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Abstract

In this thesis, we examine the possibility that the Standard Model Higgs boson
played the role of the inflaton. A standard λφ4 potential requires an unphys-
ically small coupling constant (λ ∼ 10−13) to obtain density perturbations in
agreement with observational data. A large coupling between the scalar field
and the Ricci curvature scalar relaxes this condition, and the field φ might be
identified with the Standard Model Higgs field. In such a model, the predicted
values of the spectral index and the tensor-to-scalar ratio are also in agreement
with current observational data. However, quantum corrections seem to break
the theory down at the cut-off scale Λ = MPl/ξ, which is below the energy
scale where inflation takes place. Finally, we analyze the role of the Goldstone
bosons. During inflation the first derivative of the Higgs potential doesn’t van-
ish. This leads to a nonzero mass term for the the Goldstone bosons and hence
they contribute to the Coleman-Weinberg potential.



Contents

1 Introduction 3

2 Cosmology 5
2.1 The Expanding Universe . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 History of our Universe . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 The Standard ΛCDM Model . . . . . . . . . . . . . . . . . . . . 10
2.4 Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 The Shrinking Hubble Sphere . . . . . . . . . . . . . . . . . . . . 12
2.6 Primordial Density Perturbations . . . . . . . . . . . . . . . . . . 14
2.7 The Power Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Particle Physics 16
3.1 Introduction to the Standard Model . . . . . . . . . . . . . . . . 16

3.1.1 Historical Background . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Particle Content of the Standard Model . . . . . . . . . . 17

3.2 Non-Abelian Gauge Invariance . . . . . . . . . . . . . . . . . . . 18
3.3 The Strong Interaction . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 The Electroweak Interaction . . . . . . . . . . . . . . . . . . . . . 24

3.4.1 Spontaneous Symmetry Breaking . . . . . . . . . . . . . . 24
3.4.2 The GWS Theory of Weak Interactions . . . . . . . . . . 27

3.5 The Faddeev-Popov Procedure . . . . . . . . . . . . . . . . . . . 29
3.6 The Rξ Gauges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6.1 Abelian Case . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6.2 Unitary Gauge vs. Rξ Gauge . . . . . . . . . . . . . . . . 32

4 Inflation Models 33
4.1 Slow-Roll Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Modified Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 The Conformal Transformation . . . . . . . . . . . . . . . . . . . 38

4.3.1 Transforming to the Einstein Frame . . . . . . . . . . . . 38
4.3.2 Conformal Invariance . . . . . . . . . . . . . . . . . . . . 41

5 Higgs Inflation 42
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Cosmological Implications . . . . . . . . . . . . . . . . . . . . . . 43
5.3 Unitarity of Higgs Inflation . . . . . . . . . . . . . . . . . . . . . 45

5.3.1 Single Field . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.2 Multiple Fields . . . . . . . . . . . . . . . . . . . . . . . . 48

1



6 Goldstone Bosons in Higgs Inflation 50
6.1 Higgs Mechanism and the Real Representation . . . . . . . . . . 50

6.1.1 The Real Representation . . . . . . . . . . . . . . . . . . 51
6.1.2 The Global SO(4) Symmetry . . . . . . . . . . . . . . . . 53

6.2 Massive Goldstone Bosons . . . . . . . . . . . . . . . . . . . . . . 55
6.3 Rolling Goldstone Bosons in U(1) Theory . . . . . . . . . . . . . 57
6.4 Lagrangian in the Rξ Gauge . . . . . . . . . . . . . . . . . . . . . 59

6.4.1 Non-Abelian Analysis . . . . . . . . . . . . . . . . . . . . 59
6.4.2 Gauge Fixing the Lagrangian . . . . . . . . . . . . . . . . 60
6.4.3 Mass Terms in the Rξ Gauge . . . . . . . . . . . . . . . . 61

6.5 Corrections to the Coleman-Weinberg Potential . . . . . . . . . . 63

7 Conclusions 65

2



Chapter 1

Introduction

The idea that all matter around us consists of indivisible particles dates back to
the ancient Greeks, although it should be said that this principle has always been
more based on abstract reasoning or just pure speculation rather than empirical
grounds. This changed at the beginning of the 18th century when experimen-
tal observations led to the development of atomic theory. Later it turned out
that also atoms consist of smaller sub-particles. The first known particle still
seen as elementary today is the electron, discovered by J.J. Thomson in 1897.
In the middle of the 20th century, with particle accelerators reaching higher
energies, more and more exotic particles were found. A careful analysis of all
these experiments resulted in the conclusion that all matter is made up of three
generations of quarks and leptons. The Standard Model, which was more more
or less completed in the mid 1970’s, successfully describes the dynamics of these
elementary particles. A crucial ingredient is the Higgs mechanism, which is the
way particles obtain their masses in this model. This predicts the existence of
the Higgs boson, which was finally discovered at the Large Hadron Collider in
2012. Unfortunately, the Standard Model fails to describe gravitation.

Although gravity is negligibly small compared to the other forces in the
Standard Model, at large scales it becomes the dominant force. The currently
accepted description of gravitation, that suffices at least at large scales, is Ein-
stein’s General Theory of Relativity. The Einstein’s equations, which are part
of this theory, allow the possibility of a non-static universe. Indeed, in 1929
it was shown that we live in an expanding universe and in 1998 it turned out
that it is even accelerating. Reversing this picture, we see the universe must
originate from a singular point in spacetime, known as the Big Bang. According
to this theory the universe was once much hotter than it is now. The ‘thermal
history’ of our universe after t ∼ 10−10 seconds is quite well understood by a
combination of different disciplines in physics and cosmology. Going back even
further in time, the energy density was so high that the Standard Model can no
longer be trusted. Interestingly, the very early universe has left its mark on the
Cosmic Microwave Background. Thus a careful study of the CMB might tell us
more about physics beyond the Standard Model.

The standard theory of an expanding universe has several shortcomings as
was realized in the 1970’s. First of all, the Cosmic Microwave Background looks
almost exactly the same in every direction. However, at the time of decoupling
only regions of the CMB observed over an angle of about one degree were in
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causal contact. Another problem is that the energy density of the universe
seems to have an extremely fine-tuned value. If it were only slightly bigger or
smaller, the universe would immediately have collapsed or ripped apart, yet we
know the universe is more than 13 billion years old. This is of course related
to the anthropic principle, but this doesn’t give a satisfactory answer. In 1981,
A. Guth proposed an inflationary epoch right after the Big Bang as a solution
to these problems. An important confirmation for inflation was the observed
scale invariance of the density perturbations.

