
Experiments on the CMB Spectrum, Big Jets Model and Their
Implications for the Missing Half of the Universe

Leonardo Hsu1,� and Jong-Ping Hsu2,��

1College of Education and Human Development, University of Minnesota, Minneapolis, MN 55455, USA
2Department of Physics, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA

Abstract. Based on the limiting continuation of Lorentz-Poincaré invariance, we propose
an alternative formulation of the generalized Planck distribution for inertial and non-
inertial frames. The Lorentz invariant Planck distribution law leads to a new physical
interpretation of the dipole anisotropy of the Cosmic Microwave Background. The Big
Jets model predicts a distant ‘antimatter blackbody,’ whose radiations could make 50%
of the sky very slightly warmer than the isotropic CMB temperature TCMB with a cosine
function. The other 50% of the sky has the same isotropic temperature TCMB. Thus, we
could have a pseudo-dipole anisotropy because the microwaves emitted from the anti-
matter blackbody are totally absorbed by our matter blackbody. We suggest that accurate
data of satellite experiments might be used to search for the pseudo-dipole anisotropy and
the missing half of the antimatter universe.

1 Introduction

We discuss the concept of Lorentz-Poincaré invariance and its limiting continuation, which could
be considered as a minimum generalization of the principle of relativity from inertial to non-inertial
frames[1, 2]. Such a limiting Lorentz-Poincaré invariance enables us to obtain physical laws for
a ‘general frame’ (inertial and non-inertial). As a result, we propose an alternative formulation of
the generalized invariant Planck distribution that leads to a new physical interpretation of the dipole
anisotropy of the Cosmic Microwave Background (CMB)[3, 4]. We stress that satellite measurements
of the CMB might provide the data necessary for testing different formulations of the Planck distribu-
tion law, which is associated with different transformations of the temperature. Such a test is signifi-
cant because the alternative invariant Planck distribution implies that, if there is a temperature differ-
ence (or asymmetry) between two opposite directions in sky with the pattern, T (θ) = TCMB + Tecosθ,
for cosθ > 0, and T (θ) = TCMB, for cosθ < 0.1 Big Jets model suggests that a pseudo-dipole
anisotropy could be caused by the presence of an extremely distant antimatter-blackbody.[5]

We note that satellite data from the COBE, WMAP, and Planck satellite experiments all show a
six-month variation corresponding to the Earth’s orbital motion. However, this effect is normally con-
sidered an undesirable source of noise in the signal so that it is typically removed from the data without
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1The pattern Tecosθ and zero for two opposite hemispheres shows a pseudo-dipole anisotropy and is the characteristics of
the total absorption of microwaves emitted from the antimatter blackbody by our matter-blackbody.
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much comment. It appears that there is no published data on the magnitude of this variation.[3] The
magnitude of this variation is certainly detectable by satellite experiments. It can also be used to test
the law of blackbody radiation in a rotational frame and the alternative ‘general-frame’ (GF) covari-
ant blackbody distribution.[6] However, one must be more careful. As indicated by the analysis of
the Wilson experiment[7], it is not correct to use the Lorentz transformations to analyze situations
involving non-inertial circular motion, even locally (irrespective of the fact that it sometimes gives
the correct answer, as in the case of lifetime dilations of unstable particles in a circular storage ring).
Instead, we must first correctly generalize the blackbody distribution law to a rotational frame.

2 Lorentz invariant blackbody distribution law

To accomplish this, we first generalized the original Planck distribution law P(ω, T ) =

1/[exp(ω/kBT ) − 1] for the rest frame of the blackbody to the Lorentz invariant blackbody distribu-
tion law for all inertial frames. We propose that the quantity ω = k0 should be replaced by the product
of the four-velocity of the thermo-system Uµ = dxµ/ds with the wave four-vector kµ = (k0, kx, ky, kz).
In the rest frame of a thermo-system, its four-velocity is Uµ = (1, 0, 0, 0), so kµUµ = k0 = ω, where
c = � = 1. Thus, we insure that this new formulation remains consistent with all experimental results,
as well as remains consistent with the framework of special relativity. Because Planck’s law was de-
vised before the advent of special relativity, one does not necessarily expect its original formulation
to be relativistically consistent, and such a replacement is natural. We have also assumed that the
quantity kBT is Lorentz-invariant. Although the universality of the Boltzmann constant kB has never
been established in a relativistic framework, such an assumption is consistent with many previous
discussions of the transformation properties of heat and temperature in the literature[8–13].

