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1. INTRODUCTION

In a colliding-beam storage ring, the motion of particles in one beam is strongly
perturbed at the collision points by the electromagnetic field associated with the
counterrotating beam. This beam-beam perturbation leads to a stability limit on the
beam intensities which is one of the most severe limits on the achievable luminosity in
storage rings.

The simplest and most familiar way of describing the beam-beam problem is
provided by the strong-weak picture in which one of the beams (the strong beam) is
regarded as rigid, i.e., unperturbed by the presence of the other (weak) beam. As far as
the weak-beam motion is concerned, the strong beam acts as a nonlinear lens located at
the collision points. The weak beam then circulates around the storage ring,
periodically perturbed by the static nonlinear force due to the strong beam.

The strong-weak picture of the beam-beam interaction has provided useful insight
into the mechanism of the beam-beam instability. It is, however, only a limited view of
the beam-beam interaction. In fact it has been pointed out by several authors!=® that
the identification of the beam-beam instability with instabilities in a periodic nonlinear
mapping cannot completely represent the physics of two strong colliding beams.
Experimentally, the existence of beam-beam coherent dipole motion is well es-
tablished.'®!! One can also argue that the DCI experience'? indeed indicates that
coherent effects play a dominant role in determining beam-beam behavior.

In this paper, we analyze the coherent beam-beam effects of colliding beams using
the Vlasov technique. The distributions y, and V, of the two beams influence each
other according to the Vlasov equation, which is linearized for small perturbations Ay,
and Ay, around the equilibrium distribution ,. The perturbations Ay’s transform
simply by a rigid rotation in the phase space as the beams circulate around the storage
ring and then receive sudden changes at the collision points due to the beam-beam
interaction. After linearization, the motion of AY’s can be solved by a matrix technique
which will be discussed in more detail later.

We find that there are coherent beam-beam instabilities when v is a rational number
(v is the betatron tune) similar to the resonance instabilities found in the incoherent
motions of the strong-weak picture. The widths of the coherent resonances, however,
tend to be larger than the corresponding resonance widths for the incoherent case. The
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coherent beam-beam effects therefore set a more stringent beam-beam stability
threshold against nonlinear resonances than the incoherent strong-weak effects. We
therefore follow the previous authors and suggest once again that coherent effects play
a dominant role in the complex beam-beam phenomena.

The reason that coherent effects set a tighter stability limit than incoherent effects is
basically the following. In coherent motions, the separation between one piece of the
beam and the corresponding piece of the counter-rotating beam is effectively twice the
separation of the strong-weak case in which one of the beams does not move. As a
result, the beam-beam kicks are effectively stronger for coherent motions. The simplest
example of this effect can be seen by considering two colliding bunches, each with a
rigid uniform disk distribution of charge. There are two coherent modes of dipole
motions of the two bunches, one with each bunch moving up and down in phase and
the other out of phase. The in-phase mode is always stable since the beam-beam force
has no coherent effect when the bunches move up and down together. The out-of-phase
mode on the other hand has a stability limit that is twice as stringent as the case when
only one of the two bunches moves. This is illustrated in Fig. 1(a). The situation is
even more pronounced when there is more than one bunch per beam. The rigid
bunch model can be carried out for multiple bunches as well, yielding resuits
shown in Figs. 1(b)-(d).>™* In each plot, the dotted line shows the boundary of
stability determined by the strong-weak consideration. The fact that the coherent
effects set a tighter stability limit than the incoherent effects is apparent from
these plots.
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FIGURE 1 Stability diagrams in (vo, £o) space, where v, is the unperturbed tune for the storage ring and
&, is the beam-beam strength parameter, for the cases with 1, 2, 3 and 4 bunches per beam. The beam
bunches are regarded as rigid allowing only dipole coherent motions.
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2. THE VLASOV TECHNIQUE

We first consider the case in which each colliding beam consists of a single bunch of
particles. The bunches are assumed to have a flat distribution like a horizontal ribbon
at the collision points. The bunch motions occur only in the vertical y-direction. Let
Y, ,(y, y') be the distribution functions of the two bunches satisfying the normalization
condltlons

J Ay’ Vi 2(3, V) = p1,2(y)

— 0

. (1)
j dy pia(y) = 1,

- ©

where p, , are the spatial distributions of the two bunches. We assume the two bunches
have the same number of particles N.