Although we don’t know what caused the inflationary epoch, it is well known
that a scalar field slowly rolling down a potential can lead to inflation. This
mechanism is known as slow-roll inflation. In this thesis we will investigate
the possibility that inflation is caused by the only scalar field in the Standard
Model, namely the Higgs field. As we will see, a crucial ingredient will be a
coupling between the Ricci scalar and the Higgs field. But before discussing
Higgs Inflation, we give an introduction to cosmology and particle physics in
the first two chapters.
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Chapter 2

Cosmology

2.1 The Expanding Universe

In 1929 Hubble, investigating spectral lines of distant galaxies, noted a shift
towards the red end of the spectrum. If one assumes that distant galaxies move
away with respect to our own galaxy, the redshift can be interpreted as a Doppler
shift. The observed wavelength λ′ of a galaxy receding away with velocity v is

λ′ = λ(1 + z) = λ

√
1 + β

1− β
, (2.1)

where β = v/c and the amount of redshift z = δλ/λ. For small v and thus small
redshifts 1

λ′ ≈ λ(1 + β), (2.2)

so v is proportional to z. There turns out to be a linear relation between the
distance d of a galaxy and the amount of redshift z, which yields the Hubble
law

v = H0d. (2.3)

In this equation H0 is the Hubble constant, and while it was vastly overrated
by Hubble himself, today’s accepted value is [1]

H0 = 70.4+1.3
−1.4 km s−1 Mpc−1. (2.4)

In an accelerating or decelerating universe H will not be constant, that’s why
the subscript is assigned when the value measured in our era is meant. As we
will see, the possibility of a dynamic universe is allowed by general relativity.

The Cosmological Principle states that our universe is homogeneous and
isotropic. A homogeneous universe is one that is translation invariant, while
isotropy means that there is no preferred direction. This may seem strange, since
this does certainly not hold for the universe as we see it. The Earth is clearly
inhomogeneous and anisotropic and there is also structure on larger scales, e.g.
planets, stars, galaxies etc. However, on very large scales the Cosmological

1For distant galaxies with redshift z & 1 also gravitational redshifts become important, so
for high redshifts the interpretation as a Doppler shift certainly fails.

5



Principle does hold and then the universe can be regarded as some kind of
cosmic fluid, the dynamics of it described by the laws of gravity.

According to Einstein’s Theory of General Relativity, gravity is not a force
but is instead due to the fact that spacetime is curved, the source of the curva-
ture being the stress-energy tensor. The geometry of spacetime is described by
the metric, which determines the gravitational field. It can be shown that the
only metric consistent with the Cosmological Principle is the Robertson-Walker
metric [2]. This metric is an exact solution of the Einstein field equations and
can be obtained by multiplying the spatial part of the metric for static space by
a time-dependent scale factor a(t). In terms of the spherical coordinates (r, θ, φ)
it has the following form:

ds2 = −c2dt2 + a2(t)

[
dr2

1− kr2 + r2
(
dθ2 + sin 2θdφ

)]
. (2.5)

From now on we will often stick to the convention c = 1. The curvature of the
space is defined by the constant k, with k = 0 corresponding to a flat universe. If
k is nonzero, it can always be set to ±1 by rescaling a(t), with +1 corresponding
to a closed universe and −1 to an open universe.

The coordinates (r, θ, φ) are comoving coordinates, which means that even
in a dynamic universe a particle initially in rest keeps the same coordinates .
However, the physical separation between two points, one at the origin and the
other at r, is given by the time-dependent quantity

d(r, t) =

∫
ds = a(t)

∫ r

0

dr√
1− kr2

= a(t)×

 sinh−1 r if k = −1,
r if k = 0,
sin−1 r if k = 1.

(2.6)

Now consider a flat universe (k = 0). Because also wavelengths scale with a,
taking the time derivative gives Hubble’s law eq. (2.3)

ḋ =
ȧ

a
d ≡ Hd. (2.7)

The Hubble parameter H turns out to be a very important quantity in cosmol-
ogy, because it sets the characteristic scales of the FLRW spacetime. A rough
estimate of age of the universe is given by the Hubble time H−1

0 , while the
observable universe is of the order of the Hubble length cH−1

0 .
The time evolution of the scale factor is determined by the Einstein field

equations

Rµν −
1

2
Rgµν = 8πGNTµν . (2.8)

In this equation GN = ~c/m2
Pl is Newton’s constant and R and Rµν are the

Ricci scalar and Ricci curvature tensor respectively. Assuming homogeneity
and isotropy, the stress-energy tensor Tµν can be written in such a way that it
resembles the one for a perfect fluid:

Tµν = diag(ρ, p, p, p), (2.9)

with p the pressure and ρ the energy density. The energy density consists of
a matter, radiation and vacuum component. With Tµν in this form, Einstein’s
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Type Energy density w Scale factor

Radiation ρ ∝ a−4 1/3 a ∝ t1/2
Matter ρ ∝ a−3 0 a ∝ t2/3
Vacuum energy ρ = const. −1 a ∝ eHt

Table 2.1: The expansion of the universe for regimes dominated by radiation, matter
or vacuum energy.

equations reduce to the two independent non-linear ordinary differential equa-
tions (

ȧ

a

)2

=
ρ

3M2
Pl

− k

a2 (2.10)

and (
ä

a

)2

= − 1

6M2
Pl

(ρ+ 3p). (2.11)

Here we have introduced the reduced Planck mass MPl = mPl/
√

8π = 2.44 ×
1018 GeV. The first equation is called the Friedmann equation and the second
the Raychaudhuri equation.

Energy conservation or ∇νTµν = 0 gives the continuity equation

ρ̇+ 3H(ρ+ p) = 0. (2.12)

In general it is possible to relate the pressure p and energy density ρ by the
equation of state

p ≡ wρ, (2.13)

with w the equation of state parameter. Then integrating the continuity equa-
tion gives

dρ

ρ
= −3(1 + w)

da

a
, (2.14)

which has solution ρ ∝ a−3(1+w). Using the Friedmann equation and neglecting
the curvature term gives

da

dt
∝ a−(1+3w)/2. (2.15)

This leads to

a ∝
{
t2/(3(1+ω)) if ω 6= −1,
eHt if ω = −1.

(2.16)

The universe consists of a mixture of non-relativistic matter, radiation (or rela-
tivistic matter) and vacuum energy. For non-relativistic matter the equation of
state parameter w = 0 and it follows that a matter dominated universe expands
as a ∝ t2/3. The energy density of ordinary matter simply scales as ρmat ∝ a−3.
The energy density of radiation falls off faster since also momenta p ∝ 1/a,
thus ρrad ∝ a−4. The equation of state for radiation is p = ρ/3, so w = 1/3
and it follows that a radiation dominated universe expands as a ∝ t1/2. The
energy density of the vacuum ρΛ is constant. The state parameter wΛ = −1, so
a universe dominated by vacuum energy expands exponentially.
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2.2 History of our Universe

The Hubble law shows that the universe was once much denser than it is now. If
we go back in time we see that all spacetime collapses into a single point. This
is the Big Bang scenario. It should be stressed that the Big Bang should not
be seen as an ordinary explosion, where matter is pushed radially outward from
a single point in space, because this would imply an anisotropic universe. The
Big Bang is a singularity where spacetime itself emerges and starts expanding
everywhere at the same rate, resulting in a completely isotropic universe.

According to the Stefan-Boltzmann law ρrad ∝ T 4, which implies that an
expanding universe cools down as T ∝ a−1. This causes various epochs in
the history of the universe. Because it is not known to what energy scale the
Standard Model is valid, what happened before 10−10 s (when the temperature
was around 1 TeV, the energy reached by modern particle accelerators) is more
or less speculation.

