
New J. Phys. 27 (2025) 043006 https://doi.org/10.1088/1367-2630/adc6ac

OPEN ACCESS

RECEIVED

14 December 2024

REVISED

27 February 2025

ACCEPTED FOR PUBLICATION

28 March 2025

PUBLISHED

7 April 2025

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Non-Gaussian quantum steering produced by
quasi-phase-matching third-harmonic generation
S QMa, D Y Zhang, Y Zhao, Y B Yu∗

, G R Jin and A X Chen
Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech
University, Hangzhou 310018, People’s Republic of China
∗ Author to whom any correspondence should be addressed.

E-mail: ybyu@zstu.edu.cn

Keywords: non-Gaussian, quantum steering, quasi-phase-matching, third-harmonic generation

Abstract
With the rapid advancements in fields such as quantum entanglement distillation and quantum
metrology, the limitations of Gaussian states in certain applications within quantum computing
and information processing have come to the forefront. This has necessitated the development of
methods to prepare non-Gaussian states, which exhibit negative Wigner values and are
indispensable for enhancing the capabilities of quantum systems in these tasks. Wigner negativity,
a renowned indicator of nonclassicality, is integral to quantum computing and the simulation of
continuous-variable systems. It is also employed to discern non-Gaussian characteristics in optical
fields. We demonstrate Gaussian Einstein–Podolsky–Rosen (EPR) steering between second and
third harmonic generations prior to performing non-Gaussian operations. Inducing non-Gaussian
attributes in the second harmonic is achieved by coupling the third harmonic with a vacuum state
and subtracting photons via a beamsplitter. The Wigner stochastic trajectory approach is utilized to
investigate the non-Gaussian properties of both the second and third harmonics. By varying the
coupling parameter lambda λ and the ratio of nonlinear coupling constants κ2/κ1, symmetric and
asymmetric non-Gaussian EPR steering can be observed. This proposed scheme for non-Gaussian
EPR steering holds promise for applications in quantum computing and quantum information
processing.

1. Introduction

In recent years, quantum steering as a phenomenon of quantum correlation has attracted widespread
attention. Its origin can be traced back to the 1935 paradox proposed by Einstein, Podolsky, and Rosen (EPR
paradox) [1]. Subsequently, Schrödinger further investigated this paradox, introducing the concept of
quantum entanglement and proposing another nonclassical correlated state quantum steering [2, 3]. The
early works of EPR and Schrödinger inspired subsequent research, especially after the proposal of Bell
inequality [4], leading to quantum entanglement and steering becoming focal points of study. If the state of a
composite quantum system can be approximated by a convex combination of product states, then it is called
classical correlation, otherwise EPR correlation. Any classical correlated state can be modeled using implicit
variable theory, thus satisfying all generalized Bell inequalities. Werner [5] demonstrated through an explicit
example that the converse of this statement is false. Reid [6] proposed criteria for detecting quantum
steering. Wiseman et al [7] provided a rigorous mathematical definition of quantum steering, identifying it
as a form of quantum correlation that lies between entanglement and Bell nonlocality. Unlike entanglement
and Bell nonlocality, quantum steering exhibits asymmetry: it allows one party (Alice) to influence the
quantum state of another party (Bob), but not vice versa. This characteristic has been theoretically [8–10]
and experimentally [11–13] verified. Recently, with the introduction of the concept of non-classical steering
in two-mode Gaussian states [14], Frigerio et al provided a detailed explanation of the definition of quantum
steering [15]. They also offered a comprehensive formulation of Gaussian steering and the theory of
nonclassicality steering in two-mode Gaussian states. In their study of two-mode squeezed thermal states ,
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they demonstrated the consistency between EPR steering and nonclassicality steering. Quantum steering, like
entanglement and Bell nonlocality, has a wide range of applications in various fields, such as quantum secret
sharing [16–20] and quantum key distribution [21]. He et al have demonstrated that bidirectional EPR
steering is an important resource for achieving transmission fidelity beyond the unclonable threshold for
coherent state safe stealth transmission [22]. Due to its unique asymmetry, EPR steering enables certain
quantum information tasks that other forms of quantum correlation cannot, such as one-way quantum
computing [23].

