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Abstract

Fermion Low Modes in Lattice QCD: Topology, the [′ Mass and Algorithm Development

Duo Guo

Lattice gauge theory is an important approach to understanding quantum chromodynamics

(QCD) due to the large coupling constant in the theory at low energy. In this thesis, we report our

study of the topological properties of the gauge fields and we calculate <[ and <[′ which are

related to the topology of the gauge fields. We also develop two algorithms to speed up the

inversion of the Dirac equation which is computationally demanding in lattice QCD calculations.

The topology of lattice gauge fields is important but difficult to study because of the large

local fluctuations of the gauge fields. In chapter 2, we probe the topological properties of the

gauge fields through the measurement of closed quark loops, field strength and low-lying

eigenvectors of the Shamir domain wall operator. The closed quark loops suggest the slow

evolution of topological modes during the generation of QCD configurations. The chirality of the

low-lying eigenvectors is studied and the lattice eigenvectors are compared to the eigenvectors in

the continuous theory. The topological charges are calculated from the eigenvectors and the

results agree with the topological charges calculated from the smoothed gauge fields. The fermion

correlators are also obtained from the eigenvectors.

The non-trivial topological properties of QCD gauge fields are important to the mass of the [

and [′, <[ and <[′. Lattice QCD is an area where <[ and <[′ can be calculated by using gauge

fields that are sampled over different topological sectors. We calculate <[ and <[′ in chapter 3 by

including the fermion correlators and the topological charge density correlators. The errors of <[

and <[′ are reduced to the percent level and the mixing angle between the octet, singlet states in

the SU(3) limit and the physical eigenstates is calculated.

An algorithm that reduces communication and increases the usage of the local computational

power is developed in chapter 4. The algorithm uses the multisplitting algorithm as a

preconditioner in the preconditioned conjugate gradient method. It speeds up the inversion of the

Dirac equation during the evolution phase.



In chapter 5, we utilize two lattices, called the coarse lattice and the fine lattice, that lie on the

renormalization group trajectory and have different lattice spacings. We find that the low-mode

space of the coarse lattice corresponds to the low-mode space of the fine lattice. Because of the

correspondence, the coarse lattice can be used to solve the low modes of the fine lattice. The

coarse lattice is used in the restart algorithm and the preconditioned conjugate gradient algorithm

where the latter is called the renormalization group based preconditioned conjugate gradient

algorithm (RGPCG). By using the near-null vectors as the filter, RGPCG could reduce the

operations of the matrix multiplications on the fine lattice by 33% to 44% for the inversion of

Dirac equation. The algorithm works better than the conjugate gradient algorithm when multiple

equations are solved.
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Chapter 1: Introduction

In this section we give a brief introduction about quantum chromodynamics (QCD) and lattice

QCD. We will start from QCD and then discuss how QCD is discretized as lattice QCD. We will

also describe the major steps by which the physical quantities are obtained through the framework

of lattice QCD: the gauge field generation, the measurements of the correlation functions and the

fitting of the physical quantities.

1.1 Quantum chromodynamics

Quantum chromodynamics (QCD) is believed to be the correct theory of the strong nuclear

interaction. The theory describes the interaction of the quarks and gluons and the formation of

mesons and hadrons. Technically, QCD is a non-Abelian SU(3) gauge theory. The Lagrangian is

given by:

L&�� = −
1
4
�0`a�

`a
0 +

∑
5

k̄ 5 (8W`�` − < 5 )k 5 (1.1)

where �0`a is the gluon field strength tensor calculated from the gluon fields �0`:

�0`a = m`�
0
a − ma�0` + 6 5 012�1`�2a (1.2)

�0` are the spin-1 gluon fields which live in the adjoint representation of the SU(3) gauge group,

indexed by 0, 1, 2.... The strong coupling constant is 6 and 5 012 are the SU(3) structure constants

constrained by the Lie algebra of su(3). Specifically, given a basis )0 of the Lie algebra, we have:

[)0, ) 1] = 8 5 012) 2 (1.3)

In summary, the first term of the Lagrangian is about the interaction between the gluons.

1



The second term is about the interaction between quarks and the the interaction between quarks

and gluons. k 5 are spin-1
2 quark fields. They live in the fundamental representation of the SU(3)

gauge group. As fermion fields, k 5 satisfy Grassman algebra. Different k 5 ’s anti-commute with

each other. There are different flavors of quark fields indexed by 5 , 6, .... k̄ 5 are the anti-quark

fields. Note that k̄ 5 are independent from k 5 . �` are the covariant derivatives:

�` = m` + 86�0`)0 (1.4)

The QCD Lagrangian is invariant under the local SU(3) gauge transformation + (G) as a gauge

theory. To be specific, the gauge transformations of the quarks and gluons are:

k(G) → + (G)k(G) (1.5)

�0` (G) → + (G) (�0` (G))0 +
8

6
m`)+†(G) (1.6)

The physical quantities, in particular, correlation functions are calculated in a path integral

fashion:

〈O〉 = 1
/

∫
[3k̄] [3k] [3�`]O48((�` ,k̄,k) (1.7)

where ( is the action:

( =

∫
34GL(G) (1.8)

and Z is the partition function:

/ =

∫
[3k̄] [3k] [3�`]48((�` ,k̄,k) (1.9)
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1.2 Lattice QCD

Unlike QED, the QCD coupling constant is large when the energy scale is below ~1 GeV. This

makes perturbative calculations unreliable. Lattice QCD is a non-perturbative method to study

QCD. It uses a finite space-time lattice to study the infinite and continuous four dimensional space.

The physics is simulated numerically through the Monte Carlo method. With the development of

modern computers, lattice QCD has become one of the most important approaches to study QCD.

There are two main steps in lattice QCD with the Monte Carlo method: 1) generating a number

of gauge field samples according to the QCD action; 2) measuring the physical quantities with the

gauge field samples. There are many theoretical and practical difficulties and we will discuss some

of the main obstacles.

The first issue is that the integrand of the partition function is highly oscillating. To overcome

the issue, the Wick rotation is performed:

G0 → −8G4 (1.10)

Then the Minkowski spacetime is transformed to the Euclidean spacetime and the integrand of

the partition function is real. Therefore, one could view the integrand of the partition function as a

probability distribution function for generating the gauge and fermion fields. After the gauge fields

are generated, correlation functions and other physical quantities can be calculated through sample

averaging. The gauge fields and fermion fields need to be discretized during the calculation and

there are lots of difficulties. Those substantial challenges were solved through great efforts by the

lattice QCD community and some of the solutions will be briefly explained in this chapter.

1.2.1 Discretization of the gauge fields

Although in the continuous theory the basic elements of the gauge fields are �` (G), in lattice

QCD, it’s easier to use the SU(3)-valued link variables*` (G) as the basic elements:
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Figure 1.1: Plaquette and rectangular link product

*` (G) = exp[806�` (G)] (1.11)

The discretization of the gauge fields is straightforward. One simply put the link variables on

the lattice sites.

With the link variables, one can construct other quantities on the lattice, for example, the pla-

quette:

%`a (G) = tr(*` (G)*a (G + ˆ̀)*†` (G + â)*†a (G)) (1.12)

One can also construct the rectangular link products like:

'`a (G) = tr(*` (G)*` (G + ˆ̀)*a (G + 2 ˆ̀)*†` (G + ˆ̀ + â)*†` (G + â)*†a (G)) (1.13)

The variables similar to the plaquette and the rectangular link products are invariant under the

gauge transformation:

*` (G) → + (G)*` (G)+†(G + ˆ̀) (1.14)

where + (G), +†(G + ˆ̀) are SU(3) matrices on the lattice. With the gauge invariant variables,

the QCD action could be constructed as:
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( = − V
3
[(1 − 821)

∑
G,`<a

%`a (G) + 21
∑
G,`≠a

'`a (G)] (1.15)

With this construction, in the continuum limit where the lattice spacing 0 goes to 0, the lattice

action reduces to the continuous QCD action [1]. When 21 = 0, the action is called the Wilson

gauge action which is the simplest choice. When 21 = −0.331, the action is called the Iwasaki

gauge action [2]. The Iwasaki gauge action is widely used because it has a smaller 02 dependence

than the Wilson action. For a given lattice spacing, the gauge field is more smooth because of the

small 02 dependence. In addition, the Iwasaki gauge action approaches the same continuum limit

as the Wilson action which allows good theoretical analysis using perturbative theory.

1.2.2 Discretization of the fermion fields

The discretization of the fermion fields relies heavily on the formulation of the Dirac operator.

A direct finite difference realization of the differential operator will give 1 physical an 15 nonphys-

ical modes in the continuum limit when the lattice spacing goes to 0 and will give non-physical

results. There are multiple ways to solve the problem. For example, Wilson solved this problem

by noticing that adding terms that vanish in the 0 → 0 limit won’t bring any trouble and the terms

can be used to eliminate the nonphysical modes in the 0 → 0 limit [3]. The Wilson Dirac operator

is:

�, (G, H) = (4 + <)XG,H −
1
2

∑̀
((1 − W`XG+`,H) + (1 + W`)XG−`, H) (1.16)

People have also introduced staggered, twisted mass, overlap and domain wall fermions. In this

thesis, the domain wall fermions will be used because this is the one that preserves the chiral

symmetry the best.

We start by introducing briefly chiral symmetry. The continuous QCD action with massless

quark fields has chiral symmetry under the transformation:

k → 48\W5k (1.17)
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k̄ → k̄48\W5 (1.18)

Nielsen and Ninomiya showed that it’s impossible to construct a Hermitian, local, translationally

invariant and chiral fermion in four dimension without lattice artifacts [4]. For example, with

Wilson fermions, the action has bad chiral properties at finite lattice spacing.

The domain wall formulation [5] overcomes the issue by introducing a fifth dimension. The

fifth dimension is also called the B direction and its size is given by !B. With !B → ∞, the

formulation has exact chiral symmetry. The physical chiral modes live on the B = 0 slice and

B = !B − 1 slice. To retrieve the four dimensional fermion fields, one projects out the left-handed

fields on the B = 0 slice and right-handed fields on the B = !B − 1 slice. With finite !B, the

domain wall formulation doesn’t have exact chiral symmetry and the degree to which the chiral

symmetry is broken is usually represented by the residual mass <A4B. The residual mass depends

on !B according to the equation: <A4B = � 4
−�!B
!B
+ � 1

!B
, where �, � and � depend on the spectrum

of the transfer matrix �transfer defined in [6].

The generic domain wall operator is:

��,� (G, B; G′, B′) = 1B�, (G, G′)XBB′ + XGG ′XBB′ + 2B�, (G, G′)!BB′ − XGG′!BB′ (1.19)

where �, is the Wilson Dirac operator and !BB′ is given by:

!BB′ = (!+)BB′%' + (!−)BB′%! (1.20)

where

(!+)BB′ = (!−)B′B =


−<X!B−1,B′ B = 0

XB−1,B′ 1 ≤ B ≤ !B − 1
(1.21)

The parameters 1B and 2B are called the Mobius parameters. In the case that 1B = 1 and 2B = 0,

the operator is usually called the Shamir domain wall operator [5]. When 1B and 2B are independent

of B, 1B − 2B = 1 and 1B + 2B = U, the operator is usually called the Mobius domain wall operator
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[7] and U is called the Mobius scale. When 1B and 2B are complex parameters varying at different

B, it’s called the zMobius domain wall operator [8]. Through the overlap transformation, it can

be shown that the chiral symmetry is preserved with !B → ∞ and < → 0. The Mobius operator

(when the Mobius scale is larger than 1) and the zMobius operator are more complex than the

Shamir operator. However, they have better chiral property with given !B compared to the Shamir

operator in the sense that they have smaller <A4B.

The domain wall formulation is computationally more expensive than most of the other for-

mulations because of the extra dimension. However, due to good chiral properties, one can do fits

according to the SU(2) or SU(3) chiral perturbation theory when the fermion masses are light. In

[9][10], it’s shown that the the chiral perturbation theory can be used for global fits to improve the

precision and reliability of the results.

1.3 Gauge field generation

As discussed above, the first main step in lattice QCD is gauge field generation. The gauge

fields are generated according to the distribution exp(−(). The Metropolis-Hastings algorithm is

widely used to serve the purpose. The Metropolis-Hastings algorithm is a Markov chain method

that is used to generate samples according to a certain distribution. Starting from a sample*0, the

probability to accept the next sample*1 is:

% =


1, ((*1) ≤ ((*0)

4((*0)−((*1) ((*1) > ((*0)
(1.22)

If *1 is rejected, *0 is duplicated as the next sample. It can be shown that the algorithm gives

an ensemble of samples that follow the distribution exp(−(). To make the theory computationally

viable, a proper algorithm to update the gauge links is needed.

To update the gauge field sample from *8 to *8+1, the hybrid Monte Carlo (HMC) algorithm

[11] is used. The hybrid Monte Carlo algorithm introduces the conjugate momenta c` (G) of the
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gauge fields *` (G) and a Hamiltonian system is constructed. Then the gauge fields are updated

according to the Hamiltonian equations.

To be specific, the Hamiltonian is:

H(c` (G),*` (G)) =
∑
G,`

1
2

Tr(c2
G,`) + ((*) (1.23)

A fictitious evolution time g (also called molecular dynamic time) is introduced and the equations

of motion are:
3

3g
*` (G) = 8c` (G)*` (G) (1.24)

and
3

3g
c` (G) = −m0G,`([*]C0 (1.25)

By combining HMC and the Metropolis-Hastings algorithm, the gauge fields can be updated.

However, the lattice QCD action also has fermions in it and the fermion term must be included.

The fermion fields are Grassman variables and can’t be incorporated directly in an easy way. In

practice, one notices that the fermion term in the action can be integrated as:

∫
[3k̄] [3k]4−k̄�k = det(�) (1.26)

The result is identical to a bosonic field q with action:

∫
[3q†] [3q]4−q†�−1q = det(�) (1.27)

where q is not a Grassman number. Now we can use q in the simulation for the fermion action and

generate gauge fields. However, � as a matrix is hard to be inverted. What’s more, though det �

is real, q†�−1q could be complex and the action would be unsuitable as a probability distribution.

This is solved by taking:
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det� = det(�†�)1/2

=

∫
[3q†] [3q]4−q† (�†�)−1/2q

Lastly, the 1/2 power of the matrix is calculated through the rational approximation, i.e. the

1/2 power is approximated by the combination of several integer powers. This concludes the main

techniques for gauge field generation.

In practice, there are many other techniques to either accelerate the calculation or makes the

gauge fields better approximation of the continuous fields. For example, in the action, sometimes

a term called dislocation suppressed determinant ratio (DSDR) [6] is included to suppress the

changes of the topological modes when the lattice spacing is large.

1.4 Measurements on the lattice

As mentioned before, after the gauge fields are generated, measurements can be done with

the gauge fields and the average values will be the final results from the lattice. Some of the

measurements can be done directly with the gauge fields. For example, the topological charge can

be measured as1:

& =
∑
G

1
32c2 n`ad_Tr(�`a (G)�d_ (G)) =

∑
G

d(G) (1.28)

where �`a (G) are the field strength tensors. Other quantities such as the average plaquette can also

be directly measured with the the gauge fields. However, most of the interesting quantities involve

fermions. For example, one might want to calculate the correlation function of the fermion fields

between two points:

〈k(G1)k̄(G2)〉 =
1
/

∫
[3k̄] [3k] [3*]k(G1)k̄(G2)4−k̄�k+... (1.29)

1In practice, since the gauge fields are not smooth, the gauge fields have to be smoothed through techniques like
the Wilson flow before the measurements of the topological charge to avoid lattice artifacts. This is explained in more
details in chapter 2.
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This can be evaluated as:

〈k(G1)k̄(G2)〉 = 〈�−1(G1, G2)〉 (1.30)

In practice, it’s impossible to invert the whole Dirac matrix. Instead, one can solve the linear

equation: ∑
G2

� (G1, G2)b (G2) = [(G1) (1.31)

[(G1) is generally referred as the source and one can set [(G1) to be a point source. Sometimes

one also considers the propagation from a certain time slice, C. In that case [ would be 1 where

the coordinate of the time direction is C. After solving the linear equation above, the solution can

be used for the purpose of the correlation function. Note that since we are using the domain wall

formulation, proper projection is needed so that we get four dimensional physical fermion fields.

In QCD, since quarks are confined, most physical matrix elements involve at least four quark

fields. Taking the pion correlation function as an example, the correlation function is:

〈3 (G)W5D̄(G)D(H)W53̄ (H)〉 = tr�−1
3 (G, H)W5�

−1
D (H, G)W5 (1.32)

In this case, two linear equations will be solved and then the solutions will be properly contracted

to get the final correlation function. When 6 or more quarks are involved, there are more complex

contractions and sometimes one needs to combine different contractions to get a single correlation

function. In conclusion, when fermions are involved, one needs to solve the Dirac equations and

do proper contractions to get the correlation function.

After getting the correlation function, one can extract information like particle masses from the

correlation function. Theoretically, the correlators can be calculated in a Hamiltonian framework.

For example, let’s consider a field q1 at C1 that propagates to C2 and becomes q2. The fields

are created by applying the corresponding operators to the vacuum. The theoretical correlation

function can be calculated for a periodic lattice of time extent ) as [12]:

〈q1(C1)q2(C2)〉 =
1
/

Tr(4−�̂ ()−C)# [q̂1]4−�̂C# [q̂2]) (1.33)
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where C = C2 − C1, # [q̂1] and # [q̂2] are normally ordered operators defined in [12]. One can

expand the equation in terms of the eigenstates of �̂ and set the lowest energy to 0. The correlator

is:

〈q1(C1)q2(C2)〉 =
1
/

∑
8, 9

4−� 9 ()−C)4−�8C 〈 9 |q̂1 |8〉〈8 |q̂2 | 9〉

=
1
/
(4−�1C 〈0|q̂1 |1〉〈1|q̂2 |0〉 + 4−�1 ()−C) 〈1|q̂1 |0〉〈0|q̂2 |1〉 +$ (4−�2C + 4−�2 ()−C)))

≈ �(4−�1C + 4−�1 ()−C))

In the last equation, we omit all the higher orders in terms of the energy. This shows that one can

fit the energy �1 from the correlation function. By combining different correlation functions, one

can calculate particle masses and other physical quantities.