The electroweak symmetry broke down when the temperature dropped below
∼ 100 GeV. The W± and Z bosons became massive and hence the cross section
for electroweak processes started to decrease. At T ∼ 3 MeV the reaction rate of
the process νi + ν̄i → e+ + e− dropped below the expansion rate of the universe
and as a result the neutrinos froze out.

In the first minutes after the Big Bang the protons and neutrons combine into
nucleons. This stage is called primordial or Big Bang nucleosynthesis (BBN).
The process

n+ p←→2 H + γ +Q, (2.17)

with the binding energy Q = 2.22 MeV, remains in equilibrium until the tem-
perature falls below T ∼ Q/40. This is because the baryon over photon ratio
η ∼ 10−10. The formation of stable helium nucleons is delayed until this so
called deuterium bottleneck is passed. After t ∼ 180 s, almost all the neutrons
that have frozen out are found in bound states of 4He, leading to a helium mass
fraction of around 25%. Also the abundances of the light elements D, 3He, 4He,
and 7Li are more or less fixed at this time. The predicted deuterium mass abun-
dance is 0.01%, while trace amounts of other isotopes and heavier elements are
predicted. These predicted values only depend on the number of baryons per
photon. That the observed abundances almost exactly matched the predicted
ones was an early and very important confirmation of the Big Bang scenario [3].

In 1965 another major discovery was made by Penzias and Wilson [4].
Searching for cosmic radio waves, they noticed an isotropic background of mi-
crowave radiation. They first assumed that this was due to terrestrial sources
or a problem in their experimental setup, it later turned out to be the Cosmic
Microwave Background (CMB) predicted by Gamow, Alpher and Herman in
the 1940’s. The observed photons originate from the recombination epoch that
took place around 105 years after the Big Bang. Before this time the universe
was opaque, because photons strongly interacted with charged particles. The
equilibrium process

H + γ ←→ p+ e− (2.18)

requires the photons to have at least an energy of 13.6 eV. Due to the dominance
of photons over baryons and the long tail of the photon spectrum, recombination
happened not before the temperature dropped below T ∼ 4000 K or ∼ 0.3 eV.
Suddenly the mean free path length of the photons increased enormously and
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Figure 2.1: The Cosmic Microwave Background mapped by the Wilkinson Microwave
Anisotropy Probe (WMAP). The fluctuations around the background temperature
T0 = 2.7 K are at the 10−5 level and are represented as blue and red spots, corre-
sponding to cooler and hotter regions respectively. [5]

they are more or less non-interacting until we observe them. This means that
the CMB is some kind of blueprint of the universe when it was around 379,000
years old, see figure 2.1. Because of the expansion of the universe, the CMB is
presently observed as a perfect blackbody radiating at T = 2.73 K. Although
it is extremely isotropic, the most important feature of the CMB are actually
the tiny perturbations at the 10−5 level. The regions that are slightly overdense
have a lower temperature in the CMB (and underdense regions have a higher
temperature). Although overdense regions should be hotter according to the
Stefan-Boltzmann law, this is dominated by the fact that the photons in over-
dense regions have experienced a higher gravitational redshift (the Sachs-Wolfe
effect).

The formation of gravitational bound objects started only 108 years after the
Big Bang (or z . 10). During the radiation dominant era, clustering was very
slow due to the background radiation pressure. It became much more efficient
during matter domination. The small density perturbations started to grow via
gravitational instabilities. The background expansion counteracts this effect,
which is why the instabilities grow as a power law rather than exponentially.
In the end, the small scale fluctuations of the very early universe evolved into
the large-scale structures (LSS) of the universe. The reionization epoch started
when objects had formed that were energetic enough to ionize neutral hydrogen.

Finally after 109 years, vacuum energy started to dominate the universe,
resulting in an accelerated expansion. At present vacuum energy constitutes
73 % of the total energy density. The accelerated expansion of the universe was
first observed in 1997 in the study of Type Ia supernovae [6], for which the
Nobel Prize of Physics was awarded in 2011.
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2.3 The Standard ΛCDM Model

The closure parameter Ω is the ratio of the actual density to the critical density

Ω =
ρ

ρc
. (2.19)

If it is larger than one, the energy density of the universe is larger than the
critical density and the universe will eventually collapse. A closure parameter
smaller than one will result in a big crunch. As seen in figure 2.2, the closure
parameter is very close to one, corresponding to a flat universe.

An estimate of the total mass in a galaxy or a galaxy cluster can be obtained
by analyzing the gravitational effects on its visible components. The assumption
that most of the baryonic matter in a galaxy is X-ray luminous leads to the
conclusion that not all matter can be baryonic of origin. The majority of matter
is believed to be so-called cold dark matter (CDM). By definition, the particles
that constitute CDM only weakly interact and move slow compared to the speed
of light, however, their true nature is still unknown. Cold dark matter played an
essential role in the forming of gravitational bound objects in the early universe.

A combination of CMB data, baryon acoustic oscillations (BAO) and su-
pernovae observations, result in the sweet spots as seen in figures 2.2 and 2.3.
For this reason the ΛCDM model is also called the concordance model. The
different density parameters measured to be

Ω− 1 ≤ 10−2,

Ωb ' 0.05,

ΩCDM ' 0.23,

ΩΛ ' 0.73. (2.20)

The energy density of radiation Ωr ' 5 × 10−5 comes mainly from the red-
shifted CMB photons. The primordial neutrinos are presently non-relativistic
and constitute sill 0.3 % of the total energy density. Only a small fraction of all
baryonic matter in the universe is luminous, Ωb,lum ' 0.01.

Figure 2.2: A combination of WMAP, baryon acoustic oscillations (BAO), Type
1a supernovae (SN) and the Hubble Space Telescope (HST) constraint the spatial
curvature parameter and the vacuum energy density. [5]
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Figure 2.3: Observations of the cosmic microwave background (CMB), baryon acous-
tic oscillations (BAO) and supernovae (SNe) give a sweet spot indicating that our
universe is largely dominated by vacuum energy (72 %), while the rest of the energy
density comes from matter (28 %). [7]

2.4 Inflation

The ΛCDM-model seems to give a very convincing description about the history
of our universe. The observed abundances of the light elements are in perfect
agreement with predictions and only a hot Big Bang is consistent with the
cosmic microwave background. However in the 1970’s it was realized that it
had several shortcomings, which we will discuss below. The solutions to the
first two problems will be given in section 2.5.

Horizon problem The CMB is a nearly perfect black-body spectrum, the
anisotropies are only at the 10−5 level. Thus two photons coming from opposite
directions must have been in thermal equilibrium in the past. However at the
time of last scattering the universe we observe today consisted of a large number
of causally disconnected regions. Only regions within angle of about one degree
were causally connected at the time of recombination.

Flatness problem The closure parameter was defined as Ω = ρ
ρc

. The critical
density is the density that would just close the universe. From the Friedmann
equation

H2 =
ρ

3M2
Pl

− k

a2
, (2.21)

we see that ρc = 3M2
PlH

2. The closure parameter can be written as

Ω =
ρ

ρc
=

k

(aH)2
. (2.22)

A flat universe with k = 0 will have the time-independent value Ω0 = 1, which
is an unstable fixed point. In standard cosmology the comoving Hubble radius
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increases with time, thus |Ω−1| diverges with time. Experiments show that Ω is
very close to Ω0, the observed value is Ωobs = 1.00± 0.01 [1]. To have Ω still of
order unity today, Ω must have been extremely fine-tuned to the value Ω0 = 1 in
the past. This brings up the question why our universe is so flat or equivalently
why is our universe is so old? A universe that would not immediately collapse
or end up in a big crunch requires Ω to be extremely fine-tuned to zero.