In the realm of continuous variables, quantum states can be classified into Gaussian and non-Gaussian
states, which can be distinguished by the form of their Wigner functions. Gaussian states, due to their
theoretical simplicity and ease of experimental preparation, have been widely applied in continuous variable
quantum information processing schemes [24–26]. However, as quantum information research rapidly
advances in areas such as quantum entanglement distillation [27, 28] and quantum metrology [29], the
limitations of Gaussian states in certain tasks within quantum computing and quantum information
processing have become apparent. Consequently, researchers have shifted their focus from Gaussian to
non-Gaussian states. For instance, in quantum computing, non-Gaussian states with negative Wigner values
are valuable for quantum error correction [30, 31]. Similarly, in quantum measurement, non-Gaussian states
with negative Wigner values can enhance measurement precision [32, 33]. Xiang et al studied the EPR
steering of continuous variable binary states through non-Gaussian pseudospin measurements [34]. They
first derived the density matrix elements of dual-mode compressed thermal Gaussian states in the Fock basis
to study the steering of these states. Through research, it has been found that non-Gaussian pseudospin
measurements are always more effective in revealing their differentiability than Gaussian spin measurements.
This result provides useful insights into the role of non-Gaussian measurements in describing the quantum
correlations between Gaussian and non-Gaussian states in continuous variable quantum systems. Therefore,
the preparation of non-Gaussian states with negative Wigner values is crucial.

There are typically two methods to generate non-Gaussian states with Wigner negativity: through strong
higher-order interaction processes [35, 36] or by performing photon addition and subtraction operations on
Gaussian modes [37–40]. Both methods require local preparation. In recent years, various non-Gaussian
states have been experimentally prepared remotely, including single-photon states [41], squeezed cat states
[42], and superpositions of coherent states [43]. However, these methods rely on utilizing existing
non-Gaussian states or hybrid entangled states for remote non-Gaussian state preparation. In 2020,
Walschaers et al [44] proposed a method to remotely generate non-Gaussian states with Wigner negativity by
performing photon subtraction on the two-mode squeezed state. They concluded that Gaussian quantum
steering from Bob to Alice is a necessary condition for the appearance of a Wigner-negative non-Gaussian
state in the Bob mode. In 2022, Liu et al [45] demonstrated that quantum steering through local
non-Gaussian operations and shared Gaussian entangled states can remotely prepare optical non-Gaussian
states with negative Wigner functions at distant nodes. By performing photon subtraction on one mode, they
generated Wigner negativity in the remote target mode. Their results showed that Wigner negativity is highly
sensitive to losses in the target mode but robust to losses in the mode where photon subtraction is
performed. This experiment confirmed the connection between remotely generated Wigner negativity and
quantum manipulation. As an application, they suggested that the produced non-Gaussian states have
significant metrological capabilities in quantum phase estimation. In the same year, Xiang et al [46] proved
that for a two-mode squeezed state distributed between Alice and Bob, performing photon subtraction on
the Alice mode is a necessary and sufficient condition for quantum steering from Alice to Bob to generate a
Wigner-negative non-Gaussian state in the Bob mode, without requiring additional local Gaussian
operations on the Alice mode before photon subtraction.

