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We present a technique for canceling the laser noise i n  a one-bounce, unequal-arm, Michelson 
interferometer detector of gravitational radiation. This method requires separate measure­
ments of the phase difference in each arm, made by interfering the returning laser light in 
each arm with the outgoing light. Let these two time series of phase difference be z; , i = 1, 2. 
By forming the quantity (z1 ( t  - 2L2/c) - z1 (t)] - [z2(t - 2L1 /c) - z2 (t)J , where L; are the arm 
lengths, gravitational wave signals remain while the laser noise is cancelled. Unlike other pro­
posed techniques, this procedure exactly cancels the laser noise if the arm lengths are known, 
it is direct in time, and allows for time-varying arm-lengths. 

1 Introduction 

Interferometric, non-resonant, detectors of gravitational radiation (with frequency content 0 < 
f < J H )  use a coherent train of electromagnetic waves (of nominal frequency vo » f H) folded 
into several beams, and at one or more points where these intersect, monitor relative fluctuations 
of frequency or phase (homodyne detection) .  The observed low frequency signals are due to 
frequency variations of the source of the electromagnetic signal about vo, to relative motions 
of the source and the mirrors (or amplifying transponders) that do the folding, to temporal 
variations of the index of refraction along the beams, and, according to general relativity, to any 
time-vlj.I'iable gravitational fields present , such as the transverse traceless metric curvature of a 
passing plane gravitational wave train. To observe gravitational waves in this way, it is thus 
necessary to control, or monitor, the other sources of relative frequency fluctuations, and, in 
the data analysis, to use optimal algorithms based on the different characteristic interferometer 
responses to gravitational waves (the signal) and to the other sources (the noise) 1 .  By comparing 
phases of split beams propagated along non-parallel equal-length arms, frequency fluctuations 
of the frequency reference can be removed and gravitational wave signals at levels many orders 
of magnitude lower can be detected. Especially for space-based interferometers, that may use 
lasers with a frequency stability at best of a few parts in 10-13 /../Hi,, it is essential to be able 
to remove these fluctuations when searching for gravitational waves of dimensionless amplitudes 
less than 10-20 /../Hi, in the millihertz band 2 . 

Since the armlengths of these space-based interferometers can be different by several percent, 
the direct recombination of the two beams at a photo detector will not however effectively 
remove the laser noise. This is because the frequency fluctuations of the laser will be delayed by 

275 



a different amount of time inside the two different-length arms. In order to solve this problem, 
we will show that it is possible to remove completely the frequency fluctuations of the laser by 
taking a suitable linear combination of the two Doppler time series after having time shifted them 
properly. This direct method achieves the exact cancellation of the laser frequency fluctuations, 
and does not require any Fourier transform of the data 3 . 

2 Statement of the prol;>lem 

Let us consider three spacecraft flying in an equilateral triangle-like formation, each acting as 
a free faHing test particle, and continuously tracking each other via coherent laser light. One 
spacecraft, which we will refer to as spacecraft a, transmits a laser beam of nominal frequency 
v0 to the other spacecraft (spacecraft b and c at distances L1 and L2, respectively) . The phase of 
the light received at spacecraft b and c is used by lasers on board spacecraft b and c for coherent 
transmission back to spacecraft a. The relative two two-way frequency {or phase) changes as 
functions of time are then independently measured at two photo detectors on board spacecraft a .  
When a gravitational wave crossing the solar system propagates through these electromagnetic 
links, it causes small perturbations in frequency (or phase) , which are replicated three times in 
each arm's data 4 . 

To determine the response of an unequal arm interterometer to a gravitational wave pulse, 
let us introd�ce a set of Cartesian orthogonal coordinates (X, Y, Z) centered on spacecraft a. 
The X axis is assumed to be oriented along the bisector of the angle enclosed between the two 
arms, Y is orthogonal to it in the plane containing the three spacecraft, and the Z axis is chosen 
in such a way to form with (X, Y) a right-handed, orthogonal triad of axes. In this coordinate 
system we can write the two two-way Doppler responses, measured by spacecraft a at time t, as 
follows 4•5•6 (units in which the speed of light c = 1 ) .  

