ran the joint analysis on
Planck and AMI datasets which had different CMB realisations to one another. I found that
the resultant parameter constraints were not affected by this when compared with the results
obtained using AMI and Planck data which had the same CMB realisations as one another

(Figure 8.2). I thus concluded that the covariance between the datasets was negligible.

8.5 Cluster simulation results

In the following analysis I generate cluster simulations for different noise realisations and cluster
parameter values (and models). I apply the joint analysis to these simulated clusters, and com-
pare results with analyses which use (the same) AMI or Planck data alone. Note that for all

examples considered, the model used to simulate the cluster was also used to analyse the data.
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Simulation input

Parameter low SNR high SNR
Xc 0 arcsec

Ve 0 arcsec

Yoot 0.001 arcmin®  0.007 arcmin?
Op 2 arcmin 8 arcmin

a 1.051

b 5.4905

c 0.3081

Z 0.17

Table 8.2: Cluster simulation inputs using an observational model and the ‘universal’
GNFW shape parameters calculated in Arnaud et al. (2010). Although z isn’t an
input parameter for observational models, it is still required to generate simulations
of clusters.

8.5.1 Observational model with ‘universal’ shape parameters

I generate simulations using OM III, with GNFW shape parameter values a = 1.0510, b =
5.4905, and ¢ = 0.3081 (i.e. the same ones used in Chapter 5). As shown in Table 8.2 I
consider a ‘low’ and a ‘high’ signal-to-noise ratio (SNR) cluster, which correspond to input
values of ¥ = 0.001 arcmin? and 0p = 2 arcmin and Y, = 0.007 arcmin? and 6, = 8 arcmin
respectively. I generate 10 simulations for each of these clusters, each of which has a different
noise realisation. I then analyse these simulations using the priors given in Table 8.1, with delta
priors on a, b and c¢ centred on their ‘true’ values (the ones used as inputs to the simulations),

and plot the resulting posterior distributions using GETDIsT.

8.5.1.1 Low SNR simulation analyses

Figure 8.3 shows the two-dimensional marginalised x. — y. and Y — 6, posterior distributions
of the joint, AMI-only, and Planck-only analyses of the low SNR cluster. Note that each plot
contains the posteriors of the 10 different simulations, each of which is represented by a contour
(68% confidence interval). Looking at the AMI data only analyses, in two of the simulations the
correct values for x. and y. are not recovered within a 68% confidence interval. The plot shows
that the constraints in Yo — 6, are generally tight, but three contours do not encompass the input
value.

The Planck-only analyses generally recover the correct values for x. and y. but the contours

are much wider. There is a large degeneracy in 6, suggesting that in this case Planck cannot
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constrain the geometric size of the clusters very well.

The joint analysis shows similar results to the AMI-only analyses for the x.—y. distributions, but
the constraints on Y and 6, are very tight (sharper distributions than in the case of AMI-only),
which suggests that even though the Planck data in isolation was degenerate, when combined

with AMI it can help infer the correct size of a cluster.

8.5.1.2 High SNR simulation analyses

Figure 8.4 shows the contours of the posterior distributions obtained from the high SNR simu-
lations.

The AMI-only x —y. posterior contours are similar to the low SNR case, but are generally more
offset from the correct value in this instance. The Yo — 6, posteriors show large degeneracies
along the line of changing Y, and 6, (i.e. a large positive covariance between the two paramet-
ers). The Planck-only data results show tighter constraints on x. and y, relative to the low SNR
simulations, but still wider than the other two analysis methods. The Yo — 6, posteriors show
that Planck arguably does a better job than AMI in recovering the true values, as the contours
are generally tighter in the former case, and both analyses give a similar number of distributions
where the correct value lies in the proximity of the contours.

The joint analysis shows that the cluster offset inferences are driven almost entirely by the AMI
data, as they strongly resemble the results of the AMI runs. In contrast the Yo — 6, posteriors
suggest Planck data is dominating the inferences, and that the joint data distributions provide the
tightest constraints on Y, — 6, estimates. However, five of these distributions fail to recover the

true values within their 68% confidence intervals.

8.5.1.3 Variable shape parameter analysis

I next consider the same simulations described in Section 8.5.1, but allowing the GNFW shape
parameters a and b to vary in the analysis. 1 thus assign the uniform priors stated in Table 8.2
to a and b. I note that throughout the analysis I found that the cluster model used to analyse
the data did not affect the posterior constraints on x. and y., and so I do not discuss them in the
subsequent analyses.

Figure 8.5 shows two-dimensional posterior distributions of pairs of the parameters: Y, 6, a,
and b, resultant from six low SNR simulations. The 6, — a posteriors show that the AMI-only
and Planck-only analyses fail to produce good constraints, as the former has a large degeneracy

in 6, which misses the simulation input while the latter is almost completely uninformative
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Figure 8.3: Two-dimensional marginalised x. — y. and Y — 6, posterior distributions
for the 10 OM III low SNR cluster simulations obtained from: AMI data (top row),
Planck data (middle row), and AMI and Planck data combined (bottom row). The
contours in each plot represent the 68% confidence intervals of the separate posterior
distributions obtained from each of the 10 simulations. The star symbols indicate the
values input when generating the simulations.
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(resembles the prior). The joint analysis leads to results that encompass the true value within the
68% contour, albeit with large degeneracies in a at low 6, (where the true 6, value lies) and in
6p at low a. The Yo — a posterior plots shows similar results for AMI, Planck recovers Yo well
but has a large degeneracy in a. The joint analysis gives similar results to Planck-only, but with
a tighter constraint on Y (as was the case in the fixed a and b low SNR analyses). Posteriors
in the Yot — b plane show similar results, but in this case the joint analysis produces contours
which are less degenerate in b than the Planck-only results. The 6, — b plots show that all three
analyses fail to produce informative (well constrained) posteriors.
While the joint analysis tends to show degeneracy in a and b, it does produce superior constraints
on Y and 6, relative to the single data analyses for marginalised posteriors considered here.
Figure 8.6 shows the two-dimensional posterior distributions for the high SNR simulations,
in which case the AMI posterior distributions recover a relatively well (with the one clear ex-
ception). The AMI posteriors for b are quite wide but generally peak around the input value of
b.
The Planck-only distributions also show some improvement over the low SNR case.
The joint analysis gives slightly worse results for a than the AMI-only case (though the excep-
tionally bad AMI distribution improves), while the posteriors for b arguably improve in the joint

case for five of the six simulations.

8.5.2 Cluster simulations using physical models

I repeat the simulation procedure described in Section 8.5.1, but this time using PM I and PM
II in the cluster simulation and analysis. Table 8.3 shows the input parameters used for PM
simulations; the low SNR simulations have M (r200) = 5 x 10'* Mg,, while the high SNR use
10 X 10" Mgyp.

8.5.2.1 PMIlow SNR posteriors

The one-dimensional posterior distributions for x¢, ye, M(r200), and fgas(r200) for the 10 low
SNR simulations are shown in Figure 8.7. Four of the AMI mass posteriors replicate the shape
of the prior distribution (which has a 1/M (r»00) dependence in linear space), indicating that the
likelihood is negligible for these analyses. fgas(7200) is recovered very well by AMI for all ten
simulations (and also takes the same shape as the prior).

In the case of the Planck mass estimates, the modes of the posteriors overestimate the input value

by a factor of at least two. The same statistic slightly underestimates fg,(7200) in some cases,



Chapter 8. Joint analysis of AMI and Planck data

122

L

]

3.0 T T T

241

a

0000 0004 0008 0012 0016 0020 3 6 9 12

- .9
Y, /arcmin

15

flp /arcmin

=] -
L L L
0000 D004 0.008 0012 0.016 0.020
- .2
Y, /arcmin
T T T T T
= =
L L L L L L l l
0.000 0004 0.008 0012 0.016 0.020 3 & 9 12 15
- .2 .
Y., /arcmin fp /arcmin

Figure 8.5: Two-dimensional marginalised posterior distributions for six OM III low
SNR cluster simulations obtained from: AMI data (top row), Planck data (middle
row), and AMI and Planck data combined (bottom row). In the Bayesian analysis
of the data, the values of the GNFW shape parameters a and b were allowed to vary
(had uniform priors). The black stars indicate the values input when generating the
simulations.

0000 0004 0008 0012 0016 0020

- .2
Y, /arcmin

I I I I
0000 0004 0008 0012 0016 0020

- . 2
¥, /arcmin

0.000 0004 0008 0.012 0.016 0.020
- .2
¥, /arcmin




*G'Q QN3] Ul PaqLIdSIp Se ST IN0Ae[
jo1d 9y, ‘SISA[eUR U} UI ATBA 0] PIMO][E 9I9M g PUEB D JIdUM SUONB[NUIIS I21SN[O YNS
Y31y 1] JNO XIS J0J Suonnquisip Jouo)sod posijeurSIew [EUOISUWIP-0M], :9°§ NS

Jurumore /g e f dg Qe /g urore/ 9
0Z00 9100 ZIO0 8000 F00D 0000 st 7 6 5 0Z00 9100 ZI00 8000 F0OD 000 ST 41 5 9
T T T T T T T T T T T T T T
- 1
- {90
- 15 - 1zt
=
g Het
- E
- 1ve
g e
L L L L L L Qm
103 03
uoIe TIoIe
Jumore P Jumore /Py
0Z00 9100 ZIO0 8000 ¥00D 0000 0Z00 9100 ZI00O 8000 ©00D 0000
T T T T T T
g 1% ~
g EL
g E - 1zt
=
| e g det
- 1ve
g e
] ] ] ] cm
o
303 03
uoae uoIe
Lo /g Juuoae /g
0Z00 9100 ZIO0 8000 ¥00D 0000 0Z00 9100 ZI00 8000 ©00D 0000

an

[

81

¥

0E

90

[

81

v

0e

90

T

21

¥

0€

n

n

n



124 Chapter 8. Joint analysis of AMI and Planck data

Simulation input
Parameter PM Ilow SNR PMIhigh SNR PMIIlow SNR PM II high SNR

Xc 0 arcsec

Ve 0 arcsec

M(ra00) 5% 10" Mgy, 10X 10" Mgy,  5x 10" Mgy, 10 x 1014 Mgy,
fas(1200) 0.12

QEin - 0.2

a 1.051

b 5.4905

c 0.3081

z 0.17

Table 8.3: Cluster simulation inputs for PM I and PM II. The cluster centre, GNFW
shape parameters, and redshift inputs are the same for all four models. The Einasto
shape parameter is only an input for PM II.

but not to the same degree as the M (rygp) values are overestimated.

The combined data also overestimates M (rpqg), with the modes ranging between ~ 1.75 — 4
times the true values. What is also striking is the values of the modes of the fga5(r200) posteriors,
which in some cases (which correspond to the larger mass estimates) occur around fgas(7200) =
0.8. The overestimation of mass and underestimation of fg,s(r200) suggests that in the joint
analysis, it is the composition of the clusters which have been incorrectly inferred, whilst in the

Planck-only case it appears that the physical size of the clusters is overestimated.

8.5.2.2 PM I high SNR posteriors

For the high SNR cluster simulations (Figure 8.8) the AMI mass estimates on average peak on
the true mass value. The Planck mass modal values generally underestimate the input mass,
which is in stark contrast to the low SNR case where they massively overestimated it. The
Planck estimates of fg,5(r200) are extremely accurate, which again suggests that it is the size
rather than the composition of the cluster that Planck has difficulty with. The joint estimates

perform similarly well to the separate analyses.

8.5.2.3 PM II cluster simulations

Cluster simulations were generated with the PM II setting agj, = 0.2. Note this value for agi,
corresponds to a profile similar to that given by the NFW profile (as discussed in Dutton &

Maccio 2014 and Chapter 5). The clusters were analysed with a uniform prior on @i, (given
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Figure 8.7: One-dimensional marginalised posterior distributions for the 10 PM I
low SNR cluster simulations obtained from: AMI data (top row), Planck data (middle
row), and AMI and Planck data combined (bottom row). The black vertical lines
indicate the values input when generating the simulations.
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Figure 8.8: One-dimensional marginalised posterior distributions for the 10 PM I
high SNR cluster simulations. The plots are laid out as described in Figure 8.7.
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in Table 8.1), but GETDist failed to plot distributions from the resultant posterior samples. This
suggests that the marginalised agj, posterior distributions are not ‘compatible’ with Gaussian
kernel density estimation techniques used in the program. Nevertheless GErDisT still produced
posterior distributions of other parameters (by marginalising over agj,), and gave results similar
to the PM I simulations. The posteriors obtained from analysis of the high SNR PM II clusters
are shown in Figure 8.9. Likewise Bayesian analysis of the cluster simulations with a delta prior
on agj, resulted in posterior distributions similar to those obtained from PM I simulations and
analysis.

Note that the overestimation of cluster parameters has been resolved in Perrott et al. (2019)
by understanding the Planck simulations better (and correcting a couple of associated bugs), but

the paper focuses on observational models rather than physical.

8.6 Application of joint analysis to real cluster data

8.6.1 Mass estimates of cluster PSZ2G063.80+11.42

I apply the joint analysis to a cluster featured in PSZ2 (PSZ2G063.80+11.42) and the 54 cluster
sample analysed in Chapters 3 and 4. Note that in these Chapters slightly different values for a,
b, and ¢ were used, which were derived in Arnaud et al. (2010) for the standard self-similar case
(Appendix B of Arnaud et al.). It was shown in Olamaie, Hobson, & Grainge (2013) that PM
I is not affected by which of these two sets of parameters is used. In Chapter 3 I calculated the
AMI mass estimate to be Mawmi(rso0) = (3.37 = 0.76) x 10'* Mgy, and the PwS mass estimate
(using the slicing function methodology introduced in PSZ2 and detailed in Section 3.4) to be
Mpy_ slice (F500) = (6.4118:2%) x 10'* Mgy,. I chose to run the joint analysis on this cluster due
to the fact that its AMI and Planck masses were quite discrepant, despite the AMI radio-source
environment not appearing to be problematic on the map of the observation. The cluster redshift
is taken from PSZ2 as z = 0.426, and the coordinates of the Planck patch centre are within
0.01 arcmin of the AMI SA pointing centre of the observation.

I run the joint analysis with PM I using the priors given in Table 8.1 (assigning delta priors
to the GNFW shape parameters). The marginalised posterior distribution for Myeint, Pm1(7500)
(Figure 8.10) gives a mean estimate of Mjoint, pMi1(7500) = (5.74 £ 0.70) X 10" Mg,,. Hence the
joint analysis gives a value within one combined standard deviation of the value obtained from
Planck data using the PSZ2 slicing function methodology, and within three combined standard

deviations of the value obtained from AMI data alone.
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Figure 8.9: One-dimensional marginalised posterior distributions for the 10 PM II
high SNR cluster simulations obtained by marginalising over agi,. The plots are laid
out as described in Figure 8.7.
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For further comparison I run the Planck-only analysis for the same cluster using the same model,
and find that Mp) pmi(rs00) = (6.98 +1.02) x 10'* Mgy,. For clarity I note that Mp_jice (7500) and
Mpy, pmi(rso0) are obtained from the same data using the same PwS algorithm, but the former
uses the scaling relations and slicing function methodology to obtain a mass estimate, whereas
the latter uses PM I in the Bayesian analysis to directly infer mass posterior distributions.

In Chapter 3 I found that PSZ2 mass estimates were generally higher than those obtained
by AML. In this Chapter the low SNR PM I simulations show similar results, as Planck data
analyses gives large overestimates of the true values, whereas AMI underestimates it on average.
The real data analysed here suggest the same — although we do not know the ‘true’ mass value
in this case. The fact that both estimates from Planck data are relatively high suggests the data
themselves are causing this, not the model being applied. I note however that this is based on
just one real cluster, and that the Planck-only analysis of high SNR simulations did not produce

mass overestimates.

8.6.2 Variable ¢ and b analysis

For comparison with the results obtained from simulated data in Section 8.5.1.3, I analysed the
PSZ2G063.80+11.42 data using OM III while allowing a and b to vary. Figure 8.12 shows the
resulting posterior distributions for the three analysis methods. As was the case in the simula-
tions, the joint analysis gives a tighter constraint on the Y and 6, parameters, but does show a

degeneracy in a and b.

8.7 Conclusions

I have introduced a joint likelihood function for data obtained from Planck and AMI in order
to compare inferences obtained using it with those from the individual likelihood functions.
The Bayesian analysis of Planck data was carried out using PowellSnakes (PwS, Carvalho et al.
2012) and AMI data were analysed in a way similar to the method outlined in Feroz et al. (2009)
(and used in the preceeding Chapters); the joint analysis ran both of these simultaneously.

I tried implementing the likelihood hyperparameter method introduced in Lahav et al. (2000)
and Hobson, Bridle, & Lahav (2002). I showed that likelihood ratios cannot be used with the
hyperparameter method by implementing the toy model considered in Hobson, Bridle, & Lahav
(2002). Therefore since PwS evaluates a likelihood ratio it is not compatible with this method.

I generated simulations of clusters using an observational model (OM III, similar to the ones
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Figure 8.10: Marginalised posterior distributions obtained from joint AMI-Planck
analysis of cluster PSZ2G063.80+11.42, using PM I. The dashed line plots are fully
marginalised posterior distributions, while the contour plots are two-dimensional mar-
ginalised distributions. The inner contours correspond to the region of 68% confid-
ence, while the outer contours corresponds to 95%.

used in Chapter 4) for 10 different noise realisations, and analysed the data using the same
model. From looking at the resulting posterior distributions I found the following.

e For low signal-to-noise ratio (SNR) clusters, AMI data alone could be used to constrain

values for the integrated Comptonisation parameter ¥ and angular radius 6 rather well,

but Planck data showed large degeneracies in 6. The joint analysis however showed the

tightest constraints in ¥ — 6 space (generally centred around the simulation input values).
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e For high SNR clusters, the Planck-only analyses gave moderate constraints on 6 and good
results for Y, while the AMI-only analyses showed large covariance between Y and 6. The
joint analysis results gave similar results to the former, but with tighter constraints. For all
three analyses, the true value was often in the proximity of the 68% confidence interval
contours, rather than close to their centres.

e When allowing the shape parameters a and b of the generalised NFW model (Nagai,
Kravtsov, & Vikhlinin 2007, used to parameterise the electron pressure) to vary in the
Bayesian analysis, it was found that the joint analysis could generally constrain the ¥ and
6 parameters better than the individual analyses, but showed degeneracies in a and b.

