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Summary

This thesis is concerned with the modelling of galaxy clusters, applying these models to real and

simulated data using Bayesian inference, and the development of Bayesian inference algorithms

applicable to a wide range of astrophysical problems.

I present a comparison of mass estimates for 54 galaxy cluster candidates from the second

Planck catalogue (PSZ2) of Sunyaev–Zel’dovich sources. I compare the mass values obtained

with data taken from the Arcminute Microkelvin Imager (AMI) radio interferometer system

and from the Planck satellite. The former of these uses a Bayesian analysis pipeline that para-

meterises a cluster in terms of its physical quantities, and models the dark matter & baryonic

components of a cluster using Navarro-Frenk-White (NFW) and generalised-NFW profiles re-

spectively. The mass estimates derived from Planck data are obtained from the results of the

Bayesian detection algorithm PowellSnakes (PwS). I also analyse simulated AMI data with in-

put values based on PwS mass estimates.

I then compare three cluster models using AMI data for the 54 cluster sample. The two

observational models considered only model the gas content of the cluster. To compare the

physical and observational models I consider their posterior parameter estimates, including the

calculation of a metric defined between two probability distributions. The models’ fit to the

cluster data is evaluated by looking at the Bayesian evidence values.

Improvements to the physical modelling of galaxy clusters are then considered, either by

relaxing some of the assumptions underlying the physical model, or by introducing a new profile

for the dark matter component of clusters. The resultant models are compared with the physical

model introduced previously.

The final part of the cluster analysis work focuses on Bayesian analysis using a joint likeli-

hood function of data from both AMI and the Planck satellite simultaneously. The results of this

joint analysis are compared with those obtained from the individual likelihood analyses using

simulated data and with real data taken from the 54 cluster sample.
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Finally, a new Bayesian inference algorithm based on nested sampling is presented. The

algorithm, named the "geometric nested sampler", is an adaption of the Metropolis-Hastings

nested sampler and makes use of the geometrical interpretation of sets of parameters to sample

from their domains efficiently. The geometric nested sampler is tested on several toy models as

well as a model representing the emission of gravitational waves from binary black hole mergers.

The results obtained using the geometric nested sampler are compared with those from popular

nested sampling algorithms.
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Introduction

1.1 Galaxy clusters

In the local Universe and out to redshifts of around two, clusters of galaxies are observed as

massive gravitationally bound structures, often roughly spherical and with very dense central

cores (see reviews by e.g. Rosati, Borgani, & Norman 2002, Voit 2005, Allen, Evrard, & Mantz

2011, and Giodini et al. 2013). It is over eighty years ago that it was first postulated that a galaxy

cluster’s mass is dominated by dark matter (Zwicky 1933 and Zwicky 1937). More recently it

has been shown that dark matter contributes ≈ 90% of the cluster mass (see e.g. Vikhlinin et al.

2006 and Komatsu et al. 2011). Stars, gas and dust in galaxies, as well as a hot ionised intra-

cluster medium (ICM) make up the rest of the mass in a cluster, with the latter being the most

massive baryonic component. The galaxies emit in the optical and infrared wavebands, whilst

the ICM emits in X-ray via thermal Bremsstrahlung and also interacts with cosmic microwave

background (CMB) photons via inverse Compton scattering. This last effect is what is known as

the Sunyaev–Zel’dovich (SZ) effect (Sunyaev & Zeldovich 1970).

1.2 The Sunyaev–Zel’dovich effect

The SZ effect is particularly strong in the cluster ICM, where temperatures range between 107 −

108 K. The nature of the CMB spectrum means that the effect leads to an increase in intensity at
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2 Chapter 1. Introduction

frequencies above 217 GHz and a decrease for frequencies below (Figure 1.1). The measurement

of the SZ surface brightness increment / decrement has the crucial characteristic that it is redshift

independent (see Section 2.2). The SZ effect has the additional advantage over X-ray analysis,

that it only depends on the electron number density linearly (see Section 2.2), whereas X-ray

Bremsstrahlung emission is proportional to electron number density squared. This means that SZ

can in practice be used to analyse a cluster at higher radius. The Planck telescope (Section 1.3)

and the Arcminute Microkelvin Imager radio interferometer system (AMI, see Section 1.4) both

observe galaxy clusters by measuring the SZ effect.

1.3 Planck mission

The Planck missiona is a European Space Agency (ESA) mission, whose primary objective is to

investigate the CMB. The Planck telescope was a space telescope which was launched in May

2009 and deactivated in October 2013. The combination of Planck’s low-frequency and high-

frequency instruments (LFI and HFI) provides nine frequency channels in the range 37 GHz –

857 GHz. The LFI has angular resolutions of 33, 24, and 14 arcminutes at respective frequencies

of 30, 44, and 70 GHz. The HFI has angular resolutions of 10, 7.1, and 5.5 arcminutes at 100,

143, and 217 GHz and 5.0 arcminutes at each of 353, 545, and 857 GHz. For more information

on the Planck telescope I refer the reader to the Scientific Programme of Planck (The Planck Col-

laboration 2006). In addition to all-sky coverage, Planck has its own advantages for SZ work:

a very wide range of frequency channels, polarisation capability, and a channel at the 217-GHz

null frequency of SZ all help to remove contamination from synchrotron, Bremsstrahlung and

dust emissions. Of particular importance for the work described here are the Planck cluster-

catalogues (see Planck Collaboration XXIX 2014, Planck Collaboration XXXII 2015 and Planck

Collaboration XXVII 2016 for papers relating to catalogues PSZ1, PSZ1.2 and PSZ2 respect-

ively, where ‘PSZX’ refers to the Xth Planck SZ catalogue). These provide e.g. cluster candidate

positions, redshift (z) values (see Section 3.3), integrated Comptonisation parameter (Y ) values

and mass (M) estimates. PSZ2 is the most recent all-sky Planck cluster catalogue, and is the one

which I refer to unless stated otherwise.
ahttp://www.esa.int/Planck/.

http://www.esa.int/Planck/
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Figure 1.1: Radiation intensity as a function of frequency. Note the dashed line
represents the incident radiation, whilst the solid line represents the energy-boosted
inverse Compton scattered radiation. Taken from Carlstrom, Holder, & Reese (2002).
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SA LA
Antenna diameter 3.7 m 12.8 m
Number of antennas 10 8
Baseline lengths (current) 5 − 20 m 18 − 110 m
Primary beam FWHM (at 15.7 GHz) 20.1 arcmin 5.5 arcmin
Typical synthesised beam FWHM 3 arcmin 30 arcsec
Flux sensitivity 30 mJy s1/2 3 mJy s1/2

Table 1.1: Summary of AMI characteristics. Both arrays measure the same linear
polarisation.

1.4 AMI

AMI is an interferometer system near Cambridge, designed for SZ studies (see e.g. Zwart et al.

2008). It consists of two arrays: the Small Array (SA), optimised to couple to SZ signal, with

an angular resolution of ≈ 3 arcmin and sensitivity to structures up to ≈ 10 arcmin in scale; and

the Large Array (LA), with angular resolution of ≈ 30 arcsec, which is largely insensitive to SZ,

and is used to characterise and subtract confusing radio-sources (see Section 2.5.1). Both arrays

operate at a central frequency of ≈ 15.7 GHz and, at the time the AMI data for this paper were

taken, with a bandwidth of ≈ 4.3 GHz, divided into six channels. Both arrays actually operate

over the wide frequency range of ≈ 12.0 – 18.0 GHz for sensitivity, and the correlator splits

this range into eight separate channels each approximately 0.72 GHz wide to reduce chromatic

aberration over the fields of view to manageable levels. However, due to satellite interference

at the lower end of the spectrum, data from the bottom two channels are excluded, giving the

effective bandwidth of 4.3 GHz across six channels mentioned above). A summary of AMI’s

characteristics is given in Table 1.1. More detail on AMI is given in Section 2.1.1. Note that

AMI has recently received a new digital correlator (Hickish et al. 2018), but all data used in this

thesis were obtained by the system with its analogue correlator.

1.5 Remainder of this thesis

In Chapter 2 I give an overview of the theory underlying various topics which are heavily relied

upon throughout the thesis: interferometry, measuring the SZ effect, galaxy cluster modelling,

and Bayesian inference.

In Chapter 3 I apply a cluster model to data from AMI of clusters detected by Planck, and com-

pare the results with those obtained directly from Planck data. I also analyse simulated cluster
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data whose inputs are based on the mass estimates obtained from Planck data, to see if AMI

simulations & the cluster model are capable of inferring the correct cluster masses.

Chapter 4 presents the results of a cluster model comparison for the sample of 54 clusters con-

sidered in the previous Chapter; for the three models I compare the parameter estimates and

Bayesian evidence values obtained for each cluster.

A new cluster model is presented in Chapter 5 which uses an Einasto profile to model the dark

matter component of a cluster. By looking at cluster parameter profiles, and performing Bayesian

analysis on simulated & real data, I compare the new model with the one presented in Chapter 2.

Chapters 6 and 7 detail further attempts to enhance galaxy cluster modelling. I first try to re-

lax the mass assumption associated with the models detailed in Chapters 2 and 5, and plot the

resulting mass profiles for a range of clusters (Chapter 6). I then try to incorporate non-thermal

pressure into the cluster models in Chapter 7, and plot the resultant parameter profiles.

In Chapter 8 I introduce a joint AMI-Planck analysis method, which revolves around evaluat-

ing the likelihood functions associated with each instrument simultaneously. I then present the

results of this method applied to both simulated and real datasets, and compare with the results

obtained from conducting the individual instrument analyses separately.

An overview of Monte Carlo sampling methods is given in Chapter 9. This includes an introduc-

tion to nested sampling, the method upon which the algorithm presented in Chapter 10 is based

on. I also explain briefly how samples can be used to approximate the distribution from which

they originate.

In Chapter 10 I provide the motivation & technical details of the nested sampling algorithm I

have created and refer to as the "geometric nested sampler". I apply the algorithm to several toy

models & to an astrophysical application (detecting gravitational waves from a black hole binary

merger system), and compare its performance with pre-existing nested sampling algorithms.

1.6 Conventions

A ‘concordance’ flat ΛCDM cosmology is assumed: ΩM = 0.3, ΩΛ = 0.7, ΩR = 0, ΩK = 0,

h = 0.7, H0 = 100 h km s−1 Mpc−1, σ8 = 0.8, w0 = −1, and wa = 0. The first four para-

meters correspond to the (dark + baryonic) matter, the cosmological constant, the radiation, and

the curvature densities respectively. h is the dimensionless Hubble parameter, while H0 is the

Hubble parameter now and σ8 is the power spectrum normalisation on the scale of 8 h−1 Mpc

now. w0 and wa are the equation of state parameters of the Chevallier-Polarski-Linder paramet-

erisation (Chevallier & Polarski 2001).
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Introductory theory

2.1 Interferometry

In addition to the advantage of high angular resolution from long baselines, interferometers

possess a number of advantages over single-dish telescopes, particularly for CMB work. Among

these are their relative insensitivity to atmospheric emission (see e.g. Watson et al. 2003), the

ease with which systematic errors such as ground spill (Lay & Halverson 2000) can be dealt

with; and radio-source contamination (see e.g. Grainger et al. 2002) can be kept to a minimum.

Furthermore, the angular sensitivity of an interferometer can be fine-tuned by adjusting baseline

lengths.

To understand how an interferometer works, consider a two-antenna system similar to the

one constructed by Ryle and Vonberg (Ryle & Vonberg 1948). Figure 2.1 shows two antennas

on an east-west baseline of length b tracking a visible patch of sky which, initially, meets three

conditions: (i) contains only one radio-source; (ii) this source is at the centre of the tracked

patch; and (iii) this source is unresolved by the interferometer. At hour angle θ (as defined in

Figure 2.1), the voltages V1 and V2 measured by each antenna at time t are

V1 = V0ei (ωt+kb sin θ),

V2 = V0eiωt ,
(2.1)

where V0 is the signal voltage amplitude, ω is the angular frequency of the source radiation

7



8 Chapter 2. Introductory theory

Figure 2.1: Simple east-west single baseline interferometer tracking a patch of sky
containing a single radio-source. For a baseline b and a source at angle θ from the
vertical axis, the wavefront has to travel an additional distance b sin θ to the further
antenna. Image taken from Zaroubi (2013).

being observed and k is the corresponding wavenumber. The ωt-dependent parts are removed

and the correlator multiplies the remaining components of 2.1 together to give a response, termed

visibility, proportional to

eikb sin θ , (2.2)

in which the constant of proportionality (including V 2
0 , the effects of integration time, dish area

and so on) which in practice is evaluated by observation of a bright, unresolved radio-source with

well known properties. Unless the observing bandwidth ∆ω is very low (and thus the coherence

length 2πc/ω is very long), the baseline must be ‘phased up’ by inserting an additional path

equivalent to b sin θ into the interferometer arm which the radiation hits first. This compensates

for the extra path c∆t = b sin θ involved in the other arm.

We now relax condition (ii). If the source is offset from the pointing centre by an angle α,

the extra path becomes b sin(θ + α). The path compensation is set for the pointing centre so that
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multiplying the equivalent expressions of 2.1 now gives a visibility proportional to

eikb(sin(θ+α)−sin θ)

= eikbα cos θ ,
(2.3)

using the small angle approximation for α.

We now relax condition (iii). The response to a source, which has a top-hat surface-brightness

distribution in α-space of width ∆α and centred on α, is averaged over ∆α, giving a response

proportional to
1
∆α

∫ ∆α
2

− ∆α2

eikbα
′ cos θ dα′

= sinc
(

kb∆α cos θ
2

) (2.4)

Thus sources with a large angular size on the sky (∆α � kb cos θ) are resolved out by the

interferometer since sinc(x) → 0 as x → ∞.

One can similarly examine the effect of the observing bandwidth. Repeating the above

analysis for k gives
1
∆k

∫ ∆k
2

− ∆k2

eik
′bα cos θ dk ′

= sinc
(
αb∆k cos θ

2

)
.

(2.5)

So a large enough bandwidth also causes the signal to fall, this time due to chromatic aberration.

This explains the need for independent frequency channels which are a feature of AMI.

Finally, replacing condition (i) by a surface-brightness distribution I (θ,α), and incorporating

the primary beam function A(α), gives a visibility proportional to$
A(α′) I (θ ′,α′) eik

′bα′ cos θ′ dθ ′dα′dk ′. (2.6)

2.1.1 AMI interferometry

The compensation for the path-length differences between each antenna and the cluster having

been done in cables, the analogue correlator multiples the signal from each antenna at time t

by the signal at times t − 7∆t, t − 6∆t, ..., t, ..., t + 7∆t, t + 8∆t; Fourier transforming these lag

products gives the amplitude and phase values of each of eight frequency channels. A problem

with the analogue correlator is that each timelag ∆t = ∆l/vgroup is not the same because each

∆l, nominally 25 mm, varies by some 5–10% because the circuit boards providing the ∆ls have

non-uniform relative permittivities and thicknesses.
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Thompson, Moran, & Swenson (2011) discuss cross-correlator performance in terms of

cross-correlation correlation coefficient ρ,∫
(ai − 〈ai〉)(a j − 〈a j〉)dt√∫

(ai − 〈ai〉)2dt
∫

(a j − 〈a j〉)2dt
, (2.7)

where ai is the instantaneous voltage from antenna i, and 〈〉 denotes average over the few-second

integration time τ, and the integrals are over τ. However, radio astronomy cross-correlators do

not measure the denominator of equation 2.7; what they do measure, for each lag, is effectively

the numerator. The signal power is described as A exp(iφ) where A is "amplitude" and φ is

"phase". The noise power is that from the front-end amplifiers, the atmosphere, and the CMB.

The signal in the cross-correlation increases coherently over time, so the signal energy increases

as time, while the noise increases incoherently so the noise energy increases as time1/2. τ is

chosen such that over it, signal energy � noise energy. For the measurements over τ to be

meaningful, you want each receiver chain, from each front-end amplifier to correlator input,

to produce a power that is stable over the whole (typically 6–8 hour) observation run. This is

achieved with automatic gain controls designed to keep the power going into each correlator

input constant. (Note that neither the gains of the receiver chains nor the output powers have to

be the same – astronomical calibration deals with this).

However, ensuring the power at a correlator input is maintained at a constant level will bias

measurements if, for example, the weather changes: cloud, rain, and raindrops on the receiver

cover all emit at GHz-frequencies, thus raising (compared with fine weather) the noise power

and so lowering the signal. This effect is (ideally) removed by the noise injection system (at

Cambridge misleadingly called the ‘rain gauge’) which works as follows. Low-level noise (of

power ≈ 1% of the power due to front-end amplifier, CMB and atmosphere), of constant mean

power and known signature P(t) is injected into the waveguide that feeds the astronomical signal

into the front-end amplifier. At each correlator input, the noise power due to P(t) is extracted

by synchronous detection and compared with the total noise power so that the noise power

due to front-end amplifier, CMB and atmosphere, which determines the system temperature, is

measured.

2.2 Measuring the SZ effect with an interferometer

For a small field size, an interferometer samples from the two-dimensional complex visibility

plane u, also known as the u-v plane, where u and v are orthogonal projected baselines in units of
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observing wavelength. For a given frequency ν the quantity measured by an interferometer cor-

responds (see equation 2.6) to the Fourier components of the sky brightness distribution Ĩν (u).

Ĩν (u) is given by the weighted Fourier transform of the surface brightness Iν (x),

Ĩν (u) =

∫ ∞

−∞

Aν (x)Iν (x)e2πiu ·x d2x, (2.8)

where x is the position in the sky relative to the phase centre and Aν (x) is the primary beam

of the (identical) antennas for a given frequency; note that I and A here are parameterised in

terms of spatial coordinates rather than angular. The positions at which Ĩν (u) are sampled from

is therefore determined by the physical orientation of the antennas.

The change in CMB surface brightness due to the thermal SZ effect in a galaxy cluster is

given by (see e.g. Birkinshaw 1999)

δIcl,ν = TCMBy fν
∂Bν
∂T

����T=TCMB

(2.9)

where the last factor is the derivative of the blackbody spectrum with respect to temperature eval-

uated at the temperature of the CMB, which at present is TCMB = 2.728 K (Fixsen et al. 1996).

The surface brightness per unit frequency of blackbody radiation is given (see e.g. Kogure &

Leung 2007) by

Bν (T ) =
2hpν

3

c2

1
ehpν/kBT − 1

, (2.10)

where hp is the Planck constant and kB is the Boltzmann constant. Hence the derivative is given

by
∂Bν
∂T

����T=TCMB

=
2h2

pν
4

c2kBT2
CMB

ehpν/kBT

(ehpν/kBT − 1)2
. (2.11)

The function fν expresses the spectral dependence of the SZ signal and is derived from the

Kompaneets equation (Kompaneets 1957). Relativistic treatments of fν have been considered

in e.g. Rephaeli (1995), Itoh, Kohyama, & Nozawa (1998), Challinor & Lasenby (1998), Noz-

awa, Itoh, & Kohyama (1998), and Pointecouteau, Giard, & Barret (1998), by incorporating

relativistic terms into the Kompaneets equation. Relativistic effects may be important in clusters

where the ICM temperatures are high. Indeed Arnaud et al. (1994) and Markevitch et al. (1996)

have shown that electrons in the ICM can reach energies above 10 keV. Challinor & Lasenby

show that these effects lead to a small decrease in the SZ effect. However, Rephaeli argues that

the non-relativistic treatment of Compton scattering adopted in Zeldovich & Sunyaev (1969)

remains valid at frequencies well below the CMB peak value. For the observing frequencies of

AMI (≈ 15 GHz), it can be assumed that this condition holds. Furthermore Rephaeli claims that
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for the unmodified Kompaneets equation to be valid, the optical depth of the cluster τ, must be

sufficiently large to justify using a diffusion approximation for the scattering process. It is clear

that at AMI observing frequencies hpν � mec2 where me is the mass of an electron; and so

the photons can be assumed to scatter in the Thomson limit. In this limit the scattering rate is

∝ σTne where σT is the Thomson scattering cross-section and ne is the electron number density

in the ICM. Thus the optical depth is given by

τ =

∫
ne(r)σTdl, (2.12)

where r is the radius from the galaxy cluster centre and the integral is along the line of sight.

The non-relativistic form for fν is given by

fν = X coth(X/2) − 4, (2.13)

where

X =
hpν

kBTCMB
. (2.14)

Referring back to equation 2.9, y is the Comptonisation parameter which is the number of colli-

sions multiplied by the mean fractional change in energy of the photons per collision, integrated

along the line of sight. On average the electrons in the ICM transfer an energy kBTe(r)/mec2

to the scattered CMB photons, where Te(r) is the temperature of an electron in the ICM. In the

Thomson scattering regime described above this leads to

y =
σTkB

mec2

∫
Te(r)ne(r) dl . (2.15)

If the electron gas is assumed to be ideal, then in terms of the gas pressure Pe (r), the Compton-

isation parameter is given by

y =
σT

mec2

∫
Pe(r) dl . (2.16)

Combining equations 2.11, 2.13, & 2.16 one obtains the following expression for δIν,cl in the

non-relativistic limit

δIcl,ν =
2σT(kBTCMB)3X4eX

h2
pc4(eX − 1)2

[X coth(X/2) − 4]
∫

Pe(r) dl . (2.17)

Thus for a given cluster δIcl,ν is independent of z. Since the Fourier transform is a linear operator

δIν,cl can be substituted directly into equation 2.8 to calculate δ̃Iν,cl.

Bartlett & Silk (1994) noted that the total Comptonisation parameter Y , which is the integral

of y over the solid angle dΩ subtended by the galaxy cluster is proportional to the volume
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integral of the gas pressure. Y can be written in terms of spherical coordinates as

Ysph,phys(r) =
σT

mec2

∫ r

0
Pe(r ′)4πr ′2 dr ′. (2.18)

Note that Ysph,phys(r) has dimensions [length2]. Ysph(r) ≡ Ysph,phys(r)/D2
A (where DA is the

angular diameter distance to the cluster), which has dimensions [angle2] and is the quantity

referred to in this thesis unless stated otherwise. Thus Ysph,phys measured out to large r is, with

caveats, the total thermal energy of the cluster.

2.3 Cluster model selection

To determine δIcl,ν , one must select a model which calculates the electron temperature (equa-

tion 2.15) or pressure (equation 2.16) profile of a cluster. The AMI consortium has implemented

a number of cluster models over the years. Marshall, Hobson, & Slosar (2003) considered the

Navarro-Frenk-White (NFW) profile (Navarro, Frenk, & White 1995) as a cluster mass model;

their model assumes spherical symmetry and hydrostatic equilibrium, and is used in a joint ana-

lysis between SZ and gravitational lensing data (see e.g. Schramm & Kayser 1994 for how

lensing can be used to investigate cluster properties). Marshall also used the Beta model (Cava-

liere & Fusco-Femiano 1976, 1978) to model the cluster gas profile; the Beta model is another

spherically symmetric model, but is purely empirical. Feroz et al. (2009) (from here on FF09)

built on this work, but concentrated on modelling multi-frequency SZ data with the Beta model,

but using the hydrostatic equilibrium assumption to derive an expression for the cluster mass.

Most recently Olamaie, Hobson, & Grainge (2012) (MO12) presented a new, physical model to

describe the baryonic matter as well the dark matter component in order to give a more thorough

treatment of the make-up of galaxy clusters; I refer to this as a physical model.

2.4 A physical model for AMI data

2.4.1 Model assumptions

The model presented here is largely based on the one introduced in MO12 but includes the adap-

tions mentioned in Sections 2.4.4 and 3.2. For any model it is important to know the underlying

assumptions which allow it to be valid. The four main assumptions in the physical model are as

follows.
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• The cluster is spherically symmetric. This means that the cluster can be parameterised

in terms of the scalar radius r (rather than its vector equivalent r) from the centre of the

cluster.

• The cluster is in hydrostatic equilibrium up to radius r200 (defined below). This means at

any radius up to r200 the outward pushing pressure force created by the pressure differen-

tial at that point must be equal to the gravitational binding force due to the mass enclosed

within that radius (see e.g. Bahcall & Sarazin 1977, and equation 2.30 below).

• The gas mass fraction fgas(r) is much less than unity up to radius r200, so that the total

mass is M (r200) ≈ Mdm(r200). Consequently the total mass out to r200 is given by the

integral of the dark matter density along the radius of the cluster (see equation 2.23 below).

• The cluster gas is assumed to be an ideal gas, so that the electron temperature can be

trivially represented in terms of its pressure.

2.4.2 Dark matter profile

The model uses an NFW profile (Navarro, Frenk, & White 1995) the dark matter density as a

function of cluster radius r ,

ρdm(r) =
ρs(

r
rs

) (
1 + r

rs

)2 , (2.19)

where ρs is an overall density normalisation coefficient and rs is a characteristic radius defined

by rs ≡ r200/c200 and is the radius at which the logarithmic slope of the profile d ln ρ(r)/d ln r

is −2. r200 is the radius at which the average cluster density is 200 × ρcrit(z). ρcrit(z) is the

critical density of the Universe at the cluster z which is given by ρcrit(z) = 3H (z)2/8πG where

H (z) is the Hubble parameter (at the cluster redshift) and G is Newton’s constant. c200 is the

concentration parameter at this radius. Following Olamaie, Hobson, & Grainge (2013), we can

calculate c200 for an NFW dark matter density profile taken from the expression in Corless, King,

& Clowe (2009)

c200 =
5.26
1 + z

(
M (r200)

1014h−1MSun

)−0.1

, (2.20)

here, MSun denotes units of solar mass. The 1/(1 + z) factor comes from Wechsler et al. (2001)

and is obtained from N-body simulated dark matter halos between z = 0 and z = 7. The

remainder of the relation was derived in Neto et al. (2007) by fitting a power-law for c200 to

N-body simulated cluster data. Note that the sample used in Neto et al. (2007) was assumed to

contain clusters that are relaxed. In equation 2.20 M (r200) is the mass enclosed at radius r200.

Thus for given values of z and M (r200), c200 can be calculated.
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2.4.3 Electron pressure profile

Following Nagai, Kravtsov, & Vikhlinin (2007), the generalised-NFW (GNFW) model is used

to parameterise the electron pressure as a function of radius from the cluster centre

Pe(r) =
Pei(

r
rp

)c (
1 +

(
r
rp

)a) (b−c)/a
, (2.21)

where Pei is an overall pressure normalisation factor and rp is another characteristic radius,

defined by rp ≡ r500/c500. The parameters a, b and c describe the slope of the pressure profile

at r/rp ≈ 1, r/rp � 1 and r/rp � 1 respectively. For values r/rp � 1 the logarithmic

slope (d ln Pe(r)/d ln r) converges to −c. For values For values r/rp � 1 the logarithmic slope

converges to −b. The value of a dictates how quickly (in terms of r) the slope switches between

these two values, and in the limit that a tends to zero, the logarithmic slope is −(b + c)/2

for all r . Note that Nagai, Kravtsov, & Vikhlinin (2007) choose to parameterise the pressure

profile with the GNFW model because it closely matches the observed profiles of the Chandra

X-ray clusters and results of numerical simulations in their outskirts. In addition to this, the

gas pressure distribution is primarily determined by the gravitationally dominant dark matter

component (which is fitted with the NFW profile), they argue that it makes sense to parameterise

the pressure profile using the generalised NFW model.

Consistent with many of the Planck follow-up papers (see e.g. Planck Collaboration XI 2011)

and with MO12 the slope parameters are taken to be a = 1.0620, b = 5.4807 and c = 0.3292.

These ‘universal’ values are from Arnaud et al. (2010) and are the GNFW slope parameters

derived for the standard self-similar case using scaling relations from a REXCESS sub-sample

(of 20 well-studied low-z clusters observed with XMM-Newton), as described in appendix B

of the paper (Böhringer et al. 2007). I also use the Arnaud et al. value for the concentration

parameter c500 ≡ r500/rp of 1.156. I note however that in Perrott et al. (2015) (from here on

YP15) using simulations it was shown that the disagreement between Planck and AMI parameter

estimates may indicate pressure profiles deviating from the ‘universal’ profile.

2.4.4 Model calculations

The three cluster model input parameters required to calculate the electron pressure given by

equation 2.21 in the physical model are M (r200), z, and fgas(r200). fgas(r200) is the fraction of

the total mass attributed to the gas mass up to radius r200. Note that in general the total mass out
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to r∆ is given by

M (r∆) =
4π
3
∆ρcrit(z)r3

∆ . (2.22)

Hence r200 can be calculated from M (r200), and the mass can be determined at other (known)

radii (e.g. r500).

2.4.4.1 Total enclosed mass

Another analytical solution for M (r) can derived using the third assumption stated above. Using

equation 2.19, M (r) is given by

M (r) =

∫ r

0
4πρdm(r ′)r ′2 dr ′

=

∫ r

0
4π

ρsr ′2(
r ′

rs

) (
1 + r ′

rs

)2 dr ′

= 4πρsr3
s

[
ln

(
1 +

r
rs

)
−

(
1 +

rs

r

)−1
]
.

(2.23)

Hence an expression for ρs can be obtained by equating 2.22 and 2.23, setting r = r200 and

solving for ρs

ρs =
200

3

(
r200

rs

)3
ρcrit(z)[

ln
(
1 +

r200
rs

)
−

(
1 +

rs
r200

)−1
] . (2.24)

One can then obtain an expression r500 as follows. Equating 2.22 and 2.23 at r500 and substituting

in the expression for ρs gives(
rs

r500

)3 
ln

(
1 +

r500

rs

)
−

(
1 +

rs

r500

)−1
=

5
2

(
rs

r200

)3 
ln

(
1 +

r200

rs

)
−

(
1 +

rs

r200

)−1
. (2.25)

Following Hu & Kravtsov (2003), there is an analytic mapping from r200 to r500. Consider the

equation

g(rs/r500) =
5
2
g(rs/r200), (2.26)

where

g(x) = x3[ln(1 + x−1) − (1 + x)−1]. (2.27)

Equation 2.26 requires that g(rs/r500) be inverted so that

rs

r500
= x

(
g500 =

5
2

f (rs/r200)
)
, (2.28)



2.4. A physical model for AMI data 17

where

x(g500) =

[
a1g

2p
500 +

9
16

]−1/2

+ 2g500. (2.29)

Here p = a2 +a3 ln g500 +a4(ln g500)2, and the four fitting parameters correspond to a1 = 0.5116,

a2 = −0.4283, a3 = −3.13 × 10−3 and a4 = −3.52 × 10−5. This gives a fit to better than 0.3%

accuracy for 0 < c200 < 20 and is exact in the limit that c200 → 0. Once r500 has been calculated

rp can be calculated from rp = r500/c500.

2.4.4.2 Hydrostatic equilibrium

This requires
dPg(r)

dr
= −ρg(r)

GMtot(r)
r2 , (2.30)

where ρg(r) is the gas density and M (r) is the total mass within radius r of the cluster. The gas

pressure Pg(r) can be related to the electron pressure as

µgPg(r) = µePe(r), (2.31)

where µe is the mean gas mass per electron and µg is the mean mass per gas particle. Mason &

Myers (2000) state that for a plasma with the cosmic helium mass fraction CHe = 0.24 and the

solar abundance values in Anders & Grevesse (1989), then µe = 1.146 and µg = 0.592 in units

of proton mass.

2.4.4.3 Gas density, mass, and temperature

Substituting equations 2.23 and 2.31 into 2.30 and solving for ρg(r) gives

ρg(r) =
µePei

µg

1
4πGρsr3

s

×
r

ln
(
1 + r

rs

)
−

(
1 +

rs
r

)−1

×

(
r
rp

)−c [
1 +

(
r
rp

)a]−(1+(b−c)/a) [
b
(

r
rp

)a
+ c

]
.

(2.32)

From this the gas mass Mg(r) can be calculated

Mg(r) =

∫ r

0
4πρg(r ′)r ′2 dr ′. (2.33)
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Note however that this integral must be solved numerically. Nevertheless, we can determine

Pei since we know M (r200), fgas(r200) and r200 (Mg(r200) = fgas(r200)M (r200). Evaluating

equations 2.32 and 2.33 at r200 and solving for Pei gives the following expression

Pei =
µg

µe
Gρsr3

s Mg(r200)

×
1∫ r200

0

r ′3

ln
(
1 + r ′

rs

)
−

(
1 +

rs
r ′

)−1

(
r ′

rp

)−c [
1 +

(
r ′

rp

)a]−(1+(b−c)/a) [
b
(

r ′

rp

)a
+ c

]
dr ′

.

(2.34)

The radial profile of the electron number density is given by ne(r) = ρg(r)/µe. Assuming

an ideal gas equation of state, the electron temperature Te(r) is therefore given by

Te(r) = *
,

4πµgGρsr3
s

kB
+
-

×
ln

(
1 + r

rs

)
−

(
1 +

rs
r

)−1

r

×

[
1 +

(
r
rp

)a] [
b
(

r
rp

)a
+ c

]−1

,

(2.35)

which is also equal to the gas temperature Tg(r).

The gas mass can be determined numerically from equation 2.33 as

Mg(r) =
µePei

µg

1
Gρsr3

s

×

∫
r

0

r ′3

ln
(
1 + r ′

rs

)
−

(
1 +

rs
r ′

)−1

×

(
r ′

rp

)−c [
1 +

(
r ′

rp

)a]−(1+(b−c)/a) [
b
(

r ′

rp

)a
+ c

]
dr ′.

(2.36)

2.4.4.4 Determining δ̃Icl,ν

Once rp and Pei have been calculated, the pressure profile can be used in equation 2.16 to cal-

culate the Comptonisation parameter which in turn can be used to calculate δIcl,ν using equa-

tion 2.9. δIcl,ν can be Fourier transformed to get the quantity comparable to what an interfero-

meter measures, so that the physical model can be used to analyse data obtained with AMI.
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2.5 Recognised radio-sources and general noise contributions

In addition to the SZ decrement, visibilities measured by AMI also contain contributions from

radio-sources, primordial CMB anisotropies, and instrumental noise. As defined in Hobson &

Maisinger (2002), each visibility measured by an interferometer consists of two components

Vν (ui ) = Ĩν (ui ) + Nν (ui ), (2.37)

where Ĩν (ui ) contains both the contribution from the cluster SZ effect and from the identified

radio-sources, and Nν (ui ) contains the contributions from unidentified radio-sources, primordial

CMB and instrumental noise.

2.5.1 Recognised radio-sources

The LA has been (see e.g. Franzen et al. 2011) and is being used to measure the 15.7-GHz

source count. The LA is used to measure radio-sources (without contamination from the SZ

effect since the cluster is resolved out), whilst the SA simultaneously measures the combined SZ

and source signals.

The visibility of each recognised radio-source, assuming for illustration that it is unresolved

by the LA, is

Ĩrs,ν (u) =

∫
Aν (x)Sν (x)δ(xrs)e(2πiu ·x) d2x = Sν (xrs)Aν (xrs)eiφ , (2.38)

where Sν (x) is the source flux density at point x relative to the phase centre, φ = 2πu · xrs

The variation in source flux density across the AMI observing band is taken account of via the

spectral index α, where

Sν = S0

(
ν

ν0

)−α
, (2.39)

where ν0 is some reference frequency and S0 is the corresponding source flux density.

2.5.2 General Noise Contributions

2.5.2.1 Instrumental noise

The main source of instrumental noise is Johnson noise. This refers to the thermal agitation of

the charge carriers in any circuit (Nyquist 1928), and in the context of interferometry, the front-

end receivers of the antennas. The antennas are cooled to mitigate this effect, but the remaining
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contribution is non-negligible. For a given bandwidth ∆ν , the root mean square of the Johnson

noise voltage from a single antenna is given by (see e.g. Thompson, Moran, & Swenson 2011)

σJohnson =

√
4kBTsysR∆ν, (2.40)

where Tsys is the system temperature and R is the antenna impedance. Note that when limited to

a finite bandwidth, Johnson noise is approximately Gaussian (see e.g. Barry et al. 2004).

2.5.2.2 Primordial CMB

Anisotropies in the temperature of the CMB were predicted as early as Silk (1967) among others,

and Smoot et al. (1992) provided the first clear statistical evidence of their existence and Han-

cock et al. (1994) provided the first direct evidence of individual spatial structures in the CMB.

These anisotropies can be separated into two categories: primordial and late time anisotropies.

An example of the latter type is the SZ effect. Primordial anisotropies refer to fluctuations in

the CMB that have been present since the surface of last scattering (which occurred at z ≈ 1100

or t ≈ 4 × 105 years over a period of ∆z ≈ 60). On angular scales visible from the ground

the acoustic peaks and troughs are the most significant features in the CMB power spectrum.

When the Universe was radiation dominated, non-baryonic dark matter began to collapse under

gravity to form potential wellsa, but baryonic matter could not clump due to pressure opposition

from Thompson scattering of photons by electrons given that there were 109 photons per baryon.

During recombination the acoustic oscillations imprint the CMB, after recombination the atoms

fall into the non-baryonic dark matter potential wells. Acoustic peaks and troughs relate to the

waves oscillating in the baryon-photon plasma before recombination occurred. Each successive

peak refers to the number of times the wave compressed before the radiation-matter decoupling,

and is visible at decreasing angular scale. In this work, the power spectrum for CMB primordial

anisotropies is determined via maximum-likelihood methods as written in Hobson & Maisinger

(2002) using the results from Hinshaw et al. (2013).

2.5.2.3 Background unrecognised radio-sources

Although the LA is used to identify radio point sources with flux densities ≥ Slim (where Slim

is a limiting flux density that is usually taken as 4 × σ and σ is the resultant RMS noise in

the summed LA data on the particular sky patch), a large enough number of sources with flux

densities < Slim can be a significant contaminant. This type of noise is often referred to as source
aThis only applies to matter that was in causal contact.
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confusion. Scheuer (1957) showed that if such sources obey a power-law number-flux density

relation (nν (S) = dNν (> S)/dS ∝ kSγ where k & γ are dimensionless constants), then for a

random distribution of unresolved radio-sources in the sky, the source confusion noise is given

by

σ2
conf =

∫ Slim

0
S2nν (S) dS. (2.41)

γ and k were determined empirically in Davies et al. (2011) from the 10C survey to be γ = −1.80

and k = 376 when nν (S) is quoted in units of Jy−1 sr−1, so that when Slim is taken to be 300 µJy

(for a standard length AMI cluster observation) σ2
conf = 0.185 Jy2sr−1.

2.6 Bayesian inference

2.6.1 Parameter estimation

Given a modelM and a data vector D, one can obtain model parameters (also known as input

parameters or sampling parameters) Θ conditioned onM and D using Bayes’ theorem:

P (Θ |D,M) =
P (D|Θ,M) P (Θ |M)

P (D|M)
, (2.42)

where P (Θ |D,M) ≡ P (Θ) is the posterior distribution of the input parameter set, P (D|Θ,M) ≡

L (Θ) is the likelihood function for the data, P (Θ |M) ≡ π (Θ) is the prior probability distribu-

tion for the model parameter set, and P (D|M) ≡ Z (D) is the Bayesian evidence of the data.

The evidence can be defined as the factor required to normalise the posterior over the sampling

parameter space:

Z (D) =

∫
L (Θ) π (Θ) dΘ, (2.43)

where the integral is carried out over the N-dimensional parameter space. For the models using

AMI data considered here, the input parameters can be split into two subsets, (which are as-

sumed to be independent of one another): cluster parameters Θcl and radio-source or ‘nuisance’

parameters Θrs.

2.6.2 Model comparison

While it is the posterior distribution which gives the model parameter estimates from the prior

information and data, it is Z (D) which is crucial to performing model selection. The nested

sampling algorithm, MultiNest (Feroz, Hobson, & Bridges 2009) is a Monte Carlo algorithm



22 Chapter 2. Introductory theory

which calculatesZ (D) by making use of a transformation of the N-dimensional evidence integ-

ral into a one-dimensional integral that is much easier to evaluate. The algorithm also produces

samples from P (Θ) as a by-product, meaning that it is suitable for both the parameter estimation

and model comparison aspects of this work. Nested sampling will be discussed in more detail

in Section 9.4. Comparing models in a Bayesian way can be done by considering the following.

The probability of a modelM conditioned on D can be calculated using Bayes’ theorem

P (M|D) =
P (D|M) P (M)

P (D)
. (2.44)

Hence for two models,M1 andM2, the ratio of the models conditioned on the same dataset is

given by
P (M1 |D)
P (M2 |D)

=
P (D|M1) P (M1)
P (D|M2) P (M2)

, (2.45)

where P(M2)/P(M1) is the a-priori probability ratio of the models. We set this to one, i.e. we

place no bias towards a particular model before performing the analysis. Hence the ratio of the

probabilities of the models given the data is equal to the ratio of the evidence values obtained

from the respective models (we have defined Zi (D) ≡ P (D|Mi )). The evidence is simply

the average of the likelihood function over the sampling parameter space, weighted by the prior

distribution. This means that the evidence is larger for a model with larger areas in its parameter

space having higher likelihood values. Moreover, a larger parameter space, either in the form

of higher dimensionality or a larger domain, results in a lower evidence value, all other things

being equal. Hence the evidence penalises more complex models over basic (lower dimension-

ality / smaller input parameter space domains) ones which give an equally good fit to the data.

