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Abstract
Accelerator physics simulators accurately predict the prop-

agation of a beam in a particle accelerator, taking into ac-
count the particle interactions (e.g. space charge) inside the
beam. A precise estimation of the space charge is required
to understand the errors causing the difference between sim-
ulations and reality.

Unfortunately, the space charge is computationally ex-
pensive, needing the simulation of a few dozen thousand
particles to obtain an accurate prediction. This work presents
a Machine Learning-based approximation of the simulator
output, a.k.a. surrogate model. Such an inexpensive sur-
rogate model can support multiple experiments in parallel,
allowing the exhaustive exploration of the simulator control
parameters.

While the state of the art of surrogate models considers
only a few parameters, our proposed approach LinacNet,
scales up to one hundred parameters with broad domains.
LinacNet uses a large-size particle cloud to represent the
beam and estimates the particle behavior using a dedicated
neural network architecture reflecting the architecture of a
linear accelerator (Linac) and its different physical regimes.

INTRODUCTION
Accelerator physics simulators are widely used when de-

signing a new machine as well as approaching simulation to
the real accelerator (e.g. during the commissioning phase).
To consider the interactions between particles, they solve
the underlying electromagnetic equations using Particle-in-
cell and Euler methods [1, 2]. These simulations are often
time-consuming, limiting their usage in real-time use.

Machine-learning-based surrogate models are a tool to
create a fast-executing replacement of such simulators by
generating random simulations and learning to reproduce
them accurately. Once trained, their generalization capabil-
ity makes them suitable for searching for optimal control
settings (surrogate optimization). Edelen et al. [3] stated
that this process is faster than a direct optimization by run-
ning simulations. They can also be used as an assisting tool
for operators to compare theoretical and experimental data
without running expensive simulations. Well tuned, they
can also provide virtual diagnostics [4] for the human opera-
tor, showing beam properties where there is no diagnostic
station.

Notably, most surrogate models of particle accelerator
simulators like [5] and [6] are themselves limited to only a
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few variables on a tiny domain. Even if this choice is adapted
to the description of a well-known machine in operation, it is
unsuitable for a machine under commissioning, potentially
misaligned with unknown values of some physical parame-
ters (like the Schottky effect and the emission delay at the
cathode).

In this work, we explore a new physics-aware surrogate
model that scales to a hundred parameters sampled on a
large scale called LinacNet. This model also benefits from
its modular particle-based architecture to give precise and
understandable results.

This model is applied to ThomX [7], a compact back-
scattering Compton source, currently under commissioning
at the IJCLab, Orsay, France. Its Linac is simulated with
Astra [8].

LINACNET
The building block of a particle accelerator simulator like

Astra is the macro-particle: a computational tool represent-
ing many real particles used to make time-efficient predic-
tions. In Astra, each macro-particle is an 8D scalar vector
x containing position, momentum, clock, and charge infor-
mation. Taken together, they form a beam 𝐷 = {x1, … x𝑛},
whose evolution is governed by the electromagnetic field
produced by the element of the accelerator and by the self-
interaction of the particles (collective effects).

The simulator takes as input the description of the
ThomX’s machine and its state. This state can be repre-
sented as a scalar vector a whose values describe the posi-
tion, the alignment, and the characteristics of the different
elements of the machine.1 Formally, a simulation is a tuple
(a, (𝐷0, 𝐷1, … , 𝐷𝑁)) where 𝐷0 is the initial beam entering
the accelerator and (𝐷𝑖)𝑖∈J1;𝑁K are the beam recordings at 𝑁
different positions corresponding to real or virtual diagnostic
stations.

The surrogate model aims to accurately predict the particle
coordinates for a control setting vector a sampled in the
domain of interest. In our case, this domain corresponds
to the commissioning of ThomX, potentially misaligned,
whose behavior has to be studied extensively. While most
of the existing surrogate models for particle accelerators
limit themselves to a dozen variables sampled on a tiny
domain, we chose to add up to 100 variables sampled on a
broad domain to represent the potential states of the machine
accurately. Our dataset comprises 16 000 simulations with
the particle coordinates recorded at 25 positions. Among
1 We are only considering the variables that vary among the simulations in

the vector a.
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Figure 1: LinacNet architecture with 4 modules. The control setting vector a is split among the modules according to the
position of its effect. The beam is represented by a vector 𝐻. In our case, 𝐻 is the coordinate matrix of the macro-particles
set.
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Figure 2: PointNet-like architecture to handle the particle-based nature of a beam. Each particle embedding is learned with
a MLP. The features of the beam are extracted with a symmetric function over these features. Control settings embedding is
learned with another MLP. Each particle’s coordinates are predicted by concatenating all these embeddings as an input to
the final MLP.

these simulations, only 25% of them reached the end of the
machine. This last figure reflects the large domain used
during the generation of the dataset.