The approximation in the last step relies heavily on the energy levels. When the difference

between different energy levels is small, there might be difficulties extracting the correct parame-

ters from the correlation function. In addition, the noise is a concern in practical fitting. Besides

analyzing the correlation function, the variance of the correlation function should be taken into

consideration as an estimation of the noise. In the case that there are low energy states in the

variance, the signal to noise ratio might be poor.
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Chapter 2: Topological properties, closed quark loops and zero modes of the

domain wall operator

The up quark, down quark and strange quark have small masses. In the massless limit, QCD

has SU(3) flavor symmetry. Given the vacuum breaking of the symmetry, there should be nine

Goldstone bosons with similar masses. However, the [′ mass is very different. The reason is that

the QCD vacuum has non-trivial topological properties which break the UA(1) symmetry [13][14].

The symmetry-breaking explains why the mass of [′ is heavy. As a result, the measurements

of [′ mass require a good sampling over the topological sectors for lattice QCD. However, the

measurement of the topological properties on the lattice is difficult because the local fluctuations

of the gauge fields are large. The common way to overcome the difficulty is to smear the fields.

However, the measurements for [ and [′ are done without smearing. Also, direct measurements

through gauge fields only give the global topological charge or topological charge density and

don’t give other aspects of the topological properties.

In this chapter, we study the topological properties of the lattice through direct measurements,

closed quark loops and the zero modes of the domain wall operator. We will first introduce the

famous index theorem and its relation with [ and [′. We will then describe the lattices that

are used in this chapter. Afterwards, We will talk about the results of the closed quark loops∑
®G 〈k̄(®G, C)W5k(®G, C)〉 and topological measurements to show the possible existence of long auto-

correlation. The properties of the low-lying eigenvectors will be discussed. Lastly, we demonstrate

that it’s possible to construct quark bilinears from the eigenvectors. In the next chapter, we will

calculate the mass of [ and [′.
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2.1 The index theorem

We will first give a brief introduction to the index theorem in the continuous theory, which

states that the topological charge of the QCD vacuum equals the difference between the number

of the chiral left-handed zero modes and the number of the chiral right-handed zero modes of the

Dirac operator. We will follow Coleman’s notation and process for the proof of the index theorem

[15].

First of all, the topological charge is defined as the integration of the inner product of the field

strength:

a =
1

32c2

∫
34G(�, �̃) (2.1)

The topological charge and the Dirac operator are related through the chiral Ward identity. In

QCD, in particular, it states:

− 8

16c2

∫
34G(�, �̃) = 2〈

∫
34Gk̄<W5k〉 (2.2)

which means:

−28a = 2〈
∫

34Gk̄<W5k〉

= 2

∫
[3k] [3k̄]4−(

∫
34Gk̄<W5k∫

[3k] [3k̄]4−(

=
2<

∑
_

∫
34Gk†

_
W5k_

∏
_′≠_ (_′ − 8<)∏(_ − 8<)

(2.3)

where we calculate the integration of the fermion fields to be the determinant of the fermion oper-

ator. In the equation, _ is the eigenvalue of the Dirac operator, k_ is the corresponding eigenvector

where the eigenvalue is used as the subscript of the eigenvector and < is the mass of the fermion.

Since 8 /� is Hermitian, the eigenvalues are all real. In addition, /� anticommutes with W5, so for
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eigenvectors with non-zero eigenvalues, we have:

8 /�W5k_ = −_W5k_ = −_k−_ (2.4)

So the non-zero modes always appear in pairs. For one non-zero mode, one can apply W5 to the

eigenvector and get another eigenvector that has an eigenvalue with the opposite sign. For zero

modes, we have:

W5kA = jAkA (2.5)

For one gauge configuration, there could be =+ zero modes where jA = 1 and =− zero modes where

jA = −1. jA is called the chirality of the mode.

Because of the properties of /�, most terms in eq. (2.2) vanish because for non-zero modes:

∫
34Gk†

_
W5k_ =

∫
34Gk†

_
k−_ = 0 (2.6)

and we get the index theorem.

− 28a = 28(=+ − =−) (2.7)

This concludes the proof of the index theorem. Note that there are several aspects through which

one can study the topology. In eq. (2.1), the topology can be measured directly through the gauge

fields. In eq. (2.2) and eq. (2.4), the topological charge is related to the fermion correlator. In fact,

this is the reason that the topological properties are important to [ and [′. The correlator 〈k̄W5k〉

appears in the correlation function of [ and [′. In eq. (2.7), the topological charges are linked to

the zero modes of the Dirac operator. We will study the topological properties through all three

aspects.

2.2 Lattices and calculation details

We consider three ensembles in this chapter. The action for the three ensembles is the Iwasaki +

DSDR (Dislocation Suppressing Determinant Ratio) gauge action [6]. The DSDR part suppresses
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size 0−1 <c

total

configurations

total

eigenvectors
methods

12×32 1GeV 300MeV 70 3500 Lanczos

24×64 1GeV 140MeV 2 40 Ritz

24×64 2GeV 300MeV 2 60 Ritz

Table 2.1: Lattices and the eigenvectors

the changes of the topological charges which is important when the coupling is strong. The first

ensemble is the 243 × 64, 0−1 ≈ 1GeV ensemble [9] with <c ≈ 140MeV. This is a physical

ensemble in the sense that the physical quantities calculated from this ensemble are close to the

real value. The second ensemble is the 243 × 64, 0−1 ≈ 2 GeV ensemble with <c ≈ 300MeV. This

ensemble has heavier pion mass but the lattice spacing is smaller. The small lattice spacing means

that it’s close to the continuum limit. The third ensemble is the 123 × 32, 0−1 ≈ 1GeV ensemble

with <c ≈ 300MeV. The benefit from this ensemble is that the volume is small and the calculation

is cheap. We calculate the topological charges through the gauge fields by the 5-loop improved

method [16] or through field strength. For the eigenvectors, we use the implicitly restarted Lanczos

algorithm to calculate eigenvectors for the 12ID ensemble and the Ritz algorithm to calculate the

eigenvectors for the two 24ID ensembles. The information is listed in Table 2.1. The calculation

methods will be discussed in more details in each section.

During the calculation of the eigenvectors, because the chiral symmetry is preserved in the

massless limit, we use different input masses to study the mass dependence of the eigenvectors and

try to push it to the massless limit. Because the finite fifth dimension brings the residual mass, we

also vary the length of the fifth dimension, !B, for the 12ID ensemble to study how the residual

mass changes the chiral properties of the eigenvectors. For the two 24ID ensembles, we only

calculate on a few configurations due to the computational limits.
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2.3 Direct measurements of the topological charges and the closed quark loops

In this section, we show the direct measurements of the topological charges and the closed

quark loops of the 24ID 0−1 ≈ 1GeV ensemble. In chapter 1, it’s mentioned that the topological

charge can be directly measured through the field strength. However, the gauge fields have large

local fluctuations which affect correct measurements. The common way to overcome the obstacle

is to smooth the fields by running the Wilson flow [17]. The equation for the Wilson flow is:

3*C (G, `)
3C

= −62
0{mG,`(flow(*C)}*C (G, `) (2.8)

where *C (G, `) is the link variable at flow time C and it equals the original link variable when

C = 0. (flow is the flow action and it doesn’t have to be the same as the action for generating the

ensemble. 60 is the coupling constant. With the Wilson flow, the gauge fields will change along the

steepest descent direction toward the stationary point, or local low energy point of the action. The

topological charge as a global property will not change with the Wilson flow. At the same time,

the local lattice artifacts will be smoothed out. As a result, this is beneficial for the measurements

of the global topological charge. In our measurements, the Wilson flow is run for 1000 steps and

in each step, the step size is 3C = 0.05. It’s found that the topological charge measurements are

stable after the Wilson flow.

The topological charge can then be measured through the gauge fields. The global topological

charge is measured through the 5-loop improved (5Li) method [16]. The method measures the

combination of 5 different kinds of loops to get rid of O(02) and O(04) corrections. The measure-

ments of the topological charges are shown in Fig 2.1. Here the results are shown as a function

of the molecular dynamic time (gauge field evolution time) to demonstrate the evolution of the

topological charge. The average topological charges in every 20 MD units are also shown.

We would like to emphasize the influence of the action and the lattice spacing on the topological

charge. The action has a DSDR term which suppresses the changes of the topological charges.

However, the large lattice spacing 0−1 ≈ 1GeV promotes the changes of the topological charges.
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Figure 2.1: Topological evolution of the 24ID 0−1 = 1GeV ensemble, showing a good sampling

over all topological sections.

The result will be a balance of the two effects. Overall, from Fig 2.1, it can be seen that the

topological charges change by a large amount during the evolution and the average topological

charge is close to zero. From this perspective, our gauge fields are well sampled over all global

topological sectors and there is no topological freezing. However, as we look at the results for

closed quark loops, we will find a more complicated situation.

The closed quark loops are important because they appear in the calculation of the [ and [′. In

the calculation of the [′ mass, we must consider 〈k̄W5k(G)k̄W5k(H)〉, which leads to the discon-

nected terms like � ;; = 〈k̄W5k(G)k̄W5k(H)〉. We consider the closed quark loops on each time slice∑
®G 〈k̄(®G, C)W5k(®G, C)〉. During the measurement, we first set the gauge fields to Coulomb gauge.

We then calculate
∑
®G 〈k̄(®G, C)W5k(®G, C)〉 using a wall sink and a wall source. The results for the

light quark mass are shown in Fig 2.2 as a function of the time slice. Error bars are shown with un-

binned data and a binning of 10 (40 MD time units). When calculating errors, each bin is assumed

independent. Note that since we have periodic boundary conditions, the results on each time slice

should be the same by translational invariance. However, there is no translational invariance in

time direction for our closed quark loop results. What’s more, since the average topological charge

should be zero, the values of closed quark loops should be zero. However, it can be seen that the
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Figure 2.2: Closed quark loops for the light quark of the 24ID 0−1 = 1GeV ensemble. This graph

shows that the close quark loops don’t average to 0 when there is no binning and persistent (in

evolution time) topological objects might be the reason.

mean values for many time slices are many standard deviations from zero for unbinned results.

The most likely reason that the mean values don’t fall to zero is that the autocorrelations are

long during the evolution. To illustrate this, we give three pieces of evidence. The first evidence

Figure 2.3: Left: The closed quark loops with part of the trajectories; right: The evolution of the

closed quark loops for one time slice. The deviation from zero shows the possible existence of

topological objects over long MD time.
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comes from binned results. If one bins the results for closed quark loops over 40 MD time units,

it is found that the error bars grow substantially and most mean values fall to zero (Fig 2.2). Also,

the error bars stay the same if one bins the results over 80 MD time units, which means that the

error bars are stable for 40 MD time units. Additional evidence for long autocorrelations is that

if one uses only part of the trajectories (Fig 2.3), one finds that the mean values are very far away

from zero, which shows that part of the trajectories doesn’t provide enough statistics and one can

deduce that the autocorrelation length is long. Lastly, one can look at the evolution of one single

time slice in the molecular dynamic time. If one bins the results over 40 MD time units, one finds

that the values could be above zero for a very long MD time. In Fig 2.3, the results for T = 35 is

shown and one can see that it is constantly above zero for MD time 700 to 1200.

Hence, one sees that there is tension between the results of the closed quark loops which probe

local topological fluctuations on the configurations and the results for the global topological charge

measured after the substantial Wilson flow. The global topological charge tells one that the gauge

fields are sampled well but the closed quark loops tell one that there are long autocorrelations.

Binning to 40 or 80 MD time units gives a better estimation of errors, but O(500) MD time unit

autocorrelations still appear for certain local topological quantities. This is important because

correct local fluctuations are necessary to get localized correlators to produce the correct masses.

2.4 Lattice Dirac operator and the Dirac operator plus the mass term

With the domain wall operators, it’s almost impossible to get a massless Dirac operator because

the finite fifth dimension gives a small yet non-zero residual mass. As a result, to understand

the domain wall operators, we have to compare to the Dirac operator plus the mass term in the

continuous theory. The operator W5( /� +<) is a Hermitian operator with mass. Here we use the /�

in the Euclidean space. By squaring the operator, one finds that the eigenvalues _� are related to

the eigenvalues _ of the massless operator by:

_2
� = _

2 + <2 (2.9)
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The anti-commutator with W5 is

{W5( /� + <), W5} = 2< (2.10)

If we define the chirality of an eigenvector as 〈k |W5 |k〉, the chirality of the zero modes of the

operator /� is 1 or -1 and the the chirality of the non-zero modes of the operator /� is 0 as discussed

in section 1. The chirality of the eigenvector of the operator with the mass term can be calculated:

〈k�
±
√
_2+<2 |W5 |k�±√_2+<2〉 =

<

_�
=

<

±
√
_2 + <2

(2.11)

where we use the eigenvalues as the subscript for the eigenvectors. Note that the mass introduces

a scale on which the chirality depends. For all eigenvectors with _� ≈ <, _ � <, the chirality is

close to ±1. This is very different from the massless results where the non-zero modes all have 0

chirality.

In fact, one can even get the eigenvectors of the Dirac operator with the mass term from the

eigenvectors of the massless Dirac operator 8 /�. The eigenvectors are related by a rotation:

k�√
_2+<2 =

1
√

2
(48 \2 k_ + 4−8

\
2 k−_)

k�
−
√
_2+<2 =

1
√

2
(48 \2 k_ − 4−8

\
2 k−_)

(2.12)

where \ is given by 48\ = <+8_√
<2+_2 . The eigenvectors on the left hand side are the eigenvectors of

the operator with a mass term and the eigenvectors on the right hand side are the eigenvectors of

the massless Dirac operator. In general, for two operators with mass <1 and <2, we have:

〈k�√
_2+<2

1
|k�√

_2+<2
2

′〉 = cos(\2 − \1)

〈k�√
_2+<2

1
|k�
−
√
_2+<2

2

′〉 = 8 sin(\2 − \1)
(2.13)

For the Shamir domain wall fermions, the Hermition operator is ��
�,�

= W5'5��,� (<). The
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eigenvalue Λ should have the following form [18] for the low lying eigenvectors:

Λ2 = =2(_2 + (X< + <)2) (2.14)

Here, < is the input mass. =, X< and _ are the scale factor, the residual mass and the eigenvalue in

the massless continuum. In the equation, Λ can be calculated by calculating the eigenvalues on the

lattice. The input mass is known. However, =, X< and _ are unknown and have to be fitted. We

will be able to confirm the relation through the quality of the fitting.

As described, we calculated the eigenvectors of ��
�,�

= W5'5��,� (<) through the Lanczos

algorithm and the Ritz algorithm. The algorithms are used to calculate the eigenvectors when

direct calculation is hard. With the Ritz algorithm, 〈I,�I〉〈I,I〉 is minimized to get the eigenvector with

the lowest eigenvalue. A minimization method that is similar to the conjugate gradient algorithm

is used [19]. Afterwards, a few low-lying eigenvectors are calculated in a similar fashion by

keeping them orthogonal to the previously calculated eigenvectors. The Lanczos algorithm is

described in the appendix and we introduce the algorithm here briefly. The Lanczos algorithm

shares some ideas with the power method but the idea of Krylov space is utilized. In the power

method, through iterative application of the matrix to a vector, the low-mode components of the

vector are smaller and smaller and the eigenvector with the largest eigenvalue will be left in the

end. The eigenvector with the lowest eigenvalue can be obtained by proper modifications. The

Lanczos algorithm can calculate multiple low-lying eigenvectors by utilizing the Krylov space.

However, the Lanczos algorithm itself is not stable. Numerical errors due to the precision limit

will accumulate and destroy the final results. In [20], proper restarts are utilized to avoid numerical

instability. This is called the implicitly restarted Lanczos algorithm and the algorithm is used in

our calculation. Furthermore, Chebyshev polynomials are used to change the spectrum. This

means that a polynomial of the operator instead of the operator itself is used in the algorithm. The

technique is also called preconditioning. The spectrum of the low eigenvalues are more isolated

with the Chebyshev preconditioning.
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Figure 2.4: Left: eigenvalues of the lattice operator for different input masses, 24ID 0−1 ≈ 2GeV

ensemble, configuration 800. The lines are fitting results according to eq. (2.13); Right: fitted

residual mass as a function of !B, 12ID ensemble, configuration 700. The result shows that the

residual mass decreases when !B increases.

The fits of the eigenvalues are shown in Fig 2.4. The points are the calculated eigenvalues

on the lattice for the different input masses. For each input mass, the 10 lowest eigenvalues are

plotted (some of the eigenvalues are very close). We fit eq. (2.13) for the eigenvalues of the

different input masses. The same =2 and X< are used for all the eigenvalues. The curves are then

plotted according to eq. (2.13). It can be seen that eq. (2.13) describes the eigenvalues very well.

We also calculated eigenvectors when different !B are used and the residual masses are fitted. The

residual masses are plotted against !B in the right graph of Fig 2.4. The residual mass decreases

inversely with !B which agrees with the understanding of the domain wall operator. The graphs

are for the configurations listed in the caption but the results are similar for all the ensembles and

configurations.

The anti-commutation relation for the lattice Hermition Dirac operator is: {��,� , Γ5} =

2< 5&
(F) + 2& (<?) ≡ 2&, where & (F) and & (<?) are defined in [18]. Γ5 is 1 for B >= !B/2
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Figure 2.5: 1/〈Ψ8 |Γ5 |Ψ8〉 as a function of eigenvalues, 24ID 0−1 ≈ 2GeV ensemble, configura-

tion 800. This demonstrates that the chirality of a lattice eigenvector depends on the eigenvalue

according to eq. (2.14)

and -1 for B < !B/2. This means that the chirality of the eigenvectors follows:

〈Ψ8 |Γ5 |Ψ8〉 =
〈Ψ8 |& |Ψ8〉

Λ8
(2.15)

When the numerator on the right hand side is constant for different eigenvectors, the chirality of

the eigenvectors will be anti-proportional to the eigenvalues. This is the analog of eq. (2.10) for

the Dirac operator with the mass term in the continuum. In Fig 2.5, we show 1/〈Ψ8 |Γ5 |Ψ8〉 against

the eigenvalues. The linear relationship shows that 〈Ψ8 |& |Ψ8〉 is indeed constant for different

eigenvectors. Under this condition, when the mass increases, there are more eigenvectors with

chirality close to 1 because there are more eigenvalues that are close to the mass. This explains

why there are multiple negative and positive chiral modes for the heavy mass. We emphasize that

this is very different from the continuous massless case where only zero modes have chirality 1 or

-1. The results are similar for the other ensembles and configurations.
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Figure 2.6: Left: Inner product between the eigenvectors with m = 0.000525 and m = 0.00604 for

the 24ID, 0−1 ≈ 2GeV ensemble, config 800; right: Inner product between eigenvectors with m

= 0.01 and m = 0.02 for the 12ID ensemble, config 700. The graph shows that the eigenvectors

mix in pairs when the fermion mass is changed and the lattice is close to the continuum limit. The

topological modes are hard to isolate when the fermion mass is unneglectable compared to the

eigenvalues.

