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Abstract We propose a method of projecting the quantum
states from a state space of a given geometry into another
state space generated by a different geometry, taking care
of the correct normalization which is crucial in interpreting
the quantum theory. Thanks to this method we can define
on any spatially flat FLRW spacetime states in which gen-
uine Minkowskian parameters are measured. We use these
Minkowskian states for separating the frequencies in the rest
frames of the massive scalar particles defining thus the scalar
rest frame vacuum. We show that this vacuum is stable on
the de Sitter expanding universe where the energy is con-
served. In contrast, on a spatially flat FLRW spacetime with
a Milne-type scale factor this vacuum is found to be dynamic,
corresponding to a time-dependent rest energy interpreted as
an effective mass. This dynamic vacuum gives rise to cos-
mological particle creation which is significant only in the
early Milne-type universe considered here. Some interesting
features of this new effect are pointed out in a brief analysis.

1 Introduction

One of the most studied semi-classical approaches is cos-
mological particle creation (c.p.c.), in which one considers
only the interaction of free particles, seen as quantum pertur-
bations, with the gravity of a time-dependent curved back-
ground whose evolution remains unaffected by this interac-
tion. This approach consists in separating the particle and
antiparticle quantum modes at different epochs of the evolv-
ing spacetime, determining thus different bases of the state
space, each one corresponding to a specific vacuum. These
may be related among themselves through Bogolyubov trans-
formations whose transition coefficients may point out the
c.p.c. generating particle or antiparticle thermal baths [1–
15]. Special attention was paid to the scalar field on the de

a e-mail: icotaescu@yahoo.com (corresponding author)

Sitter spacetime [16–22] involved in many studies of c.p.c.
[23–42].

The main task here is just the criterion of separating the
frequencies defining the particle and antiparticle modes and,
implicitly, the current vacuum at a given time. The princi-
pal method used so far is to focus mainly on the asymptotic
states whose behavior is similar to the usual Minkowskian
particle and antiparticle mode functions. In this manner one
may choose in and out states whose frequencies are sep-
arated as in the flat case defining thus the adiabatic vacua
as, for example, the Bunch–Davies one [24], used in many
applications.

Recently we proposed the rest frame vacuum (r.f.v.)
of the massive Dirac field on (1 + 3)-dimensional spa-
tially flat Friedmann–Lemaître–Robertson–Walker (FLRW)
spacetimes [43]. We started with the observation that in the
rest frame, where the particle momentum vanishes, the solu-
tions of the Dirac equation on any FLRW spacetime have
a Minkowskian behavior regardless of the time evolution of
the background. Thus we can separate the frequencies as in
special relativity obtaining a stable time-independent vac-
uum on any FLRW spacetime. This vacuum is different from
the Bunch–Davies one, which has largely been used since a
long time ago including in our previous papers [44,45]. Note
that the r.f.v. can be defined only for massive particles since
the massless ones do not have rest frames.

The next step might be the generalization of the r.f.v. to the
Klein–Gordon and Proca fields seen as perturbations on the
mentioned manifolds. Unfortunately, here we are faced with
a serious difficulty since, in contrast with the Dirac field, the
rest mode functions of these bosonic fields do not have the
desired Minkowskian forms we need for defining the r.f.v. in
a natural manner. Nevertheless, since our concept of particle
and antiparticle comes from the Minkowskian quantum field
theory, we are forced to impose the Minkowskian forms to
the rest mode functions even though this is possible only at
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a given time, assuming that the time-dependent rest energy
represents a dynamical effective mass.

Another challenge is to solve the ambiguity related to the
normalization of these Minkowskian states, which can be
done in two manners, either with respect to the scalar product
of the curved manifold or by using the Minkowskian scalar
product. This difficulty can be avoided since the state spaces
are separable Hilbert spaces which are isometric among
themselves such that we may look for an appropriate method
of mapping the state spaces produced in different geome-
tries into a unique one where we may calculate transition
coefficient between these states. In what follows we would
like to concentrate on these problems proposing a method of
defining well-normalized Minkowskian rest mode functions
on any spatially flat FLRW spacetime. These will help us
to define at any moment the bosonic time-dependent r.f.v.
associated to a time-dependent dynamical mass. When this
is time-independent we say that the r.f.v. is stable. For con-
crete calculations we restrict ourselves to the massive Klein–
Gordon field minimally coupled to the background gravity.

In our approach the r.f.v. of the scalar field are stable only
on the FLRW manifolds where the energy is conserved as
eigenvalue of a conserved energy operator given by a time-
like Killing vector field, as in the case of the de Sitter expand-
ing universe. In other FRLW manifolds we meet c.p.c. pro-
cesses that may be studied deriving the Bogolyubov coeffi-
cients between states whose vacua are defined at two arbitrary
moments, obtaining thus information about the time behav-
ior of the c.p.c. in any FLRW geometry. For illustrating how
our method works we give two examples, the stable r.f.v. on
the de Sitter expanding universe and, for the first time, we
present an example of time-dependent r.f.v. on a spatially flat
FLRW with a Milne-type scale factor where only the r.f.v.
of the Dirac field was studied [43]. On this last manifold
we study the c.p.c. at finite times obtaining probabilities and
rates which depend exclusively on the moments when the
particle is prepared and then measured. Note that our results
are different from other attempts of studying c.p.c. at finite
times as in a series of papers reviewed recently [38,39] or in
Ref. [40] where the vacuum depends, in addition, on kinetic
parameters (as for example the momentum components).