LinacNet Architecture
We present the performance of LinacNet [9], a new surro-

gate model for particle accelerators based on particle-based
and modular principles.

Particle-Based Surrogate Model At low energy, the
interaction between particles is crucial in the evolution of
the beam. It has been shown in Ref. [9] that classic feed-
forward neural networks driven only by a few state indicators
of the beam are not successfully reproducing the simulator’s
behavior. On the other hand, LinacNet takes as input the
complete set of macro particles. This is made possible by
using a PointNet-like neural network architecture [10]. This
architecture aggregates the features of numerous particles
with a single symmetric function (see Fig. 2). The resulting
vector is a latent representation of the entire beam. This
vector is then concatenated with each particle representation
to predict their evolution.

Modularity The control setting vector a represents the
state of the different elements in the accelerator. These el-
ements are spread along the accelerator. By design, their
state cannot modify the properties of the beam at positions

preceding this element. LinacNet enforces this impossibil-
ity by spreading the values of a among multiple modules.
Each module 𝑚𝑖 approximate the behavior of the simulator
between the (𝑖 − 1) -th and the 𝑖 -th diagnostic station. It
receives as input from a only the values that have a physical
impact at this stage of the accelerator.

Finally, each particle cloud 𝐷𝑖 is approximated by
𝑚𝑗 (… (𝑚1 (𝐷0, a1; 𝜃1) … ) , a𝑗; 𝜃𝑗) where (𝜃1, … , 𝜃𝑁) are
the weight of the PointNet-like architecture and (a1, … , a𝑁)
is the split version of the vector a. This mechanism is illus-
trated in Fig. 1.

Training Process The neural network parameters are
learnt by minimizing the training loss with an Adam opti-
mizer [11]. The training loss is defined as the sum of errors
done on the prediction of each particle. This error combines
a binary cross entropy targeting the classification problem
of knowing if a particle has reached the given diagnostic
and a mean squared error between its predicted and real
coordinates.

RESULTS
The performance of our model lies in its capacity to re-

cover the entire distribution of particles, even in significantly
deteriorated situations. In addition to the convergence of the
validation loss, we propose to visually compare the beam
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Figure 3: Comparison between the projection of the simulated beam (left) and predicted beam (right) on the transverse
and longitudinal space. For comparison, histograms of the simulation are reported in green with low opacity on the right
figures, and conversely histograms of the prediction are reported in red with low opacity on the left figures.

predicted by LinacNet to the simulated beam. In Fig. 3, we
present two projections of a simulated beam at the end of
the Linac and the prediction performed by LinacNet.

The simulation results from a random sampling of the
108 control parameters and results in a beam with unusual
properties. In the transverse plane, we can identify two
modes in the distribution, one in the center of the beam and
another at the edge. LinacNet successfully recovers these
aspects and the beam’s overall size and position.

LinacNet can accurately predict the marginal distributions
in the longitudinal space. However, the joint distribution
could be improved, as the thickness of the predicted beam
needs to be more accurate.

PERSPECTIVES

Our model successfully reproduces the full beam distribu-
tion at the end of the Linac, even in deteriorated situations.

Reality Gap Our model successfully reproduces the
simulator’s behaviour on a broad domain of over 100 vari-
ables. Such a wide sampling is performed to encompass
the potential behavior of an in-commissioning machine. By
comparing real-world data to the surrogate model predic-
tions, one could recover the underlying hidden state of a
machine.

Modularity The particle-based approach taken in our
model enables the modularity of its architecture. The in-
put and output of each module are the same as the ones of
the simulator, suggesting potential interoperability with the
simulator or with other surrogate models. Two use cases
have been identified. Firstly, the simulator could handle the
most sensitive part of the accelerator, leaving the rest to the
surrogate model for more precise predictions. Secondly, an
evolution of the machine could be reflected in the surrogate
model by only adding or modifying a few modules.
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