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We present a technique for canceling the laser noise in a one-bounce, unequal-arm, Michelson
interferometer detector of gravitational radiation. This method requires separate measure-
ments of the phase difference in each arm, made by interfering the returning laser light in
each arm with the outgoing light. Let these two time series of phase difference be z; , 1t = 1, 2.
By forming the quantity [z1(¢ — 2L2/c) — z1(¢)] — [z2(t — 2L1/c) — z2(t)], where L; are the arm
lengths, gravitational wave signals remain while the laser noise is cancelled. Unlike other pro-
posed techniques, this procedure exactly cancels the laser noise if the arm lengths are known,
it is direct in time, and allows for time-varying arm-lengths.

1 Introduction

Interferometric, non-resonant, detectors of gravitational radiation (with frequency content 0 <
f < fu) use a coherent train of electromagnetic waves (of nominal frequency vg > fy) folded
into several beams, and at one or more points where these intersect, monitor relative fluctuations
of frequency or phase (homodyne detection). The observed low frequency signals are due to
frequency variations of the source of the electromagnetic signal about vg, to relative motions
of the source and the mirrors (or amplifying transponders) that do the folding, to temporal
variations of the index of refraction along the beams, and, according to general relativity, to any
time-variable gravitational fields present, such as the transverse traceless metric curvature of a
passing plane gravitational wave train. To observe gravitational waves in this way, it is thus
necessary to control, or monitor, the other sources of relative frequency fluctuations, and, in
the data analysis, to use optimal algorithms based on the different characteristic interferometer
responses to gravitational waves (the signal) and to the other sources (the noise) 1. By comparing
phases of split beams propagated along non-parallel equal-length arms, frequency fluctuations
of the frequency reference can be removed and gravitational wave signals at levels many orders
of magnitude lower can be detected. Especially for space-based interferometers, that may use
lasers with a frequency stability at best of a few parts in 107!3/ vHz, it is essential to be able
to remove these fluctuations when searching for gravitational waves of dimensionless amplitudes
less than 10~2°/+/Hz in the millihertz band?.

Since the armlengths of these space-based interferometers can be different by several percent,
the direct recombination of the two beams at a photo detector will not however effectively
remove the laser noise. This is because the frequency fluctuations of the laser will be delayed by
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a different amount of time inside the two different-length arms. In order to solve this problem,
we will show that it is possible to remove completely the frequency fluctuations of the laser by
taking a suitable linear combination of the two Doppler time series after having time shifted them
properly. This direct method achieves the exact cancellation of the laser frequency fluctuations,
and does not require any Fourier transform of the data3.

2 Statement of the problem

Let us consider three spacecraft flying in an equilateral triangle-like formation, each acting as
a free falling test particle, and continuously tracking each other via coherent laser light. One
spacecraft, which we will refer to as spacecraft a, transmits a laser beam of nominal frequency
g to the other spacecraft (spacecraft b and c at distances L, and Lo, respectively). The phase of
the light received at spacecraft b and c is used by lasers on board spacecraft b and c for coherent
transmission back to spacecraft a. The relative two two-way frequency (or phase) changes as
functions of time are then independently measured at two photo detectors on board spacecraft a.
When a gravitational wave crossing the solar system propagates through these electromagnetic
links, it causes small perturbations in frequency (or phase), which are replicated three times in
each arm’s data .

To determine the response of an unequal arm interterometer to a gravitational wave pulse,
let us introduce a set of Cartesian orthogonal coordinates (X,Y, Z) centered on spacecraft a.
The X axis is assumed to be oriented along the bisector of the angle enclosed between the two
arms, Y is orthogonal to it in the plane containing the three spacecraft, and the Z axis is chosen
in such a way to form with (X,Y) a right-handed, orthogonal triad of axes. In this coordinate
system we can write the two two-way Doppler responses, measured by spacecraft a at time ¢, as
follows 56 (units in which the speed of light ¢ = 1).
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where k is the unit vector in the direction of propagation of the planar gravitational wave pulse.
In Equations (1, 2) we have denoted by g7, g2, the unit vectors from spacecraft a to spacecraft
b and c respectively; ¥(; 5)(t) are the following two scalar functions
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with h;;(t) being the rank-2 tensor associated with the gravitationslawave pulse in the (X,Y, Z)
coordinate system ’, and the sum over the repeated space-like indices has been assumed. We
have denoted by C(t) the random process associated with the frequency fluctuations of the
master laser on board spacecraft a, and n;(t), n2(t) are the remaining noise sources affecting
the Doppler responses y; (t), y2(t) respectively.
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From equations (1, 2) it is important to note the characteristic time signature of the random
process C(t) in the Doppler responses y;, yz. The time signature of the noise C(t) in y;(t)
for instance, can be understood by observing that the frequency of the signal received at time
t contains laser frequency fluctuations transmitted 2L; seconds earlier. By subtracting from
the frequency of the received signal the frequency of the signal transmitted at time ¢, we also
subtract the frequency fluctuations C(t)® with the net result shown in equation (1).