Thus the evidence automatically implements Occam’s razor: when you have two competing

theories that make exactly the same predictions, the simpler one is the better. Jeffreys (1961)

provides a scale for interpreting the ratio of evidences as a means of performing model compar-

ison (Table 2.1). A value of ln(Z1/Z2) above 5.0 (less than −5.0) presents "strong evidence"

in favour of model 1 (model 2). Values 2.5 ≤ ln(Z1/Z2) < 5.0 (−5.0 < ln(Z1/Z2) ≤ −2.5)

present "moderate evidence" in favour of model 1 (model 2). Values 1 ≤ ln(Z1/Z2) < 2.5

(−2.5 < ln(Z1/Z2) ≤ −1) present "weak evidence" in favour of model 1 (model 2). Finally,

values −1.0 < ln(Z1/Z2) < 1.0 require "more information to come to a conclusion" over model

preference.
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ln(Z1/Z2) Interpretation Probability of favoured model
≤ 1.0 better data are needed ≤ 0.75
≤ 2.5 weak evidence in favour ofM1 0.923
≤ 5.0 moderate evidence in favour ofM1 0.993
> 5.0 strong evidence in favour ofM1 > 0.993

Table 2.1: Jeffreys scale for assessing model preferability based on the ln ≡ loge of
the evidence ratio of two models.

2.7 Parameter prior distributions

Prior distributions incorporate the prior knowledge we have on the sampling parameters used

in Bayesian inference. The prior parameter space for AMI cluster analysis consists both of

parameters associated with the cluster π(Θcl) and those associated with each identified radio-

source π(Θrs). If one assumes that the cluster parameters are separable from those associated

with each recognised radio-source, then the total prior distribution is given by

π(Θt) = π(Θcl )
∏
i

π(Θrs, i ), (2.46)

where i labels each recognised radio-source. The prior distributions assigned to the cluster para-

meters will be discussed in the Sections where the Bayesian analyses carried out are introduced

(i.e. Sections 3.2, 4.2, 5.1.0.7, and 8.3.1).

2.7.1 Radio-source prior distributions

Following FF09, each source can be parameterised by four variables: its position on the sky (xrs,

yrs), its measured flux density at some reference frequency ν0, Srs,0, and its spectral index αrs.

Assuming these are independent, then for source i

π(Θrs, i ) = π(xrs, i )π(yrs, i )π(Srs,,0, i )π(αrs, i ). (2.47)

Delta functions are applied to the prior distributions on xrs and yrs, due to the LA’s ability to

measure spatial positions to high accuracy: π(xrs) = δ(xrs, LA), π(yrs) = δ(yrs, LA). Delta pri-

ors were also set on Srs,0 & αrs (centred on the values measured by the LA), if the measured

Srs,0 was less than four times the instrumental noise associated with the observation, and the

source was more than 5 arcminutes away from the SA pointing centre: π(Srs,0) = δ(Srs,0, LA),

π(αrs) = δ(αrs, LA). Otherwise, a Gaussian prior was set on Srs,0 centred at the LA measured

value with a standard deviation equal to 40% of the measured value (σrs,0 = 0.4 × Srs,0 ,LA):
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Figure 2.2: Spectral index distribution adapted from Waldram et al. (2007) from the
9C survey of radio-sources.

π(Srs,0) = N (Srs,0, LA,σrs,0). The spectral index αrs was modelled using the empirical distribu-

tion determined in Waldram et al. (2007): π(αrs) =W (αrs) and is shown in Figure 2.2.

2.8 The likelihood function

The likelihood function gives the probability of observing data given a set of parameter values.

In the case of AMI observations, the data are visibilities observed by AMI and the parameters

are those described in the previous Section. Following Hobson & Maisinger (2002) and FF09,

it is convenient first to place the Nvis,ν observed complex visibilities Vν (ui ) into a data vector

dν for each frequency channel (six channels in the case of the analogue correlator AMI data),
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ordered such that

dν, i =




Re[Vν (ui )] (i ≤ Nvis,ν )

Im[Vν (ui−Nvis,ν )] (Nvis,ν + 1 ≤ i ≤ 2Nvis,ν ).

(2.48)

Similarly, one can define the noise vectors nν containing only the contributions to the noise com-

ponents Nν (ui ). Section 2.5.2 explains the three contributors to Nν (ui ). We take the likelihood

to be Gaussian

L(Θ) =
1

ZN
e−

1
2 χ

2
. (2.49)

Here χ2 is a measure of the goodness-of-fit of the model to the data (which is simply the con-

catenation of data vectors dν for all ν) d and the predicted data dp(Θ):

χ2 =
∑
ν,ν′

(dν − d
p
ν (Θ))TC−1

ν,ν′ (dν′ − d
p
ν′ (Θ)). (2.50)

d
p
ν (Θ) is assumed to consist of the signal measured from the cluster and recognised radio-

sources. Cν,ν′ ≡ 〈nνnT
ν′〉 is the covariance matrix of the visibilities. Assuming instrumental

(Section 2.5.2.1), CMB (Section 2.5.2.2), and confusion (Section 2.5.2.3) noise are independent

of each other, Cν,ν′ can be written as

Cν,ν′ = Cins
ν,ν′ + CCMB

ν,ν′ + Cconf
ν,ν′ . (2.51)

Note that the instrumental noise associated with AMI observations is measured, and so does not

need to be predicted. For further information on all three sources of noise, see FF09 Section 5.3

and Hobson & Maisinger (2002). ZN is a normalisation factor given by

ZN = (2π)Nvis |C|
1
2 , (2.52)

where Nvis is the total number of visibilities observed over all six frequency channels.
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Physical modelling of clusters detected by
Planck

YP15 present the results of the AMI follow-up of clusters detected by Planck– this follow-up is

analysed using the ‘observational model’, which parameterises a cluster in terms of its integrated

Comptonisation parameter Y and angular scale θ. YP15 find that these AMI estimates for Y

are consistently lower than the values obtained from Planck data, and conclude that this may

indicate that the cluster pressure profiles are deviating from the ‘universal’ one. I use the physical

model described in Section 2.4 with data obtained from AMI of clusters detected by Planck

(including ones which were detected after the analysis in YP15 was carried out). I also consider

the cluster mass estimates given in the PSZ2 Planck cluster catalogue (Planck Collaboration

XXVII 2016) and compare them with the values obtained using AMI data. Furthermore I use

the PSZ2 mass estimates as inputs to simulations which are then analysed in the same way as real

AMI observations. The work discussed in this Chapter has been published in MNRAS (Javid et

al. 2019), and has been modified post-referee comments.

3.1 Selection and observation of the cluster sample

PSZ2 contains 1653 cluster candidates detected in the all-sky 29 month mission. The initial

cluster selection criteria for AMI closely resembles that described in YP15, with a few modific-

27
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Parameter Minimum value Maximum value
Declination 20.31◦ 86.24◦

z 0.045 0.83
S/N 4.50 28.40
MSZ (×1014 MSun) 1.83 10.80

Table 3.1: Minimum and maximum values for a selection of parameters taken from
PSZ2 for the AMI sample of 199 clusters.

ations as follows.

• The lower z limit z ≤ 0.100 was relaxed here, to see how well AMI data can constrain

physical model parameters at low redshift. However it is important to realise that the

sample at z ≤ 0.100 were not observed specifically for the purpose of this work, but were

part of other observation projects.

• The Planck signal-to-noise ratio (S/N) lower bound was reduced to 4.5.

• The automatic radio-source environment rejection remained the same. However the manual

rejection was done on a map-by-map basis– see Section 3.5.

• Note that the observation declination limits 20◦ < δ < 87◦ were kept.

This led to an initial sample size of 199 clusters, The maximum and minimum values of some

key parameters for this sample from the Planck catalogue are given in Table 3.1. Note that

MSZ is taken in PSZ2 as the hydrostatic equilibrium mass M (r500), assuming the best-fit Y − M

relation.

The pointing strategy for each cluster was as follows. Clusters were observed using a single

pointing centre on the SA, which has a primary beam of size ≈ 20 arcmin FWHM, to noise

levels of / 120 µJy beam−1. To cover the same area with the LA, which has a primary beam

of size ≈ 6 arcmin FWHM, the cluster field was observed as a 61-point hexagonal raster. The

noise level of the raster was / 100 µJy beam−1 in the central 19 pointings, and slightly higher

in the outer regions. The observations for a given cluster field were carried out simultaneously

on both arrays, and the average observation time per cluster was ≈ 30 hours. The observations

were carried out between 2013 and 2015, and so they began before the PSZ2 catalogue was

published. This means that the AMI pointing centre coordinates in general were not the same

as those published in the final Planck catalogue which was released in 2015. This is discussed

in the context of the cluster centre offset parameters in Section 3.2. Data from both arrays were

flagged for interference and calibrated using the AMI in-house software package REDUCE.

Flux calibration was applied using contemporaneous observations of the primary calibration

sources 3C 286, 3C 48, and 3C 147. The assumed flux densities for 3C 286 were converted from
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Parameter Prior distribution
xc N (0′′,60′′)
yc N (0′′,60′′)
z δ(zPlanck)
M (r200) U [log(0.5 × 1014MSun), log(50 × 1014MSun)]
fgas(r200) N (0.13,0.02)

Table 3.2: Cluster parameter prior distributions. δ denotes a Dirac delta function,U
is a uniform distribution and N is a normal distribution (parameterised by its mean
and standard deviation).

Very Large Array total-intensity measurements (Perley & Butler 2013) and are consistent with

the Rudy et al. (1987) model of Mars transferred onto an absolute scale, using results from the

Wilkinson Microwave Anisotropy Probe. The assumed flux densities for 3C 48 and 3C 147 were

based on long-term monitoring with the SA using 3C 286 for flux calibration. Phase calibration

was applied using interleaved observations of a nearby bright source selected from the VLBA

Calibrator survey (Petrov et al. 2008); in the case of the LA, a secondary amplitude calibration

was also applied using contemporaneous observations of the phase calibration source on the SA.

3.2 AMI data analysis

The likelihood function given by equation 2.49, along with all the preceeding calculational steps

covered in Chapter 2 are calculated using our AMI Bayesian data analysis pipeline, McAdam.

Referring back to the prior distributions defined in Section 2.7, the cluster sampling parameters

for the physical model are

π(Θcl) = π(M (r200))π( fgas(r200))π(z)π(xc)π(yc). (3.1)

xc and yc are the cluster centre offsets from the SA pointing centre, measured in arcseconds. The

prior distributions assigned to the cluster parameters are the same as the ones used in Olamaie,

Hobson, & Grainge (2013), but with an alteration to the mass limits. Upon running McAdam on

data from a few of the Planck clusters, it was found that the posterior distributions of M (r200)

were hitting the lower bound 1× 1014 MSun used in Olamaie, Hobson, & Grainge (2013). Hence

for this analysis the lower limit on M (r200) was decreased. Table 3.2 lists the type of prior used

for each cluster parameter and the probability distribution parameters.

I note here that M (r500) (the AMI mass estimate I compare with those obtained in PSZ2)

is not a sampling parameter of the physical model, but it can be calculated by evaluating equa-
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tion 2.22 at r = r500. r500 is calculated as part of the steps to determine the pressure profile given

by equation 2.21, and so this does not cause any calculation overheads.

3.3 PSZ2 redshift values

The values of zPlanck used for each cluster’s z prior distribution were taken to be the values stated

in PSZ2. Catalogue z values are measured in the optical / infrared or X-ray, with major input

from the Sloan Digital Sky Survey (York et al. 2000). A number of cluster catalogues have been

extracted from these data (see e.g. Hao et al. 2010, Wen, Han, & Liu 2012, and Rykoff et al.

2014), providing estimates of both spectroscopic and photometric z values, the reliability of the

latter values falls as z increases. In the X-ray part of the spectrum, the Meta-Catalogue of X-

ray detected Clusters of galaxies, or MCXC (Piffaretti et al. 2011) has a substantial number of

matches with the Planck-catalogue clusters. The MCXC is from the available catalogues based

on the ROSAT All-Sky Survey (Voges et al. 1999) as well as serendipitous X-ray catalogues

(see e.g. Gioia et al. 1990). MCXC contains only clusters with measured z, but does not state

the redshift type or source. Further sources of Planck catalogue clusters candidate zs are the

Russian-Turkish Telescope (Planck Collaboration Int. XXVI 2015) and the ENO telescopes in

the Canary Islands (Planck Collaboration Int. XXXVI 2016); for each z these state whether it

was obtained photometrically or spectroscopically.

3.4 PSZ2 methodology for deriving cluster mass estimates

For comparison with the mass values obtained with AMI data, I look at the PSZ2 mass estim-

ates obtained from Planck data and the requisite scaling relations. The mass values published

in PSZ2 are derived from data from one of three detection algorithms: MMF1, MMF3 (both of

which are extensions of the matched multi-filter algorithm suitable for SZ studies (MMF, see

Haehnelt & Tegmark 1996, Herranz et al. 2002 and Melin, Bartlett, & Delabrouille 2006), over

the whole sky) & PowellSnakes (PwS, Carvalho et al. 2012). The former two rely on multi-

frequency matched-filter detection methods, whilst PwS is a fully Bayesian method. Since the

PwS methodology most closely matches the Bayesian analysis pipeline used for AMI data, I

focus on the cluster parameter values from PwS. PwS will described in more detail in Sec-

tion 8.1.3.2 where I carry out Bayesian analysis on AMI and Planck datasets simultaneously,

which requires extensive use of the algorithm.
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The observable quantity measured by Planck is the integrated Comptonisation parameter

Y . As described in Section 5 of the PSZ2 paper (Planck Collaboration XXVII 2016), for each

cluster candidate there is a two-dimensional posterior of the integrated Comptonisation para-

meter within the radius 5r500, Y (5r500) and the angular scale radius of the GNFW pressure, θp

(= rp/DA). The values for Y (5r500) published in PSZ2 are obtained by marginalising over θp

and then taking the expected value of Y (5r500). I refer to this value as Ymarg(5r500). As described

in Sections 5.2 and 5.3 of Planck Collaboration XXVII (2016), this ‘blind’ measurement of the

integrated Comptonisation parameter may not be reliable when the underlying cluster pressure

distribution deviates from that given by the GNFW model. To overcome this, a function relating

Y (5r500) and θp is derived in an attempt to provide prior information on the angular scale of the

cluster based on X-ray measurements and earlier Planck mission samples. I refer to this function

as the slicing function.

3.4.1 Derivation of the slicing function

The scaling relations considered here are given in Planck Collaboration XX (2014). Of partic-

ular importance to deriving the slicing function, are the Y (r500) − M (r500) and θ500 − M (r500)

relations. The first of these is given by

E(z)−2/3


D2
AY (r500)

10−4Mpc2


= 10−0.19±0.02

[
(1 − b)M (r500)
6 × 1014 MSun

]1.79±0.08

, (3.2)

where E(z) =
√
ΩM(1 + z)3 + ΩΛ and is equal to the ratio of the Hubble parameter eval-

uated at redshift z to its value now for a flat ΛCDM Universe. The factor in the exponent

−2/3 arises from the scaling relations between mass, temperature and Comptonisation para-

meter given by equations 1–5 in Kravtsov, Vikhlinin, & Nagai (2006). (1 − b) represents

a bias factor, which is assumed in Planck Collaboration XX (2014) to contain four possible

observational biases of departure from hydrostatic equilibrium, absolute instrument calibra-

tion, temperature inhomogeneities and residual selection bias. Its value is calculated to be

(1 − b) = 0.80+0.02
−0.01 from numerical simulations as described in Appendix A.4 of Planck Col-

laboration XX (2014). Equation 3.2 uses the fitting parameters from the relation between YX

(the X-ray ‘analogue’ of the integrated Comptonisation parameter see e.g. Kravtsov, Vikhlinin,

& Nagai 2006, YX(r500) ≡ Mg(r500)TX where Mg is the cluster gas mass within r500 and TX

is the spectroscopic temperature in the range [0.15,0.75]r500) and the X-ray hydrostatic mass,

MHE(r500) (which is equal to (1−b)M (r500)), established for 20 local relaxed clusters by Arnaud

et al. (2010) to give the relation between the X-ray mass proxy MYX (r500) and M (r500). Finally,
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the fitting parameters for the Y (r500) − MYX (r500) relation are obtained empirically from a 71-

cluster sample consisting of SZ data from the Planck Early SZ clusters (Planck Collaboration XI

2011), of Planck-detected LoCuSS clusters (Planck Collaboration Int. III. 2013) and from the

XMM-Newton validation programme (Planck Collaboration IX 2011), all with X-ray data taken

from XMM-Newton observations (Willis et al. 2013 and Mehrtens et al. 2012).

The θ500 − M (r500) relation is based on the equation M (r500) = 500 × 4π
3 ρcrit(z)r3

500 and is

given by

θ500 = 6.997
[

h
0.7

]−2/3 [
(1 − b)M500

3 × 1014 MSun

]1/3

E(z)−2/3
[

DA

500 Mpc

]
. (3.3)

Equations (3.2) and (3.3) can be solved for (1 − b)M (r500) and equated to give Y (r500) as a

function of θ500

Y (r500) =

[
θ500

6.997

]5.4±0.2 [
h

0.7

]3.60±0.13 

E(z)4.26±0.13D3.4±0.2
A

1019.29±0.54 Mpc3.4±0.2


, (3.4)

where Y (r500) is in sr. Assuming a GNFW pressure profile, Y (r500) can be converted to the

corresponding value of Y (5r500), through the relation

Y (r500)
Y (5r500)

=
B

(
(c500)a

1+(c500)a ; 3−c
a , b−3

a

)
B

(
(5c500)a

1+(5c500)a ; 3−c
a , b−3

a

) , (3.5)

where B(x, y, z) =
∫ x

0 ty−1(1−t)z−1dt is the incomplete beta function. For the GNFW parameter

values used in equation 2.21, equation 3.5 gives a value of 0.55. Similarly, θ500 can be related

to θp through the relation θp = θ500/c500.

3.4.2 Mass estimates

For a given cluster, the resulting Y (5r500) function is used to ‘slice’ the posterior, and the value

where the function intersects the posterior ‘ridge’ is taken to be the most reliable estimate of

Y (5r500), given the external information. The posterior ridge (see Figure 3.1) is defined to be the

value of Y (5r500) which gives the highest probability density for a given θp. The error estimates

are obtained by considering where the slicing function intersects with the ridges defined by

the 68% maximum likelihood confidence intervals for Y (5r500) at each θp. Y (5r500) is then

converted to Y (r500) using the the reciprocal of the value given by equation 3.5, and this is used

to derive a value for M (r500) using equation 3.2, but with the (1 − b) term excluded. The bias

term is not included in the M (r500) calculation because it has already been accounted for in the

slicing function. Note that this value of M (r500) is what is referred to as MSZ in PSZ2.
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Figure 3.1: Example of the posterior slicing methodology for cluster
PSZ2G228.16+75.20. The black solid line represents the ‘ridge’ (i.e. the most prob-
able value of Y (5r500) for each θp) of the posterior. The upper dashed curve represents
the upper boundaries of the 68% maximum likelihood confidence interval on Y (5r500)
for each value of θp, and the lower dashed curve corresponds to the lower boundaries.
The red dotted curve is the slicing function.

3.5 Obtaining AMI mass estimates

First I describe how I arrived at a final sample of clusters for which the AMI mass estimates are

compared with those derived from Planck data.
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3.5.1 Final cluster sample

3.5.1.1 Well constrained posterior sample

McAdam was used on data from the initial sample of 199 clusters. MultiNest failed to produce

posterior distributions for two clusters. These clusters were surrounded by high flux, extended

radio-sources. Of the 197 clusters for which posterior distributions were produced, 73 clusters

show good constraints (adjudged by physical inspection) on the sampling parameters M (r200),

fgas(r200), xc and yc; with zs ranging from 0.089 to 0.83.

I illustrate a ‘well constrained’ posterior distribution (for cluster PSZ2G184.68+28.91) in

the first half of Figure 3.2, plotted using GetDista (a kernel density estimation algorithm, which

is described in Section 9.5.2). In contrast the second half of Figure 3.2 is an example of a cluster

(PSZ2G121.77+51.75) which shows poor constraints on mass as the posterior distribution is

peaked at the lower boundary of the mass sampling range (5 × 1013MSun) which could not be

classed as a detection within our mass prior range. I also note that in the latter case the mass

posterior largely resembles the prior distribution.

3.5.1.2 Moderate radio-source environment sample

For the 197 cluster sample, AMI data maps were produced using the software package AIPSb

using the automated CLEAN procedure with a limit determined using IMEAN. Source-finding

was carried out at four σ on the LA continuum map, as described in Davies et al. (2011) and

Franzen et al. (2011). For each cluster both a non-source-subtracted and a source-subtracted

map was produced. The values used to subtract the sources from the maps were the mean

values of the one-dimensional marginalised posterior distributions of the sources’ position, flux

and spectral index produced by McAdam. Maps of the 73 cluster sample were inspected in

detail. It was found that for seven of these clusters, even though the posterior distributions were

well constrained, that the radio-source and primordial CMB contamination could bias the cluster

parameter estimates in an unpredictable way. In these cases it was found that the subtracted maps

contained residual flux close to the cluster centre, from either radio-sources (some of which were

extended), radio-frequency interference, or CMB. PSZ2G125.37-08.67 is an example of one of

these clusters and its non-source-subtracted and source-subtracted maps are shown in Figure 3.3.

I thus arrived at a 66 cluster sample.
ahttp://getdist.readthedocs.io/en/latest/.
bhttp://aips.nrao.edu/.

http://getdist.readthedocs.io/en/latest/
http://aips.nrao.edu/
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(a) (b)

Figure 3.2: Posterior distributions derived from AMI data for the sampling paramet-
ers: M (r200); fgas(r200); xc & yc. The contoured maps show the two-dimensional
posteriors for the different pairs of parameters. The contours represent the 95% and
68% mean confidence intervals, with the green crosses denoting the expected value
of the joint distributions. The four one-dimensional plots are the marginalised pos-
teriors corresponding to the variable given at the bottom of the respective column.
The red curves are the prior distributions on the relevant parameters. Each green line
is the expected value of the distribution. Posterior distributions in (a) show narrow
distributions on the cluster mass, with the domain spanning feasible mass values for a
galaxy cluster (cluster PSZ2G184.68+28.91). In such cases the posteriors are said to
be well constrained. The mass posteriors in (b) show that the data imply unphysical
values for its mass, as the posterior distribution is hitting the lower bound of the prior
(5 × 1013 MSun) at almost its peak value (cluster PSZ2G121.77+51.75). The distribu-
tion also resembles the uniform in log-space prior assigned to M (r200). In such cases
the posteriors are said to be poorly constrained with respect to the mass estimates.

3.5.1.3 Well defined cluster-centre sample

The posteriors of xc and yc give the position of the modelled cluster centre relative to the actual

SA pointing centre used for the observation. For seven of the 66 cluster sample, it was found that

the mean posterior values of xc and yc changed dramatically between different runs of McAdam

(on the same cluster data), by up to 70 arcseconds in either direction, leading to differences in

mass estimates of up to 70%. The estimates for these clusters are not reliable, since the model

was creating a completely different cluster between runs, and so these clusters were excluded

leaving a 59 cluster sample. For the remaining clusters, the change in M (r200) between runs was
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Figure 3.3: (a) Unsubtracted map produced from AMI observation. Contours are
plotted at ±(2,3,4, ...,10)× the r.m.s. noise level, and dashed contours are negat-
ive. (b) Source subtracted map produced from AMI observation. The � denotes the
McAdam-determined centre of the cluster (posterior mean values for xc and yc). Here
‘+’ signs denote radio-source positions as measured by the LA which were assigned
delta priors on their parameters, whilst ‘×’ denote sources which were assigned priors
as described in Section 2.7.1.

much smaller than the standard deviation of the corresponding posterior distributions. Figure 3.4

shows the subtracted map for PSZ2G183.90+42.99, which we consider to be an example of

a cluster with an ill-defined centre. The map shows three flux decrement peaks close to the

cluster centre. Movement of the centre between these peaks with the current source environment

modelling would lead to a change in the size of the predicted cluster, and consequently different

mass estimates each time.

3.5.1.4 PwS detected cluster sample

For five of the 59 cluster sample, the data available on the Planck websitec did not contain a

detection using the PwS algorithm, and so no mass estimates based on PwS data could be cal-

culated. Hence the final sample size for which I present the mass estimates from both AMI and
chttps://pla.esac.esa.int/pla/catalogues.

https://pla.esac.esa.int/pla/catalogues
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Figure 3.4: Subtracted map of cluster with ill-defined centre. The cluster is clearly
offset from the observation pointing centre (middle of the map), and the lobes to the
bottom and the top left of the cluster cause the centre position to be ambiguous.

Planck data is 54.

It is important to realise that selection biases are introduced in reducing the sample size

from 199 to 54. In particular, selecting only the clusters which showed good AMI posterior

constraints means that clusters corresponding to a signal too faint for AMI to detect, clusters

with large enough angular size for AMI’s shortest baselines not to be able to measure the signal
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from the outskirts of the cluster ("resolved clusters"), and clusters where the radio-source and

CMB contamination dwarfs the signal of the cluster, are all likely to have been excluded from

the sample to some extent. In addition, removing the seven clusters with an ill defined centre

likely removes some unrelaxed clusters from the sample.

3.6 AMI and PSZ2 mass estimates

The AMI and PSZ2 parameter estimates for the 54 clusters are given in Table A.1 in Appendix A.

The clusters are listed in ascending order of z. Note that whether a redshift is photometric or

spectroscopic is stated in the fifth column. All AMI values are the mean values of the corres-

ponding parameter posterior distributions, with the error taken as the standard deviation. The

estimates of the sampling parameters are included for comparison with each other, and with

the sampling prior ranges and associated parameters given in Table 3.2. The AMI values for

M (r500) are given for comparison with the corresponding PSZ2 estimates. Two values for the

PSZ2 mass estimates are given, MPl, marg(r500) and MPl, slice(r500). MPl, marg(r500) corresponds to

the mass given by the Y (r500) − M (r500) relation when the marginalised integrated Compton-

isation parameter is used as described in Section 3.4. The uncertainties associated with these

Y values are taken as the standard deviations of the marginalised posteriors. MPl, slice(r500) is

detailed in Section 3.4.2; its associated errors are calculated from the Y (5r500) values where the

slicing function intersects with the two ridges formed by the 68% maximum likelihood confid-

ence interval values of the Y (5r500) probability densities over the posterior domain of θp.

Figure 3.5 shows M (r200) as a function of z. Excluding the clusters at z = 0.089, 0.4 and 0.426,

there is a steepening in mass between 0.1 / z / 0.5 before it flattens off at higher z. This result

is consistent with the PSZ2 mass estimates presented in Planck Collaboration XXVII (2016).

I now focus on the comparison between AMI and Planck mass estimates. Note that Planck

Collaboration XXVII (2016) do not provide any means for estimating M (r200) from their data,

as r200 is the distance related to the scale radius (r200 = c200×rs) for the NFW dark matter profile

given by equation 2.19, which they do not incorporate into their modelling process. Figure 3.6

gives the AMI and two Planck estimates for M (r500) vs the row number, in Table A.1. I have

not used z as the independent variable in this plot for clarity. The row number is monotonically

related to z, as Table A.1 is sorted by ascending z. From Figure 3.6 it is clear that AMI under-

estimates the mass relative to both PSZ2 values. In fact M (r500) is lower than MPl, slice(r500) in

37 out of 54 cases. M (r500) is lower than MPl, marg(r500) in 45 out of 54 cases. 31 of the AMI

masses are within one combined standard deviation of MPl, slice(r500), while 46 are within two.
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Figure 3.5: Plot of M (r200) derived from AMI data using physical modelling vs
redshift for the sample of 54 clusters.

Four clusters have discrepancies larger than three combined standard deviations. Three of these

clusters are at relatively low redshift (≤ 0.25), whilst one is at z = 0.43.

It is also noteworthy that MPl, marg(r500) is larger than MPl, slice(r500) in 47 out of 54 cases. This

implies that the additional information obtained from X-ray data incorporated in the slicing func-

tion consistently predicts a lower mass cluster than from the Planck SZ data alone.

Figure 3.7 shows the ratios of the mass estimates between the three different methods. The most

obvious thing to note is that the ratio of PSZ2 masses is consistently greater than one, which

again emphasises the fact that the marginalisation method attributes a much higher mass to the

clusters than the slicing method. Furthermore, the ratio of AMI mass to the marginalised mass

is small at medium redshift, which suggests that the marginalised mass is systematically high in

this range. This graph also emphasises that the AMI mass and the slicing methodology mass are
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the most consistent with one another.

3.7 AMI simulations with PSZ2 mass inputs

To investigate further the discrepancies between the mass estimates, it was decided to create

simulated data based on the PSZ2 mass estimates obtained from the slicing methodology, which

were then ‘observed’ by AMI. The data from these simulated observations were analysed the

same way as the real data. The simulations were carried out using the in-house AMI simulation

package Profile, which has been used in various forms in e.g. Grainge et al. (2002), Davies et

al. (2011), Olamaie et al. (2012) and Olamaie, Hobson, & Grainge (2013). The input paramet-

ers for the simulation– which uses the physical model to create the cluster– are the sampling

parameters of the model. Since Planck Collaboration XXVII (2016) does not give a method

for calculating M (r200) it was calculated as follows. First r500 was calculated by solving equa-

tion 2.22 with M (r∆) = MSZ and r∆ = r500. r200 can be determined from r500, but we note that

the function mapping from r200 to r500 is non-invertible, thus r200 had to be calculated by solving

equation 2.25 iteratively. M (r200) can then be calculated by evaluating equation 2.22 at r200.

As well as the values of M (r200) derived from PSZ2 mass estimates, values for the other inputs

were also required. I used fgas(r200) = 0.13, z = zPlanck, and xc = yc = 0 arcsec.

The objective of these simulations was to see whether we could recover the mass input into the

simulation to create a cluster using the physical model, ‘observed’ by AMI and then analysed

using the same model. I tried this for the four sets of simulations described below.

For each simulation different noise / canonical radio-source environment realisations (where rel-

evant) were used each time. Due to the large sample size this should not affect any systematic

trends seen in the results, and it avoids having to pick a particular realisation to be used in all the

simulations.

3.7.1 Simulations of clusters plus instrumental noise

For each cluster, M (r200) was calculated and Gaussian instrumental noise (Section 2.5.2.1) was

added to the sky. The RMS of the noise added was 0.7 Jy per channel per baseline per second,

a value typical of an AMI cluster observation. Figure 3.8 shows the map produced from the

simulated data of cluster PSZ2G044.20+48.66 plus this instrumental noise. The mass estimate

derived from the Bayesian analysis of this cluster is 0.56 standard deviations above the input

value.
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Figure 3.6: Plot of M (r500) vs row number of Table A.1 for three different cases:
the value derived from AMI data using the physical model, MAMI(r500); the value
derived from Planck data using the marginalised value for Y (5r500), MPl, marg(r500)
and the value derived from Planck data using the slicing function value for Y (5r500),
MPl, slice(r500). The row number is monotonically related to z, as Table A.1 is sorted by
ascending z. The points with circular markers correspond to clusters whose redshifts
were measured photometrically (as listed in Table A.1).

Figure 3.9 shows the difference between the input masses and the ones recovered from run-

ning the simulated observations through McAdam, visualised using a histogram. All but three

of the clusters lie within one standard deviation of the input mass, and even these clusters

(PSZ2G154.13+40.19, PSZ2G207.88+81.31 and PSZ2G213.39+80.59) give an output mass

1.01, 1.26 and 1.08 standard deviations below the input mass.
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Figure 3.7: Plot of M (r500) ratios vs row number of Table A.1 for
three different cases: MAMI(r500)/MPl, marg(r500); MAMI(r500)/MPl, slice(r500) and
MPl, marg(r500)/MPl, slice(r500). The points with square markers correspond to clusters
whose redshifts were measured spectroscopically, and the circular markers correspond
to photometric redshifts (as listed in Table A.1).

3.7.2 Simulations further adding confusion noise and primordial CMB

Confusion noise is defined to be the flux from radio-sources below a certain limit (see Sec-

tion 2.5.2.3, here Sconf = 0.3 mJy). In this Section all radio-source realisations only contribute

to the confusion noise. However in Sections 3.7.3 and 3.7.4 sources above Sconf are included.

The confusion noise contributions (see e.g. Section 5.3 of FF09) were sampled from the probab-

ility density function corresponding to the 10C source counts given in Davies et al. (2011), and

placed at positions chosen at random. Similarly, the primordial CMB (Section 2.5.2.2) realisa-

tions were sampled from an empirical distribution (Hinshaw et al. 2013), and randomly added

to the maps.
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Figure 3.8: Unsubtracted map produced from simulated AMI data of cluster
PSZ2G044.20+48.66, including instrumental noise.

Figure 3.10 shows the map produced from the simulated data of cluster PSZ2G044.20+48.66,

including the three noise contributions. The mass estimate derived from the Bayesian analysis

of this cluster is 0.22 standard deviations above the input value. The differences between out-

put and input masses are shown in Figure 3.11. This time eight out of the 54 clusters cannot

recover the input mass to within one standard deviation. In all eight of these cases, the mass is

underestimated with respect to the input value. Five of the outlier values correspond to clusters
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Figure 3.9: Normalised histogram of the differences between the input and output
masses of the AMI simulations including the cluster and instrumental noise only, in
units of standard deviations of the output mass.

at low redshift (z < 0.2). This suggests that the confusion and CMB noise may be causing AMI

to systematically underestimate the cluster masses, and may explain why AMI mass estimates

were consistently lower than those obtained by Planck for the real data.

3.7.3 Simulations further adding a canonical radio-source environment

The third set of simulations included detectable radio-sources (Section 2.5.1, which formed a

canonical radio-source environment. They were created in the same way as with the confusion

noise described above, but with higher flux limits so that in reality, the LA would have been able

to detect them. The upper flux limit was set to 25 mJy.

Figure 3.12 shows the map produced from the simulated data of cluster PSZ2G044.20+48.66,
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Figure 3.10: Unsubtracted map produced from simulated AMI data of cluster
PSZ2G044.20+48.66, including instrumental, confusion and CMB noise.

including a canonical source environment and background noise. The mass estimate derived

from the Bayesian analysis of this cluster is 0.51 standard deviations below the input value.

Figure 3.13 shows that the canonical radio-source environment have little effect on the mass

estimation relative to Section 3.7.2, as there are still 8 clusters which give mass estimates greater

than one standard deviation away from the input value. Note that in this case, the outliers

occurred across the entire range of redshifts, which suggests that in Section 3.7.2 the low redshift
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Figure 3.11: Normalised histogram of the differences between the input and output
masses of the AMI simulations, in units of standard deviations of the output mass.
This is the case for instrumental, confusion and CMB noise contributions.

trend was just a coincidence.

3.7.4 Simulations with LA observed radio-source environment plus
instrumental, confusion and CMB noise

The final set of simulations included the radio-source environment measured by the LA during

the real observation for each cluster. These are only estimates of the actual source environ-

ments, and are only as reliable as the LA’s ability to measure them. Figure 3.14 shows the maps

produced from the real & simulated data of cluster PSZ2G044.20+48.66. The mass estimate de-

rived from the Bayesian analysis of the simulated dataset is just 0.08 standard deviations above

the input value.
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Figure 3.12: Unsubtracted map produced from simulated AMI data of cluster
PSZ2G044.20+48.66, including a canonical radio-source environment as well as in-
strumental, confusion and CMB noise.

Figure 3.15 shows that including the LA observed radio-source environment has a large effect

on the results, as this time there are 16 clusters which are more than one standard deviation away

from the input mass. Furthermore, three of these overestimated the mass relative to the input, the

first time we have seen this occur in any of the simulations. A possible source of bias could be

due to for example, the empirical prior on the spectral index incorrectly modelling some radio-

sources. Another source of bias could be the position of a source relative to the cluster, and the
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Figure 3.13: Normalised histogram of the differences between the input and output
masses of the AMI simulations, in units of standard deviations of the output mass.
This is the case for a canonical radio-source environment as well instrumental, confu-
sion and CMB noise contributions.

magnitude of the source flux. For example, if a high flux radio-source is close to the centre of

the galaxy cluster, then even a slight discrepancy between the real and the modelled values for

the source could have a large effect on the cluster parameter estimates.

I now compare these results to the simulations in YP15 (which concluded that the underes-

timation of the simulation input values could be due to deviation from the ‘universal’ profile, see

Figure 23a in the paper). The results of the large cluster simulations (total integrated Compton-

isation parameter = 7 × 103 arcmin2 and θp = 7.4 arcmin) in YP15 seem biased low at a more

significant level than those in Figure 3.15, as in the former case less than half of the clusters

recover the true value within two standard deviations. For the smaller clusters however, YP15

found a slight upward bias in the simulation results, but this is probably smaller in magnitude
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Figure 3.14: (a) Unsubtracted map produced from real AMI data of cluster
PSZ2G044.20+48.66. (b) Unsubtracted map produced from simulated AMI data of
PSZ2G044.20+48.66, including the real source environment (as measured by the LA)
as well as instrumental, confusion and CMB noise. The peak flux in the simulation
has been underestimated relative to the real observation by ≈ 25%. This could be due
to the source sitting on a negative decrement caused by background noise, or it could
be from the cluster decrement.

than the bias found in this Section.

3.7.5 Statistics of results of real and simulated data

Looking at the histograms produced in Sections 3.7.1, 3.7.2, 3.7.3, and 3.7.4, in the last three

cases it is apparent that there is a negative skew in the data, i.e. the output masses are negatively

biased relative to the input masses. The skews calculated from the samples associated with the

four histograms are −0.17, −1.30, −0.91, and −0.96 respectively in units of standard deviations

of the output mass. This suggests that the inclusion of confusion and CMB noise bias the cluster

mass. I also calculate the median values of these histograms, and compare them with the medians

corresponding to the real AMI and PSZ2 masses given in Figure 3.6. The median values for the

four histograms are −0.24, 0.09, −0.27 and −0.34 respectively in units of standard deviations of

the output mass. For the real data the median values for (MAMI(r500)−MPl, marg(r500))/σAMI and
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Figure 3.15: Normalised histogram of the differences between the input and output
masses of the AMI simulations, in units of standard deviations of the output mass.
This is the case for the real radio-source environment as measured by the LA, with
instrumental, confusion and CMB noise contributions.

(MAMI(r500)−MPl, slice(r500))/σAMI are −1.57 and −0.56. It makes sense to compare the second

of these real data values with those obtained from the simulations, as it was MPl, slice(r500) which

was used to derive the input masses. The fact that the median from the real data is greater in

magnitude than the values from the simulations implies in general, our simulations can recover

their input values with better agreement than that obtained between real AMI estimates and those

obtained from Planck data using the slicing function methodology. This seems plausible as you

would expect that inferring results from data which was created using the same model used in

the inference would be more accurate than results from data taken from two different telescopes,

which use different models in their inference. Furthermore the simulation medians tell us that

AMI is capable of inferring the masses derived with the slicing methodology, if the cluster is
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created using the model used in the inference and assuming there are no large discrepancies

between the real and simulated AMI observations.

3.8 Conclusions

We have made observations of galaxy clusters detected by the Planck space telescope, with the

Arcminute Microkelvin Imager (AMI) radio interferometer system in order to compare mass

estimates obtained from their data. I analysed this data using the physical model described in

Section 2.4, following largely the data analysis method outlined in Feroz et al. (2009). This

allowed us to derive physical parameter estimates for each cluster, in particular the total mass

out to a given radius. I have also calculated two mass estimates for each cluster from Planck’s

PowellSnakes detection algorithm (Carvalho et al. 2012) data following Planck Collaboration

XXVII (2016) (PSZ2), and found the following.

• For the AMI mass estimates of Planck selected clusters there is generally a steeping in the

mass of galaxy clusters as a function of redshift, which flattens out at around z ≈ 0.5.

• AMI M (r500) estimates are within one combined standard deviation of the PSZ2 slicing

function mass estimates for 31 out of the final sample of 54 clusters. However, the AMI

masses are lower than both PSZ2 estimates for 37 out of the 54 cluster sample.

• The PSZ2 mass estimates derived from the marginalised Y − θ posteriors are larger than

those which use the slicing function in 47 out of 54 cases. This suggests that the X-ray

data which form the basis of the slicing procedure predict lower cluster masses relative to

what the SZ Planck data alone find.

To investigate further the possible biasing of AMI mass estimates, I created simulations

of AMI data with input mass values from the PSZ2 slicing methodology. I considered four

different cases for the simulations: 1) galaxy cluster plus instrumental noise; 2) galaxy cluster

plus instrumental plus confusion & CMB noise; 3) galaxy cluster plus instrumental, confusion

& CMB noise, plus a randomly positioned radio-source environment; 4) galaxy cluster plus

instrumental, confusion & CMB noise, plus the radio-source environment recognised by the LA

in the real observations. These simulated datasets were analysed in the same way as the real

datasets, and I found the following.