We start in the next section presenting our basic assump-
tions concerning the scalar quantum modes prepared or mea-
sured by a global apparatus on a curved manifold and show-
ing how the state space can be mapped into a Minkowskian
one. The next section is devoted to the spatially flat FLRW
spacetimes where we propose a concrete method of defining
Minkowskian rest states, correctly normalized at a given arbi-
trary time, regardless the time evolution of the background
geometry. By using such states we define the r.f.v. show-
ing that these vacua are stable only on the FLRW manifolds
where the energy is conserved. Section 4 is devoted to a
general method of setting the r.f.v. deriving the Bogolyubov

coefficients between two bases of mode functions whose
frequency separation in rest frames was performed at two
different moments. In the Section 5, the mentioned exam-
ples are studied, namely the stable r.f.v. on de Sitter expand-
ing universe and the time-dependent one on the spatially-
flat Milne-type universe. In the last part of this section we
present the c.p.c. produced by the vacuum instability dis-
cussing some physical consequences in a short analytical
and graphical analysis. In the last section we present our
concluding remarks.

2 Minkowskian scalar modes

Respecting ad litteram the principles of the quantum theory,
we assume that the quantum states on any local Minkowskian
manifold, (M, g), are prepared or measured by a global appa-
ratus represented by the algebra of the quantum observables,
i.e. the Hermitian operators defined globally as vector fields
on the whole manifold or on a portion with an independent
physical meaning, as in the case of the de Sitter expand-
ing universe. The operators proportional to the Killing vec-
tor fields are conserved, commuting with the operator of
the field equation. Our global apparatus prepares quantum
modes whose mode functions are common eigenfunctions
of a system of commuting conserved operators (s.c.c.o.)
{EKG, A, B, ...}, which includes the operator of the field
equation EKG . In addition, these mode functions are sup-
posed to be normalized with respect to a specific relativistic
scalar product on (M, g).

In general, the s.c.c.o. determining the quantum modes
are not complete such that the mode functions remain with
some integration constants which depend on the separation
of the positive and negative frequencies defining the vac-
uum. Another possible manner of setting these constants is
by defining the modes on (M, g) in which one measures
the parameters corresponding to another geometry (M̂, ĝ),
according to the method we present in what follows.

We start with the (1 + 3)-dimensional local Minkowskian
manifold (M, g) where we consider a local chart {x} of
coordinates xμ (labeled by natural indices α, ..., μ, ... =
0, 1, 2, 3) with x0 = t and arbitrary space coordinates. The
scalar field, Φ : M → C, of mass m, minimally coupled to
the gravity of (M, g), satisfies the Klein–Gordon equation
EKGΦ = m2Φ whose operator is defined as

EKG = − 1√
g

∂μ
√
g gμν∂ν , g = |detgμν | . (1)

The solution of this equation may be expanded in terms
of the mode functions fα ≡ fa,b,... which satisfy the
Klein–Gordon equation and solve the eigenvalue problems
A fa,b... = a fa,b,..., B fa,b... = b fa,b,..., ..., determining thus
some integration constants as eigenvalues with a precise
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physical meaning. When all the integration constants can be
fixed in this manner one says that the s.c.c.o. is complete. In
general, the eigenvalues α ≡ {a, b, ...} span spectra which
have continuous and discrete parts but for our study we may
consider only continuous spectra allowing us to write the
mode integral expansions in the form

Φ(x) =
∫

dα
[
fα(x)a(α) + f ∗

α (x)ac(α)†
]

, (2)

where the particle, a, a†, and antiparticle, ac, ac †, field oper-
ators must satisfy the canonical bosonic commutation rela-
tions [46].

The mode functions, f ∈ K , behave as tempered dis-
tributions or square integrable functions with respect to the
indefinite Hermitian form

〈 f, f ′〉M = i
∫

Σ

dσμ√
g f ∗ ↔

∂ μ f ′

= i
∫

R3
d3x g00√g f ∗ ↔

∂ t f ′ ∈ C , (3)

written with the notation f
↔
∂ f ′ = f ∂ f ′ − f ′∂ f . This

is the relativistic scalar product giving the ’squared norms’
〈 f, f 〉M of the square integrable functions f ∈ H ⊂ K
which may have any sign splitting the space K as

f ∈
⎧⎨
⎩
H+ ⊂ K+ if 〈 f, f 〉M > 0 ,

H0 ⊂ K0 if 〈 f, f 〉M = 0 ,

H− ⊂ K− if 〈 f, f 〉M < 0 .

(4)

From the physical point of view the mode functions of K±
have positive/negative frequencies, while those of K0 do
not have a physical meaning. For any f ∈ K+ we have
f ∗ ∈ K−, so that 〈 f ∗, f ∗〉M = −〈 f, f 〉M but if f ∗ = f
then f ∈ K0, since 〈 f, f 〉M = 0. In fact,H is a Krein space
[47] while K± are the spaces of tempered distributions of
the rigged Hilbert spaces (or Gel’fand triplets) [48,49] asso-
ciated to the Hilbert spaces H± equipped with the scalar
products ±〈 , 〉M .

A complete system of orthonormal mode functions,
{ fα}α∈I ⊂ K+, forms a (generalized) basis of positive
frequencies in K+ related to the negative frequencies one,
{ f ∗

α }α∈I ⊂ K−. In this manner one defines a frequency sepa-
ration associated to a specific vacuum state of the Fock space.
It is well known that two different bases define different vac-
uum states when these are related among themselves through
a non-trivial Bogolyubov transformation that mixes the pos-
itive and negative frequency modes. Otherwise the vacuum
state remains stable.