Among all the noise sources included in equation (1), the frequency fluctuations due to the
laser are expected to be by far the largest. A space-qualified single-mode laser, such as a diode-
pumped Nd:YAG ring laser of trequency 19 = 3.0 x 10'4 Hz and phase-locked to a Fabry-Perot
optical cavity, is expected to have a spectral level of frequency fluctuations equal to-about 1.0 x
10-13/y/Hz in the millihertz band2. A sipgle point frequency stability measurement performed
on such a laser by McNamara et al. ® indicates that a stability of about 1.0 10-4/VHz
might be achievable in the same frequency band. In this paper however we will ass:ime the laser
frequency. stability mentioned in2. Laser noise is to be compared with the expected secondary
noises, which will be 107 or more times smaller.

If the armlengths are unequal by an amount AL = Ly — Ly = €Ly (with € ~ 3 x 102 for a
space based interferometer 2), the simple subtraction of the two Doppler data y1(t), y2(t) gives
a new data set that is still affected by the laser fluctuations by an amount equal to

C(t — 2Ly) — C(t — 2Ly) ~ 2C(t — 2Ly)eLy . (4)

As a numerical example of equation (4) we find that, at a frequency of 10~3 Hz and by using a
laser of frequency stability equal to about 10713/ V'Hz, the residual laser frequency fluctuations
are equal to about 10716/ VHz. Since the goal of proposed space-based interferométers 2 is to
observe gravitational radiation at levels of 10~20/\/Hz or lower, it is crucial for the success of
these missions to cancel laser frequency fluctuations by many more orders of magnitude.

3 Algorithm for unequal-arm interferometers

In what follows we will show that there exists an algorithm in the time domain for removing the
frequency fluctuations of the laser from the two Doppler data y;(t), y2(t) at any time t. This
approach does not require Fourier transforms on the Doppler data. As it will be shown below,
this method relies only on a properly chosen linear combination of the two Doppler data in the
time domain. In our derivation of the algorithm we will assume the two armlengths L, L2 to be
constant and known exactly. The reader is referred to Tinto and Armstrong? for the derivation
of the armlength accuracy needed in order for the method described here to be still effective.

From equations (1, 2) we may notice that, by taking the difference of the two Doppler data
Y1(t), y2(t), the frequency fluctuations of the laser now enter into this new data set in the
following way

Ay(t) =ui(t) —y2(t) = hai(t) —ha(t) + C(t — 2L1) — C(t — 2L2)

+ my(t) —nat), (5
where for simplicity of notation we have defined h;(t) and ha(t) to be the following functions
h(t) = .—gl—:—@ Ui(t) — k- pi0i(t—(1+k-p1)L1)
+ (1+§-p“1) Ty (t - 2Ly) (6)
ha(t) = r_(l—‘fﬂ Ua(t) — k- Ua(t— (1 +k-p3)L2)
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If we now compare how the laser frequency fluctuations enter into equation (5) against how they
appear into equations (1, 2), we can further make the following observation. If we time-shift
the data yi(¢) by the round trip light time in arm 2, y1(¢ — 2L;), and subtract from it the data
yo(t) after it has been time shifted by the round trip light time in arm 1, y2(t — 2L;), we obtain
the following data set

As(t) = y1(t = 2L) — yalt —2L1) = ha(t — 2Lg) — ha(t — 2L1) + C(t — 2L1)
C(t—2L2) +n1(t—2L2) —Tl2(t—2L1) . (8)

In other words, the laser frequency fluctuations enter into A;(t), and A2(t) with the same time-
structure. This implies that, by subtracting equation (5) from equation (8), we can generate a
new data set that does not contain the laser frequency fluctuations C(t)

Z(t) = A2(t) — Ar(t) = hi(t —2L2) — hi(t) — ha(t — 2L1) + ha(2)
+ nl(t-—2L2) —ny(t) —ny(t —2L,) + no(t) - (9)

From the expression of A2(t) given in equation (8), it is easy to see that the new data set (t)
should be set to zero for the initial M AX([2L,,2L,] seconds. This is because some of the data
from y; and y2 entering into A2(t) “do not yet exist” during this time interval. Since the typical
round trip light time for proposed space-based laser interferometer detectors of gravitational
waves will never be greater than about 33 seconds?, we conclude that the amount of data lost
in the implementation of our method is negligible.