• For case 1), the physical model recovered the input mass to within one standard deviation

for 51 of the 54 clusters. The three which did not give an underestimate relative to the

masses input to the simulation.
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• For case 2), eight of the simulations gave results which were more than one standard

deviation lower than the input values. This highlights the effect of incorporating the noise

sources into the error covariance matrix rather than trying to model the associated signals

explicitly.

• Case 3) shows similar results to case 2), which implies that ‘ideal’ radio-sources placed

randomly in the sky have little effect on cluster mass estimates.

• However in case 4) with real source environments, 16 simulations did not recover the input

mass to within one standard deviation. This suggests that real radio-source environments,

which can include sources with high flux values, and often sources which are located

very close to the cluster centre, introduce biases in the cluster mass estimates. In real

observations there are also additional issues (the sources are not ‘ideal’), such as sources

being extended and emission not being circularly symmetric on the sky.

• Cases 2), 3) and 4) give distributions of output − input mass which are negatively skewed.

Thus AMI mass estimates are expected to be systematically lower than the PSZ2 slicing

methodology values.

• The median values of the distributions of output − input mass of the simulations in each

of the four cases are smaller in magnitude than those obtained from comparing AMI and

PSZ2 estimates from real data. This is expected as I used the same model to simulate and

analyse the clusters in all four cases.

• Compared to the results of simulations of large clusters carried out in Perrott et al. (2015),

which test the robustness of the ‘universal’ pressure profile, the case 4) bias appears rel-

atively small in magnitude, and in the same direction (downward). When comparing the

case 4) results with the small cluster simulations of Perrott et al. (2015), the latter shows

a relatively small bias in the opposite direction.

• The simulated and real data medians also indicate that while the simulations have shown

that AMI mass estimates are systematically low, this does not fully accommodate for

the discrepancies in the results obtained from the real data. This suggests that there is a

systematic difference between the AMI & Planck data and / or the cluster models used to

determine the mass estimates (which generally leads to PSZ2 estimates being higher than

those obtained from AMI data).
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Comparison of physical and observational galaxy
cluster modelling using AMI data

This Chapter provides a follow-up to Chapter 3 in which I performed Bayesian inference on

data obtained with the Arcminute Microkelvin Imager (AMI) array to derive estimates of phys-

ical properties of clusters that have been detected by Planck. I now focus on the observational

properties of clusters obtained from telescopes such as AMI and Planck which measure the SZ

effect: the angular radius θ, and the integrated Comptonisation parameter Y . For the sample con-

sidered in the previous Chapter, we compare observational parameters derived from the physical

model with those obtained from two observational models similar to the one described in YP15

and Olamaie et al. (2012), using data from AMI. I also compare the different models using

Bayesian analysis as described in Section 2.6.2, as well as with another technique presented

here (see Section 4.3.2). The work discussed in this Chapter has been submitted to MNRAS and

is under review (Javid et al. 2018).

4.1 Physical model estimates of observational parameters

Y can be calculated using the physical model (PM from here on in this chapter) presented in

Section 2.4, by first calculating Pe(r) and then calculating Y (r) using equation 2.18. θ and r

are related through θ = r/DA. The prior distributions used are the same as the ones used in the

53
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previous Chapter.

4.2 Observational models

Here I consider two observational models, observational model I (OM I) and observational

model II (OM II). They are based on the model used in YP15. They use the same GNFW

profile (given by equation 2.21) to model the gas content, but with the slope parameters stated in

Section 2.4; they take into account only the cluster gas – they do not explicitly model the dark

matter component. They work in angular rather than physical sizes. Like the PM, they also use

equation 2.18 to calculate Y . However, the calculation steps are different. We start be evaluating

equation 2.18 in the limit that r → ∞. It can be shown that for the GNFW pressure profile this

gives (see Appendix B.1 for a derivation of this result)

lim
r→∞

Ysph(r) ≡ Ytot = lim
r→∞

σT

mec2

∫ r

0
Pe(r ′)4πr ′2 dr ′ =

4πPeiDAθ
3
pσT

mec2

Γ
(

3−c
a

)
Γ

(
b−3
a

)
aΓ

(
b−c
a

) (4.1)

where Γ (x) is the Gamma function and θp = rp/DA. Note that for finite r (and thus θ)

Ysph(θ) =
4πPeiDAθ

2
pσT

mec2

∫ θ

0

(
θ ′

θp

)2−c (
1 +

(
θ ′

θp

)a) (c−b)/a

dθ ′. (4.2)

Both equations have a common (unknown) factor DAPei. Hence for given (i.e. input) values of

Ytot and θp, equation 4.1 can be solved for DAPei and then equation 4.2 can be solved for finite θ

numerically. Furthermore the OMs assume that the cluster is spherically symmetric and that the

cluster gas can be described by the equation of state of an ideal gas. The OMs have four cluster

input parameters: Ytot, θp , xc and yc. They differ only in the prior distributions they use.

4.2.1 Observational model I prior

The priors used on Ytot and θp are the same as the ‘new’ priors used in YP15. These were de-

rived from the Planck completeness simulations (Planck Collaboration XXIX 2014) as follows.

The simulations were produced by drawing a cluster population from the Tinker mass function

(Tinker et al. 2008) and using the scaling relations in Planck Collaboration XI (2011) to obtain

observable quantities. This cluster population was injected into the real Planck data and a sim-

ulated union catalogue was created by running the Planck detection pipelines on this simulated

dataset. An elliptical Gaussian function was then fitted to the posterior of Ytot and θp in log space.

Hence the prior has the Planck selection function implicitly included in it.
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Parameter Prior distribution
xc N (0′′,60′′)
yc N (0′′,60′′)
log(Ytot), log(θp) N ((−2.7,0.62), (0.29,0.12),40.2◦)

Table 4.1: Observational model I input parameter prior distributions. Note that the
Gaussian elliptical function on log(Ytot)−log(θp) is parameterised in terms of the mean
in both dimensions, the respective standard deviations and the offset of the principle
axes from the vertical and horizontal axes measured clockwise.

Parameter Prior distribution
xc N (0′′,60′′)
yc N (0′′,60′′)
θp U [log(θp, min(z)), log(θp, max(z))]
Ytot U [log(Ytot, min(z)), log(Ytot, max(z))]

Table 4.2: Observational model II input parameter prior distributions.

For consistency, the same cluster centre priors were used in both observational models as in the

PM. The priors for OM I are summarised in Table 4.1.

4.2.2 Observational model II

The priors on Ytot and θp in OM II incorporate the spectroscopic or photometric redshift of each

cluster. From the z and M (r200) priors of the PM and for fgas(r200) = 0.13, upper and lower

bounds on Ytot and θp are calculated using the PM. Note that Ytot and θp are assumed to be a-

priori uncorrelated, unlike in OM I. For the lowest redshift cluster (z = 0.0894), these limits

are θp, min = 4.24 arcmin, θp, max = 19.04 arcmin, Ytot, min = 1.06 × 10−4 arcmin2 and Ytot, max =

0.19 arcmin2; for the highest redshift (z = 0.83) cluster these limits are θp, min = 0.67 arcmin,

θp, max = 3.01 arcmin, Ytot, min = 5.7 × 10−6 arcmin2 and Ytot, max = 0.01 arcmin2. It clear that

z has a large effect on the PM calculations, as it is used to calculate the angular scale from r

through θ = r/DA(z) where DA(z) is the angular diameter distance of the cluster at redshift

z, and to convert the units of Y . It is also used to calculate c200 which affects the scale of the

self-similar dark matter density profile, and the normalisation constant ρs in equation 2.19 is

proportional to ρcrit(z). The priors for OM II are summarised in Table 4.2. Note that in using

the PM calculations to calculate the prior limits, we have made the assumptions underlying the

PM that OM I is not subject to (i.e. hydrostatic equilibrium up to radius r200 and fgas is much

less than unity up to the same radius).
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4.3 AMI model comparisons

I now use AMI data to compare the PM, OM I and OM II, and begin by comparing their observa-

tional parameter estimates. Secondly I introduce a metric which measures the ‘distance’ between

probability distributions. In this context the distance is measured between the (Y (r500), θ500)

posterior distributions of the three models. Finally the models are compared using the evidence

ratios introduced in Section 2.6.2. The results obtained from these analyses are given in Ap-

pendix B, which lists the values obtained for the 54 cluster sample in ascending order of z.

I emphasise the notation used for Y . For consistency I parameterise Y by r for all three mod-

els (Y ≡ Y (r)). For the PM, Y (r) has units [length2]; to convert this to the more conventional

[angle2] we divide by D2
A: Y (r) → Y (r)/D2

A as mentioned in Section 2.2. The Y value given

by an OM is naturally in units of [angle2]; when I refer to Y (r) in the context of the OMs I

equivalently mean Y (θ).

4.3.1 Physical and observational models Y values comparison

Figure 4.1 shows the posterior mean values for Y (r500) for the three models used on the same

AMI datasets. I first note that the errors associated with the OM estimates are generally lar-

ger than those with the PM. Secondly it appears that the OM I Y are less strongly correlated

with z than those from the PM and OM II. This may be because OM I contains no explicit z-

information, and in fact its only reliance on z is from the simulated and empirical datasets used

to fit its prior distribution, but the same prior is used for all clusters, and so the dependence on

redshift is very weak.

I now compare the results from the three models pairwise. Note that when we refer to the disper-

sion between values in units of standard deviations, we are referring to the combined standard

deviation of the two Y values. When comparing PM and OM I values of Y , just 15 clusters are

within one standard deviation, 27 within two and 18 are more than three standard deviations

away from each other. The same comparison between PM and OM II gives corresponding val-

ues of 23, 40 and 5. This implies that the dispersion between OM II and PM is much smaller

(especially in the extreme cases), and shows the importance in the choice of priors. Table 4.3

gives a summary of the dispersion of the PM with respect to the OMs. Figure 4.2 shows the

fractional difference between the Y values for the three models, and shows that the PM estimates

are generally much higher than both OM values at low z. However, in general the PM yields

lower Y estimates compared to the OMs (PM underestimates Y relative to OM I and OM II 35
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Figure 4.1: Plot of Y (r500) obtained from AMI data using the physical and observa-
tional models vs row number of Table B.1. The points with circular markers corres-
pond to clusters whose redshifts were measured photometrically as opposed to spec-
troscopically. For clarity purposes the first row is not plotted due to its relatively large
value (Y (r500) ≈ 10 arcmin2).

Model comparison (YMi
≡) |YPM − YMi

|/σPM&Mi < 1 |YPM − YMi
|/σPM&Mi < 2 |YPM − YMi

|/σPM&Mi > 3
YOM I 15 27 18
YOM II 23 40 5

Table 4.3: Difference between physical model mean values for Y (r500) & observa-
tional model mean values, measured in units of the physical model Y (r500) standard
deviation. The numbers in the columns correspond to the number of clusters out of
the sample of 54 which satisfy the criterion specified in the respective header.

and 36 times respectively).

Looking at the dispersion between OM I and OM II, 36 clusters are within one standard

deviation, four within two and just four are more than three standard deviations away from each

other. This implies that OM II seems to be in reasonable agreement with the two other models

(usually in between the values from the other models).
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Figure 4.2: Plot of Y (r500) ratio vs row number of Table B.1 for three different
cases: YPM(r500)/YOM I(r500); YPM(r500)/YOM II(r500) and YOM I(r500)/YOM II(r500).
The points with square markers correspond to clusters whose redshifts were measured
spectroscopically, and the circular markers photometrically (as listed in Table B.1).

4.3.2 Earth Mover’s distance

The Earth Mover’s distance (EMD), first introduced in Rubner, Tomasi, & Guibas (1998) is

a "distance" function defined between two distributions. In the case where these distributions

integrate over all space to the same value (e.g. they are probability distributions), the EMD is

given in terms of the first Wasserstein distance (Levina & Bickel 2001). A common analogy

used to describe the EMD is the following: if the probability distributions are interpreted as two

different ways of piling up a certain amount of earth, and the amount of earth at position xi

and x j belonging to each probability distribution at those points are P1(xi ) and P2(x j ), then

the EMD is the minimum cost of moving one pile into the other, where the cost of moving each

"spadeful" is taken to be the mass of each spadeful ( f i j ) × the distance by which it is moved

(|xi−x j |). For discrete two-dimensional probability distributions P1 & P2, with two-dimensional
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domains xi & y j , then the EMD between these probability distributions dEMD(P1,P2) is defined

to be the minimum value of

W (P1,P2) =

m∑
i=1

n∑
j=1

f i j |xi − y j | (4.3)

with respect to distance and f i j . Here m and n are the number of values in the domains of P1 and

P2 respectively and f i j are the ‘flow’ of probability density from P1(xi ) to P2(y j ). Different

implementations of the algorithm use different distance measures, but we use the Euclidean

distance in equation 4.3. The f i j are subject to the following constraints

f i j ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n; (4.4)

n∑
j=1

f i j = P1(xi ), 1 ≤ i ≤ m; (4.5)

m∑
i=1

f i j = P2(y j ), 1 ≤ j ≤ n; (4.6)

m∑
i=1

n∑
j=1

f i j =

m∑
i=1

P1(xi ) =

n∑
j=1

P2(y j ) = 1. (4.7)

For a more detailed account of the EMD see Levina & Bickel (2001).

4.3.3 Application of EMD

The EMD metric is applied to the different pairs of models using Gary Doran’s wrappera for

Yossi Rubner’s algorithm (Rubner, Tomasi, & Guibas 1998). Before running the algorithm the

(Y (r500), θ500) posteriors are normalised so that the metric is not skewed towards θ500 (the use of

Euclidean distances in the EMD algorithm, are obviously misrepresentative if the dimensions are

not normalised). Each dimension is normalised to the range [0,1] by performing the following

transformations

θ500 →
θ500 − θ500, min

θ500, max − θ500, min
;Y (r500) →

Y (r500) − Ymin(r500)
Ymax(r500) − Ymin(r500)

. (4.8)

The values for θ500, min, θ500, max, Ymin(r500) and Ymax(r500) are deduced by considering all of

the values of Y (r500) and θp from the posteriors obtained from the three models at once, to

ensure that all posterior values are normalised by the same factor. The larger the value of the
ahttps://github.com/garydoranjr/pyemd.

https://github.com/garydoranjr/pyemd
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Statistic dEMD(PPM,POM I) dEMD(PPM,POM II) dEMD(POM I,POM II) union
mean 0.093 0.067 0.057 0.072
standard deviation 0.057 0.050 0.077 0.064
median 0.076 0.051 0.027 0.051
min 0.020 0.013 0.006 0.006
max 0.225 0.297 0.514 0.514

Table 4.4: Summary of EMD values calculated between the Y (r500) − θ500 posterior
distributions from all three model pairs, and their union.

EMD, the ‘further away’ the distributions are from each other. The EMD was calculated for

each cluster with each pair of models (giving 3 × 54 = 162 distances in total). The full set

of EMD values calculated can be found in Table B.2 in Appendix B. Table 4.4 provides a sum-

mary of dEMD(PPM,POM I), dEMD(POM I,POM II), dEMD(PPM,POM II), and the union of the three.

Concerning both mean and median, the posteriors are most discrepant between the PM and OM

I, followed by PM and OM II. However it is interesting to note that the two largest EMD val-

ues come from dEMD(POM II,POM I) and dEMD(PPM,POM II) cases, with values 0.514 and 0.297

respectively. Furthermore these are from the same cluster, which is at the lowest z (= 0.0894).

This suggests that incorporating z information into an observational model for very low redshift

clusters has a significant effect. Ignoring the lowest redshift cluster (or by looking at the median

value, which is skewed less by outliers), it is clear that of the three models, OM I and OM II

posteriors are most in agreement with each other. Figure 4.3 shows the Y (r500), θ500 posterior

distributions created using GetDist (with the 95% and 68% confidence intervals plotted), for the

highest and lowest EMD values obtained from the 162 values calculated. Both of these come

from OM II − OM I comparisons.

Figure 4.4 shows dEMD(PPM,POM II) vs z from which it is apparent that there is a negative

correlation between dEMD and z.

4.3.4 Physical and observational models comparison

As described in Section 2.6.2, one can perform a model comparison, by comparing the Bayesian

evidence values calculated when the models were applied to the same (AMI) datasets. We can

also define the detection ratio of a model as the ratio of the evidences of the ‘data’ and ‘null-

data’ runs. The first of these corresponds to modelling the cluster, background and detectable

radio-sources. The null-data run models everything but the cluster. The ratio of these evidences

therefore gives a measure of the significance that the cluster has in modelling the data. Note that
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(a) (b)

Figure 4.3: (a) Highest dEMD value Y (r500) − θ500 posteriors for cluster
PSZ2G044.20+48.66 at z = 0.0894. (b) Lowest dEMD value Y (r500) − θ500 pos-
teriors for cluster PSZ2G132.47-17.27 at z = 0.341. For both triangle plots, the top
graph shows the marginalised θ500 posteriors for OM II and OM I. The bottom right
graph shows the marginalised Y (r500) posteriors. The bottom left graph shows the
two-dimensional Y (r500) − θ500 posteriors from which the EMD is calculated. The
contours represent the 95% and 68% confidence intervals. Note that the parameters in
the plots are not normalised, but the ones in the distance calculations are normalised
by transforming the parameters as discussed in the text. For all of the plots, the green
crosses / lines are the mean values of the OM I posteriors (the smaller values in (a))
and the red crosses / lines are the mean values of the OM II posteriors (the larger val-
ues in (a)). For Figure (b), the mean values for Y (r500) are so close together that the
lines cannot be distinguished.

the null-data run is the same for all three models considered here, as they only differ in the way

they model the galaxy cluster itself. Table B.2 in Appendix B gives the log of a detection ratio,

ln(Zi/Znull) for each of the three models, and the ratios between the different pairs of models,

ln(Zi/Zj ) whereZi andZj are one ofZPM,ZOMI orZOMII, for each cluster.
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Figure 4.4: Earth Mover’s distance calculated between Y (r500) − θ500 posteriors for
PM and OM II, versus z for the 54 clusters. The crosses indicate the point– they are
not error bars.

4.3.4.1 Physical model and observational model I

The data favour OM I over the PM for 50 of the 54 clusters. Though in 36 of the 50 cases

log(ZPM/ZOMI) is between minus one and zero, which according to the Jeffreys scale means

"more data are needed to come to a meaningful conclusion". (see Table 2.1). A further 12

of these had log(ZPM/ZOMI) values between −2.5 and −1 which can be interpreted as "weak

preference" in favour of OM I, whilst no clusters had a value of log(ZPM/ZOMI) less than minus

five ("strong preference" in favour of OM I). The largest absolute value for the ratio was actually

in favour of the PM with ln(ZPM/ZOM I) = 4.73±0.23 (for the lowest z cluster) which suggests

"moderate preference" towards the PM. There is no correlation between log(ZPM/ZOMI) and z.

Figure 4.5 shows the prior space for the observational parameters corresponding to the PM with

the lowest and highest z values in the sample.
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Figure 4.5: (a) Lowest z (= 0.0894) prior parameter space for Y (r500)−θ500 using the
PM. (b) Highest z (= 0.83) prior parameter space for Y (r500) − θ500 for the PM and
OM II. Note the scales on the axes are different for each plot, and the green vertical
lines represent the mean values.

4.3.4.2 Observational models I & II

Similarly, OM I is favoured over OM II for 53 clusters, but with 14 cases having 0 ≤ log(ZOMI/ZOMII) ≤

1. Again the highest absolute value came from the lowest redshift cluster, highlighting the im-

portance of z information at such a low z value. Since these models have the same input para-

meters, it is easier to compare their sampling parameter spaces. Figure 4.6 shows the prior range

of (Y (r500), θ500) for OM I. Around 68% of the prior mass (i.e. the inner contour in the Figure)

is bounded roughly by Y (r500) = 2 × 10−3 arcmin2 and θ500 = 10 arcmin. The 95% contour

gives upper bounds of Y (r500) ≈ 4 × 10−3 arcmin2 and θ500 ≈ 15 arcmin. In comparison the

OM II prior ranges for the lowest redshift cluster are θ500 = [4.9, 19.0] arcmin and Y (r500) =

[0.006, 1.0] × 10−1 arcmin2, and for the highest redshift cluster are θ500 = [0.8, 3.5] arcmin,

Y (r500) = [0.003, 5.0] × 10−3 arcmin2. The ratio of the upper and lower limits for θ and Y are

approximately 4.5 and 1.8 × 103 across all clusters. This suggests that the ratio of the bounds

of the parameter space for each cluster does not change for the OM II, but that the sampling

space is shifted depending on z. Note that even though the sampling parameters for the obser-

vational models are Ytot and θp, these are related to Y (r500) and θ500 by constant factors, and so
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Figure 4.6: Two-dimensional prior probability distribution of Y (r500) and θ500 for
OM I, which is based on Planck data as detailed in Section 4.2.1.

comparisons made on both are equivalent.

4.3.4.3 Physical model and observational model II

Comparison of PM and OM II, the models which incorporate redshift information into their pri-

ors leads to interesting results. For 43 clusters, the PM is preferred over OM II. However for all

of these clusters log(ZPM/ZOMII) is less than one, meaning that none of them give "conclus-

ive" model preference. There are only three clusters which give "weak evidence" in favour of

a model (OM II). These are the clusters at redshift z = 0.144, 0.341, 0.5131 with ratio values
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−1.88, −1.06, −1.16 respectively. The fact that data from 51 clusters do not provide any "con-

clusive" preference between PM and OM II, suggests that these models are equally well suited

for the current data, even though their parameter estimates are often not in such agreement.

4.4 Conclusions

For the cluster sample analysed in the previous Chapter, I compare the parameter estimates

obtained from different physical and observational models applied to AMI data using Bayesian

analysis. The physical model (PM) used is as described in Section 2.4, and the observational

models (OM I and OM II) are based on the one described in Perrott et al. (2015). I have focused

on comparisons of Y (r500) and found the following.

• The PM generally yields lower estimates of Y relative to the observational models, apart

from at low z where the reverse is true.

• For two thirds of the sample, the OM I and OM II estimates are within one combined

standard deviation of each other.

To investigate further the discrepancies between the three models, we computed the Earth Mover’s

distance between the two-dimensional posterior distributions in Y (r500), θ500 space, for each

model pair. This gives a measure of the ‘distance’ between the respective probability distribu-

tions. I then compared the evidence values obtained from the Bayesian analysis of the AMI

data using the different models, referring to the Jeffreys scale to form conclusions on model

preference, and found the following.

• Based on the Earth Mover’s distances calculated for each cluster, the posteriors are most

discrepant between the PM and OM I models when the sample was considered as a whole,

followed by PM and OM II.

• The two largest discrepancies come from the lowest-z cluster, one between PM & OM I

and one between OM II & OM I, suggesting that z information at very low z can have a

large effect on the different models.

• The distance between posteriors from PM and OM II clearly decreases with increasing

z. This suggests that the difference between physical and observational model parameter

estimates, provided the latter also includes z information, is reduced at higher z.

• When comparing Bayesian evidence values, OM I is preferred over PM for 50 of the

clusters, although only 14 of these showed either "weak" or "moderate" preference to

OM I (the remaining 36 being "inconclusive"); however the highest log(evidence ratio)

actually favours the PM ("moderate" preference) and occurs for the lowest-z cluster.
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• Similarly, OM I is preferred to OM II in 53 of the cases. 14 suggested more data are needed

to come to a "meaningful" conclusion, while the remaining 39 clusters showed "weak" or

"moderate" preference for OM I. This suggests that OM I is the preferred model in more

cases relative to OM II than when OM I is compared with PM.

• For 43 of the clusters, PM is preferred over OM II; however in all of these cases, the

Jeffreys scale suggests "no conclusion can be made without more data", and only three

clusters give any "conclusive" preference (a "weak" preference in favour for OM II).
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Physical modelling of galaxy clusters using
Einasto dark matter profiles

This Chapter provides an alternative to the physical model presented in Section 2.4. The physical

model described previously uses an NFW profile (Navarro, Frenk, & White 1995) for the dark

matter component of the galaxy cluster, which is derived from N-body simulations of galaxy

clusters. Einasto (1965) gives an empirical profile for dark matter halos. Previous investigations

comparing the two dark matter profiles using simulated data (see e.g. Dutton & Macciò 2014,

Meneghetti et al. 2014, Klypin et al. 2016 and Sereno, Fedeli, & Moscardini 2016) have shown

that the Einasto model provides a better fit. In particular, Sereno, Fedeli, & Moscardini (2016)

showed for weak lensing analysis of clusters that the NFW profile can overestimate virial masses

of very massive halos (≥ 1015MSun/h where MSun is units of solar mass and h is the reduced

Hubble constant) by up to 10%.

It is these previous analyses which have motivated us to derive a physical galaxy cluster

model for interferometric SZ data which uses the Einasto profile to model the dark matter com-

ponent of the cluster. I also compare the parameter estimates and fits of the NFW & Einasto

models for the cluster A611 with data obtained with AMI, and with simulations created with

both Einasto and NFW profiles. The work discussed in this Chapter is currently being published

in MNRAS (Javid et al. 2018). Note the paper includes post-referee changes.
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5.1 Einasto physical model

The physical model presented here (PM II) follows the same calculational steps as the model

presented in Section 2.4 (PM I) to calculate δIcl,ν , but with an Einasto profile replacing the

NFW one used for the dark matter component. Below we derive the relevant equations for the

Einasto case. Furthermore PM II is subject to the same assumptions as PM I listed in Section 2.4.

The three input parameters required to calculate δIν,cl for either PM are M (r200), fgas(r200),

and z. A fourth input parameter is required for the PM II which we call the Einasto parameter

αEin, which is also described below.

5.1.0.4 Dark matter profile

Assuming an Einasto profile (Einasto 1965), the dark matter density profile for a cluster ρdm,PM II

is given by

ρdm,PM II = ρ−2 exp
[
−

2
αEin

((
r

r−2

)αEin

− 1
)]
, (5.1)

where αEin is a shape parameter, r−2 is the scale radius where the logarithmic derivative of the

density is −2 (analogue to rs in the NFW model, but note that in general r−2 , rs), and ρ−2

is the density at this radius. The parameter αEin controls the degree of curvature of the pro-

file. The larger its value, the more rapidly the slope varies with respect to r . In the limit that

αEin → 0, the logarithmic derivative is −2 for all r . It is tempting to assume that the Einasto

profile is capable of providing a better fit due to the fact that the Einasto profile has an extra de-

gree of freedom (three for the Einasto profile, two for the NFW), the shape parameter. However

Klypin et al. (2016) claims that this is not strictly true, as the Einasto profile was seen to give a

better fit to simulated dark matter haloes even with αEin fixed. The asymptotic values of the log-

arithmic slope for the two profiles are as follows: as r → 0 then d ln ρdm,PM I(r)/d ln r → −1 and

d ln ρdm,PM II(r)/d ln r → 0. As r → ∞ then d ln ρdm,PM I(r)/d ln r → −3 and d ln ρdm,PM II(r)/d ln r →

−∞. The magnitude of αEin determines how quickly the slope changes between the two asymp-

totic values. Throughout this work when I refer to the NFW or Einasto model, I really mean the

physical model which uses the NFW or Einasto model when considering the dark matter density

profile.

Referring back to equation 5.1, the ratio r200/r−2 is defined as the concentration parameter c200.

Dutton & Macciò (2014) determines an analytical form for c200 as a function of total mass and

redshift for Einasto profiles based on simulations similar to those described in Macciò et al.
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(2007) and Macciò, Dutton, & van den Bosch (2008)

log10 (c200) = j (z) + k (z) log10

[
M (r200)

1012h−1MSun

]
, (5.2)

where j (z) = 0.459 + 0.518 exp(−0.49z1.303) and k (z) = −0.13 + 0.029z. The fitting is said

to be accurate in the redshift range [0,5]. To calculate ρ−2 we must make the assumption stated

for PM I, that the total mass enclosed at r200 is approximately equal to the enclosed dark matter

mass. That is

M (r200) = Mdm(r200) + Mg(r200) ≈ Mdm(r200), (5.3)

where Mdm(r200) and Mg(r200) are the dark matter and gas masses. With this assumption we can

say that for any r ≤ r200

M (r) ≈
∫ r

0
4πr ′2ρdm,PM II(r ′) dr′

=
4πρ−2r3

−2

αEin
exp (2/αEin)

(
αEin

2

)3/αEin

× γ

[
3
αEin

,
2
αEin

(
r

r−2

)αEin
]
,

(5.4)

where γ [a, x] =
∫ x

0 ta−1e−tdt is the incomplete lower gamma function. The steps taken to get

this result are given in Appendix C.1. Equation 2.22 can be evaluated at r200 and equated with

equation 5.4 evaluated at the same radius to obtain the following solution for ρ−2

ρ−2 =
200
3

(
r200

r−2

)3

ρcrit(z) ×
1[

1/αEin exp (2/αEin)
(
αEin

2

)3/αEin
]

×
1

γ
[

3
αEin

, 2
αEin

(
r200
r−2

)αEin
] .

(5.5)

Equivalently, equation 5.4 can be evaluated at r200 and set equal to the known value of M (r200)

to determine ρ−2. Figure 5.1 shows the logarithmic dark matter density profiles as a function of

r for a cluster at z = 0.15 with M (r200) = 1 × 1015MSun and fgas(r200) = 0.12 for PM I and PM

II for the αEin values: 0.05, 0.2, 2.0. It is clear that the Einasto profiles diverge the most from

each other at low r and for the high αEin value at high r as well.

5.1.0.5 Gas density and pressure profiles

Calculating the pressure normalisation constant (defined below) again requires the assumption

that the cluster is in hydrostatic equilibrium up to radius r200. This means at any radius equal to
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Figure 5.1: Logarithmic dark matter density profiles as a function of log cluster ra-
dius using NFW and Einasto models. Three values of the Einasto profile are used:
0.05, 0.2, and 2.0. The additional input parameters used to generate these profiles are:
z = 0.15, M (r200) = 1 × 1015 MSun) and fgas(r200) = 0.12.

or below r200 the outward pushing pressure force created by the pressure differential at that point

must be equal to the gravitational binding force due to the mass enclosed within that radius, i.e.

that equation 2.30 holds. Furthermore I follow Nagai, Kravtsov, & Vikhlinin (2007) and assume

the GNFW model given by equation 2.21 for the pressure profile, as in PM I. However, for

all analysis presented in this Chapter (both PMs), the GNFW slope parameters are taken to be

a = 1.0510, b = 5.4905 and c = 0.3081. These ‘universal’ values were taken from Arnaud et

al. (2010) and are the best fit GNFW slope parameters derived from the REXCESS sub-sample

(observed with XMM-Newton, Böhringer et al. 2007), as described in Section 5 of Arnaud et al..

I also take the Arnaud et al. value of c500 which is 1.177. Note that in the previous Chapters (as

well as in MO12) slightly different values derived for the standard self-similar case (Appendix B

of Arnaud et al.) were used (a = 1.0620, b = 5.4807, c = 0.3292 and c500 = 1.156). It was
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shown in Olamaie, Hobson, & Grainge (2013) that PM I is not affected by which of these two

sets of parameters is used.

The analytical function used to convert from r200 to r500 in PM I is specific to the NFW dark

matter profile case and so is not applicable to PM II. I have not found an analytic fitting function

for the conversion in the case of an Einasto dark matter profile and so I obtain r500 iteratively

as described in Appendix C.2. As in PM I, the pressure profile can be substituted into the

hydrostatic equilibrium equation to derive an expression for the gas density. Using equation 5.4

for M (r) gives

ρg(r) =
µe
µg

Pei

4πGρ−2r3
−2

1[
(1/αEin) exp(2/αEin) (αEin/2)3/αEin

]

×
r

γ
[

3
αEin

, 2
αEin

(
r200
r−2

)αEin
]

×

(
r
rp

)−c [
1 +

(
r
rp

)a]−( a+b−c
a

) [
b
(

r
rp

)a
+ c

]
.

(5.6)

Note that like PM I, the gas mass Mg(r) given by

Mg(r) =

∫ r

0
4πρg(r ′)r ′2 dr ′ (5.7)

must be integrated numerically. Hence fgas(r) = Mg(r)/M (r) does not have a closed form solu-

tion. Nevertheless, we can use equations 5.6 and 5.7 to determine Pei since we know M (r200),

fgas(r200) and r200. Evaluating equations 5.6 and 5.7 at r200 and solving for Pei gives the follow-

ing expression

Pei =

(
µg

µe

)
(Gρ−2r3

−2)
[
exp (2/αEin)

αEin
(αEin/2)3/αEin

]
Mg(r200)

×
1∫

r200

0
r ′3

[
b
(
r′

rp

)a
+c

]

γ
[

3
αEin

, 2
αEin

(
r′

r−2

)αEin
] (

r′

rp

)c [
1+

(
r′

rp

)a ] ( a+b−c
a ) dr ′

,
(5.8)

which must be evaluated numerically. Once Pei and rp have been calculated, the Comptonisation

parameter and therefore δIν,cl can be calculated the same way as in PM I.
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5.1.0.6 Additional cluster parameters

As stated in Section 2.4, the radial profile of the electron number density is given by ne (r) =

ρg(r)/µe . Using the ideal gas assumption, the electron temperature is therefore given by

Te (r) = *
,

4πµgGρ−2r3
−2

kB
+
-

[
(1/αEin) exp (2/αEin) (αEin/2)3/αEin

]

×
γ

[
3
αEin

, 2
αEin

(
r
r−2

)αEin
]

r

×

[
1 +

(
r
rp

)a] [
b
(

r
rp

)a
+ c

]−1

(5.9)

which also equals Tg(r).

The gas mass can be determined numerically from equation 5.7,

Mg(r) =

(
µe
µg

)
1
G

Pei

ρ−2

1[
(1/αEin) exp (2/αEin) (αEin/2)3/αEin

]
r3
−2

×

∫
r

0

r ′3

[
b
(
r ′

rp

)a
+ c

]

γ
[

3
αEin

, 2
αEin

(
r ′

r−2

)αEin
]

×

(
r ′

rp

)c [
1 +

(
r ′

rp

)a] (
a+b−c

a

)
dr ′.

(5.10)

5.1.0.7 Prior probability distributions

For both PM I and PM II I adopt the following approach (excluding any mention of αEin in the

former case).

As in Section 3.2, the cluster parameters are assumed to be independent of one another, so that

π(Θcl) = π(αEin)π(M (r200))π( fgas(r200))π(z)π(xc)π(yc). (5.11)

Table 5.1 lists the type of prior used for each cluster parameter and the probability distribu-

tion parameters. The values used for z and αEin will be specified on a case by case basis in

Section 5.2.2.
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Parameter Prior distribution
xc N (0′′,60′′)
yc N (0′′,60′′)
z δ(z)
M (r200) U [log(0.5 × 1014MSun), log(50 × 1014MSun)]
fgas(r200) N (0.12,0.02)
αEin δ(αEin)

Table 5.1: Cluster parameter prior distributions, where the normal distributions are
parameterised by their mean and standard deviations.

5.2 Results

5.2.1 Cluster parameter profiles

I first present the results of using the Einasto model in the profiling of cluster dark matter for a

range of different cluster input parameters, along with the equivalent results from PM I.

I consider two input masses, M (r200) = 1 × 1014MSun and M (r200) = 1 × 1015MSun, which

roughly span the range of galaxy cluster masses. I use z-values of 0.15 and 0.9, take fgas(r200) =

0.12 following Komatsu et al. (2011), and consider αEin values of 0.05, 0.2, and 2.0 – see Fig-

ure 5.1. I note that the same r range (−2 ≤ log10(r) ≤ 0.5 where r is in units of Mpc) is

considered for each cluster, and thus even though each parameter profile is self-similar in r with

respect to mass and redshift, they are different for each cluster over the range of r considered

here.

5.2.1.1 Dark matter mass profiles

Figure 5.2 shows the dark matter mass profiles. The Einasto profiles are calculated using equa-

tion 5.4 and the NFW profile from the equivalent relation given by equation 2.19. Note that even

though the notation in these equations corresponds to the total mass, this is in fact just the dark

matter mass as we have used the approximation M (r) ≈ Mdm(r) in deriving them. The αEin = 2

case always converges quickly as the density rapidly falls to zero, while the other three profiles

including the NFW show divergent behaviour at the largest radii considered here. The high mass

inputs result in similar profiles for the αEin = 0.05, αEin = 0.2 and NFW cases, whereas the low

mass inputs result in the αEin = 0.05 case diverging somewhat more rapidly than the others.
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Figure 5.2: Dark matter mass profiles as a function of log cluster radius using NFW
and Einasto models. Values of αEin = 0.05, 0.2, and 2.0 are used as inputs. Top row
has z = 0.15, bottom row has z = 0.9. Left column has M (r200) = 1 × 1014 MSun,
right column has M (r200) = 1 × 1015 MSun.

5.2.1.2 Gas density profiles

Figure 5.3 shows the gas density profiles. The Einasto profiles are calculated using equation 5.6

and the NFW profile from the equivalent relation given in MO12 (equation 6). Note that when

calculating ρg(r) for arbitrary r , we are assuming hydrostatic equilibrium at that radius so that

equation 2.30 holds, and we have to assume that fgas(r ′) ≈ 0 for all r ′ ≤ r so that M (r) ≈

Mdm(r) at this radius. The plots show that the profiles are similar for all inputs of mass and

redshift, with the αEin = 0.2 Einasto profile again most resembling the NFW profile. However,

the αEin = 2.0 profile has the highest gas density at high r for both masses and both z values.
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Figure 5.3: Logarithmic gas density profiles as a function of log cluster radius using
NFW and Einasto models. Values of αEin = 0.05, 0.2, and 2.0 are used as inputs. Top
row has z = 0.15, bottom row has z = 0.9. Left column has M (r200) = 1 × 1014 MSun,
right column has M (r200) = 1 × 1015 MSun.

5.2.1.3 Gas mass profiles

Figure 5.4 shows Mg(r) as a function of cluster radius. As in Figure 5.2 with the dark matter

mass profiles, the high mass inputs correspond to divergent behaviour at large r . But for αEin =

2.0 the profile of Mg(r) also shows a more noticeable such divergence. Furthermore, in all four

input parameter cases, αEin = 2.0 shows more divergent behaviour than other values of αEin and

the NFW profile in gas mass, which is in contrast to the dark matter mass profiles.
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Figure 5.4: Gas mass profiles as a function of log cluster radius using NFW and
Einasto models. Values of αEin = 0.05, 0.2, and 2.0 are used as inputs. Top row has
z = 0.15, bottom row has z = 0.9. Left column has M (r200) = 1 × 1014 MSun, right
column has M (r200) = 1 × 1015 MSun.

5.2.1.4 Gas temperature profiles

Gas temperature profiles are shown in Figure 5.5. The αEin = 2.0 is very distinctive, always

peaking at much higher r than the other three and also always much more sharply.

5.2.2 Bayesian analysis of AMI data

I now focus on applying the PM II to real and simulated AMI data, to compare the parameter

estimates and Bayesian evidences with those obtained from the PM I.
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Figure 5.5: Gas temperature profiles as a function of log cluster radius using NFW
and Einasto models. Values of αEin = 0.05, 0.2, and 2.0 are used as inputs. Top row
has z = 0.15, bottom row has z = 0.9. Left column has M (r200) = 1 × 1014 MSun,
right column has M (r200) = 1 × 1015 MSun.

5.2.2.1 Analysis of real AMI observations of A611

I conduct Bayesian analysis on data from observations with AMI of the cluster A611 at z =

0.288, which has been studied through its X-ray emission, strong lensing, weak lensing and SZ

effect (see Schmidt & Allen 2007, Donnarumma et al. 2011, Romano et al. 2010 and Rumsey

et al. 2016 respectively). These studies suggest that there is no significant contamination from

radio-sources and that the cluster is close to the TX–TSZ relation for clusters in hydrostatic equi-

librium.

I first compare the posterior distributions for the input parameters (except those with δ-function
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Model xc (arcsec) yc (arcsec) M (r200) (×1014MSun) fgas(r200) ln (Z)
NFW 24.7 ± 12.4 13.9 ± 11.5 7.84 ± 1.24 0.129 ± 0.020 3.862944 × 104 ± 0.25
αEin = 0.05 22.7 ± 12.5 13.1 ± 12.6 7.45 ± 1.24 0.130 ± 0.019 3.862921 × 104 ± 0.25
αEin = 0.2 25.5 ± 12.8 14.9 ± 13.0 7.67 ± 1.27 0.127 ± 0.017 3.862967 × 104 ± 0.24
αEin = 2.0 24.3 ± 12.4 14.3 ± 13.2 6.17 ± 1.12 0.130 ± 0.017 3.862924 × 104 ± 0.24

Table 5.2: Marginalised posterior distribution mean values and standard deviations of
physical model input parameters and Bayesian evidences associated with each model,
applied to real A611 data.

priors). The means and standard deviations of the four analyses are given in Table 5.2. As in

Section 5.2.1, αEin = 0.05 and αEin = 0.2 show similar results to PM I. αEin = 2 gives a dif-

ferent estimate for M (r200), and its posterior distribution is shown in Figure 5.6 along with that

obtained with the NFW profile. These posterior distributions are plotted using GetDist and the

contours on the two-dimensional plots represent the 95% and 68% confidence intervals. The

mean mass estimates are within one combined standard deviation away from each other. How-

ever, as seen in Table 5.2 the value of ln(ZEin/ZNFW) imply that ‘no model is favoured by the

data’ according to the Jeffreys scale.