Although the preparation of non-Gaussian states has been extensively studied, reports on the
entanglement and steering of non-Gaussian states remain relatively scarce. In 2013, Olsen and Corney [47]
characterized the non-Gaussian properties of their output by calculating third-order cumulants for
quadrature variables and using the Duan-Simon and Reid Einstein–Podolsky–Rosen criteria to predict
potential entanglement levels. In 2017, Olsen proposed and analyzed pumped Bose–Hubbard dimers as a
non-Gaussian statistical source for continuous variable EPR steering [48]. Using truncated Wigner
representation, he calculated the third-order and fourth-order cumulants, discovered clear non-Gaussian
signals, and calculated the product of inferred orthogonal variances. The results showed the existence of EPR
paradox states. In 2020, a major breakthrough was achieved with the direct observation of strong
non-Gaussian properties in three-photon spontaneous parametric down-conversion (SPDC) within a
flux-pumped superconducting parametric cavity [49]. Recent studies have demonstrated that stable
tripartite quantum steering can only be achieved in the situation where injected signals are present during
the three-photon down-conversion process [50], while three-photon SPDC process may generate
nonGaussian quantum steering. Other recent study introduced higher-order quadrature operators and
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constructed linear combinations of these operators to derive a genuine non-Gaussian entanglement criterion
for complete inseparability in a threephoton SPDC [51]. They also studied the non- Gaussian time-energy
entanglement generated by three photons in spontaneous six wave mixing both theoretically and
experimentally [52, 53], making a significant contribution to the study of non-Gaussian entanglement.
Currently, quantum entanglement and steering between Gaussian light fields generated by nonlinear
processes have been extensively studied [54–58]. Gaussian quantum entangled and steered states can be
prepared in optical superlattices by cascaded nonlinear processes [59–64]. With the development of phase
matching technology, quasi-phase-matching (QPM) technology has been used in various frequency
conversion processes. To achieve two cascaded nonlinear processes in a single optical superlattice, multiple
QPM conditions can be achieved by designing the optical superlattice structure reasonably (such as multi
period or quasi period structure), thus supporting two cascaded nonlinear processes. The experiment of
generating third harmonic using two cascaded nonlinear processes has been reported. For example, Zhu et al
[65] used QPM technology in 1997 to achieve QPM third harmonic generation in a single quasi-periodic
optical superlattice (QOSL), and they proved that harmonic generation can be efficiently achieved by using
the maximum nonlinear optical coefficient throughout the entire transparent range of the material.
However, is it possible to obtain non-Gaussian quantum states by combining non-Gaussian operations with
cascaded nonlinear processes? This is a topic worth investigating.

In this study, we present a scheme for the generation of non-Gaussian quantum steering through the
nonlinear process of QPM third-harmonic generation. The second harmonic is generated via the initial
nonlinear process of double-frequency generation from the pump signal. Subsequently, the third harmonic is
produced through a cascaded nonlinear process involving the sum-frequency generation between the pump
and the second harmonic. By coupling the third harmonic with a vacuum field at a beam splitter (BS), a
photon is subtracted. We examine the non-Gaussian steering properties between the second and third
harmonics, utilizing the steering criterion, and demonstrate that the non-Gaussian characteristics can be
manipulated by modulating the nonlinear parameters.

2. Equations of motion

The setup diagram proposed by this scheme is shown in figure 1. We consider a pump with the frequency ω0

is incident onto a QOSL. Second harmonic with a frequency of ω1 is generated by a double-frequency
process of the pump. By using the QPM technique, the third harmonic with a frequency of ω2 is produced by
a cascaded sum-frequency process between second harmonic and pump in the same optical superlattice.
Ferraro et al investigated three-mode entanglement induced by two I-type, non-collinearly phase-matched,
interconnected bilinear interactions in an optical χ(2)medium [66]. They demonstrated the feasibility of the
scheme through experimental results. Bondani et al [67] also proposed a compact experimental
implementation of five field mode interactions in χ(2) nonlinear crystals. Our scheme differs from theirs in
that it is collinear, and the output beams require a prism to separate them. Compared to our approach, their
choice of non-collinear phase matching provides significant flexibility for experimental setups. In this study,
the first QPM condition is given by k1 = 2k0 +G1 and the second QPM condition for the cascaded
sum-frequency process is k2 = k0 + k1 +G2, where k0, k1 and k2 are the wave vectors of pump,
second-harmonic, and third-harmonic, respectively. Gi represents a reciprocal vector of the QOSL and
ensures the phase-matching condition. The energy conservation relation can be written as ω1 = 2ω0,
ω2 = ω0 +ω1 = 3ω0. The interaction Hamiltonian can be written as

HI = ih̄κ1

(
â20â1 − â†20 â1

)
+ ih̄κ2

(
â0â1â

†
2 − â†0 â

†
1 â2

)
+ ih̄λ

(
â2b̂

† − â†2 b̂
)
, (1)