We are also able to study how the eigenvectors themselves change when the mass is changed

and we compare the results to eq. (2.11) and (2.12) in the continuum limit. In Fig 2.6, we show

the inner product between eigenvectors for different masses. The x and y axis are the index of

the eigenvectors of the different input masses. A good agreement with eq. (2.11) and eq. (2.12)

is found for 24ID 0−1 ≈ 2GeV. This means that the eigenvectors mix when the mass is changed

and the high chirality of an eigenvector doesn’t mean that it’s a topological mode. To find a true

topological modes, we have to have zero fermion mass. For the 12ID 0−1 ≈ 1GeV, the agreement

is poor which means that for the coarse lattice, it’s further away from the continuum limit. The

results also show how mass can twist the eigenvectors and why true zero modes are hard to obtain

with non-zero mass. Again, the results are consistent for different configurations.

For finite !B, the residual mass makes it hard to get the true zero modes as in the massless

continuous case. To understand the !B effect, we calculate the eigenvectors at different !B. In
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Fig 2.7, we show the matrix elements 〈Ψ8 |Γ5 |Ψ 9 〉 where the diagonal elements are the chirality.

For small !B, it can be seen that there are both positive and negative modes because of the large

residual mass. When !B is increased, these modes gradually disappear. When !B = 192 , there is

one distinct zero modes. However, large mixing can still be seen which means that it’s very hard

to get rid of the residual mass effect.

Figure 2.7: 〈Ψ8 |Γ5 |Ψ 9 〉 for different !B, 12ID ensemble, configuration 700. The graphs show that

zero modes that are close to massless limit could only be obtained when large !B is used.

Lastly, we calculate the net topological charge by counting the net chiral modes. We consider

chiral modes (|〈Ψ8 |Γ5 |Ψ8〉| >= 0.9) and round the chirality to ±1. For the results from the field

strength (��̃), we first run the Wilson flow with the flow time C = 5.3. The results are in Fig 2.8 and

one can see that the results agree with each other. However, for the eigenvectors, the measurements

25



Figure 2.8: Topological charge calculated from the eigenvectors and the field strength. The results

are for 12ID ensemble, configuration 200 to 800 with a separation of 10. Without smearing the

gauge fields, we are able to obtain the topological charge through the eigenvectors.

are done on the original lattices without smearing.

In summary, the eigenvalues and the chirality of the domain wall operator are described by

the Dirac operator with the mass term in the continuum. We are able to understand how the

eigenvectors, eigenvalues and chirality change when the mass changes on the lattice. With finite

mass, the chirality of the low modes are close to 1 as long as the eigenvalues are close to the

mass which is very different from the continuum massless limit. The finite !B brings in a mass

scale and the massless limit is hard to reach. However, given a large enough !B, one or a few true

zero modes could be obtained which are isolated topological modes. Lastly, the global topological

charge can be measured through the low-lying eigenvectors and the results are consistent with the

measurements through the gauge fields. Again, we emphasize that smearing is not applied for the

measurements from the eigenvectors.
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Figure 2.9: The quark closed loops obtained through the eigenvectors and the direct calculation.

The results are for 12ID ensemble, configuration 200 to 800 with a separation of 10

2.5 From eigenvectors to the quark closed loops

To show that the eigenvectors and near-zero modes are closely related to the topological prop-

erties as well as [ and [′, we also consider the quark closed loops
∑
®G,®H 〈@̄(®G, C)W5@(®H, C)〉 on the

time slice in eq. (2.2). Note that this contributes significantly to the calculation of <[ and <[′. The

direct calculation is obtained by applying the inverse of /� to a wall source. However, one can also

obtain the results by using the near-zero eigenvectors. The idea is very similar to the low-mode

approximation. The formula is:

∑
®G,®H
〈@̄(®G, C)W5@(®H, C)〉 =

∑
=

Tr(∑
®G,®H
(Ψ†= (®G, C)Ψ= (®H, C)))

Λ=
(2.16)

We use different numbers of eigenvectors and the results are shown in Fig 2.9. Note that the results

from the eigenvectors approximate the direct calculation very well. It’s interesting that we can

approximate the direct calculation with only 5 eigenvectors. This shows that it’s really topological
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zero modes that are involved in the quark closed loop and <[′.
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Chapter 3: The mass of [ and [′

In this chapter, we will calculate <[ and <[′. The calculation is closely related to the last

chapter because the quark closed loops and topological charge density enter into the calculation.

We would like to point out that [ and [′ are interesting in several aspects. First of all, as mentioned,

it’s tightly related to the topological properties of the QCD vacuum. With light quark masses (up

quark, down quark and strange quark), there should be nine conserved axial-vector currents which

bring nine Goldstone bosons with similar masses. However, [′ has very different mass [21]. The

breaking of the symmetry can only be explained by the non-trivial topological structure of the

QCD vacuum [13][14]. Lattice QCD is one of the ways that the relationship can be explored. We

will connect the topological density correlators with the mass of [ and [′ in this chapter. The quark

closed loops, which is demonstrated in last chapter to be closely related to the topology, will also

be used in the calculation.

There is another reason that [ and [′ are interesting in lattice QCD calculation. As states with

the same quantum numbers, [ and [′ are mixtures of the pseudoscalar singlet and octet states of

the SU(3) symmetric limit [22]. Lattice QCD is one of the most important ways to calculate the

mixing angle. In this chapter, the mixing angle will be calculated.

We will begin this chapter by introducing some of the techniques used in the calculation. Then

we will discuss the fermion correlators that will be used in the fits of [ and [′. The topological

charge density correlators can also be used in the fits for [ and [′ and it’s discussed in the fourth

section. Due to computational limitation, we measured on two sets of trajectories of gauge con-

figurations and the intervals of the measurements are different. To combine the data, we study the

autocorrelation of the data. Lastly, we show the results for [ and [′ as well as the mixing angle.

In this chapter, the focus is the 24ID 0−1 = 1GeV ensemble. This is a physical ensemble in

the sense that the measured pion, kaon and omega masses are the same as the physical masses
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[9]. Therefore, our measurements could be taken as a realistic study of the physical [ mass and [′

mass up to finite lattice spacing corrections. Results from different ensembles with different lattice

spacings would be required for a continuum limit determination.

3.1 Jackknife resampling and other techniques in the calculation

As described in chapter 1, the physical masses are calculated by fitting to the correlators. To

get good fits, some techniques are introduced to reduce and measure the errors. The first one is

the jackknife resampling [23]. As discussed, we measure the same correlators on different gauge

configurations. It’s very likely that there will be one or a few outliers. The outliers are part of the

samples but may give strange results after the fitting. The jackknife technique smooths the outliers

and allows for error estimation for non-linear functions of measured values.

To describe it in details, suppose that we have samples: {-1, -2, ...-=}. The jackknife resam-

pling transforms the samples according to the formula:

.8 =

∑
9≠8 - 9

= − 1
(3.1)

Instead of working with the original samples, now we work with the new samples {.1, .2, ....=}.

After the resampling, the standard deviation for the new samples can be estimated through double-

jackknife. For example, to calculate the standard deviation of .1, one create another ensemble

where the elements are:

/8 =

∑
9≠8,1 - 9

= − 2
(3.2)

Then the standard deviation of .1 will be
√∑(/8 − /̄)/(= − 1) (= − 2). After fitting with the new

ensemble {.1, .2, ....=}, the true error is the standard deviation multiplied by
√
= − 1. One can

easily verify the factors with a set of Gaussian variables and the jackknife resampling will give

correct expected values for the mean and the variance.

In the case that the samples are not independent from each other, one needs to consider the

autocorrelation between the samples. To make the samples independent, the correlated samples
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can be binned together. Binning is one of the simplest techniques to resolve the autocorrelation

between the samples.

Fitting is an important step to get the masses. The standard algorithm used to do the fits is the

Levenberg-Marquardt (LM) algorithm [24]. The algorithm is an iterative method that can minimize

j2 which is defined as:

j2 = (y − f (x, V))�−1(y − f (x, V)) (3.3)

where y is the vector of the measured correlators in our case, f is the fitting function, x contains

the known arguments, V is the vector of the parameters to be fitted and � is the covariance ma-

trix. Taking the derivative, one finds that the parameters should be updated by X according to the

equation:

J)�−1JX = J)�−1(y − f (x, V)) (3.4)

where J is the Jacobian matrix of f with respect to V. This is the Gauss-Newton algorithm. The

LM algorithm adds a damp parameter _ and changes the equation to:

(J)�−1J + _I)X = J)�−1(y − f (x, V)) (3.5)

The damping parameter _ is actually adjusted in every iteration. With a small _, the algorithm

behaves similarly to the Gauss-Newton algorithm. With a large _, the algorithms behaves similarly

to the gradient descent method. With the damping parameter, the algorithm is more robust than the

Gauss-Newton algorithm, especially when the functions are not well behaved.

Lastly, sometimes the covariance matrix � in eq. (3.4) can be replaced by diag(�) when the

correlations between different H’s are small. However, in the case that there are correlations, taking

the full covariance matrix can reduce the error and improve the reliability. In the case that the

dimension of y is large, the estimation of the covariance of y could be inaccurate. In the situation,

thinning could be used to reduce the dimension of y, i.e. only part of y is used in the fits. The

thinning technique is also useful in terms of reducing j2.
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Figure 3.1: The diagrams for the connected and disconnected correlators

3.2 Fermion correlators and the results from fermion correlators

<[ and<[′ can be calculated from the fermion correlators in the way that’s described in chapter

1. We follow the procedure in [25] for the fermion correlators. To do the calculation, one can write

down the states of [ and [′. With exact SU(3) flavor symmetries, we have:

|8〉 = 1
√

6
|D̄W5D + 3̄W53 − 2B̄W5B〉 (3.6)

|1〉 = 1
√

3
|D̄W5D + 3̄W53 + B̄W5B〉 (3.7)

where |8〉 is the octet and |1〉 is the singlet. Since the symmetry is broken, [ and [′ are mixtures of

the octet and the singlet. If one calculates the correlators, there will be many similar terms. With

|;〉 = 1√
2
|D̄W5D + 3̄W53〉 and |B〉 = | B̄W5B〉, one can calculate the correlators using the light state and

strange state. The light state and the strange state are both SU(2) singlets. In fact, this is preferred

because in lattice calculation, the mass of the up quark and the mass of the down quark are usually

the same because both quarks are very light. The correlators for the light and strange states have

both disconnected and connected parts [25]:

©­­«
〈; (C);†(0)〉 〈B(C);†(0)〉

〈; (C)B†(0)〉 〈B(C)B†(0)〉

ª®®¬ =
©­­«
�;; − 2� ;; −2

√
2� ;B

−
√

2� ;B �BB − �BB

ª®®¬ (3.8)

The connected correlator �;; and disconnected correlator � ;; are explained in the diagrams of

Fig 3.1. The other correlators are similar. The connected correlators are calculated by inverting the
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Figure 3.2: Fermion correlators. Left: �;; and �BB; right: � ;; , � ;B, �BB

.

Dirac equation as described in chapter 1. In our case, we first fix the gauge to be Coulomb gauge

and then use wall source and wall sink. The disconnected parts are calculated directly from the

closed quark loops and that’s how topology enters into <[ and <[′.

�01 (g) =
1
)

∑
〈@0 (C)W5@0 (C)〉〈@1 (C + g)W5@1 (C + g)〉 (3.9)

To get <[ and <[′, one can do the rotation [25]:

©­­«
|[〉

|[′〉

ª®®¬ =
©­­«
cosU −sinU

sinU cosU

ª®®¬
©­­«
|;〉

|B〉

ª®®¬ (3.10)

where U is the mixing angle that relates [ and [′ to the SU(2) eigenstate and the strange state. Note

that U is not the angle (which is usually represented by \) that relates [ and [′ to the singlet state

and octet state. The relation between \ and U is: U = \ + 54.7◦ [22]. Given all the correlators, one

can do simultaneous fits to get the <[ and <[′ [25]. The correlators are calculated for the physical

24ID ensemble. The quark closed loops are also calculated on each time slice. For trajectory

300-2452, the measurements are done for every 4th configuration. Due to the resource limitation,

for trajectory 2460-5070, the measurements are done for every 10th configuration. The related
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Figure 3.3: Fermion correlators. Left: 〈; (C);†(0)〉 ; right: 〈B(C);†(0)〉

.

Figure 3.4: Fermion correlators, 〈B(C)B†(0)〉

correlators are plotted in Fig 3.2 to Fig 3.4. The largest differences between the two sets happen

for � ;; , 〈; (C);†(0)〉. This is because the signal for � ;; is formed by averaging all the topological

samples and the error reduces slowly. This is different from the pion correlators �;; where the

signal to noise ratio is strong because the pion is the lightest particle.

With the fermion correlators, one can already calculate<[ and<[′. In Fig 3.5, the results of<[

and <[′ are shown. The labels in x-axis show the fit range [C<8=, C<0G] of the fermion correlators.

Here C is the separation between the source and the sink of the fermion fields. For [′, when C<8= = 2,
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Figure 3.5: The results from the fermion correlators. Left: the mass of [; right: the mass of [′. The

dashed lines show the results from PDG [22]. The labels in x-axis show the fit range [C<8=, C<0G]

of the fermion correlators.

.

the results don’t agree with the physical value. This is because there is contamination from high

energy states that will only disappear when the separation between the source and the sink is large.

Given that the results are relatively stable when C<8= > 2, we will use the fermion correlators in the

range 3 ≤ C ≤ 10.

However, one can increase the precision and accuracy by adding the topological charge density

correlators. In the next section, we will introduce how one can use the topological charge density

correlators to calculate <[ and <[′. In the last section, we will compare the results calculated from

fermion correlators and the results calculated from fermion correlators and topological charge

density correlators.

3.3 Topological charge density correlators

The topological charge density couples to the pseudoscalar singlet meson channel. By adding

an additional correlator into the fit, the error could be reduced. In addition, the topological charge

density is easy to calculate because it can be directly calculated from the gauge fields and no
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matrix inversion is needed. In this section, we will first show how <[ and <[′ are related to the

topological charge density. We will describe how the correlators are calculated and how we deal

with the systematic effects from the Wilson flow.

3.3.1 The relation between topological charge density correlators and <[, <[′

The effective Lagrangian for the meson singlet, octet and topological charge density is [26]:

L4 5 5 = −8
∫

34G�q0& + � (q0, q8) (3.11)

where � is a constant, & is the topological charge density and � is the kinetic term for the mesons,

represented by the singlet q0 and octet q8. Given the Lagrangian, one can calculate that the topo-

logical charge density correlator is related to <[ and <[′ by [27]:

〈@(G)@(H)〉 = �1X(A) − �2
 1(<[′A)

A
− �3

 1(<[A)
A

(3.12)

where  1 is the modified Bessel function, A = |G − H | and �1, �2, �3 are constants. Therefore, with

good signals, one can fit <[ and <[′ with the topological density correlator. During the fits, it’s

found that if both [ and [′ states are included in the fits, the results are not stable. Since the fits can

not differentiate two states, we only include the [′ state during the fits for the topological charge

density correlators. This is supported by the fact that the mixing angle \ is small and the SU(3)

singlet state is mainly composed of the [′ state. However, the current results will be improved if

two states could be differentiated.

3.3.2 Calculating the topological charge density correlators

The topological density @(G) is first calculated from the field strength as described in chapter

1. To calculate the correlators, the Fourier transformation of @(G) is calculated to be F (@(G)).

Since the Fourier transformation of the correlator is the product of the Fourier transformation of
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the original operator, one can get the correlators by the equation:

〈@(G)@(H)〉 = F̃ (F (@(G1))∗F (@(G2))) (3.13)

After the correlators are calculated, all correlators with the same A2 = (G − H)2 are averaged to

improve the signal.

3.3.3 The effect of the Wilson flow

The data of the topological charge density correlators are generally very noisy and proper

smearing is required. We use the Wilson flow as described in the previous chapter. For the Wilson

flow, the flow time gives a smearing scale. For a small smearing range, it’s expected that the

correlators are not affected severely. In particular, it’s pointed out that the change of the Wilson

flow to the topological charge density correlators is (up to corrections of order |G − H |−2) [27]:

X〈@(G)@(H)〉
〈@(G)@(H)〉 ∝ 4

−( |G−H |√
(8C)
−<[′

√
8C)2<[′

√
8C

3
2

|G − H |2
(3.14)

So as long as the Wilson flow doesn’t change the G,H dependency of the correlators, one can

use the flowed results to get <[′ and <[. The correlators are plotted in Fig 3.6 for the 24ID

physical ensemble. The correlators are calculated for every two configurations for trajectory 300

to trajectory 5070.

One can actually calculate the exact influence of the Gaussian smearing to the propagators.

First, we notice that the Wilson flow is approximately a Gaussian smearing of the operator @ with

the smearing range C. Given that the correlator 〈@(G)@(H)〉 ≡ 2 is the multiplication of two @’s

and @ is smeared by the range C, 2 is smeared by 2C. So the smeared topological charge density

correlator is related to the unsmeared topological charge density correlator by:

2′(G) = �
∫

34G′2(G)4−
(G−G′2)

4C (3.15)
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Figure 3.6: Topological charge density correlators for the 24ID physical ensemble as a function of

C, the Wilson flow time.



This can be seen as the convolution between 2(G) and a Gaussian function 4−G
2
. The Fourier

transformation of the convolution is simply the multiplication of the Fourier transformation of the

individual function. The unsmeared topological charge density correlator is calculated through the

Fourier transformation of the propagator 1
?2+<2 , i.e. 2(G) = F ( 1

?2+<2 ). So we have:

F (2′(G)) = � 4−C ?
2

?2 + <2 (3.16)

If we want to get 2′(G), we can apply inverse Fourier transformation to the equation. By replacing

1
?2+<2 with an exponential integral (Schwinger’s proper time integral), one can obtain the following

result for 2′(G):

2′(A, C, <, �) = �4C<2 [<
A
 1(<A) −

∫ C

0
3;

1
4;2

4−
A2
4; −;<

2] (3.17)

The formula has an integral but it can still be used to fit the data. An example is plotted in Fig 3.7

for < = 1, C = 0.6. In fact, one can fit the parameter C to the correlators. From the calculation,

the fitted flow time should be twice the Wilson flow time. In Fig 3.8, the fitted flow time is plotted

against the Wilson flow time and it’s confirmed. In the graph, the blue data are fitted values by

including the topological charge density correlators only. The red data are fitted values by including

both the topological correlators as well as the fermion correlators. Both results show that the fitted

flow time is roughly twice the Wilson flow time. This verifies our analysis of the influence of the

Wilson flow.