Furthermore, we consider another manifold (M̂, ĝ) whose
local chart {x̂} is defined on the same domain of the flat model
as the chart {x} of (M, g). This means that there exists a coor-
dinate transformation x̂ = χ(x) allowing us to relate the set
K discussed above to the set ˆK of the scalar mode functions
on (M̂, ĝ) equipped with the Hermitian form 〈 , 〉M̂ , defined

as in Eq. (3). We observe that the physical parts of the sets
ˆK and K are separable Hilbert spaces between which we

can define the isometry μ : H+ → Ĥ+ which satisfies

〈μ( f ), μ( f ′)〉M̂ = 〈 f, f ′〉M . (5)

Then for any normalized mode functions fα ∈ H+ and f̂β ∈
Ĥ+ which obey

〈 fα, fα〉M = 〈 f̂β, f̂β〉M̂ = 1 , (6)

we can construct the amplitude

〈α|β〉t = 〈μ( fα), f̂β〉M̂
∣∣∣
t
= 〈 fα, μ−1( f̂β)〉M

∣∣∣
t
, (7)

which, in general, depends on time. This gives the quantity
|〈α|β〉t |2, which can be interpreted as the probability of mea-
suring at the time t the parameters β in the state α prepared
on (M, g) or, reversely, as the probability of measuring the
parameters α in the state β prepared on (M̂, ĝ). For this rea-
son we say that μ( f ) ∈ ˆK is the projection of f ∈ K .

The isometry μ is complicated since this involves the coor-
dinate transformation x̂ = χ(x) but which can be eliminated
by choosing the same coordinates for the both manifolds
under consideration by taking χ = id → x̂ = x . Note that
this is possible, since we assumed that the local charts of
(M, g) and (M̂, ĝ) are included in the same domain of the
flat model. With this choice the isometry takes the simple
form

μ( f ) =
(
g00√g

ĝ00
√
ĝ

) 1
2

f , (8)

which can be used in applications.
An important particular case is when (M̂, ĝ) is just the

Minkowski spacetime, which is the flat model of (M, g).
Then we can set at any time χ = id and, in addition, we get
the opportunity of defining in (M, g) states in which one
measures exclusively Minkowskian parameters at a given
time t0. Thus for any normalized mode function f̂ ∈ ˆK
on the Minkowski spacetime we may define the correspond-
ing Mikowskian state on (M, g) whose normalized mode
function f ∈ K is defined such that the functions

μ( f ) =
(
g00√g

) 1
2
f (9)

and f̂ have a contact of order k at the time t0, satisfying the
system of k + 1 algebraic equations

μ( f )(t0) = f̂ (t0) ,

dμ( f )

dt
(t0) = d f̂

dt
(t0) ,

...

dkμ( f )

dtk
(t0) = dk f̂

dtk
(t0) , (10)
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able to give all the integration constants of f in terms of
the Minkowskian parameters of the function f̂ we chose.
Obviously, the number k+1 of equations we may use depends
on the number of the undetermined integration constants,
left by the incomplete s.c.c.o., or other parameters we need
to find as, for example, the rest energy. With this method
we can apply the definitions of Minkowskian particles or
antiparticles to any manifold (M, g) but only at a given time
since, in general, these states are evolving in time.

3 Rest frame vacua

Let us consider now the family of (1 + 3)-dimensional spa-
tially flat FLRW spacetimes for which we use the same
coordinates of the FLRW chart, {t, x}, i.e. the proper (or
cosmic) time t ∈ Dt and the Cartesian space coordinates
x = (x1, x2, x3) ∈ R

3. We denote by M the spacetime
whose line element depends on the scale factor a(t) which
is assumed to be a smooth function on Dt giving for the
conformal time

tc =
∫

dt

a(t)
∈ Dtc , (11)

of the conformal chart {tc, x}. The line elements of these
charts are

ds2 = dt2 − a(t)2dx · dx = a(tc)
2
(
dt2

c − dx · dx
)

, (12)

where we denoted a(tc) = a[t (tc)]. The Minkowski space-
time, denoted from now on simply as M̂ , is the particular
case when a(t) = 1 and tc = t .

In the chart {t, x} the massive scalar field Φ : M → C of
mass m satisfies the Klein–Gordon equation
(

∂2
t + 3ȧ(t)

a(t)
∂t − 1

a(t)2 Δ + m2
)

Φ(t, x) = 0 , (13)

which allows for a system of plane wave solutions, i.e. eigen-
functions of the momentum operators Pi = −i∂i corre-
sponding to the eigenvalues (p1, p2, p3), representing the
components of the conserved momentum p. These mode
functions can be written as

fp(t, x) = eix·p

[2πa(t)] 3
2

Fp(t) , (14)

in terms of the time modulation functions Fp : Dt → C

which depend on p = |p| satisfying the equation
[

d2

dt2 + Ωp(t)
2
]
Fp(t) = 0 , (15)

where

Ωp(t) =
[

p2

a(t)2 + m2 − 3

2

ä(t)

a(t)
− 3

4

ȧ(t)2

a(t)2

] 1
2

. (16)

This equation does not determine completely the form of the
functions Fp, there remaining integration constants which
have to be fixed by supplemental assumptions defining the
vacuum.