Unwanted relics/Magnetic-monopole problem With unwanted relics we
mean particles or topological defects created during the very early universe.
They are unwanted in the sense that they have never been experimentally ob-
served, yet such relics are predicted in a wide range of theories. In the original
paper of Guth [8], inflation served as a solution to the magnetic-monopole prob-
lem. Magnetic-monopoles are topological defects which are created during the
GUT phase transition. It is easy to see how inflation can serve as a solution
to this problem: during inflation the number density drops by many orders of
magnitude, while after inflation the temperature is too low to form new parti-
cles.

In 1980, Guth proposed inflation as a solution to these problems [8]. The
inflation hypothesis states that the universe underwent a period of extremely
rapid exponential expansion somewhere between 10−36 and 10−32 seconds after
the Big Bang in which its volume increased by at least a factor 1078. Since
then physicists have come up with hundreds of different inflation models (of
which many have already been rejected). Up to now the mechanism behind
inflation is unclear, but after more than 30 years the inflation model itself is
still a working hypothesis about the very early universe. In the future the Planck
satellite will come up with more precise observations, which hopefully enables
us to discriminate between all the possible realizations of inflation.

Nowadays the most important reason to believe that there was a period of
inflation are not the problems sketched in this section, but is the scale invariance
of the fluctuations in the CMB which will be discussed in section 2.6.

2.5 The Shrinking Hubble Sphere

The causal or particle horizon is equal to the maximum distance a light ray com-
ing from a particle could have travelled. In comoving coordinates the comoving
particle horizon τ is given by

τ ≡
∫ t

0

dt′

a(t′)
=

∫ a

0

da

Ha2
=

∫ a

0

d ln a

(
1

aH

)
(2.23)

From eq. (2.15) we see that it scales with a and a1/2 for respectively a radiation
and matter dominated universe. In general

τ ∝ a(1+3w)/2. (2.24)

Inflation is defined as a period with ä > 0 or equivalently (aH)−1 < 0. Thus
during inflation the comoving Hubble length, which is the characteristic length
scale of the universe, decreases with time. In comoving coordinates the observ-
able universe becomes smaller.
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Figure 2.4: This figure shows how quantum fluctuations in the inflationary universe
turn into classical perturbations. Since there can be no causal physics at super-horizon
scales, perturbations freeze-in when they leave the horizon. After inflation the comov-
ing Hubble radius increases and fluctuations re-enter the horizon when k � aH. [7]

What does this mean to quantum fluctuations during inflation? Particle
and anti-particles pairs pop out of the vacuum all the time. Under normal
circumstances they annihilate almost immediately. However, during inflation it
is possible that they are ripped apart before they had time to annihilate again. If
they are separated by a distance greater than the causal horizon, the quantum
fluctuation has turned into a classical perturbation. Since no causal physics
can happen on super-horizon scales, the amplitude of a fluctuation remains
constant and we say that the perturbation is frozen in. Due to the expansion
of the universe all fluctuations are stretched over enormously large distances.
Since the fluctuations are constantly generated, they exist at all length scales
k−1. They leave the horizon when k < aH, i.e. they are larger than the
characteristic length scale of the universe. After inflation the comoving Hubble
length increases and eventually all fluctuations become physical again when
k � aH. The small scales that lead to the formation of baryonic structure
re-entered the horizon when the universe was about 100.000 yrs old.

Now the horizon problem can easily be understood. Although the CMB
consists of many areas that are not connected now, they have been in causal
contact in the past. Homogeneity on very small scales established by causal
physics before the inflation era resulted in the homogeneity on very large scales
today.

Also the flatness problem is solved by inflation, because during inflation

|Ω(a)− 1| = k

(aH)2
. (2.25)

is driven to zero. Remember that during the conventional expansion of the
universe the comoving Hubble radius (aH)−1 increases withe time and eq. (2.25)
diverges. In contrast, in an inflationary era (aH)−1 decreases by definition.
Physically this means that inflation flattens the curvature of the universe.
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2.6 Primordial Density Perturbations

Perturbations in one or more scalar fields during inflation are the seeds for the
structure of our present day universe. If we call the perturbations existing at
the time were nucleosynthesis is about to start, a bit below T ∼ 1 MeV, the
primordial perturbations, we have a simple initial condition to study the subse-
quent evolution of the universe. At this time all the positrons have annihilated
with the electrons, so all that remains are baryons, cold dark matter, photons
an neutrinos. So the universe can be regarded as a cosmic fluid consisting of 4
components

ρ = ρν + ργ + ρB + ρc (2.26)

The photons and neutrinos have already decoupled, while the baryons and pho-
tons still interact strongly by Compton scattering. The cold dark matter doesn’t
interact by definition. It is assumed that on cosmological scales the adiabatic
condition holds. This means that the composition of the energy density is the
same at every location in the universe. So every individual component can be
written as a function of the total energy density, ρa = ρa(ρ).

The primordial density perturbations have the striking property that they
are nearly scale invariant. This is of course due to the fact that the universe
inflated almost exponentially. The departure of scale invariance is described by
the spectral index n(k), defined by

Ps(k) ∝ kn(k)−1. (2.27)

Another feature of these primordial perturbations is that they seem to be
Gaussian. This means that there is no correlation between the Fourier com-
ponents of δρk measured at two different points in space except the reality
condition δρ∗k = ρ−k. The observed non-Gaussianity is less than 10−3.

2.7 The Power Spectrum

Before recombination baryonic matter is strongly coupled to photons, resulting
in oscillatory modes of the baryon-photon plasma. Because they move with
the speed of sound, these modes are called baryon acoustic oscillations. The
temperature fluctuations in the CMB are a direct result of these oscillations.

The CMB anisotropies can be expressed with the power spectrum, where
the temperature fluctuations are shown as a function of the angular scale. In
this way the million of pixels of the CMB map are represented in a much more
compact form. The CMB temperature fluctuations δT with respect to the back-
ground temperature T0 = 2.7 K can be expanded in terms of spherical harmonics

δT (n)

T
=
∑
lm

almYlm(n), (2.28)

with l the multipole number and m = −l, . . . ,+l. The vector n denotes the
direction in the sky. Assuming the fluctuations are of Gaussian origin, all infor-
mation is then included in the expression

〈a∗lmalm〉 = δll′δmm′Cl. (2.29)
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Multipole moment

Figure 2.5: Power spectrum of the CMB temperature fluctuations in terms of angular
scale. [5]

The power spectrum shown in figure 2.5 is obtained by plotting the quantity
l(l + 1)Cl against l. The statistical variance for the low multipole moments is
due to cosmic variance, which means that the sampling size is too small for the
largest scales.