where κi represents the nonlinear coupling coefficient which is closely related to the nonlinear susceptibility,
structure parameters of the optical superlattice, and pump power density, and can be taken as real for
simplicity. In practical experiments, due to the lower conversion rate of the second linear process in cascaded
nonlinear processes, in order to improve conversion efficiency, the nonlinear coupling coefficient κ2 of the
second nonlinear process is usually slightly larger than that of the first nonlinear coupling constant κ1. The
third term represents the non-Gaussian operation process of coupling the third-harmonic light field with the
vacuum field minus one photon. From figure 1, we can see that after the third harmonic is coupled with the
vacuum field by the BS, the reflection part records the subtracted photon number with the detector D1 that
can resolve the photon number, and the transmission part is the subtracted photon third harmonic and
detected by the detector D2. A photon detector is capable of measuring at least one photon, and its quality is
typically characterized by two basic parameters: quantum efficiency (QE) and loss. Generally, QE mainly
depends on the wavelength, while loss are inherent to the detector. High detector losses result in reduced
signal strength, reduced noise ratio (SNR), and limited dynamic range. It is non- unit QE that affects the
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Figure 1. Sketch for the proposed scheme.

photon detection probability. So, a good photon detector should have high QE and low loss. For example,
when the input state is the Fock state, ρ= |n⟩⟨n|, the probabilities of Single photon detector is given by
P= Tn−1n(1−T)2. The coupling coefficient λ of the BS is related to its transmittance T. To guarantee a high
probability of photon subtraction, the transmittance T is generally chosen such that 1−T≪ 1. âi and b̂ are
bosonic annihilation operators of the cavity mode with the frequency ωi ( i= 0, 1, 2 ) and the vacuum field
|0⟩ with the frequency ωb satisfying the Bose commutation relation [âi(b̂), â

†
i (b̂

†)] = 1. Here, all the four
optical fields are assumed to resonance in the system. The master equation of the system can be expressed as

dρ̂

dt
=− i

h̄
[HI, ρ̂] , (2)

where ρ is density matrix of the system. In [48], the authors use and compare approximately truncated
Wigner and precise positive-P representations for calculating and comparing predictions of strength,
second-order quantum correlations, and fourth-order cumulants. The pump and damping Bose–Hubbard
dimer are also analyzed as a source of the non-Gaussian statistical continuous variables EPR steering. Here,
we primarily use the Wigner function representation to study the non-Gaussian steering properties between
the second- and third-harmonic optical fields. By mapping the master equation equation (2) to the Wigner
function representation, the Fokker–Planck equation can be expressed as

dW(α,α∗,β,β∗)

dt
=

{
(−2κ1α

∗
0α1−κ2α

∗
1α2)

∂

∂α0
+(−2κ1α0α

∗
1−κ2α1α

∗
2 )

∂

∂α∗
0

+
(
κ1α

2
0 −κ2α

∗
0α2

) ∂

∂α1
+
(
κ1α

∗
0
2 −κ2α0α

∗
2

) ∂

∂α∗
1

+(κ2α0α1 +κ3α3)
∂

∂α2
+(κ2α

∗
0α

∗
1 +λβ∗)

∂

∂α∗
2

+(−λα2)
∂

∂β
+(−λβ∗)

∂

∂β∗

}
W(α,α∗,β,β∗) , (3)

where αi(β) and α∗
i (β

∗) are independent variables âi(b̂) and â†i (b̂
†) correspond to the operator. Our scheme

is different from the one in [48], since there are no second-order or higher derivatives involved and
truncation is not necessary here. The coupled differential equations of motion can be obtained from
equation (3) as

dα0

dt
=−2κ1α

∗
0α1 −κ2α

∗
1α2,

dα1

dt
= κ1α

2
0 −κ2α

∗
0α2,

dα2

dt
= κ2α0α1 +λβ,

dβ

dt
=−βα2. (4)
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The key difference from the positive-P representation equation is that, in addition to multiplicative noise
terms, the initial conditions for each stochastic trajectory must be drawn from the appropriate Wigner
distribution of the desired quantum state. The relationship between the variables αi(β) and the operators

âi((̂b)) is as follows: when we take the average of the product of Wigner variables over numerous stochastic
trajectories, the outcome corresponds to the symmetrically ordered expectation values of the corresponding
operators. In other words, |αi|2 = 1

2 ⟨â
†
i âi + âiâ

†
i ⟩. The steady state solution can be obtained from the formula

equation (4) and setting dαi(β)
dt = 0. If we discard the third term in equation (1), then the system is a simple

Gaussian system whose differential equation can be written as

dα0

dt
=−2κ1α

∗
0α1 −κ2α

∗
1α2,

dα1

dt
= κ1α

2
0 −κ2α

∗
0α2,

dα2

dt
= κ2α0α1. (5)