5.2.2.2 Simulated AMI data

Sereno, Fedeli, & Moscardini (2016) study the errors associated with fitting NFW profiles to

Einasto dark matter halos and vice versa for weak lensing studies. I conduct similar work in the

context of simulated SZ observations. The simulations were carried out using the in-house AMI

simulation package Profile, which has been used in various forms in e.g. Grainge et al. (2002)

and Olamaie, Hobson, & Grainge (2013).

As before I consider Einasto profiles with the αEin values 0.05, 0.2, and 2.0 plus an NFW

profile. each with M (r200) = 1 × 1014MSun or M (r200) = 1 × 1015MSun, z = 0.15 or z = 0.90

and fgas(r200) = 0.12. These 16 simulations, were analysed as in Section 5.2.2.1. Note for

all of these simulations no radio-sources, primordial CMB or confusion noise were included,

and instrumental noise was set to a negligible level. Table C.1 in Appendix C.3 summarises

the input and output values of the 16 simulations. The first column gives the model used to

simulate the cluster, with the following two columns giving the mass and z input values. For

each simulation, I analysed the data using two models, one using the NFW profile and one using

an Einasto profile. For data simulated using an NFW profile, when analysing the data with an



5.2. Results 79

0.09 0.12 0.15 0.18

fg(r200)

−25

0

25

50

y c
/a

rc
se
c

0.4

0.8

1.2

M
(r

2
00
)/
M

⊙

1e15

0 30 60

xc/arcsec

0.09

0.12

0.15

0.18

f g
(r

2
00
)

−25 0 25 50

yc/arcsec

0.4 0.8 1.2

M(r200)/M⊙ 1e15

NFW
αEin=2.0

Figure 5.6: Marginalised posterior distributions of physical model input parameters
for the NFW and αEin = 2.0 models applied to real A611 data. The contour plots are
the two dimensional marginalised plots of the parameters named in the corresponding
row / column. The line plots are the fully marginalised posterior distributions.

Einasto profile I used αEin = 0.2. For data simulated using an Einasto profile, when analysing

the data with an Einasto profile I set αEin equal to the value used as the input for the simulation.

In all but one of the simulations (NFW simulated with M (r200) = 1×1014MSun and z = 0.9),

the Einasto posterior mean mass value was closer to the input value than the corresponding NFW

value. It’s worth nothing that a more thorough statistical treatment would involve repeating

the Bayesian analyses many times to see if these results held consistently, but this was not
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considered here. In 11 out of 16 cases the Einasto profile recovers the input mass to within

10% (interestingly, it does so for all the NFW simulated clusters). However, in only two of

16 cases does the Einasto model recover the input value within three standard deviations. This

could be due to errors associated with the simulated ‘observing’ of the cluster on a pixelated

grid, binning the data in u-v space/ frequency and then modelling the data by creating another

pixelated grid. These effects are not accounted for in the Bayesian analysis, thus leading to an

underestimate in the associated errors. Furthermore, the fact that the Einasto model recovers

the NFW simulated clusters better than when those simulations are analysed with the NFW

profile for three of the four NFW simulated clusters, could be down to the fact that the Einasto

model is more robust to the imperfections associated with the generation of the simulations.

Another source of error underestimation could be the sampling errors being underestimated in

the nested sampling algorithm as studied in Higson et al. (2017). Looking at the individual

evidence values for both Einasto and NFW models, the value is considerably lower for the high

mass simulations, ln(Zlow mass/Zhigh mass) ≈ 3000 suggests the models fit the low mass datasets

much better when averaged over the (same) parameter sampling spaces. It is crucial to note

that when comparing evidences calculated from different datasets (specifically their ratio), we

are not looking at Pr (M|D1)/Pr (M|D2), since the Pr (D)-like terms on the right hand side

of equation 2.44 do not cancel in this case. Nevertheless for the same model, the evidence ratio

between two different datasets does give a measure of the relative goodness of fit of the datasets

to the model. Looking at the evidence ratios between the Einasto and NFW models for a given

simulation, more data is needed to come to a conclusive decision over model preference in 10 of

the simulations. Three simulations lead to ‘substantial preference’ in favour of the Einasto model

(ln (ZEin/ZNFW) ≥ 5). In two of these cases (αEin = 0.2 with M (r200) = 1 × 1015MSun and z =

0.9, and αEin = 2.0 with M (r200) = 1 × 1015MSun and z = 0.9) the posteriors show reasonable

constraints in both the Einasto and NFW analyses (Figure 5.7 shows posterior distributions for

αEin = 2.0 with M (r200) = 1×1015MSun and z = 0.9), with the former giving better estimates of

mass and fgas(r200). The third case however (αEin = 2 simulated with M (r200) = 1 × 1014MSun

and z = 0.9) leads to low estimates of fgas(r200) in both cases (Figure 5.8), and a very high mass

estimate in the case of the NFW model. The two cases where the NFW model is preferred over

the Einasto also produce posteriors similar to those in Figure 5.8.

Finally, I tried running the Bayesian analysis on eight of the Einasto simulated clusters

with uniform analysis priors on αEin. These clusters corresponded to the simulations with input

values of either αEin = 0.2 or αEin = 2.0. For the former value of αEin I assigned the uniform
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Figure 5.7: Posterior distributions for cluster simulated with αEin = 2.0, M (r200) =

1 × 1015 MSun and z = 0.9, modelled with: (a) Einasto dark matter profile, and (b)
NFW dark matter profile.
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Figure 5.8: Posterior distributions for cluster simulated with αEin = 2.0, M (r200) =

1 × 1014 MSun and z = 0.9, modelled with: (a) Einasto dark matter profile, and (b)
NFW dark matter profile.
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Figure 5.9: Posterior distributions of Einasto model input parameters for: (a) αEin =

2.0, M (r200) = 1 × 1014 MSun and z = 0.15 simulated cluster, and (b) αEin = 2.0,
M (r200) = 1 × 1014 MSun and z = 0.9 simulated cluster.

prior U [0.05,0.35] and U [0.5,3.5] for the latter. For two of these simulations the posterior

distributions did not show much degeneracy between any of the input parameters, including

αEin. Both of these clusters had αEin = 2, M (r200) = 1 × 1014MSun and z = 0.15 or z = 0.9

as inputs. Their posterior distributions are shown in Figure 5.9. Both posteriors give a mean

value for the shape parameter within one standard deviation of the input value (2.01 ± 0.54 and

2.39 ± 0.40), but looking at the distributions they are not sharply peaked, meaning the errors

on the estimates are quite large. Nevertheless these simulations do show the Einasto profile is

capable of recovering some information about αEin, in contrast to the efforts in MO12 to recover

c200 which led to large c200−M (r200) degeneracies (although c200 relates to the scale of the dark

matter profile, not its shape).

5.3 Conclusions

Based on the physical model introduced in Section 2.4 (PM I) which uses an NFW profile (Nav-

arro, Frenk, & White 1995) to model the dark matter content of galaxy clusters, I derive a new

physical model (PM II) which models the dark matter with an Einasto profile (Einasto 1965).

The Einasto profile has an additional degree of freedom compared to the NFW profile, which
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dictates the shape of the dark matter density as a function of radius. For different values of αEin

we have investigated the profiles of several physical properties of a cluster, namely the dark mat-

ter density, dark matter mass, gas density, gas mass and gas temperature. I have also provided

the equivalent profiles in the NFW case. From this I found the following.

• Of the three values of αEin considered, αEin = 0.2 gave the most similar profile to that

given by the NFW model (as discussed in Dutton & Macciò 2014), with the main discrep-

ancy between the two arising in the peak amplitude of the gas temperature.

• αEin = 2.0 showed the most convergent behaviour in Mdm(r) at high r , but the most

divergent in Mg(r) in the same limit.

• The gas temperature profiles were somewhat different for the αEin values considered here.

This suggests that if one can carefully measure the temperature profile of a cluster, then

one could infer αEin and use this in the model presented here (though one has to be aware

of cooling flow and merger activity).

Next we applied Bayesian analysis to real and simulated AMI datasets using PM I and PM II, to

compare the models’ parameter estimates and fits to the data. Using real data from cluster A611

I found the following.

• The αEin = 0.05 and αEin = 0.2 models gave very similar results to the NFW model; the

αEin = 2 model however underestimates M (r200) relative to the other three models.

• The Bayesian evidence values calculated from these four analyses were roughly equal,

suggesting no model provided a statistically significant fit relative to the others.

Simulating clusters with either NFW or Einasto dark matter profiles, which were then ‘observed’

by AMI, I found the following.

• For 15 out of 16 clusters, the Einasto model recovered the input mass better than the NFW

model. The only cluster where this was not the case (NFW simulated with M (r200) =

1× 1014MSun and z = 0.9), the posterior distributions do not show good constraints on the

sampling parameters, and so the parameter estimates should not be used.

• The evidence values of both Einasto and NFW models are considerably lower for the high

mass simulations.

• Considering the evidence ratios between the Einasto and NFW models for a given sim-

ulation, more data is needed to come to a conclusive decision over model preference in

10 of the cases. However according to the Jeffreys scale (Jeffreys 1961), three of the

simulations gave ‘substantial’ preference towards the Einasto model; and in two of these

cases the NFW analysis did not constrain the sampling parameters as well as the Einasto

analysis. In the third case neither analysis constrained the parameters well.
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• The two clusters where the evidence ratio was in favour of the NFW model also showed

poor posterior distribution constraints.

• When allowing αEin to vary in the analysis, in two out of eight of the Einasto simulations

used the posterior distributions showed some constraints on the value of αEin which gave

estimates close to the input values.
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Enhanced physical modelling I: relaxing the
fgas assumption

As stated in Section 2.4, one of the key assumptions of the physical model (for both PM I and

PM II) is that the gas mass fraction fgas(r) is much smaller than unity up to r200, so that we can

say the total mass at r200 is equal to dark matter mass enclosed up to this radius. In this Chapter

we relax this assumption for both models, so that the total mass is the sum of the dark matter

and gas contributions. We refer to these new models as PMT I and PMT II which respectively

use NFW and Einasto profiles to model the dark matter content.

6.1 Total mass equations

Dropping the assumption that fgas(r) � 1 we can no longer assume that M (r) ≈
∫ r

0 4πρdm(r ′)r ′2 dr ′,

but instead

M (r) =

∫ r

0
4πρdm(r ′)r ′2 dr ′ +

∫ r

0
4πρg(r ′)r ′2 dr ′. (6.1)

Using the hydrostatic equilibrium assumption given by equation 2.30 to substitute for ρg(r ′),

we get the following integral equation

M (r) =

∫ r

0
4πρdm(r ′)r ′2 dr ′ −

4π
G

∫ r

0

dPg(r ′)
dr ′

r ′4

M (r ′)
dr ′. (6.2)

85



86 Chapter 6. Enhanced physical modelling I: relaxing the fgas assumption

Differentiating equation 6.2 with respect to r gives the differential equation

dM (r)
dr

= 4πρdm(r)r2 −
4π
G

dPg(r)
dr

r4

M (r)
. (6.3)

Assuming a GNFW profile (equation 2.21) for Pe, and relating it to Pg using equation 2.31 the

second term on the RHS of equation 6.3 becomes

µe

µg

4πPei

G
r3

M (r)

(
r
rp

)−c [
1 +

(
r
rp

)a]−(1+(b−c)/a) [
b
(

r
rp

)a
+ c

]
≡

K (r)
M (r)

. (6.4)

Hence for PMT I (NFW dark matter profile)

dM (r)
dr

= 4πρsr3
s

r

(r + rs)2 +
K (r)
M (r)

, (6.5)

and for PMT II (Einasto dark matter profile)

dM (r)
dr

= 4πρ−2r2 exp
[
−

2
αEin

((
r

r−2

)αEin

− 1
)]

+
K (r)
M (r)

. (6.6)

6.2 Determining cluster profile parameters

Equations 6.5 and 6.6 are first order non-linear differential equations with dependent variable

M and independent variable r . They are subject to the boundary condition that M (r200) = the

value input to the model. Each equation has four unknown parameters: rs for PMT I (r−2 for

PMT II), ρs for PMT I (ρ−2 for PMT II), rp and Pei. rs (r−2) can be calculated the same way as

previously. ρs (ρ−2) can be calculated in a similar way to previously (i.e. as in Section 2.4 for

PM I and Section 5.1.0.4 for PM II), but we now solve

Mdm(r) = (1 − fgas(r))
∫ r

0
4πρdm(r ′)r ′2 dr ′, (6.7)

at r = r200 for known M (r200) and fgas(r200). However rp can no longer be determined, since

the mapping from r200 to r500 explicitly requires the assumption M (r) = Mdm(r) for both dark

matter models. Thus Pei cannot be uniquely determined from the ODEs, as there is a family

of solutions of (rp, Pei) which satisfy the ODEs, and therefore the pressure profile is no longer

uniquely defined for a given set of cluster input parameters. I have thought of three ways to

overcome this issue, only one of which I pursue. Nevertheless I now give a brief note on all

three ideas.
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6.2.1 Determining rp and Pei directly from constraints on M and its derivative

If we knew the value of M (r) and dM (r)/dr at two different radii then we would be able to

determine unique values of rp and Pei directly from the ODEs. However I have not been able

to think of any sensible conditions to impose on dM (r)/dr other than dM (r → ∞)/dr = 0.

Furthermore, evaluating equation 6.3 asymptotically (i.e. r → 0 and r → ∞) does not yield any

useful results. I therefore have not been able to use this method successfully in determining rp

and Pei.

6.2.2 Determining rp and Pei using Lagrange multipliers

Consider the function

g(Pei,rp,r) = M (r) − Mdm(r) − Mg(Pei,rp,r), (6.8)

which tells us that (Pei,rp) must satisfy g(Pei,rp,r) = 0 for all r . Since the ODEs in Section 6.1

are derived from g(Pei,rp,r) = 0, they share the same family of solutions of (Pei,rp). Thus find-

ing values of (Pei,rp) which satisfy the ODEs (subject to their boundary condition on M (r200))

also satisfies g = 0 (subject to the same boundary condition). We can formulate a constrained

optimsation problem using Lagrange multipliers

f (Pei,rp) − λg(Pei,rp,r) (6.9)

to find stationary points in f (Pei,rp) subject to the constraint g = 0 for arbitrary λ. The form

of f (Pei,rp) dictates the nature of (Pei,rp) at which the stationary point(s) of equation 6.8 are

observed. For example f (Pei,rp) =
(
Peirp

)2
would find the minimum value of the product Peirp

which satisfies g = 0.

I do not pursue this idea any further however, since I cannot justify using a particular form for

f (Pei,rp), and because I suspect that finding the stationary points of equation 6.9 is difficult

numerically.

6.2.3 Determining rp and Pei using approximate methods

Since ρs (ρ−2) can be (correctly) calculated from equation 6.7 for the PMTs, we can use it in the

calculational steps given by the PMs to get approximate values for rp and Pei. The issue with this

method is that it is difficult to quantify the assumptions made, as we start off considering dark

matter and gas contributions to the total mass to calculate ρs (ρ−2), but then have to resort to
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the M (r200) ≈ Mdm(r200) to calculate rp and Pei. Despite this issue, I have adopted this method

(due to its simplicity) to plot the mass profiles of clusters with a range of input parameters

for illustrative purposes below. Note however that I have not implemented the PMTs into the

Bayesian analysis software McAdam, since not being able to quantify the assumptions of the

models invalidates their use in Bayesian inference.

6.3 Mass profile plots

We now compare the mass profiles of PM I and PM II (calculated using equations 2.23 and 5.4

respectively), with those obtained from PMT I and PMT II (calculated using equations 6.5

and 6.6 respectively), using values for rp and Pei obtained using the method outlined in Sec-

tion 6.2.3 for the PMTs. As in Section 5.2.1 we consider two input masses, M (r200) = 1 ×

1014MSun and M (r200) = 1 × 1015MSun, which roughly span the range of galaxy cluster masses.

We use z-values of 0.15 and 0.9, and take fgas(r200) = 0.12 following Komatsu et al. (2011).

For PM II and PMT II we consider αEin values of 0.05, 0.2, and 2.0.

Figure 6.1 shows the profiles for low M (r200) and z. All four profiles are similar up to r ≈ 1 Mpc

(which is also ≈ r200), after which the NFW and Einasto profiles diverge. The two NFW profiles

(PM I and PMT I) have roughly the same shape, but start to diverge slightly at high r ( 10 Mpc)

with PM I taking higher values than PMT I. In the case of αEin = 0.05, both PM II and PMT II

diverge to large mass values at high r , with PMT II taking smaller values than PM II. αEin = 0.2

shows a similar relationship between PM II and PMT II, but with the two taking lower values

than PM I and PMT I at high r . αEin = 2 presents an interesting result as PMT II does not appear

to converge at high r like PM II does. Note that for the Einasto dark matter profile,

lim
r→∞

Mdm(r) = 4πρ−2 exp(2/αEin)r3
−2

(
αEin

2

) 3
αEin 1

αEin
Γ

(
3
αEin

)
, (6.10)

and so the first term on the right hand side of equation 6.2 is roughly constant at high r , meaning

the increase in mass must be from the gas component. It seems unphysical that the gas content

would contribute so much to the total mass at high r and thus questions the validity of the model

(at least for the values of rp and Pei used here). Figures 6.2, 6.3, and 6.4 show the profiles for the

other three combinations of M (r200) and z inputs: low mass & high z; high mass & low z and

high mass & high z, respectively. All three cases show similar results between the approximate

and full mass results to the previous case, which implies that the desparity between the two sets

of results is not dependent on the input parameters (boundary conditions imposed on the ODEs).
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Figure 6.1: Mass profiles of cluster with input parameters given in titles. PM I (NFW
dark matter profile, M (r) ≈ Mdm(r) approximation) and PMT I (NFW dark matter
profile, M (r) = Mdm(r) + Mg(r)) are shown in the top left graph by black and red
curves respectively. The other three graphs plot PM II (Einasto dark matter profile,
M (r) ≈ Mdm(r) approximation), and PMT II (Einasto dark matter profile, M (r) =

Mdm(r) + Mg(r)) in black and red respectively, for αEin values of 0.05 (top right), 0.2
(bottom left), and 2.0 (bottom right).

6.4 Conclusions

This Chapter relaxes the M (r200) ≈ Mdm(r200) assumption present in the physical model presen-

ted in Section 2.4 (PM I) and the equivalent Einasto physical model (Section 5.1, PM II), to see

if this would produce more physically plausible models for clusters. I derive two new models

PMT I and PMT II based on the equation M (r) = Mdm(r) + Mg(r). Both PMTs require non-

linear ordinary differential equations in M (r) to be solved. But to do this, values for rp and Pei
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Figure 6.2: Mass profiles of cluster with input parameters given in title, for models
given in Figure 6.1.

need to be determined and this turns out to be a non-trivial process. I investigated three possible

ways of calculating rp & Pei and found the following.

• Determining rp and Pei directly from constraints on M and its derivative seems inplausible

as we could not justify assigning a particular value to the derivative at any finite value of

r .

• Treating the problem of finding a value of rp and Pei from the family of solutions as a con-

strained optimsation problem (with a function f (rp,Pei) dictating the nature of the values

of rp and Pei obtained, and the differential equations in M (r) providing the constraints)

seems promising in theory. However in practice, justifying a particular form for f (rp,Pei)

isn’t straightforward, and I anticipate that the optimisation is difficult numerically.
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Figure 6.3: Mass profiles of cluster with input parameters given in title, for models
given in Figure 6.1.

• The third method relied on using the calculational steps of PM I and PM II to determine

‘approximate’ values for rp and Pei from ‘true’ values of rs for PMT I (r−2 for PMT II)

and ρs for PMT I (ρ−2 for PMT II) calculated without the assumption that ρg � ρdm.

The third method was by far the simplest and the one I used to plot the mass profiles for the

PMTs to compare with the equivalent PM profiles. From plots of the profiles we found the

following.

• The values of the input parameters M (r200) and z had very little effect on the shape or scale

of the PMT I or PMT II profiles when compared with the corresponding PM profiles.

• For the αEin = 2 case PMT II does not show the convergence in mass at high r that PM

II does. Since Mdm(r) asymptotically converges as r → ∞ this implies that it is the gas
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Figure 6.4: Mass profiles of cluster with input parameters given in title, for models
given in Figure 6.1.

which is contributing to the mass increase, which seems unphysical for large r .
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Enhanced physical modelling II: Inclusion of
non-thermal pressure

All physical models presented so far in this thesis assume that the cluster gas pressure comes

solely from the thermal gas pressure. Cosmological simulations have long predicted that mag-

netic fields, gas bulk motion and turbulence contribute to pressure support (see e.g. Lau, Kravt-

sov, & Nagai 2009, Battaglia et al. 2010, Battaglia et al. 2011, Nagai & Lau 2011, Nagai 2011,

Battaglia et al. 2012, and Parrish et al. 2012).

Observational studies of clusters using the Chandra, Suzaku and XMM-Newton satellites have

long invoked (see e.g. Bautz et al. 2009 for cluster A1795, Reiprich et al. 2009 A2204, George

et al. 2009 PKS0745-191, Hoshino et al. 2010 A1413, Kawaharada et al. 2010 A1689, Urban

et al. 2011 Virgo and Simionescu et al. 2011 Perseus) these additional pressure sources to ex-

plain their observations. So including a non-thermal contribution to the hydrostatic equilibrium

(HSE) relation given by equation 2.30, and altering the succeeding calculational steps of the

PMs accordingly should be interesting.

In this Chapter I first give an overview of the contributors to non-thermal pressure. I then

derive physical models for both NFW and Einasto (dark matter) models and incorporate non-

thermal pressure into the HSE equation. We refer to these two models as PMN I and PMN II.

We then plot the cluster parameter profiles of PMN I & PMN II and compare with those already

obtained for PM I and PM II. Note that I do not include any modifications discussed in Chapter 6

93
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here.

7.1 Non-thermal gas pressure

Galaxies orbiting or infalling onto clusters not only stir the gas, but also make the ICM clumpier.

In the dense inner regions of clusters, these clumps only exist on short timescales as the ram

pressure (pressure exerted on a body as it moves through a fluid medium) acting on the gas is

high. At higher radii where the average cluster density is lower, orbital times are longer and

accretion of new cluster material is ongoing, clumpiness can have significant effects on the total

pressure profile. The clumpiness of the ICM depends on a number of physical processes, such as

efficient feedback, which removes gas from merging structures, and thermal conduction, which

homogenises the ICM temperature (see e.g.Dolag et al. 2004). Cosmic rays can originate from

accretion shocks and supernova explosions, active galactic nuclei (AGN), and radio galaxies (see

Brunetti & Jones 2014 for a review).

7.2 Modelling non-thermal gas pressure

7.2.1 Analytic expression for non-thermal gas pressure

Martizzi & Agrusa (2016) (from here on DM16) derive an analytic expression for the non-

thermal pressure Pnt component in galaxy clusters. They derive the function Pnt(r) by consid-

ering a subset of ten cosmological hydrodynamical zoom-in simulations of galaxy clusters from

the sample of Martizzi et al. (2014). The ten simulations were performed using the ramses code

(Teyssier 2002) and have total masses > 1014MSun. Half of the subsample are relaxed according

to the criteria outlined in Section 2.1 of DM16 (based on the ratio of the velocity dispersion

of dark matter particles to the velocity dispersion of an equivalent virialised system). These

simulations do not include non-thermal contributions from cosmic rays and magnetic fields.

DM16 derive an expression for Pnt by evolving a cluster from high z and measuring its ρg(r),

M (r), thermal pressure Pth and thermal mass Mth(r). From these four quantities the form of Pnt

can be determined from the HSE relation (equation 2.30) (assuming that Pg = Pth + Pnt). The

following analytic expression is obtained by fitting to the simulated data using a least squares

regression

Pnt(r) = 5.388 × 1013
(
r200,m

Mpc

)3 (
ρg(r)

g/cm3

)
erg/cm3, (7.1)
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where r200,m is the radius at which the average cluster density is 200× the average matter density

ρm(z) = 3H2
0/(8πG)ΩM(1 + z)3. Here H0 is the Hubble parameter evaluated at z = 0. r200,m

can be calculated from r200 in a similar way to how r500 is (for the NFW case, see equations 2.25

through to 2.29, and for Einasto see Section C.2).

Expressed in ‘astronomical’ units (MSunMpc−1s−2), equation 7.1 can be written as

Pnt(r) = β

(
r200,m

Mpc

)3

ρg(r), (7.2)

where β = 5.658 × 10−36 Mpc2s−2.

7.2.2 Incorporating non-thermal pressure into the physical models

Redefining Pg(r) from equation 2.31 as

Pg(r) ≡ Pth(r) + Pnt(r), (7.3)

where

Pth(r) =
µe

µg

Pei(
r
rp

)c (
1 +

(
r
rp

)a) (b−c)/a
, (7.4)

and re-evaluating the HSE relation with the new form of Pg(r) gives

dPg(r)
dr

=
d
dr

[Pth(r) + Pnt(r)] = −
Gρg(r)M (r)

r2 . (7.5)

Equation 7.5 can be rearranged to give

dρg(r)
dr

+
G(Mpc)3M (r)

βr3
200,m

1
r2 ρg(r) =

µe

µg

(
Mpc

r200,m

)3 Pei

β



1
r

(
r
rp

)−c [
1 +

(
r
rp

)a]−(1+(b−c)/a) [
b
(

r
rp

)a
+ c

]
,

(7.6)

which is a inhomogeneous first order linear ODE with dependent variable ρg(r) and independent

variable r . Since equation 7.6 includes a M (r) term, its final form depends on the dark matter

profile considered. Note that when calculating M (r) for either PMN I or PMN II we assume

M (r) ≈ Mdm(r) as we did when profiling PM I and PM II.

For PMN I we have the expression for M (r) given by equation 2.23 and so the differential

equation becomes

dρg(r)
dr

+
4πG(Mpc)3ρsr3

s

βr3
200,m

[
ln

(
1 + r

rs

)
−

(
1 +

rs
r

)−1
]

r2 ρg(r)

=
µe

µg

(
Mpc

r200,m

)3 Pei

β



1
r

(
r
rp

)−c [
1 +

(
r
rp

)a]−(1+(b−c)/a) [
b
(

r
rp

)a
+ c

]
.

(7.7)
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For PMN II we have the expression for M (r) given by equation 5.4 and so

dρg(r)
dr

+
4πG(Mpc)3ρ−2r3

−2 exp (2/αEin)
(
αEin

2

)3/αEin

βr3
200,mαEin

γ
[

3
αEin

, 2
αEin

(
r
r−2

)αEin
]

r2 ρg(r)

=
µe

µg

(
Mpc

r200,m

)3 Pei

β



1
r

(
r
rp

)−c [
1 +

(
r
rp

)a]−(1+(b−c)/a) [
b
(

r
rp

)a
+ c

]
.

(7.8)

For brevity we define the following constants

ωNFW ≡
4πGρsr3

s (Mpc)3

βr3
200,m

ωEin ≡
4πGρ−2r3

−2(Mpc)3

βr3
200,m

1
αEin

(
αEin

2

)3/αEin
exp(2/αEin)

σ ≡
µe

µg

1
β

(
Mpc

r200,m

)3

.

(7.9)

In fact the inhomogeneous ODEs derived above can be transformed into homogeneous ODEs as

follows. Consider a general ODE of the form

dρg(r)
dr

+ g(r)ρg(r) = f (r), (7.10)

then using an integrating factor defined by

I (r) = exp
(∫ r

g(r ′)dr ′
)
, (7.11)

equation 7.10 can be transformed into a homogeneous separable ODE which gives the result

ρg(r)I (r) − ρg(r0)I (r0) =

∫ r

r0

I (r ′) f (r ′)dr ′, (7.12)

where r0 and ρg(r0) are dependent on the input parameters of the problem.

For PMN I this gives

ρg(r)
(
1 +

r
rs

)−ωNFW/r

− ρg(r0)
(
1 +

r0

rs

)−ωNFW/r0

= Peiσ

∫ r

r0

(
1 +

r ′

rs

)−ωNFW/r
′ 

1
r ′

(
r ′

rp

)−c [
1 +

(
r ′

rp

)a]−(1+(b−c)/a) [
b
(

r ′

rp

)a
+ c

]
dr ′.

(7.13)
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For PMN II the integrating factor does not have an analytical form, hence the homogeneous

form can only be simplified to

ρg(r) exp *.
,

∫ r

ωEin
γ

[
3
αEin

, 2
αEin

(
r ′

r−2

)αEin
]

r ′2
dr ′+/

-
− ρg(r0) exp *.

,

∫ r0

ωEin
γ

[
3
αEin

, 2
αEin

(
r ′

r−2

)αEin
]

r ′2
dr ′+/

-

= Peiσ

∫ r

r0


exp *.

,
ωEin

∫ r ′ γ
[

3
αEin

, 2
αEin

(
r ′′

r−2

)αEin
]

r ′′2
dr ′′+/

-





1
r ′

(
r ′

rp

)−c [
1 +

(
r ′

rp

)a]−(1+(b−c)/a) [
b
(

r ′

rp

)a
+ c

]
dr ′.

(7.14)

It is also interesting to see if the non-thermal only pressure term provides a solution to the

HSE (I have already verified this is the case for Pth(r) in PM I and PM II, by deriving the relevant

expressions for ρg(r)). Putting the expression for Pnt(r) into the HSE gives∫ r1

r0

1
ρg(r ′)

dρg(r ′)
dr ′

dr ′ =

(
Mpc

r200,m

)3 G
β

∫ r1

r0

M (r ′)
r ′2

dr ′. (7.15)

For the NFW dark matter profile this gives

ρg(r1) = ρg(r0)

(
1 +

r1
rs

) (
ωNFW/r1)(

1 +
r0
rs

) (
ωNFW/r0)

. (7.16)

As was the case with the integrating factor in the full solution for the thermal and non-thermal

pressure, the Einasto dark matter profile does not give an analytic solution the non-thermal only

case

ρg(r1) = ρg(r0) exp

ωEin

∫ r1

r0

γ
[

3
αEin

, 2
αEin

(
r ′

r−2

)αEin
]

r ′2
dr ′


. (7.17)

Note that since the HSE is a inhomogeneous differential equation, the solutions associated with

Pth and Pnt do not sum to solution asspcoated with Pg = Pth + Pnt.

7.2.3 Determining Pei for the non-thermal case

Equation 7.7 (equation 7.8) has four unknown parameters: rs (r−2), ρs (ρ−2), rp and Pei. The

first three of these can be calculated in the same way as in PM I and PM II. However, as was

the case with the full mass modelling in Chapter 6, Pei cannot be calculated trivially from the

input parameters and calculations derived above for the PMNs. Hence we consider the methods

described in Sections 6.2.1, 6.2.2, and 6.2.3 which we denote method I, method II and method

III respectively.
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Figure 7.1: ρg(r) profiles for PM I and PMN I. Each graph features both profiles
for one of the four different input parameter sets. Top row has z = 0.15, bottom row
has z = 0.9. Left column has M (r200) = 1 × 1014 MSun, right column has M (r200) =

1 × 1015 MSun

For method I, since there is only one unknown parameter we only need to know the value of

ρg(r) and its derivative at one point. It makes sense to consider the asymptotic case (r → ∞) in

which case ρg(r) and its derivative tend to zero. However, since there is no constant term in the

ODEs, this gives us (using equation 7.7 or 7.8) 0 = Pei × 0 and thus Pei cannot be determined. I

have not been able to come up with any physically justified estimates for ρg(r) and its derivative

at finite r , and so I do not pursue this method any further.

Method II presents the same potential difficulties as in the Chapter 6, and so I do not pursue it

here.

Method III would require us to get an approximate value for Pei from the calculational steps of
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Figure 7.2: ρg(r) profiles for PM II and PMN II with αEin = 0.05. Graphs are laid
out as described in Figure 7.1.

PM I and PM II. This requires us to ignore the non-thermal contribution in the HSE equation and

determine an analytic form for ρg(r). As was the case in Chapter 6, this is by far the simplest

way of determining Pei, I therefore use it to obtain cluster parameter profiles for PMN I & PMN

II and compare them with those from PM I & PM II for illustrative purposes.

7.2.4 Boundary conditions for ρg(r)

I first tried setting ρg(rmax) = 0 where rmax is the upper limit on r used in the ODE solver.

However, this failed to generate a sensible profile for ρg(r). This is expected, as such an initial

condition surely provides ‘too little’ information on the form of ρg(r) to constrain its profile at

low r . I next applied the initial condition ρg(rmin) = ρg,a(rmin), where ρg,a is the value obtained
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Figure 7.3: ρg(r) profiles for PM II and PMN II with αEin = 0.2. Graphs are laid out
as described in Figure 7.1.

from PM I / PM II. I think this assumption is sensible, given that the non-thermal contributions

are generally thought to be less and less significant at smaller radii as pointed out in Section 7.1.

I generally found that the latter initial condition produced solution curves for ρg(r) when solving

the ODEs given by equations 7.7 and 7.8.

7.3 Non-thermal pressure profiling

As in the previous Sections which focus on cluster profiling, I create plots for clusters with input

values of M (r200) = 1× 1014MSun & M (r200) = 1× 1015MSun, and z = 0.15 & z = 0.9. For PM

II and PMN II we consider αEin values of 0.05, 0.2, and 2.0.
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Figure 7.4: ρg(r) profiles for PM II and PMN II with αEin = 2. Graphs are laid out
as described in Figure 7.1.

7.3.1 Gas density profiles

Figures 7.1, 7.2, 7.3, and 7.4 compare the PM and PMN profiles for the NFW, αEin = 0.05,

αEin = 0.2, and αEin = 2 cases respectively. The most striking feature of these graphs is the

fact that the PMN profiles have higher gas densities than their PM equivalent for radii > r0,

until they decay to ≈ 0 at high r . As was the case with the PMT profiles, changing the mass / z

input parameters does not seem to effect the shape of the PMN gas density profiles. However,

unlike the comparison between the PM and PMT models, changing the input parameters here

does seem to have an effect on the level of disparity between the PM and PMN profiles.



102 Chapter 7. Enhanced physical modelling II: Inclusion of non-thermal pressure

Figure 7.5: Ratio of Pnt to Pth profiles for PM I and PMN I. Each graph features
both profiles for one of the four different input parameter sets. Top row has z = 0.15,
bottom row has z = 0.9. Left column has M (r200) = 1 × 1014 MSun, right column has
M (r200) = 1 × 1015 MSun

7.3.2 Thermal and non-thermal pressure profiles

Once ρg(r) has been determined, Pnt can be calculated from equation 7.2. Pth is given by

equation 7.4, and so is the same as the profiles of Pg calculated for the PMs. Furthermore the

mass is still calculated using the approximation M ≈ Mdm and so it has identical values between

the PMs and PMNs. Figures 7.5, 7.6, 7.7, and 7.8 show the ratio of non-thermal to thermal

pressure (calculated from the PMNs) for the NFW, αEin = 0.05, αEin = 0.2, and αEin = 2 cases

respectively. Given that in simulations (Rasia, Tormen, & Moscardini 2004, Ameglio et al.
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Figure 7.6: Ratio of Pnt to Pth profiles for PM II and PMN II with αEin = 0.05.
Graphs are laid out as described in Figure 7.5.

2009, Piffaretti & Valdarnini 2008, and Biffi, Dolag, & Böhringer 2011), non-thermal pressure

was found to be at a maximum ≈ 15% of the thermal pressure, these Figures show that the

PMNs considered here are unphysical, particularly as the value of αEin increases. The only

profiles which give sensible values are the αEin = 0.05 cases. Here, the non-thermal pressure

does go above 20%, but only at high r , where both types of pressure should take negligibly small

values. Even though the ratio profiles look sensible for αEin = 0.05, the fact they are off by such

a large amount for the other clusters implies the models formulated here are probably unfeasible

(including the validity of the method used to determine Pei), and that the case of one good result

has probably been obtained by chance. However we do note that in DM16 the ratio approaches
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Figure 7.7: Ratio of Pnt to Pth profiles for PM II and PMN II with αEin = 0.2. Graphs
are laid out as described in Figure 7.5.

unity for five of the ten cluster sample of simulations at r ≈ r200,m (see Figure 5 of DM16).

Whilst this doesn’t add any validity to the results, it does suggest that non-thermal pressure can

contribute greatly (up to ≈ the majority) towards the total pressure, and thus further work on

incorporating its effect into cluster SZ models is important in improving their performance.

7.4 Conclusions

In this Chapter I incorporated non-thermal pressure into the physical models presented in Sec-

tion 2.4 (PM I) and the equivalent Einasto physical model (Section 5.1, PM II) to see if this
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Figure 7.8: Ratio of Pnt to Pth profiles for PM II and PMN II with αEin = 2. Graphs
are laid out as described in Figure 7.5.

would produce more physically plausible models for clusters. I derive two new models PMN I

and PMN II based on the analytical equation for non-thermal gas pressure in a cluster derived

in Martizzi & Agrusa (2016). Both PMNs require linear inhomogeneous ordinary differential

equations in ρg(r) to be solved. However to do so, values for Pei need to be determined as in

Chapter 6. Due to its simplicity, I used the method outlined in Section 6.2.3 to determine an

approximate value for Pei. I then solved the ODEs in ρg(r) for various cluster input parameters

and found the following.

• The PMN profiles have higher gas densities than their PM equivalent, until they decay to

≈ 0 at high r .
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• As was the case with the PMT profiles in Chapter 6, changing the mass or z input para-

meters does not seem to effect the shape of the PMN gas density profiles. However, unlike

the comparison between the PM and PMT models, changing the input parameters here

does seem to have an effect on the level of disparity between the PM and PMN profiles.

I then plotted the ratio of non-thermal to thermal pressure for different cluster inputs, to see

how the ratio compared with those obtained from simulations in the literature, and found the

following.

• For all but the αEin = 0.05 clusters, the ratio of non-thermal to thermal pressure was un-

physical, as it exceeded values well over 100% (which seems unfeasible in isolation, and

even more unreasonable when compared to the values of ≈ 15% obtained in simulations).

• Even though the ratio profiles looked sensible for αEin = 0.05, the fact they were off by

such a large amount for the other clusters implies the models formulated here are probably

unfeasible, and that the case of one good result was probably obtained by chance.
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Joint analysis of AMI and Planck data

Analysis of data obtained from different telescopes allows one to compare and verify inferences

from measurements of different quantities, are subject to different systematic errors, and are

obtained from different wavebands and on different angular scales. Simultaneous analysis of

multiple datasets can lead to results different from those obtained in the individual cases, and

can be used to investigate problems which cannot be resolved by the individual analyses.

In the context of galaxy clusters LaRoque et al. (2006) have used joint X-ray–SZ data in an

attempt to constrain the dark energy equation of state parameter w. Similarly, cosmological con-

stants have been estimated from X-ray analyses (see e.g. Vikhlinin et al. 2009 and Mantz et al.

2010), SZ measurements (see e.g. Muchovej et al. 2011, Williamson et al. 2011, and Marriage

et al. 2011) and a joint X-ray–SZ analysis (Hasler et al. 2012).

Joint analysis of data from galaxy clusters is not restricted to telescopes which measure different

quantities. Adam et al. (2015), Romero et al. (2015), Adam et al. (2016), and Romero et al.

(2017) all use SZ measurements from instruments including the Planck satellite (The Planck

Collaboration 2006), Bolocam (Sayers et al. 2013) and (Czakon et al. 2015), Green Bank tele-

scope (Korngut et al. 2011), and IRAM 30-metre telescope (Monfardini et al. 2014), that probe

different angular scales and operate over different frequency ranges, to infer profiles of cluster

parameters such as pressure, temperature and mass.

In this Chapter I carry out joint analysis of SZ data from AMI and from the Planck satellite.

Note that I conduct separate analyses on these data in Chapter 3. I apply Bayesian analysis

107
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using a joint likelihood for data from both instruments, to simulated cluster data generated with

observational and physical models (largely based on the ones introduced in Chapters 2, 4, and 5).

I analyse the resulting posterior distributions and compare them with results obtained from ana-

lysing the likelihoods for AMI and Planck separately.

I also apply the joint analysis to real data from the Planck detected cluster PSZ2G063.80+11.42,

whose mass estimates derived from AMI and Planck data in Chapter 3 showed discrepancies

with one another. Note the work in this Chapter has been published as a paper in MNRAS (Per-

rott et al. 2019), which I am a lead author of. The paper includes more information on how the

Planck simulations were generated, and presents results of analyses where the simulated data

was much better understood (and less prone to bugs).

8.1 Joint likelihood analysis

The key aspects of Bayesian inference have already been highlighted in Chapter 2. Nevertheless

it is useful to highlight how we evaluate the joint likelihood function of datasets which have

previously been analysed in isolation and with different analysis pipelines.