Remember that during inflation quantum fluctuations evolve into classical
perturbations that are stretched over enormously large distances. These fluc-
tuations are thus created on all possible length scales. Because the comoving
wavenumbers are constant and 1/aH shrinks during inflation, the fluctuation
leaves the horizon when k < aH. When they leave the horizon they are frozen
in. After inflation the smallest scales will enter the horizon first (k � aH means
sub-horizon) and start to oscillate again.

Now the powers spectrum can easily be understood. The first peak corre-
sponds to the wave that had just enough time to do a partial oscillation between
horizon re-entry and recombination. The second peak had just enough time to
do a full oscillation, etc. Similarly 1

4 ,
3
4 ,

5
4 ,

7
4 , . . . waves are dips in the power

spectrum.
Another feature of the power spectrum is that the peaks rapidly start to

decrease for higher multipole moment l. One reason for this effect is that re-
combination did not happen at a single point in time. This doesn’t effect the
low multipole moments, because the wavenumber of a wave that has just enough
time to do one partial oscillation barely changes in this period. On the other
hand this has of course a huge influence on the higher multipole moments.
A second reason is due to the diffusion of photons before recombination took
place. This effect is known as Silk damping and leads to a decrease of the CMB
anisotropies for multipole moments l & 800.
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Chapter 3

Particle Physics

This chapter starts with a quick review of the Standard Model. After introduc-
ing Yang-Mills theory, we are ready to explain the strong and the electroweak in-
teraction. Finally, we discuss the Faddeev-Popov procedure and the Rξ gauges.

3.1 Introduction to the Standard Model

3.1.1 Historical Background

The Standard Model provides us a with a theory about elementary particles
and their interactions. Since the 1970’s this theory has been in agreement
with the results of nearly all particle physics experiments. In fact present day
experiments confirm it to an even higher accuracy.

A major step towards the theory was made by Glashow in 1960. Based on
the work on non-Abelian gauge theories by Yang and Mills, he showed how the
weak and electromagnetic interaction could be combined into one force [9]. His
electroweak theory was not complete until 1967, when Weinberg implemented
the Higgs Mechanism into it [10]. This mechanism predicts the existence of
the Higgs boson, which had long been the last missing particle of the Standard
Model. It was finally found at the Large Hadron Collider in 2012 [11, 12].
Another important contribution to the development of the Standard Model
came from ’t Hooft in 1970. He proved that under certain conditions Yang-
Mills theories, and the Standard Model in particular, are renormalizable.

The theory of the strong interaction started with the notion of the elemen-
tary particles called quarks that make up the proton and other hadrons. The
quark model was independently proposed by Gell-Mann [13] and Zweig [14] in
1963 to explain the particle spectrum of the hadrons. In 1968 the quarks were
first experimentally discovered in deep inelastic scattering experiments at the
Stanford Linear Accelerator Center (SLAC) [15]. Already in 1972, Kobayashi
and Maskawa had predicted three generations of quarks to explain CP violation
in kaon decays [16]. However, it took until 1995 before the experimental dis-
covery of the last missing quark, the top quark with a mass over 170 GeV/c2.
After the discovery of asymptotic freedom Quantum Chromodynamics became
the widely accepted theory for the strong interaction.

For a long time it was believed that neutrinos were massless particles and
this is also assumed in the Standard Model. However, the experimental discov-
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ery of neutrino oscillations requires the neutrinos to have a nonzero mass [17].
A number of solutions to this problem have been proposed, e.g. the seesaw
mechanism [18].

Unfortunately there is one force missing in the Standard Model, namely
gravity. This is because it turns out to be very hard to combine general relativity
with quantum mechanics. Up to now a quantum theory of gravity is still missing.
The classical description presumably only fails at scales smaller than 10−33 cm,
so under most circumstances the classical limit of this force can be applied. Only
for the study of very massive objects or extremely high energetic events, like
black holes or the very early universe, a quantum theory of gravity is required

It is believed that the Standard Model is only the low-energy limit of a more
fundamental theory. Such a theory might fix some of the many free parameters
of the Standard Model. For example, the underlying symmetry of the Standard
Model is SU(3) × SU(2) × U(1) with each symmetry group having a different
coupling constant. In so-called Grand Unified Theories (GUT) the symmetry of
the Standard Model is put into one larger group with only one coupling constant.
This is motivated by the fact that the three Standard Model coupling constants
seem to merge into a single value at a certain energy scale (ΛGUT ∼ 1015 GeV).
It is then assumed that the higher symmetry is broken when the energy drops
below this energy scale, causing the separation of the strong and electroweak
interaction. A natural choice for the higher symmetry group would be SU(5).
However, since this is in conflict with the observed proton lifetime this theory
has already been rejected.

String theory is another attempt to overcome the problems above. The
identification of the spin-2 particles that appear in this theory with gravitons
provides a natural way to incorporate gravity. Also string theory is unique
in the sense that only one parameter (the length scale of the strings, ls ∼
10−33 cm) is needed to specify the theory, which makes it really attractive for
aesthetic reasons. In the mid-eighties it was realized that string theory was able
to reproduce the Standard Model. Moreover, the large number of extra fields
that emerge in string theory might provide candidates for dark energy and dark
matter.

3.1.2 Particle Content of the Standard Model

The Standard Model is based on Quantum Field Theory [19, 20, 21]. In such
theories particles are represented as excitations of quantum fields. One can
divide the particles of the Standard Model into fermions and gauge bosons. The
fermions, which form the building blocks of all matter around us, can then be
split into quarks and leptons. The interactions between these ‘matter particles’
are described by the exchange of gauge bosons, which can be seen as ‘the force
carriers’. Finally there is one spin-0 particle in the Standard Model, the Higgs
boson. This particle is an excitation of the Higgs field above its ground state.
The gauge bosons and fermions obtain their masses by interactions with the
Higgs field.

The leptons come in three generations. The first one is well-known and
consists of the electron and the electron neutrino, furthermore there are the
muon and tau generations. Every generation has its own lepton number. For
the electron family it is Le, and this number is defined as one for e− and νe
and zero for the other leptons. The other two lepton numbers, Lµ and Lτ , are
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defined in the same way. The different lepton numbers are conserved quantities
in all interactions. Every lepton has an corresponding anti-particle with an
opposite sign for its charge and lepton number.

The quarks are the elementary particles that form the hadrons. They are
sensitive to the strong interaction and hence they must have a color quantum
number. Just like the leptons they come in three generations and for every quark
there is an anti-quark with opposite charge and color. Due to color confinement,
quarks can only be observed as bound states and never as free particles. The
baryon number is defined as B = (nq − nq̄)/3 and is also conserved in all
interactions. Based on this number the hadrons can be separated into the
baryons with B = 1 and mesons with B = 0. The baryons are composed of
three quarks, while the mesons are composed of one quark and one anti-quark.
For example the proton is the bound state uud, while the neutron is denoted
as udd. A big open question in physics is what causes the baryon-antibaryon
asymmetry of the universe.

The six types of quarks (up, down, charm, strange, top, bottom) are also
called flavors. Only in the strong interaction flavor is always conserved. So
the heavier quarks can only decay to up and down quarks via weak interaction.
Because particles of the first generation are the lightest, only these particles
are stable. For this reason ordinary matter is almost exclusively made up of
particles of the first generation, i.e. electrons, protons and neutrons.