(�v(t) ) 
=: Yi (t) = 

Vo 1 

(�v(t)) _ 

( ) -- = Y2 t 
Vo 2 

+ 

+ 

[ ( 1  - k .  p! ) - --
2 '11 1 (t) - k · p! w1 (t - ( l + k · p1)L1 (t)) 

(l +; . p! ) w1 (t - 2L1 tt))] + C(t - 2L1 (t) ) - C(t) + ni (t) , ( 1 ) 

where k is the unit vector in the direction of propagation of the planar gravitational wave pulse. 
In Equations ( 1 ,  2) we have denoted by /h ,  jh, the unit vectors from spacecraft a to spacecraft 
b and c respectively; w{l ,2) (t) are the following two scalar functions 

W (t) = [ Pii:)'11 ,2) l h · (t) (1 ,2) 1 (k - )2 
•J ' 

- · P(1 ,2) 
(3) 

with h;j (t) being the rank-2 tensor associated with the gravitatioruil.w.a,ve pulse in the (X, Y, Z) 
coordinate system 7 ,  and the sum over the repeated space-like indices has been assumed. We 
have. denoted by C(t) the random process associated with the frequency fluctuations of the 
master laser on board spacecraft a, and ni (t) , n2 (t) are the remaining 'noise sources affecting 
the Doppler responses y1 (t), y2(t) respectively. 
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From equations ( 1 ,  2) it is important to note the characteristic time signature of the random 
process C(t) in the Doppler responses y1 , yz. The time signature of the noise C(t) in y1 (t) 
for instance, can be understood by observing that the frequency of the signal received at time 
t contains laser frequency fluctuations transmitted 2L1 seconds earlier. By subtracting from 
the frequency of the received signal the frequency of the signal transmitted at time t, we also 
subtract the frequency fluctuations C(t) 8 with the net result shown in equation ( 1 ) .  

Among all the noise sources included in  equation ( ! ) ,  the frequency fluctuations due to the 
laser are expected to be by far the largest. A space-qualified single-mode laser, such as a diode­
pumped Nd:YAG ring laser of frequency v0 = 3.0 x 1014 Hz and phase-locked to a Fabry-Perot 
optical cavity, is expected to have <1. spectral level of frequency fluctuations equal to· about 1 .0 x 
10-13 /,Ji{; in the millihertz band 2 . A sipgle point frequency stability measurement performed 
on such a laser by McNamara et al. 9 indicates that a stability of about 1 .0 >� 10- 14 /,Ji{; 
might be achievable in the same frequency band. In this paper however we wili assame the laser 
frequency stability mentioned in 2 . Laser noise is to be compared with the expected secondary 
noises, which will be 107 or more times smaller. 

If the armlengths are unequal by an amount b..L = L2 - L1 = €L1 (with f '.:::'. 3 x 10-2 for a 
space based interferometer 2) ,  the simple subtraction of the two Doppler data Y1 (t) , Y2(t) gives 
a new data set that is still affected by the laser fluctuations by an amgunt equal to 

(4) 

As a numerical example of equation (4) we find that, at a frequency of 10-3 Hz and by using a 
taser of frequency stability equal to about 10-13 /,/i{;, the residual laser frequency fJuctuations 
are equal to about 10-16 j,/i{;. Since the goal of proposed space-based interferometers 2 is to 
observe gravitational radiation at levels of 10-20 /,/i{; or lower, it is crucial for the success of 
these missions to cancel laser frequency fluctuations by many more orders of magnitude. 
3 Algorithm for unequal-arm interferometers 

In what follows we will show that there exists an algorithm in the time domain for removing the 
frequency fluctuations of the laser from the two Doppler data yi (t) , y2 (t) at any time t. This 
approach does not require Fourier transforms on the Doppler data. As it will be shown below, 
this method relies only on a properly chosen linear combination of the two Doppler data in the 
time domain. In our derivation of the algorithm we will assume the two armlengths L1 ,  L2 to be 
constant and known exactly. The reader is referred to Tinto and Armstrong 3 for the derivation 
of the armlength accuracy needed in order for the method described here to be still effective. 

From equations ( 1 ,  2) we may notice that, by taking the difference of the two Doppler data 
Y1 (t) , Y2 (t), the frequency fluctuations of the laser now enter into this new data set in the 
following way 

A1 (t) = Y1 (t) - y2 (t) h1 (t) - h2 (t) + C(t - 2Li ) - C(t - 2L2) 
+ n1 (t) - n2(t) , (5) 

where for simplicity of notation we have defined h1 (t) and h2(t) to be the following functions 

[ (1 - k · p1 ) - -
h1 (t) = 

2 '11 1 (t) - k · pi ·'11 1 (t - ( 1 + k · pi)Li ) 

+ (l +; · p""i ) ll11 (t - 2Li )] 
[ (1 - k .  /52) -

h2 (t) = 
2 '112 (t) k · f>i ll12(t - (1 + k · f>i)L2) 

(6) 
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+ (7) 

If we now compare how the laser frequency fluctuations enter into equation (5) against how they 
appear into equations ( 1 ,  2) ,  we can further make the following observation. If we time-shift 
the data Y1 (t) by the round trip light time in arm 2,  y1 (t - 2L2} ,  and subtract from it the data 
y2(t) after it has been time shifted by the round trip light time in arm 1 ,  v2(t - 2L1 ) ,  we obtain 
the following data set 