Thus, in this alternative formulation, the generalized Planck distribution in an inertial frame F is

B(kµUµ, T ) =
1

[exp(kµUµ)/(kBT ) − 1]
, kµUµ = ηµνkµUν, T = Tinv, (1)

Uµ =
dxµ

ds
, ηµνUµUν = 1, ηµν = (1,−1,−1,−1), c = � = 1,

where T in B(kµUµ, T ) is understood as a scalar, and Uµ is the 4-velocity of the thermo-system as
measured in F. We have used B(kµUµ, T ) instead of P(ω, T ) to distinguish this version of the Planck
distribution law from its conventional formulation[3, 4].

To see the transformation properties of B(kµUµ, T ) in (1), consider a blackbody at rest and located
at the origin of F. In another inertial frame F′ moving with a relative velocity V along the +x axis
relative to F, the 4-velocity U′µ of the blackbody is,

U′µ =
(

1
√

1 − V2
,
−V
√

1 − V2
, 0, 0
)
, (2)

so that
k′µU

′µ = k′0U′0 − k′xU′x = k′0
[1 + Vcosθ′]
√

1 − V2
= kµUµ = k0, (3)

where cosθ′ = k′x/k
′
0. The relation (3) between k0 and k′0 is the well-known relativistic Doppler shift.

Writing the invariant Planck law (1) in terms of the non-invariant radiation energy ω′ = k′0 and the
4-velocity (2) in F′, we have

B′(k′µU
′µ, T ) =

1

exp[ω′(1 + Vcosθ′)/(kBT
√

1 − V2 )] − 1
. (4)
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measured in F. We have used B(kµUµ, T ) instead of P(ω, T ) to distinguish this version of the Planck
distribution law from its conventional formulation[3, 4].

To see the transformation properties of B(kµUµ, T ) in (1), consider a blackbody at rest and located
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relative to F, the 4-velocity U′µ of the blackbody is,

U′µ =
(

1
√

1 − V2
,
−V
√

1 − V2
, 0, 0
)
, (2)

so that
k′µU

′µ = k′0U′0 − k′xU′x = k′0
[1 + Vcosθ′]
√

1 − V2
= kµUµ = k0, (3)

where cosθ′ = k′x/k
′
0. The relation (3) between k0 and k′0 is the well-known relativistic Doppler shift.

Writing the invariant Planck law (1) in terms of the non-invariant radiation energy ω′ = k′0 and the
4-velocity (2) in F′, we have

B′(k′µU
′µ, T ) =

1

exp[ω′(1 + Vcosθ′)/(kBT
√

1 − V2 )] − 1
. (4)

In contrast, in the conventional formulation[3, 4], one accepts the original form of the Planck
distribution, P(ω, T ) = 1/[exp(ω/kBT ) − 1], for a blackbody at rest in an inertial frame F(t, x, y, z),
which involves the quantity ω/kBT = k0/kBT . One reasons that since the zeroth component of the
wave 4-vector kµ = (ω, kx, ky, kz) transforms as ω = ω′[1 + Vcosθ′]/

√
1 − V2, cosθ′ = k′x/k

′
0 if the

temperature transforms as
T = T ′(θ′)(1 + Vcosθ′)/

√
1 − V2, (5)

then one has ω/kBT = ω′/kBT ′. Therefore, the Planck’s distribution P(ω, T ) = 1/(exp(ω/kBT ) − 1)
has the same form in both F and F′ frames: P(ω, T ) = P′(ω′, T ′).

However, in this case, the Planck distribution law P(ω, T ) is incompatible with the principle of
relativity in that the laws of physics now do NOT have the same form in all inertial frames. This can
be seen explicitly if one considers three frames F, F′ and F′′, the transformations of P(ω, T ) and the
ratio ω/kBT in them. One can see that there is a preferred frame in which the Planck law P(ω, T )
takes the simplest form, if the angle-dependent temperature (5) alone is used.

Furthermore, this conventional formulation with the angle dependent temperature (5) has two sub-
tle conceptual difficulty. First, in special relativity, since ω is the zeroth component of a 4-vector, the
ratio ω/kBT = ω′/kBT ′ is invariant only if kbT is also the zeroth component of a 4-vector parallel to
the kµ 4-vector, and what this 4-vector that involves the temperature might be is never fully specified
in the conventional formulation. Instead, one simply introduces[3] equation (5) for the transformation
of temperature rather than a temperature 4-vector, begging the question, just what kind of quantity
is temperature? Since it is not invariant, it cannot be a scalar. Second, none of the Lorentz transfor-
mations of the temperature of a thermo-system, including those developed by Einstein[8], Planck[9],
Ott[10], Arzelies[11], Landsberg[12], van Kampen[13] and others, have ever considered an angle-
dependent transformation of temperature. As such, the angle-dependent temperature transformation
in (5) is simply an ad hoc assumption and neither complete nor completely satisfactory.