In the Standard Model there are three different kinds of gauge bosons. First
of all there is the photon, denoted as γ, which carries the electromagnetic force.
The weak force is mediated by the W± and Z0 bosons (the W boson comes in
a positively and negatively charged variant). Finally there are eight gluons, the
force carriers of the strong interaction.

3.2 Non-Abelian Gauge Invariance

A gauge theory is a kind of field theory in which the Lagrangian is invariant un-
der certain transformations that may vary from point to point in space and time.
The prototype of a gauge theory is quantum electrodynamics (QED), where the
Lagrangian is invariant under U(1) transformations. The QED Lagrangian

LQED = −1

4
FµνF

µν + ψ̄iγµ(∂µ + ieAµ)ψ −mψ̄ψ, (3.1)

with the field strength tensor Fµν ≡ ∂µAν − ∂νAµ, is indeed invariant under

ψ(x) → e−iα(x)ψ(x),

ψ̄(x) → eiα(x)ψ̄(x),

Aµ(x) → Aµ(x) +
1

e
∂µα(x). (3.2)

The gauge symmetry group of the Standard Model is SU(3) × SU(2) ×
U(1). The SU(3) symmetry comes from the strong interaction and the SU(2)×
U(1) from the electroweak part. Since the SU(3) and SU(2) groups are non-
Abelian, we need a generalization of the gauge principle to non-Abelian groups.
In 1954 Yang and Mills worked out a non-Abelian gauge theory to describe local
SU(2) isotopic spin [22]. Their formalism could easily be adjusted to arbitrary
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Symbol Name Mass (MeV/c2) Electric
charge (e)

e− electron 0.511 -1
νe electron neutrino ? 0
µ− muon 105.66 -1
νµ muon neutrino ? 0
τ− tau 1784.1 -1
ντ tau neutrino ? 0
u up 2.4 2/3
d down 4.8 -1/3
c charm 1270 2/3
s strange 104 -1/3
t top 171200 2/3
b bottom 4200 -1/3
γ photon 0 0
W± W-boson 80.4 GeV/c2 ±1
Z Z-boson 91.2 GeV/c2 0
g gluon 0 0
h Higgs boson 125 GeV/c2 0

Table 3.1: Elementary particles with their properties. The spin-1/2 fermions have a
corresponding anti-particle, denoted as e+, ν̄e, ū, d̄ etc. The quarks come in an r, g or
b color state. The gauge bosons have spin-1, the Higgs boson spin-0.

symmetry group and since then non-Abelian gauge theories are known as Yang-
Mills theories. However, because of the emergence of seemingly unphysical
massless particles, these Yang-Mills theories had long been neglected, .

First we will derive Yang-Mills theory with an arbitrary SU(N) symme-
try group. Let the complex scalar field ϕ be ϕ(x) = {ϕ1(x), ϕ2(x), . . . , ϕN (x)}.
This field transforms as ϕ(x)→ Uϕ(x), with U an element of the group SU(N).
Obviously, the Lagrangian L = ∂ϕ†∂ϕ−V (∂ϕ†ϕ) is invariant under such trans-
formations. But what happens if the transformations are local, which means
that they may vary from point to point in spacetime, so U = U(x)? Clearly
ϕ†ϕ→ ϕ†U†Uϕ = ϕ†ϕ, but note that ∂ϕ†∂ϕ is no longer invariant:

∂µϕ→ ∂µ(Uϕ) =U∂µφ+ (∂µU)ϕ

=U
[
∂µϕ+ (U†∂µU)ϕ

]
. (3.3)

Suppose the transformations are infinitesimal, so they can be written as U =
I− iεaTa. Here the Ta are the generators of the symmetry group and the εa are
infinitesimal parameters. We can get rid of the second term in eq. (3.3) if we
replace the ordinary derivative by a so called covariant derivative defined by

Dµϕ = (∂µ − igAaµTa)ϕ. (3.4)

We have introduced additional vector fields Aaµ, which are called gauge fields.
Note that there are as many gauge fields as there are generators of the group,
which is N2 − 1 for SU(N). The covariant derivative of ϕ should transform in
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the same way as ϕ itself. This requires

(Dµϕ)′ =(∂µ − igA′µ · T )Uϕ

=(∂µU)ϕ+ U(∂µϕ)− igA′µ · TUϕ
=U(∂µ − igAµ · T )ϕ, (3.5)

where we have used the notation Aµ · T = AaµTa. To see how the fields Aaµ
should transform, subtract the third line from the second line:

0 =(∂µU)ϕ− igA′µ · TUϕ+ igUAµ · Tϕ
=(−igA′µ · T + igUAµ · TU−1 + (∂µU)U−1)Uϕ (3.6)

So for the transformed gauge fields we have the relation

A′µ · T =UAµ · TU−1 − i

g
(∂µU)U−1

=UAµ · TU−1 +
i

g
U∂µU

−1. (3.7)

Writing out the infinitesimal transformation explicitly, we can see that the gauge
fields transform as

δA′µ · T =− iεa [Ta, Aµ · T ]− 1

g
(∂µε

a)Ta

=εaAbµfab
cTc −

1

g
(∂µε

c)Tc. (3.8)

Note that if the transformations are global, that is the parameters do not depend
on spacetime, the fields Aaµ transform as the adjoint representation of the group.

The next step is to find the kinetic terms for the gauge fields. In quantum
electrodynamics the kinetic term of the gauge fields

LA,kin = −1

4
FµνF

µν (3.9)

is clearly gauge invariant, because

F ′µν = ∂µA
′
ν − ∂νA′µ

= ∂µAν +
1

e
∂µ∂να(x)− ∂νAµ −

1

e
∂ν∂µα(x)

= Fµν . (3.10)

The generalization to the non-Abelian case is a little more involved, because
there the combination ∂µAν − ∂νAµ transforms non-trivially:

∂µA
′
ν · T − ∂νA′µ · T =∂µ(UAν · TU−1) +

i

g
∂µ(U∂νU

−1)− (µ↔ ν)

=U(∂µAν · T )U−1

+ (∂µU)Aν · TU−1 + UAν · T∂µU−1

+
i

g
(∂µU)(∂νU

−1) +
i

g
(U∂µ∂νU

−1)

− (µ↔ ν) (3.11)
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As we will see later, the required transformation law for the field strength is

F ′µν · T = UFµν · TU−1, (3.12)

so the undesired terms in eq. (3.11) are

(∂µU)Aν · TU−1 + UAν · T∂µU−1

+
i

g
(∂µU)(∂νU

−1) +
i

g
(U∂µ∂νU

−1)

− (µ↔ ν) (3.13)

The second term in the second line can be dropped, because derivatives com-
mute. To get rid of the remaining terms, define the field strength tensor as

Fµν · T ≡ ∂µAν · T − ∂νAµ · T − ig[Aµ · T,Aν · T ]. (3.14)

Explicitly, the extra term transforms as

−ig[A′µ · T,A′ν · T ] =− igU [Aµ · T,Aν · T ]U−1

− ig[UAµ · TU−1,
i

g
U∂νU

−1]

− ig[
i

g
U∂µU

−1, UAν · TU−1]