3.4 The autocorrelation of the correlators

In section 3.2, we mentioned that due to resource limitation, we measured fermion correlators

at different intervals for trajectory 300 to 2452 and trajectory 2460 to 5070. We measured for

every 4 configurations for trajectory 300 to 2452 and we measured for every 10 configurations for

trajectory 2460 to 5070. To combine the measurements, we need to understand the autocorrelation

time of the correlators [28]. Here the time means molecular dynamic time or evolution time. In

the case that the autocorrelation time is very short, for example, 1, since each configuration is
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Figure 3.7: Comparison between a Bessel function and a Gaussian smeared Bessel function. < =

1, C = 0.6
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Figure 3.8: Fitted flow time against the Wilson flow time. The blue data are obtained when only the

topological charge density correlators are included. The red data are obtained when both fermion

correlators and topological charge density correlators are included. The graph demonstrates that

with the Wilson flow time C, the topological charge density correlator is smeared with range 2C.



independent from each other, we don’t need to care that we measured at different intervals. We can

simply treat each measurement as independent measurement. In the case that the autocorrelation

time is long, for example, 20, then we need to treat the measurements for trajectory 300 to 2452

and the measurements for trajectory 2460 to 5070 differently. For example, we might bin every

5 measurements for trajectory 300 to 2452 and bin every 2 measurements for trajectory 2460 to

5070. We have to measure the autocorrelation time to know how we should combine the data

together.

In order to find the autocorrelation time, we measure the autocorrelation function. Given mea-

surements {G8}, the normalized autocorrelation function is defined as:

28 =

∑ 9=#−8
9=0 (G 9 − Ḡ) (G8+ 9 − Ḡ)∑ 9=#

9=0 (G 9 − Ḡ) (G 9 − Ḡ)
(3.18)

where Ḡ is the average. The integrated autocorrelation time is calculated as:

g = 1 +
8<:,2:<0∑
8=1

228 (3.19)

The summation stops when 2: < 0 because we don’t want to include the noise. However, the

formula above is slightly biased. The measured integrated autocorrelation time would be larger

than the real integrated autocorrelation time when the measurements are independent from each

other. In the case that the integrated autocorrelation time is 1, the equation above would give a

result larger than or equal to 1. So it’s likely that g given by the above equation would be larger

than the real integrated autocorrelation time.

In Table 3.1, the integrated autocorrelation time is calculated for different correlators. All the

numbers in the table are in molecular dynamic units. For example, for trajectory 300-2452, �;; ,

the measurements are done for every 4 configurations, so after measuring the integrated autocor-

realtion time, the raw result is multiplied by 4. Similarly, for trajectory 2460-5070, the measure-

ments are done for every 10 configurations, so the raw result is multiplied by 10. This applies to

�;; , �BB, � ;; , � ;B, �BB, 〈; (C);†(0)〉, 〈; (C)B†(0)〉, 〈B(C)B†(0)〉. For topological correlators, the mea-
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g for traj 300-2452 g for traj 2460-5070

Top correlator, t=0.2 2.50(0.23) 2.42(0.22)

Top correlator, t=0.4 3.11(0.41) 3.20(0.54)

Top correlator, t=0.6 3.94(0.60) 4.51(0.82)

Top correlator, t=0.8 4.74(0.91) 5.54(0.98)

Top correlator, t=1 5.21(0.94) 5.99(1.16)

�;; 6.50(0.22) 11.63(1.32)

�BB 7.83(2.32) 12.72(1.36)

� ;; 6.49(0.20) 11.34(0.15)

� ;B 6.54(0.37) 12.65(1.65)

�BB 7.88(1.12) 12.10(1.53)

〈; (C);†(0)〉 6.56(0.22) 11.38(0.17)

〈; (C)B†(0)〉 6.54(0.37) 12.65(1.65)

〈B(C)B†(0)〉 7.84(0.98) 12.33(1.56)

Table 3.1: Integrated autocorrelation time for different correlators in molecular dynamic unit

surements are done for every 2 configurations for trajectory 300-2452 and for trajectory 2460-

5070, so the raw results are multiplied by 2 in both cases. For fermion correlators, the results are

the average results of C = 3 to C = 10, which is the range that will be used in the fits. For topological

correlators, the results are the average results of A = 3 to A = 10. The numbers in the brackets are

the standard deviations of g calculated from different C or A.

The topological correlators have small integrated autocorrelation time at short flow time. At

large flow time, the field is smeared at a larger range and the integrated autocorrelation time in-

creases. However, the integrated autocorrelation time is always smaller than 6.

For fermion correlators, the measurements for trajectory 2460-5070 are roughly independent

(done for every 10 configurations) because the calculated integrated autocorrelation length is close

to 10. Note that the smallest integrated autocorrelation time that can be measured is 10 when the
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Figure 3.9: Autocorrelation functions for �BB. Left: autocorrelation functions for trajectory 300

to trajectory 2452; right: autocorrelation functions for trajectory 2460 to trajectory 5070. The

graphs show that one cannot use the linear extrapolation to calculate the integrated autocorrelation

time when the separation between the measurements is large. The most accurate calculation of the

integrated autocorrelation time is obtained when the interval between individual measurement is

small

.



measurements are separated by 10. The measurements for trajectory 300-2452 have integrated

autocorrelation time 6.5-7.88. This seems inconsistent with the integrated autocorrelation time in

trajectory 2460-5070. The reason can be explained by the fact that eq. (3.19) tends to give a value

larger than 1 when the data have zero autocorrelation. For trajectory 2460-5070, by looking at

the autocorrelation function plotted in Fig 3.9, we can see that that the autocorrelation function

drops to a small value at molecular dynamic time 10. However, due to a linear interpolation, eq.

(3.19) gives a value that’s around 12. For the autocorrelation function plotted for trajectory 300-

2452, the autocorrelation function is positive but small for MD units 4-10. This means that the

linear interpolation used for trajectory 2460-5070 is actually problematic and eq. (3.19) tends to

overestimate the integrated autocorrelation length when the separation between each measurements

are large. Therefore, the integrated autocorrelation time for fermion correlators should be 6-8

molecular dynamic units. However, it should be noted that although the integrated autocorrelation

time is 6-8 molecular dynamic units, it doesn’t mean that there is no small autocorrelation when

the separation is larger than 8.

To make sure the above observation is correct, we also measured the integrated autocorrelation

time for trajectory 300-2452 with separation 8 and we measured the integrated autocorrelation

time for trajectory 300-2452 with binning. Then the integrated autocorrelation time of trajectory

300-2452 agrees with the integrated autocorrelation time of trajectory 2460-5070. This again

demonstrates that if the measurements are done with a large separation, the measured integrated

autocorrelation length tends to be large and the most accurate integrated autocorrelation time is

calculated when the measurements are done with a small separation.

Since the integrated autocorrelation time is 6-8 molecular dynamic units for fermion correla-

tors, we bin the measurements of 300-2452 so that the separation between each measurements is 8

molecular dynamic units.
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3.5 <[ and <[′

Now we present the final results of the measurements for [ and [′. For clarity, we summarize

our fitting methods:

1) We use correlated fits. For topological correlators, we thin the data so that the separation

between A8 and A8+1 is larger than 0.5. In this way, the size of the covariance matrix is smaller and

we have a better estimation of the covariance matrix.

2) We bin the fermion measurements of trajectory 300-2452 so that the separation between

each data is 8 molecular dynamic units. For the fermion measurements of trajectory 2460-5070,

we treat each measurements as independent. The topological correlators are binned so that the

separation is the same as the fermion correlators.

3) The topological correlators and fermion correlators are fitted together through simultaneous

fits.

4) Jackknife resampling is used to smooth the data.

5) For the topological correlators, we only include the [′ state.

The results are plotted in Fig 3.10. For pure fermionic fits, the error for <[ is 0.0072 and the

error for <[′ is 0.023. When we also include the topological correlators, the error for <[ is around

0.0076 and the error for <[′ is around 0.018-0.021. Since the p-value calculated from j2 is the

largest for flow time 0.2, we choose the results from flow time 0.2 as our final results. In Table 3.2,

we compare our results with the Particle Data Book [22] and the previous results from [25] by the

RBC-UKQCD Collaboration where only fermion correlators are taken into consideration. We also

include the mixing angle \.

It can be seen that the error of <[′ is decreased by a factor of 7 compared to [25], bringing the

error to 2.1%. In addition, <[ is also closer to the value from PDG. The mixing angle from our

results is quite different from the results in [25] but with a much better precision.

There are several reasons that the results are different. The most important reason is that the

results are obtained from different ensembles. The ensemble in our work is a physical ensemble
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Figure 3.10: Fitted results for the mass of [ (left) and [′ (right). The results are in lattice unit and

the lattice spacing is approximately 1GeV. On both graphs, the shaded area denotes the range for

the mass obtained by using the fermion correlators only. The five error bars on each graph are

obtained by using both the fermion correlators and the topological charge density correlators. The

difference in the five results is that the Wilson flow time is separately 0.2, 0.4, 0.6, 0.8 and 1.0.

The parameters on the x-axis denotes the range of the topological charge density correlators that’s

used in the fit.

.

This work PRL in 2010 [25] PDG [22]

<[ 530(7) 573(6) 547.862(17)

<[′ 947(20) 947(142) 957.78(6)

\ −21.5(1.2)◦ −14.1(2.8)◦ −10◦ to −20◦

Table 3.2: The results compared between this work, previous results from [25] by the RBC-

UKQCD and PDG [22]
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Figure 3.11: Extrapolation of <[ and <[′ to the physical light quark mass. Quoted from [25]

with 0−1 ≈ 1GeV. The lattices in [25] have the lattice size 163 × 32 × 16 and the lattice spacing

is 0−1 ≈ 1.73GeV. In addition, while the light quark mass and heavy quark mass are chosen in

the current ensemble so that the pion mass is quite close to 140MeV, [25] calculated the results for

different choices of quark masses and extrapolated the results to the physical light quark mass limit

(Fig 3.11). This is the main reason that the results in this work are different. Methodologically,

the most significant difference is that we included the topological correlators which decreases the

error of [′ by 18% while [25] only used fermion correlators.

However, to further improve the results from the current work, we should include more ensem-

bles to extrapolate the results to the continuum and infinite volume limit. Adding more ensembles

will help understanding the systematic errors and getting more accurate results. It would also be

beneficial to compare the mixing angle from different ensembles. Nevertheless, we have improved

the measurements greatly by including the topological correlators.
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Chapter 4: The multisplitting preconditioned conjugate gradient algorithm

The development of lattice QCD depends highly on the improvements of the computers and

the algorithms. One of the most resource demanding process is the Dirac matrix inversion. This

is needed when fermions are involved. The Dirac matrix is a large, sparse square matrix. The

number of rows can easily go to a few billion. With such a large matrix, the standard Gauss-

elimination won’t work. However, the matrix is sparse because the matrix is a discretization of the

fermion derivative operator. The standard algorithm for the inversion of a large sparse matrix is

the conjugate gradient (CG) algorithm. However, the conjugate gradient algorithm is slow when

the condition number of the matrix is large where the condition number is determined by the ratio

of the maximum and minimum eigenvalues: _<0G/_<8=. To make the lattice QCD simulation work

with large lattices and small fermion mass, the algorithm must be improved.

To be specific, there are two situations that the inversion is needed, the gauge evolution phase

and the measurement phase. In the measurement phase, the Dirac matrix that’s associated with

one gauge field would be solved many times. Therefore, one can do some calculations in advance

to improve the condition number of conjugate gradient. For example, one can calculate some

eigenvectors for the Dirac matrix. Then during the measurements, one can use the eigenvectors

to improve the condition number. This turns out to be very effective. The lattice QCD groups

have been generating eigenvectors using the implicitly restarted Lanczos algorithm [20] for the

measurements. Since the eigenvectors would be used many times, the cost of the eigenvector gen-

eration is justified. Other algorithms such as EigCG are also used where the inexact eigenvectors

are calculated during the conjugate gradient algorithm.

The methods mentioned above work only in the measurement phase. During the evolution,

there is usually only one or a few inversions for the Dirac matrix associated with one gauge field.

Therefore, generating the eigenvectors is not worthwhile.
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The topic of this chapter, the multisplitting preconditioned conjugate gradient is an algorithm

suitable for the inversion during the evolution. The algorithm benefits from the properties of the

modern computers and supercomputers. Due to the large size of the lattices in QCD, most of the

calculation is done on a supercomputer composed of many nodes where each node is a computer.

The modern computers have processors that can process very fast. However, since the calculation is

done on many nodes, communication among the nodes is needed and the speed of the communica-

tion is very slow compared to the processing speed of each node. The multisplitting preconditioned

conjugate gradient utilizes this property of the supercomputers by doing more computation on each

node locally and avoiding inter-node communication.

The algorithm, as the name, is originated from two algorithms, the multisplitting algorithm and

the preconditioned conjugate gradient algorithm. The multisplitting algorithm is able to solve the

inversion by doing more local computation. This is used in the preconditioned conjugate gradient

algorithm to reduce the condition number. In particular, the multisplitting algorithm reduces the

condition number by solving the high modes of the matrix locally. In next chapter, we will show

another algorithm that will solve the low modes of the matrix in the preconditioner.

In this chapter, we will first introduce the conjugate gradient algorithm and the preconditioned

conjugate gradient algorithm. In the second section, the multisplitting algorithm will be discussed.

We will also talk about the complexity caused by the boundary terms during the implementation.

Lastly, we will show how the multisplitting preconditioned conjugate gradient algorithm can be

used to solve the Dirac equation.

4.1 The conjugate gradient algorithm and the preconditioned conjugate gradient algorithm

The conjugate gradient algorithm is an algorithm based on the Krylov space for a positive

definite Hermitian matrix. The Krylov space is critical to an iterative algorithm. With a vector A and

a matrix �, the Krylov space is defined as: {A, �A, �2A, ...}. The space appears naturally because in

an iterative algorithm, the matrix will be multiplied to a vector repeatedly. The conjugate gradient

algorithm minimizes |4= |2� for the linear equation �G = 1 in the Krylov subspace, where 4= = G=−G
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and |4= |2� = 〈4= |�|4=〉. The algorithm is shown in Algorithm 1.

Algorithm 1: The conjugate gradient algorithm
Result: solution for �G = 1

A0 = 1 − �G0

?0 = A0

: = 0

while |A:+1 | > n do

U: =
|A: |2

〈?: |�|?: 〉

G:+1 = G: + U: ?:

A:+1 = A: − U:�?:

V: =
|A:+1|2
|A: |2

?:+1 = A:+1 + V: ?:

: = : + 1
end

The algorithm has several properties. For example, 〈A8A 9 〉 = 0 for 8 ≠ 9 . Also, 〈?8 |�|? 9 〉 = 0

for 8 ≠ 9 . The property says that ?8 and ? 9 are conjugate with respect to �. This is the origin of

the word "conjugate".

As mentioned above, the algorithm minimizes |4= |2� in the Krylov space. From this property,

one can deduce the convergence rate of the algorithm:

|4= |2� = min
?=
|?= (�)40 |2�

≤ min
?=

max
_
|?= (_) |2 |40 |2�

≤ 2(
√
^ − 1
√
^ + 1

)= |40 |2�

≈ 2(1 − 2√
(^)
)= |40 |2�

(4.1)
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where ?= is an order = polynomial, _ is the eigenvalue of the matrix � and ^ is the condition

number defined as: ^ = _max
_min

. Now we see clearly that the convergence rate of the algorithm

depends highly on the largest and the smallest eigenvalues. In the situation where the eigenvalues

are clustered to several values, the algorithm could converge faster than the limit because there are

low-order polynomials that can fit the spectrum well [29]. In the case of lattice QCD, the common

behavior is that the algorithm converges fast initially and then the convergence rate approaches the

limit.

Since the conjugate gradient algorithm can be slow when the condition number is large. "Pre-

conditioning" is invented to reduce the condition number. It means that a variation of the matrix

instead of the original matrix is used in the algorithm to reduce the condition number. In particular,

note that the solution of �G = 1 is equivalent to the solution of:

(�−1�(�−1)) )�)G = �−11 (4.2)

Therefor, one can solve for �)G with matrix �−1�(�−1)) and then find G. By choosing a proper

� , the condition number of � can be reduced and the convergence rate can be improved. In

practice, it’s found that the conjugate gradient algorithm for �−1�(�−1)) can be simplified as

the preconditioned conjugate gradient algorithm by using the matrix " = ��) . The matrix " ,

sometimes "−1, is called the preconditioner. The algorithm is shown below.

The convergence rate is now related to the condition number of "−1�. The benefit from the

convergence rate will justify the cost of "−1 when the convergence rate is fast enough and the

cost of "−1 is small enough. Note that the algorithm still requires " to be symmetric and positive

definite.

In practice, the preconditioning matrix " could change between different iterations. The al-

gorithm could still work with a slight modification. Instead of calculating V by 〈I:+1 |A:+1〉〈I: |A: 〉 . One

could calculate V = 〈(I:+1−I: ) |A:+1〉
〈I: |A: 〉 . The convergence rate could improve dramatically when the

modification is applied. This is called the flexible preconditioned conjugate gradient. The formula
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Algorithm 2: The preconditioned conjugate gradient algorithm
Result: solution for �G = 1

A0 = 1 − �G0

I0 = "
−1A0

?0 = I0

: = 0

while |A:+1 | > n do
U: =

〈A: |I: 〉
〈?: |�|?: 〉

G:+1 = G: + U: ?:

A:+1 = A: − U:�?:

I:+1 = "−1A:+1

V: =
〈I:+1 |A:+1〉
〈I: |A: 〉

?:+1 = I:+1 + V: ?:

: = : + 1
end



Figure 4.1: Matrix split in the Jacobi algorithm

V =
〈(I:+1−I: ) |A:+1〉
〈I: |A: 〉 is called the Polak–Ribière formula and the formula V = 〈I:+1 |A:+1〉〈I: |A: 〉 is called the

Fletcher–Reeves formula.

In this chapter, we will use the multisplitting algorithm as the preconditioner for the conjugate

gradient algorithm. The multisplitting algorithm will be introduced in the next section.