3. Gaussian quantum steering

EPR steering has recently been demonstrated as a crucial resource for the remote generation of Wigner
negativity on the steering mode by performing single-photon subtraction on the steered mode [44–46]. For
our purposes, based on the Gaussian EPR steering criterion proposed by Cavalcanti et al [68], we can obtain
the Gaussian EPR steering between the third harmonic and the second harmonic. The Gaussian EPR steering
criterion formula is [68]

Si|j =∆
(
X̂i − gX̂j

)
∆
(
Ŷi + gŶj

)
⩾ 1,

Sj|i =∆
(
X̂j − gX̂1

)
∆
(
Ŷj + gŶi

)
⩾ 1, (6)

where∆(A) =
√
⟨A2⟩− ⟨A⟩2. The quadratures are defined as X̂i = (âi + â†i )/2 and Ŷi = (âi − â†i )/2i. If the

inequality Si|j(Sj|i) is violated then mode j(i) can steer mode i(j).
Using equations (5) and (6), figure 2 plots the relative steering varies S2|1 and S1|2 of the second harmonic

and third harmonic versus the dimensionless propagation length ξ with κ1 = 0.01 for different coupling
constant of κ2: κ2 = 0.005,0.01,0.015, and 0.02, respectively. One can see from figure 2 that when
κ2 = 0.005, S2|1 < 1 in the whole dimensionless propagation length ξ range, indicating that second harmonic
can steer third harmonic. However, it is obvious that with the increase of the coupling constant κ2, the ability
of mode â1 steering mode â2 is weaker. Because the conversion efficiency of the cascaded sumfrequency
process increases with the increase of κ2 and more second harmonic are consumed to generate third
harmonic. When κ2 is fixed, we can see that S2|1 increases and then decreases as ξ increases, and then
increases again. Because the dimensionless length ξ, which is related to the crystal structure, can influence
the conversion efficiency of nonlinear processes. With an increase in the dimensionless length ξ, conversion
efficiency rises, generating more second and third harmonics. However, this also leads to a gradual decrease
in quantum properties and weakening of quantum steering, ultimately resulting in an increase in the S2|1
value. As the dimensionless length ξ continues to increase, the nonlinear process may experience backflow,
leading to a reduction in the photon counts of the second and third harmonics. This, in turn, enhances
quantum properties and strengthens quantum steering, which translates to a decrease in the S2|1 value. When
the dimensionless length ξ reaches a threshold, the pump beam may be completely consumed, causing the
photon counts of the second and third harmonics to saturate. Consequently, quantum properties vanish, and
quantum steering disappears as well. It can also be seen from figure 2(b) that with the increase of coupling
constant κ2, the steering ability of mode â2 steering mode â1 is weaker, and EPR steering exists in the whole
parameter range. The nonlinear coupling coefficient κi is related to the nonlinear susceptibility and the
structure parameters of the optical superlattice. Thus, one can adjust the nonlinear coupling coefficient κi by
adjusting the structure parameters of the optical superlattice in order to obtain better EPR steering optical
fields.

4. Result analysis of non-Gaussian quantum steering

In the previous section, we have shown that there is Gaussian EPR steering between the third harmonic and
the second harmonic before the subtraction operation. In the category of continuous variables, quantum
states can be divided into Gaussian states and non-Gaussian states, and the most obvious difference between
these two states is the representation of their corresponding Wigner functions. The Wigner function of the
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Figure 2. Evolution of (a) S2|1 and (b) S1|2 as a function of the dimensionless length ξ = κ1|α0|t with κ1 = 0.01 on Gaussian
EPR steering for different coupling constant κ2.