The fundamental solutions (14) form an orthonormal basis
with respect to the scalar product (3) that now reads

〈 f, f ′〉M = i
∫

R3
d3x a(t)3 ( f ∗ ↔

∂ t f ′)

= i
∫

R3
d3x a(tc)

2 ( f ∗ ↔
∂ tc f ′), (17)

allowing us to impose the normalization condition

δ3(p − p′) = 〈 fp, fp′ 〉M
= δ3(p − p′)i F ∗

p (t)
↔
∂ t Fp(t) , (18)

requiring the time modulation functions to satisfy
(
Fp,Fp

) ≡ i F ∗
p (t)

↔
∂ t Fp(t) = 1 . (19)

Then the Klein–Gordon field can be expanded as

Φ(x) =
∫

d3 p
[
fp(x)a(p) + f ∗

p (x)ac(p)†
]

, (20)

in terms of the particle a, a† and antiparticle ac, ac † field
operators which satisfy the canonical commutation relations[

a(p), a(p′)†
]

= δ3(p − p′) , (21)[
ac(p), ac(p′)†

]
= δ3(p − p′) . (22)

In the particular case of the Minkowski spacetime M̂ the
mode functions of positive frequencies of a scalar field of
mass m̂,

f̂p(t, x) = eix·p

[2π ] 3
2

F̂p(t) , F̂p(t) = 1√
2E

e−i Et , (23)

are eigenfunctions of the energy operator i∂t depending on
the conserved energy E = √

p2 + m̂2 and satisfying the
orthonormalization condition with respect to the scalar prod-
uct

〈 f̂ , f̂ ′〉M̂ = i
∫

R3
d3x f̂ ∗ ↔

∂ t f̂ ′ . (24)

On the other hand, we have shown that in any FLRW space-
time there exists an energy operator that in the FLRW chart,
{t, x}, has the form [50,51]

H = i∂t + ȧ(t)

a(t)
x · P . (25)

In general, this operator does not commute with the momen-
tum p but in the rest frames (where p = 0) this coincides with
the Minkowski one, H0 = i∂t , suggesting us to determine
the integration constants of the solutions (14) by separating
the frequencies just in rest frames by using the Minkowskian
rest states on M defined in the previous section. Thus we
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may set the r.f.v. of the Klein–Gordon field on the FLRW
manifolds under consideration.

Without introducing new notations we suppose that now
the mode functions (14) are the Minkowskian states in which
one measures in the rest frame, at the time t0, the parameters
of the mode functions (23) for p → 0 but with another
rest energy, m̂ �= m, which we call the dynamical mass.
Therefore, we may consider the system (10) with k = 2
giving the following equations:

lim
p→0

[
Fp(t) − F̂p(t)

]∣∣∣
t=t0

= 0 ,

lim
p→0

d

dt

[
Fp(t) − F̂p(t)

]∣∣∣∣
t=t0

= 0 ,

lim
p→0

d2

dt2

[
Fp(t) − F̂p(t)

]∣∣∣∣
t=t0

= 0 , (26)

which suffice for separating the frequencies in the rest frame
and finding the dynamical mass m̂(t0). Thus the first two
equations give the normalized integration constants corre-
sponding to the r.f.v., while the third one helps us to find the
associated dynamical mass in the rest frame.

All these quantities may depend on the time t0 when
we impose the Minkowskian form of the mode functions
in the rest frame. This means that, in general, the r.f.v. is
dynamic, being associated with a time-dependent dynami-
cal mass. Nevertheless, this vacuum becomes stable on the
FLRW manifolds where the energy operator is conserved,
i.e. the Minkowski and de Sitter spacetimes, since then the
energy operator in the rest frame commutes with P complet-
ing thus the s.c.c.o. but only in the rest frame.

4 Applications

For solving concrete examples we may start with a time mod-
ulation function of the general form

Fp(t) = c1φp(t) + c2φ
∗
p(t) , (27)

where φp is a particular solution satisfying

(
φp, φp

) = 1 →
(
φ∗
p, φ

∗
p

)
= −1 . (28)

The normalized solutions of positive frequency, fp ∈ K+,
have time modulation functions which satisfy

(
Fp,Fp

) = 1 → |c1|2 − |c2|2 = 1 . (29)

The problem is to derive these constants and the dynamical
mass from the system (26).

In the rest frame (where p = 0) we denote simply φ =
φp|p=0 such that the system (26) can be written as

c1φ(t0) + c2φ
∗(t0) = 1√

2m̂
e−i m̂t0 , (30)

c1φ̇(t0) + c2φ̇
∗(t0) = −i m̂

1√
2m̂

e−i m̂t0 , (31)

c1φ̈(t0) + c2φ̈
∗(t0) = −m̂2 1√

2m̂
e−i m̂t0 . (32)

The first two equations give the normalized integration con-
stants corresponding to the r.f.v.,

c1 → c1(t0) = e−iΩ(t0)t0
√

2Ω(t0)

(
Ω(t0)φ

∗(t0) − i φ̇∗(t0)
)

, (33)

c2 → c2(t0) = e−iΩ(t0)t0
√

2Ω(t0)

(−Ω(t0)φ(t0) + i φ̇(t0)
)

, (34)

while the third one gives us the associated dynamical mass
in the rest frame,

m̂ → m̂(t0) = lim
p→0

Ωp(t0) ≡ Ω(t0) , (35)

since φ̈ = −Ω2φ as in Eq. (15).
Thus we find that a particle prepared in r.f.v. at the time t0

has the mode function

fp,t0(t, x) = eix·p

[2πa(t)] 3
2

Fp(t0, t) , (36)

whose time modulation function

Fp(t0, t) = c1(t0)φp(t) + c2(t0)φ
∗
p(t) , (37)

depends on the integration constants (33) and (34) which
comply with the normalization condition

|c1(t0)|2 − |c2(t0)|2 =
{

1 if Ω(t0)2 > 0,

0 if Ω(t0)2 < 0.
(38)

The set { fp,t0 |p ∈ R
3} forms a basis in K+, while the set

{ f ∗
p,t0 |p ∈ R

3} is the corresponding basis of K− in the r.f.v.
prepared at t = t0.