A particle in beam 1 with vertical displacement y at the collision point experiences a
beam-beam kick from the electromagnetic field of beam 2 given by

4nNr
L,y

X

Ay = — : J_ dy p2(Hi(y — §), )

where r, is the classical radius of the electron, L, is the horizontal width of the ribbon
beams at the collision points, v is the relativistic Lorentz factor and

1 ifx>0

i) {—1 if x <0 )

We have assumed that the beam particles are electrons in one beam and positrons
in the other beam. The reason for the H; function is that particles in beam 2 located at
y > y kick the test particle in beam 1 upward while particles with y < y kick the test
particle downward. A similar expression holds for the kicks received by particles in
beam 2 from fields of beam 1.

The Vlasov equations that describe the motion of s, , are given by

4nN © 0 .
% * yla—a\uy‘1 - [K(S)y + %Y—r 8,(s) J_w dy po(MH,(y — y)] Vo @

together with another equation with indices 1 and 2 exchanged. In Eq. (4), K(s) is the
focusing gradient function around the storage ring, s is the distance along the orbit, and
d,(s) is the periodic -function representing the periodic beam-beam perturbations. The
period of §,(s) is the distance between collision points L.

The beam collisions perturb the focusing structure in the storage ring so that at
equilibrium both beams have a distorted distribution yr,(y, y') satisfying

Y, OV
25 +YW—F( 5)

CLp
0y’

=0, ®)
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where

4nN » °
Fr.9) = KOY + 728,09 f 45 Hy(y = 3) J 45 V(7. 7).

- —

Note that \r, is a periodic function of s with period L; it gives the equilibrium
distribution of both beams in the distorted beam-beam potential-well. When observed
at a fixed location in the storage ring, , is static in time.

We are not interested in the static behavior of the beam distributions in this work.
The motions that interest us are the time dependent dynamic motion of the beam
distributions around the equilibrium Y. In particular, if we let

Uiz =Vo + AV, (6)

with infinitesimal AV, ,, we would like to know under what conditions the
perturbations grow exponentially in time. When these conditions are satisfied,
coherent beam-beam instability occurs.

Substituting Eq. (6) into Eq. (4) and keeping only the first order terms in AY’s, we
obtain the linearized Vlasov equations

o+ Of s o+
_ Oy, 4nNr, © T (7
o Ty o L 4y Hy(y - 7) f_w 47 12(5, 7,5) =,
where we have defined
fir =AY + AV, ®)

Note that the two functions f, and f_ are decoupled. They define a “+” and a “—”
mode in the motion of the two colliding bunches.

Since we are not interested in finding the actual {, in the distorted potential well, we
assume that

F(y,s) = F(s)y, )

i.e., the equilibrium part of the beam-beam force is approximately linear in y. Such a
treatment is a familiar one in the problem of longitudinal instability in storage rings.'?
The static part of the beam-beam force is thus included simply as a perturbation to the
linear focusing structure of the storage ring.

Equation (7) is the Vlasov equation written in Cartesian coordinates y and y'. We
now make a transformation to the polar (action-angle) coordinates of betatron
oscillations,** J and ¢,

/2BJ cos ¢

, 2J (. p
y — -B—<sm¢—icosd>>

<
Il

(10)
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where the betatron phase ¢ and the betatron function B are derived using the focusing
function F(s) instead of the unperturbed K(s). Note that the static perturbation of the
focusing structure of the storage ring may make the linear incoherent motion unstable;
this leads to the familiar effect of the dynamic B¢ and is the origin of the dotted
lines in Fig. 1.

Assuming that the incoherent motion with the focusing function F(s) is stable, and
that we can indeed make the transformation in Eq. (10), then the equilibrium
distribution \, is a function only of J

Vo = VolJ). (11)
In these coordinates the Vlasov equations become
) 1 )
T b ST Vo) 280 sin 65,09
(12)

x f dy Hy(y — f)f dy' f+(3,¥,5) = 0.
3. SOLVING THE VLASOV EQUATION

To proceed, we will choose a simple model of s, the water-bag model

Yo(J) = —H(€/2 —J). (13)

where H(x) is the Heaviside step function, H(x) = 1if x > O and H(x) = 0if x < 0,
and e is the vertical emittance of the equilibrium beam distribution.

To be perfectly self-consistent, y, would have to give a beam-beam kick linear in y
as assumed in Eq. (9). Such a distribution does exist and is given by

(J < ¢/2). (14)

Vold) = Mf r—e/z_

As we explained before, however, perfect self-consistency is not what we need to de-
scribe the dynamic behavior of the beam-beam system; the mathematical simplicity of
the water-bag model makes it more suitable for our purpose.