A2(t) =: Y1 (t - 2L2} - y2(t - 2L1 )  hi (t - 2L2) - h2(t - 2Li )  + C(t - 2L1 )  
C(t - 2L2) + ni (t - 2L2) - n2(t - 2L1 ) . (8) 

In other words, the laser frequency fluctuations enter into A1 (t} , and A2 (t) with the same time­
structure. This implies that, by subtracting equation ( 5) from equation (8) ,  we can generate a 
new data set that does not contain the laser frequency fluctuations C(t) 

hi (t - 2L2) - hi (t) - h2 (t - 2Li )  + h2 (t) 
+ ni (t - 2L2) - ni (t) - n2 (t - 2L1 )  + n2(t) . (9) 

From the expression of A2(t) given in equation (8) , it is easy to see that the new data set I:(t) 
should be set to zero for the initial M AX[2L1 , 2L2] seconds. This is because some of the data 
from y1 and Y2 entering into A2(t) "do not yet exist" during this time interval. Since the typical 
round trip light time for proposed space-based laser interferometer detectors of gravitational 
waves will never be greater than about 33 seconds.

2 , we conclude that the amount of data lost 
in the implementation of our method is negligible. 

The unequal-arm interferometer response, I:(t} , derived in equation (9) , can be rewritten 
explicitly, in terms of the gravitational wave functions ilt1 , ilt2, as follows 

I:(t) = 

+ 

+ 

+ 

( 10) 

Equation ( 10) shows that the gravitational wave signal enters into the response of an unequal­
arm interferometer at eight distinct times. In analogy with the terminology used for the Doppler 
tracking response to a gravitational wave puise 4, we will refer to equation ( 10) as the eight-pulse 
re�ponse function. 

It is important to point out that, as a consequence of the analytic form of the unequal-arm 
interferometer response given by equation (9) , both the signal and the secondary noise sources 
will show a modulation of their power spectra. If we take the Fourier transform of equation (9) ,  
it is easy to derive the following expression for the one-sided power spectral density of I:(t) 

Sr; (!) = 4lh 1 (!) 12 sin2 (27r I L2) + 4lh2 (J) i2 sin2(27r I Li)  
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4 sin(27l"/ Li) sin(27r f L2) [hi (f)h2(f)e21fif(L2-Ld + hi(/)h2(J)e-21fi/(L2-Ld) 
+ 4Sn1 (/) sin2(27r/L2) + 4Sn2 (/) sin2(27r/Li ) , (11 )  

where the symbol • denotes complex conjugation, the two random processes ni ,  n2 have been 
assumed to be uncorrelated; and Sn1 (!) ,  Sn2 (f) are their respective one-sided poweJ spectral 
densities. Since the proposed space-based interferometer detectors will have armlengths that will 
differ by up to a few percent 2 , in the frequency band of interest equation ( 1 1) can be further 
simplified by neglecting terms of the order f(L2 - Li) and higher 

SE (f) � 4 lh1 (!) - h2(f) l2 sin2(27r/ Li ) + 4 [Sn1 (!) + Sn2 (!)] sin2 (27r f Li ) . ( 12) 
Equation (12) shows that the one-sided power spectral densities of the signal and the noise 
display the same modulation in the Fourier domain. This result implies that the signal-to-noise 
ratio in an interferometer with arms that are different by a few percent is in principle equal to 
the signal-to-noise ratio achievable with an equal-arm detector. 

By further expanding equation ( 12) in the long wavelength limit (27r/ L1 « 1  i.e. f « 10-2 

Hz for a five million kilometers arm length) , and taking into account the expressions for h1 , h2 
given by equations (3, 6, 7) , we obtain the following expression for the low-frequency response 
of the interferometer 

which is the response of an equal-arm, one-bounce, Michelson interferometer detector of gravi­
tational radiation 5•7 multiplied by the factor 16{27r/L1 )2 . For f � 10-3 Hz, most of the band 
to which LISA will be sensitive 2 , the 8-pulse structure will be visible. 

The real limitations on the procedure described above, however, come from the remaining 
noise sources affecting the two Doppler data, and the accuracy in the determination of the 
distances between the two pairs of spacecraft. Tinto and Armstrong3 have performed a detailed 
error analysis, and found that an armlength's accuracy of about 30 meters is needed in order to 
reduce the magnitude of the remaining frequency fluctuations of the laser to a level below the 
level identified by the remaining noise sources entering into E(t) .  Such a requirement on the 
armlength's accuracy can be met by using standard ranging capabilities 2 . 
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