Using physical models derived in Chapters 2 and 5 I generated cluster simulations and analysed
them with the three likelihood functions to infer cluster mass estimates. From this I found the
following.

e For low SNR clusters I found that AMI underestimated cluster masses on average, but did
recover the true value for some noise realisations. Planck systematically overestimated
the masses by factors of at least two, while the joint analysis also led to overestimations
(but generally to a smaller extent), suggesting it was the Planck likelihood dominating the
joint posterior inferences.

e The gas fraction estimates from the joint analysis for low SNR clusters are consistently
lower than the simulation input values, which suggests that the joint analysis is struggling
to correctly infer the composition of the cluster, which is probably the cause of the mass
overestimates.

e Analysis of high SNR clusters with AMI data gave accurate estimates of the input mass,
while Planck data led to slight underestimates. Application of the joint analysis gave
results similar to the individual analyses.

Finally, I applied the joint analysis to real data for the cluster PSZ2G063.80+11.42 which is
part of the sample of 54 clusters considered in Chapters 3 and 4. I compared the mass estimates
obtained with those obtained from AMI and Planck data and found the following.

e The AMI estimates and joint analysis mass estimates are Mami(rso0) = (3.37 £ 0.76) X
10" Mgy, (obtained in Chapter 4) and Mjoin(r500) = (5.74+0.70)x10'* Mgy, respectively.
The two estimates derived from Planck data are Mp), pmi(r500) = (6.98 £1.02) X 10" Mgy
and Mpi, gice(rs00) = (6.4120-31) x 10'* Msy,. The former of these was inferred directly
from the PM I posterior distributions. The latter was obtained from the slicing function
method introduced in Planck Collaboration XXVII (2016) and detailed in Section 3.4.
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o The joint analysis estimate is sandwiched in between the other three values, but is closer
to Mpj, pmi1(7s500) than it is Mami(rso0), suggesting that the Planck likelihood has a large
effect on the joint analysis posterior distribution.

o The fact that both Planck data-only mass estimates are higher than the AMI value suggests
that it is the data which are causing the relatively high estimates, at least for the real
example considered here.

e When allowing the GNFW shape parameters a and b to vary, the joint analysis generally

provides much tighter parameter constraints than the individual analyses.






CHAPTER

MOoNTE CARLO SAMPLING METHODS

For most astrophysical problems, calculating the Bayesian evidence numerically is unfeasible,
especially for high dimensional problems. Likewise, attempting to calculate parameter probab-
ility distributions exactly is computationally impossible. Thus one usually resorts to statistical
sampling to make estimates of these quantities.

Monte Carlo sampling methods are a broad class of computational algorithms that rely on re-
peated random sampling of some distribution to obtain a numerical approximation of the true
results. In the context of Bayesian inference, this amounts to representing a posterior distribution

via a set of ng weighted samples
S ={(01,P1), ....(On, Pn )}, O.1)

where P; is the weight of each sample and Z?:s] P; = 1. In this Chapter I give a brief review
of how these samples can be obtained and used to plot approximations of the true posterior
distribution. It serves as a reference to astrophysicists who are new to sampling, and refers to

methods which are well known in the field of statistics.

9.1 Inverse transform sampling

Assuming we can draw independent, identically distributed random variables u that are uni-

formly distributed on [0, 1], and provided we can calculate the inverse of the cumulative distri-

135
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Figure 9.1: Left: Illustrating inverse transform sampling for a one-dimensional dis-
tribution £ (6). Once a value for u; is obtained, one draws a horizontal line from
(0,u) until it intersects with 7 (@) (black dotted line). The value of 6 at the point of
intersection is the point sampled from the distribution (6;, green dotted line). Clearly
the steeper # (6) is over an interval 66, the higher the chance of it intersecting with
the horizontal lines corresponding to the uniform [0, 1] samples. Right: Illustrating
rejection sampling, taken from Handley (2016). The crosses correspond to samples
from the distribution g(8). Provided g(8) > #(8) for the domain of interest, then the
samples beneath the blue curve (white area) can be regarded as samples from P (6).

bution function of the posterior # !, then we can draw random samples from P (). We can
interpret u as being a probability, and thus by evaluating 7 ~! (1) we are finding the value of @
which satisfies

o
u=7%(0)= f P(O")dO’, 9.2)
Om

where @, is the component-wise minimum value of @ over which £ (@) is defined. The steep-
ness of # at a given point is proportional to the value of £ (@) and thus regions of higher
probability density will be sampled from more often as shown in the left plot of Figure 9.1.
Consequently the weights of the samples are proportional to the number of times a value of @ is

sampled. The difficulty in inverse transform sampling arises when # ~! is hard to evaluate.

9.2 Rejection sampling

Rejection sampling involves sampling from a proposal distribution g(6) to ultimately draw
samples from the distribution of interest ?(6). The only requirement on g(6) is that g(6) > P (6)

for the domain of interest. The method works as follows.
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1) Sample a value of 6 (= 0,) from g(6) by using e.g. inverse transform sampling.
2) Sample a random variable ug uniformly from the range [0,g(6)].

3) If P(0g) > ug, accept the point 6, as a sample from # and reject it otherwise. The sample
weights are thus once again proportional to the number of times a value is sampled.
Rejection sampling is demonstrated graphically in the right plot of Figure 9.1. Note that rejection
sampling can be inefficient (reject a lot of samples) when g and P are dissimilar. The similarity
between the two can be quantified by some distribution distance metric such as the Earth Mover’s

Distance used in Chapter 4.

9.3 Markov Chain Monte Carlo sampling

Before talking about Markov Chain Monte Carlo (MCMC) sampling methods I give a primer on
Markov chains and state some of their key properties relevant to MCMC.

9.3.1 Markov chains
9.3.1.1 Types of Markov chain

A Markov chain is a sequence of random variables for which the probability of outcomes for
a particular element of the chain depends only on the state attained in the previous step of the
chain. A Markov chain X can be continuous in time i.e. X = X(¢) for ¢t > 0 or discrete,
X = {Xo,X1,...,X,-1}. In the case of the former we are saying that the chain can be measured at
any time ¢, while for the latter we are saying X can only be measured at discrete times defined
by the index n. The possible values that X can take (often referred to as the state space, ©) can
also be continuous or discrete. A continuous state space refers to one in which X can take any
of the (uncountably infinite) values defined on the space. A discrete state space can include a

finite or a countably infinite number of states.

9.3.1.2 Discrete time discrete state space Markov chains

For the properties considered here we will consider discrete time discrete state space Markov
chains only, but note that these ideas generalise to the continuous cases. For more information
on continuous Markov chains we refer the reader to MacKay (2002), Robert & Casella (2004),

and Johansen & Evers (2007). A Markov chain X with discrete time domain and discrete state
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space @ can be stated mathematically as
P(Xp = 0i|Xu-1=0j,...X0 = 0r) = P(X;, = 0;|Xpn—1 = 0;) =T ji, 9.3)

where the 6; € 0. T, ;; is the transition probability from 6; to 6; between steps n — 1 and n.
For a homogeneous Markov chain the transition probability between two states is independent

of time, thus we can write T,, j; = T};.

9.3.1.3 State properties

We will now focus on homogeneous Markov chains and introduce some of their properties rel-
evant to Monte Carlo sampling.

A state 6; is said to be accessible from state 6; (denoted 6; — 6;) if
inf{n : P(X,, = 6;|Xo = 6;) > 0} < oo, 9.4)

or equivalently inf{n : T]”l > 0} < oo. inf refers to the infimum of the set (greatest lower bound
of the set). If this condition is satisfied it means that there is a finite probability of moving from
state 6; to state ¢; after a finite number of steps n. The definition of communication follows
from accessibility: two states #; and 6; are said to communicate with each other (6; < 6;) if

they are accessible from one another

A Markov chain is said to be irreducible if all states communicate with each other, that is
0; < 0; for all 6;,6; € ©. This is important in the context of MCMC as a chain with this
property can explore the entire state space without being confined to some portion of it (which
could be determined by the chain’s initial state). The chain is said to be strongly irreducible if
any state can be reached from any other state in a single step i.e. if 7;; > 0 for all i and ;.

It is also important to consider the number of paths can take from a state 6; before the chain
returns to 6;, as this will tell us something about the presence of long-range correlation between

the states of the chain. A state 6; has period d(6;) which is given by
d(9;) = ged{n > 1: T}, > 0}, (9.6)

where gcd denotes the greatest common denominator of the set. It can be shown that all states
which communicate have the same period, hence for an irreducible Markov chain all states have

the same period. An irreducible Markov chain with d(6;) = 1 is said to be aperiodic. This
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essentially means that the Markov chain can transition back into the same state that it was in
at the previous step. In the context of MCMC this means that the same value can be sampled
consecutively.

Another quantity relevant to MCMC is the number of times a state is visited, ng,, in the asymp-

totic limit n — co. We define this as
ng, =y I(X; - ), ©.7)
j=0

where 7 (Y) equals one for ¥ = 0 and zero otherwise. The introduction of ng, allows us to
introduce two more properties of Markov chains: transience and recurrence. A state is said to
be transient if

E(ng,) < oo, 9.8)

while it is said to be recurrent if
E(ng,) = oo, 9.9)

where the expectations are taken in the asymptotic limit. In the case of irreducible chains,
transience and recurrence are properties of the chain itself rather than its individual states, so we
can say that for such a chain all states are either transient or they are all recurrent. If the Markov
chain is recurrent then the samples from MCMC can take any value in @ an infinite number of
times. Another notion of recurrence can be defined with respect to time rather than frequency
of transitions to a state: if the ‘time’ (number of steps) between a chain moving to state 8; and
revisiting the state, 7y, ¢, has a finite first moment, then the state is said to be positive recurrent.
Note that positive recurrence is also a property of the whole Markov chain in the case that it is

irreducible.

9.3.1.4 Stationarity and reversibility of Markov chains

A distribution u defined on @ is said be stationary if
HT =p, (9.10)

where p is a row vector of the values of u(6;) = y; for all 8; € © and T is a matrix of transition
probabilities 7;; for all valid i and j. If at any step along the Markov chain its marginal dis-
tribution P(X;) is distributed according to its stationary distribution y, then it stays distributed

according to u since uT" = u for arbitrary n.
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A stationary stochastic process is said to be reversible if the statistics of the time-reversed ver-
sion of the process match those obtained in the original. An alternative way of interpreting this
is that the distribution of any collection of future states given the past states must match the

conditional distribution of the past states given the future states. This means that we require
P(Xo =6;1X_1 =6;) = P(Xo = 6;|1X1 =6,). (9.11)
It can be shown that if a Markov chain satisfies the detailed balance relation given by
Tijui =Tju;, 9.12)

then the chain is reversible. Note that satisfying equation 9.11 is a sufficient condition for a
Markov chain to converge to its stationary distribution (¢). The reversibility property can be

shown by substituting equation 9.12 into 9.11

P(Xo = 60;|X_1 =0;) =Tj;
T
_ P(X1=0;|Xo =0,)P(Xo = 6,)
- P(X| = 6;)

= P(Xp = 6;|X, = 0)).

(9.13)

Note that the necessary conditions for a Markov chain (with a discrete state space) to converge
on the target distribution are for it to be irreducible, aperiodic, and for the stationary distribution

to be the target distribution.

9.3.2 Examples of MCMC algorithms

To use MCMC to sample from continuous probability distributions, we must assume that our
Markov chain has a continuous state space for 8, but we still work in discrete time. In this case

the detailed balance relation between steps k and k + 1 along the chain is given by

T(Ok+1,01) u(0x) = T Ok, O +1) (O +1), (9.14)

where T (0r+1,01)u(0r) = P(Xi+1 € O|Xx € O) and u(fy) = u(Xx € @). In the context
of Bayesian inference, the posterior distribution should be the target distribution of the Markov
chain and so we want u(6y) = P(6x). All that is left is to find a form for the transition dis-

tribution that satisfies equation 9.14 (a sufficient condition for the Markov chain to converge to
P(9)).
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9.3.2.1 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm (MH, Hastings 1970) generates samples from #(6) using
a relatively simple trial distribution g. For a step along the Markov chain from k to k + 1 the
algorithm operates as follows.

1) Sample a trial point §” from the trial distribution ¢ (6’|6%).

2) Calculate the acceptance probability a(6’,60;) = min (%m, 1).

3) Draw a uniform random variable u from [0,1]. If u < a(0’,0y) set 8.1 — 6’. Otherwise

Ok+1 — Ok.

In Section D.1 we show that the MH algorithm satisfies detailed balance, that the MH accept-
ance probability can be derived from the detailed balance relation, and that the MH acceptance
probability is optimal in the sense that it permits the most steps along the chain without violating
detailed balance. The Appendix also gives the relation between 7" and a.

Like the previous sampling techniques considered, MH produces posterior samples with weights

proportional to the number of times each state is visited.

9.3.2.2 Metropolis algorithm

When the trial distribution ¢(6’|6y) is symmetric in its arguments, i.e. g(6’|0x) = q(6x|0’), then
the trial acceptance probability simplifies to (Metropolis et al. 1953)

P(@’))
PO

a(6',6k) = min( 9.15)

This form for « still satisfies detailed balance (for suitable ¥ and g) and can be useful when
calculating the trial distribution (not necessarily sampling from it) is difficult, as is the case in
Chapter 10.

9.4 Nested sampling

Skilling (2004) introduced a novel sampling method referred to as nested sampling. This al-
gorithm focuses on calculating the evidence, but also generates samples from the posterior
probability distribution. The key computational expense associated with nested sampling is
the constraint that newly generated samples must be above a certain likelihood value which in-
creases at each iteration.

Initially, Sivia & Skilling (2006) suggested satisfying this constraint by evolving a Markov chain

starting at one of the pre-existing samples and evaluating an acceptance ratio based on the one
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used by the Metropolis algorithm (Metropolis et al. 1953) used in Markov Chain Monte Carlo
(MCMC) sampling (see e.g. MacKay 2002 for a review). A variant of the nested sampling al-
gorithm which focused on sampling from ellipsoids which approximate the region in which the
likelihood constraint is satisfied was also developed (Mukherjee, Parkinson, & Liddle 2006). A
major breakthrough in the applicability of nested sampling to highly multi-modal distributions
came with the invention of clustering nested sampling algorithms (Shaw, Bridges, & Hobson
2007, Feroz & Hobson 2008, and MurtiNesT. The latter of these was used extensively in the
preceeding Chapters to carry out Bayesian inference). These algorithms effectively sample from
multiple ellipsoids determined by some clustering algorithm, with the aim of approximating
the likelihood constraint for each mode of the distribution. More recently, the slice sampling
algorithm POLYCHORD (Handley, Hobson, & Lasenby 2015, Handley, Hobson, & Lasenby
2015) has been introduced and is effective at navigating high dimensional spaces, due to the fact
that it is not a rejection sampling algorithm. Section 4.1 of Handley, Hobson, & Lasenby (2015)
gives further examples of nested sampling algorithms which have different ways of satisfying

the likelihood constraint.

9.4.1 Overview of the nested sampling algorithm

Nested sampling exploits the relation between the likelihood and “prior volume’ to transform
the N-dimensional integral given by equation 2.43 into a one-dimensional integral. The prior
volume X is defined by dX = 7 (@) d@ for parameter space @, thus X is defined on [0, 1] and

we can set
X)) = f m(0)do. (9.16)
L£©)>1

The integral extends over the region(s) of the parameter space contained within the iso-likelihood
contour £ (@) = A (see Figure 9.2). Assuming that the inverse of equation 9.16 (1(X) =
X~1(1) = £L(X)) exists which is the case when 7 is strictly positive, then the evidence integral

can be written as (see Section D.2)

1
Z:f L(X)dX. 9.17)
0

Thus, if one can evaluate L(X) at ng values of X, the integral given by equation 9.17 can be

approximated by standard quadrature methods

Z~ ) LiXi1 - X)), (9.18)
i=1
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)01

Figure 9.2: Left plot: Five iso-likelihood contours of a two-dimensional, multi-modal
likelihood £(61,6,). Each contour encloses some fraction of the prior X, with the
colourscale indicating the value of X (darkest: smallest X). Right: Corresponding £
as a function of X plot (not to scale). The area under the curve is equal to Z.

where
0<Xy <...<X1<Xo=1. (9.19)

Note that one can use more accurate approximations to the integral 9.17 such as the trapezium
rule (which has numerical error O (#), compared with O (nis) for the sum given above)
ng 1
Z~ ) (L + L)X = Xp). (9.20)
=2
However, I use the method given by equation 9.18 in our implementation of the geometric nes-
ted sampler (Chapter 10) for simplicity. Note further that the first inequality in equation 9.19
follows from the fact that there could always remain some tiny prior volume containing a lar-
ger likelihood value than £, , unless that can be ruled out by some a-priori knowledge of the

maximum value of L.