By inspection, the distribution perturbations can be written for the water-bag model
as

Fol 0s) =8 —€/2) S gt(s)e™. (15)

= -

The 8(J — €/2) factor represents the fact that the perturbations occur only at the edge
of the water-bag. We have also decomposed the angular part of the distribution into a
Fourier series in ¢. For simpler notation, we will drop the + and — superscripts on g;’s
in the subsequent expressions.
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Substituting Egs. (13) and (15) into the Vlasov equation (12) gives an infinite set of
equations describing the coupled motion of the Fourier components g,(s) for all [

o9, il _ 2Nr, [B ©
s Ps =
Bs + Bgz + Ly \/; p(S)k=Z—oo Mygi = 0, (16)

where we have defined a matrix .# with elements given by

2n 2n
My, = f dd e " sin ¢ j dd H,(cos ¢ — cos ¢p)e’*s
0

0
—32il
[+ k)? = 1000 - k)* — 1]
0 if I + k = odd.

if | + k = even (17)

The matrix .# has the following properties:

A = purely imaginary

M* =0
My, = My, (18)
My = — My

Between collisions, the different g,’s are decoupled. A particular g, transforms by

gi(L™) = g(0F)e ™", (19)
with

L ds
R=| =
o Bs)
Thus p is the integrated betatron phase from one collision point to the next, and L
is the distance between collision points. The superscripts + and — in the arguments
of g, refer to immediately after and immediately before the beam-beam collisions
respectively.
The beam-beam action is obtained by integrating Eq. (16) through s = 0, which
yields

_ 2Nr p*
+ _ — e L
g1(07) — ¢,(07) ian,Y c

Ek: M9 (07), (20)
where * is the value of the betatron function at the collision point in the presence of
the static beam-beam force. Note that we have used g,(0~) on the right hand side of
Eq. (20). Using g,(0*) would give the same result since 4% = 0.

Equations (19) and (20) can be combined to give the matrix transformation on
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the vector

Jo 1)

from one collision point to the next. This transformation is given by
2Nr

T- R<I + _JE%) @)
nL,y\ €

where

is the diagonal matrix describing the action between collision points, and [ is the
identity matrix.

4. COHERENT BEAM-BEAM INSTABILITY

In the absence of beam-beam collisions, Eq.(22) gives the unperturbed trans-
formation T = R. The eigenvalues of T are

A=e M 1=0,41,+2,... (23)

corresponding to the motion of the I"™ Fourier component of the distributions. All
eigenvalues have absolute value of unity provided that the focusing structure F(s)
yields stable oscillations.

As the beam-beam strength is increased, the eigenvalues are more and more
perturbed. A coherent instability occurs when any one of the eigenvalues acquires an
absolute value larger than unity.

The coherent instability is most pronounced when the betatron phase advance
between collision points is close to a rational number times , i.e.,

~
~

vV =

alE

m
T 24
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where v is the total betatron tune of the storage ring. Close to the resonance condition
(24), the Fourier components that perturb the beam motion most are g, and g_,.
Keeping only the [ and the (— )" elements in the transformation matrices (22) and
defining the small distance between v and m/! to be

A=v— ? (25)
the matrix T becomes
. —i2nlA . —i2znlA
po| e T g 26)
¥ inei2m (1 ¥ la)eLZRIA
with
oy 321 2Nr, [B*
42— 1 mLyn €’
The eigenvalues of (26) are then determined by the secular equation
A% — 2A[cos 2nlA + asin 2nlA] + 1 = 0. (27)

One of the eigenvalues has absolute value larger than unity and therefore the beam-
beam system is unstable if

|cos 2nIA + a sin 2wIA| > 1. (28)

The + and — signs in Eq. (28) refer to the f, and f_ modes defined in Eq. (8).
Before we interpret Eq. (28), we need to calculate the dynamic tune v, remembering

that the static beam-beam force has modified the focusing structure of the storage ring.

Using the water-bag distribution, the focusing structure F(s) is found from Eq. (5) to be

y 2

8Nr . y y
L s) = ) € ! 1 —=—1. 29
F(y,s) = K(s)y + Ly 5,,(s)lism (\/@> + e B*e] (29)

The average tune shift due to the second term in Eq. (29) is given by its detuning
contribution evaluated at the amglitude J=e/2, that is, at the edge of the
water-bag. The dynamic tune v'>'° to first order in the beam-beam strength is

found to satisfy
64 Nr, [B*
€os 2mv = oS 2MVy — — r. [B* sin 2nv,,, (30)
3Jn L.y €

where v, is the betatron tune in the absence of the static beam-beam force. Note that
the tune shift is evaluated at J = ¢/2 rather than at J = 0 (small y). This yields a tune
shift which is 8/3n times smaller.