4.2 The multisplitting algorithm

The multisplitting algorithm is proposed in [30] for solving large linear systems in parallel. To

illustrate the multisplitting algorithm, it’s useful to start from the Jacobi algorithm which can be

used for the inversion of a strictly diagonally dominated matrix. The Jacobi algorithm splits the

matrix � to two parts, the diagonal part � and the rest � − � (Fig 4.1). Then starting from G0, the

solution is updated as:

G:+1 = �
−1(1 − (� − �)G: ) (4.3)
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Figure 4.2: Matrix split in the multisplitting algorithm

The Jacobi algorithm has a very interesting property that it solves the high modes first. This

property will be used again in the next chapter and we will explore more properties of the Jacobi

algorithm. The multisplitting algorithm is very similar to the Jacobi method except that the matrix

� is split into blocks. In the Jacobi method, the diagonal elements are taken out as �. In the

multisplitting algorithm, the matrix � is split into blocks of sub-matrices and the sub-matrices that

are at the diagonal position are taken out. To make the terminology clear, let’s call the sub-matrices

that are at the diagonal position �B (Fig 4.2). Then the algorithm updates the solution according to

the equation:

G:+1 = �
−1
B (1 − (� − �B)G: ) (4.4)

The multisplitting algorithm, similar to the Jacobi method, also requires the diagonal elements

to be positive. This algorithm is suitable for lattice QCD calculation to reduce the communication

because of the way that the calculation is split to different nodes. During the lattice QCD calcu-

lation, the lattice is split in spacetime directions to the computation nodes. On each node there is
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a sub lattice. The Dirac matrix multiplication is first done on the sub lattice. Then the communi-

cation happens between the nodes and the final calculation is done. Therefore, it’s natural to use

the Dirac matrix multiplication on each node as the diagonal sub-matrices �B. By solving �−1
B 1

locally, there will be less communication. This is the reason that the multisplitting algorithm is

suitable for the Dirac inversion.

4.3 The complexity of the boundary terms

The lattice community has been using the even-odd preconditioning for the Dirac matrix to

reduce the size of the problem. The detailed implementation of the Dirac matrix makes the imple-

mentation of the multisplitting algorithm non-trivial because of the boundary terms. To explain it

in detail, it’s best to explain the even-odd preconditioning first [31]. A lattice site is called even if

(G + H + I + C) mod 2 is 0 and a lattice site is called odd if (G + H + I + C) mod 2 is 1. The Dirac

matrix can then be rearranged so that the matrix is composed of four sub-matrices, �44, �4>, �>4

and �>>. The sub-matrix �44 connect the even sites to even sites and the other sub-matrices are

similar. Since �44 and �>> can be analytically inverted, the linear equation can be decomposed

through the Schur decomposition:

©­­«
�44 �4>

�>4 �>>

ª®®¬
©­­«
k4

k>

ª®®¬ =
©­­«
�44 �4>

0 �>>

ª®®¬
©­­«
1 − �−1

44�4>�
−1
>>�>4 0

0 1

ª®®¬
©­­«

1 0

�−1
>>�>4 1

ª®®¬
©­­«
k4

k>

ª®®¬ =
©­­«
q4

q>

ª®®¬ (4.5)

The solution can be gotten by solving the equivalent equation:

(1 − �−1
44�4>�

−1
>>�>4)k4 ≡ � ?A42k4 = �

−1
44 (q4 − �4>�

−1
>>q>) ≡ q̂4 (4.6)

After k4 is solved, the odd part k> can be gotten by:

k> = �
−1
>> (q> − �>4k4) (4.7)
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Since the conjugate gradient algorithm requires the matrix to be Hermitian and positive definite,

the usual way to solve eq. (4.6) is to multiply �†?A42 on both sides and solve the normal equation:

�†?A42� ?A42k4 = �
†
?A42 q̂4 (4.8)

By even-odd preconditioning, the size of the problem is reduced by a factor of two. However, it

means that the matrix � in the multisplitting algorithm should be �†?A42� ?A42. Finding the proper

sub-matrices of �†?A42� ?A42 needs extra care. For example, one can not use the sub-matrices �44

or �4> to construct the sub-matrices of �†?A42� ?A42 in a naive way. In fact, The application of

� ?A42 would introduce some components that are outside of the local lattice. These components

are called the boundary terms. The boundary terms have to be stored in the memory and have to

be included properly when �†?A42 is applied. Our tests show that the inclusion of these terms is

critical to the convergence of the multisplitting algorithm.

4.4 The multisplitting preconditioned conjugate gradient algorithm

Although the multisplitting algorithm is suitable for parallel calculation and is good at reducing

the communication and utilizing the computational power of the local node, the convergence rate

of the algorithm is usually slow. The key point of making the algorithm beneficial is to combine

the algorithm with the preconditioned conjugate gradient algorithm. The idea relies on the fact that

the multisplitting algorithm solves the high modes of the Dirac operator efficiently. This is because

the high modes are mostly local. When the sub-matrices are inverted, the high modes are solved.

Working as a preconditioner, _<0G is reduced when the high modes are solved. The convergence

rate, which depends on the condition number _<0G/_<8=, will be improved.

Specifically, the preconditioned conjugate gradient solves I with the preconditioner ":

I: = "
−1A: (4.9)
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With the multisplitting preconditioned conjugate gradient algorithm, the step is:

I: = �
−1
<BA: (4.10)

where the action of �−1
<B means that we solve the equation �I: = A: with the multisplitting al-

gorithm. One certainly cannot solve eq. (4.10) to very high precision with the multisplitting

algorithm. In fact, only one iteration of the multisplitting algorithm is used so that there is only

one communication for the multisplitting step. In addition, when the sub-matrices are solved (eq.

(4.10)), they are not solved to high precision. The sub-matrices are solved by the conjugate gra-

dient algorithm. To avoid confusion, we call the conjugate gradient iterations for the sub-matrices

as inner iterations. The inner iteration number is also not large since the local computation power

is limited. In Fig 4.3, the residuals of the multisplitting algorithm with different numbers of inner

iteration number are shown. The matrix inversion is done for a 32 × 64 × 12 ID lattice with 128

KNL nodes. It can be seen that with only 3 local iterations, the number of iterations is reduced by

33% with means that the local high modes are solved. The fact that the local sub-matrices don’t

need to be solved exactly is also important for the algorithm to work.

The algorithm actually shares the idea of the domain decomposition method. In the domain

decomposition method, a problem is split into smaller problems on the subdomains and then the

solutions on the subdomains are coordinated. The process is iterated to find the true solution. In

[32], the idea is used as a preconditioner for the generalized conjugate residual algorithm for the

Wilson Dirac operator. In this work the idea is used for the domain wall Dirac operator. The

domain decomposition method is also called the additive Schwarz method and was used for the

inversion of the Dirac equation in [32][33][34].

The implementation of the algorithm is in fact highly non-trivial. In [35], the implementation

is described for supercomputers with GPUs. Techniques like kernel fusion are used to utilize the

tensor cores in GPUs. The detailed implementation requires careful utilization of the various units

of the computers. The final speedup is found to be as high as 1.22x on SUMMIT. Since the author
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Figure 4.3: Residual for the multisplitting algorithm

mainly worked on the algorithmic part, the detailed implementation is out of the scope for the

discussion.
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Chapter 5: Renormalization group based preconditioned conjugate gradient

algorithm

In the last chapter, the multisplitting preconditioned conjugate gradient algorithm is developed.

The preconditioner reduces the condition number by solving the high modes. In this chapter, we

develop different algorithms which reduce the condition number by solving the low modes with

preconditioners based on renormalization group ideas.

Figure 5.1: The residual as a function of the iteration number using the conjugate gradient algo-

rithm

To understand why this approach is promising, we can take a look at Fig 5.1 where the residual

is plotted against the number of iterations needed to reach the precision 10−6 (iteration number)

using the conjugate gradient algorithm. The equation to be solved is �G = H where � is the

Mobius domain wall operator on a 243 × 64 × 12 lattice. We solve the modified equation �†�G =

�†H. The residual is defined as |�G − 1 |/|1 | where � = �†� and 1 = �†H. Fig 5.1 plots the
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typical behavior of the residual for the widely used conjugate gradient algorithm in lattice QCD.

As discussed in the last chapter, the convergence rate of the conjugate gradient algorithm depends

on the condition number _<0G/_<8= but the convergence rate could be faster if the eigenvalues are

clustered. Initially, the convergence rate in Fig 5.1 is fast because the operator has lots of large

eigenvalues clustered together and the conjugate gradient could solve the high modes fast. When

the low modes come into play, the convergence rate approaches the limit which is determined by

_<0G/_<8=. This is why the convergence rate is slow and constant after iteration 400. Note that the

overall iteration number is greatly affected by the low modes.

As the lattice size grows, the lattice spacing decreases and the fermion mass decreases, the

convergence rate of the conjugate gradient algorithm is affected by the low modes substantially.

This is a critical difficulty for lattice QCD with a large lattice size. Therefore, the algorithms that

solve the low modes effectively are of great interest to the lattice QCD community. In this chapter,

we consider two lattices, the original fine lattice and the blocked coarse lattice, that lie on the same

renormalization group trajectory but with lattice spacings that differ by a factor of 2. We explore

how closely the low-mode space of the coarse lattice corresponds to the low-mode space of the

fine lattice with the goal of using the coarse lattice to solve the low modes of the fine lattice. By

working on a coarse lattice with a smaller size, the inversion becomes much easier. When the low

modes are solved, the convergence rate of the algorithm can be improved greatly.

We will first introduce how the fine lattice is blocked based on a renormalization group ap-

proach. Then we will give a general description about the various ideas and methods used in this

chapter. We will demonstrate how the fermion vectors are transformed from the coarse lattice to

the fine lattice and vice versa. Afterwards, we will show that the low modes of the fine lattice

can be represented by the low modes of the coarse lattice. An algorithm based on restarting the

conjugate gradient and the preconditioned conjugate gradient algorithm will be discussed and a

summary will be given in the last section.

There is one difference between this chapter and the last chapter that’s worth pointing out.

In the last chapter, the even-odd preconditioning is used to solve the Dirac equation �G = H.
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In this chapter, when solving �G = H, we apply �† on both sides and work with the equation

�†�G = �†H. Therefore, the matrix in the algorithm will be �†�. We would like to point out the

difference to avoid any confusion.

5.1 The blocking scheme based on the renormalization group

In [35], a blocking scheme is developed to transform the gauge fields from a fine lattice to

a coarse lattice based on the renormalization group idea. Since this is the starting point of the

algorithms in this chapter, we introduce the blocking scheme briefly.

The RBC-UKQCD Collaboration generated several ensembles with the Iwasaki DSDR action

at different lattice spacings. The ensembles use 2+1 flavor Mobius domain wall fermions with

various quark masses. Since the ensembles have similar actions and good chiral properties, fits

based on the chiral perturbation theory can be done to the results from these ensembles to reach

the continuum limit. The general fit formula is:

- (<, 02) = -0(1 + 5 (<) + 2-02) (5.1)

where - (<, 02) are the results from different ensembles, -0 is the result for the chiral and contin-

uum limit, 5 (<) is a function given by the chiral perturbation theory about the mass dependence

and 2- denotes the lattice spacing dependence. The results from different ensembles are related

through this formula and it is found that the scaling errors are very small for the ensembles. The

small scaling errors suggest that the actions for different lattice spacings lie on a renormalization

group trajectory. Based on the idea, [35] found a blocking kernel that carries the transformation on

the renormalization group trajectory.

The study started with a pair of Iwasaki DSDR ensembles with Mobius domain wall fermions

that are generated separately. The size of the first ensemble is 243 × 64 × 12 with lattice spacing

0−1 ≈ 2GeV. This ensemble is called the fine ensemble with action ( 5 . The size of the second

ensemble is 123 × 32 × 12 with lattice spacing 0−1 ≈ 1GeV. This ensemble is called the coarse
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Figure 5.2: APE-like blocking kernel. � is the sum of the staples and % is a projection matrix that

maps the sum of SU(3) matrices to a SU(3) matrix. Quoted from [35].

ensemble with action (2. The parameters V, <; and <ℎ are tuned so that the physical observables

<c, < , <Ω are similar on the two ensembles. 5c and 5 are also found to be similar. The

good scaling behavior is similar to the other Iwasaki DSDR ensembles used by the RBC-UKQCD

Collaboration and it suggests that the two ensembles lie on the renormalization group trajectory.

The goal was to find a blocking kernel so that a coarse ensemble can be directly gotten from the

fine ensemble instead of being generated separately. One can confirm that a proper blocked coarse

ensemble is obtained by comparing the blocked coarse ensemble to a distinct coarse ensemble

generated by standard hybrid Monte Carlo. The action of the blocked coarse ensemble is called

(12 .

[35] found that a kernel that is similar to the APE smearing can work (Fig 5.2). The kernel

produces a coarse link from a pair of fine links plus staples. The coefficient for the staples is U.

[35] determined U by using the demon algorithm and compared the coefficients of several terms

between the action (12 and the action (2. After determining U, one can confirm whether the blocked

coarse ensemble is in the renormalization group trajectory by comparing the observables from (12

and (2. [35] compared <c, < , <Ω, 5c, 5 and other observables. The results are quoted from

[35] in Table 5.1. It’s found that the difference between observables calculated from (2 and (12 are

at the percent level. Therefore, a blocking scheme has been found which transforms a fine lattice

to a coarse lattice that is on the renormalization group trajectory.

This is very important because it means that the blocked ensemble will have similar properties
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64

〈O〉 5 〈O〉2 〈O〉12

size 243 × 64 × 12 123 × 64 × 12 123 × 64 × 12

V 1.943 1.633 -

0<; 0.000787 0.008521 0.007494

0<ℎ 0.019896 0.065073 0.064150

0−1(GeV) 2.001(18) 1.015(16) 1.010(16)

0<A4B 0.004522(12) 0.007439(86) 0.00847(21)

<c(MeV) 300(3) 307(5) 308(8)

< (MeV) 491(5) 506(8) 507(11)

<Ω(MeV) 1557(71) 1652(27) 1685(52)

5c(MeV) 138(2) 147(2) 151(3)

5 (MeV) 155(2) 166(3) 169(4)

Table 5.1: Observables from the fine, coarse and blocked coarse ensembles. The close values show

that the ensembles lie on the renormalization group trajectory. The results are quoted from [35].



as the fine ensemble. However, we would like to point out that using the blocked coarse lattice

to solve the low modes of the fine lattice needs a strong correspondence between the lattices. To

utilize the blocked ensemble successfully, there has to be a configuration to configuration corre-

spondence, not just the correspondence between the physical quantities.

Throughout the chapter, we will use the fine ensemble and the blocked coarse ensemble from

[35]. For the rest of the chapter We will call the lattices in the blocked coarse lattices as coarse

lattices for convenience because we will only use the blocked coarse ensemble.

5.2 An overview of the approaches

In this section, we give a brief overview of the methods that will be used in this chapter. The

details of the methods and the results will be explained in the rest of the chapter.

The most obvious character in this chapter is that we utilize two lattices, one fine lattice and

one coarse lattice, and we will use the coarse lattice to solve the low-mode part of the fine lattice.

The idea is also known as the multigrid method. Currently there are other people [36][37] who are

also using the idea to solve the lattice Dirac equation. There is a significant difference between

our approach and the methods in [36][37]. In [36][37], the coarse gauge fields are not constructed

and the operator on the coarse lattice is obtained by restricting the operator on the fine lattice. In

our case, we have the gauge fields on the coarse lattice by following the renormalization group

trajectory. The operator on the coarse lattice is constructed from the gauge fields on the coarse

lattice. Therefore, there is more physical meaning in our approach.

Since we are using two lattices, the fermion vector has to be transformed between the coarse

lattice and the fine lattice. We will call the operator that transforms the fermion vectors from the

coarse lattice to the fine lattice as the interpolation operator � and the operator that transforms the

fermion vectors from the fine lattice to coarse lattice as the restriction operator '. This will be

explained in the next section.

The successful utilization of the coarse lattice depends on a correspondence between the low-

mode space of the coarse lattice and the low-mode space of the fine lattice. This is studied in section
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4. We will demonstrate that although there is not a clear one-to-one correspondence between the

low modes of the coarse lattice and the low modes of the fine lattice, the low modes of the coarse

operator and the fine operator span the same subspace.

We will then use different approaches to utilize the coarse lattice: the restart algorithm and

the preconditioned conjugate gradient algorithm. For the restart algorithm, we first solve the high-

mode part of the equation in the fine lattice and then we transfer the problem to the coarse lattice

to solve the low-mode part. The result from the coarse lattice is added to the result from the fine

lattice as a correction. Since the transfer between the coarse and fine lattice is not exact, errors

appear when the correction from the coarse lattice is added. Therefore, the equation is solved

again on the fine lattice. This process is shown in Fig 5.3. The spike shows that the residual

increases when the coarse correction is added to the fine lattice. However, we can see that the total

number of iterations is reduced compared to the conjugate gradient algorithm (CG). In section 5,

we will try multiple restarts to harvest the benefit. There are other difficulties for this approach.

For example, although there is correspondence between the coarse operator and the fine operator,

the coarse operator has to be scaled so that the magnitude of the coarse correction is correct. In

addition, during the interpolation, the errors appear because high modes are introduced. To reduce

the high modes, the overlap transformation and other filtering techniques are used. These issues

will also be explained in section 5.

For the preconditioned conjugate gradient algorithm, we use two kinds of preconditioners to

reduce the conditioner number. In section 6, we use the preconditioner:

"−1 = 1 + 1%� (
#∑
8

|k2ℎ,8 >< k2ℎ,8 |
1
_2ℎ,8
)'% (5.2)

where k2ℎ,8 are eigenvectors on the coarse lattice, _2ℎ,8 are eigenvalues on the coarse lattice and %

is the operator that filters out the high modes.
∑#
8 |E2ℎ,8 >< E2ℎ,8 | 1

_2ℎ,8
is the inverse of the low-

mode part of the coarse operator. Since the low modes of the coarse operator corresponds to the

low modes of the fine operator, the second term approximately solves the low modes. Thus, the
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Figure 5.3: An example result for the restart algorithm. The spike happens when the coarse cor-

rection is added. However, the convergence is improved because some of low modes are solved

through the coarse lattice. The overlap transformation is used to reduce the high-mode contamina-

tion and the norm of the coarse correction is adjusted. These issues will be discussed in detail in

section 5.

condition number _<0G/_<8= is decreased and the algorithm would be faster. Various approaches

are tried in section 5. One example result is plotted in the left graph of Fig 5.4.