Comparing the result (4) with the conventional formulation,

P(ω, T ) = P′(ω′, T ′) = 1/[exp(ω′(1 + Vcosθ′)/(kBT
√

1 − V2 )) − 1],

with the angle-dependent temperature (5), one can see that the two are quantitatively identical. How-
ever, they have an important conceptual and physical difference.

First, there was no need to construct a new temperature four-vector with an unusual angle-
dependent temperature transformation.

Second, because kµUµ and kBT are now separately Lorentz invariant and kBT is a Lorentz scalar, if
the invariant blackbody distribution B(kµUµ, T ) and the CMB temperature are isotropic in one frame
F, then they will both be isotropic in every other inertial frame as well.

3 Generalized Planck distribution for non-inertial frames

Actually, we can go further towards the non-inertial frame. In the literature, there exists a fundamen-
tal space-time symmetry framework called limiting four-dimensional symmetry (or limiting Lorentz-
Poincaré invariance) that can help us generalize physical laws in inertial frames to non-inertial frames
of reference.[1, 2] In particular, one can use this framework to derive a set of coordinate transfor-
mations between an inertial frame F′ and a rotating frame Fr that (a) are exact, (b) simplify to the
Lorentz transformations in the appropriate limit (i.e., as the orbital radius goes to infinity while the
product of the orbital radius and angular velocity remains finite[15]), (c) are consistent with the results
of experiments such as the Davies-Jennison experiment, Thim’s experiment involving radio sources
in circular motion[2, 15], and high energy experiments involving unstable particles in a circular stor-
age ring, and (d) support the analysis of the Wilson experiment.[7] These transformations can also
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give us the metric tensors Pµν(x) necessary for generalizing the blackbody distribution to rotating and
constant-linear-acceleration frames.

To investigate the effect of the Earth’s orbital motion on the blackbody distribution (1), for sim-
plicity, let us ignore the relative linear motion between the solar system and the (possible) ‘CMB
rest frame’ and approximate the Earth’s orbital motion as a circular orbit. Consider an inertial frame
F′(t′, x′, y′, z′) and a rotational frame Fr(tr, xr, yr, zr), where the origin of Fr orbits the origin of F′ at
a constant distance R with a constant angular velocity Ω ≡ Ωr (as measured in the rotating frame). A
Cartesian coordinate system is used in both frames, set up in such a way that the positive portion of the
yr-axis of the frame Fr always extends through the origin of F′. Let the Earth be at rest relative to the
rotating frame and located at xr = ρ, yr = 0, zr = 0. The exact rotational coordinate transformations
are then [15]

t′ = γ(tr + ρ · β), x′ = γ[xrcos(Ωtr) − (yr − R)sin(Ωtr)],

y′ = γ[xr sin(Ωtr) + (yr − R)cos(Ωtr)], z′ = zr, (6)

β = |Ω × S| = Ω
√

x2
r + (yr − R)2 = ΩS < 1, ρ · β = xrRΩ, γ =

1√
1 − β2

, (7)

ρ = (xr, yr, 0), S = (xr, yr − R, 0), β = Ω × S, Ω = (0, 0,Ω).

The times t′ and tr are measured in units of length.2 The rotational transformation (6) form a pseudo-
group (in the sense of Whitehead and Veblen)[17]. In the limit R → ∞ and Ω → 0 such that the
product RΩ = βo is a finite non-zero constant velocity, the transformations (6) with (7) reduce to the
exact Lorentz transformations.

For simplicity of discussions below, it suffices to set R = 0 in (6). To the first order in ρΩ, the
non-vanishing components of the covariant metric tensors Prµν(x) of the rotating frame Fr are then
[14],

Pr00 = −Pr11 = −Pr22 = −Pr33 = 1, Pr01 = Ωyr, Pr02 = −Ωxr. (8)

In this approximation, the contravariant metric tensors Pµνr are the same, e.g., P01
r = Ωyr, P02

r = −Ωxr,
etc.

The covariant wave vectors for the blackbody radiation in the inertial and rotating frames are
denoted by k′µ = (k′o, k

′
1, k
′
2, k
′
3) and krµ = (kr0, kr1, kr2, kr3), respectively. They are related by the

rotational wave-vector transformations,[15]

k′0 ≈ kr0 −Ωρkr2, k′1 ≈ kr1cos(Ωtr) − kr2sin(Ωtr), (9)

k′2 ≈ kr1sin(Ωtr) + kr2cos(Ωtr), k′3 = kr3.