9.4.1.1 Determining the nested sampling sum

The nested sampling algorithm performs the summation 9.18 as follows. At initiation n; ‘live-
points’ are sampled from the prior 7 (@) which are uniformly distributed in the region X;_; (= 1

upon initiation). Note also that £y = O (relevant when the trapezium rule is used). £ is calcu-
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lated for each of these points, and the livepoint corresponding to the lowest likelihood value £;
is removed from the livepoint set. This ‘deadpoint’ is replaced by a point drawn from 7 (@), say
0, subject to the constraint that £y > L;. Once this constraint has been satisfied, @, is added
to the livepoint set. As noted in Skilling (2004), it is intuitive to assume that the shrinkage in X

associated with each iso-likelihood contour is geometric. Hence we can write
X = 11X0, X2 =1Xy, ..., an_] = tns_Ian_z, an = tnans_l, (921)

where each ¢; lies between zero and one, and can be thought of as the shrinkage factor between
successive shells of the prior volume. In practice it is difficult to determine the exact values of
t;, as the amount of prior volume shrinkage between iso-likelihood contours £; and £;_; is in
general, non-trivial to calculate. Nevertheless, we can estimate ¢; statistically as follows. Since
at each iteration of shrinking the prior volume, there are n; livepoints uniformly distributed in
X;_1, then we can take #; to be the largest of n; uniformly distributed numbers between zero and
one, since the lowest likelihood should be attributed with the smallest volume shrinkage. This

gives the following distribution for the shrinkage factor (derived in Section D.3)
P(t;) = mt) . (9.22)

This statistical treatment of the ¢; can be used to calculate the expected value of Z as well as
its error, as detailed in Keeton (2011). Once ¢; has been calculated, X; can be determined and
one is left with n; livepoints uniformly distributed in the range [0, X;]. For the next iteration of
the algorithm the process is repeated from the step of determining the livepoint with the lowest
likelihood.

As explained in Skilling (2004), the geometric uncertainty associated with the X; leads to
the idea that log(Z) rather than Z is a normally distributed variable. Assuming the latter to
be normally distributed can result in distributions of Z with variances that suggest ZZ can take
negative values, which is unphysical. This is the case with the likelihood describing gravitational
wave detection used in Section 10.4.4.3. The mean and variance of a log-normally distributed
random variable, E [log(Z)] and var [log(Z)], can be calculated from the moments of the non-

logarithmic variables as

B [lo(2)] = 2log (BIZ) - 5 log (E[2?]), 9.23)
var [log(Z)] = log (E [Z?]) - 2log (BIZ]) . (9.24)
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Hence our geometric nested sampling algorithm calculates the moments of the linear variables
following Keeton (2011) (in log-space to avoid numerical difficulties, see Section D.4) but the

final evidence estimate and its associated error are calculated using equations 9.23 and 9.24.

9.4.1.2 Stopping criterion

The nested sampling algorithm can be terminated based on an estimate of how precisely the
evidence value has been calculated up to the current iteration. One measure of this is to look
at the ratio of the current estimate of Z to its value plus an estimate of the ‘remaining’ evid-
ence associated with the current livepoints. Since after iteration ng the livepoints are uniformly

distributed in the range [0, X, ], we can approximate their final contribution to the evidence as

Zix =2 ) L (9:25)

where £; is the likelihood value of the i" remaining livepoint. The stopping criterion can then

be quantified as
Zs

Zr+Z

€ is a user defined parameter, which I set to 0.01 in the nested sampling implementations used

in Chapter 10. The final estimate of Z is then updated to be Z — Z + ;. Note that after a

<e. (9.26)

large number of iterations of the nested sampling algorithm, we can be fairly confident that the
remaining contribution to the evidence is small. Referring back to equation 9.18, as the sampling
progresses the value of (X;_; — X;) gets smaller and there will be a point part way through the
process, where its value decreases at a rate faster than £; increases. Thus after this point, the
contribution to the evidence at each iteration becomes smaller, until at some point it becomes

negligible (see Figure 9.3).

9.4.1.3 Posterior inferences

Once Z has been determined, posterior inferences can easily be generated using the deadpoints
and final livepoints from the nested sampling process to give a total of ng + n; samples (and we
set ng — ng + ny). Each such point is assigned the weight
L (X — Xo)

Pi
Z

9.27)
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log X

Figure 9.3: Plots of £(X) and £L(X)X for typical likelihood functions. The area
under the £(X) curve corresponds to Z. The height of the curve £(X)X, gives an
indication of the contribution to Z for a small fractional change in X. After a number
of nested sampling iterations, this contribution becomes negligible.

X,
o The

weights (along with the corresponding values of @) can be used to calculate statistics of the

Note that for the n; samples obtained from the final set of livepoints X;_| — X; =

posterior distribution, or plot it using software such as GETDIST or CORNER?.

9.5 Plotting posterior samples

The set of discrete samples S can be used to determine functional approximations to . Histo-
grams and kernel density estimation (KDE) are two popular methods deployed to obtain distri-

bution approximations from samples.

3https://pypi.python.org/pypi/corner.
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9.5.1 Histograms

Histograms provide a quick way to generate a piecewise discontinuous approximation of £ (0).
The sample weights are ‘binned’ into a series of intervals separating @. The new sample weight
for each bin b, P (@), is simply the sum of the £ (@;) associated with that bin, and the value of
0, is defined as some function of the corresponding @; (e.g. their average). For each bin P is
constant over the corresponding interval on @ and so the function approximation is discontinu-
ous. using a small number of bins reduces the noise associated with the sampling process, but
can lead to key features of the true (@) being missed, while a large number of bins will tend
to overfit to the samples & produce a very ‘peaky’ approximation. Figure 9.4 shows an example
of a histogram with a moderate number of bins, which catches the main features of # but also

includes a noticable amount of sampling noise.

9.5.2 Kernel density estimation

KDE is a non-parametric method for estimating probability densities from samples, which ‘im-
proves’ on simple histograms by smoothing the resulting curve. A continuous function approx-

imation for the posterior, £ (@) is given by

1

P(O) =) PO,)KN(O - 6)), (9.28)

i=1

where K}, is a smoothing kernel with width parameter 4. Kj; must integrate over its domain to
one (i.e. be a probability density function) to ensure that 73(8) is also normalised. % determines
the variance of the smoothing kernel and thus how smooth 55(@) is. Figure 9.4 illustrates the
use of KDE with a Gaussian smoothing kernel and either # = 0.1, h = 0.3, 0r h = 1°. The latter
value corresponds to a 55(9) which is a poor estimation of £ (8) (due to ‘oversmoothing’ 73(9)
does not reveal the bimodality of $(6)). The 55(0) corresponding to 4 = 0.1 and & = 0.3 capture
the bimodality of #(6), but include a lot of small peaks not present in the true distribution
(‘undersmoothing’). GetDist uses a truncated Gaussian for K; with the determination of A

based on minimisation of the mean integrated square error ©

min UE[(P(@)—@(@))Z] d@]. (9.29)

bExample inspired by https://jakevdp.github.io/blog/2013/12/01/kernel-density-estimation/.
“For more information on the specifics of the implementation of KDE used in GetDist, see https://
cosmologist.info/notes/GetDist.pdf.


https://jakevdp.github.io/blog/2013/12/01/kernel-density-estimation/
https://cosmologist.info/notes/GetDist.pdf
https://cosmologist.info/notes/GetDist.pdf
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Figure 9.4: Illustration of approximationg a one-dimensional posterior function ()
using a histogram or KDE. #(0) is a Gaussian mixture model (parameterised in terms
of means and standard deviations): £(0) = 0.8 x N(-1,1) + 0.2 x N (1,0.3). The
samples S = {(61,P1), ....(0n,.Pn,)} are generated by drawing 100 samples from
N(1,0.3) & 400 samples from N (-1, 1), and are assigned to the 8,,, while the weights
are set to unity. The histogram is generated by binning the samples into 30 bins of
uniform width over the range [-4.5,3.5]. The KDE estimates are generated using
a Gaussian function for K}, with either # = 0.1, & = 0.3, or h = 1. The black
curve represents the ‘true’ form of the function (), the grey region represents the
(discrete) histogram approximation, while the blue, green and red curves correspond
to the P (6) obtained for the different values of A.



CHAPTER

(GEOMETRIC NESTED SAMPLING

Here I present a nested sampling algorithm which provides a new method for satisfying the nes-
ted sampling likelihood constraint (see Section 9.4) based on the Markov method used in Sivia &
Skilling (2006) (and also applied in Feroz & Hobson 2008). Certain parameters relevant to astro-
physics exhibit special properties which mean they naturally parameterise points on geometric
objects such as circles, tori and spheres. The algorithm we introduce here which we refer to as
the geometric nested sampler, exploits these properties to generate samples efficiently and en-
ables mobile exploration of distributions which are defined on such geometries. My implement-
ation of the algorithm can be found at https://github.com/SuperKam91/nested_sampling.
A paper corresponding to the work carried out in this Chapter is going to be submitted to
MNRAS (Javid 2018), and contains several more motivating toy examples for the geometric

nested sampler.

10.1 Nested sampling prior distributions

Bayesian inference has been reviewed in Section 2.6 and nested sampling in Section 9.4. Here
we make a note about the form of the prior distribution 7 of the parameter set @ used throughout
this Chapter.

In general for nested sampling, 7 (@) can take any form as long as the distribution integrates to

one and has a connected support (Chopin & Robert 2008; this roughly means that the parts of the

149
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domain at which 7 (@) # 0 is not ‘separated’ by the parts at which 7 (@) = 0). For simplicity,

in all examples considered here I assume that each component of the N-dimensional vector

O = (64,...,0y) is independent of one another, and that each 7(8;) is a uniform probability
distribution, so that
N N 1
(@)= i (0;) = _ (10.1)
1-:—1[ o 1;[ emax,i - emin,i

where Omax,; and Oin,; are respectively the upper and lower bounds on 6;. Values for O,x ; and

Omin,; used in the examples presented here will be stated in the following Sections.

10.2 Satisfying the likelihood constraint

At each step of the nested sampling iteration, one needs to sample a new point which satisfies
Ly > L;. As mentioned in Section 9.4, considerable work has been put into increasing the
efficiency of this process, as it is by far the most computationally expensive step of the nested
sampling algorithm. I now give a review of the Metropolis nested sampling method used by
Sivia & Skilling (2006) and Feroz & Hobson (2008), which forms the basis of the method used

in geometric nested sampling.

10.2.1 Metropolis nested sampling

The Metropolis nested sampling method is an adaption of the Metropolis algorithm used in
MCMC sampling of a posterior distribution (see Sections 9.3 and D.1). The acceptance ratio for
the Metropolis nested sampling algorithm takes the form

| _ |minlr @0 /7 (@011 if Li> L, (10.2)

0 otherwise.
Here @ is obtained by picking one of the current livepoints at random, and using its value of 6.
The value for @, is sampled from a trial distribution g (0;|6;). Sivia & Skilling and Feroz et al.
use symmetric Gaussian distributions centred on @; for g (6|@;). The trial point is accepted to
be a new livepoint (replacing the deadpoint associated with £;) with probability a. Note that
equation 10.2 implicitly assumes that the proposal distribution is symmetric in its arguments, that
is ¢ (0¢|0)) = q (0;16,). In the case that the proposal distribution is asymmetric, the acceptance
ratio includes an additional factor g (@;|0;) g (6|@;) (in which case the algorithm is referred

to as the Metropolis-Hastings algorithm, see Section 9.3). The fact that the Metropolis nested
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sampling method uses the current livepoints as a ‘starting point’ for selecting @, means that
the autocorrelation between the livepoints is high, which in turn leads to biased sampling. This
can be prevented by increasing the variance of the trial distribution used, or by requiring that
multiple trial points must be accepted before the final one is accepted as a livepoint, i.e. after the
first accepted trial point is found, set @; — @ and use this to sample a new @, from g (6|0;).
This can be repeated an arbitrary number of times, but in general more iterations leads to a lower
correlation between the livepoint used at the beginning of the chain and the final accepted trial
point which is added to the livepoint set. Sivia & Skilling suggest that at each nested sampling
iteration, the number of trial points generated n to get a new livepoint should be ~ 20. In my
implementation I set this number to 20 X N where N is the dimensionality of the parameter
estimation problem. Note that n; includes both accepted and rejected trial points. Sivia and
Skilling also suggest that the acceptance rate for the trial points at each nested sampling iteration
should be ~ 50%. This is because a high acceptance rate usually suggests high auto-correlation
between the successive trial points, whilst a low acceptance rate can suggest high correlation
between the final accepted trial point and the one used to initialise the chain, as too few steps
have been made between the two. In the extreme case that the acceptance rate is zero, the process
of picking a new livepoint has failed, as one cannot have two livepoints corresponding to the
same 6. The acceptance rate is affected by the variance of the trial distribution, a large variance
usually results in more trial points being rejected (especially near the peaks of the posterior).
Sivia & Skilling suggest updating the trial standard deviation as

oexp(1/Ny) if Ny > Ny,
o — | TP e (10.3)

orexp(—=1/Ny) if N, <N,
where N, and N; are the number of accepted and rejected trial points in the current nested
sampling iteration respectively. Note however that I determine the variance using different meth-
ods (see Sections 10.3.3 and 10.3.6).
Feroz et al. incorporate the Metropolis likelihood sampling into their clustering nested
sampling algorithm rather than use it in isolation. The geometric likelihood sampling I introduce

in the next Section is a modified version of the Metropolis algorithm used in isolation.

10.3 Geometric nested sampling

One key issue with Metropolis nested sampling is that at each nested sampling iteration, if too

many trial points are rejected, then the livepoints will be highly correlated with each other after
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Figure 10.1: ‘Vanilla’ non-wrapped trial distribution. The blue curve represents a
Gaussian ‘vanilla’ trial distribution ¢(6’|6) with starting point 6 = 0.1, and sampled
trial point #” = —0.1 shown by the blue cross. The support of 7 is indicated by the red
dashed lines ([0, 1]). Since 6’ lies outside the support of 7, it would automatically be
rejected by the Metropolis algorithm.

a number of nested sampling iterations. To prevent this one must sample a large number of trial
points in order to increase the number of acceptances and decrease the auto-correlation of the
trial point chain. This solution can be problematic if computing the likelihood is computationally
expensive. One particular case in which the sampled point is guaranteed to be rejected, is if the
point lies outside of the domain of  (support of 7). Such a case is illustrated in Figure 10.1 for
parameter 6. Of course, this can be avoided by adapting g (@,|€@;) so that it is truncated to fit
the support of r, but in high dimensions this can be tedious, and inefficient in itself. Hence one
desires an algorithm which does not sample outside the support of &, without having to truncate
q.

Another issue which most sampling algorithms are subject to occurs when the modes of the

posterior distribution are far away from each other in & space, e.g. when they are at ‘opposite
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ends’ of the domain of 7. In the context of nested sampling this can result in one or more of
the modes not being sampled accurately, particularly in the case of low livepoint runs. Thus
a sampling algorithm should be able to efficiently manoeuvre between well separated modes
which lie at the ‘edges’ of n’s support.

Geometric nested sampling attempts to solve these two issues by interpreting parameter

values as points on geometric objects, namely on circles, tori and spheres.

10.3.1 Wrapping the trial distribution

A relatively straightforward way of ensuring that the trial points sampled from g are in the sup-
port of 7 is to ‘wrap’ ¢g. This is illustrated in Figure 10.2, where we consider a one-dimensional
uniform prior on [0, 1]. For any point 6, there will be a non-zero probability of sampling a value
of 6’ from the trial distribution ¢(6’|6) that lies outside [0, 1]. If the point sampled has a value
of say 6’ = —0.1, then if we consider g to be wrapped around the support this can be interpreted
as sampling a point at value 8’ = 0.9. More generally, if 6’ is outside the support of 7 defined
by upper and lower bounds 6,,x and Oy, it will be transformed as
Omax — W) if 6" > Opax,

0" = (10.4)
Omin + W(O') if 6" < Opmin,

where

W(@) _ (0 - Qmax) mod (Qmax - Gmin) if 6> GmaXa (105)

(Omin —0) mod (Bmax — Omin) 1f 6 < Omin.

Assuming the support of & is connected (a requirement of nested sampling, as stated in Sec-
tion 10.1), then this operation will be well defined for all 7 with bounded supports, of arbitrary
dimension. Using this transformation does not affect the argument symmetry of ¢, thus the value
of @ given by equation 10.2 still holds. Furthermore, this symmetry ensures that the detailed bal-

ance relation given by equation 9.14 is still satisfied.

10.3.2 Circular parameters

As well as ensuring that none of the sampled trial points lie outside the support of 7, the wrapped
trial distribution can also improve the manoeuvrability of the sampling process, since the trial
point chain can always ‘move in either direction” without stepping outside of the support of 7.

This proves to be particularly useful for ‘circular parameters’. Here I define circular parameters
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Figure 10.2: Wrapped trial distributions. The solid blue curve represents a Gaussian
trial distribution ¢(6’|6) as in previous Figure, but now incorporating the wrapping
methodology. As a result of the wrapping, 6’ (blue cross) is at 0.9, and so won’t be
automatically rejected by the Metropolis algorithm. The green curve shows the same
trial distribution ¢(6|6”) centred on 0.9. The fact that § = 0.1 (green cross) is sampled
from ¢(6]0”) with the same probability as 6’ is from ¢(6’|6) shows that the wrapped
trial distribution is still symmetric with respect to its arguments (provided g(a|b) is a
symmetric function about the point b).

to be those whose value at 0, and Oy, correspond physically to the same point. Examples
of circular parameters include angles (which are circular at e.g. zero and 27) and time periods
(e.g. 00:00 and 24:00). Often, circular parameters have probability distributions associated with
them which are also circular. An example of a circular distribution is the von Mises distribution,
an example of which is shown in Figure 10.3 (and defined in Section 10.4.1). This particular
example shows that the function’s peak(s) may be split by the wrapping, so that when plotted
linearly, they appear to have to ‘half peaks’ about 6,,x and 6pi,. Such half peaks would be
classified as two separate peaks by clustering nested sampling algorithms. Thus in general,

the number of livepoints would need to be increased to accommodate for the higher number
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Figure 10.3: von Mises distribution with domain [—7, 7], centred on n. The peak
wraps around at edges of domain, so that it appears as two half peaks on a linear
space.

of modes, to ensure both half peaks are sampled adequately without one cluster ‘dying out’.
Furthermore, the two half peaks occur at opposite ends of the domain of a linear space, making it
more difficult for a sampler to explore the regions of higher probability efficiently. The wrapped
trial distribution resolves both of these issues, as the two half peaks in linear space are treated as
one full peak as far as the sampling (and allocation of livepoints) is concerned. Consequently, the
second issue of the half peaks being far away from each other is automatically eradicated. The
wrapped trial distribution methodology can thus be applied to problems which involve sampling
on non-Euclidean spaces. I apply the method to toy models with distributions defined on circles
and tori in Sections 10.4.1 and 10.4.2 respectively. Furthermore, I apply the methodology to a

practical example in Section 10.4.4.
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10.3.3 Variance of the trial distribution

As with any sampling procedure which relies on a trial distribution, picking a variance for the
distribution is difficult without a-priori knowledge of the posterior distribution you are sampling
from. A low variance results in a lot of trial points being accepted, but a high auto correlation
between these points. A high variance gives a lot of trial rejections, but when these points are
accepted, their correlation with the starting point is often low. Since picking the trial variance
can in itself be a mammoth task, I use a simplistic approach and take it to be

0.1 x| max (6;)— min (6;)|, (10.6)

livepoints livepoints

for each component i of @. I use this approach to avoid the sampler from taking large steps when
the livepoints are close together. However, I acknowledge that this method is far from optimal

when the livepoints are compactly located at the edges of the domain of P ().