− ig[
i

g
U∂µU

−1,
i

g
U∂νU

−1]

(3.15)

Using the relation 0 = ∂(U−1U) = (∂νU
−1)U + U−1∂νU , the second and third

line combine into

UAµ · T∂νU−1 − U(∂νU
−1)UAµ · TU−1 − (µ↔ ν) =

UAµ · T∂νU−1 + (∂νU)Aµ · TU−1 − (µ↔ ν), (3.16)

and the fourth line becomes

i

g
(U(∂µU

−1)U(∂νU
−1)− (µ↔ ν) =

− i

g
(∂µU)(∂νU

−1)− (µ↔ ν). (3.17)

This cancels the remaining terms in eq. (3.13) and we can finally conclude that
the defined field strength has the transformation property eq. (3.12) Writing out
the components of the field strength, we obtain

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcA

b
µA

c
ν . (3.18)

The gauge invariant combination

tr F ′µν · TF ′µν · T = tr UF ′µν · TU−1UF ′µν · TU−1 = tr Fµν · TFµν · T (3.19)

serves as the proper kinetic term of the gauge fields in Yang-Mills theory. If the
generators are chosen such that tr[TaTb] ∼ δab, the kinetic term can be written
as

LAa,kin = −1

4
F aµνF

aµν . (3.20)
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The physical interpretation of the kinetic terms is as follows. Analogous to QED,
the quadratic term describes the propagation of a massless vector boson. More-
over the cubic and quartic terms in eq. (3.20) describe the self-interactions of
the gauge bosons, which arise because the gauge bosons are charged themselves.

As we have seen in this section, the existence of the gauge fields is a direct
consequence of imposing symmetries. The interactions of the matter particles
with these gauge fields are determined by the covariant derivative. Also the
cubic and quartic self-interactions of the gauge field come from the kinetic term
eq. (3.20) and are completely fixed by the gauge group structure.

3.3 The Strong Interaction

The strong interaction is responsible for the fact that quarks form bound states
of mesons and baryons. On larger length scales, a residual effect of the strong
interaction is the attractive force between protons and neutrons, which enables
the formation of nucleons. In this sense it is known as the nuclear force or
residual strong force. As we will see in this section, the strong interaction can
be described by quantum chromodynamics. Remarkably, the strong interaction
is much better understood at high-energy scales.

The original quark model had two serious problems. Firstly, one could not
explain why particles with fractional charge could not be found in nature. On
the other hand, particles were observed that seemed to be symmetric under
the interchange of spin and flavor quantum number of the quarks. This is
inconsistent with the fact that quarks are fermions which should obey Fermi-
Dirac statistics. An example is the ∆++ resonance with zero orbital momentum.
This spin-3/2 particle is a bound state of three up quarks with their spins
parallel, apparently violating Pauli’s exclusion principle.

These problems can be solved if one assumes that quarks carry an additional
quantum number. The e+e− gives a clear indication for the existence of this
‘hidden’ quantum number. One possible reaction in this process is e+e− →
µ+µ− with cross section

σtot ∼
e4

E2
. (3.21)

Another possibility is e+e− → qf + q̄f , where the subscript f stands for flavor.
The free quarks that are formed in this reaction will instantly form hadrons due
to the strong interaction. If we assume that the energy is high enough that the
quark masses can be neglected, we find the cross section

σtot ∼
e2

E2

∑
f

Q2
f . (3.22)

Here Q = 2/3 for the u, c and t quarks, while for d, s and b quarks Q = −1/3.
Define the ratio

R(E) ≡ σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
=

∑
f Q

2
f

e2
. (3.23)

At an energy scale where the five lightest quarks (u, d, s, c, b) can be formed, the
experimental value of R is 11

3 . This contradicts eq. (3.23) which equals

4

9
+

1

9
+

1

9
+

4

9
+

1

9
=

11

9
, (3.24)
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so the experimental value seems to be a factor three too high. This problem is
solved by assuming that the quarks carry an additional color quantum ‘number’
that can be either red, green or blue. Then we should not only sum over the
flavor in eq. (3.23), but also over the three extra color degrees of freedom, giving
the right ratio R. Later we will see why this new quantum number is called
color.

We require that the ∆++ wave function is antisymmetric under the inter-
change of the color quantum number. In this way we get a totally antisymmetric
overall wave function, because we saw that the wave function was totally sym-
metric in spin and flavor. The three up-quarks are represented by ui, where
i = 1, 2, 3 is the color index. Then the wave function is written as

εijkuiujuk. (3.25)

There is a global SU(3) symmetry connected to the color degree of freedom. It
is assumed that all hadron wave functions are invariant under SU(3) transfor-
mations. This means that only color singlet states are physically observable, so
the only allowed combinations are

q̄iqi, εijkqiqjqk, εijkq̄iq̄j q̄k, (3.26)

which are respectively the mesons, baryons and anti-baryons. Note that the
quarks in eq. (3.26) can have different flavor quantum numbers.

Experimentalists showed that quarks hardly interact at very high energies,
which means that at very small distances they act as if they are free particles.
This phenomenon is called asymptotic freedom. Theorists started looking for
asymptotically free quantum field theories, which were not known at that time.
Eventually it was realized that Yang-Mills theory can be asymptotically free.
The next step was to identify the right symmetry group. At that time the
global SU(3) symmetry was a bit mysterious. One wondered where this sym-
metry came from and what physical mechanism assured that only color singlets
were observable. A first guess of course was to gauge the global SU(3) symme-
try. Indeed Yang-Mills theory with the symmetry group SU(3) and six quark
flavors turns out to be asymptotically free [20]. These requirements lead to an
almost unique theory for the strong interaction, which is known as quantum
chromodynamics (QCD).

The QCD Lagrangian can be written as

L = −1

4
F aµνF

aµν +
∑
f

ψ̄f,i(iDµ −mf )ijψf,j , (3.27)

where the field strength is given by eq. (3.18),

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcA

b
µA

c
ν , (3.28)

and the covariant derivative is

(Dµψf )i = (∂µδ
ij − igλaijAaµ)ψf,j . (3.29)

Here the matrices λa are traceless Hermitean 3× 3 matrices which form a basis
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for the Lie algebra of SU(3). A proper basis is

λ1 =
1

2

 0 1 0
1 0 0
0 0 0

 , λ2 =
1

2

 0 −i 0
i 0 0
0 0 0

 , λ3 =
1

2

 1 0 0
0 −1 0
0 0 0

 ,
λ4 =

1

2

 0 0 1
0 0 0
1 0 0

 , λ5 =
1

2

 0 0 −i
0 0 0
i 0 0

 , λ6 =
1

2

 0 0 0
0 0 1
0 1 0

 ,
λ7 =

1

2

 0 0 0
0 0 −i
0 i 0

 , λ8 =

√
3

6

 1 0 0
0 1 0
0 0 −2

 . (3.30)

The dimension of the SU(3) group is eight, so this model contains eight
vector fields Aµ. The quanta of these fields are called gluons and they let the
quarks interact by exchanging color. Thus the gluons must have a color-anticolor
charge. One might wonder why there are only eight gluons and and not just
the following nine: rr̄, rḡ, rb̄, gr̄, gḡ, gb̄, br̄, bḡ and bb̄. Well, with this set of
eigenstates it is possible to form a colorless gluon (rr̄ + bb̄ + gḡ), which would
imply that also colorless particles can interact with each other. So the eight
gluons in nature are linear combinations of the above nine, under the condition
that color must be transferred, resulting in eight independent color states. With
these eight states it is impossible to form the forbidden singlet state.