Figure 3.Wigner function of third harmonic â2. Coupling constant κ2: (a) 0.005, (b) 0.01, (c) 0.015, and (d) 0.02, respectively.

non-Gaussian state has negative region, while the Gaussian state does not. The corresponding Wigner
function is defined as [70]

W(α,α∗) =
1

π2

ˆ [
eη

∗α−ηα∗
χ(η)

]
d2η, (7)

with the characteristic function χ(η) = Tr[ρeη
∗α−ηα∗

].
Figure 3 plots the Wigner function of the third harmonic â2 for differnet couping constant κ2 with ξ= 1,

λ= 0.004, and κ1 = 0.01. It can be see from figure 3 that the non-Gaussian property of the third harmonic
gradually appears and becomes stronger with the increase of the coupling constant κ2. When the κ2 of the
cascaded nonlinear coefficient is relatively small, the conversion efficiency of the third harmonic is relatively
low [68]. When κ2/κ1 is greater than 1, the conversion effi- ciency of the third harmonic is relatively high
[68]. At this time, after non-Gaussian operation, the non-Gaussian characteristics of the third harmonic are
revealed. Figure 4 plots the Wigner function of the second-harmonic â1 for different coupling constant κ2

with ξ= 1, λ= 0.01, and κ1 = 0.01. The initial values of the optical fields are chosen with the same values as
in figure 2. One can see that Wigner function of the second-harmonic has negative region, which shows that
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Figure 4.Wigner function of second harmonic â1. Coupling constant κ2: (a) 0.005, (b) 0.01, (c) 0.015, and (d) 0.02, respectively.

the third harmonic can induce the second harmonic to produce non-Gaussian property after photon
reduction operation of third harmonic, and as we can see from figure 4 that the non-Gaussian property of
the second-harmonic becomes weaker as the increasing of the coupling constant κ2. Combined with figure 2,
it is evident that the stronger the Gaussian steering ability of the third harmonic to the second harmonic, the
stronger the ability to induce the second harmonic to produce non-Gaussian properties after the third
harmonic undergo photon reduction operation. Moreover, in order to study the relation between Wigner
negativity of optical field and parameter variation, the non-Gaussian properties of the corresponding optical
field modes can be quantified by Wigner negativities [70, 71]

δ =

ˆ
[|W(α,α∗) | −W(α,α∗)]d2α > 0, (8)

whereW(α,α∗) is the Wigner function of optical field â. If δ > 0, optical mode â has non-Gaussian property.
And the larger the value of δ, the stronger the non-Gaussian property of the optical field â. In 1989, Reid [6]
gave the criterion for EPR quantum steering, which manifests itself as follows

Vinf

(
X̂ij

)
= V

(
X̂i

)
−

[
V
(
X̂i, X̂j

)]2
V
(
X̂j

) ,

Vinf

(
Ŷij

)
= V

(
Ŷi

)
−

[
V
(
Ŷi, Ŷj

)]2
V
(
Ŷj

) , (9)

where V(X̂, Ŷ) = ⟨X̂Ŷ⟩− ⟨X̂⟩⟨Ŷ⟩. EPRij = Vinf(X̂ij)Vinf(Ŷij) to express the product of these two inferred
variances. If EPRij is less than 1, it means that optical field âj can steer optical fisld âi. This condition is
optimal for bipartite Gaussian systems, and at least sufficient for non-Gaussian systems. Therefore, we only
need to prove that the optical fields âi have non-Gaussian properties, and we believe that the detected
quantum steering is non-Gaussian quantum steering. Figure 5 plots the Wigner negativity δ and EPRij of the
second harmonic â1 and the third harmonic â2 versus the λ and κ2/κ1, respectively. One can see from
figure 5(a) that the Wigner negativity δ of the second harmonic is greater than 0 throughout the parameter
range and it gradually increases with the increase of the coupling constant λ, which indicates that the
non-Gaussian property of the second harmonic gradually increases. Because the larger λ, the stronger
interaction between the third harmonic and the vacuum field, the more photons are subtracted, resulting in
the stronger the ability to induce the second harmonic to produce non-Gaussian properties. However, the
third harmonic is just the opposite of the second harmonic. The Wigener negativity of the third harmonic

7



New J. Phys. 27 (2025) 043006 S Q Ma et al

Figure 5.Wigner negativity versus (a) the coupling constant λ with κ1 = 0.01 and κ2 = 1.5κ1 and (b) the ratio κ2/κ1 with
κ1 = 0.01 and λ= 0.004, respectively. EPRij versus (c) the coupling constant λ and (d) the ratio κ2/κ1, respectively.

decreases gradually with the increase of coupling strength λ. This is because as λ increases, the third
harmonic becomes weaker, and the corresponding non-Gaussian characteristics also weaken. Interestingly,
we can see that when λ< 0.005, the Wigner negative value of third harmonic â2 is greater than the second
harmonic â1, because with the increase of λ, the number of photons subtracted from third harmonic â2 is
large, and the ability of inducing second harmonic â1 to produce non-Gaussian is strong. The Wigner
negative values of second harmonic â1 and third harmonic â2 are equal when about λ= 0.005, but the
Wigner negative values are less than second harmonic â1 as λ> 0.005. We can appropriately choose
λ= 0.005 as the optimal parameter for generating non-Gaussiality. Since a is related to the transmittance of
the BS and the detection probability of the detector, we can control it by controlling the structure of the BS to
improve the probability of photon reduction.