8.1.1 AMI data analysis

As previously, McAdam is used to calculate the posterior distribution for AMI data (see Sec-

tion 8.1.3.1).

8.1.2 Planck detection algorithms

The Y and M values published in the Planck catalogue PSZ2 are derived from data from one of

three detection algorithms: MMF1, MMF3 (Staniszewski et al. 2009; Marriage et al. 2011) and

PowellSnakes (PwS, Carvalho et al. 2012). The mass estimates presented in Chapter 3 that are

based on Planck data were calculated from the outputs of the PwS algorithm. Similarly the joint

AMI-Planck analysis here uses PwS to process the data for the Planck part of the analysis (see

Section 8.1.3.2).

8.1.3 Joint likelihood function

If one has an AMI dataset dAMI and a Planck dataset dPl, then the joint likelihood function for

the data is given by

L(Θ) = L (dAMI, dPl |Θ,M) . (8.1)
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In this analysis we treat dAMI and dPl as being independent (see Section 8.4.1 for justification),

and since the Planck-predicted data only rely on the cluster parameters we can write

L(Θ) = LAMI (dAMI |Θ,M) LPl (dPl |Θcl,M) . (8.2)

8.1.3.1 AMI likelihood function

The form of the AMI likelihood function used here is exactly the same as the one presen-

ted in Section 2.8. Note also that the AMI covariance matrix CAMI,ν,ν′ is comprised of the

same components as noted in Section 2.8 (which are described in Sections 2.5.2.1, 2.5.2.2,

and 2.5.2.3), and recognised radio-sources are also treated the same way as previously described

(Sections 2.5.1 and 2.7.1) for AMI data. For clarity I note that the predicted AMI data are

denoted d
p
AMI,ν′ (Θ)

8.1.3.2 PwS likelihood function

For a single source and given observing frequency, PwS treats the data observed by Planck

as a superposition of background sky emission (including foreground emission and primordial

CMB) bν , instrumental noise nν , and signal from the source sν . The model for the predicted

data vector is thus

d
p
Pl,ν (Θcl) = sν (Θcl) + bν + nν . (8.3)

PwS works with patches of sky sufficiently small such that it can be assumed the noise contribu-

tions are statistically homogeneous. In this limit it is more convenient to work in Fourier space,

as the Fourier modes are uncorrelated assuming the noise contributions are Gaussian. This as-

sumption is fair in the case of instrumental noise, but more questionable for bν . The deviations

from Gaussianity of bν are discussed in Section 4.3 of the second PwS paper (Carvalho et al.

2012). Since PwS is a detection algorithm, it calculates the ratio of the likelihood of detecting

a cluster parameterised by Θcl and the likelihood of the data with no cluster signal (sν (Θcl,0) =

0). Thus the log-likelihood ratioof the Fourier transformed quantities is

ln
[
LPl (Θcl)
LPl

(
Θcl,0

) ]
=

∑
ν,ν′

d̃
p
Pl,ν (Θcl)TC−1

Pl,ν,ν′ d̃Pl,ν (Θcl)

−
1
2
d̃

p
Pl,ν (Θcl)TC−1

Pl,ν,ν′ d̃
p
Pl,ν (Θcl),

(8.4)

where tildes denote the Fourier transform of a quantity, and CPl,ν,ν′ is the covariance matrix of

the data in Fourier space.
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A full specification of the PwS likelihood ratio is given in Carvalho, Rocha, & Hobson (2009)

and Carvalho et al. (2012).

8.2 Joint likelihood analysis hyperparameters

Lahav et al. (2000) and Hobson, Bridle, & Lahav (2002) (MH02 from here on) introduced a

Bayesian method for determining the relative weighting of two or more independent datasets

when analysed simultaneously, while Ma & Berndsen (2014) built on this work to develop a

method which works for datasets correlated with one another. The basic idea behind the ap-

proach is to introduce additional hyperparameters α into the Bayesian inference problem. In

other words we extend our parameter space to include not only the parameters of interest (Θ),

but also the hyperparameters α. Thus we have

P (Θ,α) =
L(Θ,α)π(Θ,α)

Z
, (8.5)

whereZ is now given by

Z =

∫ ∫
L(Θ,α)π(Θ,α)dαdΘ. (8.6)

Equations 8.5 and 8.6 tell us that to obtain the quantities of interest (P (Θ) and Z) we have to

marginalise over the hyperparameters.

It is reasonable to assume that the parameters of the original problem and those affecting the

weighting of each likelihood are independent of one another, so the priors can be written as

π(Θ,α) = π(Θ)π(α). (8.7)

For more information on the typical priors used for α we refer the reader to Section 4.1 of MH02.

To see how α are incorporated into L(Θ) we consider two independent datasets, so that L(Θ,α)

can be written as

L(Θ,α) = L1(Θ)α1L2(Θ)α2 . (8.8)

Note we have chosen for the likelihoods to have such dependence on α so that if L1 and L2 are

Gaussian (equation 2.49)

L1(Θ)α1 =
1

ZN,1
e−

1
2α1χ

2
1 (8.9)

(and similarly for L2), then we can write

χ2
joint = α1 χ

2
1 + α2 χ

2
2, (8.10)

where the χ2 quantities are defined by equation 2.50. Thus α1 and α2 control the relative

weighting of the goodness-of-fit metrics of the data.
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8.2.1 Effects of likelihood hyperparameters

The effects of including α in Bayesian analysis are best illustrated through examples. Here

I provide a very brief overview and quote the results of the toy model considered in MH02, to

emphasise how the inclusion of hyperparameters affects evidence and posterior estimates of joint

analyses compared with not using them (i.e. α1 = α2 = 1). I refer to the results obtained from

including hyperparameters as HP and those from the ‘vanilla’ method as V. The toy problem

consists of fitting a straight line through two (independent) sets of data points, and thus is a

two-likelihood (one for each set of data), two-parameter problem of inferring the gradient (m)

and intercept (c) of the line. The likelihood thus takes the form given by equation 8.8 with

Θ = (m,c). Several versions of the problem are considered which vary in the standard deviations

used for the likelihood functions and how the two datasets are generated.

8.2.1.1 Correct likelihood standard deviations and consistent datasets

The first example considered involves drawing points for each of the two datasets from the same

distribution, namely Gaussian distributions with standard deviations σd,1 = σd,2 = 0.1, and

mean values corresponding to the line with md = cd = 1; the same deviations are used for the

likelihood functions: σl,1 = σl,2 = 0.1. The resulting posterior distributions for the HP and

V cases are shown in Figure 1 of MH02. The two methods recover the true values of m and c

equally well, but the V run leads to a higher evidence estimate. This is to be expected for simple

problems (for which the methods provide an equivalent fit to the data), as the added complexity

of the HP method decreases the Bayesian evidence according to Occam’s razor.

8.2.1.2 Incorrect likelihood standard deviations and consistent datasets

The second example generates the two datasets in the same way, but the standard deviations

used in the likelihoods are incorrect: σl,1 = 0.02, σl,2 = 0.1. Thus the predicted errors on the

first dataset are much smaller than the true values used to generate it. In this case (Figure 2 of

MH02) the V posterior underestimates the errors on m and c such that the true value is outside

the 99% probability interval; whereas the HP method results in much larger error estimates,

leading to the correct value being within the 95% confidence interval. This suggests that α1

on average took relatively small values to accommodate for σl,1 being underestimated in the

analysis. Furthermore the evidence ratio between the HP and V analyses is greatly in favour

of the former, suggesting the data are fit sufficiently better by the HP model to overcome its

additional complexity.
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8.2.1.3 Correct likelihood standard deviations with inconsistent datasets

The final scenario considered for the toy problem in MH02 involves sampling the two datasets

from different distributions i.e. sampling two sets of data which represent different lines. This

means that there are two ‘true’ values for m and c corresponding to each dataset, and so a good

inference of the data should produce a bimodal distribution with peaks at these values. They first

test this out by sampling one dataset from a distribution corresponding to md,1 = cd,1 = 1 and the

other from md,2 = 0, cd,2 = 1.5. The resultant posterior distributions shown in Figure 3 of MH02

show that the V distribution is unimodal and does not contain either of the true values within its

99% probability contours, while the HP distribution is bimodal with the peaks occurring close

to the true values.

They repeat this analysis but sample from distributions corresponding to md,1 = cd,1 = 1 and

md,2 = 0.7, cd,2 = 0.7 and find again that the V posterior distribution is unimodal and centred

far from the true values, while HP results in a bimodal distribution with peaks in the vicinity of

the true values (but not as close as in the previous case). The evidence ratio between the V and

HP analyses suggests the latter is a more suitable model in both cases.

8.2.2 Incorporating the likelihood hyperparameters into AMI-Planck analysis

From the examples reviewed above, it is clear that inclusion of the likelihood hyperparameters

leads to inferences more representative of the data in the cases that the errors in the analysis are

underestimated or the datasets are systematically different from one another. Thus it makes sense

to include them in analyses of data obtained from telescopes operating at different frequencies

and angular scales and that are subject to different systematic errors.

However the log-ratio given by equation 8.4 is not a probability density due to the fact that it

is missing a normalisation factor proportional to d̃Pl,ν (Θcl)TC−1
Pl,ν,ν′ d̃Pl,ν (Θcl) ≡ C. Inclusion of

the likelihood hyperparameters means that the normalisation factor of a likelihood function is

dependent on α, since it is marginalised over to obtain L(Θ), so C ≡ C(α) = Cα .

To test whether the inclusion of C(α) was strictly needed for the hyperparameter methodo-

logy, I replicated the toy model example considered in Section 6.1 of MP02 (reviewed in Sec-

tion 8.2.1.1), ran the analysis using the ‘full’ hyperparameter likelihood functions (equation 8.9)

and also conducted the analysis using hyperparameter likelihood ratios (i.e. using the likeli-

hoods given by equation 8.9 but excluding the Cα factors present in the χ2s). The full likeli-

hood analysis produced a a posterior distribution similar to the one obtained in MP02 (left plot

of Figure 8.1) while the likelihood ratio analysis failed to produce posterior samples. The reason
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why likelihood ratios are incompatible with the hyperparameter method is shown graphically in

the right plot of Figure 8.1. From this plot it is clear that Cα dictates the shape of the likelihood

function as well as its peak. For example around χ2 = 0 the normalised α = 2 curve is above the

α = 1, while the un-normalised α = 2 curve is below it. This inconsistency generalises to all χ2

and α values and thus one cannot reliably evaluate the effect of α on the analysis without know-

ing Cα and hence the hyperparameters cannot be used with likelihood ratios such as the one used

by PwS. As a result, the two likelihoods had to be weighted equally (i.e. I set α1 = α2 = 1).

8.3 Cluster models

As described in Section 2.2, a radio interferometer measure signal that is the Fourier transform

of a quantity proportional to the Comptonisation parameter y. Similarly the Planck satellite is

also sensitive SZ effect and thus measures a signal ∝ y. Thus the cluster models introduced

previously in this thesis which calculate a map of y can be used to calculate d
p
AMI,ν (Θ) and

d
p
Pl,ν (Θcl)T.

8.3.1 Observational model

The observational model used in this Chapter (OM III) is the same as the ones introduced in

Chapter 4 other than the priors it uses.

Here I assign non-informative, independent priors to Ytot and θp (see Table 8.1), to get a better

idea of how much the joint likelihood function can constrain the parameters. The priors used for

a and b vary throughout the analysis (Table 8.1); they are either fixed at some specific value (as

was the case in OM I and OM II) or allowed to vary uniformly.

8.3.2 Physical models

The physical models used here are the same as the ones presented in Chapters 2 and 4 (PM I and

PM II) i.e. they model the cluster dark matter content using NFW and Einasto profiles respect-

ively. The prior distributions the PMS are also given in Table 8.1.

All three models can be used to calculate the profile of Pe(r) which can be used to produce

a y map using equation 2.16.
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Figure 8.1: Top: Two-dimensional posterior distribution obtained from application of
likelihood hyperparameter method on toy model considered in Section 6.1 of MP02.
m and c are the gradient and intercept parameters of the toy model respectively. These
results were obtained using the likelihood functions given by equation 8.9. Bottom:
Gaussian likelihood for a range of α values, including (normalised) or excluding (un-
normalised) Cα . Note for the α = 1 case the normalisation doesn’t depend on α since
C(α = 1) = C).
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Parameter Model(s) featured in Prior distribution(s)
xc OM III, PM I, and PM II N (0′′,60′′)
yc OM III, PM I, and PM II N (0′′,60′′)
Ytot OM III U [0.00 arcmin2,0.02 arcmin2]
θp OM III U [1.3′,15′]
z PM I and PM II δ(z)
M (r200) PM I and PM II U [log(0.5 × 1014MSun), log(50 × 1014MSun)]
fgas(r200) PM I and PM II N (0.12,0.02)
αEin PM II δ(αEin) orU [0.05,0.3]
a OM III, PM I, and PM II δ(a) orU [0.3,3.5]
b OM III, PM I, and PM II δ(b) orU [3.5,7.5]
c OM III, PM I, and PM II δ(c)

Table 8.1: Cluster parameter prior distributions. N denotes a normal distribution
parameterised by its mean and standard deviation, U denotes a uniform distribution,
and δ is a Dirac delta function. In the cases where the latter is used, the values used
for the function’s argument will be stated when the analyses are carried out.

8.4 Cluster simulations

The cluster simulations were generated using the in-house package Profile (used in Chapters 3

and 5). For all simulations the y map of a single cluster is generated with either OM III, PM I,

or PM II, and primordial CMB noise is sampled from an empirical distribution (Hinshaw et al.

2013) and added at random positions to the data. At this point the data are duplicated so that

additional noise contributions specific to each telescope can be added.

For the AMI simulated data, confusion noise is added as described in Section 3.7 using the 10C

source counts given in Davies et al. (2011). Instrumental noise with an RMS value of 0.379 Jy

per channel per baseline per second is also added.

For the Planck simulated data, foreground emission and instrumental noise are added. For more

information on the Planck simulations, see Perrott et al. (2019). Finally, the data are ‘observed’

by AMI and Planck separately to generate dAMI,ν and dPl,ν .

8.4.1 Testing the independence of the AMI and Planck datasets

In Section 8.1.3 we made the assumption that d
p
AMI,ν and d

p
Pl,ν are not correlated with each

other, so that the likelihoods for the two datasets can be separated. The instrumental noises

associated with each telescope can safely be assumed to be independent. Due to the telescopes

operating at different angular scales and frequencies, the confusion noise present in AMI data
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Figure 8.2: Two-dimensional marginalised xc− yc and Ytot− θp posterior distributions
for a high SNR (see Section 8.5.1) cluster simulation generated using OM III. The red
contours correspond to the posterior distribution associated with the AMI and Planck
datasets which had different CMB realisations to each other, while the black ones
correspond to datasets generated with the same realisation. The star symbols indicate
the values input when generating the simulations.

and foreground emission present in Planck data are assumed to be independent of one another.

A similar argument can be applied for primordial CMB noise, nevertheless I carried out a simple

test to see if this is the case. For a given set of cluster parameters, I ran the joint analysis on

Planck and AMI datasets which had different CMB realisations to one another. I found that

the resultant parameter constraints were not affected by this when compared with the results

obtained using AMI and Planck data which had the same CMB realisations as one another

(Figure 8.2). I thus concluded that the covariance between the datasets was negligible.

8.5 Cluster simulation results

In the following analysis I generate cluster simulations for different noise realisations and cluster

parameter values (and models). I apply the joint analysis to these simulated clusters, and com-

pare results with analyses which use (the same) AMI or Planck data alone. Note that for all

examples considered, the model used to simulate the cluster was also used to analyse the data.
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Simulation input
Parameter low SNR high SNR
xc 0 arcsec
yc 0 arcsec
Ytot 0.001 arcmin2 0.007 arcmin2

θp 2 arcmin 8 arcmin
a 1.051
b 5.4905
c 0.3081
z 0.17

Table 8.2: Cluster simulation inputs using an observational model and the ‘universal’
GNFW shape parameters calculated in Arnaud et al. (2010). Although z isn’t an
input parameter for observational models, it is still required to generate simulations
of clusters.

8.5.1 Observational model with ‘universal’ shape parameters

I generate simulations using OM III, with GNFW shape parameter values a = 1.0510, b =

5.4905, and c = 0.3081 (i.e. the same ones used in Chapter 5). As shown in Table 8.2 I

consider a ‘low’ and a ‘high’ signal-to-noise ratio (SNR) cluster, which correspond to input

values of Ytot = 0.001 arcmin2 and θp = 2 arcmin and Ytot = 0.007 arcmin2 and θp = 8 arcmin

respectively. I generate 10 simulations for each of these clusters, each of which has a different

noise realisation. I then analyse these simulations using the priors given in Table 8.1, with delta

priors on a, b and c centred on their ‘true’ values (the ones used as inputs to the simulations),

and plot the resulting posterior distributions using GetDist.

8.5.1.1 Low SNR simulation analyses

Figure 8.3 shows the two-dimensional marginalised xc − yc and Ytot − θp posterior distributions

of the joint, AMI-only, and Planck-only analyses of the low SNR cluster. Note that each plot

contains the posteriors of the 10 different simulations, each of which is represented by a contour

(68% confidence interval). Looking at the AMI data only analyses, in two of the simulations the

correct values for xc and yc are not recovered within a 68% confidence interval. The plot shows

that the constraints in Ytot − θp are generally tight, but three contours do not encompass the input

value.

The Planck-only analyses generally recover the correct values for xc and yc but the contours

are much wider. There is a large degeneracy in θp, suggesting that in this case Planck cannot
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constrain the geometric size of the clusters very well.

The joint analysis shows similar results to the AMI-only analyses for the xc−yc distributions, but

the constraints on Ytot and θp are very tight (sharper distributions than in the case of AMI-only),

which suggests that even though the Planck data in isolation was degenerate, when combined

with AMI it can help infer the correct size of a cluster.

8.5.1.2 High SNR simulation analyses

Figure 8.4 shows the contours of the posterior distributions obtained from the high SNR simu-

lations.

The AMI-only xc− yc posterior contours are similar to the low SNR case, but are generally more

offset from the correct value in this instance. The Ytot − θp posteriors show large degeneracies

along the line of changing Ytot and θp (i.e. a large positive covariance between the two paramet-

ers). The Planck-only data results show tighter constraints on xc and yc relative to the low SNR

simulations, but still wider than the other two analysis methods. The Ytot − θp posteriors show

that Planck arguably does a better job than AMI in recovering the true values, as the contours

are generally tighter in the former case, and both analyses give a similar number of distributions

where the correct value lies in the proximity of the contours.

The joint analysis shows that the cluster offset inferences are driven almost entirely by the AMI

data, as they strongly resemble the results of the AMI runs. In contrast the Ytot − θp posteriors

suggest Planck data is dominating the inferences, and that the joint data distributions provide the

tightest constraints on Ytot − θp estimates. However, five of these distributions fail to recover the

true values within their 68% confidence intervals.

8.5.1.3 Variable shape parameter analysis

I next consider the same simulations described in Section 8.5.1, but allowing the GNFW shape

parameters a and b to vary in the analysis. I thus assign the uniform priors stated in Table 8.2

to a and b. I note that throughout the analysis I found that the cluster model used to analyse

the data did not affect the posterior constraints on xc and yc, and so I do not discuss them in the

subsequent analyses.

Figure 8.5 shows two-dimensional posterior distributions of pairs of the parameters: Ytot, θp, a,

and b, resultant from six low SNR simulations. The θp – a posteriors show that the AMI-only

and Planck-only analyses fail to produce good constraints, as the former has a large degeneracy

in θp which misses the simulation input while the latter is almost completely uninformative
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Figure 8.3: Two-dimensional marginalised xc− yc and Ytot− θp posterior distributions
for the 10 OM III low SNR cluster simulations obtained from: AMI data (top row),
Planck data (middle row), and AMI and Planck data combined (bottom row). The
contours in each plot represent the 68% confidence intervals of the separate posterior
distributions obtained from each of the 10 simulations. The star symbols indicate the
values input when generating the simulations.
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Figure 8.4: Two-dimensional marginalised xc− yc and Ytot− θp posterior distributions
for the 10 OM III high SNR cluster simulations. The Figure layout is as described in
Figure 8.3.
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(resembles the prior). The joint analysis leads to results that encompass the true value within the

68% contour, albeit with large degeneracies in a at low θp (where the true θp value lies) and in

θp at low a. The Ytot – a posterior plots shows similar results for AMI, Planck recovers Ytot well

but has a large degeneracy in a. The joint analysis gives similar results to Planck-only, but with

a tighter constraint on Ytot (as was the case in the fixed a and b low SNR analyses). Posteriors

in the Ytot – b plane show similar results, but in this case the joint analysis produces contours

which are less degenerate in b than the Planck-only results. The θp – b plots show that all three

analyses fail to produce informative (well constrained) posteriors.

While the joint analysis tends to show degeneracy in a and b, it does produce superior constraints

on Ytot and θp relative to the single data analyses for marginalised posteriors considered here.

Figure 8.6 shows the two-dimensional posterior distributions for the high SNR simulations,

in which case the AMI posterior distributions recover a relatively well (with the one clear ex-

ception). The AMI posteriors for b are quite wide but generally peak around the input value of

b.

The Planck-only distributions also show some improvement over the low SNR case.

The joint analysis gives slightly worse results for a than the AMI-only case (though the excep-

tionally bad AMI distribution improves), while the posteriors for b arguably improve in the joint

case for five of the six simulations.

8.5.2 Cluster simulations using physical models

I repeat the simulation procedure described in Section 8.5.1, but this time using PM I and PM

II in the cluster simulation and analysis. Table 8.3 shows the input parameters used for PM

simulations; the low SNR simulations have M (r200) = 5 × 1014 MSun while the high SNR use

10 × 1014 MSun.

8.5.2.1 PM I low SNR posteriors

The one-dimensional posterior distributions for xc, yc, M (r200), and fgas(r200) for the 10 low

SNR simulations are shown in Figure 8.7. Four of the AMI mass posteriors replicate the shape

of the prior distribution (which has a 1/M (r200) dependence in linear space), indicating that the

likelihood is negligible for these analyses. fgas(r200) is recovered very well by AMI for all ten

simulations (and also takes the same shape as the prior).

In the case of the Planck mass estimates, the modes of the posteriors overestimate the input value

by a factor of at least two. The same statistic slightly underestimates fgas(r200) in some cases,
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Simulation input
Parameter PM I low SNR PM I high SNR PM II low SNR PM II high SNR
xc 0 arcsec
yc 0 arcsec
M (r200) 5 × 1014 MSun 10 × 1014 MSun 5 × 1014 MSun 10 × 1014 MSun
fgas(r200) 0.12
αEin – 0.2
a 1.051
b 5.4905
c 0.3081
z 0.17

Table 8.3: Cluster simulation inputs for PM I and PM II. The cluster centre, GNFW
shape parameters, and redshift inputs are the same for all four models. The Einasto
shape parameter is only an input for PM II.

but not to the same degree as the M (r200) values are overestimated.

The combined data also overestimates M (r200), with the modes ranging between ≈ 1.75 – 4

times the true values. What is also striking is the values of the modes of the fgas(r200) posteriors,

which in some cases (which correspond to the larger mass estimates) occur around fgas(r200) ≈

0.8. The overestimation of mass and underestimation of fgas(r200) suggests that in the joint

analysis, it is the composition of the clusters which have been incorrectly inferred, whilst in the

Planck-only case it appears that the physical size of the clusters is overestimated.

8.5.2.2 PM I high SNR posteriors

For the high SNR cluster simulations (Figure 8.8) the AMI mass estimates on average peak on

the true mass value. The Planck mass modal values generally underestimate the input mass,

which is in stark contrast to the low SNR case where they massively overestimated it. The

Planck estimates of fgas(r200) are extremely accurate, which again suggests that it is the size

rather than the composition of the cluster that Planck has difficulty with. The joint estimates

perform similarly well to the separate analyses.

8.5.2.3 PM II cluster simulations

Cluster simulations were generated with the PM II setting αEin = 0.2. Note this value for αEin

corresponds to a profile similar to that given by the NFW profile (as discussed in Dutton &

Macciò 2014 and Chapter 5). The clusters were analysed with a uniform prior on αEin (given
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Figure 8.7: One-dimensional marginalised posterior distributions for the 10 PM I
low SNR cluster simulations obtained from: AMI data (top row), Planck data (middle
row), and AMI and Planck data combined (bottom row). The black vertical lines
indicate the values input when generating the simulations.
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Figure 8.8: One-dimensional marginalised posterior distributions for the 10 PM I
high SNR cluster simulations. The plots are laid out as described in Figure 8.7.
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in Table 8.1), but GetDist failed to plot distributions from the resultant posterior samples. This

suggests that the marginalised αEin posterior distributions are not ‘compatible’ with Gaussian

kernel density estimation techniques used in the program. Nevertheless GetDist still produced

posterior distributions of other parameters (by marginalising over αEin), and gave results similar

to the PM I simulations. The posteriors obtained from analysis of the high SNR PM II clusters

are shown in Figure 8.9. Likewise Bayesian analysis of the cluster simulations with a delta prior

on αEin resulted in posterior distributions similar to those obtained from PM I simulations and

analysis.

Note that the overestimation of cluster parameters has been resolved in Perrott et al. (2019)

by understanding the Planck simulations better (and correcting a couple of associated bugs), but

the paper focuses on observational models rather than physical.

8.6 Application of joint analysis to real cluster data

8.6.1 Mass estimates of cluster PSZ2G063.80+11.42

I apply the joint analysis to a cluster featured in PSZ2 (PSZ2G063.80+11.42) and the 54 cluster

sample analysed in Chapters 3 and 4. Note that in these Chapters slightly different values for a,

b, and c were used, which were derived in Arnaud et al. (2010) for the standard self-similar case

(Appendix B of Arnaud et al.). It was shown in Olamaie, Hobson, & Grainge (2013) that PM

I is not affected by which of these two sets of parameters is used. In Chapter 3 I calculated the

AMI mass estimate to be MAMI(r500) = (3.37 ± 0.76) × 1014 MSun and the PwS mass estimate

(using the slicing function methodology introduced in PSZ2 and detailed in Section 3.4) to be

MPl, slice(r500) = (6.41±0.57
0.58) × 1014 MSun. I chose to run the joint analysis on this cluster due

to the fact that its AMI and Planck masses were quite discrepant, despite the AMI radio-source

environment not appearing to be problematic on the map of the observation. The cluster redshift

is taken from PSZ2 as z = 0.426, and the coordinates of the Planck patch centre are within

0.01 arcmin of the AMI SA pointing centre of the observation.

I run the joint analysis with PM I using the priors given in Table 8.1 (assigning delta priors

to the GNFW shape parameters). The marginalised posterior distribution for MJoint, PMI(r500)

(Figure 8.10) gives a mean estimate of MJoint, PMI(r500) = (5.74 ± 0.70) × 1014MSun. Hence the

joint analysis gives a value within one combined standard deviation of the value obtained from

Planck data using the PSZ2 slicing function methodology, and within three combined standard

deviations of the value obtained from AMI data alone.
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Figure 8.9: One-dimensional marginalised posterior distributions for the 10 PM II
high SNR cluster simulations obtained by marginalising over αEin. The plots are laid
out as described in Figure 8.7.
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For further comparison I run the Planck-only analysis for the same cluster using the same model,

and find that MPl, PMI(r500) = (6.98±1.02)×1014MSun. For clarity I note that MPl, slice(r500) and

MPl, PMI(r500) are obtained from the same data using the same PwS algorithm, but the former

uses the scaling relations and slicing function methodology to obtain a mass estimate, whereas

the latter uses PM I in the Bayesian analysis to directly infer mass posterior distributions.

In Chapter 3 I found that PSZ2 mass estimates were generally higher than those obtained

by AMI. In this Chapter the low SNR PM I simulations show similar results, as Planck data

analyses gives large overestimates of the true values, whereas AMI underestimates it on average.

The real data analysed here suggest the same – although we do not know the ‘true’ mass value

in this case. The fact that both estimates from Planck data are relatively high suggests the data

themselves are causing this, not the model being applied. I note however that this is based on

just one real cluster, and that the Planck-only analysis of high SNR simulations did not produce

mass overestimates.

8.6.2 Variable a and b analysis

For comparison with the results obtained from simulated data in Section 8.5.1.3, I analysed the

PSZ2G063.80+11.42 data using OM III while allowing a and b to vary. Figure 8.12 shows the

resulting posterior distributions for the three analysis methods. As was the case in the simula-

tions, the joint analysis gives a tighter constraint on the Ytot and θp parameters, but does show a

degeneracy in a and b.

8.7 Conclusions

I have introduced a joint likelihood function for data obtained from Planck and AMI in order

to compare inferences obtained using it with those from the individual likelihood functions.

The Bayesian analysis of Planck data was carried out using PowellSnakes (PwS, Carvalho et al.

2012) and AMI data were analysed in a way similar to the method outlined in Feroz et al. (2009)

(and used in the preceeding Chapters); the joint analysis ran both of these simultaneously.

I tried implementing the likelihood hyperparameter method introduced in Lahav et al. (2000)

and Hobson, Bridle, & Lahav (2002). I showed that likelihood ratios cannot be used with the

hyperparameter method by implementing the toy model considered in Hobson, Bridle, & Lahav

(2002). Therefore since PwS evaluates a likelihood ratio it is not compatible with this method.

I generated simulations of clusters using an observational model (OM III, similar to the ones
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Figure 8.10: Marginalised posterior distributions obtained from joint AMI-Planck
analysis of cluster PSZ2G063.80+11.42, using PM I. The dashed line plots are fully
marginalised posterior distributions, while the contour plots are two-dimensional mar-
ginalised distributions. The inner contours correspond to the region of 68% confid-
ence, while the outer contours corresponds to 95%.

used in Chapter 4) for 10 different noise realisations, and analysed the data using the same

model. From looking at the resulting posterior distributions I found the following.

• For low signal-to-noise ratio (SNR) clusters, AMI data alone could be used to constrain

values for the integrated Comptonisation parameter Y and angular radius θ rather well,

but Planck data showed large degeneracies in θ. The joint analysis however showed the

tightest constraints in Y − θ space (generally centred around the simulation input values).
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• For high SNR clusters, the Planck-only analyses gave moderate constraints on θ and good

results for Y , while the AMI-only analyses showed large covariance between Y and θ. The

joint analysis results gave similar results to the former, but with tighter constraints. For all

three analyses, the true value was often in the proximity of the 68% confidence interval

contours, rather than close to their centres.

• When allowing the shape parameters a and b of the generalised NFW model (Nagai,

Kravtsov, & Vikhlinin 2007, used to parameterise the electron pressure) to vary in the

Bayesian analysis, it was found that the joint analysis could generally constrain the Y and

θ parameters better than the individual analyses, but showed degeneracies in a and b.

Using physical models derived in Chapters 2 and 5 I generated cluster simulations and analysed

them with the three likelihood functions to infer cluster mass estimates. From this I found the

following.

• For low SNR clusters I found that AMI underestimated cluster masses on average, but did

recover the true value for some noise realisations. Planck systematically overestimated

the masses by factors of at least two, while the joint analysis also led to overestimations

(but generally to a smaller extent), suggesting it was the Planck likelihood dominating the

joint posterior inferences.

• The gas fraction estimates from the joint analysis for low SNR clusters are consistently

lower than the simulation input values, which suggests that the joint analysis is struggling

to correctly infer the composition of the cluster, which is probably the cause of the mass

overestimates.

• Analysis of high SNR clusters with AMI data gave accurate estimates of the input mass,

while Planck data led to slight underestimates. Application of the joint analysis gave

results similar to the individual analyses.

Finally, I applied the joint analysis to real data for the cluster PSZ2G063.80+11.42 which is

part of the sample of 54 clusters considered in Chapters 3 and 4. I compared the mass estimates

obtained with those obtained from AMI and Planck data and found the following.

• The AMI estimates and joint analysis mass estimates are MAMI(r500) = (3.37 ± 0.76) ×

1014 MSun (obtained in Chapter 4) and MJoint(r500) = (5.74±0.70)×1014MSun respectively.

The two estimates derived from Planck data are MPl, PMI(r500) = (6.98±1.02)×1014MSun

and MPl, slice(r500) = (6.41±0.57
0.58) × 1014 MSun. The former of these was inferred directly

from the PM I posterior distributions. The latter was obtained from the slicing function

method introduced in Planck Collaboration XXVII (2016) and detailed in Section 3.4.
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• The joint analysis estimate is sandwiched in between the other three values, but is closer

to MPl, PMI(r500) than it is MAMI(r500), suggesting that the Planck likelihood has a large

effect on the joint analysis posterior distribution.

• The fact that both Planck data-only mass estimates are higher than the AMI value suggests

that it is the data which are causing the relatively high estimates, at least for the real

example considered here.

• When allowing the GNFW shape parameters a and b to vary, the joint analysis generally

provides much tighter parameter constraints than the individual analyses.
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Monte Carlo sampling methods

For most astrophysical problems, calculating the Bayesian evidence numerically is unfeasible,

especially for high dimensional problems. Likewise, attempting to calculate parameter probab-

ility distributions exactly is computationally impossible. Thus one usually resorts to statistical

sampling to make estimates of these quantities.

Monte Carlo sampling methods are a broad class of computational algorithms that rely on re-

peated random sampling of some distribution to obtain a numerical approximation of the true

results. In the context of Bayesian inference, this amounts to representing a posterior distribution

via a set of ns weighted samples

S = {(Θ1,P1), ..., (Θns ,Pns )}, (9.1)

where Pi is the weight of each sample and
∑ns

i=1 Pi = 1. In this Chapter I give a brief review

of how these samples can be obtained and used to plot approximations of the true posterior

distribution. It serves as a reference to astrophysicists who are new to sampling, and refers to

methods which are well known in the field of statistics.

9.1 Inverse transform sampling

Assuming we can draw independent, identically distributed random variables u that are uni-

formly distributed on [0,1], and provided we can calculate the inverse of the cumulative distri-

135
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2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

ui

θi

F(θ)

Figure 9.1: Left: Illustrating inverse transform sampling for a one-dimensional dis-
tribution P (θ). Once a value for ui is obtained, one draws a horizontal line from
(0,u) until it intersects with F (θ) (black dotted line). The value of θ at the point of
intersection is the point sampled from the distribution (θi , green dotted line). Clearly
the steeper F (θ) is over an interval δθ, the higher the chance of it intersecting with
the horizontal lines corresponding to the uniform [0,1] samples. Right: Illustrating
rejection sampling, taken from Handley (2016). The crosses correspond to samples
from the distribution g(θ). Provided g(θ) > P (θ) for the domain of interest, then the
samples beneath the blue curve (white area) can be regarded as samples from P (θ).

bution function of the posterior F −1, then we can draw random samples from P (Θ). We can

interpret u as being a probability, and thus by evaluating F −1(u) we are finding the value of Θ

which satisfies

u = F (Θ) =

∫ Θ

Θm

P (Θ ′)dΘ ′, (9.2)

where Θm is the component-wise minimum value of Θ over which P (Θ) is defined. The steep-

ness of F at a given point is proportional to the value of P (Θ) and thus regions of higher

probability density will be sampled from more often as shown in the left plot of Figure 9.1.

Consequently the weights of the samples are proportional to the number of times a value of Θ is

sampled. The difficulty in inverse transform sampling arises when F −1 is hard to evaluate.

9.2 Rejection sampling

Rejection sampling involves sampling from a proposal distribution g(θ) to ultimately draw

samples from the distribution of interest P (θ). The only requirement on g(θ) is that g(θ) > P (θ)

for the domain of interest. The method works as follows.
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1) Sample a value of θ (≡ θg) from g(θ) by using e.g. inverse transform sampling.

2) Sample a random variable ug uniformly from the range [0,g(θg )].

3) If P (θg ) > ug , accept the point θg as a sample from P and reject it otherwise. The sample

weights are thus once again proportional to the number of times a value is sampled.

Rejection sampling is demonstrated graphically in the right plot of Figure 9.1. Note that rejection

sampling can be inefficient (reject a lot of samples) when g and P are dissimilar. The similarity

between the two can be quantified by some distribution distance metric such as the Earth Mover’s

Distance used in Chapter 4.

9.3 Markov Chain Monte Carlo sampling

Before talking about Markov Chain Monte Carlo (MCMC) sampling methods I give a primer on

Markov chains and state some of their key properties relevant to MCMC.

9.3.1 Markov chains

9.3.1.1 Types of Markov chain

A Markov chain is a sequence of random variables for which the probability of outcomes for

a particular element of the chain depends only on the state attained in the previous step of the

chain. A Markov chain X can be continuous in time i.e. X ≡ X (t) for t ≥ 0 or discrete,

X ≡ {X0,X1, ...,Xn−1}. In the case of the former we are saying that the chain can be measured at

any time t, while for the latter we are saying X can only be measured at discrete times defined

by the index n. The possible values that X can take (often referred to as the state space, Θ) can

also be continuous or discrete. A continuous state space refers to one in which X can take any

of the (uncountably infinite) values defined on the space. A discrete state space can include a

finite or a countably infinite number of states.

9.3.1.2 Discrete time discrete state space Markov chains

For the properties considered here we will consider discrete time discrete state space Markov

chains only, but note that these ideas generalise to the continuous cases. For more information

on continuous Markov chains we refer the reader to MacKay (2002), Robert & Casella (2004),

and Johansen & Evers (2007). A Markov chain X with discrete time domain and discrete state
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space Θ can be stated mathematically as

P(Xn = θi |Xn−1 = θ j , ...,X0 = θk ) = P(Xn = θi |Xn−1 = θ j ) ≡ Tn, j i , (9.3)

where the θl ∈ Θ. Tn, j i is the transition probability from θ j to θi between steps n − 1 and n.

For a homogeneous Markov chain the transition probability between two states is independent

of time, thus we can write Tn, j i ≡ Tj i .

9.3.1.3 State properties

We will now focus on homogeneous Markov chains and introduce some of their properties rel-

evant to Monte Carlo sampling.

A state θi is said to be accessible from state θ j (denoted θ j → θi) if

inf{n : P(Xn = θi |X0 = θ j ) > 0} < ∞, (9.4)

or equivalently inf{n : Tn
ji > 0} < ∞. inf refers to the infimum of the set (greatest lower bound

of the set). If this condition is satisfied it means that there is a finite probability of moving from

state θ j to state θi after a finite number of steps n. The definition of communication follows

from accessibility: two states θ j and θi are said to communicate with each other (θ j ↔ θi) if

they are accessible from one another

θ j ↔ θi ⇔ θ j → θi and θi → θ j . (9.5)

A Markov chain is said to be irreducible if all states communicate with each other, that is

θ j ↔ θi for all θi , θ j ∈ Θ. This is important in the context of MCMC as a chain with this

property can explore the entire state space without being confined to some portion of it (which

could be determined by the chain’s initial state). The chain is said to be strongly irreducible if

any state can be reached from any other state in a single step i.e. if Tj i > 0 for all i and j.

It is also important to consider the number of paths can take from a state θi before the chain

returns to θi , as this will tell us something about the presence of long-range correlation between

the states of the chain. A state θi has period d(θi ) which is given by

d(θi ) = gcd{n ≥ 1 : Tn
i, i > 0}, (9.6)

where gcd denotes the greatest common denominator of the set. It can be shown that all states

which communicate have the same period, hence for an irreducible Markov chain all states have

the same period. An irreducible Markov chain with d(θi ) = 1 is said to be aperiodic. This
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essentially means that the Markov chain can transition back into the same state that it was in

at the previous step. In the context of MCMC this means that the same value can be sampled

consecutively.

Another quantity relevant to MCMC is the number of times a state is visited, nθi , in the asymp-

totic limit n → ∞. We define this as

nθi =

∞∑
j=0

I(X j − θi ), (9.7)

where I(Y ) equals one for Y = 0 and zero otherwise. The introduction of nθi allows us to

introduce two more properties of Markov chains: transience and recurrence. A state is said to

be transient if

E(nθi ) < ∞, (9.8)

while it is said to be recurrent if

E(nθi ) = ∞, (9.9)

where the expectations are taken in the asymptotic limit. In the case of irreducible chains,

transience and recurrence are properties of the chain itself rather than its individual states, so we

can say that for such a chain all states are either transient or they are all recurrent. If the Markov

chain is recurrent then the samples from MCMC can take any value in Θ an infinite number of

times. Another notion of recurrence can be defined with respect to time rather than frequency

of transitions to a state: if the ‘time’ (number of steps) between a chain moving to state θi and

revisiting the state, τθi,θi has a finite first moment, then the state is said to be positive recurrent.
Note that positive recurrence is also a property of the whole Markov chain in the case that it is

irreducible.