10.3.4 Non-Euclidean sampling via coordinate transformations

The wrapped trial distribution introduced in Section 10.3.1 can in theory be used in Metropolis
nested sampling to sample effectively from circular and toroidal spaces parameterised in terms
of circular variables. However, it is not particularly effective at sampling from spherical spaces,
since wrapping around the zenith angle (usually defined on [0, 7]) would result in discontinuous
jumps between the poles of the sphere. One could of course just wrap the trial distribution in
the dimension representing the azimuthal angle (usually defined on [0, 27]), rather than in both
angles. However, this would re-introduce the issues stated in Section 10.3, i.e. wasting samples
and ineflicient exploration of the parameter space. I therefore propose an alternative method for

exploring spherical spaces which I incorporate in the geometric nested sampling algorithm.

10.3.5 Spherical coordinate transformations

Assuming the surface of a unit sphere is parameterised by azimuthal angle ¢ on [0,27] and
zenith angle 6 on [0, ], then the corresponding Cartesian coordinates are
x =rcos(¢) sin(6),
y = rsin(¢) sin(6), (10.7)
z =rcos(6),

with r = 1. Note that ¢ is the angle measured anti-clockwise from the positive x-axis in the x—y

plane and 8 is the angle measured from the positive z-axis. Thus a trial point ¢, 8; can be sampled
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as follows. Starting from a point ¢;,6;, calculate x;,y;,z;, from which a trial point x’,y’, z’
can be sampled from q(x’,y’,z’|x;,y1,z;1). We use a three-dimensional spherically symmetric
Gaussian distribution for g(x’,y’,z’|x7,y1,z;). In general, the point x’,y’,z” will not lie on the
unit sphere. Nevertheless the point is implicitly projected onto it by solving the equations given
by 10.7 simultaneously for ¢ and 6, where we set x = x’, y = ¥/, z = 7/, and r = r’ (see
Figure 10.4). The resulting values are ¢; and 6;, from which the acceptance ratio given by
equation 10.2 can be evaluated as normal. There are a few things to note about sampling the trial
point in the Cartesian space. Firstly, for equation 10.2 to hold we must have g(¢,0¢|¢;,6;) =
q($1,01|¢,6¢), which is equivalent to

f qg(x'|x)dx’ = f g(x|x")dx, (10.8)

x'€{xip.0) xel{x; g0}

where x” = (x’,y’,z') and x = (x,y,2). {X. 4,6} are the set of Cartesian coordinates which
satisfy 10.7 for ¢ = ¢, 6 = 6, & all r # 0. Similarly {x; 4 ¢} are the x which satisfy 10.7 for
¢ = ¢; & 6 = 6; (see Figure 10.4). Due to the symmetry of the spherical coordinate system,
these sets of vectors lie along the lines given by (¢, 6;) and (¢;,0;) respectively. The only
additional requirement for equation 10.8 to hold is that g(x’,y’,z’|x,y,z) is symmetric in its
arguments, which it is provided that g(a|b) is a symmetric function about the point b. As in
Section 10.3.1, the symmetry of the trial distribution ensures that the detailed balance relation
given by equation 9.14 is still satisfied.

Sampling in Cartesian coordinates eliminates the risk of sampling points which are automat-
ically rejected (due to being outside the support of m(¢,0)) to a negligible level, since the only
points in Cartesian coordinates which are ill-defined in spherical coordinates are x = y = 0 for
all z. How the coordinate transformation improves the manoeuvrability of the sampler relative
to sampling in the original parameter space is less clear-cut. For the latter, when the variance is
fixed the step sizes taken by the sampler along the surface of the sphere depend on where you
start from. For example, at § = 0, large moves in ¢ will result in relatively small steps along
the sphere whereas at 6§ ~ /2 such moves in ¢ would result in large steps along the sphere.
However when sampling in a Cartesian coordinate system, for a constant variance (see below),
the trial points sampled will have the same average step size in Euclidean space regardless of the
starting point. Furthermore due to the symmetry of a sphere, when the sampled point (x’,y’,z")
is projected back onto the sphere (implicitly when determining ¢ and 6;), the variance of the
steps along the sphere is still independent of the starting point. In either the original parameter

space or the transformed space, the variance of the trial distribution can be tweaked to adjust
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Figure 10.4: Sampling points on the surface of a sphere in Cartesian coordinates.
The three-dimensional trial distribution is centred at the point (x;,y;,z;), which cor-
responds to (¢;,6;). The point (x’,y’,z”") sampled from ¢ in general will not lie on
the surface of the sphere, however the point is implicitly projected onto the sphere at
(x¢> 1, 2¢) when calculating (¢”,6") [ = (¢, 6¢)].

the average step size of the sampler. Nevertheless, it seems more intuitive to me to perform
the sampling in the space in which adjusting the variance has an effect which is independent of
where you are sampling from.

A spherical distribution is used in the toy model presented in Section 10.4.2, and also features

in the gravitational wave detection likelihood function in Section 10.4.4.

10.3.6 Variance of the Cartesian trial distribution

For given variances of ¢ and 6: 0'(21, & 0'3, the variance corresponding to a function of these two
variables is given by

2 2
of = (%) o+ (%) 0'§+2%g0'¢9, (10.9)
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where 04 ¢ is the covariance between ¢ and 6. Hence one can calculate the corresponding
variance in Cartesian coordinates, o2, 0'5, and O'% by substituting the equations given by 10.7
into equation 10.9. Using these values for g(x’,y’,z’|x,y,z) however, leads to an asymmetric
trial distribution in its arguments, since the variance is now a function of 6 and ¢. Our entire

formulation of the geometric nested sampling algorithm requires g to be symmetric in order for

2

y = 0'? =4/100 to ensure g is symmetric.

equations 10.2 and 9.14 to hold. Thus we set 02 = o

10.3.7 Non-spherical coordinate transformations

The transformation of the trial sampling problem introduced in the previous Section need not
be unique to the case of a sphere. Indeed, our implementation of geometric nested sampling
includes the option to transform to Cartesian coordinates from circular or toroidal parameters.
This is done in the same way as described for the spherical case, but with the relations given

by 10.7 replaced with the equivalent transformations for a circle or torus.

10.3.7.1 Circular coordinate transformations

For a parameter which can be interpreted as representing points on a circle e.g. ¢ € [0,2x], we
can transform ¢ into the Cartesian coordinates of a unit circle,

x =rcos(¢), (10.10)

y = rsin(¢),
with r = 1. A trial point can be sampled as described for the spherical case but working in
two dimensions instead. The symmetry of a circle ensures that the trial distribution g(¢¢|¢;) is
symmetric in its arguments as long as the Cartesian trial distribution g(x’,y’|x, y) adheres to the
same symmetry. This is indeed true when a circularly symmetric Gaussian distribution is used

for g(x’,y’|x,y). The circular transformation and sampling process is illustrated in Figure 10.5.

10.3.7.2 Toroidal coordinate transformations

In the case of two parameters representing points on a circle e.g. ¢ € [0,27] and 8 € [0,27],
either we can apply separate circular coordinate transformations to each parameter, or we can

say that together they parameterise points on the surface of a torus (Figure 10.6). In the latter
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Figure 10.5: Sampling points on the perimeter of a circle in Cartesian coordinates.
The two-dimensional trial distribution is centred at the point (x;,y;), which corres-
ponds to ¢;. The point (x’,y”) sampled from ¢ in general will not lie on the perimeter
of the circle, however the point is implicitly projected onto it at (x¢, y;) when calculat-

ing ¢’ [ = ¢l

case ¢ and 6 can be expressed in terms of Cartesian coordinates through

x = (R +rcos(d))cos(g),
y = (R + rcos(0)) sin(¢), (10.11)

z = rsin(0),

where: R is the distance from the centre of the tube to the centre of the torus and r is the radius
of the tube; ¢ is the angle between the positive x-axis and the line from the centre of the torus
to the point (x,y), measured anti-clockwise; and 6 is the angle between (a) the line in the x — y
plane pointing ‘outwards relative to the centre of the torus’ from the centre of the tube, and (b)
the line from the centre of the tube to point (x,y, z) (also measured anti-clockwise).

In the case of a torus the Cartesian sampling has an additional complication compared with the

circular and spherical cases with regards to g (¢, 6¢|¢;,0;) being symmetric in its arguments.
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Figure 10.6: Sampling points on the surface of a torus with major and minor radii R
and r in Cartesian coordinates. R corresponds to the distance from the centre of the
torus (centre of the whitespace in the middle of the grey tube) to the centre of the cross
section (depicted as grey circles) of the torus, while r is the radius of the torus’ cross
section. The three-dimensional trial distribution is centred at the point (x;,y;,z;),
which corresponds to (¢;,6;). The point (x’,y’,z”) sampled from ¢ in general will
not lay on the surface of the torus, however the point is implicitly projected onto it
at (x¢, y, z¢) when calculating (¢,0”) [ = (¢¢,6;)]. The projection of a general point
(x,y,7) onto a torus will be such that the distance between the point and the centre of
the torus cross section (corresponding to the point it is projected to) is minimised.

If we first restrict our thinking to the two-dimensional half-plane defined by ¢ = ¢,, for arbitrary
¢p, the torus maps out a circle with radius r at a distance R from the origin (note that this is
just the cross-section of the torus at ¢ = ¢,,, see Figure 10.7). If we consider sampling (in
two dimensions) from a point on this circle, if the sampled point is at #’ = 7 and the distance
between this point and the centre of the circle is > R, then the sampled point is not on the
half-plane corresponding to ¢, but is instead on the one defined by ¢ = ¢, + 7. Consequently
when the trial point is projected back onto the torus, it is projected onto a point corresponding to
¢ = ¢, +n. This implies that there is an asymmetry in the probability of sampling a point which
is projected onto the part of the torus corresponding to 7/2 < 6 < 3x/2 relative to sampling
a point which projects onto the part corresponding to 0 > 6 < n/2 plus 37/2 < 6 < 2nm;
the probability of picking a point in the region given by the latter is higher for an unrestricted
trial distribution since the half-plane extends out to infinity. This can be avoided by restricting
the range in which (x’,y’,z") is sampled from such that the shortest distance between the point

(x’,y’,z") and the centre of the tube of the torus is < R. This ensures that for a symmetric g the
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Figure 10.7: Torus cross section at ¢ = ¢, and ¢ = ¢, + 7w in x—z plane. If the
sampled point lies in the half-plane (shaded blue) defined by ¢ = ¢, it will be pro-
jected onto the circle in this half-plane, otherwise it will be projected onto the circle
in the ¢ = ¢, + m half-plane (shaded pink).

probability of sampling a point from the range 7/2 < 8 < 37/2 is the same as from 0 > 6 < 7/2
plus 37/2 < 6 < 2x, and thus g(x’,y’,z’|x,y, z) is symmetric in its arguments for fixed ¢.

A similar thought experiment can be applied to the case when 6 is fixed and ¢ is allowed to vary.
For arbitrary 6 this maps out two-dimensional surfaces in the three-dimensional sampling space,
for which the restricted sampling stated above results in ¢ being symmetric in its arguments as
long as € remains fixed.

When varying ¢ and 6 simultaneously during (three-dimensional) sampling (as you would in
the real implementation of the algorithm) there is no trivial way to truncate the trial distribution
to ensure g(x’,y’,z’|x,y,2) is symmetric in its arguments. Thus one is required to evaluate the
set of integrals given by 10.8 (but over integration domains which satisfy 10.11 for given ¢;,6;
and ¢, 6;) to determine g(¢y,0¢|¢;,6;) and q(d;,0;|Pt,0). Using the truncated trial distribution
(introduced when considering fixed ¢) with the variance stated in Section 10.3.6 I found that
q(de,0|¢1,6;) and q(¢;,0;|¢¢,6¢) vary by no more than 0(107%) and on average by 0(1078).
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Given the circular nature of the variables parameterising the points on a circle / torus, I do not
think that performing coordinate transformations for these objects will give any advantages over
using the wrapped trial distributions in the original parameter spaces. Hence in the applications
considered in this thesis, parameters which exhibit circular or toroidal properties will be sampled
using the wrapped trial distribution, whilst those of a spherical nature will be sampled using the
coordinate transformation methodology. The coordinate transformation methodology can be
applied to arbitrary geometries. However geometries which lack symmetry will in general be
much more difficult to sample from without breaking the trial distribution symmetry requirement
of the Metropolis acceptance ratio. In this case the Metropolis-Hastings acceptance ratio for

nested sampling must be used

. (@)q(0;10,) :
min | —g=<t~L= ] if Li>L;,
aMH = [”(@l)q(@l|@l) ] ! (10.12)

0 otherwise.
One can assume that such unsymmetrical geometries mean the integrals associated with calculat-
ing the trial distributions distributions in Euclidean space become non-trivial to evaluate. Failure
to evaluate equation 10.12 correctly would likely lead to violation of detailed balance which is

a sufficient condition for a Markov chain to asymptotically converge to the target distribution.

10.4 Applications of geometric nested sampling

I now apply the geometric nested sampling algorithm to models which include circular, tor-
oidal and spherical parameters. I evaluate the algorithm’s performance by plotting the posterior
samples using corner. I also conduct the analysis with the ‘vanilla’ Metropolis nested sampling
algorithm. For circular and toroidal parameters, the vanilla algorithm doesn’t use a wrapped
trial distribution. In the case of spherical parameters, the vanilla algorithm does not transform to
Cartesian coordinates before sampling from the trial distribution. For further comparison, I cal-
culate posterior samples using MuLTINEST (Feroz, Hobson, & Bridges 2009) (i.e. the algorithm
I have used for all Bayesian inferences done in the preceeding Chapters), a state of the art clus-
tering nested sampling algorithm, effective in low dimensional problems.

I refer to the samples / distributions obtained from the geometric nested sampler as MG (Metro-
polis geometric nested sampling), those obtained from the vanilla Metropolis nested sampler as
M, and those obtained from MurLTINEsT as MN.

For all applications I run the algorithms twice, once with a low number of livepoints (50), and

once with a high number of livepoints (500).
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10.4.1 Toy model I: circular distribution

I first consider the problem of a one-dimensional circular distribution from which we would like
to sample from. The model is parameterised by one variable ¢, which is defined on [0,2x].
Referring back to Section 10.1 I take 7 (¢) to be uniform on [0,27]. For the likelihood function,

I use the von Mises distribution introduced in Section 10.3.2 and defined by

_exp(cos(¢p — 7 — ) /o?)
27‘1’10 (U-LZ) ’

where u and o are the mean and standard deviation of the distribution, and /y(x) is the zeroth

£ (plp.o?) (10.13)

order modified Bessel function. Here I set i = 0 so that the peak of the posterior distribution is
wrapped around [0, 27], and appears as two half peaks. I set the variance equal to 0.25.
Since the problem involves the circular parameter ¢, the geometric nested sampling algorithm

uses a wrapped trial distribution.

10.4.1.1 Low livepoint runs

Figure 10.8 shows the posterior distribution obtained for toy model I from the three samplers
using a low number of livepoints. Note that the Figure also includes a curve plotted from samples
which were obtained by evaluating the posterior distribution analytically over a uniform range
of ¢ values. I refer to this curve as the theoretical (T) result. The three samplers obtain similar
results in the central bins where the probability density is low. However the distributions become
asymmetric towards the edges of the domain when compared with the T curve. Overall the MG
and MN samplers marginally outperform the M sampler, given the latter has a large asymmetry

between the first (¢ ~ 0) and final (¢ = 27) bins.

10.4.1.2 High livepoint runs

Figure 10.9 shows the results when a high number of livepoints is used for the nested sampling
algorithms. The plot shows that all three algorithms do a much better job of replicating the T
curve than when they were used with a low number of livepoints, with the MG samples giving

the curve most similar to the T result.

10.4.2 Toy model II: toroidal distribution

I next consider a two-dimensional problem where each parameter is circular. I refer to this as

a toroidal model, as it is equivalent to sampling from the surface of a torus parameterised by
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I

Figure 10.8: Posterior distributions of the circular toy model defined in Sec-
tion 10.4.1. The black curve corresponds to samples obtained from the analytical
expression for P (¢) evaluated over a range of ¢ values. The blue, red and green
curves correspond to the samples obtained from the M, MG and MN algorithms re-
spectively. All three samplers were run with 50 livepoints.

two angles ¢ and 6. We take both 7(¢) and 7(6) to be uniform on [0,27]. For the likelihood
function, I again use the von Mises distribution, and take the likelihood functions for ¢ and 6 to

be independent so that

L(9.0lug.05p10.03) = L (¢lpp.03) L (01p0.07) . (10.14)
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[

Figure 10.9: Posterior distributions of the circular toy model with the number of
livepoints set to 500. The colour coding of the plot is as described in Figure 10.8.

where the likelihood for each individual parameter takes the form of equation 10.13. I'set ug =
g = 0 so that the two-dimensional posterior contains four ‘quarter peaks’ at the corners of its
domain. I also take ai = 0'5 =0.25.