Equation (28) determines the instability region near the resonance v = m/l with a
resonance stopband width approximately given by

V~1 32
YT om 412 — 1

) g, (31)
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where we have defined a beam-beam strength parameter

4Nr
=—° 32
: nL.y\/€/B* .

which is the tune-shift parameter defined in strong-weak beam-beam motion. The stop
band centers around v = m/l. The ‘4’ mode is unstable on the side v > m/I while the
‘—’ mode is unstable on the other side.

The higher-order resonance stop bands (I > 1) are affected by the tune shift (30) only
in that their positions are shifted as the beam-beam strength is increased. On the other
hand, for the lowest-order resonance | = 1, the instability condition in (28) for the +
mode becomes [cos 2nv,| > 1. This means that if the incoherent motion is stable (v,
defined), the ‘ +’ mode coherent motion will also be stable. The instability condition for
the ‘+’ mode is thus eliminated while the instability strength for the ‘—’ mode is
essentially doubled.

The results of this study are most conveniently shown by the instability diagrams in
the two scaling parameters v and &. The [" order resonance will then be apparent from
the unstable region that orginates from the tune value v = m/l in these diagrams.

Figures 2(a)—(d) give the numerical results of the coherent beam-beam instability
for the case of one particle bunch per beam. As the higher and higher order resonances
are included, the stability diagram becomes more and more complicated. In these
numerical calculations, we have used the matrix in Eq. (22) truncated to the order of .
resonance we consider. The results in general agree quite accurately with the
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FIGURE 2 Stability diagrams for the case of one bunch per beam. In each of the four plots resonances up
to order 2, 4, 6 and 8 are included, respectively.
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FIGURE 3 (a) Stability diagrams for one bunch per beam including resonances through order 5. (b) Blow
up of a portion of (a) showing some interference behavior between adjacent resonances.

»

approximate expression in Eq. (28) except for the weak modifications resulting from
the interference between adjacent resonances. Figure 3 shows the instability diagram
when resonances up to the 5th order are included. The region indicated by a box in
Figure 3(a)is blown up in Figure 3(b) to show the interference between a 3" order and a
5" order resonance. For practical purposes, however, these details are not very

important.

5. MULTIPLE BUNCHES

So far, we have studied the case in which there is only one particle bunch in each beam.
As we will show in this section, the Vlasov technique can also be extended to treat M
bunches per beam in a storage ring with 2M collision points spaced by the distance L.
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We assume all bunches are equally populated, with the number of particles in each
bunch given by N. We will then study the stability of infinitesimal deviations in particle
distributions from a given equilibrium distribution. To do so, let the distribution of the
m'™ bunch be

U =Y + AV, m=12...M, (33)

where the indices 1, 2 refer to beam 1 and beam 2 respectively. Between collisions, the
motion of individual bunches are decoupled,

LRI
B oo
To define the ordering of the collision sequence, we will make reference to the 1% bunch
of beam 1. When this bunch passes the collision point s = 0,the 1,2, ..., M" bunches
in beam 1 collide respectively with the 1, 2,..., M™ bunches of beam 2. As the 1%
bunch of beam 1 proceeds to location s = L, the collisions occur between bunches
1,2,..., M in beam 1 with bunches M, 1,2,..., M — 1 in beam 2. When s = ML
(which is half the circumference of the storage ring), the whole cycle repeats and the
collisions occur the same way as at s = 0.

The collision influence on bunch distributions can be described as follows. When the
1-st bunch of beam 1 is at the k-th collision point s = kL, we have

0
5 AV, + Yim =0, m=12...M. (34)

)

dy Hy(y — f)J dy' AVS(3, 3),
(3%)

together with another equation similar to (35) but with indices 1 and 2 exchanged and n
and m exchanged. In Eq. (35) we have defined

A\lf(lm)|s=kL+ - A‘l’(lm)|s=kL’ = —A(J’ d))f

— 0

4
A, b) = ZN; e J/27B sin & Vo' (J). (36)

The indices n and m are related by the collision sequence, ie.,for1 < k < M — 1, we
have

{m+M—k ifl<m<k
n =
m—k ifk +1<m< M.

(37

The beam-beam collisions couple the distributions of all the bunches in both beams.
It is possible to develop the transformation matrices describing the coupled system for
half revolution around the storage ring. The stability of the system will then be given
by the eigenvalues of this transformation. Instead of doing so, however, we will first
make the change of variables

M
Fiy = 3 exp(i% 21tq> AV, q=0,1,...,M — 1. (38)

Equation (38) relates the 2M quantities F’s and the 2M quantities Ay’s. The problem
then becomes the study of the stability of the F’s.