9.3.1.4 Stationarity and reversibility of Markov chains

A distribution µ defined on Θ is said be stationary if

µT = µ, (9.10)

where µ is a row vector of the values of µ(θi ) ≡ µi for all θi ∈ Θ and T is a matrix of transition

probabilities Ti j for all valid i and j. If at any step along the Markov chain its marginal dis-

tribution P(Xi ) is distributed according to its stationary distribution µ, then it stays distributed

according to µ since µTn = µ for arbitrary n.
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A stationary stochastic process is said to be reversible if the statistics of the time-reversed ver-

sion of the process match those obtained in the original. An alternative way of interpreting this

is that the distribution of any collection of future states given the past states must match the

conditional distribution of the past states given the future states. This means that we require

P(X0 = θi |X−1 = θ j ) = P(X0 = θi |X1 = θ j ). (9.11)

It can be shown that if a Markov chain satisfies the detailed balance relation given by

Ti j µi = Tj i µ j , (9.12)

then the chain is reversible. Note that satisfying equation 9.11 is a sufficient condition for a

Markov chain to converge to its stationary distribution (µ). The reversibility property can be

shown by substituting equation 9.12 into 9.11

P(X0 = θi |X−1 = θ j ) = Tj i

=
Ti j µi

µ j

=
P(X1 = θ j |X0 = θi )P(X0 = θi )

P(X1 = θ j )

= P(X0 = θi |X1 = θ j ).

(9.13)

Note that the necessary conditions for a Markov chain (with a discrete state space) to converge

on the target distribution are for it to be irreducible, aperiodic, and for the stationary distribution

to be the target distribution.

9.3.2 Examples of MCMC algorithms

To use MCMC to sample from continuous probability distributions, we must assume that our

Markov chain has a continuous state space for θ, but we still work in discrete time. In this case

the detailed balance relation between steps k and k + 1 along the chain is given by

T (θk+1, θk )µ(θk ) = T (θk , θk+1)µ(θk+1), (9.14)

where T (θk+1, θk )µ(θk ) = P(Xk+1 ∈ Θ |Xk ∈ Θ) and µ(θk ) = µ(Xk ∈ Θ). In the context

of Bayesian inference, the posterior distribution should be the target distribution of the Markov

chain and so we want µ(θk ) ≡ P (θk ). All that is left is to find a form for the transition dis-

tribution that satisfies equation 9.14 (a sufficient condition for the Markov chain to converge to

P (θ)).
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9.3.2.1 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm (MH, Hastings 1970) generates samples from P (θ) using

a relatively simple trial distribution q. For a step along the Markov chain from k to k + 1 the

algorithm operates as follows.

1) Sample a trial point θ ′ from the trial distribution q(θ ′ |θk ).

2) Calculate the acceptance probability α(θ ′, θk ) = min
(
q (θk |θ′)P (θ′)
q (θ′ |θk )P (θk ) ,1

)
.

3) Draw a uniform random variable u from [0,1]. If u < α(θ ′, θk ) set θk+1 → θ ′. Otherwise

θk+1 → θk .

In Section D.1 we show that the MH algorithm satisfies detailed balance, that the MH accept-

ance probability can be derived from the detailed balance relation, and that the MH acceptance

probability is optimal in the sense that it permits the most steps along the chain without violating

detailed balance. The Appendix also gives the relation between T and α.

Like the previous sampling techniques considered, MH produces posterior samples with weights

proportional to the number of times each state is visited.

9.3.2.2 Metropolis algorithm

When the trial distribution q(θ ′ |θk ) is symmetric in its arguments, i.e. q(θ ′ |θk ) = q(θk |θ ′), then

the trial acceptance probability simplifies to (Metropolis et al. 1953)

α(θ ′, θk ) = min
(
P (θ ′)
P (θk )

)
. (9.15)

This form for α still satisfies detailed balance (for suitable P and q) and can be useful when

calculating the trial distribution (not necessarily sampling from it) is difficult, as is the case in

Chapter 10.

9.4 Nested sampling

Skilling (2004) introduced a novel sampling method referred to as nested sampling. This al-

gorithm focuses on calculating the evidence, but also generates samples from the posterior

probability distribution. The key computational expense associated with nested sampling is

the constraint that newly generated samples must be above a certain likelihood value which in-

creases at each iteration.

Initially, Sivia & Skilling (2006) suggested satisfying this constraint by evolving a Markov chain

starting at one of the pre-existing samples and evaluating an acceptance ratio based on the one
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used by the Metropolis algorithm (Metropolis et al. 1953) used in Markov Chain Monte Carlo

(MCMC) sampling (see e.g. MacKay 2002 for a review). A variant of the nested sampling al-

gorithm which focused on sampling from ellipsoids which approximate the region in which the

likelihood constraint is satisfied was also developed (Mukherjee, Parkinson, & Liddle 2006). A

major breakthrough in the applicability of nested sampling to highly multi-modal distributions

came with the invention of clustering nested sampling algorithms (Shaw, Bridges, & Hobson

2007, Feroz & Hobson 2008, and MultiNest. The latter of these was used extensively in the

preceeding Chapters to carry out Bayesian inference). These algorithms effectively sample from

multiple ellipsoids determined by some clustering algorithm, with the aim of approximating

the likelihood constraint for each mode of the distribution. More recently, the slice sampling

algorithm POLYCHORD (Handley, Hobson, & Lasenby 2015, Handley, Hobson, & Lasenby

2015) has been introduced and is effective at navigating high dimensional spaces, due to the fact

that it is not a rejection sampling algorithm. Section 4.1 of Handley, Hobson, & Lasenby (2015)

gives further examples of nested sampling algorithms which have different ways of satisfying

the likelihood constraint.

9.4.1 Overview of the nested sampling algorithm

Nested sampling exploits the relation between the likelihood and ‘prior volume’ to transform

the N-dimensional integral given by equation 2.43 into a one-dimensional integral. The prior

volume X is defined by dX = π (Θ) dΘ for parameter space Θ, thus X is defined on [0,1] and

we can set

X (λ) =

∫
L(Θ)>λ

π (Θ) dΘ. (9.16)

The integral extends over the region(s) of the parameter space contained within the iso-likelihood

contour L (Θ) = λ (see Figure 9.2). Assuming that the inverse of equation 9.16 (λ(X ) =

X−1(λ) ≡ L(X )) exists which is the case when π is strictly positive, then the evidence integral

can be written as (see Section D.2)

Z =

∫ 1

0
L(X )dX. (9.17)

Thus, if one can evaluate L(X ) at ns values of X , the integral given by equation 9.17 can be

approximated by standard quadrature methods

Z ≈

ns∑
i=1

Li (Xi−1 − Xi ), (9.18)
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Figure 9.2: Left plot: Five iso-likelihood contours of a two-dimensional, multi-modal
likelihood L(θ1, θ2). Each contour encloses some fraction of the prior X , with the
colourscale indicating the value of X (darkest: smallest X). Right: Corresponding L
as a function of X plot (not to scale). The area under the curve is equal toZ.

where

0 < Xns < ... < X1 < X0 = 1. (9.19)

Note that one can use more accurate approximations to the integral 9.17 such as the trapezium

rule (which has numerical error O
(

1
n2

s

)
, compared with O

(
1
ns

)
for the sum given above)

Z ≈

ns∑
i=1

1
2

(Li−1 + Li )(Xi−1 − Xi ). (9.20)

However, I use the method given by equation 9.18 in our implementation of the geometric nes-

ted sampler (Chapter 10) for simplicity. Note further that the first inequality in equation 9.19

follows from the fact that there could always remain some tiny prior volume containing a lar-

ger likelihood value than Lns , unless that can be ruled out by some a-priori knowledge of the

maximum value of L.

9.4.1.1 Determining the nested sampling sum

The nested sampling algorithm performs the summation 9.18 as follows. At initiation nl ‘live-

points’ are sampled from the prior π (Θ) which are uniformly distributed in the region Xi−1 (= 1

upon initiation). Note also that L0 = 0 (relevant when the trapezium rule is used). L is calcu-
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lated for each of these points, and the livepoint corresponding to the lowest likelihood value Li

is removed from the livepoint set. This ‘deadpoint’ is replaced by a point drawn from π (Θ), say

Θt, subject to the constraint that Lt > Li . Once this constraint has been satisfied, Θt is added

to the livepoint set. As noted in Skilling (2004), it is intuitive to assume that the shrinkage in X

associated with each iso-likelihood contour is geometric. Hence we can write

X1 = t1X0, X2 = t2X1, ..., Xns−1 = tns−1 Xns−2 , Xns = tns Xns−1 , (9.21)

where each ti lies between zero and one, and can be thought of as the shrinkage factor between

successive shells of the prior volume. In practice it is difficult to determine the exact values of

ti , as the amount of prior volume shrinkage between iso-likelihood contours Li and Li−1 is in

general, non-trivial to calculate. Nevertheless, we can estimate ti statistically as follows. Since

at each iteration of shrinking the prior volume, there are nl livepoints uniformly distributed in

Xi−1, then we can take ti to be the largest of nl uniformly distributed numbers between zero and

one, since the lowest likelihood should be attributed with the smallest volume shrinkage. This

gives the following distribution for the shrinkage factor (derived in Section D.3)

P(ti ) = nl t
nl−1
i . (9.22)

This statistical treatment of the ti can be used to calculate the expected value of Z as well as

its error, as detailed in Keeton (2011). Once ti has been calculated, Xi can be determined and

one is left with nl livepoints uniformly distributed in the range [0,Xi]. For the next iteration of

the algorithm the process is repeated from the step of determining the livepoint with the lowest

likelihood.

As explained in Skilling (2004), the geometric uncertainty associated with the Xi leads to

the idea that log(Z) rather than Z is a normally distributed variable. Assuming the latter to

be normally distributed can result in distributions of Z with variances that suggest Z can take

negative values, which is unphysical. This is the case with the likelihood describing gravitational

wave detection used in Section 10.4.4.3. The mean and variance of a log-normally distributed

random variable, E
[
log(Z)

]
and var

[
log(Z)

]
, can be calculated from the moments of the non-

logarithmic variables as

E
[
log(Z)

]
= 2 log (E[Z]) −

1
2

log
(
E

[
Z2

] )
, (9.23)

var
[
log(Z)

]
= log

(
E

[
Z2

] )
− 2 log (E[Z]) . (9.24)
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Hence our geometric nested sampling algorithm calculates the moments of the linear variables

following Keeton (2011) (in log-space to avoid numerical difficulties, see Section D.4) but the

final evidence estimate and its associated error are calculated using equations 9.23 and 9.24.

9.4.1.2 Stopping criterion

The nested sampling algorithm can be terminated based on an estimate of how precisely the

evidence value has been calculated up to the current iteration. One measure of this is to look

at the ratio of the current estimate of Z to its value plus an estimate of the ‘remaining’ evid-

ence associated with the current livepoints. Since after iteration ns the livepoints are uniformly

distributed in the range [0,Xns], we can approximate their final contribution to the evidence as

Zf ≈
Xns

nl

nl∑
i=1

Li , (9.25)

where Li is the likelihood value of the ith remaining livepoint. The stopping criterion can then

be quantified as
Zf

Zf +Z
< ε. (9.26)

ε is a user defined parameter, which I set to 0.01 in the nested sampling implementations used

in Chapter 10. The final estimate of Z is then updated to be Z → Z + Zf . Note that after a

large number of iterations of the nested sampling algorithm, we can be fairly confident that the

remaining contribution to the evidence is small. Referring back to equation 9.18, as the sampling

progresses the value of (Xi−1 − Xi ) gets smaller and there will be a point part way through the

process, where its value decreases at a rate faster than Li increases. Thus after this point, the

contribution to the evidence at each iteration becomes smaller, until at some point it becomes

negligible (see Figure 9.3).

9.4.1.3 Posterior inferences

OnceZ has been determined, posterior inferences can easily be generated using the deadpoints

and final livepoints from the nested sampling process to give a total of ns + nl samples (and we

set ns → ns + nl ). Each such point is assigned the weight

Pi =
Li (Xi−1 − Xi )

Z
. (9.27)
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logX

XL(X)
L(X)

Figure 9.3: Plots of L(X ) and L(X )X for typical likelihood functions. The area
under the L(X ) curve corresponds to Z. The height of the curve L(X )X , gives an
indication of the contribution toZ for a small fractional change in X . After a number
of nested sampling iterations, this contribution becomes negligible.

Note that for the nl samples obtained from the final set of livepoints Xi−1 − Xi =
Xns
nl

. The

weights (along with the corresponding values of Θ) can be used to calculate statistics of the

posterior distribution, or plot it using software such as getdist or cornera.

9.5 Plotting posterior samples

The set of discrete samples S can be used to determine functional approximations to P. Histo-

grams and kernel density estimation (KDE) are two popular methods deployed to obtain distri-

bution approximations from samples.
ahttps://pypi.python.org/pypi/corner.

https://pypi.python.org/pypi/corner
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9.5.1 Histograms

Histograms provide a quick way to generate a piecewise discontinuous approximation of P (Θ).

The sample weights are ‘binned’ into a series of intervals separating Θ. The new sample weight

for each bin b, P (Θb ), is simply the sum of the P (Θi ) associated with that bin, and the value of

Θb is defined as some function of the corresponding Θi (e.g. their average). For each bin P is

constant over the corresponding interval on Θ and so the function approximation is discontinu-

ous. using a small number of bins reduces the noise associated with the sampling process, but

can lead to key features of the true P (Θ) being missed, while a large number of bins will tend

to overfit to the samples & produce a very ‘peaky’ approximation. Figure 9.4 shows an example

of a histogram with a moderate number of bins, which catches the main features of P but also

includes a noticable amount of sampling noise.

9.5.2 Kernel density estimation

KDE is a non-parametric method for estimating probability densities from samples, which ‘im-

proves’ on simple histograms by smoothing the resulting curve. A continuous function approx-

imation for the posterior, P̂ (Θ) is given by

P̂ (Θ) =

ns∑
i=1

P (Θi )Kh (Θ − Θi ), (9.28)

where Kh is a smoothing kernel with width parameter h. Kh must integrate over its domain to

one (i.e. be a probability density function) to ensure that P̂ (Θ) is also normalised. h determines

the variance of the smoothing kernel and thus how smooth P̂ (Θ) is. Figure 9.4 illustrates the

use of KDE with a Gaussian smoothing kernel and either h = 0.1, h = 0.3, or h = 1b. The latter

value corresponds to a P̂ (θ) which is a poor estimation of P (θ) (due to ‘oversmoothing’ P̂ (θ)

does not reveal the bimodality of P (θ)). The P̂ (θ) corresponding to h = 0.1 and h = 0.3 capture

the bimodality of P (θ), but include a lot of small peaks not present in the true distribution

(‘undersmoothing’). GetDist uses a truncated Gaussian for Kh with the determination of h

based on minimisation of the mean integrated square error c

min
h

[∫
E

[
(P (Θ) − P̂ (Θ))2

]
dΘ

]
. (9.29)

bExample inspired by https://jakevdp.github.io/blog/2013/12/01/kernel-density-estimation/.
cFor more information on the specifics of the implementation of KDE used in GetDist, see https://

cosmologist.info/notes/GetDist.pdf.

https://jakevdp.github.io/blog/2013/12/01/kernel-density-estimation/
https://cosmologist.info/notes/GetDist.pdf
https://cosmologist.info/notes/GetDist.pdf


148 Chapter 9. Monte Carlo sampling methods
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Figure 9.4: Illustration of approximationg a one-dimensional posterior function P (θ)
using a histogram or KDE. P (θ) is a Gaussian mixture model (parameterised in terms
of means and standard deviations): P (θ) = 0.8 × N (−1,1) + 0.2 × N (1,0.3). The
samples S = {(θ1,P1), ..., (θns ,Pns )} are generated by drawing 100 samples from
N (1,0.3) & 400 samples fromN (−1,1), and are assigned to the θni while the weights
are set to unity. The histogram is generated by binning the samples into 30 bins of
uniform width over the range [−4.5,3.5]. The KDE estimates are generated using
a Gaussian function for Kh , with either h = 0.1, h = 0.3, or h = 1. The black
curve represents the ‘true’ form of the function P (θ), the grey region represents the
(discrete) histogram approximation, while the blue, green and red curves correspond
to the P̂ (θ) obtained for the different values of h.
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Geometric nested sampling

Here I present a nested sampling algorithm which provides a new method for satisfying the nes-

ted sampling likelihood constraint (see Section 9.4) based on the Markov method used in Sivia &

Skilling (2006) (and also applied in Feroz & Hobson 2008). Certain parameters relevant to astro-

physics exhibit special properties which mean they naturally parameterise points on geometric

objects such as circles, tori and spheres. The algorithm we introduce here which we refer to as

the geometric nested sampler, exploits these properties to generate samples efficiently and en-

ables mobile exploration of distributions which are defined on such geometries. My implement-

ation of the algorithm can be found at https://github.com/SuperKam91/nested_sampling.

A paper corresponding to the work carried out in this Chapter is going to be submitted to

MNRAS (Javid 2018), and contains several more motivating toy examples for the geometric

nested sampler.

10.1 Nested sampling prior distributions

Bayesian inference has been reviewed in Section 2.6 and nested sampling in Section 9.4. Here

we make a note about the form of the prior distribution π of the parameter set Θ used throughout

this Chapter.

In general for nested sampling, π (Θ) can take any form as long as the distribution integrates to

one and has a connected support (Chopin & Robert 2008; this roughly means that the parts of the

149

https://github.com/SuperKam91/nested_sampling
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domain at which π (Θ) , 0 is not ‘separated’ by the parts at which π (Θ) = 0). For simplicity,

in all examples considered here I assume that each component of the N-dimensional vector

Θ = (θ1, ..., θN ) is independent of one another, and that each π(θi ) is a uniform probability

distribution, so that

π (Θ) =

N∏
i=1

πi (θi ) =

N∏
i=1

1
θmax, i − θmin, i

, (10.1)

where θmax, i and θmin, i are respectively the upper and lower bounds on θi . Values for θmax, i and

θmin, i used in the examples presented here will be stated in the following Sections.

10.2 Satisfying the likelihood constraint

At each step of the nested sampling iteration, one needs to sample a new point which satisfies

Lt > Li . As mentioned in Section 9.4, considerable work has been put into increasing the

efficiency of this process, as it is by far the most computationally expensive step of the nested

sampling algorithm. I now give a review of the Metropolis nested sampling method used by

Sivia & Skilling (2006) and Feroz & Hobson (2008), which forms the basis of the method used

in geometric nested sampling.

10.2.1 Metropolis nested sampling

The Metropolis nested sampling method is an adaption of the Metropolis algorithm used in

MCMC sampling of a posterior distribution (see Sections 9.3 and D.1). The acceptance ratio for

the Metropolis nested sampling algorithm takes the form

α =




min [π (Θt) /π (Θl ) ,1] if Lt > Li ,

0 otherwise.
(10.2)

Here Θl is obtained by picking one of the current livepoints at random, and using its value of Θ.

The value for Θt is sampled from a trial distribution q (Θt |Θl ). Sivia & Skilling and Feroz et al.

use symmetric Gaussian distributions centred on Θl for q (Θt |Θl ). The trial point is accepted to

be a new livepoint (replacing the deadpoint associated with Li) with probability α. Note that

equation 10.2 implicitly assumes that the proposal distribution is symmetric in its arguments, that

is q (Θt |Θl ) = q (Θl |Θt). In the case that the proposal distribution is asymmetric, the acceptance

ratio includes an additional factor q (Θl |Θt) q (Θt |Θl ) (in which case the algorithm is referred

to as the Metropolis-Hastings algorithm, see Section 9.3). The fact that the Metropolis nested
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sampling method uses the current livepoints as a ‘starting point’ for selecting Θt, means that

the autocorrelation between the livepoints is high, which in turn leads to biased sampling. This

can be prevented by increasing the variance of the trial distribution used, or by requiring that

multiple trial points must be accepted before the final one is accepted as a livepoint, i.e. after the

first accepted trial point is found, set Θl → Θt and use this to sample a new Θt from q (Θt |Θl ).

This can be repeated an arbitrary number of times, but in general more iterations leads to a lower

correlation between the livepoint used at the beginning of the chain and the final accepted trial

point which is added to the livepoint set. Sivia & Skilling suggest that at each nested sampling

iteration, the number of trial points generated nt to get a new livepoint should be ≈ 20. In my

implementation I set this number to 20 × N where N is the dimensionality of the parameter

estimation problem. Note that nt includes both accepted and rejected trial points. Sivia and

Skilling also suggest that the acceptance rate for the trial points at each nested sampling iteration

should be ≈ 50%. This is because a high acceptance rate usually suggests high auto-correlation

between the successive trial points, whilst a low acceptance rate can suggest high correlation

between the final accepted trial point and the one used to initialise the chain, as too few steps

have been made between the two. In the extreme case that the acceptance rate is zero, the process

of picking a new livepoint has failed, as one cannot have two livepoints corresponding to the

same Θ. The acceptance rate is affected by the variance of the trial distribution, a large variance

usually results in more trial points being rejected (especially near the peaks of the posterior).

Sivia & Skilling suggest updating the trial standard deviation as

σt →




σt exp(1/Na) if Na > Nr,

σt exp(−1/Nr) if Na ≤ Nr,
(10.3)

where Na and Nr are the number of accepted and rejected trial points in the current nested

sampling iteration respectively. Note however that I determine the variance using different meth-

ods (see Sections 10.3.3 and 10.3.6).

Feroz et al. incorporate the Metropolis likelihood sampling into their clustering nested

sampling algorithm rather than use it in isolation. The geometric likelihood sampling I introduce

in the next Section is a modified version of the Metropolis algorithm used in isolation.

10.3 Geometric nested sampling

One key issue with Metropolis nested sampling is that at each nested sampling iteration, if too

many trial points are rejected, then the livepoints will be highly correlated with each other after
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Figure 10.1: ‘Vanilla’ non-wrapped trial distribution. The blue curve represents a
Gaussian ‘vanilla’ trial distribution q(θ ′ |θ) with starting point θ = 0.1, and sampled
trial point θ ′ = −0.1 shown by the blue cross. The support of π is indicated by the red
dashed lines ([0,1]). Since θ ′ lies outside the support of π, it would automatically be
rejected by the Metropolis algorithm.

a number of nested sampling iterations. To prevent this one must sample a large number of trial

points in order to increase the number of acceptances and decrease the auto-correlation of the

trial point chain. This solution can be problematic if computing the likelihood is computationally

expensive. One particular case in which the sampled point is guaranteed to be rejected, is if the

point lies outside of the domain of P (support of π). Such a case is illustrated in Figure 10.1 for

parameter θ. Of course, this can be avoided by adapting q (Θt |Θl ) so that it is truncated to fit

the support of π, but in high dimensions this can be tedious, and inefficient in itself. Hence one

desires an algorithm which does not sample outside the support of π, without having to truncate

q.

Another issue which most sampling algorithms are subject to occurs when the modes of the

posterior distribution are far away from each other in Θ space, e.g. when they are at ‘opposite
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ends’ of the domain of π. In the context of nested sampling this can result in one or more of

the modes not being sampled accurately, particularly in the case of low livepoint runs. Thus

a sampling algorithm should be able to efficiently manoeuvre between well separated modes

which lie at the ‘edges’ of π’s support.

Geometric nested sampling attempts to solve these two issues by interpreting parameter

values as points on geometric objects, namely on circles, tori and spheres.

10.3.1 Wrapping the trial distribution

A relatively straightforward way of ensuring that the trial points sampled from q are in the sup-

port of π is to ‘wrap’ q. This is illustrated in Figure 10.2, where we consider a one-dimensional

uniform prior on [0,1]. For any point θ, there will be a non-zero probability of sampling a value

of θ ′ from the trial distribution q(θ ′ |θ) that lies outside [0,1]. If the point sampled has a value

of say θ ′ = −0.1, then if we consider q to be wrapped around the support this can be interpreted

as sampling a point at value θ ′ = 0.9. More generally, if θ ′ is outside the support of π defined

by upper and lower bounds θmax and θmin it will be transformed as

θ ′ =




θmax −W (θ ′) if θ ′ > θmax,

θmin + W (θ ′) if θ ′ < θmin,
(10.4)

where

W (θ) =




(θ − θmax) mod (θmax − θmin) if θ > θmax,

(θmin − θ) mod (θmax − θmin) if θ < θmin.
(10.5)

Assuming the support of π is connected (a requirement of nested sampling, as stated in Sec-

tion 10.1), then this operation will be well defined for all π with bounded supports, of arbitrary

dimension. Using this transformation does not affect the argument symmetry of q, thus the value

of α given by equation 10.2 still holds. Furthermore, this symmetry ensures that the detailed bal-

ance relation given by equation 9.14 is still satisfied.

10.3.2 Circular parameters

As well as ensuring that none of the sampled trial points lie outside the support of π, the wrapped

trial distribution can also improve the manoeuvrability of the sampling process, since the trial

point chain can always ‘move in either direction’ without stepping outside of the support of π.

This proves to be particularly useful for ‘circular parameters’. Here I define circular parameters
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Figure 10.2: Wrapped trial distributions. The solid blue curve represents a Gaussian
trial distribution q(θ ′ |θ) as in previous Figure, but now incorporating the wrapping
methodology. As a result of the wrapping, θ ′ (blue cross) is at 0.9, and so won’t be
automatically rejected by the Metropolis algorithm. The green curve shows the same
trial distribution q(θ |θ ′) centred on 0.9. The fact that θ = 0.1 (green cross) is sampled
from q(θ |θ ′) with the same probability as θ ′ is from q(θ ′ |θ) shows that the wrapped
trial distribution is still symmetric with respect to its arguments (provided q(a |b) is a
symmetric function about the point b).

to be those whose value at θmax and θmin correspond physically to the same point. Examples

of circular parameters include angles (which are circular at e.g. zero and 2π) and time periods

(e.g. 00:00 and 24:00). Often, circular parameters have probability distributions associated with

them which are also circular. An example of a circular distribution is the von Mises distribution,

an example of which is shown in Figure 10.3 (and defined in Section 10.4.1). This particular

example shows that the function’s peak(s) may be split by the wrapping, so that when plotted

linearly, they appear to have to ‘half peaks’ about θmax and θmin. Such half peaks would be

classified as two separate peaks by clustering nested sampling algorithms. Thus in general,

the number of livepoints would need to be increased to accommodate for the higher number
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Figure 10.3: von Mises distribution with domain [−π,π], centred on π. The peak
wraps around at edges of domain, so that it appears as two half peaks on a linear
space.

of modes, to ensure both half peaks are sampled adequately without one cluster ‘dying out’.

Furthermore, the two half peaks occur at opposite ends of the domain of a linear space, making it

more difficult for a sampler to explore the regions of higher probability efficiently. The wrapped

trial distribution resolves both of these issues, as the two half peaks in linear space are treated as

one full peak as far as the sampling (and allocation of livepoints) is concerned. Consequently, the

second issue of the half peaks being far away from each other is automatically eradicated. The

wrapped trial distribution methodology can thus be applied to problems which involve sampling

on non-Euclidean spaces. I apply the method to toy models with distributions defined on circles

and tori in Sections 10.4.1 and 10.4.2 respectively. Furthermore, I apply the methodology to a

practical example in Section 10.4.4.
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10.3.3 Variance of the trial distribution

As with any sampling procedure which relies on a trial distribution, picking a variance for the

distribution is difficult without a-priori knowledge of the posterior distribution you are sampling

from. A low variance results in a lot of trial points being accepted, but a high auto correlation

between these points. A high variance gives a lot of trial rejections, but when these points are

accepted, their correlation with the starting point is often low. Since picking the trial variance

can in itself be a mammoth task, I use a simplistic approach and take it to be

0.1 ×
�����

max
livepoints

(θi ) − min
livepoints

(θi )
�����
, (10.6)

for each component i of Θ. I use this approach to avoid the sampler from taking large steps when

the livepoints are close together. However, I acknowledge that this method is far from optimal

when the livepoints are compactly located at the edges of the domain of P (Θ).

10.3.4 Non-Euclidean sampling via coordinate transformations

The wrapped trial distribution introduced in Section 10.3.1 can in theory be used in Metropolis

nested sampling to sample effectively from circular and toroidal spaces parameterised in terms

of circular variables. However, it is not particularly effective at sampling from spherical spaces,

since wrapping around the zenith angle (usually defined on [0, π]) would result in discontinuous

jumps between the poles of the sphere. One could of course just wrap the trial distribution in

the dimension representing the azimuthal angle (usually defined on [0,2π]), rather than in both

angles. However, this would re-introduce the issues stated in Section 10.3, i.e. wasting samples

and inefficient exploration of the parameter space. I therefore propose an alternative method for

exploring spherical spaces which I incorporate in the geometric nested sampling algorithm.

10.3.5 Spherical coordinate transformations

Assuming the surface of a unit sphere is parameterised by azimuthal angle φ on [0,2π] and

zenith angle θ on [0, π], then the corresponding Cartesian coordinates are

x = r cos(φ) sin(θ),

y = r sin(φ) sin(θ),

z = r cos(θ),

(10.7)

with r = 1. Note that φ is the angle measured anti-clockwise from the positive x-axis in the x–y

plane and θ is the angle measured from the positive z-axis. Thus a trial point φt, θt can be sampled
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as follows. Starting from a point φl , θl , calculate xl , yl , zl , from which a trial point x ′, y′, z′

can be sampled from q(x ′, y′, z′ |xl , yl , zl ). We use a three-dimensional spherically symmetric

Gaussian distribution for q(x ′, y′, z′ |xl , yl , zl ). In general, the point x ′, y′, z′ will not lie on the

unit sphere. Nevertheless the point is implicitly projected onto it by solving the equations given

by 10.7 simultaneously for φ and θ, where we set x = x ′, y = y′, z = z′, and r = r ′ (see

Figure 10.4). The resulting values are φt and θt, from which the acceptance ratio given by

equation 10.2 can be evaluated as normal. There are a few things to note about sampling the trial

point in the Cartesian space. Firstly, for equation 10.2 to hold we must have q(φt, θt |φl , θl ) =

q(φl , θl |φt, θt), which is equivalent to∫
x′∈{xt,φ,θ }

q(x ′ |x)dx ′ =

∫
x∈{xl,φ,θ }

q(x |x ′)dx, (10.8)

where x ′ = (x ′, y′, z′) and x = (x, y, z). {xt,φ,θ } are the set of Cartesian coordinates which

satisfy 10.7 for φ = φt, θ = θt, & all r , 0. Similarly {xl,φ,θ } are the x which satisfy 10.7 for

φ = φl & θ = θl (see Figure 10.4). Due to the symmetry of the spherical coordinate system,

these sets of vectors lie along the lines given by (φt, θt) and (φl , θl ) respectively. The only

additional requirement for equation 10.8 to hold is that q(x ′, y′, z′ |x, y, z) is symmetric in its

arguments, which it is provided that q(a |b) is a symmetric function about the point b. As in

Section 10.3.1, the symmetry of the trial distribution ensures that the detailed balance relation

given by equation 9.14 is still satisfied.

Sampling in Cartesian coordinates eliminates the risk of sampling points which are automat-

ically rejected (due to being outside the support of π(φ,θ)) to a negligible level, since the only

points in Cartesian coordinates which are ill-defined in spherical coordinates are x = y = 0 for

all z. How the coordinate transformation improves the manoeuvrability of the sampler relative

to sampling in the original parameter space is less clear-cut. For the latter, when the variance is

fixed the step sizes taken by the sampler along the surface of the sphere depend on where you

start from. For example, at θ ≈ 0, large moves in φ will result in relatively small steps along

the sphere whereas at θ ≈ π/2 such moves in φ would result in large steps along the sphere.

However when sampling in a Cartesian coordinate system, for a constant variance (see below),

the trial points sampled will have the same average step size in Euclidean space regardless of the

starting point. Furthermore due to the symmetry of a sphere, when the sampled point (x ′, y′, z′)

is projected back onto the sphere (implicitly when determining φt and θt), the variance of the

steps along the sphere is still independent of the starting point. In either the original parameter

space or the transformed space, the variance of the trial distribution can be tweaked to adjust
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Figure 10.4: Sampling points on the surface of a sphere in Cartesian coordinates.
The three-dimensional trial distribution is centred at the point (xl , yl , zl ), which cor-
responds to (φl , θl ). The point (x ′, y′, z′) sampled from q in general will not lie on
the surface of the sphere, however the point is implicitly projected onto the sphere at
(xt, yt, zt) when calculating (φ′, θ ′) [ ≡ (φt, θt)].

the average step size of the sampler. Nevertheless, it seems more intuitive to me to perform

the sampling in the space in which adjusting the variance has an effect which is independent of

where you are sampling from.

A spherical distribution is used in the toy model presented in Section 10.4.2, and also features

in the gravitational wave detection likelihood function in Section 10.4.4.

10.3.6 Variance of the Cartesian trial distribution

For given variances of φ and θ: σ2
φ & σ2

θ , the variance corresponding to a function of these two

variables is given by

σ2
f =

(
∂ f
∂φ

)2

σ2
φ +

(
∂ f
∂θ

)2

σ2
θ + 2

∂ f
∂φ

∂ f
∂θ
σφ,θ , (10.9)
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where σφ,θ is the covariance between φ and θ. Hence one can calculate the corresponding

variance in Cartesian coordinates, σ2
x , σ2

y , and σ2
z by substituting the equations given by 10.7

into equation 10.9. Using these values for q(x ′, y′, z′ |x, y, z) however, leads to an asymmetric

trial distribution in its arguments, since the variance is now a function of θ and φ. Our entire

formulation of the geometric nested sampling algorithm requires q to be symmetric in order for

equations 10.2 and 9.14 to hold. Thus we set σ2
x = σ2

y = σ2
z = 4/100 to ensure q is symmetric.

10.3.7 Non-spherical coordinate transformations

The transformation of the trial sampling problem introduced in the previous Section need not

be unique to the case of a sphere. Indeed, our implementation of geometric nested sampling

includes the option to transform to Cartesian coordinates from circular or toroidal parameters.

This is done in the same way as described for the spherical case, but with the relations given

by 10.7 replaced with the equivalent transformations for a circle or torus.

10.3.7.1 Circular coordinate transformations

For a parameter which can be interpreted as representing points on a circle e.g. φ ∈ [0,2π], we

can transform φ into the Cartesian coordinates of a unit circle,

x = r cos(φ),

y = r sin(φ),
(10.10)

with r = 1. A trial point can be sampled as described for the spherical case but working in

two dimensions instead. The symmetry of a circle ensures that the trial distribution q(φt |φl ) is

symmetric in its arguments as long as the Cartesian trial distribution q(x ′, y′ |x, y) adheres to the

same symmetry. This is indeed true when a circularly symmetric Gaussian distribution is used

for q(x ′, y′ |x, y). The circular transformation and sampling process is illustrated in Figure 10.5.

10.3.7.2 Toroidal coordinate transformations

In the case of two parameters representing points on a circle e.g. φ ∈ [0,2π] and θ ∈ [0,2π],

either we can apply separate circular coordinate transformations to each parameter, or we can

say that together they parameterise points on the surface of a torus (Figure 10.6). In the latter
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Figure 10.5: Sampling points on the perimeter of a circle in Cartesian coordinates.
The two-dimensional trial distribution is centred at the point (xl , yl ), which corres-
ponds to φl . The point (x ′, y′) sampled from q in general will not lie on the perimeter
of the circle, however the point is implicitly projected onto it at (xt, yt) when calculat-
ing φ′ [ ≡ φt].

case φ and θ can be expressed in terms of Cartesian coordinates through

x = (R + r cos(θ)) cos(φ),

y = (R + r cos(θ)) sin(φ),

z = r sin(θ),

(10.11)

where: R is the distance from the centre of the tube to the centre of the torus and r is the radius

of the tube; φ is the angle between the positive x-axis and the line from the centre of the torus

to the point (x, y), measured anti-clockwise; and θ is the angle between (a) the line in the x − y

plane pointing ‘outwards relative to the centre of the torus’ from the centre of the tube, and (b)

the line from the centre of the tube to point (x, y, z) (also measured anti-clockwise).

In the case of a torus the Cartesian sampling has an additional complication compared with the

circular and spherical cases with regards to q(φt, θt |φl , θl ) being symmetric in its arguments.
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Figure 10.6: Sampling points on the surface of a torus with major and minor radii R
and r in Cartesian coordinates. R corresponds to the distance from the centre of the
torus (centre of the whitespace in the middle of the grey tube) to the centre of the cross
section (depicted as grey circles) of the torus, while r is the radius of the torus’ cross
section. The three-dimensional trial distribution is centred at the point (xl , yl , zl ),
which corresponds to (φl , θl ). The point (x ′, y′, z′) sampled from q in general will
not lay on the surface of the torus, however the point is implicitly projected onto it
at (xt, yt, zt) when calculating (φ′, θ ′) [ ≡ (φt, θt)]. The projection of a general point
(x, y, z) onto a torus will be such that the distance between the point and the centre of
the torus cross section (corresponding to the point it is projected to) is minimised.

If we first restrict our thinking to the two-dimensional half-plane defined by φ = φp for arbitrary

φp , the torus maps out a circle with radius r at a distance R from the origin (note that this is

just the cross-section of the torus at φ = φp , see Figure 10.7). If we consider sampling (in

two dimensions) from a point on this circle, if the sampled point is at θ ′ = π and the distance

between this point and the centre of the circle is > R, then the sampled point is not on the

half-plane corresponding to φp but is instead on the one defined by φ = φp + π. Consequently

when the trial point is projected back onto the torus, it is projected onto a point corresponding to

φ = φp +π. This implies that there is an asymmetry in the probability of sampling a point which

is projected onto the part of the torus corresponding to π/2 < θ ≤ 3π/2 relative to sampling

a point which projects onto the part corresponding to 0 ≥ θ ≤ π/2 plus 3π/2 < θ ≤ 2π;

the probability of picking a point in the region given by the latter is higher for an unrestricted

trial distribution since the half-plane extends out to infinity. This can be avoided by restricting

the range in which (x ′, y′, z′) is sampled from such that the shortest distance between the point

(x ′, y′, z′) and the centre of the tube of the torus is ≤ R. This ensures that for a symmetric q the
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R

r

φpφp + π

x

z

θ

Figure 10.7: Torus cross section at φ = φp and φ = φp + π in x–z plane. If the
sampled point lies in the half-plane (shaded blue) defined by φ = φp , it will be pro-
jected onto the circle in this half-plane, otherwise it will be projected onto the circle
in the φ = φp + π half-plane (shaded pink).

probability of sampling a point from the range π/2 < θ ≤ 3π/2 is the same as from 0 ≥ θ ≤ π/2

plus 3π/2 < θ ≤ 2π, and thus q(x ′, y′, z′ |x, y, z) is symmetric in its arguments for fixed φ.

A similar thought experiment can be applied to the case when θ is fixed and φ is allowed to vary.

For arbitrary θ this maps out two-dimensional surfaces in the three-dimensional sampling space,

for which the restricted sampling stated above results in q being symmetric in its arguments as

long as θ remains fixed.

When varying φ and θ simultaneously during (three-dimensional) sampling (as you would in

the real implementation of the algorithm) there is no trivial way to truncate the trial distribution

to ensure q(x ′, y′, z′ |x, y, z) is symmetric in its arguments. Thus one is required to evaluate the

set of integrals given by 10.8 (but over integration domains which satisfy 10.11 for given φl , θl
and φt, θt) to determine q(φt, θt |φl , θl ) and q(φl , θl |φt, θt). Using the truncated trial distribution

(introduced when considering fixed φ) with the variance stated in Section 10.3.6 I found that

q(φt, θt |φl , θl ) and q(φl , θl |φt, θt) vary by no more than O(10−6) and on average by O(10−8).
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Given the circular nature of the variables parameterising the points on a circle / torus, I do not

think that performing coordinate transformations for these objects will give any advantages over

using the wrapped trial distributions in the original parameter spaces. Hence in the applications

considered in this thesis, parameters which exhibit circular or toroidal properties will be sampled

using the wrapped trial distribution, whilst those of a spherical nature will be sampled using the

coordinate transformation methodology. The coordinate transformation methodology can be

applied to arbitrary geometries. However geometries which lack symmetry will in general be

much more difficult to sample from without breaking the trial distribution symmetry requirement

of the Metropolis acceptance ratio. In this case the Metropolis-Hastings acceptance ratio for

nested sampling must be used

αMH =




min
[
π (Θt)q (Θl |Θt)
π (Θl )q (Θt |Θl ) ,1

]
if Lt > Li ,

0 otherwise.
(10.12)

One can assume that such unsymmetrical geometries mean the integrals associated with calculat-

ing the trial distributions distributions in Euclidean space become non-trivial to evaluate. Failure

to evaluate equation 10.12 correctly would likely lead to violation of detailed balance which is

a sufficient condition for a Markov chain to asymptotically converge to the target distribution.

10.4 Applications of geometric nested sampling

I now apply the geometric nested sampling algorithm to models which include circular, tor-

oidal and spherical parameters. I evaluate the algorithm’s performance by plotting the posterior

samples using corner. I also conduct the analysis with the ‘vanilla’ Metropolis nested sampling

algorithm. For circular and toroidal parameters, the vanilla algorithm doesn’t use a wrapped

trial distribution. In the case of spherical parameters, the vanilla algorithm does not transform to

Cartesian coordinates before sampling from the trial distribution. For further comparison, I cal-

culate posterior samples using MultiNest (Feroz, Hobson, & Bridges 2009) (i.e. the algorithm

I have used for all Bayesian inferences done in the preceeding Chapters), a state of the art clus-

tering nested sampling algorithm, effective in low dimensional problems.