Since this model represents a toroidal distribution (or two circular distributions), the geometric

nested sampling algorithm uses wrapped trial distributions to sample ¢ and 6.
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10.4.2.1 Low livepoint runs

Figure 10.10 shows the posterior distributions obtained for toy model II from the three samplers
using a low number of livepoints. As in Section 10.4.1, samples of the analytical posterior are
included for comparison. Looking at the one-dimensional marginalised posteriors for ¢ and
0, the M algorithm does a poor job at recovering the true distribution, overestimating the half
peaks at low values of ¢,0 and overestimating them at high ¢,6. The MG algorithm does a
relatively good job of replicating the T distribution, and looking at the marginalised posteriors,
outperforms MN at three of the four half peaks (MN does better at the § ~ 0 peak). One may
expect MN to struggle with such a distribution, using a low number of livepoints. Since the four
quarter peaks will appear to a clustering algorithm as four separate peaks, MN will on average
assign 12.5 livepoints to each of these peaks, which may not be enough to sample each peak
adequately. The MG algorithm on the other hand treats these four quarter peaks as one, and so

you would expect it to be able to use all 50 livepoints to sample this peak relatively well.

10.4.2.2 High livepoint runs

The high livepoint run results for the toroidal distribution are shown in Figure 10.11. All three
samplers recover the true distribution well, with the M and MG giving marginally better results
than MN. This is perhaps surprising since one would expect MN to easily be able to cope with
four modes using 500 livepoints. It does however, highlight the possibility that it is not the
number of peaks that MN is struggling with, it is their shape that is causing it to underperform

relative to the other two samplers.

10.4.3 Toy model III: spherical distribution

For the final toy model I consider the posterior distribution of two angles which parameterise
the surface of a sphere. As in Section 10.3.5, ¢ and 6 represent the azimuthal and zenith angles
respectively. I take m(¢) to be uniform on [0,27], and (@) to be uniform on [0,7]. I use a
von Mises distribution for £ (¢|ﬂ¢,0'q25) with g = 0 and a'é = 0.25. For L (Qlﬂg,(}'z) Tusea
truncated Gaussian (defined on [0, 7]) with uy = /2 and o’é = 0.25.

For this model the geometric nested sampling algorithm uses the spherical transformation sampling

procedure detailed in Section 10.3.5 to sample ¢, and 6;.
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Figure 10.10: Posterior distributions of the toroidal toy model defined in Sec-
tion 10.4.2, with the number of livepoints set to 50. The colour coding is as described
in Figure 10.8. The plots along the diagonal show the one-dimensional marginalised
posteriors for ¢ and 6. The centre plot shows the joint two-dimensional posterior.

10.4.3.1 Low livepoint runs

Figure 10.12 shows the posterior distributions obtained for toy model III from the three samplers
using a low number of livepoints, plus the T samples. The circular distribution of ¢ is well
recovered by the M and MG algorithms, but less so by MN. All three samplers do a relatively
poor job of recovering the truncated Gaussian distribution of 8, with M probably giving the best

results due to the symmetry of its distribution.
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Figure 10.11: Posterior distributions of toroidal toy model with the number of live-
points set to 500. The colour coding and layout of the plots is as explained in Fig-
ure 10.10.

10.4.3.2 High livepoint runs

When 500 livepoints are used for the samplers (Figure 10.13), the MG and MN algorithms
recover the ¢ profile similarly well. However, the MG sampler seems to slightly overestimate

P (0) at high probability densities, and underestimate it to a similar extent at low densities.
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Figure 10.12: Posterior distributions of the spherical toy model with the number of
livepoints set to 50. The colour coding and layout of the plots is as explained in
Figure 10.10.

10.4.4 Practical example: gravitational wave emission from binary black hole

mergers

I now consider a likelihood function which corresponds to detecting gravitational waves from
(binary) black hole mergers. The data for the likelihood are obtained from the LIGO® and
Virgo® interferometers (see e.g. Abbott et al. 2016 and Lange & LIGO-Virgo Collaboration

3https://www.ligo.caltech.edu/page/ligo-gw-interferometer.
bhttp 1/ /www.virgo-gw.eu/.


https://www.ligo.caltech.edu/page/ligo-gw-interferometer
http://www.virgo-gw.eu/
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Figure 10.13: Posterior distributions of the spherical toy model with the number of
livepoints set to 500. The colour coding and layout of the plots is as explained in
Figure 10.10.

2018). I now give a brief overview on gravitational waves and how they are detected, but for
more thorough analysis see e.g. Hobson, Efstathiou, & Lasenby (2006), Kokkotas (2008), or
Blanchet (2014).
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10.4.4.1 Origin of gravitational waves

For an observer lying in a region of spacetime satisfying the Minkowski metric 7, ,,, fluctuations

in the metric can be described by a linear perturbation

8uv = Nuv + h,uv, (10.15)

where the perturbations are assumed to be small (|4, < 1]). By solving Einstein’s field equa-
tions using the metric given by equation 10.15, it can be shown that the tensor which represents
the gravitational field

1
hyv = h,uv - inyvhga (1016)

satisfies the wave equation for a vacuum, and hence has a solution

By = Ay exp(ik®xq), (10.17)

where A, describe the wave’s polarisation and amplitude.It can be shown that by setting an
appropriate gauge (the Transverse-Traceless gauge) that A,, can be defined in terms of two
polarisation states s, and hy. For a gravitational wave travelling in the z direction, the tensor
h, causes simultaneous expansion (contraction) in the x direction and contraction (expansion)
in the y direction. Ay acts similarly at an angle /4 to the x—y axes.

Exact solutions of Einstein’s field equations have not yet been found, leading to the devel-
opment of analytic approximations such as the Post-Newtonian (PN) approximation (see e.g.
Asada & Futamase 1997) to determine /4, and hy. Here we consider the PN approximation up

to second order for inspiralling black hole binary systems as described in Blanchet et al. (1996).

10.4.4.2 Detection of gravitational waves

Laser beam interferometers such as LIGO and Virgo detect gravitational waves by measuring
the differential arm length between perpendicular arms of the interferometers. The differential
measured is proportional to the gravitational strain s, which describes the fractional change in
proper space caused by the gravitational perturbation. A can be written as a linear combination

of the two polarisation states A, and /iy
h(t) = FLho(t) + Fxhy (1), (10.18)

where ¢ denotes the time at which the strain is measured, and F, & Fx are functions dependent on
the geometry of the detector. Here we consider three detectors: LIGO Hanford, LIGO Livingston
and Virgo. The geometries used in this analysis for these detectors can be found at https:

//www.ligo.org/scientists/GW100916/GW100916-geometry.html.


https://www.ligo.org/scientists/GW100916/GW100916-geometry.html
https://www.ligo.org/scientists/GW100916/GW100916-geometry.html
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10.4.4.3 Likelihood function for gravitational wave detection

Assuming we have ng data points {x; ;} recorded at times {¢;} for each detector j, then the

likelihood function is given by

ng

> (i — 1y 1:.0))°
o =|]]] exp| -

2o 202

) (10.19)

i=1 j=I1

where h; ; (t;,0) is the theoretical strain and is dependent on the model parameters @ (defined
below). In the analysis presented here we consider data which are simulated by evaluating

hj (t;,0) for fixed model parameters (say 6;), i.e. we set
Xij = hje(1;). (10.20)

Furthermore, we set o= = 1 x 1072} and n; = 1000.

10.4.4.4 Model parameters
0 is a nine-dimensional vector with components
@ = (m]’m25r5t03¢c’¢$0’p’i) (1021)

here m; and m; are the masses of the individual black holes, r is the luminosity distance to the
centre of the binary system, and ¢ is the time of coalescence of the two black holes (i.e. the time
at which they merge). ¢. is the orbital phase of the binary system at time ¢, (and is defined on
[0,27]), and ¢ & 6 are the angular location of the merger system in the sky (as observed from a
detector). The inclination angle i is the angle between the line of sight from the binary system
to a detector, and the normal to the orbital plane. The normal is chosen to be right-handed with
respect to the sense of motion so that i is defined on [0,7]. p is the corresponding azimuthal
angle as observed from the binary system. Table 10.1 gives the values of these parameters used
in the simulated data, and how they are sampled using the geometric nested sampler. Notice
that I only vary the angular parameters (¢, @,0, p,i) in the Bayesian analysis, making it a five-
dimensional parameter estimation problem. All five parameters are assigned uniform priors over
the ranges they are defined on.

Referring back to equation 10.19, the time values ¢; are spaced uniformly between ¢, — ¢ and

t. +t, where
. 1000G (mq + my)

c3

(10.22)

Here G is Newton’s gravitational constant and c is the speed of light in a vacuum.
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Parameter Simulation input value Sampling procedure

mi 35 MSun fixed

ny 25 MSun fixed

r 390 Mpc fixed

te 0 fixed

P 0 circular (wrapped trial distribution)

1) 0 spherical coordinate transformation (azimuthal angle)
0 /2 spherical coordinate transformation (zenith angle)
p 0 spherical coordinate transformation (azimuthal angle)
i /2 spherical coordinate transformation (zenith angle)

Table 10.1: Gravitational wave detection model parameters, their simulation input
values, and how the parameters are sampled by the geometric nested sampler. The
parameters ‘fixed’ sampling procedures were not sampled from, instead their true
(simulation input) value was used in each evaluation of &;(#;,0). ¢ is interpreted
as a circular quantity by the geometric nested sampler, and the pairs of angles (¢,6),
& (p,i) are treated as two independent sets of spherical coordinates (and thus are
transformed independently).

10.4.4.5 Posterior sampling

For the toy models I calculated the posterior distributions analytically over uniform grids so that
I could benchmark the sampling algorithms’ performance with the ‘true’ distributions. How-
ever, since we are sampling from a five-dimensional parameter space in this example, obtaining
samples analytically is no longer feasible. We thus run the MN algorithm with a very high
number of livepoints (2000) and refer to this as the mega MultiNest run (MMN). We use the
MMN result as a reference distribution for our low and high livepoint runs of the MG and MN
algorithms (we do not include the M algorithm in our comparison here). I note however, in the
toy model applications I found evidence to suggest that MN struggles recovering quarter / half
peaks even with 500 livepoints, and when sampling from low dimensional & low number of
mode models. Thus I can make no guarantees that the MMN distribution is the ‘true’ posterior

distribution.

10.4.4.6 Low livepoint run

Figure 10.14 shows the posterior distributions for the angular parameters obtained from the low
livepoint run. Looking at the one-dimensional posterior for ¢, it is clear that MG picks up on
the two half peaks at 0 and 2, but overestimates them compared to the values obtained with

MMN. It also underestimates the middle peak (¢ ~ m) compared to MMN. In fact, one could
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argue that it doesn’t really infer this peak at all. The MN run does the opposite, it overestimates
the middle peak, but completely misses the half peaks. Looking at 8, MG finds a peak around
0 = /3, whereas MMN puts the peak at slightly lower . The MMN curve shows a flat, high
probability density region around 6 = 2x/3, but MG misses this. The MN run puts the biggest
peak at 6 =~ 2x/3, and a smaller one at 6§ ~ 0.75. Both MG and MN do a relatively poor job
at constraining p correctly, as the former misses the fourth peak present on the MMN curve at
p = 3r/2 (and instead overestimates the first peak at ~ x/2). The MN algorithm more or less
gets the correct number of peaks when compared with MMN, but systematically gets their shape
wrong. MG does a better job than MN in recovering the distribution of i relative to MMN. MG
and MN recover similar profiles for ¢., and roughly get the shape of the distribution correct

when comparing with the MMN result.

10.4.4.7 High livepoint run

Figure 10.15 shows the posterior distributions for the angular parameters obtained from the 500
livepoint run. In this case MG and MN do a reasonable job of recovering the MMN profile for
¢, but still underestimate / overestimate in the same way they did in the low livepoint case. For 6
MG does a good job at replicating the MMN result. MG and MN have similar levels of success
in recovering the MMN profiles of p, i and ¢..

Overall the MG algorithm performs well relative to MN for the example considered here,
given the relative simplicity of the algorithm. To make a statement on which algorithm obtained
more accurate inferences of # for this multi-modal (O(10) modes), five-dimensional distribu-
tion, I believe that a more thorough comparison than the visual inspection conducted here is
required. One possible solution to this would be to calculate a distance metric between the MG
and MMN posteriors (e.g. Earth mover’s distance or the Kullback-Leibler divergence) and com-
pare it with the corresponding value between the MN and MMN distributions. However, I do
not make this comparison here. It would also be interesting to see if anyone else has acquired

results for this set of simulations, I do not consider this here, however.

10.5 Geometric nested sampling implementation

The implementation of the geometric nested sampler (and the vanilla Metropolis nested sampler)
used in this paper, along with the toy models and the gravitational wave likelihood function can

be found at https://github.com/SuperKam91/nested_sampling. The algorithm is written in


https://github.com/SuperKam91/nested_sampling
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Figure 10.14: Marginalised one- and two-dimensional posterior distributions for the
five angular parameters, ¢.,®,0,p, and i. The black curves are the results from the
2000 livepoint MN run. The blue and red curves are plotted using the samples of the
MG and MN algorithms respectively, which are obtained from runs with 50 livepoints.
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Figure 10.15: Same plot as Figure 10.14 but the blue and red curves show the MG
and MN runs with 500 livepoints.
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PytHON 2.7, hence our implementation of the algorithm cannot match that of the state of the art
nested sampling algorithms such as MurtiNEsT or POLYCHORD (Handley, Hobson, & Lasenby
2015). These algorithms are implemented in FORTRAN 90, and parallelised using a master-
slave paradigm (see Section 5.4 of Handley, Hobson, & Lasenby). Nevertheless there is no
reason why geometric nested sampling cannot be implemented more efficiently and parallelised
using this method. Furthermore as already mentioned in Section 10.2.1, Feroz & Hobson (2008)
incorporate the Metropolis likelihood sampler into a livepoint clustering algorithm. This same
idea could be applied to the geometric nested sampling algorithm. However, in the case of cir-
cular parameters, the clustering would also need to be wrapped around the domain of # along
with the trial distribution. This could be avoided by instead performing coordinate transform-
ations (Section 10.3.7) for circular and toroidal parameters before sampling from the ellipsoids
resultant from the livepoint clustering. The clustering could be performed in either the original
parameter or the transformed Euclidean space, but it is important to note that in either case
samples could still be automatically rejected if they lie outside the ellipsoid. Nevertheless the
algorithm would still provide the benefit of sampling in the ‘natural’ topology of the problem as

discussed in Section 10.3.5.

10.6 Conclusions

I have presented a new nested sampling algorithm based on the Metropolis nested sampler pro-
posed in Sivia & Skilling (2006) and applied in Feroz & Hobson (2008). The algorithm exploits
the geometric properties of certain kinds of parameters which describe points on circles, tori
and spheres, to sample the parameters more efficiently in the context of nested sampling. The
algorithm should be more mobile in sampling distributions defined on such geometries.

The algorithm consists of two key sampling modes which can be summarised as follows.

e For circular and toroidal problems, the trial distribution used in the sampling process is
wrapped around the support of the prior distribution 7 (domain of the posterior distribution
P).

e This wrapping ensures that no trial points are automatically rejected when evaluating the
Metropolis acceptance ratio as a consequence of the point being outside the sampling
space of the model.

e The wrapped trial distribution also makes the sampling more mobile at the edges of the
domain of #, meaning that circular and toroidal distributions should be easier to sample,

particularly in the case of posteriors with high probability densities at these edges.
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For spherical problems, parameters specifying the coordinates on a sphere are transformed
to Cartesian coordinates and sampled from the corresponding Euclidean space.

This again ensures that no trial points are automatically rejected because they are outside
the domain of P.

It also enhances the mobility of the sampler, whose average step size along the surface of

the sphere is not dependent on the location at which the trial distribution is centred.

I applied the geometric nested sampling algorithm (MG) to three toy models, which respectively

represented models on a circle, torus and a sphere. I compared the posterior plots with those

obtained from a ‘vanilla’ Metropolis nested sampler (M) based on the one used in Feroz &

Hobson (2008), and with the distributions obtained with the livepoint clustering nested sampling

algorithm MuLtiNestT (MN, Feroz, Hobson, & Bridges 2009). For each model, all three samplers

were run twice, once with a low number of livepoints (50), and once with a high number of

livepoints (500). I included the distributions obtained from evaluating ¥ analytically as means

of reference to the ‘correct’ distribution (T). The results can be summarised as follows.

For the low livepoint run on the circular toy model (von Mises distribution centred on the
origin), the MG and MN samplers marginally outperform the M sampler.

For the high livepoint run on the circular toy model, all samplers perform similarly, with
the MG algorithm giving slightly superior results with respect to the T distribution.

The low livepoint run for the toroidal model (two-dimensional von Mises distribution
centred on the origin) the MG outperforms both M and MN. One would maybe expect MN
to struggle on a four-mode problem with only 50 livepoints, whereas the MG effectively
treats these four modes as one given their location in the domain of .

The high livepoint run gives better results for all three samplers, but the MN distribution
seems the least accurate. This highlights the potential issues which clustering algorithms
face with modes which occur at the edges of #, independent of the number of livepoints
used.

The spherical toy model which consists of a von Mises distribution on the azimuthal angle
¢ and a truncated Gaussian on the zenith angle 6 shows that in the case of low livepoint
runs, the M algorithm surprisingly performs the best, as it does a better job at recovering
the profile of 6 than the MG algorithm.