212 A. W.CHAO AND R. D. RUTH

The advantage of F’s over A\y’s is that the F’s are decoupled for different values of
q’s. Between collisions, we have

0 10
a F(lq‘)2 + Eé—d; F(l‘{)z = 0. (39)

For the k™ collision at s = kL, we have

k
FPloor = FPlio- = — AU, ¢)6Xp<iﬁ2ﬂQ> fdf Hi(y — ) Jd? Fg
(40)

k _
F(zq)|s=ku - F(Zq)|s=kL’ = —A(J, ¢)eXp<-i7\4‘2RQ> fd)') Hy(y — )) Jd? F.

The index g is the coupled-bunch mode number. For stability of the system, motions of
all multi-bunch modes with different ¢’s must be stable independently.

We now specify {, to be given by a water-bag model, Eq. (13), and Fourier
decompose the F’s according to

F9(J, ¢,5) = 8(1 - §) Y gt
l=—o0

(41)
q=012..M—1 j=12

The actions (39) and (40) can be described by matrix transformations on the g
coefficients. Defining the vector

gﬁi“”
g5
g(_l .lq)
GW =| : 42)
g?
g5
g(_21q)

the transformation matrix between collision points is

R 0
=)

where R is the infinite dimensional matrix defined in Eq. (22) with p the betatron phase
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FIGURE 4 Stability diagrams for the cases of 1, 2, 3 and 4 bunches per beam, taking into account dipole
and quadrupole resonances.
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FIGURE 5 Same as Fig. 4 but taking into account resonances up to order 3.
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FIGURE 6 Same as Fig. 4 but taking into account resonances up to order 4.

advance between adjacent collision points. For the k™ collision, the matrix is

2Nr, [B* k- 0 M
1 +any\/:exp<zM21tq>|:% 0 ], (44)
where ./ is the matrix defined by Eq. (17). Multiplying matrices (43) and (44) over 1/2
ring circumference in proper sequence, the total transformation matrix can be obtained
for each value of ¢. This is performed numerically for all multi-bunch modes. Stability is
given by the condition that all eigenvalues of the matrices for each multi-bunch mode
have an absolute value of 1.

The case in which there is only one bunch in each beam (M = 1) reproduces Figs. 1
to 3, as it should. Figure 4 gives the result when resonances up to order 2 (dipole and
quadrupole instabilities) are included for cases M = 1, 2, 3 and 4. Figures 5 and 6
include resonances up to order 3 and 4, respectively. According to these results, the
most stable choice of tune tends to be that slightly above an integer multiple of M.

6. DISCUSSION

The beam-beam phenomenon is a difficult subject that probably involves more than
one single effect. In this note we have analyzed it in terms of the coherent stability of the
beams. Although we do not pretend that this is the only important effect that occurs in
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the beam-beam phenomenon, we do suggest that coherent effects are indeed one of the
most dominating beam-beam features.

In the analysis, we have assumed a water-bag model of the equilibrium beam
distribution. This model is particularly simple to handle mathematically. As explained
in Eq. (14), in doing so we have sacrificed a rigorous self-consistency. In addition, the
system has a single frequency evaluated at the edge of the water-bag. This means that
effects due to frequency spread are not included. All mode frequencies therefore are
sharply defined lines. In particular, there is no Landau damping in this system.

The water-bag model has another disadvantage. It does not allow study of the radial
modes in the bunch motions. As shown by Egs. (15) and (41), the deviation in bunch
distributions occur only at the edge of the water-bag, and therefore all radial modes
degenerate into 8(J — €/2). Finally, we have considered only the vertical motion of the
bunches. Horizontal motion and synchrotron motion would introduce many more
resonances.

In spite of these limitations, the method used here to solve the Vlasov Equation takes
full account of the discrete nature of the beam-beam kicks. This leads to a new method
of calculating coherent beam-beam instabilities using a matrix mapping technique.
It offers a simple description of the coherent beam-beam interaction and allows
straightforward numerical calculations. In particular, all nonlinear resonances are
treated simultaneously taking into account the coupling of the resonances.

One colliding-beam phenomenon that has been observed experimentally is the beam
size blow-up which occurs when intense beams are brought into collision. In the
present picture, this can perhaps be explained as follows. As beams collide, the
equilibrium beam size does not change if the beam-beam motion is stable. As beam
intensity increases so that an unstable region is entered, the beam size blows up, but
only by so much that the system becomes stabilized again. This means the value of &
does not increase any more even if the beam intensity keeps on increasing. This
behavior is similar to the bunch-lengthening phenomenon observed in electron storage
rings. From Eq. (32), it can be deduced that in the blown-up regime, the beam size scales
approximately linearly with the beam intensity N. This agrees qualitatively with beam-
beam experiments in electron storage rings.
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