For purposes of making predictions in F′ and Fr frames, we shall concentrate on a simple case,
where k′2 = k′3 = 0. The quantity krµ denotes the corresponding wave vector as measured in Fr at the
location of the detector, (xr, yr, xr) = (ρ, 0, 0). In this case, (9) and k′0 = k′1 > 0 lead to the relations

kr2

kr0
≈ −sin(Ωtr)

1 −Ωρsin(Ωtr)
, kr0 ≈

k′0
1 + Ωρ sin(Ωtr)

. (10)

While k′0 and k′1 are time-independent, kr0, kr1 and kr2 measured in Fr are time-dependent.

2The operational meaning of space-time coordinates in F′(t′, x′, y′, z′) is well-known. The operational meaning of coordi-
nates in a non-inertial frame such as Fr(tr , xr , yr , zr) can be realized by a grid of (computerized) ‘space-time clocks’[16] located
in Fr and satisfies (6).
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k′0 ≈ kr0 −Ωρkr2, k′1 ≈ kr1cos(Ωtr) − kr2sin(Ωtr), (9)

k′2 ≈ kr1sin(Ωtr) + kr2cos(Ωtr), k′3 = kr3.

For purposes of making predictions in F′ and Fr frames, we shall concentrate on a simple case,
where k′2 = k′3 = 0. The quantity krµ denotes the corresponding wave vector as measured in Fr at the
location of the detector, (xr, yr, xr) = (ρ, 0, 0). In this case, (9) and k′0 = k′1 > 0 lead to the relations

kr2

kr0
≈ −sin(Ωtr)

1 −Ωρsin(Ωtr)
, kr0 ≈

k′0
1 + Ωρ sin(Ωtr)

. (10)

While k′0 and k′1 are time-independent, kr0, kr1 and kr2 measured in Fr are time-dependent.

2The operational meaning of space-time coordinates in F′(t′, x′, y′, z′) is well-known. The operational meaning of coordi-
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Now consider a thermo-system at rest in F′ with U′µ = (1, 0, 0, 0). To first order in ρΩ, its velocity
in Fr is Uµr = dxµr /ds ≈ (1,Ωyr,−Ωxr, 0). Thus, we have the relationship,

Pµνr krµUrν ≈ kr0[1 + ρΩ sin(Ωtr)], (11)

for the rotational frame Fr, where ρΩ is the Earth’s orbital velocity, and we have used Uµr = Pµνr Urν

and (10).
In general, one can use the metric tensor Pµν in place of the Minkowski metric tensor ηµν in order

to generalize the invariant blackbody distribution (1) from an inertial frame to a non-inertial frame,
such as a constant-linear-acceleration (CLA) frame FCLA or a constant rotational frame Fr.

(A) Constant-linear-acceleration frame FCLA:

BCLA(kλUλ, T ) =
1

[exp(PµνkµUν)/(kBT ) − 1]
, (12)

where P00 = γ
2(γ2

o − αox), P11 = P11 = P22 = −1;[16] and
(B) Rotational frame Fr with constant angular velocity:

Br(krλUλr , T ) =
1

[exp(Prµνk
µ
r Uνr )/(kBT ) − 1]

, (13)

where Prµν is given by (8).
To the first order in ρΩ, we have the generalized blackbody distribution for a rotational frame,

Br(krλUλr , T ) ≈ 1
[exp(k′0/kBT ) − 1]

, T = Tinv, (14)

where krλUλr = Pλνr krλUrν ≈ kr0[1 + ρΩ sin(Ωtr)]/kBT , and we have used equations (10) and (11). As
expected, the GF covariant blackbody distribution law (14) does not depend on time.

Therefore, based on (1), (10) and (14), when the GF covariant distribution law (14) is measured
in a rotational frame Fr, we obtain the time-independent blackbody distribution law,

Br(krλUλr , T ) = B′(ηµνk′µU
′
ν, T ), (15)

where we have used the relation Pαβr krαUrβ = η
αβk′αU

′
β.