As mentioned, the r.f.v. becomes stable only in the de Sitter
and Minkowski spacetimes where the energy operators are
conserved, satisfying [H0,Ω] = i∂tΩ = 0. On other FLRW
manifolds, the r.f.v. is dynamic, being associated with a time-
dependent dynamical mass m̂(t) = Ω(t) ∈ R. The time
domain Dt = D+

t ∪D−
t is split into the tardyonic part D+

t =
{t |Ω(t)2 > 0} and the tachyonic one, D−

t = {t |Ω(t)2 < 0}.
All the tachyonic states with Ω(t) = i |Ω(t)| are eliminated,
having null norms. Thus in r.f.v. the scalar field survives only
on D+

t .
When the r.f.v. is dynamic this gives rise to c.p.c., which

can be pointed out studying how the states prepared in the
r.f.v. at the time t0 ∈ D+

t are measured in the same vacuum
at the time t > t0. For this purpose we have to calculate the
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Bogolyubov transformation between the bases { fp(t0)} and
{ fp(t)} which gives the following coefficients:

α(p, t0; p′, t) = 〈
fp(t0), fp′(t)

〉 = δ3(p − p′)
× [

c∗
1(t0)c1(t) − c∗

2(t0)c2(t)
]

, (39)

β(p, t0; p′, t) =
〈
f ∗
p (t0), fp′(t)

〉
= δ3(p − p′)

× [c2(t0)c1(t) − c1(t0)c2(t)] , (40)

since the system of particular solutions {φp, φ
∗
p} is supposed

to be orthonormal. Then the density of the new particles or
antiparticles created between t0 and t is proportional to

n(t0, t) ∝ |c2(t0)c1(t) − c1(t0)c2(t)|2 . (41)

In addition, we observe that the rate of c.p.c. can also be
estimated as

R(t0, t) ∝ d n(t0, t)

dt
. (42)

Thus we obtain densities and rates independent on the kinetic
parameters as the momentum components.

This result is different from those obtained according
to the method of Hamiltonian diagonalization by using
Bogolyubov transformations [3,4,9–11,14]. This is because
in our case the Hamiltonian is diagonal only in the rest frame,
while in the mentioned approach the Hamiltonian is put in
diagonal form in any frame. It is remarkable that the integra-
tion constants of the corresponding mode functions have the
same form as in Eqs. (33) and (34) but with φp and �p instead
of φ and �. This means that the Hamiltonian diagonalization
may be performed only by the Minkowskian states as defined
above. Thus it is obvious that the difference between these
two approaches comes from the fact that the Hamiltonian
diagonalization considers exclusively Minkowskian states in
all the frames, for any momenta, while in the r.f.v. the only
Minkowskian states are those of the rest frames, where p = 0.

5 Examples

Now we focus on two typical examples, namely the stable
r.f.v. of the de Sitter expanding universe in contrast with the
dynamical r.f.v. of a spatially flat FLRW manifold with a
Milne-type scale factor where the behavior of the scalar field
was never studied.

5.1 de Sitter expanding universe

Let us consider first the stable r.f.v. on the expanding portion
of the de Sitter spacetime, M , having the scale factor a(t) =
e2ωt (where ω is the Hubble de Sitter constant in our notation)
defined for t ∈ (−∞,∞), giving the conformal time tc and

the function a(tc) as

tc = − 1

ω
e−ωt ∈ (−∞, 0] , a(tc) = − 1

ωtc
. (43)

In the conformal chart the Klein–Gordon equation is analyt-
ically solvable giving the mode functions of the momentum
basis of the form (14) having the time modulation functions

Fp(tc) = c1φp(t) + c2φ
∗
p(t) , φp(t) = 1√

πω
Kν(i ptc) ,

(44)

where

ν =
⎧⎨
⎩

√
9
4 − μ2 for μ < 3

2

iκ , κ =
√

μ2 − 9
4 for μ > 3

2

, μ = m

ω
. (45)

By using Eq. (A.4) we find that the set {φp, φ
∗
p} is orthonor-

mal such that the normalization condition (19) is fulfilled
only if we take

|c1|2 − |c2|2 = 1 . (46)

We assume first that m > 3
2 ω solving the system (26)

in the conformal chart {tc, x} where the de Sitter time mod-
ulation function has the form (44) with ν = iκ , while the
Minkowski one (23) reads

F̂ [t (tc)] = (−ωtc)
i E
ω√

2E
. (47)

Moreover, since in this case the limit to p → 0 is sensitive,
we solve first this system for p �= 0 and then we evaluate this
limit. From the first two equations we obtain the integration
constants

c1(p) = (−ωtc)
i E
ω√

2πωE

[
ωptcKiκ+1(−i ptc)

+(E − κω)Kiκ(−i ptc)] , (48)

c2(p) = − (−ωtc)
i E
ω√

2πωE

[
ωptcKiκ+1(i ptc)