However, the filter % tends to be expensive. To make it less expensive, in section 7, a different

preconditioner is used where the filter also serves to solve the high modes of the fine lattice. Var-

ious filters are tried in section 7 and an example is shown in Fig 5.4. This method tends to have

more operations of �†� compared to the method in section 6 since operations of �†� are needed

in the filter. However, the number of the total iteration is much smaller because the preconditioner

changes not only _<8= but also _<0G and the condition number is reduced greatly. Because the total

iteration number is reduced, the number of restrictions and interpolations is smaller. This is a ben-

efit compared to the approach in section 5. However, if we take the number of operations of �†�

as the metric, the method might not be beneficial because �†� is needed in the preconditioner.

In this chapter, when solving �G = 1, the source 1 is taken as a point source. However,

we tested a few situations where 1 is a random vector and the performance is similar. For most

situations, we solve the equation to a residual of 10−6 where the residual is defined as |1− �G |/|1 |.
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Figure 5.4: Left: an example showing that the preconditioner in eq. (5.2) can increase the con-

vergence rate; Right: an example where we use the 50 Jacobi iterations in the preconditioner and

the iteration number for the preconditioned conjugate gradient is reduced greatly; however, the

number of operations of �†� is larger because �†� is needed for the Jacobi iteration.

Based on the convergence rate, we believe the algorithms in this chapter will perform better when

the equations are solved to a higher precision.

While the domain wall operator has 5 dimensions, our discussion here focuses on the 4-d

parts, which are related by the renormalization group blocking that we’ve described. The fifth

dimensional features of the fermion fields are not changed by blocking.

5.3 The restriction operator and the interpolation operator

Although we have the coarse gauge fields and fine gauge fields, we need the interpolation

operator to transform the fermion vectors from the coarse lattice to the fine lattice and the restriction

operator to transform the fermion vectors from the fine lattice to the coarse lattice. The restriction

operator will be denoted as ' and the interpolation operator will be denoted as �. The operators

will be discussed in this section.
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Given that the lattice spacing differs by a factor of 2, the simplest restriction operator is:

'B = Xx,2x (5.3)

where the coarse fermion vector is obtained from the fine fermion vector by preserving the sites

with all coordinates even and discarding the sites that have any odd coordinates. The interpolation

operator is a little more complex. Although the even sites of the fine lattice can be directly taken

from the coarse lattice, the sites with odd coordinates can’t. The sites with odd coordinates can

only be calculated through interpolation. In one dimension, the odd site E1 can be gotten by:

E1 =
1
2
(*0E0 +*2E2) (5.4)

where the *’s are the fine gauge fields. Note that since this is a gauge theory, we use the gauge

fields on the right hand side to interpolate the sites in a gauge covariant way. In the case of four

dimensions, the process must be repeated four times until all the sites are interpolated. We will

call this covariant interpolation operator as �2>E . Sometimes it’s best that the restriction operator is

the transpose of the interpolation operator. The restriction operator can be constructed similarly so

that it’s the transpose of the interpolation operator. We will call it '2>E.

The operators that are similar to eq. (5.4) are gauge covariant because they commute with the

gauge transformation.

�2>E�2ℎE2ℎ = �ℎ�2>EE2ℎ (5.5)

where � is a gauge transformation matrix, E2ℎ is a coarse fermion vector. Throughout the chapter,

we will use 2ℎ as the subscript for coarse objects and ℎ as the subscript for fine objects. Here, the

coarse gauge transformation matrix �2ℎ is obtained through 'B�ℎ. The reason is that the coarse

gauge fields are obtained through APE-like blocking and the gauge fixing matrices at the odd sites

are cancelled out.

To test how good the interpolation operator and restriction operator are, we apply �2>E'B to the
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fine eigenvector k of �†� with the lowest eigenvalue and then compare the vector �2>E'Bk with

the original eigenvector k. The perfect result would be that �2>E'Bk = k. In reality, this won’t be

the case because information is lost during the restriction. We use the normalized inner product to

test how good the operators are. The normalized inner product between two vectors is defined as

U =
〈E |D〉
|E | |D | (5.6)

In fact, in four dimension, because the interpolation is completed in four steps, the interpolation

would be best at the first step and worst at the last step. To be specific, we will distinguish different

sites according to the even-odd properties of the coordinates. If G, H, I, C are all even, the site will

be called eeee. If one of the four coordinate is odd, the site will be called eeeo. If two of the four

coordinates are odd, the site will be called eeoo. Likewise, there are eooo and oooo sites. Since

the components on eeee sites are directly taken from the coarse lattice, the transformation is best

on eeee sites. The components on oooo sites are interpolated last and it’s expected that the trans-

formation on oooo sites would be worst. In Table 5.2. The normalized inner product are calculated

for �2>E'Bk and k where k is a low-lying eigenvector. The norm of the components are also cal-

culated. It can be seen that although the normalized inner product is good for all components, the

norm of the components on the oooo sites is reduced greatly during the transformation. This will

certainly cause problems if the operator is used in algorithms.

One of the reasons for the problem is that the gauge fields have large fluctuations and eq. (5.4)

will reduce the norm during the interpolation. To solve the problem, one can make the gauge fields

smooth by applying gauge transformation. In particular, one can work in Landau gauge to make

the gauge fields smooth. Since the gauge fields are smooth, one can actually use the simple average

instead of the covariant average:

E1 = E0 + E2 (5.7)

We will call this operator � and the transpose of the interpolation operator '. A table similar

to Table 5.2 is included for �. Note that we also gauge transform the eigenvector so that the
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norm of components

for �2>E'Bk

norm of components

for k

normalized

inner product

eeee 0.25 0.25 (1,0)

eeeo 0.22 0.25 (0.89,0)

eeoo 0.17 0.25 (0.85,0)

eooo 0.13 0.25 (0.85,0)

oooo 0.095 0.25 (0.86,0)

whole vector 0.70 1 (0.85,0)

Table 5.2: Comparison between �2>E'Bk and k.k is a low-lying eigenvector and the table demon-

strates that the interpolation operator �2>E reduces the norm of the components on the oooo sites.

comparison is consistent.

From Table 5.3, it can be seen that the interpolation operator works better when eq. (5.7) is

used in Landau Gauge because the decrease in the norm is less severe. In addition, the normalized

inner product goes up. Although the normalized inner products for the components on eooo and

oooo sites are actually worse, the numbers only change slightly (from 0.85 to 0.83 and from 0.86

to 0.815). However, the norm of the components on oooo sites changes from 0.095 to 0.16, a 68%

increase. Note that now the norm of the components on oooo sites is much closer to 0.25, the

number for k, so the vector has a spatial structure that’s more similar to the spatial structure of the

low-lying eigenvector. Therefore, for the rest of the chapter, we will work in Landau Gauge and

use � for the interpolation operator.

5.4 The low modes of the coarse lattice and the fine lattice

Since we would like to use the coarse lattice to solve the low-mode part of the fine lattice, it’s

important to make sure that the coarse lattice and the fine lattice have similar low-mode eigenvec-

tors.

We first look at the lowest 1000 eigenvalues of �†�. In Fig 5.5, the eigenvalues of the coarse
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norm of components

for �'Bk

norm of components

for k

normalized

inner product

eeee 0.25 0.25 (1,0)

eeeo 0.22 0.25 (0.91,0)

eeoo 0.20 0.25 (0.86,0)

eooo 0.18 0.25 (0.83,0)

oooo 0.16 0.25 (0.815,0)

whole vector 0.817 1 (0.87,0)

Table 5.3: Comparison between �'Bk and k in Landau gauge. Comparing with Table 5.2, this

shows that by working in Landau gauge with interpolation operator in eq. (5.7), the norm of the

components on oooo sites is not decreased severely.

lattice are plotted against the eigenvalues of the fine lattice. The input fermion mass on the coarse

lattice is 0.06507 and the fermion mass on the fine lattice is 0.019896. It’s really interesting

that the low eigenvalues of the coarse lattice and fine lattice are linearly related except for a few

smallest eigenvalues. This is the benefit of using the renormalization group idea. Since they are

on the renormalization group trajectory, the spectrum is linearly related. We don’t have a clear

understating why the factor is 3. This is mostly related to how the coarse gauge fields are obtained

through APE-like smearing.

However, the smallest eigenvalues are a little different. To make the spectrum of the coarse and

fine lattice in a perfect linear relation, we change the fermion mass on the coarse lattice to be 0.05.

The eigenvalues are plotted in Fig 5.6. Now the eigenvalues of the coarse lattice are always about

3 times larger than the eigenvalues of the fine lattice. This is desirable because by multiplying a

factor 1, 1�2ℎE2ℎ would be the same as �ℎEℎ if E2ℎ and Eℎ are only in the low-mode space and

E2ℎ has a similar support in low-mode space as Eℎ does.

After we match the eigenvalues, we would like to match the eigenvectors. The first thing

we can compare is �k2ℎ and kℎ where k2ℎ is the eigenvector of �†� on the coarse lattice and
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Figure 5.5: Coarse eigenvalues (fermion mass 0.06507 on the coarse lattice) and fine eigenvalues.

Left: 100 eigenvalues; right: 1000 eigenvalues. The graphs show that the eigenvalues of the coarse

and fine lattice are linearly related by a factor of 3 except for a few smallest eigenvalues.

.

Figure 5.6: Coarse eigenvalues (fermion mass 0.05 on the coarse lattice) and fine eigenvalues.

Left: 100 eigenvalues; right: 1000 eigenvalues. By tuning the coarse mass, all of the first 1000

eigenvalues of the coarse lattice are proportional to the first 1000 eigenvalues of the fine lattice.

.

kℎ is the eigenvector of �†� on the fine lattice. We consider the inner product between �k2ℎ,8

and kℎ, 9 . The results are plotted as color map in Fig 5.7 for the fermion mass 0.06507 on the
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Figure 5.7: |〈�E2ℎ, Eℎ〉| for 100 and 1000 eigenvectors

.

coarse lattice and the results are similar for the fermion mass 0.05. Note that the norm of �k2ℎ,8

is around 3 so the normalized inner product is at most 0.3. From Fig 5.7, it can be seen that for

the first 100 fine eigenvectors, each fine eigenvector corresponds to a small number (around 20)

of coarse eigenvectors. However, for the eigenvectors with index 100-1000, there is only vague

correspondence.

Although the one-to-one correspondence is weak, the property that we really care about is

whether the inverse of the low modes is similar for the coarse and fine lattice. To do so, we

compare two operators:

(2 = �

#∑
8

|k2ℎ,8〉〈k2ℎ,8 |
1
_2ℎ,8

' (5.8)

and

( 5 =

#∑
8

|kℎ,8〉〈kℎ,8 |
1
_ℎ,8

(5.9)

These are simply the inversions of the low modes of �†� by using the eigenvectors. To compare
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Figure 5.8: Results for eq. (5.9). Left: # = 100; right: # = 1000. The graphs are diagonally

dominate which means that the coarse operator is a good approximation of the fine operator in the

low-mode space.

them, we can multiply (2 and (−1
5

together and consider:

- = �

#∑
8

|k2ℎ,8〉〈k2ℎ,8 |
1
_2ℎ,8

'

#∑
9

|kℎ, 9 〉〈kℎ, 9 |_ℎ, 9 (5.10)

If (2 is exactly ( 5 , - would be the identity matrix. In reality, one can not examine the elements

of - one bye one. However, one can test the behavior of - in the low-mode space by computing

〈kℎ,< |- |kℎ,=〉 for different = and <. Note 〈kℎ,< |- |kℎ,=〉 can be reduced as:

#∑
9

〈kℎ,= |� |k2ℎ, 9 〉〈k2ℎ, 9 |' |kℎ,<〉
_ℎ,<

_2ℎ, 9
(5.11)

The results are plotted for in Fig 5.8 where the fermion mass is 0.05 on the coarse lattice.

Although the diagonal elements are not large, the results are diagonally dominate. The diagonal

elements are plotted in Fig 5.9. The dominance is weaker when = and < becomes large but this

happens only after =, < > 500. This shows that the coarse operator is a good approximation of the

fine operator in the low-mode space and we should be able to utilize the coarse operator to solve

the low-mode space of the fine operator.

75



Figure 5.9: Diagonal elements for eq. (5.9) with = = < and # = 1000

One can also notice that the diagonal elements change with =, <. The diagonal elements are

around 0.1 for the first 500 eigenvectors (except for the lowest a few eigenvectors) but decrease

afterwards. This means that a factor around 10 can be multiplied when (2 is used as an approxi-

mation for ( 5 in the low-mode space.

5.5 Restart algorithm

5.5.1 Introduction of the algorithm

Since we can approximate the low-mode part of the fine lattice with the low-mode part of the

coarse lattice, the first idea is that we can use the coarse lattice in a restart scheme. The restart idea

is briefly mentioned in section 2 and the complete algorithm is shown in Algorithm 3. In the first

step, #B iterations of the conjugate gradient are done on the fine lattice. This is used to solve the

high modes since the coarse lattice is only helpful for solving the low-mode part. Then the residual

is restricted to the coarse lattice and solved with the coarse operator. After the low-mode part is

solved on the coarse lattice, it’s interpolated back to the fine lattice as an approximation of the

solution to the residual. In this step, sometimes a factor 1 is multiplied to make the norm correct.

Because the interpolation operator is not perfect, usually some high modes will be introduced

during the interpolation process. Therefore, the conjugate gradient is used again to solve the high-
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mode part. The process is repeated for #> times. Lastly, the conjugate gradient is used to get the

final solution.

Algorithm 3: The restart algorithm
Result: solution for �G = 1

Do conjugate gradient for #B iteration. The result is G0 and A0 = 1 − �G0

for : = 0;: < #>; : = : + 1 do
A2ℎ,: = 'BA:

I2ℎ,: = �
−1
2ℎA2ℎ,:

�: = 1�I2ℎ,:

Do conjugate gradient for #8 iteration with C:+1 = �: + G: as the starting vector. The

result is G:+1 and A:+1 = 1 − �G:+1
end

Do conjugate gradient until convergence with G#> as the starting point.

The restart algorithm has been used in other circumstances. For example, in the Mobius ac-

celerated domain wall fermion algorithm (MADWF), the same procedure is utilized except that an

operator with smaller !B is used instead of the coarse operator. MADWF is based on the overlap

transformation and is very successful in terms of solving the low modes. So it’s expected that the

restart algorithm with the coarse operator would also work.

The success of the algorithm depends on a few things. First, the low modes of the coarse

operator should be similar to the fine operator. This is confirmed by the last section. Secondly,

during the interpolation, the high modes must be avoided as much as possible. Lastly, the norm

needs to be adjusted accordingly with the factor 1. We study the behavior of the restart algorithm

and explain the second issue and the third issue in the next subsection.
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norm of 4 norm of �
normalized inner product

between 4 and �

0.020 0.003 (0.61,0)

Table 5.4: Comparison between 4 and �

5.5.2 Analysis of the restart algorithm

The key result from the coarse lattice is � , which is an approximation of the true error 4 =

G′ − G = �−1
ℎ
A. It’s obtained through the process:

� = � �−1
2ℎ'A (5.12)

We can compare � with 4 and see if they are the same. In the perfect situation, � is exactly 4.

Though this is unlikely, we need to understand the difference. In this chapter, A is the residual

vector after 400 conjugate gradient iterations. We pick this residual vector because it’s mainly

composed of low modes and we are only interested in the quality of � in the low-mode space.

The comparison between 4 and � is shown in Table 5.4. The normalized inner product between

4 and � is (0.61,0). In addition, the norm of 4 and the norm of � are very different. The norm of 4

and the norm of � are different because the coarse operator has to be scaled to properly represent

the low-mode space of the fine operator as explained in Fig 5.9. To understand why the normalized

inner product is only a moderate value, we use the eigenvectors of �ℎ so that we can decompose 4

and � with the eigenvectors to understand why 4 and � are different.

In Fig 5.10, the normalized inner products between 4, � and the eigenvectors are plotted. As

we can see, both 4 and � have supports in the low modes, which is good. In Fig 5.11, the nor-

malized inner products are plotted in the same graph for 30 and 70 eigenvectors. There are two

observations. The first observation is that the normalized inner products between � and the eigen-

vectors are usually smaller than the normalized inner products between 4 and the eigenvectors.

This means that � has more components that are not in the low-mode space. This explains why
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Figure 5.10: Left: normalized inner products between 4 and 1000 eigenvectors; Right: normalized

inner products between � and 1000 eigenvectors. The fermion mass on the coarse lattice is 0.065.

the normalized inner product between 4 and � is around 0.6. To confirm this, we calculate:√√√
#∑
8=0
〈E |k8〉2 (5.13)

where E = 4
|4 | or E = �

|� | and k8 are the eigenvectors. In Fig 5.12, this is calculated. Note that while

4 is completely in the low-mode space, a large component of � is not in the low-mode space. This

is clearly a problem and we will give several solutions for the issue.

The other issue can be found in Fig 5.11. The normalized inner products between � and the

eigenvectors are large compared to the normalized inner products between 4 and the eigenvectors

for a few smallest eigenvalues and small for large eigenvalues. This means that there is a mismatch

between 4 and � in the low modes which can’t be solved by simple scaling. This is further ex-

plained in Fig 5.13 by using a different coarse fermion mass to tune the inner products between �

and the lowest 30 eigenvectors. For the first 30 eigenvectors, the match between 4 and � is best

with coarse fermion mass 0.013. However, there is still mismatch for the eigenvectors with larger

eigenvalues. This means that when the coarse operator is used, there is going to be some mismatch

in the low modes. This again agrees with Fig 5.9. However, with an iterative method, the mismatch
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Figure 5.11: Normalized inner products between 4, � and eigenvectors. Left: 30 eigenvectors;

right 70 eigenvectors. The fermion mass on the coarse lattice is 0.065.

can be reduced.

5.5.3 Filtering the high modes with the overlap transformation and the polynomial filters

In the previous subsection, we realize that during the interpolation, some of the high modes are

introduced. To make the algorithm successful, the high modes must be reduced. Here we develop

two approaches, the overlap transformation and the polynomial filters. Note that when we mention

high-mode filters, we refer to the filters on the fine lattice because the high modes are introduced

to the fine lattice when the correction from the coarse lattice is added to the fine lattice.

The overlap transformation is the transformation that relates the five dimensional domain wall

operator with the effective four dimensional operator. The four dimensional operator is called the

overlap operator and hence the name "overlap transformation". The transformation was used in

[38] for MADWF algorithm. The algorithm found that one can use an operator with a small !B

to solve the low modes of another operator with a large !B by going through the overlap trans-

formation. During the overlap transformation, the high modes in the fifth dimension are reduced.