For the 500 livepoint run the MG and MN algorithms recover ¢ similarly well, but the
former systematically overestimates the probability density in 6 around its peak, and un-

derestimates it at low densities.
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I then applied the MG and MN sampling algorithms to a model representing the detection of
gravitational waves generated by binary black hole mergers and detected with the LIGO and
Virgo instruments (Lange & LIGO-Virgo Collaboration 2018). Using simulated datasets, we ob-
tained inferences of a five-dimensional (all circular / spherical parameters), multi-modal (O (10)
modes) posterior distribution. For this example my ‘correct’ reference distribution was a MN
run with 2000 livepoints. I found the following.

e Overall for the low livepoint run, both algorithms struggle to correctly infer all the peaks
of the distribution (of the 2000 livepoint MN run).

e However, this is to be expected for MN since it can only attribute = a few livepoints to
each mode. Furthermore, the locations of the modes, which occur not just at the edges
of #, mean that the MG algorithm must also allocate its livepoints separately to different
modes, a task which it is not designed to cope well with.

e With 500 livepoints the MG algorithm recovers all the modes inferred from the 2000
livepoint MN run. MN performs similarly well, but slightly overestimates the number of

modes; further quantitative work is needed to home in on this.
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A.1 Results table

Table A.1:

Summary of values for final sample of 54 clusters.

The redshift

types correspond to S: spectroscopically measured and P: photometrically meas-

ured. z, M(r200), Xc, Yo and fgas(7200) are the physical model sampling parameters.

Mavii(r500), MPl,marg (rs00) and Mp) glice (rs0p) are the M (rs500) estimates obtained from

the AMI and Planck data respectively. All masses are given in units of x10'* Mg,

and all cluster centre coordinates are measured in arcseconds.

Row Planck ID Alias z ztype  Mami(r200) Xc Ye Sfeas(r200)  Mami(rs00)  Mpimarg(r500)  Mpy,stice (7500)
1 PSZ2G044.20+48.66 ACO02142 0.0894 S 13.49+2.35 9.14+18.20 8.80 + 15.08 0.13+0.02 9.25+1.58 10.81+0.42 8.7618:5?
2 PSZ2G053.53+59.52 ACO02034 0.113 S 8.51+1.28 —-1.80 +13.10 19.39 +9.86 0.13+£0.02 5.87+0.86 5.38+0.39 5.48i8:%3
3 PSZ2G151.90+11.63 CIZAJ0515.3+5845 0.12 S 5.74 +1.24 67.58 +27.09 68.01 + 18.58 0.13+£0.02 3.99+0.84 4.23+1.03 3.65i8:‘5‘(7)
4 PS7Z2G218.59+71.31 ACO1272 0.137 S 2.70+£0.99 2.82+25.21 —16.62 +25.98 0.13+0.02 190+0.68 4.79+0.80 3.62i8:§8
5 PS72G226.18+76.79 ACO1413 0.1427 S 8.19+1.23 -35.33 £10.98 —-1.13+13.44 0.13+£0.02 5.62+0.82 6.14+0.55 5.9818:%2
6 PSZ2G165.06+54.13  ACO990 0.144 S 7.80 £ 1.35 32.43 +13.21 —27.57 +15.52 0.14+£0.02 5.36+0.90 5.13+0.51 4.83i8:§g
7 PSZ2G077.90-26.63  AC0O2409 0.147 S 9.09 +1.32 -26.87 +10.89 18.00 = 11.85 0.14 £0.02 6.22+0.88 5.92+0.58 5.08i8:%;
8 PSZ2G050.40+31.17 AC02259 0.164 S 552+1.19 35.72 £ 21.77 9.31 +19.56 0.13+0.02 3.80+0.80 4.53+0.62 4.3618:%2
9 PSZ2G097.72+38.12 ACO2218 0.1709 S 10.65+1.68 31.99 +15.25 —-0.95+13.52 0.13+0.02 7.23+1.11 7.44+040 6.64i8:};
10 PSZ2G099.30+20.92 MCXCJ1935.3+6734 0.171 S 557+1.24 -37.19+£19.92 —-24.50 = 21.16 0.13+£0.02 3.83+0.83 5.88+0.93 3.9118:%2
11 PSZ2G067.17+67.46 ACO1914 0.1712 S 10.45+1.49 31.39+12.81 -33.15+11.99 0.13+£0.02 7.09+0.99 7.14+0.47 7.04i8:%g
12 PSZ2G167.67+17.63 RXJ0638.1+4747 0.174 S 478 +1.36 —-28.70 +31.24 10.76 + 28.64 0.13+0.02 3.30+0.92 7.72+0.81 6.31i8:§2
13 PSZ2G066.68+68.44 ACO1902 0.181 S 4.95+1.43 56.07 +25.47 8.14 +33.23 0.13+£0.02 341+097 5.27+0.84 3.9818:;3
14 PSZ2G065.28+44.53 ACO2187 0.183 S 5.24 +1.28 —16.66 +22.61 —16.54 + 21.65 0.13+£0.02 3.60+0.86 3.89+0.98 3.561—8:‘5‘1
15 PSZ2G084.47+12.63 MCXCJ1948.3+5113 0.185 S 479 +1.22 -73.73 £ 31.17 —-16.97 +20.93 0.13+£0.02 3.30+0.82 5.98+0.65 4.94i8:g2
16 PSZ2G100.04+23.73 ACO2317 0.21 S 544 +1.13 20.24 +19.02 —-22.73 +20.90 0.13+0.02 3.72+0.75 4.10+0.80 3.73i8:§?
17 PSZ2G180.60+76.65 SDSSCGB26344.3 0.2138 S 5.38+1.21 37.81 +£15.59 —-66.98 + 19.41 0.13+£0.02 3.68+0.81 6.76+0.75 6.0018:;2
18 PSZ2G166.09+43.38 ACO773N 0.2172 S 9.84 +1.39 -5.35+10.66 -3.98 +9.70 0.13+£0.02 6.63+£0.92 7.76+0.73 6.871—8:2‘2‘
19 PSZ2G125.30-27.99 N/A 0.223 P 451 +1.31 —8.08 +26.99 8.82 +30.24 0.13+£0.02 3.09+0.87 5.54+0.98 4.70i8:gg’
20 PSZ2G060.13+11.44 N/A 0.224 S 747 +1.22 —-64.79 = 12.50 —49.27 + 14.16 0.13+0.02 5.06+0.80 7.55+1.09 5.34i8:g(9)
21 PSZ2G166.62+42.13 ACO746 0.232 P 3.56 + 1.07 —38.98 +29.87 —38.09 +37.84 0.13+£0.02 244+0.72 5.60+0.71 5.3618:‘33
22 PS72G097.94+19.43 4C 65.28 0.25 S 5.01 £1.31 —114.76 £22.50 —13.64 +34.07 0.13+£0.02 3.40+0.87 5.69+0.85 4.041-8:;(3)
23 PSZ2G164.29+08.94 N/A 0.251 P 5.97 + 1.06 -62.17 + 14.03 18.12 + 17.06 0.13+£0.02 4.04+0.70 7.91+1.36 6.24i8:23
24 PSZ2G133.60+69.04 RXJ1229.0+4737 0.254 S 5.26 + 1.60 5.87 +25.04 59.40 + 37.35 0.13+£0.02 3.57+1.06 7.04+0.97 5.42i8:i§
25 PSZ2G086.47+15.31 MCXCJ1938.3+5409 0.26 S 10.89 £ 1.87 -39.65 +13.24 19.83 = 12.61 0.13+0.02 7.25+1.21 9.54+0.63 7.76+0-29

—0.28
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Table A.1 — continued from previous page

Row Planck ID Alias z ztype  Mami(r200) Xe Ye Sfeas(r200)  Mami(r500)  Mpimarg(r500)  Mpi,stice (7500)
26 PSZ2G139.62+24.18 N/A 0.2671 S 8.13+1.28 36.66 + 11.64 —12.58 + 10.80 0.13+£0.02 545+0.84 8.34+1.06 7.1 1i83§
27 PS7Z2G184.68+28.91 ACO611 0.288 S 7.90 +1.02 22.61 £10.45 13.48 £ 9.97 0.13+0.02 528+0.67 11.44+2.30 5.61i8:g§
28 PS7Z2G154.13+40.19 ACO747 0.29 P 6.46+1.13 70.99 + 14.72 —42.86 + 13.25 0.13+£0.02 433+0.74 6.09+1.10 5.4818:32
29 PSZ2G095.49+16.41 N/A 0.3 S 543+1.12 —-24.47 +19.10 —-102.18 £ 18.33 0.13+£0.02 3.65+0.74 4.91+0.99 4.381—8:33
30 PSZ2G109.52-19.16 N/A 0.3092 P 8.53 +1.40 -30.38 = 13.77 —-15.21 +15.15 0.13+£0.02 5.66+091 8.34+1.79 5.78i8:g§
31 PSZ2G198.90+18.16  [SPD2011] 298 0.3184 P 7.61 +£1.18 26.76 + 14.62 -58.07 = 11.95 0.13+£0.02 5.06+0.77 7.99 +1.47 5.87i8:§§
32 PS7Z2G152.33+81.28 MCXCJ1230.7+3439 0.333 S 6.27+1.12 —52.81 +£20.78 4411 + 14.62 0.13+£0.02 4.17+0.73 5.08+0.96 5.0518:23
33 PSZ2G108.17-11.56  N/A 0336 S 800+123 3519+13.14  —70.15+19.09 0.13+0.02 529080 982129 742405
34 PSZ2G132.47-17.27 MCXCJ0142.9+4438 0.341 S 1243 +1.85 31.87+10.19 1527 £12.93 0.13+£0.02 8.13+1.18 8.27+1.12 8.07i8:g;
35 PSZ2G207.88+81.31 ACO1489 0.353 S 11.26 £ 1.61 68.55 +8.44 62.56 + 11.55 0.13+£0.02 7.36+1.02 8.01 +£0.95 7.54i8:3§
36 PSZ2G157.32-26.77  MCSJ0308.9+2645 0.356 S 1428 £2.12 0.33 +£8.12 17.65 +£11.53 0.13+0.02 927+1.34 1095+1.12 10.6718:%
37 PSZ2G071.21+28.86 RXSJ175201.5+444046 0.366 S 9.26 +1.51 —29.82 £9.95 —12.58 + 13.26 0.13+£0.02 6.07+0.96 6.15+0.80 6.701—8:32
38 PSZ2G194.98+54.12 MCSJ1006.9+3200 0.375 P 8.90 + 1.56 32.58 +12.17 -0.22 +£19.18 0.13+£0.02 5.83+1.00 6.31+1.38 5.30i8:2§
39 PSZ2G109.86+27.94 N/A 0.4 S 457 +1.28 3.98 +22.50 7.39 + 18.70 0.13+£0.02 3.03+0.83 5.23+0.91 5.23i8:3§
40 PSZ2G083.29-31.03 MCXCJ2228.6+2036 0.412 S 11.85+1.73 81.05+13.29 -3.42+12.73 0.13+£0.02 7.65+1.09 9.21+0.95 8.3118:3‘5‘
41 PSZ2G063.38+53.44 NSCJ1537+392702 0.422 S 12.17+1.94 46.13 +12.01 46.02 + 9.37 0.13+£0.02 7.84+1.22 7.78+1.54 6.171—8:2
42 PSZ2G063.80+1142 N/A 0426 S S13+1.19  —3641+2222  —47.14+1979  0.13+0.02 3374076 553+0.63 64103
43 PSZ2G157.43+30.34 RXJ0748.6+5940 0.45 P 11.64 +1.56 —-61.32+7.38 4.53 +8.27 0.13+£0.02 747+098 6.71+0.44 8.16i8:g3
44 PSZ2G150.56+58.32 CLGJ1115+5319 0.47 S 1277 £2.40 10.18 +13.31 34.06 + 18.57 0.13+0.02 8.14+1.49 10.04+1.61 7.44i8:g(3)
45 PSZ2G170.98+39.45 [SPD2011] 16774 0.5131 S 10.11 £ 1.38 31.48 +10.20 -30.87 = 12.67 0.12+0.02 6.43+0.86 8.24+1.30 7.5518:%
46 PSZ2G094.56+51.03 N/A 0.5392 S 10.83 +1.43 81.61 +£8.09 52.86 + 8.80 0.13+£0.02 6.85+0.88 6.46+0.93 5.90ig:ﬁ
47 PS72G228.16+75.20 CLGJ1149+2223 0.545 S 15.63+1.66 —15.49+5.32 17.11 £ 4.75 0.13+£0.01 9.78+1.01 9.64+0.94 9.69i8:g2
48 PSZ2G213.39+80.59 SDSSCGB41791 0.5586 S 9.31+1.32 -9.73+11.90 69.37+12.14 0.13+0.02 5.89+0.81 8.03+1.39 6.7718:22
49 PSZ2G066.41+27.03 N/A 0.5699 S 13.23+£2.05 -33.18+11.12 97.03 +11.32 0.13+0.02 827+1.25 7.33+0.82 7.7218:2‘21
50 PSZ2G144.83+25.11 CLGJ0647+7015 0.584 S 11.69 £ 1.46 4.15+7.87 —-1.21 £+ 8.54 0.13+£0.02 7.32+0.89 8.50+1.27 7.8018:;3
51 PSZ2G045.87+57.70 N/A 0.611 S 9.22 +1.97 11.71 + 14.87 24.21 +12.21 0.13+£0.02 5.78+1.20 8.49+1.61 7.05i8:g?
52 PSZ2G108.27+48.66 N/A 0.674 S 9.31+1.46 9.99+11.34 35.79 £11.45 0.13+0.02 5.77+0.88 8.44+1.58 4.9618:‘513
53 PSZ2G086.93+53.18 N/A 0.6752 P 9.85+1.69 —47.72 + 14.38 27.69 = 10.67 0.13+£0.02 6.10+1.01 6.07+1.09 5.46i8:§%
54 PSZ2G141.77+14.19 N/A 0.83 P 10.99 +1.50 —-4.36 +8.54 —19.02 + 8.85 0.13+£0.02 6.61 £0.87 9.94+2.01 7.77+9-%0

—0.95
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APPENDIX

APPENDIX B: Y, DERIVATION AND RESULTS OF

PHYSICAL AND OBSERVATIONAL MODELLING COMPARISON

B.1 GNFW Y, analytical solution

We wish to solve the integral

o0 r —C b
L)
0 I'p

First we use the substitution s = r/r, to get

Next we use the substitution ¢ = s¢ which gives
3

r o .
—pf 37 [+ 15 dr

a

0
3 0 3—c 1
r ta

= _pf —dr.
aJo (1+¢t)a

Now using the following form for the beta function

8] tx—l

T

B(x,y) =
0

185

r 4 %
1+(_)] ar.
p

o0
c-b
rgf s2s7C [1+s%] @ ds.
0

(B.1)

(B.2)

(B.3)

(B.4)



Appendix B. Appendix B: Y,y derivation and results of physical and observational modelling
186 comparison

and the relation between the beta and Gamma functions given by B(x,y) = I'(x)I'(y)/I'(x+y)

then we get the result
3= b=3
rs)r(s) s

r(%)

Q |*o\u

as required.



B.2 Results tables

Table B.1: Summary of parameter estimates for final sample of 54 clusters. All Y
values are given in units of x10~3 (arcmin?), and all cluster centre coordinates are
given in arcseconds. The cluster centre estimates from the physical model are omitted
here but can be found in the results Table A.1 in Appendix A, which is ordered in the
same order as this Table. Note the Table in Appendix A also gives external names
associated with these clusters, as well as the method used to measure the respective

redshifts (i.e. spectroscopic or photometric).

Row Planck ID z Yom(rsoo)  Yomi(rsoo) X0,0MI Y0,0M1 Yomu (rs00) X0,0MII Yo,0M 1l

1 PS7Z2G044.20+48.66 0.0894 11.59+2.28 6.77+3.32 6.53 +18.56 8.93 +14.41 20.48 +£6.19 10.36 + 18.38 8.32 +15.32

2 PSZ2G053.53+59.52 0.113  3.81+£0.67 2.02+0.90 -1.77+12.69 23.19 +9.38 3.12+1.74  -1.07 +£12.67 20.89 + 9.88

3 PSZ2G151.90+11.63 0.12 1.76 £ 0.50 2.55+1.56 63.93 +28.11 67.61 + 18.86 4.09 +£1.83 59.05 +27.67 67.19 + 19.36
4 PS7Z2G218.59+71.31 0.137 045+0.25 0.35+0.15 -8.85+14.58 —-17.72 +£14.59 043 +0.27 0.04 +23.62 —16.95 + 24.66
5 PS72G226.18+76.79 0.1427 2.45+045 091+0.45 -4520+10.61 6.46+12.25 1.21 +£0.51 -42.92 +10.66  3.80+12.00

6 PS7Z2G165.06+54.13 0.144 2.26+0.54 0.70+0.25 29.82 +10.17 -29.36 +12.22 0.95+0.27 31.51 +£10.76 —-29.04 + 12.83
7 PSZ2G077.90-26.63 0.147 2.80+0.46 1.35+0.48 -27.99+991 20.12 +11.23 1.48+0.49 -28.06 +10.13 19.93 + 11.07
8 PS72G050.40+31.17 0.164 1.01 £0.29 1.07£0.70 37.21 +20.82 9.59 +19.09 1.18 £+ 0.76  36.11 +22.25 9.30 + 19.70