4 Non-invariant spectral radiance and six-month variation

However, we stress that satellite experiments do not measure the GF covariant distribution law
Br(P

µν
r krµUrν, T ). Instead, they measure the non-invariant spectral radiance in frequency (or power

per unit area) Wr, which is the power emitted per unit projected area of a blackbody at temperature T ,
into a unit solid angle, in the interval kr to kr + dkr, kr = |kr | > 0. In the Fr(tr, xr, yr, zr) frame with
curvilinear coordinates, the spectral radiance Wr is related to the covariant differential of the photon
energy-momentum tensor DTrµν,

DTrµν =
2
π2 krµkrνBr(krλUλr , T )δ(Pαβr krαkrβ)

√
−detPλσr d4kr, (16)

Wr = DTr00/(dkrdΩr), kr = |kr |, (17)
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where the integration over kr0 > 0 in (16) is understood and Ωr is the solid angle. To carry out this
integration in the general case, δ( f (kr0, kr))dkr0, one may use

f (kr0, kr) = Pαβr krαkrβ = η
αβk′αk

′
β

and (9) to obtain
f (kr0, kr) = (kr0 −Ωρkr2)2 − k2

r

to the first order in ρΩ. Thus, we have

DTr00 =

[
2
π2 k0k0Br(krλUλr , T )

d3kr

2kr

]

kr0=kr+ρΩkr2

(18)

To see explicitly the six-month variation in the measured Wr, it suffices to consider the simple
case k′µ = (k′0, k

′
1, 0, 0) at the location of the detector (xr, yr, zr) = (ρ, 0, 0) using relation (12). Based

on (16), (17) and the corresponding relation dT ′00 = W′dk′dΩ
′

for the inertial frame F′, we obtain the
following relationship for spectral radiances measured in the two frames,

Wr

W ′
≈
(
ωr

ω′

)3
[1 + Ωρ sin(Ωtr)] ≈ 1 − 2Ωρ sin(Ωtr), (19)

where we have used the rotational frequency shift in (9) and the invariance of the blackbody distribu-
tions (14) and (4). For Earth’s orbital motion, we may consider the Earth to be at the location of the
detector, (xr, yr, xr) = (ρ, 0, 0) in the rotational frame Fr. Thus we have

Ω ≈ 0.2 × 10−6/sec and Ωρ ≈ 9.9 × 10−5

(in natural units) for (19).
Therefore, we predict that the blackbody spectral radiance Wr measured from the orbiting Earth

will indeed display a six-month variation (19), consistent with the qualitative results of satellite exper-
iments. What remains now is to test the quantitative predictions of (19) against satellite experiments
measuring the CMB.

5 Big Jets model and the missing half of the antimatter universe

According to the Big Jets model[16, 18], the presence of an extremely distant ‘antimatter-galaxies
blackbody’ could contribute to the observed dipole anisotropy in CMB. The Big Jets model suggests
that the universe began with two Big Jets rather than one Big Bang, similar to the particle collision phe-
nomena one might encounter in high-energy laboratories. The model suggests that the universe orig-
inated with the formation of two diametrically opposed jets, composed of baryons and anti-baryons,
etc. in each jet. We may picture these two jets as two big fire balls moving away from each other. The
processes of their annihilations and decays eventually lead to a baryon-electron dominated fireball
and an antibaryon-positron dominated fireball. Then, from the vantage point of an observer in either
fireball, the evolution of that ‘observer’s fireball’ would be similar to the general features of a hot Big
Bang. Now the two gigantic fire balls cool down to become one baryon-electron dominated blackbody
(called ‘Yang blackbody’) and a antibaryon-positron dominated blackbody (called ‘Yin blackbody’)
with a temperature of roughly 3K, which are separated by an extremely large distance DYY . As a
result, lights emitted from anti-supernovae and anti-galaxies are too faint to be detected. Only the
microwaves emitted from the Yin blackbody as a whole may be detected by our apparatus.
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where the integration over kr0 > 0 in (16) is understood and Ωr is the solid angle. To carry out this
integration in the general case, δ( f (kr0, kr))dkr0, one may use

f (kr0, kr) = Pαβr krαkrβ = η
αβk′αk

′
β

and (9) to obtain
f (kr0, kr) = (kr0 −Ωρkr2)2 − k2

r

to the first order in ρΩ. Thus, we have

DTr00 =

[
2
π2 k0k0Br(krλUλr , T )

d3kr

2kr

]

kr0=kr+ρΩkr2

(18)

To see explicitly the six-month variation in the measured Wr, it suffices to consider the simple
case k′µ = (k′0, k

′
1, 0, 0) at the location of the detector (xr, yr, zr) = (ρ, 0, 0) using relation (12). Based

on (16), (17) and the corresponding relation dT ′00 = W′dk′dΩ
′

for the inertial frame F′, we obtain the
following relationship for spectral radiances measured in the two frames,