Therefore, the overlap transformation should be able to reduce the high modes introduced by the

interpolation operator.
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Figure 5.12:
√
(∑(〈E, k8〉2)) for 4 and � . Left: 70 eigenvectors; right: 1000 eigenvectors. The

fermion mass on the coarse lattice is 0.065. The graphs show that results from the coarse lattice

have large components in the high modes.

Figure 5.13: Normalized inner products between 4, � and eigenvectors. Left: 30 eigenvectors;

right 70 eigenvectors. The fermion mass on the coarse lattice is 0.013.



To find out how to utilize it with the coarse operator, it’s best to start from the algorithm

with MADWF in [38]. In MADWF, two operators, �$ and �� , are related through the overlap

transformation where �$ is the original operator and �� is the operator with smaller !B. They are

related because they correspond to the same four dimensional overlap operator. In the discussion

below, we will use the subscript 0 for the B = 0 component in the fifth direction. We start from the

initial equation:

�$G = 1 (5.14)

Applying %−1+−1
$

to both sides, we have

%−1+−1
$ �$G = 2 = %

−1+−1
$ 1 (5.15)

where % is the operator in [38] that is used to transform the equation to a lower triangular form and

+$ is the Pauli-Villars term. After The multiplication, the equation on the B = 0 slice contains the

equation with the overlap operator. In particular, the term on left hand side is �$+ H0 where H0 is

the component of H ≡ %−1G on the B = 0 slice and �$+ is the four dimensional overlap operator.

Taking 20 as the component of 2 on the B = 0 slice, we have:

�$+ H0 = 20 (5.16)

This is how �$ is related to the overlap operator. Then in MADWF, H0 is gotten by solving a

different equation involving �� which is related to the same overlap operator. First, one construct

the source 2� for �� . 2� is constructed as {20, 0, 0..., 0}. Then the equation below is solved:

��%H� = +�%2� (5.17)

H�0 is taken as H0. The other components of H are obtained by inserting −H�0 to 2. The result is
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denoted as ;. With the following equation:

B = %−1+−1
$ �$%; (5.18)

the final solution is gotten by inserting H�0 to B.

To utilize the coarse lattice, we need to understand where we should insert the interpolation

operator and the restriction operator. By observing the process, one can see that the vector that’s

passed into the inner operation is 2�0 and the vector that’s passed out from the inner operation is

H�0. Also, these two vectors relate �� and �$ through the overlap transformation. Therefore, 2�0

and H�0 should be modified for the multigrid approach. Specifically, we use 2′
�
= '2� as the source

for the coarse operator. After we get H� in the coarse lattice, we use H′
�
= �H� and pass H′

�0 to the

fine lattice. This is the overlap transformation.

The other approach is to use a polynomial of � to filter the high modes. For a polynomial

?(�), when it’s applied to an eigenvector k_ with eigenvalue _ , the result is: ?(_)k_. Therefore,

if ?(_) is close to 0 for large _ and close to 1 for small _, ?(�) will filter the high modes. There

are several such polynomials, for example:

?1(G) = (1 − G/300)# (5.19)

and

?2(G) =
#∑
0

1
#
)= (1 − G/300) − 1

2#
)0(1 − G/300) − 1

2#
)# (1 − G/300) (5.20)

where )8 are the Chebyshev polynomials. 300 in eq. (5.19) and eq. (5.20) are chosen to be larger

than _<0G/2. In Fig 5.14, the numerical values are plotted for different orders of the polynomials.

It can be seen that the Chebyshev polynomials are good for filtering low eigenvalues. Therefore,

we will use the Chebyshev polynomials as the filter.

Without any filter, we find that
√∑#

8=0〈E |k8〉2 is around 0.65 for �/|� | with 1000 eigenvectors.

However, with the overlap transformation or the polynomial filter, the number is close to 0.9.
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Figure 5.14: Numerical values for different polynomial filters

Therefore, a large amount of the high modes are filtered out. In addition, the normalized inner

product between 4 and � is increased to (0.83, 0) for the overlap transformation and (0.89, 0) for

the Chebyshev filter, while the normalized inner product between 4 and � with no filter is (0.61,0).

This shows that the filters are indeed helpful.

5.5.4 Results for the restart algorithm

As discussed in previous sections, there are two major issues with the restart algorithm: 1)

the interpolation process will introduce high modes which need to be filtered out through the

polynomial filter or the overlap transformation; 2) the norm of the vectors after being multiplied

by the coarse and fine operator are different and an overall factor is needed.

In Fig 5.15. The residual is plotted when there are 400 iterations in each restart and the coarse

fermion mass is 0.05. In the coarse level, 1000 eigenvectors are used to solve the low modes. The

1’s are the factors multiplied to adjust the norm. It can be noticed that the best result is for 1 = 9,

this agrees with Fig 5.9 where it’s shown that in the low-mode space, the norm should be adjusted

by multiplying 9 so that � �−1
2ℎ' and �−1

ℎ
have similar effects.

In Fig 5.16 and Fig 5.17, the overlap transformation and the Chebyshev polynomials are used

as filters. Also, the norm are adjusted in each restart so that the norm of � is the same as the

norm of 4. In both graphs, the restart algorithm has a better convergence rate than the conjugate

gradient algorithm. However, there are a few defects. First, the cost for the overlap transformation
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Figure 5.15: Residual for the restart algorithm. The fermion mass on the coarse lattice is 0.05.

There are 400 iterations after each restart. 1000 coarse eigenvectors are used to solve the low-

mode part of the coarse lattice. 1 = 9 is optimal which agrees with Fig 5.9

.

and the Chebyshev polynomials is huge. For overlap transformation, the total effective overhead

for each restart is around 70 fine �†� operations. The total number of restarts is 4 so the cost is

280 operations. This makes the advantage of the algorithm small. For Chebyshev polynomials, the

effective overhead is around 170 fine �†� operations for each restart. Although the convergence

rate is good, the cost is huge with 14 restarts. Therefore it’s not optimal.

Another observation is that the residual goes up after every restart. The reason is that during

the restart, the low modes get corrected but some high modes are introduced even in the presence

of the filter. Although the components introduced by the high modes are small, the residual is

increased by a large amount because the high modes have high eigenvalues. To solve this issue, we

introduce the renormalization based preconditioned Conjugate gradient in the next two sections.
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Figure 5.16: The restart algorithm with overlap transformation. The fermion mass on the coarse

lattice is 0.065. There are 300 iterations after each restart and the norm is adjusted by a fixed

factor.Although the convergence rate is increased, the cost of each restart is around 70 operations

of �†�.

Figure 5.17: The restart algorithm with Chebyshev filters (order 151). The fermion mass on the

coarse lattice is 0.05. There are 50 iterations in each restart and the norm is adjusted by a different

factors in each restart. Although the convergence rate is increased, the cost of each restart is around

170 operations of �†�.



5.6 Renormalization group based preconditioned conjugate gradient: direct application of

the coarse lattice in the preconditioner

In the previous section, we saw that the coarse lattice can solve the low modes. However,

with the restart algorithm, the high modes are re-introduced in each restart so the restart is not

very effective. To alleviate the problem, we use the coarse lattice in the preconditioned conjugate

gradient algorithm and utilize the coarse lattice to reduce the condition number. In this section,

we will use the coarse inverse in the preconditioner directly. In next section, we will apply the

high-mode solver as a smoother in the preconditioner.

The preconditioned conjugate gradient algorithm is introduced in the previous chapter so we

will focus on the preconditioner. Since the coarse inversion is needed in every iteration, we cal-

culate the coarse eigenvectors and use the coarse eigenvectors to do the inversion in the low-mode

space. The basic preconditioner that uses the coarse operator to solve the low modes is:

"−1 = � (
#∑
8

|k2ℎ,8 >< k2ℎ,8 |
_2ℎ,8

)' (5.21)

where k2ℎ,8 are the eigenvector of the coarse operator. Note that since the preconditioner must be

symmetric, here we use ' = �) . However, this preconditioner doesn’t work because it projects the

vector into a subspace of the fine operator and it’s not positive definite. Therefore, we have to add

an identity matrix and introduce the parameter 1 to adjust the norm:

"−1 = 1 + 1� (
#∑
8

|k2ℎ,8 >< k2ℎ,8 |
1
_2ℎ,8
)' (5.22)

If 1 = 0, we are not using the preconditioner. If 1 >> 1, the weight of the preconditioner is very

large.

Although the approach improves the convergence rate, the improvement is not great because

the interpolation operator introduces high modes. We find that it’s best to incorporate high-mode
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filter. The final preconditioner is in the form:

"−1 = 1 + 1%� (
#∑
8

|k2ℎ,8 >< k2ℎ,8 |
1
_2ℎ,8
)'% (5.23)

where % is the high-mode filter.

First of all, we emphasize the importance of the high-mode filter by comparing the results

when there is not a filter and when there is an exact filter. In the case of the exact filter, we use the

eigenvectors of the fine operator and we have the filter:

% =

#∑
8

|kℎ,8 >< kℎ,8 | (5.24)

The results are in Fig 5.18. The left graph is for the residuals when there is no filter and the right

graph is the case when there is the exact filter. It can be seen that although around 400 iterations

are saved when there is no filter, the convergence rate is much faster when there is the exact filter.

In fact, the convergence rate of the right graph in Fig 5.18 approaches the convergence rate when

fine eigenvectors are used instead of the coarse eigenvectors. This means that if a good filter is

used, the coarse eigenvectors are almost perfect as the replacement of the fine eigenvectors. Lastly,

note that the best convergence rate is achieved when 1 = 9 or 1 = 27. This agrees with Fig 5.9.

Two kinds of filters are in the previous section, the overlap transformation and the Chebyshev

polynomials. Although they are promising as filters, they are too expensive.

To filter the high modes effectively, we need insights to the properties of the high modes. Con-

sidering that QCD is approximately free in high energy, the eigenvectors with high eigenvalues,

or the high modes should be approximately plain wave and should be filtered by Fourier transfor-

mation or geometric smoothing. These two approaches are tried. With geometric smoothing, after

the interpolation, we add the neighbors of a site with a weight to the site. Therefore, the fermion

vector is smoothed and the high-frequency modes are removed. With Fourier transformation, we

Fourier transform the fermion vector to momentum space and only preserve the low momentum

part of the vector. Then the truncated vector is transformed back to the position space. Through the
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Figure 5.18: Left: the residuals when there is no filter; Right: the residuals when the exact filter

is used. Comparing the two graphs, we see that the high mode filter is important to improve the

performance of the preconditioner. 1 = 9 and 1 = 27 are optimal for the right graph which agrees

with our understanding about the low-mode correspondence between the coarse operator and the

fine operator.

Figure 5.19: Left: results for geometric filter where the weight of the neighbors is 0.08; Right: re-

sults for Fourier filter where we keep the sites in momentum space if |:1 | ≤ c/4, |:2 | ≤ c/4, |:3 | ≤

c/4, |:4 | ≤ c/4. There is small improvements but the results show that the geometric filter and

Fourier filter are not effective enough to filter our the high modes.



truncation, the high-frequency modes are removed. The results from these two filters are plotted

in Fig 5.19. Although there is slight improvement compared to the case when there is no filter, the

results show that geometric smoothing and Fourier transformation are not sensitive enough to filter

the high modes effectively.

The filter that turns out to be relatively effective is the filter with the idea of domain decompo-

sition. The idea was first demonstrated clearly in [32]. The idea is based on the fact that there is

a scale associated with the gluon field through the glueball mass. When the distance between two

points is longer than the scale, there is little interaction. For eigenvectors, it means that once we

have a few exact low-mode eigenvectors, it’s possible to construct some inexact low-mode eigen-

vectors by combining the local pieces of the exact low-mode eigenvectors. Specifically, one can

split the lattice into #1 blocks. One can get #1 basis vectors out of one eigenvector. Each basis

vector equals the component of the eigenvector in one block and is 0 everywhere else. Therefore,

if one has #4 exact eigenvectors, one has #4 × #1 basis vectors, then one can construct inexact

eigenvectors by combining the basis vectors. In fact, this technique is very useful in generating

inexact eigenvectors [39]. In practice, people can generate 1000 exact eigenvectors and then use

the 1000 exact eigenvectors to generate 1000 inexact eigenvectors with relatively small efforts.

In our case, we don’t want to use exact eigenvectors since it’s expensive to generate exact

eigenvectors. Instead, we use the near-null vectors. One vector is called a near-null vector if

�E ≈ 0 (The detailed requirement of the precision depends on the low eigenvalues.). One can

generate the near-null vectors by solving �G = 0 using the conjugate gradient to some precision.

In our case, we generate the near-null vectors by solving it to precision 0.01 where the lowest

eigenvalue of � is 0.00123598 and 0.01 is the eigenvalue of the 219th eigenvector. This means

that in our case, |�a | < 0.01. The near-null vectors are similar to low-mode eigenvectors in the

sense that after being multiplied by the matrix, the results are small. It’s reasonable to assume

that the near-null vectors are in the low-mode space of the eigenvectors and they can be used to

generate basis vectors as discussed above. Then each near-null vector is used as the filter for a

general vector D according to the following procedure:
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Figure 5.20: Results when the near-null vectors are used as the filter. Left: 5 near-null vectors are

used; Right: 10 near-null vectors are used. The results are for fine mass 0.019896. The near-null

vectors are effective in filtering out the high modes and the optimal parameter is 1 = 1.

1) Construct #1 vectors D18 from the vector D using the same process that #1 basis vectors E18

are generated from one near-null vector;

2) Calculate the inner products U8 between D18 and E18 for each 8;

3) Use the inner products as the coefficients for the basis vectors and construct the new vector

%D =
∑
U8E18.

In the case that there are several near-null vectors. The results from each near-null vector are

added as the final results.

It should also be noted that when there are multiple near null vectors, the basis vectors must be

orthogonal to each other and the norm of each basis vector should be scaled to 1.

We find that with 5 or 10 near-null vectors, the results are good compared to the case when

there is no filter. In addition, the filter is particularly important when the mass is light. In Fig 5.20

and Fig 5.21, the results are plotted for fine fermion mass 0.019896 and 0.000787. In both cases,

there is obvious improvement in the convergence rate. In particular, for Fig 5.20, the iteration

number is changed from 1927 to 1300 in the best case, a 33% decrease. For Fig 5.21, the iteration

number is changed from 5900 to 3300, a 44% decrease.
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Figure 5.21: Left: Results when the near-null vectors are used as the filter. Left: 5 near-null

vectors are used; Right: 10 near-null vectors are used. The results are for fine mass 0.000787

which is why the iteration number for CG is much larger than the other cases in this chapter. The

near-null vectors are effective in filtering out the high modes for light mass. The optimal parameter

is 1 = 1/9

At this point, we would like to point out that the filter with the near-null vectors and the poly-

nomial filter are built upon the knowledge of the eigenvectors and eigenvalues of the operator.

The geometric smoother and the filter based on the Fourier transformation don’t need any infor-

mation about the operator. Until now, we find that only the filters based on the eigenvectors and

eigenvalues of the operator are effective.

Because the filter with the near-null vectors requires the knowledge of the near-null space, there

is overhead in the calculation of the near-null vectors. For the heavy mass, the iteration number

for each near-null vector is around 450. For the light mass, the iteration number for each near-

null vector is around 1600. Therefore, if only one equation is to be solved, the overhead is not

justified. However, the overhead is justified if 4 or more equations are needed to be solved. During

the measurements, usually tens of equations are needed to be solved and the number of iterations

saved could be more than one third of the total iteration number. In addition, in our current results,

the equation is solve to the 10−6. If the equation is solve to residual 10−8, more iterations will be
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saved.

5.7 Renormalization group based preconditioned conjugate gradient algorithm: using high-

mode solver in the preconditioner

In the previous section, it’s found that the high-mode filter is important to improve the algo-

rithm. However, the polynomial filters that are used in section 4 are very expensive. To solve the

issue, we apply the method in [40] where the filter also functions as a high-mode solver in the pre-

conditioner. In this method, since both high modes and low modes are solved in the preconditioner,

the convergence rate will be much better and cost of the filter could be justified. The preconditioner

is consisted of 5 steps:

1) D = %(A, D) (pre-smoothing)

2) 3 = '(�ℎD − A)

3) E = �−1
2ℎ3

4) D = D − 1�E

5) D = %(A, D) (post-smoothing)

In step 1, one uses the zero vector as the starting point for D. In step 4, we include a factor 1 to

adjust the norm. The 5 steps are taken as a preconditioner where it takes A as the input and D as the

output:

D = "−1A (5.25)

The process is found to be symmetric and positive definite for certain % and can be used in the pre-

conditioned conjugate gradient algorithm. % is usually called a smoother because it’s used to solve

the high modes and smooth the vector. There is both pre-smoothing and post-smoothing because

the preconditioner has to be symmetric. Initially, both pre-smoothing and post-smoothing mainly

function as high-mode solver. When A is mainly composed of low modes, the pre-smoothing is not

very useful but the post-smoothing will filter the high modes brought by the coarse correction.

In this section, we will use two kinds of smoothers, the Jacobi iteration and polynomial solvers.
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There are other kinds of methods to be explored that are very attractive, for example, the multi-

splitting algorithm in the last chapter. Those solvers require further techniques and adaption to be

used and are not yet applied.

5.7.1 Jacobi iteration as the smoother

We have explained the Jacobi iteration in the previous chapter. Here we explore the properties

of the Jacobi iteration in more details. The Jacobi iteration is:

G:+1 = �
−1(1 − (� − �)G: ) (5.26)

We would like to point out that the error 4: = G: − G decreases according to:

4:+1 = �
:+140 (5.27)

where � is defined as:

� = 1 − �−1� (5.28)

This shows that as long as the maximum eigenvalue of � is smaller than 1, 4 will decrease mono-

tonically. With appropriate modification of the Jacobi iteration, � can decrease the high modes yet

leave the low modes of 4 unchanged. Therefore, it can serve as the smoother in the preconditioner.

The algorithm will converge when the matrix � is strictly diagonally dominated, which means:

088 >
∑
9≠8

|08, 9 | (5.29)

This is not the case for our matrix �†�. To solve the issue, instead of splitting the matrix � as

� = � + (� − �), where � is the diagonal part, the matrix is split as: � = (� + _) + (� − � − _).

The iteration is now:

G:+1 = (� + _)−1(1 − (� − � − _)G: ) = G − (� + _)−1�G: + (� + _)−11 (5.30)
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The error decreases according to:

4:+1 = �
:+140 (5.31)

where � is:

� = (� + _)−1(� − � − _) (5.32)

This is found to converge for our operator with proper _.