9 PSZ2G097.72+38.12 0.1709 2.65+0.46 2.72+1.26 29.79+15.43 -2.59+13.68 3.97+1.49 32.13+15.62 —-1.56 + 13.81
10 PS72G099.30+20.92 0.171 097 +0.31 0.79+0.49 -35.09+19.11 —-24.57+21.53 0.86+0.51 -36.16 +19.13  -25.55 +21.67
11 PSZ2G067.17+67.46 0.1712 2.70 +£0.46 1.30+0.54 34.00+11.65 -30.54+10.97 1.48+0.60 33.18+11.61 -31.32+11.16
12 PS7Z2G167.67+17.63 0.174  0.72 +£0.30 1.69+1.05 -24.86=+32.03 10.55 £ 28.11 1.33+0.77 -23.41 +33.17 11.93 +29.04
13 PSZ72G066.68+68.44 0.181 0.72 +£0.29 1.24 +0.79 55.97 +25.19 9.20 +32.13 1.12+0.72  56.41 +26.70 7.31 +32.63
14 PS7Z2G065.28+44.53 0.183 0.79+0.28 0.65+0.38 -21.13+20.72 —-15.63+18.96 0.61+0.34 —-19.57+22.13 —16.08 +20.64
15 PS72G084.47+12.63 0.185 0.67+0.25 0.58+0.29 -67.12+29.59 -2326+18.01 0.53+0.28 -69.03+30.83 —20.78 +20.07
16 PS7Z2G100.04+23.73 0.21 0.65+0.18 1.28+0.75 1747 +19.11 —-22.73+£22.21 1.05+0.55 17.93 +19.85 —-23.27 +22.53
17 PSZ2G180.60+76.65 0.2138 0.63 +0.20 1.73 +£0.93 36.57 + 16.66 —-73.38+20.39 1.11+0.50 35.90+17.29 —70.57 £ 22.18
18 PS72G166.09+43.38 0.2172 1.67 +0.28 1.10 +0.50 —-4.29 +10.57 -6.54 +9.54 1.14 + 0.46  —4.73 +10.32 —6.66 + 9.63
19 PS7Z2G125.30-27.99 0.223 045+0.18 0.99+0.64 -8.12+26.53 2.49 + 30.79 0.60 = 0.38 -9.03 +28.36 6.48 +31.71
20 PS7Z2G060.13+11.44 0.224 1.00+£0.20 1.17+0.64 -6493+12.76 —-49.60+15.02 1.12+0.56 -64.67+12.69 —49.56 + 14.77
21 PS7Z2G166.62+42.13 0.232  0.29 +£0.13 1.57+0.92 -36.13 +£30.51 -54.22 £32.52 0.53+0.35 —-3492 +31.92 —40.79 + 38.30
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Table B.1 — continued from previous page

Row Planck ID z Yom(rsoo)  Yomi(rsoo) X0,0MI Y0,0M1 Yomn (rs500) X0,0MII Yo,oM 1l

22 PS7Z2G097.94+19.43 0.25 0.45+0.17 1.24+0.69 -121.19+21.52 -2.42+32.74 0.73+£0.41 —-115.20 £27.60 —5.84 +34.15
23 PS72G164.29+08.94 0.251 0.59+0.13 0.87+043 -62.15+13.92 20.46+17.35 0.73+0.35 —-62.23 +13.90 18.67 +17.99
24 PSZ2G133.60+69.04 0.254  0.47 +£0.20 1.60+1.12 0.13 +24.80 66.74 + 35.89 0.80+0.45 3.35+25098 63.00 = 37.13
25 PSZ2G086.47+15.31 0.26 1.48 +0.33 1.70+0.71 —41.40 + 14.66 19.45 +£13.73 1.58+0.60 -40.08 +14.39 20.08 +13.75
26 PS7Z2G139.62+24.18 0.2671 0.89+0.16 0.77+0.34 3574 +11.80 —-13.45+11.11 0.70+0.33 35.83+11.49 -13.78 + 10.76
27 PSZ2G184.68+28.91 0.288  0.76 +0.12  0.95+0.38 22.66 +10.55 12.19 + 10.37 0.83 +0.31 22.58 +10.48 13.03 + 10.41
28 PS7Z2G154.13+40.19 0.29 0.55+0.13 0.72+0.50 71.59 +15.07 —42.78+13.41 0.46+0.23 69.88 +14.52 —42.45+13.20
29 PS72G095.49+16.41 0.3 0.39+0.12 0.87+0.54 -19.80+21.12 -94.58+19.43 0.48+0.26 -22.58+20.72 —-98.75+20.62
30 PS7Z2G109.52-19.16  0.3092 0.78 +0.16 1.00+0.57 -31.66+14.34 —-1521+15.68 0.82+0.39 -31.16+14.43 —-15.23 +15.95
31 PS7Z2G198.90+18.16 0.3184 0.62+0.12 0.86 +0.40 27.42 +15.36 -59.55+12.35 0.69+0.27 27.03 +15.25 -57.65 + 12.64
32 PS7Z2G152.33+81.28 0.333  0.43 +0.11 0.78+£0.42 -49.96+20.35 44.73+15.45 048 £+0.22 -53.60+2093 43.79 +£15.28
33 PS7Z2G108.17-11.56 0.336 0.61 +£0.12 224 +1.10 27.48 +14.92 -36.56 +20.44 1.12+0.25 30.62 +13.89 -51.07 £ 19.77
34 PS72G132.47-17.27 0.341 1.25+0.21 1.38 +0.52 32.53+10.83 16.82 + 12.65 1.37+0.47 32.34 +10.66 16.61 + 12.56
35 PS7Z2G207.88+81.31 0.353 1.05+0.18 0.90+0.34 67.45+8.46 61.30 +11.45 0.82+0.29 66.90 + 8.21 59.84 +11.43
36 PS7Z2G157.32-26.77  0.356 1.52 +0.27 1.25+0.42 -0.28 +8.01 19.15 + 11.86 1.23+0.39 -1.07+7.59 17.73 + 11.58
37 PS7Z2G071.21+28.86 0.366 0.72+0.15 091 +£0.34 -2947+10.86 —-12.29+14.04 0.75+0.25 —-29.64 +10.48 —-12.13+13.74
38 PSZ2G194.98+54.12 0.375  0.65+0.15 1.28+0.69 32.85+12.59 -5.89+18.85 0.93+0.32 32.71+12.45 -3.46 + 19.90
39 PS7Z2G109.86+27.94 0.4 0.21+0.09 0.30+0.11 8.03+16.29 -1.95+14.87 0.20+0.07 7.15+21.69 2.87+17.97
40 PS7Z2G083.29-31.03 0.412 0.95+0.17 0.66+0.21 75.26 +13.22 -0.29+12.25 0.60+0.20 72.16 +13.03 2.13+11.88
41 PS7Z2G063.38+53.44 0.422 093+0.19 1.28+0.45 39.37+14.20 49.33 + 10.77 1.12+0.29  41.65 +13.30 48.43 +10.17
42 PS7Z2G063.80+11.42 0.426 024 +0.08 0.80+0.46 —-42.04+23.06 —-4432+2040 0.29+0.14 -36.98+23.28 —-45.28 +20.74
43 PS7Z2G157.43+30.34 0.45 0.82+0.13 091+0.26 -61.41+7.56 4.85+8.34 0.85+0.23 —-61.63 +7.29 4.79 + 8.26

44 PSZ2G150.56+58.32 0.47 093+0.25 0.86+0.38 9.81+14.03 35.97 + 18.29 0.70+0.25 8.34+12.93 36.51 +18.01
45 PS7Z2G170.98+39.45 0.5131 0.54 +0.08 1.62+0.68 23.91 +12.09 —-18.32+13.31 0.88+0.17 26.68 +11.52 —22.95 +12.68
46 PS7Z2G094.56+51.03 0.5392 0.63 +0.10 0.50+0.09 82.24 +7.64 50.61 +8.76 0.45 +0.08 81.87 +7.67 50.51 £ 8.62
47 PS72G228.16+75.20 0.545 1.06 + 0.10 1.35+0.27 —-14.53 +£5.57 16.35 +5.31 1.25 +0.21 -14.39 +5.59 16.50 + 5.08
48 PS7Z2G213.39+80.59 0.5586 0.45+0.08 0.89+0.36 -5.34+12.49 65.15+12.29 0.58 +0.18 -8.19+12.21 68.13 +12.60
49 PS72G066.41+27.03 0.5699 0.79 +0.16 1.76 +0.73 -37.37+11.95 100.92 +13.20 1.00+0.24 -34.28 +11.21 97.77+11.89
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Table B.1 — continued from previous page

Row Planck ID z Yom(rsoo)  Yomi(rsoo) X0,0MI Y0,0M1 Yom(7500) X0,0MII Y0,0MII

50 PS72G144.83+25.11 0.584  0.61 +0.07 1.34+0.45 1.55+9.00 —3.86 = 8.95 0.89+0.17 3.09 +8.57 -2.97+8.79

51 PSZ2G045.87+57.70 0.611 0.41+0.12 093+0.46 20.59+17.97 16.79 + 15.76 0.52 +0.16 16.61 + 16.65 20.54 + 14.20

52 PS7Z2G108.27+48.66 0.674 0.40+0.08 0.55+0.20 8.45+11.83 35.26 +11.93 042+0.12 991 +12.03 35.53 +11.69

53 PS7Z2G086.93+53.18 0.6752 0.43 +£0.10 1.28 £0.57 -40.06+16.39 30.84 +12.08 0.59+0.15 4492 +1526 29.36+11.53

54 PSZ2G141.77+14.19 0.83 045+0.06 0.56+0.17 -3.40+38.77 -18.18+9.36  047+0.11 —-4.11+8.78 -18.97 £ 9.37

Table B.2: Summary of model comparison statistics for final sample of 54 clusters.
The Planck IDs are omitted but are the same as in Table B.1.

Row z demp (Pems Pom1)  demp(PomiPom1)  demp (Pem Pomn)  In(Zpm/Zoun)  In(Zom1/Znun)  In(Zomn/Zoun)  In(Zpm/Zomn)  In(Zomn/ZomD)  In(Zem/Zomm)
1 0.0894 0.222 0.514 0.297 33.90 +£0.16 29.17 +£0.16 33.38 +£0.16 473 +£0.23 421 +£0.23 0.52 +£0.22
2 0.113 0.152 0.091 0.093 30.94 +£0.17 31.06 = 0.17 30.01 £0.17 -0.12+0.24 -1.05+0.24 0.93 +0.24
3 0.12 0.083 0.123 0.189 10.40 £ 0.13 10.54 + 0.13 10.00 £ 0.14 -0.14 £ 0.19 -0.53 +0.19 0.39+0.19
4 0.137 0.132 0.115 0.051 1.71 £0.17 3.41 +0.17 1.76 + 0.17 -1.70 £ 0.24 -1.65+0.24 -0.05+0.24
5 0.1427 0.170 0.033 0.138 23.01 £0.15 24.85 +0.15 23.50+0.15 -1.84 £ 0.21 -1.35+0.21 -0.49 +0.21
6 0.144 0.210 0.045 0.165 13.68 £ 0.13 17.82 +£0.13 15.56 £ 0.14 -4.14+0.18 -2.26+0.19 —-1.88 +£0.19
7 0.147 0.140 0.014 0.126 32.94 +0.12 3476 + 0.12 33.50 £ 0.12 -1.82+0.17 -1.26 +0.17 -0.56 +£0.17
8 0.164  0.065 0.026 0.069 9.61 +0.08 10.32 +0.08 9.10 + 0.08 -0.71 +£0.11 -1.23+0.11 0.51 +£0.12
9 0.1709  0.049 0.082 0.087 33.10+0.16 33.00+0.16 32.62 +0.16 0.10 £0.22 -0.37+0.22 0.47 +£0.23
10 0.171 0.058 0.012 0.058 7.73 +£0.15 8.46 £ 0.15 7.08 +0.15 -0.73+0.21 -1.38+0.21 0.65+0.21
11 0.1712 0.135 0.022 0.114 26.98 +0.10 28.19 +0.10 27.08 +0.11 -1.21+0.14 -1.11+£0.15 -0.10+£0.15
12 0.174  0.132 0.029 0.107 3.67+0.11 453 +0.11 3.56 +0.11 -0.86 +0.15 -0.97+0.16 0.11 £0.16
13 0.181 0.084 0.015 0.080 442 +0.13 5.00 +£0.12 4.06 +£0.13 -0.58 +0.18 -0.95+0.18 0.36 +0.18
14 0.183 0.068 0.010 0.063 5.57+0.13 6.52+0.13 5.35+0.13 —-0.94 +0.18 —-1.16 +£0.18 0.22 +0.19
15 0.185 0.062 0.010 0.056 3.57+0.18 428 +0.18 3.47+0.18 -0.71 £0.25 -0.80 £0.25 0.09 +0.25
16 0.21 0.094 0.026 0.076 7.98 +£0.14 8.67+0.14 7.51+£0.14 -0.69 +0.20 -1.15+0.20 0.46 +0.20
17 0.2138 0.143 0.051 0.094 4.68 +£0.18 5.67+0.18 438 +0.18 -0.99 + 0.25 -1.29 +0.25 0.30 £ 0.25
18 0.2172 0.072 0.006 0.069 27.82+0.12 28.93 +£0.12 27.64 +0.13 -1.11+0.17 -1.29+0.17 0.18+0.18
19 0.223 0.097 0.054 0.057 4.36+0.10 4.84 +0.10 3.95+0.10 -0.48 +0.14 -0.89 +0.14 0.41+0.14
20 0.224  0.049 0.009 0.051 16.34 +0.13 17.23 +£0.13 15.79 £ 0.13 -0.89 +0.18 -1.44+0.19 0.55+0.19
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Table B.2 — continued from previous page

Row z demp (Pem, Pom1)  demp(Pomm Pom1)  demp(Pems Pomn)  In(Zpm/Zoan)  In(Zomt/Zoan)  In(Zomn/Zoun)  In(Zpm/Zomn)  In(Zomn/Zom1)  In(Zem/Zomm)
21 0.232 0.225 0.147 0.083 3.02+0.15 4.37 +£0.15 2.54 +0.15 -1.35+0.21 -1.82 +0.21 0.48 +£0.21
22 0.25 0.136 0.071 0.070 3.03+0.15 3.96 +0.15 2.26 +0.15 -0.93 +0.21 -1.70 £ 0.21 0.77 £0.21
23 0.251 0.055 0.024 0.045 12.67 £ 0.16 13.45+0.16 11.69 = 0.17 -0.78 £0.23 —-1.76 £ 0.23 0.99 +0.23
24 0.254 0.180 0.110 0.076 3.80+0.11 5.27+0.11 3.86 +0.11 —-1.47+£0.15 —-1.41+£0.15 —-0.06 +0.15
25 0.26 0.041 0.009 0.040 13.18 £ 0.17 13.79 £ 0.16 12.32 £ 0.17 -0.60 +0.23 -1.46 +0.23 0.86 +0.23
26 0.2671 0.043 0.012 0.051 28.23+0.14 29.05 +0.14 27.67+£0.14 -0.81+0.20 -1.38 +£0.20 0.56 +0.20
27 0.288 0.038 0.018 0.032 22.61+0.14 23.45+0.14 21.90 £0.14 -0.85+0.19 -1.55+0.19 0.71 £ 0.20
28 0.29 0.045 0.034 0.046 9.72 £0.18 10.64 = 0.18 9.42+0.18 -0.92+£0.26 -1.23+£0.26 0.31 £0.26
29 0.3 0.138 0.115 0.045 5.26 +£0.20 594 +0.19 4.44 +0.20 —0.68 + 0.28 —-1.51+0.28 0.83 +£0.28
30 0.3092 0.047 0.027 0.041 14.83 £ 0.12 15.62 +0.12 14.13 £ 0.12 -0.80+0.17 -1.49+0.17 0.70 £ 0.17
31 0.3184 0.042 0.025 0.032 14.64 £ 0.11 15.36 £ 0.10 13.88 +0.11 -0.72+£0.15 —-1.48 £0.15 0.76 = 0.15
32 0.333 0.071 0.058 0.036 9.30+0.15 9.89 +0.15 8.59+0.15 -0.58 +£0.21 -1.30+0.21 0.72 +0.21
33 0.336 0.209 0.122 0.088 10.98 + 0.20 14.24 + 0.19 12.05 +0.20 -3.26 +0.28 -2.19+0.28 —-1.07 £ 0.28
34 0.341 0.032 0.006 0.031 32.32+0.14 33.03+0.14 31.53+0.14 -0.71+0.20 -1.51+0.20 0.80 +0.20
35 0.353 0.036 0.016 0.045 20.74 £ 0.16 21.70 £ 0.15 20.26 +0.16 -0.96 +0.22 —-1.44+0.22 0.48 +£0.22
36 0.356 0.039 0.007 0.043 25.23+0.13 25.70+£0.13 24.79 £ 0.14 -0.47 +0.19 -0.91+0.19 0.44 +0.19
37 0.366 0.037 0.018 0.027 11.84 +0.13 12.47 £ 0.13 11.00 £ 0.13 -0.62 +0.19 -1.47+0.19 0.84 +0.19
38 0.375 0.093 0.050 0.047 16.17 £ 0.14 17.58 £ 0.14 15.83+0.14 -1.41+0.20 -1.74 £ 0.20 0.34 +0.20
39 0.4 0.023 0.013 0.027 3.36 £0.15 2.77+0.15 2.75+0.15 0.59 +£0.22 -0.02+0.22 0.61 +£0.22
40 0.412 0.040 0.015 0.054 26.82 +0.16 27.58 £0.16 26.56 £ 0.16 -0.76 £ 0.23 -1.01 £0.23 0.26 +£0.23
41 0.422 0.058 0.027 0.032 14.70 £ 0.22 15.84 +0.22 14.37 £ 0.22 —1.14 £ 0.31 —-1.48 £ 0.31 0.33 +0.31
42 0.426 0.126 0.106 0.030 448 +0.15 4.89 +0.14 424 +0.15 -0.41+0.20 -0.66 + 0.20 0.24 +£0.21
43 0.45 0.025 0.010 0.020 31.61 £0.16 32.30+0.15 30.87 £ 0.16 -0.69 +0.22 —-1.43+0.22 0.74 £ 0.22
44 0.47 0.032 0.023 0.041 8.28 +0.10 8.74 £ 0.10 8.14 +0.11 -0.46+0.14 —0.60 +0.15 0.14 +£0.15
45 0.5131 0.133 0.078 0.055 23.66 +0.14 27.24 +£0.13 24.82 +0.14 -3.58+0.19 -2.42+0.19 -1.16 +£0.19
46 0.5392 0.036 0.007 0.043 23.74 +£0.18 24.69 +0.18 24.49 +0.18 -0.95+0.25 -0.20 £ 0.25 -0.75+£0.25
47 0.545 0.028 0.010 0.020 110.33 £0.19 110.78 £0.19 109.81 £ 0.19 -0.45+0.26 -0.97 £ 0.26 0.52 +0.27
48 0.5586 0.064 0.041 0.027 21.75+0.20 22.86 +0.20 21.54 £0.20 -1.11+£0.28 -1.31+0.28 0.21 +£0.28
49 0.5699 0.101 0.071 0.031 14.90 = 0.17 16.67 +0.17 14.44 + 0.17 -1.77+0.24 -2.23+0.24 0.46 +£0.24
50 0.584 0.080 0.041 0.039 43.03 +0.17 45.57 +0.17 43.52 +0.17 -2.54+0.24 -2.05+0.24 -0.49 +£0.25
51 0.611 0.112 0.079 0.035 8.60 +0.14 10.46 + 0.14 8.54+0.14 —-1.86 +0.20 -1.92 +0.20 0.06 +0.20
52 0.674 0.032 0.026 0.015 13.43 +£0.16 13.61 £ 0.16 12.69 £ 0.16 -0.18 £0.23 -0.92+0.23 0.74 £ 0.23
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Table B.2 — continued from previous page