+(E − κω)Kiκ(i ptc)] , (49)

while from the last one

lim
p→0

[
E2 − κ2ω2 − ω2 p2t2

c

]
= (m̂2 − ω2κ2) = 0 , (50)

giving the expected dynamical mass,

m̂ = ωκ =
√
m2 − 9

4
ω2 , (51)

related to the well-known rest energy [51]. Then, for p → 0
we obtain the constants which have the absolute values

|c1| = lim
p→0

|c1(p)| = eπκ

√
e2πκ − 1

, (52)

|c2| = lim
p→0

|c2(p)| = 1√
e2πκ − 1

, (53)
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resulting from Eqs. (A.1) and (A.6). Finally, by substituting
these values in Eq. (44), we obtain the definitive result of the
time modulation functions of positive energy in the r.f.v.,

Fp(tc) =
√

π

ω

( p

2ω

)−iκ Iiκ(i ptc)√
e2πκ − 1

, (54)

where the general phase factor was introduced for ensuring
the correct limit for p → 0 as given by Eq. (A.6). These
functions are correctly normalized since the integration con-
stants (52) and (53) satisfy the condition (46). Note that these
results can be rewritten in terms of the cosmic time t accord-
ing to Eq. (43).

Furthermore, we consider the case of m < 3
2 ω applying

the same method for fixing the r.f.v.. We solve the first two
equations of the system (26) for p �= 0 and an arbitrary time
tc obtaining

c1(p, tc) = (−ωtc)
i E
ω√

2πωE
[(E + iνω)Kν(−i ptc)

−ωptcKν+1(−i ptc)
]

, (55)

c2(p, tc) = (−ωtc)
i E
ω√

2πωE
[(E + iνω)Kν(i ptc)

+ωptcKν+1(i ptc)
]

. (56)

From the third equation we find the expected condition

lim
p→0

[
E2 + ν2ω2 − ω2 p2t2

c

]
= (m̂2 + ω2ν2) = 0 , (57)

giving the tachyonic dynamical mass m̂ = ±iνω. Moreover,
we find that in the rest frame we have

lim
p→0

c1(p, tc) = lim
p→0

c2(p, tc) = 0 , (58)

which means that if we set the r.f.v. then the particles with
m < 3

2 ω cannot survive on the de Sitter expanding portion.
The above results can be now gathered in the synthetic

form of the mode functions of positive frequency in the con-
formal chart,

fp(tc, x) =
(−ωtc

2π

) 3
2
√

π

ω

( p

2ω

)−ν Iν(i ptc) eip·x
√
e−2iπν − 1

, (59)

that hold for any real or imaginary value of ν, given by
Eq. (45). In the tachyonic case, when ν takes real val-
ues, the squared norm of fp vanishes, since then we have

Iν(−i ptc)
↔
∂tc Iν(i ptc) ∝ Iν(i ptc)

↔
∂tc Iν(i ptc) = 0. Simi-

lar results can be obtained for other couplings which modify
only the dynamical mass and implicitly the limit between the
tachyonic and tardyonic domains.

Thus we have shown that the scalar r.f.v. on the de Sit-
ter expanding universe is stable corresponding to a time-
independent dynamical mass (51), which does make sense
only whenm > 3

2 ω. In other words, the frequency separation
in the rest frames can be done only for the scalar fields which

satisfy this condition. Otherwise we have either to eliminate
the scalar fields with m < 3

2 ω or to resort to another vacuum
as the adiabatic Bunch–Davies one [46] which can be set for
particles of any mass by taking c1 = 1 and c2 = 0.

The principal consequence of the vacuum stability is that
on the de Sitter expanding universe the c.p.c. is inhibited
when we set the r.f.v.. Then the integration constants are
independent on time such that the density (41) and the rate
(42) of the created particles vanish. Note that this is a specific
property of the r.f.v. since there are other situations when the
c.p.c. may be active as, for example, in the case of the states
which diagonalize the Hamiltonian in any frame [25,26,34].

5.2 Milne-type spatially flat FLRW spacetime

Let us consider now an example of manifold M where we
do not have adiabatic vacua remaining only with an unsta-
ble r.f.v. corresponding to a time-dependent dynamical mass.
This is the (1+3)-dimensional spatially flat FLRW manifold
with the scale factor a(t) = ωt determining the conformal
time as

tc =
∫

dt

a(t)
= 1

ω
ln(ωt) ∈ (−∞,∞) → a(tc) = eωtc .

(60)

The constant ω, introduced because of dimensional consid-
erations, is a useful free parameter which in the case of the
genuine Milne universe (of negative space curvature) must
be fixed to ω = 1 for eliminating the gravitational sources
[46].

This spacetime M is produced by isotropic gravitational
sources, i.e. the density ρ and pressure p, evolving in time
as

ρ = 3

8πG

1

t2 , p = − 1

8πG

1

t2 , (61)

and vanishing for t → ∞. These sources govern the expan-
sion of M that can be better observed in the chart {t, x̂}, of
’physical’ space coordinates x̂ i = ωt xi , where the line ele-
ment

ds2 =
(

1 − 1

t2 x̂ · x̂
)
dt2 + 2x̂ · dx̂

dt

t
− dx̂ · dx̂ , (62)

lays out an expanding horizon at |x̂| = t and tends to the
Minkowski spacetime when t → ∞ and the gravitational
sources vanish.