Figure 5(b) shows that the non-Gaussiality of the second harmonic gradually decreases with the increase
of the coupling constant κ2/κ1 and disappears when κ2/κ1 > 2. Because larger nonlinear coefficient κ2 in
cascaded nonlinear process increase the conversion efficiency of third harmonic and weaken second
harmonic, thereby weakening the non-Gaussian characteristics of second harmonic. This is consistent with
the result in figure 4. The Wigner negativity of the third harmonic does not change significantly until around
κ2/κ1 = 1.5, which is consistent with the results in figure 3. But from figure 5(b), it can be seen that the
Wigner negativity of the third harmonic increases to the extreme value and then decreases, indicating that κ2

cannot be too large. This is because as the conversion efficiency of the third harmonic increases, the third
harmonic becomes stronger, and the non-Gaussian operation effect of photon reduction decreases, so the
non-Gaussian characteristics of the third harmonic also weaken. In addition, within the range of κ2/κ1

greater than 1.5 and less than 2, both optical fields exhibit non-Gaussian characteristics.
Figures 5(c) and (d) depict the EPR steering between the third harmonic and the second harmonic after

photon reduction operation. In connection with figure 5(a), we can see from the figure 5(c) that the EPR12

and EPR21 are all less than 1 which indicates that steering between the third harmonic and the second
harmonic can be generated. It also shows that when both third and second harmonics are non-Gaussian,
better symmetric non-Gaussian steering can be generated in this case. From figure 5(d), it can be observed
that EPR21 is less than 1 across the entire parameter range, indicating that optical field â1 can non-Gaussian
steer optical field â2 in the whole range. When about 0.5< κ2/κ1 < 2.2, EPR12 is less than 1 which shows
that optical field â2 can non-Gaussian steer optical field â1. When about κ2/κ1 > 2.2, EPR12 is more than 1
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which shows that optical field â2 cannot steer optical field â1 in this case. At this point, there exists an
asymmetric non-Gaussian steering between second harmonic and third harmonic.

5. Conclusions

In this paper, we first investigate the generation of non-Gaussian quantum steering between the third
harmonic and the second harmonic through cascaded sum-frequency processes. We demonstrate that the
third harmonic can steer the state of the second harmonic and, through a non-Gaussian operation such as
photon subtraction, can induce non-Gaussian properties in the second harmonic. Across a broad range of
coupling constants λ, both the second and third harmonics exhibit strong non-Gaussian features, leading to
symmetric non-Gaussian EPR steering between them. As the coupling parameter κ2 increases, we observe an
enhancement in the conversion efficiency of the third harmonic. Concurrently, the non-Gaussian
characteristics of the second harmonic progressively diminish, while those of the third harmonic become
more pronounced. This transition results in a shift from symmetric to asymmetric non-Gaussian EPR
steering between the two optical fields. The production of non-Gaussian states via remote photon subtraction
has been the subject of extensive theoretical and experimental research, as seen in [44–46]. Recently, it has
been proven that non Gaussian entangled states are indispensable resources for CV entanglement distillation
[72, 73], quantum enhanced sensing [34, 74], and quantum computers. Specifically, it has been
demonstrated that the existence of sampling complexity in boson quantum computing is a necessary
requirement for non Gaussian entanglement [75]. Our proposed scheme provides a promising route for
experimental realization and has great potential for the development of the above application fields. In
addition, by using quasi-phase-matching technology [65], multiple cascaded nonlinear processes can be
achieved in an optical superlattice, thereby obtaining multiple output light fields of different frequencies.
Our method provides a flexible approach for preparing multi-mode non-Gaussian EPR steering states.
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