Wr

W ′
≈
(
ωr

ω′

)3
[1 + Ωρ sin(Ωtr)] ≈ 1 − 2Ωρ sin(Ωtr), (19)

where we have used the rotational frequency shift in (9) and the invariance of the blackbody distribu-
tions (14) and (4). For Earth’s orbital motion, we may consider the Earth to be at the location of the
detector, (xr, yr, xr) = (ρ, 0, 0) in the rotational frame Fr. Thus we have

Ω ≈ 0.2 × 10−6/sec and Ωρ ≈ 9.9 × 10−5

(in natural units) for (19).
Therefore, we predict that the blackbody spectral radiance Wr measured from the orbiting Earth

will indeed display a six-month variation (19), consistent with the qualitative results of satellite exper-
iments. What remains now is to test the quantitative predictions of (19) against satellite experiments
measuring the CMB.

5 Big Jets model and the missing half of the antimatter universe

According to the Big Jets model[16, 18], the presence of an extremely distant ‘antimatter-galaxies
blackbody’ could contribute to the observed dipole anisotropy in CMB. The Big Jets model suggests
that the universe began with two Big Jets rather than one Big Bang, similar to the particle collision phe-
nomena one might encounter in high-energy laboratories. The model suggests that the universe orig-
inated with the formation of two diametrically opposed jets, composed of baryons and anti-baryons,
etc. in each jet. We may picture these two jets as two big fire balls moving away from each other. The
processes of their annihilations and decays eventually lead to a baryon-electron dominated fireball
and an antibaryon-positron dominated fireball. Then, from the vantage point of an observer in either
fireball, the evolution of that ‘observer’s fireball’ would be similar to the general features of a hot Big
Bang. Now the two gigantic fire balls cool down to become one baryon-electron dominated blackbody
(called ‘Yang blackbody’) and a antibaryon-positron dominated blackbody (called ‘Yin blackbody’)
with a temperature of roughly 3K, which are separated by an extremely large distance DYY . As a
result, lights emitted from anti-supernovae and anti-galaxies are too faint to be detected. Only the
microwaves emitted from the Yin blackbody as a whole may be detected by our apparatus.

To search the missing half of the universe suggested by the Big Jets model, let us approximate,
for simplicity, blackbodies Yin and Yang as two gigantic spheres of radius RY . Microwaves emitted
from the antimatter Yin blackbody toward our Yang blackbody are completely absorbed, causing the
Yang hemisphere facing Yin to be slightly warmer than the opposite hemisphere and giving the Yang
blackbody temperature a ‘pseudo-dipole distribution’ roughly. Suppose the Yang blackbody receiving
microwaves from the Yin blackbody so that its hemisphere facing Yin is warmer by ∆T , depending
on angle. One may try to estimate ∆T by using the Stefan-Boltzmann law and the condition of
equilibrium. But it will involve some unknown parameters. Thus, we just use ∆T as a parameter to
be determined by experiments. Suppose DYY >> DY , the Big Jets model implies that, approximately,
the observed temperature Tob in our Yang blackbody has a simple angle dependence,

Tob ≈ TCMB + Y(θ)∆T, (20)

Y(θ) = cosθ, f or the sur f ace o f the hemisphere toward Yin blackbody,

Y(θ) = 0, f or the sur f ace o f the hemisphere away f rom Yin blackbody,

where θ = 0 corresponds to the direction from the center of Yang blackbody to that of Yin blackbody.
The reason for Y(θ) = 0 in (20) is that the (parallel) microwaves from the Yin blackbody are totally

absorbed by the Yang blackbody, so that the temperature on the Yang hemisphere away from the Yin
blackbody remains uniform, Tob = TCMB, independent of angles.

In the presence of the Yin blackbody, the spectral radiance W′B of the blackbody radiation mea-
sured in the inertial frame F′ involves the Lorentz invariant temperature T and the invariant blackbody
distribution B′(k′λU

′λ, Tob). The non-invariant spectral radiance W ′B(k′λU
′λ, Tob) can be approximated

by the Taylor series expansion in the inertial frame F′. We have

W′B(k′λU
′λ, Tob) =

1
4π3 (k′0)3B′(k′λU

′λ, Tob)

≈ W ′B(k′λU
′λ, TCMB) +W ′BJ , (21)

where the second term W ′BJ in (21) determines the CMB dipole spectrum due to the blackbody Yin in
the Big Jets model. We obtain the pseudo-dipole spectrum due to the antimatter blackbody,