The unequal-arm interferometer response, ¥(t), derived in equation (9), can be rewritten
explicitly, in terms of the gravitational wave functions ¥, ¥2, as follows

s = [(2552) wo - (52 vt
+ L(1 +122. pE) Dot — 2Lg) — (L_%l) Oyt~ 2L2)]
+ '<1— f-p}) Tyt — 2L,) — (Lﬂj—'i)\lll(t—ul)]
+ 3(1 +;2z. 1) W (t - 2Ly — 2L) — (1—+~'2“:—@) O(t - 2L, —2L2)}

+ kgl Uit — L+ g)) — k- pp Yot — (1 + k- p3)Lo)
+ K-y Up(t—2Ly— (1 +k-g3) L) —k-pi Wr(t—2L2 — (L+ k- p1)Ly)
+ ni(t — 2L2) — ni(t) — na(t — 2L1) + na(t) - (10)

Equation (10) shows that the gravitational wave signal enters into the response of an unequal-
arm interferometer at eight distinct times. In analogy with the terminology used for the Doppler
tracking response to a gravitational wave pulse?, we will refer to equation (10) as the eight-pulse
reéponse function.

It is important to point out that, as a consequence of the analytic form of the unequal-arm
interferometer response given by equation (9), both the signal and the secondary noise sources
will show a modulation of their power spectra. If we take the Fourier transform of equation (9),
it is easy to derive the following expression for the one-sided power spectral density of ¥(t)

Se(f) = 4lhi(f)[? sin?(2wfL) + 4lhy(f)I? sin?(2rfLy)
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~ d4sin(2rfL1)sin(27f Ly) [h1(f)R3(f)e?™ LamE0) 4 Ri( f)hy(f)e2mifLa=L0)]
+ 48, (f) sin®(2mfL3) + 4Sn,(f) sin®(2mfLy) , (11)

where the symbol * denotes complex conjugation, the two random processes n;, n, have been
assumed to be uncorrelated; and S, (f), Sn.(f) are their respective one-sided power spectral
densities. Since the proposed space-based interferometer detectors will have armlengths that will
differ by up to a few percent 2, in the frequency band of interest equation (11) can be further
simplified by neglecting terms of the order f(L; — L;) and higher

Ss(f) =~ 4|k (f) — ha()|? sin® (27 fL1) + 4[Sn, (f) + Sny (f))sin?(27f L) . (12)

Equation (12) shows that the one-sided power spectral densities of the signal and the noise
display the same modulation in the Fourier domain. This result implies that the signal-to-noise
ratio in an interferometer with arms that are different by a few percent is in principle equal to
the signal-to-noise ratio achievable with an equal-arm detector.

By further expanding equation (12) in the long wavelength limit (2rfL; < 1i.e. f < 1072
Hz for a five million kilometers arm length), and taking into account the expressions for hy, h2
given by equations (3, 6, 7), we obtain the following expression for the low-frequency response
of the interferometer :

Se(f) =4 [(6 7] — phe)hii(F)I? 27 fL1)* + 4(Sn, (F) + Sny ()] (27fL1)2,  (13)

which is the response of an equal-arm, one-bounce, Michelson interferometer detector of gravi-
tational radiation >” multiplied by the factor 16(2xfL;)2. For f > 10~3 Hz, most of the band
to which LISA will be sensitive 2, the 8-pulse structure will be visible.

The real limitations on the procedure described above, however, come from the remaining
noise sources affecting the two Doppler data, and the accuracy in the determination of the
distances between the two pairs of spacecraft. Tinto and Armstrong? have performed a detailed
error analysis, and found that an armlength’s accuracy of about 30 meters is needed in order to
reduce the magnitude of the remaining frequency fluctuations of the laser to a level below the
level identified by the remaining noise sources entering into 3(t). Such a requirement on the
armlength’s accuracy can be met by using standard ranging capabilities?.
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