Row b4 devp (Pem, Pom1)  demp (Pomms Pom1)  demo (Pems Pomm)  In(Zem/Zoa)  In(Zomi/Zoun) In(Zomu/Zoun) In(Zem/Zom1) In(Zomu/Zom1)  In(Zem/Zomm)
53 0.6752 0.126 0.090 0.037 13.17 £ 0.13 1596 +0.13 13.48 +0.14 -2.79 £0.19 -2.48 £0.19 -0.32 +£0.19
54 0.83 0.020 0.014 0.013 35.45+0.12 35.38 £0.11 34.60 £0.12 0.07 £0.16 -0.78 £ 0.17 0.85+0.17
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APPENDIX

APPENDIX C: EINASTO MODEL DERIVATIONS AND

RESULTS OF PM 1 AND PM II COMPARISONS

C.1 Einasto mass integral

From equations 5.1 and 5.4 we have that

.
M(r)=f 471" pgm,pym () dr’/
0

r 7\ @Ein (Cl)
” -2 r ’
=4np_pexp (2/aEn) r’“exp dr’.
0 QEin \7-2
Using the substitution
23/aEin 73 3 x 23/@Ein 2
u=———=du=—Y—7—dr’ (C.2)
3/agin .3 3/@En .3
Pgin "2 Xein T2
equation C.1 becomes
o = HEP-2 P Qlamn) agr
(r) = 3 x 23/@Ein
o 2/ Ein 3 (C.3)
= 37agn _
X f YEin E riz exp (_uaEm/S) du'
u=0
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Finally, using the substitution t = u®®n/3 so that dt = %u"'ﬁ"/ 3-1du, then the integral in
equation C.3 (ignoring the constant factor) becomes

27 ¥Ein

u@Ein/3 o
3 f = En 3 o=t g — 3 f’EQE Alasin=1,-1 4t
QEin Jo QEin Jo

3 2 ro\ e
a5 ]
@FEin dEin \FI-2

where the last equality follows from the definition of the incomplete lower gamma function

(C4)

yla,x] = fox 1%~le~dt. Including the constant factor in equation C.3 leads to the result

drp_ iy \ 3/ @Ein 3 2 po | @En
a” 2eXP(2/a/Ein)( E“) y[ (—) ] (C.5)

M(r) = —_ )
2 QEin @Ein \T-2

Ein

C.2 Determining rs( iteratively

Evaluating equations 2.22 and 5.4 at r5g9 and equating we get

4_71' Q/Ein)3/a'Ein 3

500pcric(2)r3yy = 4mp-21/@Ein €xp(2/aEin) (— rl,

3 2
3 2 ( 7500 )aEin] (C6)
Xy , — .
QEin @Ein \ I'-2
If we let R = rs500/r—2, then we can determine rsog by solving the following for R
R3
3 2 in
e SO (C.7)
b 3p (G’Ein )3/“‘5“‘ exp (2/agin) _
Perit(z) 500 2 QEin
by some iterative root finding method e.g. Newton-Raphson. We use the starting point Ry = zgrr—z_‘);

which usually results in the algorithm converging in O(10) iterations.
We now show that equation C.7 only has one solution for a given r_,. We start by considering
both sides of equation C.6 as two different functions, and ignore constant terms for simplicity

(this doesn’t affect the truth of the final result), i.e. we consider the two functions

3 2 QEin
Sf(rso0) = rﬁoo, g(rso0) =y [ , (@) ] ) (C.8)

@Ein TEin \ I'-2

We first note that f(0) = g(0) = 0, and differentiate both functions with respect to rsgg

— X FEyy, ——— X Finn €XP |- —_— -1)f. C.9
drspo % drsgg % P @Ein \\ 722 €9
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Setting these two derivatives equal to each other yields one solution at rsgg = r_; for all agj, # 0,

meaning the derivatives only intersect once. Furthermore % tends to zero for large rsgp whilst
df

drsoo

intersect. This coupled with the fact that £(0) = g(0) = 0 means that g(rs00) > f(r500) until

is a monotonically increasing function, meaning the former must be larger before the two

some point (which has to be after the derivatives intersect) when the two intersect, after which
f(rsoo) > g(rsp0) as g(rspo) flattens off. This proves that equation C.7 only has one root and

that equation C.6 only has one solution in rsqg for fixed r_;.



C.3 Simulations results table

Table C.1: Input and output values of simulations using NFW and Einasto dark matter

profiles. The first column is what dark matter profile was used to simulate the cluster.

Input M(rp00) and Input z are the input values used to create the simulation for the

given model. Ein out M (rygp) is the mean and standard deviation of the posterior

distribution obtained inferred using an Einasto profile to model the cluster. Ein In(Z)

is the log Bayesian evidence corresponding to the inference. NFW... is as before but

using an NFW profile in the modelling. In(Zgin/<Znrw) is the log ratio of the two

evidences obtained.

Model Input M (r200) (Xx10'*Msy,) Input z  Ein out M(rp00) (x10'*Msy,) NFW out M (ry00) (x10'4Msy,)  Ein In(Z) NFW In(Z)  In(Zgin/ ZNEW)
apn =02 1 0.15 1.05 +0.01 1.08 +0.01 471044 +0.4 47104604 -0.2
agn =20 1 0.15 1.05 +0.01 1.48 +0.01 47181.4+0.4 47180.7+0.5 0.6
agin =0.05 1 0.15 1.05 +0.01 0.97 +0.01 47175.0+0.4 471753 +0.4 -0.3
NFW 1 0.15 1.03 £ 0.01 1.05 +0.01 470643 +0.4 47063.6 0.4 0.7
agn=02 1 0.9 1.10 £ 0.01 1.21 £0.01 471732+0.5 471745+05 -1.3
agn =20 1 0.9 1.16 +£0.01 1.57 £0.01 47100.8 £0.5 47095.1+0.5 5.7
agin = 0.05 1 0.9 1.02 +0.01 1.18 £ 0.01 470942+ 0.4 47094.8+0.5 -0.6
NFW 1 0.9 0.95 +0.01 1.05 +0.01 471052 +0.4 47106.7+0.4 —1.5
agn =02 10 0.15 10.23 +0.02 10.33 +0.01 468148 +0.5 46815.0+0.5 -0.2
agn=2.0 10 0.15 10.18 +0.01 15.06 + 0.01 46640.7 £0.5 46638.3+0.6 2.4
agin = 0.05 10 0.15 10.21 £ 0.02 9.61 +0.01 46844.5+0.5 468449+05 -0.4
NFW 10 0.15 10.13 +0.01 10.23 +0.01 46873.9+0.5 46873.0+0.5 0.9
agn =02 10 0.9 11.47 +0.02 12.12 + 0.01 46837.2+0.5 46829.7+0.6 7.5
agn =20 10 0.9 11.16 £ 0.01 13.65 +0.01 46835.0+0.5 46829.9+0.7 5.1
agin = 0.05 10 0.9 11.48 +0.01 12.26 + 0.02 46833.8+0.6 46834.5+0.5 -0.7
NFW 10 0.9 10.48 + 0.02 11.57 £ 0.02 469264 +0.6 46926.6+0.5 -0.2

oO&T
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APPENDIX

APPENDIX D: SUPPLEMENTARY STATISTICAL

DERIVATIONS AND RESULTS

D.1 Metropolis-Hastings and detailed balance

D.1.1 Metropolis-Hastings satisfies detailed balance proof

Following Hauser (2013) we show that for a Markov chain whose values are sampled from target

distribution P using proposal distribution g & the MH acceptance ratio, satisfies detailed balance

(a sufficient condition for the chain to asymptotically converge to the target distribution).
Consider an arbitrary point along the Markov chain, 8, then the proceeding step 6y, can

lead to one of two possible scenarios which we denote scenario I and scenario I1

Or+1 # 6 scenariol,
a(Op41,0k) = (D.1)
Or+1 = 0 scenarioIl.

Scenario I only occurs when an MH step is accepted, which occurs with probability

T(Ox+110k) = @(Or+1,0k)q(Or+116k). (D.2)

197
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Substituting « for the MH acceptance ratio gives

P(Bk+1)q (O |0k+1)
" P(61)q(BOk+1161)

1
= 200 min (p(0x)q(Ok+1160k), p(Or+1)q(Ok10k+1))

where the second equality follows from taking a factor of 1/p(6;) out of both terms in the

T(0k+116r) = min (1 ) q(Or+1161)

(D.3)

minimisation and multipling the factor g(6x+1|6x) into the function (both actions are allowed if
P and ¢ are strictly positive).
Observe that the arguments of the the minimisation function are invariant to the relabelling

Or+1 — O & 0 — 041 (except their ordering is switched). Thus 7' (6 |6x+1) can be written as

T(0r10k+1) = min (p(0x)q(Ok+110k),p(Ok+1)q(Ok 10k +1)) - (D.4)

P(Ok+1)

Substituting these into the detailed balance equation gives

1
T(Ox1101)p(Ok) = YD) min (p(0x)q(0k+110k),p(Ox+1)q(O0x10k+1)) P(Ok)

= min (p(6x)q(Ok+116x),p(Or:1) g0k 16x:1)) p(Ors) D)
P(9k+1)

=T (Ok|0k+1)p(Ok+1),

and thus the relation is satisfied for scenario I.
Scenario II occurs when either the MH step is accepted and the sampled point happens to be

01, or when the MH step is rejected
T(0k10k) = a(Ok,01)q(Ok|0k) + f q(0’161) (1 — a(6’,6;))de’, (D.6)
0
where 8 is the domain of p. Note that substituting 7'(6x |60 ) into the detailed balance equation

gives T (0 |0x)p(0r) = T(0x10x)p(Ox ) and so scenario II trivially satisfies the relation.

D.1.2 Deriving the Metropolis-Hastings acceptance ratio from the detailed

balance relation

We can use the same scenario analysis to derive the MH acceptance ratio from the detailed

balance relation. For scenario I
@(Ok+1,0k)q(Ok+1160k)p(0k) = T (Og+110k)p(Or )
=T (0k|0k+1)p(Or+1) (D.7)
= a0k, Ok+1)q (O |0k +1)p(Ok+1),
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which can be rearranged to give

@(Ok+1,0%) _ q(Ok10k+1)p(Ok+1)
@ (O, 0r+1) q(Ok+110k)p (k)

For « to be a probability it must be bounded by [0, 1], thus we need a form for @ which sat-

(D.8)

isfies this constraint and equation D.8. If we consider the case where q(0x|0k+1)p(Ok+1) >
q(Or+110x)p(Ox) then we are saying if a(x+1,0x) = @(0k,0k+1) then the system moves from
0r+1 to O more often than the reverse process happens, and thus detailed balance is violated.
This asymmetry suggests that we should maximise a (6.1, 6y) i.e. set it equal to one, in which

case we can say that

1 0,10 0
_ 9Ok l0k+1)p(Ok+1) o1, (D.9)
a(Ok,0k+1)  q(Or+1|0)p(Ok)
which is satisfied by the equality
. qOk+1101)p(61)
a(Or,0r+1) = mln( . (D.10)
oo AR )

Similarly in the case that q(6x|0x+1)p(Or+1) < q(Ok+110k)p(0x) we can set a(0x,0k+1) = 1
and deduce the value of @ (61,6 ). Substituting both of these expressions back in equation D.8
satisfies the equality, and thus we have verified the MH acceptance ratio satisfies detailed balance
for scenario 1.
Scenario II satisfies detailed balance trivially for any @ and so does not place any additional
constraints on its form. Thus the relation derived from equation D.8 is valid for both scenarios.
Note that the way we have derived the MH acceptance probability implies that there is no
alternative acceptance probability B that satisfies 8(6’,0x) > a(8’,0;), that does not violate

either 8 € [0, 1] or the detailed balance relation.

D.2 Evidence integral transformation

We now show that equations 2.43 and 9.17 are equivalent for the case of a one-dimensional
parameter problem: @ = 6, but note that this proof holds for @ of arbitrary dimension.

The expression for X can be re-written as
X)) = fn(@)H(L(G) — A)de, (D.11)
6

where 0 is the support of m(6) and H (x) is the Heaviside step function which satisfies %H (x) =
0(x). Taking the derivative of equation D.11 with respect to A gives

dXx

- fe 7(0)5(L(O) — A)do. (D.12)
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Equation 9.17 can be re-expressed as an integral over £ by making a change of variables from

X to L. Recalling that 1(X) = L(X),

1
Z=f L(X)dX
0

dx
= | 1-=Zax D.13
f 12 (D.13)

=—f.£fn(0)6(£(0)—/l)d9d/l.
0

Since the integrals are over all possible values of # and A and the limits are not a function of the
other variable of integration (i.e. limits(8) # g(A) and vice versa), the order of integration can

be switched according to Fubini’s theorem

Z= fén(@) (—fﬂé(lﬁ(@) - /l)d/l) dé

(D.14)
- [ z@nwo,
7
which is the form for Z given by equation 2.43.
D.3 Probability density function of the largest of » numbers
Let uy,...,u,, be n random variables from the uniform distribution on [0, 1] and let u,,, be their

maximum. We can derive P(t) by considering the cumulative distribution function of u,,,

F(um). uy, is less than some value ¢ if and only if all uy,...,u, are less than ¢. Therefore
Flum =t)=Fu =t,...,u, =1). (D.15)
Since the u;’s are independent this is the same as
Fuy =1)...F(u, =1). (D.16)
If 7 is also defined on [0, 1], then since u;s are uniformly distributed we get
F(u, =t)=t..t =t". (D.17)
Hence the probability density function for u,, is

F'(up =1) = P(t) = nt" . (D.18)
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D.4 Determining log (E[Z]) and log (E [ZZ]) from log(£) and
log(X).

For the standard quadrature approximation of Z (equation 9.18) and statistical treatment of ¢
given by equation 9.22, Keeton (2011) derives expressions for E[Z] and var[Z]. The form
of var [Z] derived incorporates the covariance between the value of Z obtained from the main
nested sampling algorithm loop and that obtained from the final contribution to the evidence
after the main loop has terminated (¢, see Section 9.4.1.2). When deriving these equations
Keeton works in linear space, which is valid as long as v/var [Z]/E[Z] < 1, as in this limit Z
is normally distributed. As stated in Section 9.4.1.1 Z is log-normally distributed in general and
thus we should quote the statistics given by equations 9.23 and 9.24. Furthermore, working in
linear space can lead to numerical difficulties if £ and X are sufficiently small / large, as is the
case in the nested sampling example considered in Section 10.4.4. We can adapt the equations
derived by Keeton to calculate log (E[Z]) & log (E [Zz]) from log(L) & log(X) to obtain
estimates of E [log(Z)] & var [log(Z)] (which hopefully avoid numerical under / overflow
issues), as follows.

We first define a function L which takes a vector x as an input, exponentiates this vector
component-wise, adds together the resultant values and then takes the logarithm of this sum

(known as the LogSumExp function)®

L(x) =log (2 exp(xl-)) . (D.19)

i=1
We also define log(x) = (log(xy), ...,log(x,)). log (E[Z]) (c.f. equation 17 of Keeton) can

then be calculated as

log (E[Z]) = L (log(£) +1og(6X)) — log(ny), (D.20)

where log(L) is the vector of log £; values obtained in the main nested sampling loop and
log(6X) = (log (E[t]),...,nslog (E[¢])). Note that log (£) and log(6X) are both vectors of
length ng.

log (E [ZZ]) (c.f. equation 22 of Keeton) is given by

2
log (E [Z2]) = log (m) + L (log(£) +1og(6X) + log(I)) (D.21)

4Underflow and / or overflow issues can be avoided to some extent using the trick given in https://hips.seas.
harvard.edu/blog/2013/01/09/computing-log-sum-exp/.



https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
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where log(1)) = (log(ly),...,log(Ix),...,log(lys)) and
log(li) = L (log(L) + log (E[£2]¢ ) - log(6Xx)) - (D.22)

Here the vector quantities denoted xj each have length &, and log (E[¢2]x) = (log (E[tz]) ,....k log (E[IZ])).
The expected contribution to the evidence after the nested sampling algorithm loop termin-
ates, log (E[Z]) can be determined from the log-likelihood values of the final set of livepoints

log( L) = (Ly,...,L;), and the remaining prior volume X, through
log (E[Z;]) = log(Xy,) — log(m) + L(log(Ly)). (D.23)
Similarly the log of the second moment of Z; (equation 28 of Keeton) is given by
log (E[ZF1) = L(log(Ly)) - 2log(n;) + nglog (E[*]) . (D.24)
Finally, the log of the cross term E[Z Z¢] (Keeton equation 32) can be calculated as
log (E[ZZ¢]) = L(1og(Lr)) +10g(6X ) —log(n;(n; + 1)) + 10g(/ns). (D.25)
log (E[Z]) & log (E [ZZ]) are then updated as

log (E[Z]) — L ((log (E[Z]) .log (E[ZtD))) » (D.26)
log (E [Z?]) - L ((log (E[Z?]) .log (E[Z}1) .log(2) + log (BIZ ZiD))).  (D.27)

and used in equations 9.23 & 9.24 to calculate E [log(Z)] & var [log(Z)].
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