W′BJ ≈ ∆Tcosθ

∂W′B(k′λU

′λ, Tob)
∂Tob


Tob=TCMB

≈ ∆Tcosθ
 ω′4

4π3kBT 2
CMB

(exp(ω′/kBTCMB)
[exp(ω′/kBTCMB) − 1]2

 , (22)

where we have taken the non-relativistic limit of the 4-velocity U′λ, i.e., U′λ = (1, 0, 0, 0), and
k′σU′σ = k′0 = ω

′.
For the sake of discussion, suppose that anti-matter blackbody happened to be in the direction

of the constellation Leo, then the prediction (22) by the Big-Jets model turns out to be the same
shape as the frequency spectrum of the conventional theory[3, 19] and, hence, both are consistent
with the experiment of Fixsen et al.[19] On the other hand, when one measures the spectral radiance
W′B(k′λU

′λ, T )) in (21) in the direction away from Leo, the second term W′BJ in (21) does not contribute
because Y(θ∗) = 0 in (21) due to the complete absorption of the microwaves by our blackbody Yang.
Thus, in the direction away from the antimatter blackbody Yin, (20) and (21) lead to the usual CMB
spectral radiance,

W ′B(k′λU
′λ, T ) = W′B(k′λU

′λ, TCMB), (23)
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which is independent of the angle θ. The result (23) hold for the surface of the hemisphere of the Yang
blackbody away from the Yin blackbody and suggests a new method to search for the missing half of
the antimatter universe, as we shall discuss below.

In contrast to (22) and (23), the conventional theory with angle-dependent temperature (5) leads
to the spectrum

B′ν(T
′) ≈ B′ν(TCMB ) + VTCMB cosθ′

(
∂B′ν(T

′)
∂T ′

)

T ′=TCMB

, (24)

T ′ ≈ TCMB [1 + Vcosθ′],

where θ′ is the angle between the direction of the motion of the solar system and the line of sight. The
velocity V ≈ 370km/s (in MKS units) is interpreted as the motion of the solar system (F′ frame) in the
CMB. The spectrum (or the Planck function) Bν(T ) takes the simplest form ω3/[exp(ω/(kBT )) − 1],
ω = 2πν in the preferred frame F[20, 21].

6 Discussions

The conclusion based on making the blackbody distribution laws (1) and (4) explicitly invariant
does not imply that the conventional theory with (24) and the angle-dependent temperature (5) is
wrong because they use different definitions (or ‘interpretations’) of the temperature. Nevertheless,
from the viewpoint of Lorentz-Poincaré invariance, the dipole anisotropy in CMB temperature in the
conventional theory with (24) is due to an unnatural interpretation of the invariant distribution law
B′(k′λU

′λ, T ) given by (4), in terms of the non-invariant variable ω′ and an ad hoc angle-dependent
temperature (5), i.e. 1/T ′(θ′) = (1 + Vcosθ′)/(T

√
1 − V2). This can be seen from the fact that the

Lorentz invariant law B′(k′λU
′λ, T ) in (4) turns out to be quantitatively identical to P′(ω′, T ′),

B′(k′λU
′λ, T ) = P′(ω′, T ′) = 1/[exp(ω′(1 + Vcosθ′)/(kBT

√
1 − V2 )) − 1]. (25)

Thus, the same set of satellite data can be viewed from two conceptually different viewpoints. We
believe that the Lorentz invariant view of the distribution law B′(k′λU

′λ, T ) in terms of the scalar func-
tion k′λU

′λ = kλUλ and the invariant temperature T = Tinv is more natural. The reasons are that the
blackbody distribution law B′(k′λU

′λ, T ) satisfies the principle of relativity and that the invariant tem-
perature (or KBT ) is consistent with those developed by Einstein et al for relativistic thermodynamics.
[8–13]. On the contrary, if one considers (24) and the angle-dependent temperature (5) in three iner-
tial frames explicitly, one sees that they are not consistent with the principle of relativity in that the
ad hoc temperature (5) itself does not have proper transformation properties within the 4-dimensional
symmetry framework.

Based on the general-frame covariant blackbody distributions (1), (4), (12)-(15), it is unnatural
and inconsistent with the principle of relativity to attribute the ‘dipole anisotropy of the CMB’ to
the motion of the solar system relative to the CMB. The general-frame covariant result (15) implies
that if the Lorentz invariant distribution law B(k′µU

′µ, T ) and the CMB temperature are isotropic in
one inertial frame F′, then they will both be isotropic in every inertial and rotational frames as well,
according to the principle of limiting Lorentz-Poincaré invariance.