I refer to the samples / distributions obtained from the geometric nested sampler as MG (Metro-

polis geometric nested sampling), those obtained from the vanilla Metropolis nested sampler as

M, and those obtained from MultiNest as MN.

For all applications I run the algorithms twice, once with a low number of livepoints (50), and

once with a high number of livepoints (500).
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10.4.1 Toy model I: circular distribution

I first consider the problem of a one-dimensional circular distribution from which we would like

to sample from. The model is parameterised by one variable φ, which is defined on [0,2π].

Referring back to Section 10.1 I take π(φ) to be uniform on [0,2π]. For the likelihood function,

I use the von Mises distribution introduced in Section 10.3.2 and defined by

L
(
φ|µ,σ2

)
=

exp(cos(φ − π − µ)/σ2)

2πI0
(

1
σ2

) , (10.13)

where µ and σ are the mean and standard deviation of the distribution, and I0(x) is the zeroth

order modified Bessel function. Here I set µ = 0 so that the peak of the posterior distribution is

wrapped around [0,2π], and appears as two half peaks. I set the variance equal to 0.25.

Since the problem involves the circular parameter φ, the geometric nested sampling algorithm

uses a wrapped trial distribution.

10.4.1.1 Low livepoint runs

Figure 10.8 shows the posterior distribution obtained for toy model I from the three samplers

using a low number of livepoints. Note that the Figure also includes a curve plotted from samples

which were obtained by evaluating the posterior distribution analytically over a uniform range

of φ values. I refer to this curve as the theoretical (T) result. The three samplers obtain similar

results in the central bins where the probability density is low. However the distributions become

asymmetric towards the edges of the domain when compared with the T curve. Overall the MG

and MN samplers marginally outperform the M sampler, given the latter has a large asymmetry

between the first (φ ≈ 0) and final (φ ≈ 2π) bins.

10.4.1.2 High livepoint runs

Figure 10.9 shows the results when a high number of livepoints is used for the nested sampling

algorithms. The plot shows that all three algorithms do a much better job of replicating the T

curve than when they were used with a low number of livepoints, with the MG samples giving

the curve most similar to the T result.

10.4.2 Toy model II: toroidal distribution

I next consider a two-dimensional problem where each parameter is circular. I refer to this as

a toroidal model, as it is equivalent to sampling from the surface of a torus parameterised by
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Figure 10.8: Posterior distributions of the circular toy model defined in Sec-
tion 10.4.1. The black curve corresponds to samples obtained from the analytical
expression for P (φ) evaluated over a range of φ values. The blue, red and green
curves correspond to the samples obtained from the M, MG and MN algorithms re-
spectively. All three samplers were run with 50 livepoints.

two angles φ and θ. We take both π(φ) and π(θ) to be uniform on [0,2π]. For the likelihood

function, I again use the von Mises distribution, and take the likelihood functions for φ and θ to

be independent so that

L
(
φ,θ |µφ ,σ

2
φ , µθ ,σ

2
θ

)
= L

(
φ|µφ ,σ

2
φ

)
L

(
θ |µθ ,σ

2
θ

)
, (10.14)
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Figure 10.9: Posterior distributions of the circular toy model with the number of
livepoints set to 500. The colour coding of the plot is as described in Figure 10.8.

where the likelihood for each individual parameter takes the form of equation 10.13. I set µφ =

µθ = 0 so that the two-dimensional posterior contains four ‘quarter peaks’ at the corners of its

domain. I also take σ2
φ = σ2

θ = 0.25.

Since this model represents a toroidal distribution (or two circular distributions), the geometric

nested sampling algorithm uses wrapped trial distributions to sample φ and θ.
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10.4.2.1 Low livepoint runs

Figure 10.10 shows the posterior distributions obtained for toy model II from the three samplers

using a low number of livepoints. As in Section 10.4.1, samples of the analytical posterior are

included for comparison. Looking at the one-dimensional marginalised posteriors for φ and

θ, the M algorithm does a poor job at recovering the true distribution, overestimating the half

peaks at low values of φ,θ and overestimating them at high φ,θ. The MG algorithm does a

relatively good job of replicating the T distribution, and looking at the marginalised posteriors,

outperforms MN at three of the four half peaks (MN does better at the θ ≈ 0 peak). One may

expect MN to struggle with such a distribution, using a low number of livepoints. Since the four

quarter peaks will appear to a clustering algorithm as four separate peaks, MN will on average

assign 12.5 livepoints to each of these peaks, which may not be enough to sample each peak

adequately. The MG algorithm on the other hand treats these four quarter peaks as one, and so

you would expect it to be able to use all 50 livepoints to sample this peak relatively well.

10.4.2.2 High livepoint runs

The high livepoint run results for the toroidal distribution are shown in Figure 10.11. All three

samplers recover the true distribution well, with the M and MG giving marginally better results

than MN. This is perhaps surprising since one would expect MN to easily be able to cope with

four modes using 500 livepoints. It does however, highlight the possibility that it is not the

number of peaks that MN is struggling with, it is their shape that is causing it to underperform

relative to the other two samplers.

10.4.3 Toy model III: spherical distribution

For the final toy model I consider the posterior distribution of two angles which parameterise

the surface of a sphere. As in Section 10.3.5, φ and θ represent the azimuthal and zenith angles

respectively. I take π(φ) to be uniform on [0,2π], and π(θ) to be uniform on [0, π]. I use a

von Mises distribution for L
(
φ|µφ ,σ

2
φ

)
with µφ = 0 and σ2

φ = 0.25. For L
(
θ |µθ ,σ

2
θ

)
I use a

truncated Gaussian (defined on [0, π]) with µθ = π/2 and σ2
θ = 0.25.

For this model the geometric nested sampling algorithm uses the spherical transformation sampling

procedure detailed in Section 10.3.5 to sample φt and θt.
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Figure 10.10: Posterior distributions of the toroidal toy model defined in Sec-
tion 10.4.2, with the number of livepoints set to 50. The colour coding is as described
in Figure 10.8. The plots along the diagonal show the one-dimensional marginalised
posteriors for φ and θ. The centre plot shows the joint two-dimensional posterior.

10.4.3.1 Low livepoint runs

Figure 10.12 shows the posterior distributions obtained for toy model III from the three samplers

using a low number of livepoints, plus the T samples. The circular distribution of φ is well

recovered by the M and MG algorithms, but less so by MN. All three samplers do a relatively

poor job of recovering the truncated Gaussian distribution of θ, with M probably giving the best

results due to the symmetry of its distribution.
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Figure 10.11: Posterior distributions of toroidal toy model with the number of live-
points set to 500. The colour coding and layout of the plots is as explained in Fig-
ure 10.10.

10.4.3.2 High livepoint runs

When 500 livepoints are used for the samplers (Figure 10.13), the MG and MN algorithms

recover the φ profile similarly well. However, the MG sampler seems to slightly overestimate

P (θ) at high probability densities, and underestimate it to a similar extent at low densities.
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Figure 10.12: Posterior distributions of the spherical toy model with the number of
livepoints set to 50. The colour coding and layout of the plots is as explained in
Figure 10.10.

10.4.4 Practical example: gravitational wave emission from binary black hole
mergers

I now consider a likelihood function which corresponds to detecting gravitational waves from

(binary) black hole mergers. The data for the likelihood are obtained from the LIGOa and

Virgob interferometers (see e.g. Abbott et al. 2016 and Lange & LIGO-Virgo Collaboration
ahttps://www.ligo.caltech.edu/page/ligo-gw-interferometer.
bhttp://www.virgo-gw.eu/.

https://www.ligo.caltech.edu/page/ligo-gw-interferometer
http://www.virgo-gw.eu/
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Figure 10.13: Posterior distributions of the spherical toy model with the number of
livepoints set to 500. The colour coding and layout of the plots is as explained in
Figure 10.10.

2018). I now give a brief overview on gravitational waves and how they are detected, but for

more thorough analysis see e.g. Hobson, Efstathiou, & Lasenby (2006), Kokkotas (2008), or

Blanchet (2014).
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10.4.4.1 Origin of gravitational waves

For an observer lying in a region of spacetime satisfying the Minkowski metric ηµ,ν , fluctuations

in the metric can be described by a linear perturbation

gµν = ηµν + hµν , (10.15)

where the perturbations are assumed to be small (|hµν � 1|). By solving Einstein’s field equa-

tions using the metric given by equation 10.15, it can be shown that the tensor which represents

the gravitational field

h̃µν = hµν −
1
2
ηµνhαα , (10.16)

satisfies the wave equation for a vacuum, and hence has a solution

h̃µν = Aµν exp(ikα xα ), (10.17)

where Aµν describe the wave’s polarisation and amplitude.It can be shown that by setting an

appropriate gauge (the Transverse-Traceless gauge) that Aµν can be defined in terms of two

polarisation states h+ and h×. For a gravitational wave travelling in the z direction, the tensor

h+ causes simultaneous expansion (contraction) in the x direction and contraction (expansion)

in the y direction. h× acts similarly at an angle π/4 to the x–y axes.

Exact solutions of Einstein’s field equations have not yet been found, leading to the devel-

opment of analytic approximations such as the Post-Newtonian (PN) approximation (see e.g.

Asada & Futamase 1997) to determine h+ and h×. Here we consider the PN approximation up

to second order for inspiralling black hole binary systems as described in Blanchet et al. (1996).

10.4.4.2 Detection of gravitational waves

Laser beam interferometers such as LIGO and Virgo detect gravitational waves by measuring

the differential arm length between perpendicular arms of the interferometers. The differential

measured is proportional to the gravitational strain h, which describes the fractional change in

proper space caused by the gravitational perturbation. h can be written as a linear combination

of the two polarisation states h+ and h×

h(t) = F+h+(t) + F×h×(t), (10.18)

where t denotes the time at which the strain is measured, and F+ & F× are functions dependent on

the geometry of the detector. Here we consider three detectors: LIGO Hanford, LIGO Livingston

and Virgo. The geometries used in this analysis for these detectors can be found at https:

//www.ligo.org/scientists/GW100916/GW100916-geometry.html.

https://www.ligo.org/scientists/GW100916/GW100916-geometry.html
https://www.ligo.org/scientists/GW100916/GW100916-geometry.html
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10.4.4.3 Likelihood function for gravitational wave detection

Assuming we have nd data points {xi, j } recorded at times {ti } for each detector j, then the

likelihood function is given by

L (Θ) =

nd∏
i=1

3∏
j=1

1
√

2πσ
exp

*..
,
−

(
xi, j − h j (ti ,Θ)

)2

2σ2

+//
-
, (10.19)

where hi, j (ti ,Θ) is the theoretical strain and is dependent on the model parameters Θ (defined

below). In the analysis presented here we consider data which are simulated by evaluating

h j (ti ,Θ) for fixed model parameters (say θr), i.e. we set

xi, j ≡ h j,θr (ti ). (10.20)

Furthermore, we set σ = 1 × 10−21 and nd = 1000.

10.4.4.4 Model parameters

Θ is a nine-dimensional vector with components

Θ = (m1,m2,r, tc, φc, φ, θ,p, i) (10.21)

here m1 and m2 are the masses of the individual black holes, r is the luminosity distance to the

centre of the binary system, and tc is the time of coalescence of the two black holes (i.e. the time

at which they merge). φc is the orbital phase of the binary system at time tc (and is defined on

[0,2π]), and φ & θ are the angular location of the merger system in the sky (as observed from a

detector). The inclination angle i is the angle between the line of sight from the binary system

to a detector, and the normal to the orbital plane. The normal is chosen to be right-handed with

respect to the sense of motion so that i is defined on [0, π]. p is the corresponding azimuthal

angle as observed from the binary system. Table 10.1 gives the values of these parameters used

in the simulated data, and how they are sampled using the geometric nested sampler. Notice

that I only vary the angular parameters (φc, φ, θ,p, i) in the Bayesian analysis, making it a five-

dimensional parameter estimation problem. All five parameters are assigned uniform priors over

the ranges they are defined on.

Referring back to equation 10.19, the time values ti are spaced uniformly between tc − t and

tc + t, where

t =
1000G(m1 + m2)

c3 . (10.22)

Here G is Newton’s gravitational constant and c is the speed of light in a vacuum.
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Parameter Simulation input value Sampling procedure
m1 35 MSun fixed
m2 25 MSun fixed
r 390 Mpc fixed
tc 0 fixed
φc 0 circular (wrapped trial distribution)
φ 0 spherical coordinate transformation (azimuthal angle)
θ π/2 spherical coordinate transformation (zenith angle)
p 0 spherical coordinate transformation (azimuthal angle)
i π/2 spherical coordinate transformation (zenith angle)

Table 10.1: Gravitational wave detection model parameters, their simulation input
values, and how the parameters are sampled by the geometric nested sampler. The
parameters ‘fixed’ sampling procedures were not sampled from, instead their true
(simulation input) value was used in each evaluation of h j (ti ,Θ). φc is interpreted
as a circular quantity by the geometric nested sampler, and the pairs of angles (φ,θ),
& (p, i) are treated as two independent sets of spherical coordinates (and thus are
transformed independently).

10.4.4.5 Posterior sampling

For the toy models I calculated the posterior distributions analytically over uniform grids so that

I could benchmark the sampling algorithms’ performance with the ‘true’ distributions. How-

ever, since we are sampling from a five-dimensional parameter space in this example, obtaining

samples analytically is no longer feasible. We thus run the MN algorithm with a very high

number of livepoints (2000) and refer to this as the mega MultiNest run (MMN). We use the

MMN result as a reference distribution for our low and high livepoint runs of the MG and MN

algorithms (we do not include the M algorithm in our comparison here). I note however, in the

toy model applications I found evidence to suggest that MN struggles recovering quarter / half

peaks even with 500 livepoints, and when sampling from low dimensional & low number of

mode models. Thus I can make no guarantees that the MMN distribution is the ‘true’ posterior

distribution.

10.4.4.6 Low livepoint run

Figure 10.14 shows the posterior distributions for the angular parameters obtained from the low

livepoint run. Looking at the one-dimensional posterior for φ, it is clear that MG picks up on

the two half peaks at 0 and 2π, but overestimates them compared to the values obtained with

MMN. It also underestimates the middle peak (φ ≈ π) compared to MMN. In fact, one could
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argue that it doesn’t really infer this peak at all. The MN run does the opposite, it overestimates

the middle peak, but completely misses the half peaks. Looking at θ, MG finds a peak around

θ = π/3, whereas MMN puts the peak at slightly lower θ. The MMN curve shows a flat, high

probability density region around θ = 2π/3, but MG misses this. The MN run puts the biggest

peak at θ ≈ 2π/3, and a smaller one at θ ≈ 0.75. Both MG and MN do a relatively poor job

at constraining p correctly, as the former misses the fourth peak present on the MMN curve at

p ≈ 3π/2 (and instead overestimates the first peak at ≈ π/2). The MN algorithm more or less

gets the correct number of peaks when compared with MMN, but systematically gets their shape

wrong. MG does a better job than MN in recovering the distribution of i relative to MMN. MG

and MN recover similar profiles for φc, and roughly get the shape of the distribution correct

when comparing with the MMN result.

10.4.4.7 High livepoint run

Figure 10.15 shows the posterior distributions for the angular parameters obtained from the 500

livepoint run. In this case MG and MN do a reasonable job of recovering the MMN profile for

φ, but still underestimate / overestimate in the same way they did in the low livepoint case. For θ

MG does a good job at replicating the MMN result. MG and MN have similar levels of success

in recovering the MMN profiles of p, i and φc.

Overall the MG algorithm performs well relative to MN for the example considered here,

given the relative simplicity of the algorithm. To make a statement on which algorithm obtained

more accurate inferences of P for this multi-modal (O(10) modes), five-dimensional distribu-

tion, I believe that a more thorough comparison than the visual inspection conducted here is

required. One possible solution to this would be to calculate a distance metric between the MG

and MMN posteriors (e.g. Earth mover’s distance or the Kullback-Leibler divergence) and com-

pare it with the corresponding value between the MN and MMN distributions. However, I do

not make this comparison here. It would also be interesting to see if anyone else has acquired

results for this set of simulations, I do not consider this here, however.

10.5 Geometric nested sampling implementation

The implementation of the geometric nested sampler (and the vanilla Metropolis nested sampler)

used in this paper, along with the toy models and the gravitational wave likelihood function can

be found at https://github.com/SuperKam91/nested_sampling. The algorithm is written in

https://github.com/SuperKam91/nested_sampling
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Figure 10.14: Marginalised one- and two-dimensional posterior distributions for the
five angular parameters, φc, φ, θ,p, and i. The black curves are the results from the
2000 livepoint MN run. The blue and red curves are plotted using the samples of the
MG and MN algorithms respectively, which are obtained from runs with 50 livepoints.
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Figure 10.15: Same plot as Figure 10.14 but the blue and red curves show the MG
and MN runs with 500 livepoints.
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Python 2.7, hence our implementation of the algorithm cannot match that of the state of the art

nested sampling algorithms such as MultiNest or POLYCHORD (Handley, Hobson, & Lasenby

2015). These algorithms are implemented in FORTRAN 90, and parallelised using a master-

slave paradigm (see Section 5.4 of Handley, Hobson, & Lasenby). Nevertheless there is no

reason why geometric nested sampling cannot be implemented more efficiently and parallelised

using this method. Furthermore as already mentioned in Section 10.2.1, Feroz & Hobson (2008)

incorporate the Metropolis likelihood sampler into a livepoint clustering algorithm. This same

idea could be applied to the geometric nested sampling algorithm. However, in the case of cir-

cular parameters, the clustering would also need to be wrapped around the domain of P along

with the trial distribution. This could be avoided by instead performing coordinate transform-

ations (Section 10.3.7) for circular and toroidal parameters before sampling from the ellipsoids

resultant from the livepoint clustering. The clustering could be performed in either the original

parameter or the transformed Euclidean space, but it is important to note that in either case

samples could still be automatically rejected if they lie outside the ellipsoid. Nevertheless the

algorithm would still provide the benefit of sampling in the ‘natural’ topology of the problem as

discussed in Section 10.3.5.

10.6 Conclusions

I have presented a new nested sampling algorithm based on the Metropolis nested sampler pro-

posed in Sivia & Skilling (2006) and applied in Feroz & Hobson (2008). The algorithm exploits

the geometric properties of certain kinds of parameters which describe points on circles, tori

and spheres, to sample the parameters more efficiently in the context of nested sampling. The

algorithm should be more mobile in sampling distributions defined on such geometries.

The algorithm consists of two key sampling modes which can be summarised as follows.

• For circular and toroidal problems, the trial distribution used in the sampling process is

wrapped around the support of the prior distribution π (domain of the posterior distribution

P).

• This wrapping ensures that no trial points are automatically rejected when evaluating the

Metropolis acceptance ratio as a consequence of the point being outside the sampling

space of the model.

• The wrapped trial distribution also makes the sampling more mobile at the edges of the

domain of P, meaning that circular and toroidal distributions should be easier to sample,

particularly in the case of posteriors with high probability densities at these edges.
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• For spherical problems, parameters specifying the coordinates on a sphere are transformed

to Cartesian coordinates and sampled from the corresponding Euclidean space.

• This again ensures that no trial points are automatically rejected because they are outside

the domain of P.

• It also enhances the mobility of the sampler, whose average step size along the surface of

the sphere is not dependent on the location at which the trial distribution is centred.

I applied the geometric nested sampling algorithm (MG) to three toy models, which respectively

represented models on a circle, torus and a sphere. I compared the posterior plots with those

obtained from a ‘vanilla’ Metropolis nested sampler (M) based on the one used in Feroz &

Hobson (2008), and with the distributions obtained with the livepoint clustering nested sampling

algorithm MultiNest (MN, Feroz, Hobson, & Bridges 2009). For each model, all three samplers

were run twice, once with a low number of livepoints (50), and once with a high number of

livepoints (500). I included the distributions obtained from evaluating P analytically as means

of reference to the ‘correct’ distribution (T). The results can be summarised as follows.

• For the low livepoint run on the circular toy model (von Mises distribution centred on the

origin), the MG and MN samplers marginally outperform the M sampler.

• For the high livepoint run on the circular toy model, all samplers perform similarly, with

the MG algorithm giving slightly superior results with respect to the T distribution.

• The low livepoint run for the toroidal model (two-dimensional von Mises distribution

centred on the origin) the MG outperforms both M and MN. One would maybe expect MN

to struggle on a four-mode problem with only 50 livepoints, whereas the MG effectively

treats these four modes as one given their location in the domain of P.

• The high livepoint run gives better results for all three samplers, but the MN distribution

seems the least accurate. This highlights the potential issues which clustering algorithms

face with modes which occur at the edges of P, independent of the number of livepoints

used.

• The spherical toy model which consists of a von Mises distribution on the azimuthal angle

φ and a truncated Gaussian on the zenith angle θ shows that in the case of low livepoint

runs, the M algorithm surprisingly performs the best, as it does a better job at recovering

the profile of θ than the MG algorithm.

• For the 500 livepoint run the MG and MN algorithms recover φ similarly well, but the

former systematically overestimates the probability density in θ around its peak, and un-

derestimates it at low densities.
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I then applied the MG and MN sampling algorithms to a model representing the detection of

gravitational waves generated by binary black hole mergers and detected with the LIGO and

Virgo instruments (Lange & LIGO-Virgo Collaboration 2018). Using simulated datasets, we ob-

tained inferences of a five-dimensional (all circular / spherical parameters), multi-modal (O(10)

modes) posterior distribution. For this example my ‘correct’ reference distribution was a MN

run with 2000 livepoints. I found the following.

• Overall for the low livepoint run, both algorithms struggle to correctly infer all the peaks

of the distribution (of the 2000 livepoint MN run).

• However, this is to be expected for MN since it can only attribute ≈ a few livepoints to

each mode. Furthermore, the locations of the modes, which occur not just at the edges

of P, mean that the MG algorithm must also allocate its livepoints separately to different

modes, a task which it is not designed to cope well with.

• With 500 livepoints the MG algorithm recovers all the modes inferred from the 2000

livepoint MN run. MN performs similarly well, but slightly overestimates the number of

modes; further quantitative work is needed to home in on this.
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A.1 Results table

Table A.1: Summary of values for final sample of 54 clusters. The redshift

types correspond to S: spectroscopically measured and P: photometrically meas-

ured. z, M (r200), xc, yc and fgas(r200) are the physical model sampling parameters.

MAMI(r500), MPl,marg(r500) and MPl,slice(r500) are the M (r500) estimates obtained from

the AMI and Planck data respectively. All masses are given in units of ×1014 MSun

and all cluster centre coordinates are measured in arcseconds.

Row Planck ID Alias z z type MAMI(r200) xc yc fgas(r200) MAMI(r500) MPl,marg(r500) MPl,slice(r500)

1 PSZ2G044.20+48.66 ACO2142 0.0894 S 13.49 ± 2.35 9.14 ± 18.20 8.80 ± 15.08 0.13 ± 0.02 9.25 ± 1.58 10.81 ± 0.42 8.76±0.19
0.21

2 PSZ2G053.53+59.52 ACO2034 0.113 S 8.51 ± 1.28 −1.80 ± 13.10 19.39 ± 9.86 0.13 ± 0.02 5.87 ± 0.86 5.38 ± 0.39 5.48±0.24
0.24

3 PSZ2G151.90+11.63 CIZAJ0515.3+5845 0.12 S 5.74 ± 1.24 67.58 ± 27.09 68.01 ± 18.58 0.13 ± 0.02 3.99 ± 0.84 4.23 ± 1.03 3.65±0.50
0.47

4 PSZ2G218.59+71.31 ACO1272 0.137 S 2.70 ± 0.99 2.82 ± 25.21 −16.62 ± 25.98 0.13 ± 0.02 1.90 ± 0.68 4.79 ± 0.80 3.62±0.30
0.30

5 PSZ2G226.18+76.79 ACO1413 0.1427 S 8.19 ± 1.23 −35.33 ± 10.98 −1.13 ± 13.44 0.13 ± 0.02 5.62 ± 0.82 6.14 ± 0.55 5.98±0.25
0.25

6 PSZ2G165.06+54.13 ACO990 0.144 S 7.80 ± 1.35 32.43 ± 13.21 −27.57 ± 15.52 0.14 ± 0.02 5.36 ± 0.90 5.13 ± 0.51 4.83±0.28
0.29

7 PSZ2G077.90-26.63 ACO2409 0.147 S 9.09 ± 1.32 −26.87 ± 10.89 18.00 ± 11.85 0.14 ± 0.02 6.22 ± 0.88 5.92 ± 0.58 5.08±0.27
0.27

8 PSZ2G050.40+31.17 ACO2259 0.164 S 5.52 ± 1.19 35.72 ± 21.77 9.31 ± 19.56 0.13 ± 0.02 3.80 ± 0.80 4.53 ± 0.62 4.36±0.35
0.36

9 PSZ2G097.72+38.12 ACO2218 0.1709 S 10.65 ± 1.68 31.99 ± 15.25 −0.95 ± 13.52 0.13 ± 0.02 7.23 ± 1.11 7.44 ± 0.40 6.64±0.17
0.17

10 PSZ2G099.30+20.92 MCXCJ1935.3+6734 0.171 S 5.57 ± 1.24 −37.19 ± 19.92 −24.50 ± 21.16 0.13 ± 0.02 3.83 ± 0.83 5.88 ± 0.93 3.91±0.23
0.25

11 PSZ2G067.17+67.46 ACO1914 0.1712 S 10.45 ± 1.49 31.39 ± 12.81 −33.15 ± 11.99 0.13 ± 0.02 7.09 ± 0.99 7.14 ± 0.47 7.04±0.26
0.27

12 PSZ2G167.67+17.63 RXJ0638.1+4747 0.174 S 4.78 ± 1.36 −28.70 ± 31.24 10.76 ± 28.64 0.13 ± 0.02 3.30 ± 0.92 7.72 ± 0.81 6.31±0.33
0.34

13 PSZ2G066.68+68.44 ACO1902 0.181 S 4.95 ± 1.43 56.07 ± 25.47 8.14 ± 33.23 0.13 ± 0.02 3.41 ± 0.97 5.27 ± 0.84 3.98±0.33
0.37

14 PSZ2G065.28+44.53 ACO2187 0.183 S 5.24 ± 1.28 −16.66 ± 22.61 −16.54 ± 21.65 0.13 ± 0.02 3.60 ± 0.86 3.89 ± 0.98 3.56±0.47
0.51

15 PSZ2G084.47+12.63 MCXCJ1948.3+5113 0.185 S 4.79 ± 1.22 −73.73 ± 31.17 −16.97 ± 20.93 0.13 ± 0.02 3.30 ± 0.82 5.98 ± 0.65 4.94±0.33
0.34

16 PSZ2G100.04+23.73 ACO2317 0.21 S 5.44 ± 1.13 20.24 ± 19.02 −22.73 ± 20.90 0.13 ± 0.02 3.72 ± 0.75 4.10 ± 0.80 3.73±0.29
0.31

17 PSZ2G180.60+76.65 SDSSCGB26344.3 0.2138 S 5.38 ± 1.21 37.81 ± 15.59 −66.98 ± 19.41 0.13 ± 0.02 3.68 ± 0.81 6.76 ± 0.75 6.00±0.35
0.34

18 PSZ2G166.09+43.38 ACO773N 0.2172 S 9.84 ± 1.39 −5.35 ± 10.66 −3.98 ± 9.70 0.13 ± 0.02 6.63 ± 0.92 7.76 ± 0.73 6.87±0.34
0.32

19 PSZ2G125.30-27.99 N/A 0.223 P 4.51 ± 1.31 −8.08 ± 26.99 8.82 ± 30.24 0.13 ± 0.02 3.09 ± 0.87 5.54 ± 0.98 4.70±0.56
0.55

20 PSZ2G060.13+11.44 N/A 0.224 S 7.47 ± 1.22 −64.79 ± 12.50 −49.27 ± 14.16 0.13 ± 0.02 5.06 ± 0.80 7.55 ± 1.09 5.34±0.49
0.50

21 PSZ2G166.62+42.13 ACO746 0.232 P 3.56 ± 1.07 −38.98 ± 29.87 −38.09 ± 37.84 0.13 ± 0.02 2.44 ± 0.72 5.60 ± 0.71 5.36±0.39
0.41

22 PSZ2G097.94+19.43 4C 65.28 0.25 S 5.01 ± 1.31 −114.76 ± 22.50 −13.64 ± 34.07 0.13 ± 0.02 3.40 ± 0.87 5.69 ± 0.85 4.04±0.30
0.33

23 PSZ2G164.29+08.94 N/A 0.251 P 5.97 ± 1.06 −62.17 ± 14.03 18.12 ± 17.06 0.13 ± 0.02 4.04 ± 0.70 7.91 ± 1.36 6.24±0.62
0.64

24 PSZ2G133.60+69.04 RXJ1229.0+4737 0.254 S 5.26 ± 1.60 5.87 ± 25.04 59.40 ± 37.35 0.13 ± 0.02 3.57 ± 1.06 7.04 ± 0.97 5.42±0.38
0.43

25 PSZ2G086.47+15.31 MCXCJ1938.3+5409 0.26 S 10.89 ± 1.87 −39.65 ± 13.24 19.83 ± 12.61 0.13 ± 0.02 7.25 ± 1.21 9.54 ± 0.63 7.76±0.29
0.28
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Row Planck ID Alias z z type MAMI(r200) xc yc fgas(r200) MAMI(r500) MPl,marg(r500) MPl,slice(r500)

26 PSZ2G139.62+24.18 N/A 0.2671 S 8.13 ± 1.28 36.66 ± 11.64 −12.58 ± 10.80 0.13 ± 0.02 5.45 ± 0.84 8.34 ± 1.06 7.11±0.48
0.47

27 PSZ2G184.68+28.91 ACO611 0.288 S 7.90 ± 1.02 22.61 ± 10.45 13.48 ± 9.97 0.13 ± 0.02 5.28 ± 0.67 11.44 ± 2.30 5.61±0.52
0.53

28 PSZ2G154.13+40.19 ACO747 0.29 P 6.46 ± 1.13 70.99 ± 14.72 −42.86 ± 13.25 0.13 ± 0.02 4.33 ± 0.74 6.09 ± 1.10 5.48±0.45
0.46

29 PSZ2G095.49+16.41 N/A 0.3 S 5.43 ± 1.12 −24.47 ± 19.10 −102.18 ± 18.33 0.13 ± 0.02 3.65 ± 0.74 4.91 ± 0.99 4.38±0.48
0.49

30 PSZ2G109.52-19.16 N/A 0.3092 P 8.53 ± 1.40 −30.38 ± 13.77 −15.21 ± 15.15 0.13 ± 0.02 5.66 ± 0.91 8.34 ± 1.79 5.78±0.48
0.52

31 PSZ2G198.90+18.16 [SPD2011] 298 0.3184 P 7.61 ± 1.18 26.76 ± 14.62 −58.07 ± 11.95 0.13 ± 0.02 5.06 ± 0.77 7.99 ± 1.47 5.87±0.55
0.57

32 PSZ2G152.33+81.28 MCXCJ1230.7+3439 0.333 S 6.27 ± 1.12 −52.81 ± 20.78 44.11 ± 14.62 0.13 ± 0.02 4.17 ± 0.73 5.08 ± 0.96 5.05±0.53
0.57

33 PSZ2G108.17-11.56 N/A 0.336 S 8.00 ± 1.23 35.19 ± 13.14 −70.15 ± 19.09 0.13 ± 0.02 5.29 ± 0.80 9.82 ± 1.29 7.42±0.57
0.60

34 PSZ2G132.47-17.27 MCXCJ0142.9+4438 0.341 S 12.43 ± 1.85 31.87 ± 10.19 15.27 ± 12.93 0.13 ± 0.02 8.13 ± 1.18 8.27 ± 1.12 8.07±0.61
0.65

35 PSZ2G207.88+81.31 ACO1489 0.353 S 11.26 ± 1.61 68.55 ± 8.44 62.56 ± 11.55 0.13 ± 0.02 7.36 ± 1.02 8.01 ± 0.95 7.54±0.45
0.45

36 PSZ2G157.32-26.77 MCSJ0308.9+2645 0.356 S 14.28 ± 2.12 0.33 ± 8.12 17.65 ± 11.53 0.13 ± 0.02 9.27 ± 1.34 10.95 ± 1.12 10.67±0.64
0.65

37 PSZ2G071.21+28.86 RXSJ175201.5+444046 0.366 S 9.26 ± 1.51 −29.82 ± 9.95 −12.58 ± 13.26 0.13 ± 0.02 6.07 ± 0.96 6.15 ± 0.80 6.70±0.44
0.46

38 PSZ2G194.98+54.12 MCSJ1006.9+3200 0.375 P 8.90 ± 1.56 32.58 ± 12.17 −0.22 ± 19.18 0.13 ± 0.02 5.83 ± 1.00 6.31 ± 1.38 5.30±0.65
0.68

39 PSZ2G109.86+27.94 N/A 0.4 S 4.57 ± 1.28 3.98 ± 22.50 7.39 ± 18.70 0.13 ± 0.02 3.03 ± 0.83 5.23 ± 0.91 5.23±0.45
0.48

40 PSZ2G083.29-31.03 MCXCJ2228.6+2036 0.412 S 11.85 ± 1.73 81.05 ± 13.29 −3.42 ± 12.73 0.13 ± 0.02 7.65 ± 1.09 9.21 ± 0.95 8.31±0.44
0.45

41 PSZ2G063.38+53.44 NSCJ1537+392702 0.422 S 12.17 ± 1.94 46.13 ± 12.01 46.02 ± 9.37 0.13 ± 0.02 7.84 ± 1.22 7.78 ± 1.54 6.17±0.58
0.62

42 PSZ2G063.80+11.42 N/A 0.426 S 5.13 ± 1.19 −36.41 ± 22.22 −47.14 ± 19.79 0.13 ± 0.02 3.37 ± 0.76 5.53 ± 0.63 6.41±0.57
0.58

43 PSZ2G157.43+30.34 RXJ0748.6+5940 0.45 P 11.64 ± 1.56 −61.32 ± 7.38 4.53 ± 8.27 0.13 ± 0.02 7.47 ± 0.98 6.71 ± 0.44 8.16±0.54
0.54

44 PSZ2G150.56+58.32 CLGJ1115+5319 0.47 S 12.77 ± 2.40 10.18 ± 13.31 34.06 ± 18.57 0.13 ± 0.02 8.14 ± 1.49 10.04 ± 1.61 7.44±0.50
0.53

45 PSZ2G170.98+39.45 [SPD2011] 16774 0.5131 S 10.11 ± 1.38 31.48 ± 10.20 −30.87 ± 12.67 0.12 ± 0.02 6.43 ± 0.86 8.24 ± 1.30 7.55±0.65
0.71

46 PSZ2G094.56+51.03 N/A 0.5392 S 10.83 ± 1.43 81.61 ± 8.09 52.86 ± 8.80 0.13 ± 0.02 6.85 ± 0.88 6.46 ± 0.93 5.90±0.45
0.44

47 PSZ2G228.16+75.20 CLGJ1149+2223 0.545 S 15.63 ± 1.66 −15.49 ± 5.32 17.11 ± 4.75 0.13 ± 0.01 9.78 ± 1.01 9.64 ± 0.94 9.69±0.53
0.55

48 PSZ2G213.39+80.59 SDSSCGB41791 0.5586 S 9.31 ± 1.32 −9.73 ± 11.90 69.37 ± 12.14 0.13 ± 0.02 5.89 ± 0.81 8.03 ± 1.39 6.77±0.63
0.65

49 PSZ2G066.41+27.03 N/A 0.5699 S 13.23 ± 2.05 −33.18 ± 11.12 97.03 ± 11.32 0.13 ± 0.02 8.27 ± 1.25 7.33 ± 0.82 7.72±0.52
0.54

50 PSZ2G144.83+25.11 CLGJ0647+7015 0.584 S 11.69 ± 1.46 4.15 ± 7.87 −1.21 ± 8.54 0.13 ± 0.02 7.32 ± 0.89 8.50 ± 1.27 7.80±0.72
0.74

51 PSZ2G045.87+57.70 N/A 0.611 S 9.22 ± 1.97 11.71 ± 14.87 24.21 ± 12.21 0.13 ± 0.02 5.78 ± 1.20 8.49 ± 1.61 7.05±0.66
0.71

52 PSZ2G108.27+48.66 N/A 0.674 S 9.31 ± 1.46 9.99 ± 11.34 35.79 ± 11.45 0.13 ± 0.02 5.77 ± 0.88 8.44 ± 1.58 4.96±0.48
0.52

53 PSZ2G086.93+53.18 N/A 0.6752 P 9.85 ± 1.69 −47.72 ± 14.38 27.69 ± 10.67 0.13 ± 0.02 6.10 ± 1.01 6.07 ± 1.09 5.46±0.51
0.52

54 PSZ2G141.77+14.19 N/A 0.83 P 10.99 ± 1.50 −4.36 ± 8.54 −19.02 ± 8.85 0.13 ± 0.02 6.61 ± 0.87 9.94 ± 2.01 7.77±0.90
0.95
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B.1 GNFW Ytot analytical solution

We wish to solve the integral ∫ ∞

0
r2

(
r
rp

)−c [
1 +

(
r
rp

)a] c−b
a

dr. (B.1)

First we use the substitution s = r/rp to get

r3
p

∫ ∞

0
s2s−c

[
1 + sa

] c−b
a ds. (B.2)

Next we use the substitution t = sa which gives

r3
p

a

∫ ∞

0
s3−a−c [1 + t]

c−b
a dt

=
r3

p

a

∫ ∞

0

t
3−c
a −1

(1 + t)
b−c
a

dt .

(B.3)

Now using the following form for the beta function

β(x, y) =

∫ ∞

0

tx−1

(1 + t)x+y dt, (B.4)
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and the relation between the beta and Gamma functions given by β(x, y) = Γ (x)Γ (y)/Γ (x + y)

then we get the result
r3

p

a

Γ
(

3−c
a

)
Γ

(
b−3
a

)
Γ

(
b−c
a

) , (B.5)

as required.



B
.2.

R
esults

tables
187

B.2 Results tables

Table B.1: Summary of parameter estimates for final sample of 54 clusters. All Y

values are given in units of ×10−3 (arcmin2), and all cluster centre coordinates are

given in arcseconds. The cluster centre estimates from the physical model are omitted

here but can be found in the results Table A.1 in Appendix A, which is ordered in the

same order as this Table. Note the Table in Appendix A also gives external names

associated with these clusters, as well as the method used to measure the respective

redshifts (i.e. spectroscopic or photometric).