In the FLRW chart {t, x} of this spacetime the Klein–
Gordon equation is analytically solvable, the fundamental
solutions having the time modulation functions

Fp(t) = c1φp(t) + c2φ
∗
p(t) , φp(t) =

√
t

π
Kν(imt) ,

(63)
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Fig. 1 The functions |c1(t)| and |c2(t)| versus ct for a light particle
having the electron mass, m = me, for which tme ∼ 1.1 10−21s. The
plotting domain is 0.6 tme < t < 1.8 tme

where φp is a normalized solution, (φp, φp) = 1, depending
on the new index

ν =
√

1 − p2

ω2 , (64)

which can take either real or pure imaginary values.
We must specify that here we cannot speak of adiabatic

vacua as long as the functions (63) are singular in t = 0.
Therefore, we must focus only on the r.f.v. for which the
time-dependent integration constants,

c1(t) = e−i tm̂

2
√

2tm̂

[
2tmK0(−imt) + (i + 2tm̂))K1(−imt)

]
,

(65)

c2(t) = e−i tm̂

2
√

2tm̂

[
2tmK0(imt) − (i + 2tm̂))K1(imt)

]
,

(66)

result from Eqs. (33) and (34). The corresponding dynamical
mass reads

m̂(t) =
√
m2 − 3

4 t2 . (67)

The functions (65) and (66) are singular in t = 0 and t =
tm ≡

√
3

2m when m̂(t) vanishes (as in Fig. 1). From Eq. (67)
we see that a particle of mass m shows a tachyonic behavior
in the domain D−

t = (0, tm) and a tardyonic one only if
t ∈ D+

t = (tm,∞). As in the general case, we can verify

Fig. 2 The function n(t0, t) versus ct in the domain tm < t < 14 tm
for m = me and: t0 = 2.4 tm (1), t0 = 2.6 tm (2), t0 = 2.8 tm (3),
t0 = 3 tm (4), t0 = 3.2 tm (5)

that

|c1(t)|2 − |c2(t)|2 =
{

0 if0 < t < tm,

1 ift > tm,
(68)

showing that on the tachyonic domain the wave function is
of null norm, having thus no physical meaning.

This means that the scalar particles can be prepared only
in the tardyonic domain t > tm where m̂(t) increases with t
such that, for t → ∞, when M becomes just the Minkowski
spacetime, it tends tom. Moreover, in this limit we recover the
usual Minkowski scalar modes since the functions K behave
as in Eq. (A.5) such that

lim
t→∞ |c1(t)| = 1 , lim

t→∞ |c2(t)| = 0 . (69)

All these results can be encapsulated in the definitive form
of the mode functions of positive frequency, prepared at the
time t0 > tm and defined for t > t0, which read

fp(t0, t, x) = eip·x

(2πωt)
3
2

[
c1(t0)

√
t

π
Kν(imt)

+c2(t0)

√
t

π
Kν(−imt)

]
, (70)

where ν depends on p as in Eq. (64).
The instability of r.f.v. on this expanding manifold gives

rise to a c.p.c. that can be analyzed thanks to our previous
results that hold for any t > t0. We can study how the par-
ticles created at t0 can be measured at any moment t > t0
calculating the density (41) and the rate (42), which depend
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Fig. 3 The function R(t0, t) versus ct in the domain tm < t < 14 tm
for m = me and: t0 = 2.4 tm (1), t0 = 2.6 tm (2), t0 = 2.8 tm (3),
t0 = 3 tm (4), t0 = 3.2 tm (5)

now on the integration constants (65) and (66). We plot these
functions in Figs. 2 and 3 as functions of ct instead of t for
avoiding too small numbers. Furthermore, we observe that
the dynamic r.f.v. tends to stability when the time is increas-
ing, since then

lim
t→∞ n(t0, t) ∼ |c2(t0)|2 , lim

t→∞ R(t0, t) = 0 , (71)

as we deduce from Eqs. (69). Moreover, we see that the
dynamical effect is visible only for the very old particles,
prepared at t0 < 5 tm , since the function c2(t0) decreases
rapidly to zero when t0 increases and m̂(t0) → m. Thus for
the younger particles, prepared at t0 > 5−10 tm , the dynam-
ical effect is suppressed leaving us with an apparently stable
r.f.v. of the Bunch–Davies-type (with c1 = 1 and c2 = 0), in
which the mode functions can be approximated as

fp(t, x) ∼ eip·x

(2πωt)
3
2

√
t

π
Kν(imt) , (72)

independent on the moment t0 when the particle was pre-
pared.

Finally we must specify that, in general, the dynamic effect
discussed above is very fast, during an extremely short period
of time, even at the quantum scale, since by definition tm =√

3
2m (or

√
3

2
�

mc2 in SI units) is very small. For example, if we

takem to be just the electron massme, then tme ∼ 1.1 10−21s
such that for the particles born at cosmic times t0 > 10−20s
the r.f.v. is apparently stable. Only the particles prepared at
t0 < 10−20s present this effect, which may be of interest only

at quantum scale in the cosmology of the very early spatially
flat Milne-type universe.