For experimental tests and search for the missing half of the universe, the Big Jets model predicts
that the physical universe is made of two gigantic blackbodies with the following properties:

(i) Within our ‘matter blackbody’, there are no ‘antimatter stars’ or ‘anti-matter galaxies’ due to
annihilation processes in the early epoch of evolution. This has been supported by observations and
experiments in our ‘matter blackbody.’
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which is independent of the angle θ. The result (23) hold for the surface of the hemisphere of the Yang
blackbody away from the Yin blackbody and suggests a new method to search for the missing half of
the antimatter universe, as we shall discuss below.

In contrast to (22) and (23), the conventional theory with angle-dependent temperature (5) leads
to the spectrum

B′ν(T
′) ≈ B′ν(TCMB ) + VTCMB cosθ′

(
∂B′ν(T

′)
∂T ′

)

T ′=TCMB

, (24)

T ′ ≈ TCMB [1 + Vcosθ′],

where θ′ is the angle between the direction of the motion of the solar system and the line of sight. The
velocity V ≈ 370km/s (in MKS units) is interpreted as the motion of the solar system (F′ frame) in the
CMB. The spectrum (or the Planck function) Bν(T ) takes the simplest form ω3/[exp(ω/(kBT )) − 1],
ω = 2πν in the preferred frame F[20, 21].

6 Discussions

The conclusion based on making the blackbody distribution laws (1) and (4) explicitly invariant
does not imply that the conventional theory with (24) and the angle-dependent temperature (5) is
wrong because they use different definitions (or ‘interpretations’) of the temperature. Nevertheless,
from the viewpoint of Lorentz-Poincaré invariance, the dipole anisotropy in CMB temperature in the
conventional theory with (24) is due to an unnatural interpretation of the invariant distribution law
B′(k′λU

′λ, T ) given by (4), in terms of the non-invariant variable ω′ and an ad hoc angle-dependent
temperature (5), i.e. 1/T ′(θ′) = (1 + Vcosθ′)/(T

√
1 − V2). This can be seen from the fact that the

Lorentz invariant law B′(k′λU
′λ, T ) in (4) turns out to be quantitatively identical to P′(ω′, T ′),

B′(k′λU
′λ, T ) = P′(ω′, T ′) = 1/[exp(ω′(1 + Vcosθ′)/(kBT

√
1 − V2 )) − 1]. (25)

Thus, the same set of satellite data can be viewed from two conceptually different viewpoints. We
believe that the Lorentz invariant view of the distribution law B′(k′λU

′λ, T ) in terms of the scalar func-
tion k′λU

′λ = kλUλ and the invariant temperature T = Tinv is more natural. The reasons are that the
blackbody distribution law B′(k′λU

′λ, T ) satisfies the principle of relativity and that the invariant tem-
perature (or KBT ) is consistent with those developed by Einstein et al for relativistic thermodynamics.
[8–13]. On the contrary, if one considers (24) and the angle-dependent temperature (5) in three iner-
tial frames explicitly, one sees that they are not consistent with the principle of relativity in that the
ad hoc temperature (5) itself does not have proper transformation properties within the 4-dimensional
symmetry framework.

Based on the general-frame covariant blackbody distributions (1), (4), (12)-(15), it is unnatural
and inconsistent with the principle of relativity to attribute the ‘dipole anisotropy of the CMB’ to
the motion of the solar system relative to the CMB. The general-frame covariant result (15) implies
that if the Lorentz invariant distribution law B(k′µU

′µ, T ) and the CMB temperature are isotropic in
one inertial frame F′, then they will both be isotropic in every inertial and rotational frames as well,
according to the principle of limiting Lorentz-Poincaré invariance.

For experimental tests and search for the missing half of the universe, the Big Jets model predicts
that the physical universe is made of two gigantic blackbodies with the following properties:

(i) Within our ‘matter blackbody’, there are no ‘antimatter stars’ or ‘anti-matter galaxies’ due to
annihilation processes in the early epoch of evolution. This has been supported by observations and
experiments in our ‘matter blackbody.’

(ii) It is remarkable that the dipole spectrum (22) of the antimatter blackbody has the same shape
as that of the usual ‘hot dipole’ in the direction of the constellation Leo. Thus, it is interesting to
see whether evidence for the missing half of the universe may be hidden in the data of the hot dipole
anisotropy. Their spectra differ only in the ‘cold dipole’, as shown in (23). Therefore, the Big Jets
model suggests that, in general, one should examine whether there is a small asymmetry of the spec-
trum in two opposite directions in the sky, towards and away from the constellation Leo. Such a small
asymmetry could be tested by, say, the experiment of Fixsen et al[19], which measured the specific
spectrum of the dipole for approximately 60 % of the sky (including the ‘hot pole’, cosθ > 0).3
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