In addition, we can also use the weighted Jacobi iteration to split � according to � = 1
l
� +

(� − 1
l
�). The iteration is:

G:+1 = ((1 − l) + l�)G: + l�−11 (5.33)

The error decreases according to:

4:+1 = (1 − l�−1�):+140 (5.34)

The Jacobi iteration requires the knowledge of the diagonal elements. The diagonal elements

of �†� for the Mobius domain wall operator are calculated in the appendix.

Since the Jacobi iteration is a solver, we can use it directly to solve the equation. The residuals

are plotted in Fig 5.22. It can be seen that with the Jacobi iteration, the residual decreases fast

initially but the convergence rate slows down afterwards. This is because it solves the high modes

relatively fast but it solves the low modes very slowly. Although the Jacobi iteration is slow

compared to the conjugate gradient algorithm, the conjugate gradient algorithm can’t be used as a

smoother because it distorts the low modes when the high modes are solved, defeating the purpose

of using the coarse lattice to solve the low modes.

In Fig 5.23, we show the results where we use the Jacobi iteration in the preconditioner. We

see that when 1 = 1/27, the coarse lattice improves the algorithm compared to 1 = 0. However,

the improvement is marginal. In addition, although the number of iterations for the preconditioned

conjugate gradient is much smaller compared to conjugate gradient, the total number of operations
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Figure 5.22: Jacobi method for different l and _

for �†� is more than 11000 in the preconditioned conjugate gradient compared to 1950 in the

conjugate gradient. The main reason that the algorithm is not effective is that the Jacobi iteration

is not a very good high-mode solver.

5.7.2 Polynomial solvers as the smoother

The previous results show that the Jacobi iteration is not a good high-mode solver. To improve

the results, we use polynomial solvers to solve the high modes.

The idea arises from the derivation of a solver called Chebyshev iteration [41]. There are many

versions of the Chebyshev iterations, two of which are:

G:+1 = G: − U:+1(�G: − 1) (5.35)

and:

G:+1 = G: − U:+1(�G: − 1) − V:+1(G: − G:−1) (5.36)

With the iteration in eq. (5.35), the error decreases according to:

4: = Π
#
1 (1 − U:�)40 (5.37)
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Figure 5.23: Jacobi iteration as the smoother. Left: 50 Jacobi iterations; right: 100 Jacobi it-

erations. _ = 200. By using the Jacobi iteration in the preconditioner, the convergence rate is

improved greatly. The optimal parameter is 1 = 1/27 which means that coarse lattice is useful.

However, the number of operations of �†� is larger than CG because the operations are needed

during the Jacobi iteration.

With the iteration in eq. (5.36), the error decreases according to:

4: = $:40 (5.38)

where $: satisfies:

$: (�) = (1 − V: − U:�)$:−1 + V:$:−2 (5.39)

The Chebyshev iteration is obtained when careful choices about U and V are made so that

the polynomials that are applied to the error are the Chebyshev polynomials. The Chebyshev

polynomials will decrease the error in the range of the eigenvalues uniformly so it’s not helpful in

our case. However, the idea is helpful in the sense that we can use the iteration in eq. (5.35) or eq.

(5.36) so that the polynomial $: will be a high mode filter. In particular, we can choose U and V
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Figure 5.24: Jacobi iteration and the polynomial solvers.

so that $: will be the filters described in section 3:

$# = (1 −
�

_
)# (5.40)

and

$# =

#∑
0

1
#
)= −

1
2#

)0 −
1

2#
)# (5.41)

where )= are Chebyshev polynomials and the argument of )= should be (1− �
_
). _ should be larger

than _<0G
2 . With _ = _<0G , the minimum point is at _<0G . However, with _ slightly larger than

_<0G
2 , the range of high modes that are filtered is largest as shown in Fig 5.14. The detailed choices

of U and V are calculated in the appendix.

Similar to the Jacobi iteration, the polynomial solvers can solve the equations. The results are

plotted in Fig 5.24. The solvers are fast initially when they work on the high modes and become

slow with the low modes. Although the polynomial solver with the Chebyshev polynomials con-

verges slowly, it should be noted that Chebyshev polynomials removes the high modes faster as

shown in Fig 5.14.

In Fig 5.25, we show the results where we use the polynomial solvers in the preconditioner. It

can be seen that by utilizing the Chebyshev polynomials, the algorithm is four times faster than the
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Figure 5.25: Left: Chebyshev polynomials are applied on the error during the inner solver; right:

(1 − �
_
): is applied to the error during the inner solver, _ = 300. There are 100 iterations in the

inner solver. By using the solver which utilizes the Chebyshev polynomials, the convergence rate

is four times faster compared to the case where Jacobi iteration is used.

algorithm where the Jacobi iteration is used in the preconditioner. However, the total number of

operations of �†� is 3000 which means that it’s still not good enough.

In Fig 5.26, we use the near-null vectors to further remove the high modes. With 10 near-

null vectors, the convergence rate is much faster compared to 1 = 0 or the conjugate gradient.

Although the total number of the operations of �†� is similar to the conjugate gradient, it should

be noticed that the convergence rate is much better. Additionally, the equations are currently solved

to 10−6. If we solve the equation to a higher precision, the algorithm would be beneficial. Lastly,

since the number of preconditioned conjugate gradient iteration is small, the overhead brought by

the interpolation and restriction will also be small. This is the advantage of the preconditioner

compared to the previous section.

5.8 Summary and outlook

In this chapter, several algorithms are developed based on the idea of the renormalization group.

Since we can block the fine gauge fields to coarse gauge fields according to the renormalization
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Figure 5.26: Left: 5 near-null vectors; right: 10 near-null vectors. _ = 300. 20 inner iterations.

Chebyshev polynomials are used on the error. With the near-null vectors, the convergence rate is

improved with the coarse lattice and it’s optimal when 1 = 1/9.

group, the low-mode space of the coarse operator corresponds to the low-mode space of the fine

operator. Following the idea, we can use the coarse lattice to solve the low modes of the fine lattice.

By using the coarse lattice in the preconditioner and utilizing the near-null vectors as the filter,

we are able to achieve better convergence rate compared to the conjugate gradient algorithm. The

iteration number as well as the operations of �†� is reduced by 33% to 44% when the coarse op-

erator is used directly in the preconditioner. By using the polynomial solver in the preconditioner,

the convergence rate is increased significantly and the overhead from restriction and interpolation

is small. Although the number of the operations of �†� is close to the number of the conjugate

gradient iterations, the convergence rate is much faster and the algorithm will be beneficial when

the precision requirement is higher than 10−6.

However, we believe that we haven’t fully harvested the power of the coarse lattice. For further

development, it’s critical to understand the source of the high modes introduced by the interpola-

tion operator. One possible source is that the coarse operator and the fine operator have different

structures in the fifth dimension. The residual mass of the coarse lattice (0.0085) is almost twice

the residual mass of the fine lattice (0.0045). This implies that the low modes of the coarse and
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Figure 5.27: Average eigenvector supports on the fifth dimension. The numbers in the legend

indicate the eigenvector index. The results show that the eigenvectors on the coarse lattice have

different structures compared to the eigenvectors on the fine lattice.

fine lattice have different structures in the fifth dimension. In Fig 5.27, the average norm squared

on different fifth-dimension slices are plotted. It verifies that the low modes have different fifth-

dimension dependence for the coarse lattice and the fine lattice. Since the low modes are different,

when the coarse lattice is used to solve the low modes of the fine lattice, there will be mismatch

in the results. Up till now, we have treated the problem as a four dimensional problem and we

haven’t touched the fifth dimension. We believe it’ll be important to correct the mismatch in the

fifth dimension. In addition, using more efficient high-mode solvers, possibly some solvers that

are similar to the multisplitting algorithm, may also be beneficial.
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Conclusion

In this work, we developed different approaches to study the topological properties of the

lattice gauge fields, calculated <[ and <[′ and constructed the multisplitting algorithm as well as

the renormalization group based preconditioned conjugate gradient algorithm. Now we

summarize our results and discuss how the work could be beneficial for future research.

We utilized different methods to probe the topological properties of the lattice gauge fields.

We calculated the topological charge from the smoothed gauge fields and probed the topological

properties using the close quark loops. What’s unique is that we studied the low-lying

eigenvectors of the Shamir domain wall operators on the gauge field without smoothing and we

were able to calculate topological properties from the eigenvectors. However, it’s difficult to

obtain clear individual topological modes because of the residual mass caused by the finite fifth

dimension. For future work, it’ll be desirable to consider low-lying eigenvectors of other fermion

operators that don’t suffer from the residual mass. Once individual topological modes are

obtained, they could be used in multiple circumstances including the study of the topological

evolution during the gauge field generation. Specifically, it can help identifying the long lived

topological modes during the evolution.

<[ and <[′ were calculated by considering both the fermion correlators and the topological

charge density correlators. The mixing angle was also obtained. The errors of [ and [′ were

decreased to percentage level. In particular, by including the easily calculated topological charge

density correlators, the error for [′ was decreased by 18%. Our current work hasn’t included the

systematic effect caused by the lattice spacing and the lattice volume. By including different

ensembles, the results will be more robust.

The multisplitting preconditioned conjugate gradient algorithm was developed. The algorithm

uses the multisplitting algorithm as the preconditioner and it can decrease the communication and

use the local computational power more effectively. This algorithm has already been implemented

by [35] and the algorithm is very helpful for the gauge evolution.

We constructed several versions of the renormalization group based preconditioned conjugate

102



gradient algorithm. [35] constructed an algorithm that’s able to block fine gauge fields to coarse

gauge fields so that the they lie on the renormalization group trajectory. We found that the two

lattices share the same low-mode space and we were able to use the coarse operator in the

preconditioned conjugate gradient algorithm. By using the near-null vectors as the filter, the

iteration number is deceased by 33% to 44% compared to the conjugate gradient algorithm.

When we use the polynomial solver in the preconditioner, the convergence rate is optimized and

we have relatively small overhead from the restriction and interpolation. Nevertheless, we believe

we haven’t fully utilized the low modes of the coarse lattice. We found that many high modes are

introduced during the interpolation. For future development, it’ll be important to understand how

the high modes are introduced to avoid the issue. One possible direction is to match the structure

of the coarse operator and the fine operator in the fifth dimension. Additionally, one could also

utilize approaches like the multisplitting algorithm as better solvers in the preconditioner.
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Appendix A: The Lanczos algorithm

The Lanczos algorithm is used repeatedly to calculate the eigenvectors of a Hermitian matrix.

Here we briefly introduce the algorithm as well as one of the variation: the implicitly restarted

Lanczos algorithm.

For the derivation of the Lanczos algorithm, it’s worthwhile to start from the power iteration.

In the power iteration, a vector E is repeatedly multiplied by the = × = matrix �. Since the compo-

nent with the largest eigenvalue gets amplified, �=E will approach the eigenvector with the largest

eigenvalue. However, the method is not efficient because it only pays attention to the last re-

sults. The Lanczos algorithm preserve the intermediate information by utilizing the Krylov space.

Through careful design, the algorithm is able to give a = × < matrix + with orthogonal columns

and tridiagonal real symmetric matrix ) = +†�+ . By calculating the eigenvector H of the matrix

) , the eigenvector of the matrix � is +H. The algorithm is demonstrated below.

Once the matrix T is obtained, it could be factorized by QR decomposition and other methods.

Although the Lanczos algorithm is very effective, it’s numerically unstable and can’t be used

in practice. To solve the instability, one of the most effective methods is the implicitly restarted

Lanczos algorithm [20]. The key idea is that the Lanczos algorithm starts from the vector E1. If

E1 is mainly composed with the desired eigenvectors, the algorithm will converge quickly. In the

implicitly restarted Lanczos algorithm, the Lanczos iteration is first applied for < + : times. Then

by proper manipulation of the matrix + and ) , the starting vector E1 as well as the results for the

first < iteration of the Lanczos iteration are updated implicitly. Afterwards, another : steps of

Lanczos iteration followed by the restart is done. The process is repeated until the eigenvectors are

converged. This is the algorithm that’s used in this research.
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Algorithm 4: The Lanczos algorithm
Result: A = × < matrix + with orthogonal columns and tridiagonal real symmetric matrix

) = +†�+

Let E1 be a random vector with length = and norm 1

Initialize F′1 = �E1, U1 = 〈F′1E1〉, F1 = F
′
1 − U1E1

for j=2,...m do
V 9 = | |F 9−1 | |

if V 9 ≠ 0, E 9 = F 9−1/V 9 ; else let E 9 be a random vector with norm 1 and orthogonal to

E1, ...E 9−1

F′
9
= �E 9

U 9 = 〈F′9E 9 〉

F 9 = F
′
9
− U 9E 9 − V 9E 9−1

end

E1, ...E< are the columns of the matrix + .) has diagonal elements U1, ...U<. For

off-diagonal elements, )9 , 9+1 = )9+1, 9 = V 9+1.



Appendix B: The diagonal elements of �†� for the Mobius domain wall

operator

The diagonal elements of �†� for the Mobius domain wall operator are needed for the Jacobi

algorithm in chapter 5. Here we show the calculation of the diagonal elements.

We follow the notation of [42]. For the Mobius domain wall operator, we need the components:

�B
+ = 15(B)�,8;B>= ("5) + 1 (B.1)

and

�B
− = 25(B)�,8;B>= ("5) − 1 (B.2)

where

�,8;B>= ("5) = " + 4 − 1
2
�ℎ>? (B.3)

and

�ℎ>? = (1 − W`)*` (G)XG+`,H + (1 + W`)*†` (H)XG−`,H (B.4)

And the Mobius domain wall operator is:

�5
�, =

©­­­­­­­­­­­­«

�1
+ �1

−%− 0 ... −<�1
−%+

�2
−%+ �2

+ �2
−%− ... 0

0 �3
−%+ �3

+ ... 0

... ... ... ... ...

−<�!B− %− 0 0 ... �
!B
+

ª®®®®®®®®®®®®¬
(B.5)

In the case of the Shamir domain wall operator, �− = 1 because 2B = 0 and 1B = 1.
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We concentrate on the Mobius operator where 1 and 2 are constant for different B. We first

consider �,8;B>= ("5)†�,8;B>= ("5). This is calculated as:

(" + 4 − 1
2
�
†
ℎ>?
) (" + 4 − 1

2
�ℎ>?) (B.6)

�ℎ>? has diagonal elements 0, so to calculate the diagonal elements, we only need to consider:

(" + 4)2 + 1
4
�
†
ℎ>?
�ℎ>? (B.7)

For the diagonal elements of �†
ℎ>?
�ℎ>?, the site must hop forward then hop back. So for the color

part, the matrix is*†` (G)*` (G) = 1. For the spin part, we have:

1
4
(1 − W`)2 + (1 + W`)2 = 1 (B.8)

because W†` = W` and W2
` = 1. Since there are four directions, we have diagonal elements:

diag(�,8;B>= ("5)†�,8;B>= ("5)) = (" + 4)2 + 4 (B.9)

�
†
+�+ and �†−�− could be calculated similarly.

For �5
�,

, we first look at B ≠ 1, !B. We need to consider

�
†
+�+ + %+�†−�−%+ + %−�†−�−%− = �†+�+ + �†−�− (B.10)

so the diagonal elements are:

(1(4 − ") + 1)2 + 412 + (2(4 − ") − 1)2 + 422 (B.11)

For B = 1, we have:

�
†
+�+ + %+�†−�−%+ + <2%−�

†
−�−%− (B.12)
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So for spin 0, 1 components, the diagonal elements are:

(1(4 − ") + 1)2 + 412 + (2(4 − ") − 1)2 + 422 (B.13)

For spin 2, 3 components, the diagonal elements are:

(1(4 − ") + 1)2 + 412 + <2((2(4 − ") − 1)2 + 422) (B.14)

For B = !B, spin 0, 1 components, we have:

(1(4 − ") + 1)2 + 412 + <2((2(4 − ") − 1)2 + 422) (B.15)

For spin 2, 3 components, we have:

(1(4 − ") + 1)2 + 412 + (2(4 − ") − 1)2 + 422 (B.16)

This concludes the calculation of the diagonal elements of �†� for the Mobius domain wall

operator.
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Appendix C: The high-mode polynomial solvers

In chapter 5, we need solvers that solve the high-mode part of the equation �G = 1 first. Here

we show two such solvers with the idea that the solver should apply a high-mode polynomial filter

to the error.

The solvers are motivated by the Chebyshev iteration [41]. There are multiple versions of the

Chebyshev iteration. Two of which are:

G:+1 = G: − U:+1(�G: − 1) (C.1)

and

G:+1 = G: − U:+1(�G: − 1) − V:+1(G: − G:−1) (C.2)

With iteration (C.1), the error 4: = G: − G decrease according to:

4: = Π
#
1 (1 − U:�)40 (C.3)

With iteration (C.2), the error decreases according to:

4: = $:40 (C.4)

where $: satisfies:

$: (�) = (1 − V: − U:�)$:−1 + V:$:−2 (C.5)

With proper choices of U and V, the operator that applies to the error could be the Chebyshev

polynomial. In our case, we would like the operator that applies to the error to be a high-mode

filter. In this appendix, we consider two high-mode filters that appeared in chapter 5 and we’ll
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calculate U and V so that the operator that applies to the error will be these operators:

$# = (1 −
�

_
)# (C.6)

and

$# =

#∑
0

1
#
)= −

1
2#

)0 −
1

2#
)# (C.7)

where )= are Chebyshev polynomials and the argument of )= should be (1− �
_
). _ should be larger

than _<0G
2 .

To apply (C.6) to the error, we could simply use iteration (C.1) and use

U =
1
_

(C.8)

To apply (C.7) to the error, we have to find a recursion relation for the (C.7). For Chebyshev

polynomials, we have )=+1 = 2�)= − )=−1. Therefore, we have the recursion relation:

2# (1 − �
_
)$# − (# − 1)$#−1 = $#+1 (C.9)

This is equivalent to:

$#+1 = (
2#
# + 1

− 2#�
(# + 1)_ )$# −

# − 1
# + 1

$#−1 (C.10)

Compared to (C.5), we find:

U:+1 =
2#
# + 1

(C.11)

and

V:+1 = −
# − 1
# + 1

(C.12)
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The first two iterations can’t be obtained in a similar way. The operators $1 and $2 are:

$1 = 1 − �

2_
(C.13)

and

$2 = (1 −
�

_
) (1 − �

2_
) (C.14)

$1 and $2 could be construed with iteration (C.1).

As a conclusion, we could use iteration (C.1) or (C.2) with the calculated coefficients in (C.8)

or (C.11) to (C.12) and the solver will solve the high-mode part of the equation first.
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