6 Concluding remarks

We proposed here a method of projecting the quantum states
from a state space of a given geometry into another state
space generated by a different geometry, keeping the cor-
rect normalization which is crucial in interpreting the quan-
tum quantities (probabilities, expectation values, transition
amplitudes, etc.). This method helped us to define, on any
spatially flat FLRW spacetime, the Minkowskian states we
need for setting the r.f.v. of the massive scalar field which,
in contrast to the Dirac one, does not show a Minkowskian
behavior in the rest frames of the FLRW manifolds. In this
manner, we obtained a stable r.f.v. on the de Sitter expanding
universe and, for the first time, we found a dynamical vac-
uum, corresponding to a time-dependent dynamical mass on
a Milne-type spacetime. In this last case, the dynamic r.f.v.
gives rise to a very fast c.p.c., which could be of interest but
only in a very early Milne-type universe. It is remarkable that
in r.f.v. all the possible tachyonic behaviors (e.g. form < 3

2 ω

in the de Sitter case and t < tm in the Milne-type universe)
are eliminated in a natural manner, the corresponding mode
functions having null norms. These results may improve the
study of the c.p.c. on the FLRW manifolds combining the
r.f.v. with the other vacua proposed so far.

On the other hand, we must stress that the r.f.v. cannot
be defined for the massless fields, which do not have rest
frames. In the case of the Maxwell and massless Dirac fields
this is not an impediment, since the neutrino and Maxwell
equations are conformally covariant such that in the con-
formal charts of the FLRW spacetimes one may take over
the frequency separation from the flat case. The only prob-
lem which remains partially unsolved is the vacuum of the
massless scalar field whose equation is no longer covariant
under conformal transformations. This sensitive case is being
revisited time and again in the hope of finding a convenient
interpretation [52].

Another approach is the quantum theory of interacting
fields on curved manifolds in which the amplitudes of the
quantum transitions can be calculated by using perturbations
in terms of free fields [53–60] as in our recent de Sitter QED
[45,61,62]. Even though in this framework only adiabatic
vacua were considered so far, we have now the opportunity
of using many types of vacua for improving the calculation
of the transition amplitudes. Thus, for example, in a colli-
sion process we may take the incident beam in the adiabatic
vacuum and the target in the r.f.v.. Moreover, for the inter-
nal lines of the Feynman diagrams the r.f.v. is the favorite
candidate since this can be defined naturally for the massive
fields on any spatially flat FLRW spacetime. Thus, by using
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many well-defined vacua, we could combine the methods of
c.p.c. with those of the perturbative quantum field theory for
analyzing various quantum effects in evolving universes.
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Appendix A: Modified Bessel functions

The modified Bessel functions Iν(z) and Kν(z) are related
as [63]

Kν(z) = K−ν(z) = π

2

I−ν(z) − Iν(z)

sin πν
, (A.1)

I±ν(z) = e∓iπν I±ν(−z)

= i

π

[
Kν(−z) − e∓iπνKν(z)

]
. (A.2)

Their Wronskians give the identities we need for normalizing
the mode functions. For ν = iμ we obtain

i Iiμ(is)
↔
∂s I−iμ(is) = 2 sinh πμ

πs
, (A.3)

while the identity

i Kν(−is)
↔
∂s Kν(is) = π

|s| (A.4)

holds for any ν.
For |z| → ∞ and any ν we have

Iν(z) →
√

π

2z
ez , Kν(z) → K 1

2
(z) =

√
π

2z
e−z . (A.5)

In the limit of |z| → 0 the functions Iν behave as

Iν(z) ∼ 1

Γ (ν + 1)

( z
2

)ν

, (A.6)

while for the functions Kν we have to use Eq. (A.1).
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22. I.I. Cotăescu, G. Pascu, F.A. Dragoesc, Mod. Phys. A 28, 1350160

(2013)
23. G.W. Gibbons, S.W. Hawking, Phys. Rev. D 15, 2738 (1977)
24. T.S. Bunch, P.C.W. Davies, Proc. R. Soc. Lond. 360, 117 (1978)
25. S.G. Mamaev, Izv. Vuzov. Ser. Fizika N1, 67 (1981)
26. S.G. Mamaev, Sov. Phys. J. (USA) 24, 63 (1981)
27. J.D. Pfautsch, Phys. Lett. B 117, 283 (1982)
28. B. Allen, A. Folacci, Phys. Rev. D 35, 3771 (1987)
29. T. Mishima, A. Nakayama, Phys. Rev. D 37, 348 (1988)
30. A. Nakayama, Phys. Rev. D 37, 354 (1988)
31. B. Allen, Phys. Rev. D 32, 3136 (1985)
32. E. Mottola, Phys. Rev. D 31, 754 (1985)
33. K. Kirsten, J. Garriga, Phys. Rev. D 48, 567 (1993)
34. A.A. Grib, S.G. Mamaev, V.A. Mostepanenko, Vacuum quantum

effects in strong fields (Friedmann Lab. Publishing, St.Petersburg,
1994)

35. H.T. Sato, H. Suzuki, Mod. Phys. Lett. A 9, 3673 (1994).
arXiv:hep-th/9410092

36. M. Sasaki, T. Tanaka, K. Yamamoto, Phys. Rev. D 51, 2979 (1995)
37. R. Bousso, A. Maloney, A. Strominger, Phys. Rev. D 65, 104039

(2002). arXiv: hep-th/0112218
38. A.A. Grib, Y.V. Pavlov, Gravit. Cosmol. 22, 107 (2016)
39. A.A. Grib, YuV Pavlov, Int. J. Mod. Phys. A 35, 2040034 (2020)
40. V. Ambrus, Thesis (2010). arXiv:1701.06243v1 [hep-th]
41. S. Singh, C. Ganguly, T. Padmanabhan, Phys. Rev. D 87(2013),

104004 (2013). arXiv:1302.7177 [gr-qc]
42. K. Rajeev, S. Chakraborty, T. Padmanabhan, Phys. Rev. D 100,

045019 (2019)
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