Row Planck ID z YPM(r500) YOM I(r500) x0,OMI y0,OM I YOM II(r500) x0,OM II y0,OM II

1 PSZ2G044.20+48.66 0.0894 11.59 ± 2.28 6.77 ± 3.32 6.53 ± 18.56 8.93 ± 14.41 20.48 ± 6.19 10.36 ± 18.38 8.32 ± 15.32

2 PSZ2G053.53+59.52 0.113 3.81 ± 0.67 2.02 ± 0.90 −1.77 ± 12.69 23.19 ± 9.38 3.12 ± 1.74 −1.07 ± 12.67 20.89 ± 9.88

3 PSZ2G151.90+11.63 0.12 1.76 ± 0.50 2.55 ± 1.56 63.93 ± 28.11 67.61 ± 18.86 4.09 ± 1.83 59.05 ± 27.67 67.19 ± 19.36

4 PSZ2G218.59+71.31 0.137 0.45 ± 0.25 0.35 ± 0.15 −8.85 ± 14.58 −17.72 ± 14.59 0.43 ± 0.27 0.04 ± 23.62 −16.95 ± 24.66

5 PSZ2G226.18+76.79 0.1427 2.45 ± 0.45 0.91 ± 0.45 −45.20 ± 10.61 6.46 ± 12.25 1.21 ± 0.51 −42.92 ± 10.66 3.80 ± 12.00

6 PSZ2G165.06+54.13 0.144 2.26 ± 0.54 0.70 ± 0.25 29.82 ± 10.17 −29.36 ± 12.22 0.95 ± 0.27 31.51 ± 10.76 −29.04 ± 12.83

7 PSZ2G077.90-26.63 0.147 2.80 ± 0.46 1.35 ± 0.48 −27.99 ± 9.91 20.12 ± 11.23 1.48 ± 0.49 −28.06 ± 10.13 19.93 ± 11.07

8 PSZ2G050.40+31.17 0.164 1.01 ± 0.29 1.07 ± 0.70 37.21 ± 20.82 9.59 ± 19.09 1.18 ± 0.76 36.11 ± 22.25 9.30 ± 19.70

9 PSZ2G097.72+38.12 0.1709 2.65 ± 0.46 2.72 ± 1.26 29.79 ± 15.43 −2.59 ± 13.68 3.97 ± 1.49 32.13 ± 15.62 −1.56 ± 13.81

10 PSZ2G099.30+20.92 0.171 0.97 ± 0.31 0.79 ± 0.49 −35.09 ± 19.11 −24.57 ± 21.53 0.86 ± 0.51 −36.16 ± 19.13 −25.55 ± 21.67

11 PSZ2G067.17+67.46 0.1712 2.70 ± 0.46 1.30 ± 0.54 34.00 ± 11.65 −30.54 ± 10.97 1.48 ± 0.60 33.18 ± 11.61 −31.32 ± 11.16

12 PSZ2G167.67+17.63 0.174 0.72 ± 0.30 1.69 ± 1.05 −24.86 ± 32.03 10.55 ± 28.11 1.33 ± 0.77 −23.41 ± 33.17 11.93 ± 29.04

13 PSZ2G066.68+68.44 0.181 0.72 ± 0.29 1.24 ± 0.79 55.97 ± 25.19 9.20 ± 32.13 1.12 ± 0.72 56.41 ± 26.70 7.31 ± 32.63

14 PSZ2G065.28+44.53 0.183 0.79 ± 0.28 0.65 ± 0.38 −21.13 ± 20.72 −15.63 ± 18.96 0.61 ± 0.34 −19.57 ± 22.13 −16.08 ± 20.64

15 PSZ2G084.47+12.63 0.185 0.67 ± 0.25 0.58 ± 0.29 −67.12 ± 29.59 −23.26 ± 18.01 0.53 ± 0.28 −69.03 ± 30.83 −20.78 ± 20.07

16 PSZ2G100.04+23.73 0.21 0.65 ± 0.18 1.28 ± 0.75 17.47 ± 19.11 −22.73 ± 22.21 1.05 ± 0.55 17.93 ± 19.85 −23.27 ± 22.53

17 PSZ2G180.60+76.65 0.2138 0.63 ± 0.20 1.73 ± 0.93 36.57 ± 16.66 −73.38 ± 20.39 1.11 ± 0.50 35.90 ± 17.29 −70.57 ± 22.18

18 PSZ2G166.09+43.38 0.2172 1.67 ± 0.28 1.10 ± 0.50 −4.29 ± 10.57 −6.54 ± 9.54 1.14 ± 0.46 −4.73 ± 10.32 −6.66 ± 9.63

19 PSZ2G125.30-27.99 0.223 0.45 ± 0.18 0.99 ± 0.64 −8.12 ± 26.53 2.49 ± 30.79 0.60 ± 0.38 −9.03 ± 28.36 6.48 ± 31.71

20 PSZ2G060.13+11.44 0.224 1.00 ± 0.20 1.17 ± 0.64 −64.93 ± 12.76 −49.60 ± 15.02 1.12 ± 0.56 −64.67 ± 12.69 −49.56 ± 14.77

21 PSZ2G166.62+42.13 0.232 0.29 ± 0.13 1.57 ± 0.92 −36.13 ± 30.51 −54.22 ± 32.52 0.53 ± 0.35 −34.92 ± 31.92 −40.79 ± 38.30
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Row Planck ID z YPM(r500) YOM I(r500) x0,OMI y0,OM I YOM II(r500) x0,OM II y0,OM II

22 PSZ2G097.94+19.43 0.25 0.45 ± 0.17 1.24 ± 0.69 −121.19 ± 21.52 −2.42 ± 32.74 0.73 ± 0.41 −115.20 ± 27.60 −5.84 ± 34.15

23 PSZ2G164.29+08.94 0.251 0.59 ± 0.13 0.87 ± 0.43 −62.15 ± 13.92 20.46 ± 17.35 0.73 ± 0.35 −62.23 ± 13.90 18.67 ± 17.99

24 PSZ2G133.60+69.04 0.254 0.47 ± 0.20 1.60 ± 1.12 0.13 ± 24.80 66.74 ± 35.89 0.80 ± 0.45 3.35 ± 25.98 63.00 ± 37.13

25 PSZ2G086.47+15.31 0.26 1.48 ± 0.33 1.70 ± 0.71 −41.40 ± 14.66 19.45 ± 13.73 1.58 ± 0.60 −40.08 ± 14.39 20.08 ± 13.75

26 PSZ2G139.62+24.18 0.2671 0.89 ± 0.16 0.77 ± 0.34 35.74 ± 11.80 −13.45 ± 11.11 0.70 ± 0.33 35.83 ± 11.49 −13.78 ± 10.76

27 PSZ2G184.68+28.91 0.288 0.76 ± 0.12 0.95 ± 0.38 22.66 ± 10.55 12.19 ± 10.37 0.83 ± 0.31 22.58 ± 10.48 13.03 ± 10.41

28 PSZ2G154.13+40.19 0.29 0.55 ± 0.13 0.72 ± 0.50 71.59 ± 15.07 −42.78 ± 13.41 0.46 ± 0.23 69.88 ± 14.52 −42.45 ± 13.20

29 PSZ2G095.49+16.41 0.3 0.39 ± 0.12 0.87 ± 0.54 −19.80 ± 21.12 −94.58 ± 19.43 0.48 ± 0.26 −22.58 ± 20.72 −98.75 ± 20.62

30 PSZ2G109.52-19.16 0.3092 0.78 ± 0.16 1.00 ± 0.57 −31.66 ± 14.34 −15.21 ± 15.68 0.82 ± 0.39 −31.16 ± 14.43 −15.23 ± 15.95

31 PSZ2G198.90+18.16 0.3184 0.62 ± 0.12 0.86 ± 0.40 27.42 ± 15.36 −59.55 ± 12.35 0.69 ± 0.27 27.03 ± 15.25 −57.65 ± 12.64

32 PSZ2G152.33+81.28 0.333 0.43 ± 0.11 0.78 ± 0.42 −49.96 ± 20.35 44.73 ± 15.45 0.48 ± 0.22 −53.60 ± 20.93 43.79 ± 15.28

33 PSZ2G108.17-11.56 0.336 0.61 ± 0.12 2.24 ± 1.10 27.48 ± 14.92 −36.56 ± 20.44 1.12 ± 0.25 30.62 ± 13.89 −51.07 ± 19.77

34 PSZ2G132.47-17.27 0.341 1.25 ± 0.21 1.38 ± 0.52 32.53 ± 10.83 16.82 ± 12.65 1.37 ± 0.47 32.34 ± 10.66 16.61 ± 12.56

35 PSZ2G207.88+81.31 0.353 1.05 ± 0.18 0.90 ± 0.34 67.45 ± 8.46 61.30 ± 11.45 0.82 ± 0.29 66.90 ± 8.21 59.84 ± 11.43

36 PSZ2G157.32-26.77 0.356 1.52 ± 0.27 1.25 ± 0.42 −0.28 ± 8.01 19.15 ± 11.86 1.23 ± 0.39 −1.07 ± 7.59 17.73 ± 11.58

37 PSZ2G071.21+28.86 0.366 0.72 ± 0.15 0.91 ± 0.34 −29.47 ± 10.86 −12.29 ± 14.04 0.75 ± 0.25 −29.64 ± 10.48 −12.13 ± 13.74

38 PSZ2G194.98+54.12 0.375 0.65 ± 0.15 1.28 ± 0.69 32.85 ± 12.59 −5.89 ± 18.85 0.93 ± 0.32 32.71 ± 12.45 −3.46 ± 19.90

39 PSZ2G109.86+27.94 0.4 0.21 ± 0.09 0.30 ± 0.11 8.03 ± 16.29 −1.95 ± 14.87 0.20 ± 0.07 7.15 ± 21.69 2.87 ± 17.97

40 PSZ2G083.29-31.03 0.412 0.95 ± 0.17 0.66 ± 0.21 75.26 ± 13.22 −0.29 ± 12.25 0.60 ± 0.20 72.16 ± 13.03 2.13 ± 11.88

41 PSZ2G063.38+53.44 0.422 0.93 ± 0.19 1.28 ± 0.45 39.37 ± 14.20 49.33 ± 10.77 1.12 ± 0.29 41.65 ± 13.30 48.43 ± 10.17

42 PSZ2G063.80+11.42 0.426 0.24 ± 0.08 0.80 ± 0.46 −42.04 ± 23.06 −44.32 ± 20.40 0.29 ± 0.14 −36.98 ± 23.28 −45.28 ± 20.74

43 PSZ2G157.43+30.34 0.45 0.82 ± 0.13 0.91 ± 0.26 −61.41 ± 7.56 4.85 ± 8.34 0.85 ± 0.23 −61.63 ± 7.29 4.79 ± 8.26

44 PSZ2G150.56+58.32 0.47 0.93 ± 0.25 0.86 ± 0.38 9.81 ± 14.03 35.97 ± 18.29 0.70 ± 0.25 8.34 ± 12.93 36.51 ± 18.01

45 PSZ2G170.98+39.45 0.5131 0.54 ± 0.08 1.62 ± 0.68 23.91 ± 12.09 −18.32 ± 13.31 0.88 ± 0.17 26.68 ± 11.52 −22.95 ± 12.68

46 PSZ2G094.56+51.03 0.5392 0.63 ± 0.10 0.50 ± 0.09 82.24 ± 7.64 50.61 ± 8.76 0.45 ± 0.08 81.87 ± 7.67 50.51 ± 8.62

47 PSZ2G228.16+75.20 0.545 1.06 ± 0.10 1.35 ± 0.27 −14.53 ± 5.57 16.35 ± 5.31 1.25 ± 0.21 −14.39 ± 5.59 16.50 ± 5.08

48 PSZ2G213.39+80.59 0.5586 0.45 ± 0.08 0.89 ± 0.36 −5.34 ± 12.49 65.15 ± 12.29 0.58 ± 0.18 −8.19 ± 12.21 68.13 ± 12.60

49 PSZ2G066.41+27.03 0.5699 0.79 ± 0.16 1.76 ± 0.73 −37.37 ± 11.95 100.92 ± 13.20 1.00 ± 0.24 −34.28 ± 11.21 97.77 ± 11.89
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Row Planck ID z YPM(r500) YOM I(r500) x0,OMI y0,OM I YOM II(r500) x0,OM II y0,OM II

50 PSZ2G144.83+25.11 0.584 0.61 ± 0.07 1.34 ± 0.45 1.55 ± 9.00 −3.86 ± 8.95 0.89 ± 0.17 3.09 ± 8.57 −2.97 ± 8.79

51 PSZ2G045.87+57.70 0.611 0.41 ± 0.12 0.93 ± 0.46 20.59 ± 17.97 16.79 ± 15.76 0.52 ± 0.16 16.61 ± 16.65 20.54 ± 14.20

52 PSZ2G108.27+48.66 0.674 0.40 ± 0.08 0.55 ± 0.20 8.45 ± 11.83 35.26 ± 11.93 0.42 ± 0.12 9.91 ± 12.03 35.53 ± 11.69

53 PSZ2G086.93+53.18 0.6752 0.43 ± 0.10 1.28 ± 0.57 −40.06 ± 16.39 30.84 ± 12.08 0.59 ± 0.15 −44.92 ± 15.26 29.36 ± 11.53

54 PSZ2G141.77+14.19 0.83 0.45 ± 0.06 0.56 ± 0.17 −3.40 ± 8.77 −18.18 ± 9.36 0.47 ± 0.11 −4.11 ± 8.78 −18.97 ± 9.37

Table B.2: Summary of model comparison statistics for final sample of 54 clusters.

The Planck IDs are omitted but are the same as in Table B.1.

Row z dEMD(PPM,POM I) dEMD(POM II,POM I) dEMD(PPM,POM II) ln(ZPM/Znull) ln(ZOM I/Znull) ln(ZOM II/Znull) ln(ZPM/ZOM I) ln(ZOM II/ZOM I) ln(ZPM/ZOM II)

1 0.0894 0.222 0.514 0.297 33.90 ± 0.16 29.17 ± 0.16 33.38 ± 0.16 4.73 ± 0.23 4.21 ± 0.23 0.52 ± 0.22

2 0.113 0.152 0.091 0.093 30.94 ± 0.17 31.06 ± 0.17 30.01 ± 0.17 −0.12 ± 0.24 −1.05 ± 0.24 0.93 ± 0.24

3 0.12 0.083 0.123 0.189 10.40 ± 0.13 10.54 ± 0.13 10.00 ± 0.14 −0.14 ± 0.19 −0.53 ± 0.19 0.39 ± 0.19

4 0.137 0.132 0.115 0.051 1.71 ± 0.17 3.41 ± 0.17 1.76 ± 0.17 −1.70 ± 0.24 −1.65 ± 0.24 −0.05 ± 0.24

5 0.1427 0.170 0.033 0.138 23.01 ± 0.15 24.85 ± 0.15 23.50 ± 0.15 −1.84 ± 0.21 −1.35 ± 0.21 −0.49 ± 0.21

6 0.144 0.210 0.045 0.165 13.68 ± 0.13 17.82 ± 0.13 15.56 ± 0.14 −4.14 ± 0.18 −2.26 ± 0.19 −1.88 ± 0.19

7 0.147 0.140 0.014 0.126 32.94 ± 0.12 34.76 ± 0.12 33.50 ± 0.12 −1.82 ± 0.17 −1.26 ± 0.17 −0.56 ± 0.17

8 0.164 0.065 0.026 0.069 9.61 ± 0.08 10.32 ± 0.08 9.10 ± 0.08 −0.71 ± 0.11 −1.23 ± 0.11 0.51 ± 0.12

9 0.1709 0.049 0.082 0.087 33.10 ± 0.16 33.00 ± 0.16 32.62 ± 0.16 0.10 ± 0.22 −0.37 ± 0.22 0.47 ± 0.23

10 0.171 0.058 0.012 0.058 7.73 ± 0.15 8.46 ± 0.15 7.08 ± 0.15 −0.73 ± 0.21 −1.38 ± 0.21 0.65 ± 0.21

11 0.1712 0.135 0.022 0.114 26.98 ± 0.10 28.19 ± 0.10 27.08 ± 0.11 −1.21 ± 0.14 −1.11 ± 0.15 −0.10 ± 0.15

12 0.174 0.132 0.029 0.107 3.67 ± 0.11 4.53 ± 0.11 3.56 ± 0.11 −0.86 ± 0.15 −0.97 ± 0.16 0.11 ± 0.16

13 0.181 0.084 0.015 0.080 4.42 ± 0.13 5.00 ± 0.12 4.06 ± 0.13 −0.58 ± 0.18 −0.95 ± 0.18 0.36 ± 0.18

14 0.183 0.068 0.010 0.063 5.57 ± 0.13 6.52 ± 0.13 5.35 ± 0.13 −0.94 ± 0.18 −1.16 ± 0.18 0.22 ± 0.19

15 0.185 0.062 0.010 0.056 3.57 ± 0.18 4.28 ± 0.18 3.47 ± 0.18 −0.71 ± 0.25 −0.80 ± 0.25 0.09 ± 0.25

16 0.21 0.094 0.026 0.076 7.98 ± 0.14 8.67 ± 0.14 7.51 ± 0.14 −0.69 ± 0.20 −1.15 ± 0.20 0.46 ± 0.20

17 0.2138 0.143 0.051 0.094 4.68 ± 0.18 5.67 ± 0.18 4.38 ± 0.18 −0.99 ± 0.25 −1.29 ± 0.25 0.30 ± 0.25

18 0.2172 0.072 0.006 0.069 27.82 ± 0.12 28.93 ± 0.12 27.64 ± 0.13 −1.11 ± 0.17 −1.29 ± 0.17 0.18 ± 0.18

19 0.223 0.097 0.054 0.057 4.36 ± 0.10 4.84 ± 0.10 3.95 ± 0.10 −0.48 ± 0.14 −0.89 ± 0.14 0.41 ± 0.14

20 0.224 0.049 0.009 0.051 16.34 ± 0.13 17.23 ± 0.13 15.79 ± 0.13 −0.89 ± 0.18 −1.44 ± 0.19 0.55 ± 0.19
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Table B.2 – continued from previous page

Row z dEMD(PPM,POM I) dEMD(POM II,POM I) dEMD(PPM,POM II) ln(ZPM/Znull) ln(ZOM I/Znull) ln(ZOM II/Znull) ln(ZPM/ZOM I) ln(ZOM II/ZOM I) ln(ZPM/ZOM II)

21 0.232 0.225 0.147 0.083 3.02 ± 0.15 4.37 ± 0.15 2.54 ± 0.15 −1.35 ± 0.21 −1.82 ± 0.21 0.48 ± 0.21

22 0.25 0.136 0.071 0.070 3.03 ± 0.15 3.96 ± 0.15 2.26 ± 0.15 −0.93 ± 0.21 −1.70 ± 0.21 0.77 ± 0.21

23 0.251 0.055 0.024 0.045 12.67 ± 0.16 13.45 ± 0.16 11.69 ± 0.17 −0.78 ± 0.23 −1.76 ± 0.23 0.99 ± 0.23

24 0.254 0.180 0.110 0.076 3.80 ± 0.11 5.27 ± 0.11 3.86 ± 0.11 −1.47 ± 0.15 −1.41 ± 0.15 −0.06 ± 0.15

25 0.26 0.041 0.009 0.040 13.18 ± 0.17 13.79 ± 0.16 12.32 ± 0.17 −0.60 ± 0.23 −1.46 ± 0.23 0.86 ± 0.23

26 0.2671 0.043 0.012 0.051 28.23 ± 0.14 29.05 ± 0.14 27.67 ± 0.14 −0.81 ± 0.20 −1.38 ± 0.20 0.56 ± 0.20

27 0.288 0.038 0.018 0.032 22.61 ± 0.14 23.45 ± 0.14 21.90 ± 0.14 −0.85 ± 0.19 −1.55 ± 0.19 0.71 ± 0.20

28 0.29 0.045 0.034 0.046 9.72 ± 0.18 10.64 ± 0.18 9.42 ± 0.18 −0.92 ± 0.26 −1.23 ± 0.26 0.31 ± 0.26

29 0.3 0.138 0.115 0.045 5.26 ± 0.20 5.94 ± 0.19 4.44 ± 0.20 −0.68 ± 0.28 −1.51 ± 0.28 0.83 ± 0.28

30 0.3092 0.047 0.027 0.041 14.83 ± 0.12 15.62 ± 0.12 14.13 ± 0.12 −0.80 ± 0.17 −1.49 ± 0.17 0.70 ± 0.17

31 0.3184 0.042 0.025 0.032 14.64 ± 0.11 15.36 ± 0.10 13.88 ± 0.11 −0.72 ± 0.15 −1.48 ± 0.15 0.76 ± 0.15

32 0.333 0.071 0.058 0.036 9.30 ± 0.15 9.89 ± 0.15 8.59 ± 0.15 −0.58 ± 0.21 −1.30 ± 0.21 0.72 ± 0.21

33 0.336 0.209 0.122 0.088 10.98 ± 0.20 14.24 ± 0.19 12.05 ± 0.20 −3.26 ± 0.28 −2.19 ± 0.28 −1.07 ± 0.28

34 0.341 0.032 0.006 0.031 32.32 ± 0.14 33.03 ± 0.14 31.53 ± 0.14 −0.71 ± 0.20 −1.51 ± 0.20 0.80 ± 0.20

35 0.353 0.036 0.016 0.045 20.74 ± 0.16 21.70 ± 0.15 20.26 ± 0.16 −0.96 ± 0.22 −1.44 ± 0.22 0.48 ± 0.22

36 0.356 0.039 0.007 0.043 25.23 ± 0.13 25.70 ± 0.13 24.79 ± 0.14 −0.47 ± 0.19 −0.91 ± 0.19 0.44 ± 0.19

37 0.366 0.037 0.018 0.027 11.84 ± 0.13 12.47 ± 0.13 11.00 ± 0.13 −0.62 ± 0.19 −1.47 ± 0.19 0.84 ± 0.19

38 0.375 0.093 0.050 0.047 16.17 ± 0.14 17.58 ± 0.14 15.83 ± 0.14 −1.41 ± 0.20 −1.74 ± 0.20 0.34 ± 0.20

39 0.4 0.023 0.013 0.027 3.36 ± 0.15 2.77 ± 0.15 2.75 ± 0.15 0.59 ± 0.22 −0.02 ± 0.22 0.61 ± 0.22

40 0.412 0.040 0.015 0.054 26.82 ± 0.16 27.58 ± 0.16 26.56 ± 0.16 −0.76 ± 0.23 −1.01 ± 0.23 0.26 ± 0.23

41 0.422 0.058 0.027 0.032 14.70 ± 0.22 15.84 ± 0.22 14.37 ± 0.22 −1.14 ± 0.31 −1.48 ± 0.31 0.33 ± 0.31

42 0.426 0.126 0.106 0.030 4.48 ± 0.15 4.89 ± 0.14 4.24 ± 0.15 −0.41 ± 0.20 −0.66 ± 0.20 0.24 ± 0.21

43 0.45 0.025 0.010 0.020 31.61 ± 0.16 32.30 ± 0.15 30.87 ± 0.16 −0.69 ± 0.22 −1.43 ± 0.22 0.74 ± 0.22

44 0.47 0.032 0.023 0.041 8.28 ± 0.10 8.74 ± 0.10 8.14 ± 0.11 −0.46 ± 0.14 −0.60 ± 0.15 0.14 ± 0.15

45 0.5131 0.133 0.078 0.055 23.66 ± 0.14 27.24 ± 0.13 24.82 ± 0.14 −3.58 ± 0.19 −2.42 ± 0.19 −1.16 ± 0.19

46 0.5392 0.036 0.007 0.043 23.74 ± 0.18 24.69 ± 0.18 24.49 ± 0.18 −0.95 ± 0.25 −0.20 ± 0.25 −0.75 ± 0.25

47 0.545 0.028 0.010 0.020 110.33 ± 0.19 110.78 ± 0.19 109.81 ± 0.19 −0.45 ± 0.26 −0.97 ± 0.26 0.52 ± 0.27

48 0.5586 0.064 0.041 0.027 21.75 ± 0.20 22.86 ± 0.20 21.54 ± 0.20 −1.11 ± 0.28 −1.31 ± 0.28 0.21 ± 0.28

49 0.5699 0.101 0.071 0.031 14.90 ± 0.17 16.67 ± 0.17 14.44 ± 0.17 −1.77 ± 0.24 −2.23 ± 0.24 0.46 ± 0.24

50 0.584 0.080 0.041 0.039 43.03 ± 0.17 45.57 ± 0.17 43.52 ± 0.17 −2.54 ± 0.24 −2.05 ± 0.24 −0.49 ± 0.25

51 0.611 0.112 0.079 0.035 8.60 ± 0.14 10.46 ± 0.14 8.54 ± 0.14 −1.86 ± 0.20 −1.92 ± 0.20 0.06 ± 0.20

52 0.674 0.032 0.026 0.015 13.43 ± 0.16 13.61 ± 0.16 12.69 ± 0.16 −0.18 ± 0.23 −0.92 ± 0.23 0.74 ± 0.23
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Table B.2 – continued from previous page

Row z dEMD(PPM,POM I) dEMD(POM II,POM I) dEMD(PPM,POM II) ln(ZPM/Znull) ln(ZOM I/Znull) ln(ZOM II/Znull) ln(ZPM/ZOM I) ln(ZOM II/ZOM I) ln(ZPM/ZOM II)

53 0.6752 0.126 0.090 0.037 13.17 ± 0.13 15.96 ± 0.13 13.48 ± 0.14 −2.79 ± 0.19 −2.48 ± 0.19 −0.32 ± 0.19

54 0.83 0.020 0.014 0.013 35.45 ± 0.12 35.38 ± 0.11 34.60 ± 0.12 0.07 ± 0.16 −0.78 ± 0.17 0.85 ± 0.17
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Appendix C: Einasto model derivations and
results of PM I and PM II comparisons

C.1 Einasto mass integral

From equations 5.1 and 5.4 we have that

M (r) =

∫ r

0
4πr ′2ρdm,PMII(r ′) dr′

= 4πρ−2 exp (2/αEin)
∫ r

0
r ′2 exp

[
−2
αEin

(
r ′

r−2

)αEin
]

dr′.
(C.1)

Using the substitution

u =
23/αEinr ′3

α3/αEin
Ein r3

−2

⇒ du =
3 × 23/αEinr ′2

α3/αEin
Ein r3

−2

dr ′ (C.2)

equation C.1 becomes

M (r) =
4πρ−2 exp (2/αEin) α3/αEin

Ein r3
−2

3 × 23/αEin

×

∫ u= 23/αEin r3

α
3/αEin
Ein r3

−2

u=0
exp

(
−uαEin/3

)
du.

(C.3)
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comparisons

Finally, using the substitution t = uαEin/3 so that dt =
αEin

3 uαEin/3−1du, then the integral in

equation C.3 (ignoring the constant factor) becomes

3
αEin

∫ uαEin/3

0
u1−αEin/3e−tdt =

3
αEin

∫ 2rαEin

αEinr
αEin
−2

0
t3/αEin−1e−tdt

= γ

[
3
αEin

,
2
αEin

(
r

r−2

)αEin
]
,

(C.4)

where the last equality follows from the definition of the incomplete lower gamma function

γ [a, x] =
∫ x

0 ta−1e−tdt. Including the constant factor in equation C.3 leads to the result

M (r) =
4πρ−2

αEin
exp(2/αEin)

(
αEin

2

)3/αEin
γ

[
3
αEin

,
2
αEin

(
r

r−2

)αEin
]
. (C.5)

C.2 Determining r500 iteratively

Evaluating equations 2.22 and 5.4 at r500 and equating we get

4π
3

500ρcrit(z)r3
500 = 4πρ−21/αEin exp(2/αEin)

(
αEin

2

)3/αEin
r3
−2

× γ

[
3
αEin

,
2
αEin

(
r500

r−2

)αEin
]
.

(C.6)

If we let R = r500/r−2, then we can determine r500 by solving the following for R

R3

γ
[

3
αEin

, 2
αEin

RαEin
]

−
1

ρcrit(z)
3ρ−2

500

(
αEin

2

)3/αEin exp (2/αEin)
αEin

= 0

(C.7)

by some iterative root finding method e.g. Newton-Raphson. We use the starting point R0 =
2r200
3r−2

which usually results in the algorithm converging in O(10) iterations.

We now show that equation C.7 only has one solution for a given r−2. We start by considering

both sides of equation C.6 as two different functions, and ignore constant terms for simplicity

(this doesn’t affect the truth of the final result), i.e. we consider the two functions

f (r500) = r3
500, g(r500) = γ

[
3
αEin

,
2
αEin

(
r500

r−2

)αEin
]
. (C.8)

We first note that f (0) = g(0) = 0, and differentiate both functions with respect to r500

d f
dr500

∝ r2
500,

dg
dr500

∝ r2
500 exp

[
−

2
αEin

((
r500

r−2

)αEin

− 1
)]
. (C.9)
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Setting these two derivatives equal to each other yields one solution at r500 = r−2 for all αEin , 0,

meaning the derivatives only intersect once. Furthermore dg
dr500

tends to zero for large r500 whilst
d f

dr500
is a monotonically increasing function, meaning the former must be larger before the two

intersect. This coupled with the fact that f (0) = g(0) = 0 means that g(r500) > f (r500) until

some point (which has to be after the derivatives intersect) when the two intersect, after which

f (r500) > g(r500) as g(r500) flattens off. This proves that equation C.7 only has one root and

that equation C.6 only has one solution in r500 for fixed r−2.
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C.3 Simulations results table

Table C.1: Input and output values of simulations using NFW and Einasto dark matter

profiles. The first column is what dark matter profile was used to simulate the cluster.

Input M (r200) and Input z are the input values used to create the simulation for the

given model. Ein out M (r200) is the mean and standard deviation of the posterior

distribution obtained inferred using an Einasto profile to model the cluster. Ein ln(Z)

is the log Bayesian evidence corresponding to the inference. NFW... is as before but

using an NFW profile in the modelling. ln(ZEin/ZNFW) is the log ratio of the two

evidences obtained.

Model Input M (r200) (×1014MSun) Input z Ein out M (r200) (×1014MSun) NFW out M (r200) (×1014MSun) Ein ln(Z) NFW ln(Z) ln(ZEin/ZNFW)

αEin = 0.2 1 0.15 1.05 ± 0.01 1.08 ± 0.01 47104.4 ± 0.4 47104.6 ± 0.4 −0.2

αEin = 2.0 1 0.15 1.05 ± 0.01 1.48 ± 0.01 47181.4 ± 0.4 47180.7 ± 0.5 0.6

αEin = 0.05 1 0.15 1.05 ± 0.01 0.97 ± 0.01 47175.0 ± 0.4 47175.3 ± 0.4 −0.3

NFW 1 0.15 1.03 ± 0.01 1.05 ± 0.01 47064.3 ± 0.4 47063.6 ± 0.4 0.7

αEin = 0.2 1 0.9 1.10 ± 0.01 1.21 ± 0.01 47173.2 ± 0.5 47174.5 ± 0.5 −1.3

αEin = 2.0 1 0.9 1.16 ± 0.01 1.57 ± 0.01 47100.8 ± 0.5 47095.1 ± 0.5 5.7

αEin = 0.05 1 0.9 1.02 ± 0.01 1.18 ± 0.01 47094.2 ± 0.4 47094.8 ± 0.5 −0.6

NFW 1 0.9 0.95 ± 0.01 1.05 ± 0.01 47105.2 ± 0.4 47106.7 ± 0.4 −1.5

αEin = 0.2 10 0.15 10.23 ± 0.02 10.33 ± 0.01 46814.8 ± 0.5 46815.0 ± 0.5 −0.2

αEin = 2.0 10 0.15 10.18 ± 0.01 15.06 ± 0.01 46640.7 ± 0.5 46638.3 ± 0.6 2.4

αEin = 0.05 10 0.15 10.21 ± 0.02 9.61 ± 0.01 46844.5 ± 0.5 46844.9 ± 0.5 −0.4

NFW 10 0.15 10.13 ± 0.01 10.23 ± 0.01 46873.9 ± 0.5 46873.0 ± 0.5 0.9

αEin = 0.2 10 0.9 11.47 ± 0.02 12.12 ± 0.01 46837.2 ± 0.5 46829.7 ± 0.6 7.5

αEin = 2.0 10 0.9 11.16 ± 0.01 13.65 ± 0.01 46835.0 ± 0.5 46829.9 ± 0.7 5.1

αEin = 0.05 10 0.9 11.48 ± 0.01 12.26 ± 0.02 46833.8 ± 0.6 46834.5 ± 0.5 −0.7

NFW 10 0.9 10.48 ± 0.02 11.57 ± 0.02 46926.4 ± 0.6 46926.6 ± 0.5 −0.2
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Appendix D: Supplementary statistical
derivations and results

D.1 Metropolis-Hastings and detailed balance

D.1.1 Metropolis-Hastings satisfies detailed balance proof

Following Hauser (2013) we show that for a Markov chain whose values are sampled from target

distribution P using proposal distribution q & the MH acceptance ratio, satisfies detailed balance

(a sufficient condition for the chain to asymptotically converge to the target distribution).

Consider an arbitrary point along the Markov chain, θk , then the proceeding step θk+1 can

lead to one of two possible scenarios which we denote scenario I and scenario II

α(θk+1, θk ) ⇒



θk+1 , θk scenario I,

θk+1 = θk scenario II.
(D.1)

Scenario I only occurs when an MH step is accepted, which occurs with probability

T (θk+1 |θk ) = α(θk+1, θk )q(θk+1 |θk ). (D.2)
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Substituting α for the MH acceptance ratio gives

T (θk+1 |θk ) = min
(
1,

p(θk+1)q(θk |θk+1)
p(θk )q(θk+1 |θk )

)
q(θk+1 |θk )

=
1

p(θk )
min

(
p(θk )q(θk+1 |θk ),p(θk+1)q(θk |θk+1)

)
,

(D.3)

where the second equality follows from taking a factor of 1/p(θk ) out of both terms in the

minimisation and multipling the factor q(θk+1 |θk ) into the function (both actions are allowed if

P and q are strictly positive).

Observe that the arguments of the the minimisation function are invariant to the relabelling

θk+1 → θk & θk → θk+1 (except their ordering is switched). Thus T (θk |θk+1) can be written as

T (θk |θk+1) =
1

p(θk+1)
min

(
p(θk )q(θk+1 |θk ),p(θk+1)q(θk |θk+1)

)
. (D.4)

Substituting these into the detailed balance equation gives

T (θk+1 |θk )p(θk ) =
1

p(θk )
min

(
p(θk )q(θk+1 |θk ),p(θk+1)q(θk |θk+1)

)
p(θk )

=
1

p(θk+1)
min

(
p(θk )q(θk+1 |θk ),p(θk+1)q(θk |θk+1)

)
p(θk+1)

= T (θk |θk+1)p(θk+1),

(D.5)

and thus the relation is satisfied for scenario I.

Scenario II occurs when either the MH step is accepted and the sampled point happens to be

θk , or when the MH step is rejected

T (θk |θk ) = α(θk , θk )q(θk |θk ) +

∫
θ̂

q(θ ′ |θk )(1 − α(θ ′, θk ))dθ ′, (D.6)

where θ̂ is the domain of p. Note that substituting T (θk |θk ) into the detailed balance equation

gives T (θk |θk )p(θk ) = T (θk |θk )p(θk ) and so scenario II trivially satisfies the relation.

D.1.2 Deriving the Metropolis-Hastings acceptance ratio from the detailed
balance relation

We can use the same scenario analysis to derive the MH acceptance ratio from the detailed

balance relation. For scenario I

α(θk+1, θk )q(θk+1 |θk )p(θk ) = T (θk+1 |θk )p(θk )

= T (θk |θk+1)p(θk+1)

= α(θk , θk+1)q(θk |θk+1)p(θk+1),

(D.7)
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which can be rearranged to give

α(θk+1, θk )
α(θk , θk+1)

=
q(θk |θk+1)p(θk+1)
q(θk+1 |θk )p(θk )

. (D.8)

For α to be a probability it must be bounded by [0,1], thus we need a form for α which sat-

isfies this constraint and equation D.8. If we consider the case where q(θk |θk+1)p(θk+1) >

q(θk+1 |θk )p(θk ) then we are saying if α(θk+1, θk ) = α(θk , θk+1) then the system moves from

θk+1 to θk more often than the reverse process happens, and thus detailed balance is violated.

This asymmetry suggests that we should maximise α(θk+1, θk ) i.e. set it equal to one, in which

case we can say that
1

α(θk , θk+1)
=

q(θk |θk+1)p(θk+1)
q(θk+1 |θk )p(θk )

> 1, (D.9)

which is satisfied by the equality

α(θk , θk+1) = min
(

q(θk+1 |θk )p(θk )
q(θk |θk+1)p(θk+1)

)
. (D.10)

Similarly in the case that q(θk |θk+1)p(θk+1) < q(θk+1 |θk )p(θk ) we can set α(θk , θk+1) = 1

and deduce the value of α(θk+1, θk ). Substituting both of these expressions back in equation D.8

satisfies the equality, and thus we have verified the MH acceptance ratio satisfies detailed balance

for scenario I.

Scenario II satisfies detailed balance trivially for any α and so does not place any additional

constraints on its form. Thus the relation derived from equation D.8 is valid for both scenarios.

Note that the way we have derived the MH acceptance probability implies that there is no

alternative acceptance probability β that satisfies β(θ ′, θk ) > α(θ ′, θk ), that does not violate

either β ∈ [0,1] or the detailed balance relation.

D.2 Evidence integral transformation

We now show that equations 2.43 and 9.17 are equivalent for the case of a one-dimensional

parameter problem: Θ ≡ θ, but note that this proof holds for Θ of arbitrary dimension.

The expression for X can be re-written as

X (λ) =

∫
θ̂
π(θ)H (L(θ) − λ)dθ, (D.11)

where θ̂ is the support of π(θ) and H (x) is the Heaviside step function which satisfies d
dx H (x) =

δ(x). Taking the derivative of equation D.11 with respect to λ gives

dX
dλ

= −

∫
θ̂
π(θ)δ(L(θ) − λ)dθ. (D.12)
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Equation 9.17 can be re-expressed as an integral over L by making a change of variables from

X to L. Recalling that λ(X ) ≡ L(X ),

Z =

∫ 1

0
L(X )dX

=

∫
λ ·

dX
dλ

dλ

= −

∫
L

∫
θ̂
π(θ)δ(L(θ) − λ)dθdλ.

(D.13)

Since the integrals are over all possible values of θ and λ and the limits are not a function of the

other variable of integration (i.e. limits(θ) , g(λ) and vice versa), the order of integration can

be switched according to Fubini’s theorem

Z =

∫
θ̂
π(θ)

(
−

∫
λδ(L(θ) − λ)dλ

)
dθ

=

∫
θ̂
L(θ)π(θ)dθ,

(D.14)

which is the form forZ given by equation 2.43.

D.3 Probability density function of the largest of n numbers

Let u1, ...,un be n random variables from the uniform distribution on [0,1] and let um be their

maximum. We can derive P(t) by considering the cumulative distribution function of um ,

F (um ). um is less than some value t if and only if all u1, ...,un are less than t. Therefore

F (um = t) = F (u1 = t, ...,un = t). (D.15)

Since the u j ’s are independent this is the same as

F (u1 = t)...F (un = t). (D.16)

If t is also defined on [0,1], then since u js are uniformly distributed we get

F (um = t) = t ...t = tn . (D.17)

Hence the probability density function for um is

F ′(um = t) = P(t) = ntn−1. (D.18)
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D.4 Determining log (E[Z]) and log
(
E

[
Z2

] )
from log(L) and

log(X ).

For the standard quadrature approximation of Z (equation 9.18) and statistical treatment of t

given by equation 9.22, Keeton (2011) derives expressions for E[Z] and var [Z]. The form

of var [Z] derived incorporates the covariance between the value of Z obtained from the main

nested sampling algorithm loop and that obtained from the final contribution to the evidence

after the main loop has terminated (Zf , see Section 9.4.1.2). When deriving these equations

Keeton works in linear space, which is valid as long as
√

var [Z]/E[Z] � 1, as in this limit Z

is normally distributed. As stated in Section 9.4.1.1Z is log-normally distributed in general and

thus we should quote the statistics given by equations 9.23 and 9.24. Furthermore, working in

linear space can lead to numerical difficulties if L and X are sufficiently small / large, as is the

case in the nested sampling example considered in Section 10.4.4. We can adapt the equations

derived by Keeton to calculate log (E[Z]) & log
(
E

[
Z2

] )
from log(L) & log(X ) to obtain

estimates of E
[
log(Z)

]
& var

[
log(Z)

]
(which hopefully avoid numerical under / overflow

issues), as follows.

We first define a function L which takes a vector x as an input, exponentiates this vector

component-wise, adds together the resultant values and then takes the logarithm of this sum

(known as the LogSumExp function)a

L(x) = log *
,

i=n∑
i=1

exp(xi )+
-
. (D.19)

We also define log(x) ≡ (log(x1), ..., log(xn )). log (E[Z]) (c.f. equation 17 of Keeton) can

then be calculated as

log (E[Z]) = L
(
log(L) + log(δX )

)
− log(nl ), (D.20)

where log(L) is the vector of logLi values obtained in the main nested sampling loop and

log(δX ) =
(
log (E[t]) , ...,ns log (E[t])

)
. Note that log (L) and log(δX ) are both vectors of

length ns.

log
(
E

[
Z2

] )
(c.f. equation 22 of Keeton) is given by

log
(
E

[
Z2

] )
= log

(
2

(nl (nl + 1))

)
+ L

(
log(L) + log(δX ) + log(I )

)
, (D.21)

aUnderflow and / or overflow issues can be avoided to some extent using the trick given in https://hips.seas.
harvard.edu/blog/2013/01/09/computing-log-sum-exp/.

https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
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where log(I )) = (log(I1), ..., log(Ik ), ..., log(Ins)) and

log(Ik ) = L
(
log(Lk ) + log

(
E[t]k

)
− log(δXk )

)
. (D.22)

Here the vector quantities denoted xk each have length k, and log
(
E[t]k

)
=

(
log

(
E[t2]

)
, ..., k log

(
E[t2]

))
.

The expected contribution to the evidence after the nested sampling algorithm loop termin-

ates, log (E[Zf]) can be determined from the log-likelihood values of the final set of livepoints

log(Lf ) = (L1, ...,Ll ), and the remaining prior volume Xns through

log (E[Zf]) = log(Xns ) − log(nl ) + L(log(Lf )). (D.23)

Similarly the log of the second moment ofZf (equation 28 of Keeton) is given by

log
(
E[Z2

f ]
)

= L(log(Lf )) − 2 log(nl ) + ns log
(
E[t2]

)
. (D.24)

Finally, the log of the cross term E[ZZf] (Keeton equation 32) can be calculated as

log (E[ZZf]) = L(log(Lf )) + log(δXns ) − log(nl (nl + 1)) + log(Ins). (D.25)

log (E[Z]) & log
(
E

[
Z2

] )
are then updated as

log (E[Z]) → L
((

log (E[Z]) , log (E[Zf])
))
, (D.26)

log
(
E

[
Z2

] )
→ L

((
log

(
E

[
Z2

] )
, log

(
E[Z2

f ]
)
, log(2) + log (E[ZZf])

))
, (D.27)

and used in equations 9.23 & 9.24 to calculate E
[
log(Z)

]
& var

[
log(Z)

]
.
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