We have seen that hadrons are singlets under SU(3), meaning that free
quarks can never be observed. This is known as confinement, which is next to
asymptotic freedom the other characteristic property of the strong interaction.
Although the strong interaction disappears at very small scales, it becomes
stronger and stronger at larger distances. This means that below some energy
scale the perturbative approach no longer holds. Lattice QCD provides a non-
perturbative tool to study the strong interaction. Indeed confinement has been
shown in lattice QCD calculations, however an analytical proof of confinement
is still missing. The scale at which the coupling becomes of order unity is called
the QCD scale. The experimental value of this scale is ΛQCD ∼ 220 MeV. At
the very early stages of the universe, when the energy was far above the QCD
scale, quarks and gluons could freely move, forming the so called quark-gluon
plasma.

3.4 The Electroweak Interaction

3.4.1 Spontaneous Symmetry Breaking

Consider the Lagrangian for a set of N interacting scalar fields

L =
1

2
(∂φi)

2 − V (φ2
i ), (3.31)

with the potential

V (φi) =
m2

2
φ2
i +

λ

4
φ4
i , (3.32)

where i = 1, . . . , N . This Lagrangian is invariant under the operation

φi → Rijφj , (3.33)
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with Rij an arbitrary N × N orthogonal matrix. These operations form the
rotation group in N dimensions, simply called the O(N) group.

Clearly, adding terms like φ2
1 or φ4

1 breaks the symmetry down to O(N − 1).
In fact we can break it down to O(N−M) for any M < N by adding more terms
like these. Adding terms that reduce the symmetry of a system is called breaking
the symmetry ‘by hand’. A more interesting case of symmetry breaking happens
when the system breaks its own original symmetry. This is called spontaneous
symmetry breaking, which is a very common concept in modern physics. As we
will see, it also plays a fundamental role in the Standard Model.

Let’s start with a simple example of spontaneous symmetry breaking. Take
the Lagrangian eq. (3.31) for a single field, and slightly adjust by replacing the
mass term m2 with a negative parameter −µ2:

L =
1

2
(∂φ)2 − V (φ), (3.34)

with the potential

V (φ) = −µ
2

2
φ2 +

λ

4
φ4. (3.35)

Note that because the mass term is negative, the potential has two minima at

φ = v ≡ ±
√

µ2

λ instead of just a single minimum at φ = 0. The Lagrangian has

a discrete symmetry, because it is invariant under the reflection φ→ −φ.
Instead of describing the system in terms of the field φ, we can analyze the

system in terms of a perturbation around one of the ground states. As long as
the fluctuations are small, all what is physically relevant is the behaviour of the
potential around this ground state. In some sense this is a more natural choice
and as we will see this gives a clear physical interpretation of the theory. Say
we choose the ground state at +v, then we write φ = v + σ. In terms of this
new field σ the Lagrangian becomes

L =
µ4

4λ
+

1

2
(∂σ)2 − µ2σ2 − 3

√
λµσ3 − 3

2
λσ4. (3.36)

Note that the reflection symmetry is no longer present, by decaying to one of
the ground states the system has broken this symmetry! The first term is just
a constant shift of the potential. Looking at he last three terms, we see that
the Lagrangian describes a scalar field with mass

√
2µ interacting via σ3 and σ4

interactions. The ground state is called the vacuum, since it is the state where
no particles are present.

Now we will see what happens when the broken symmetry is continuous
instead of discrete. As an example we analyze the Lagrangian eq. (3.31) for
N=2, which is clearly O(2) symmetric. The potential of this Lagrangian is
shown in figure 3.1. Instead of a discrete number of different ground states, this
model has infinitely many ground states related to each other by O(2) rotations.
Let us do exactly the same as before: consider fluctuations around one of the
ground states. Say we choose the ground state to point in the 1-direction, so
φ1 = v and φ2 = 0. Then we can rewrite the fields as φ1 = v + σ and φ2 = π,
and express the Lagrangian in terms of the perturbations as

L =
µ4

4λ
+

1

2

[
(∂σ)2 + ∂π)2

]
− µ2σ2 − . . . , (3.37)
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Figure 3.1: The potential of a massive scalar field with quartic interactions has the
shape of a Mexican hat.

here the dots represent the terms of cubic and quartic order. The first term is
exactly equal to the constant term we found in eq. (3.36). Just like before we also
find a particle with mass

√
2µ. The remarkable thing here is that there are no

terms proportional to π2, so we conclude that π is a massless field. This can also
be seen from the shape of the potential; the field π describes excitations along
the trough of the potential, which don’t cost energy. What we have found in
the previous example is in accordance with Goldstone’s theorem. This theorem
states that for every broken continuous symmetry, a massless scalar field known
as a Nambu-Goldstone boson appears in the theory.

In our last example of spontaneous symmetry breaking we will see what
happens if the broken symmetry is a local symmetry. Let’s take the simple
U(1) symmetric Lagrangian

L = −1

4
FµνF

µν + (Dµφ)†Dµφ− V (φ†φ), (3.38)

with
V (φ†φ) = −µ2φ†φ+ λ(φ†φ)2. (3.39)

The covariant derivative is

Dµφ = (∂ − igAµ)φ, (3.40)

with Aµ the gauge field. This Lagrangian is invariant under the transformations

φ → e−iα(x)φ, (3.41)

Aµ → Aµ −
1

g
∂µα(x). (3.42)

The potential has a minimum at |φ| = v/
√

2. If we choose the ground state
to point in the 1-direction, the field φ can be parametrized in terms of the
perturbations φ1 and φ2 as

φ =
1√
2

(v + φ1 + iφ2). (3.43)
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After writing out the kinetic term for φ we obtain

|Dµφ|2 =
1

2
∂µφ1∂

µφ1 +
1

2
∂µφ2∂

µφ2 − gvAµ∂µφ2 +
g2v2

2
AµA

µ + . . . , (3.44)

where the dots stand for terms cubic and quartic in the fields φ1, φ2 and Aµ.
Identifying the fourth term as a mass term for the field Aµ, it can be seen that
MA = gv. At first sight it might seem that the sign of the mass term is incorrect,
but note that the physical spacelike components of Aµ have exactly the right
sign.

The Goldstone boson can be removed from the Lagrangian by going to the
unitary gauge, in which the field φ is strictly real at every point in space. First
parametrize the complex field φ in polar coordinates

φ(x) =
1√
2

[v + η(x)] exp (iξ(x)/v)

=
1√
2

[v + η(x) + iξ(x) + . . .] . (3.45)

Then define the new fields

φ′(x) = exp (−iξ/v)φ(x) =
1√
2

(v + η(x)), (3.46)

Bµ(x) = Aµ −
1

gv
∂ξ(x). (3.47)

Writing out the Lagrangian we obtain

L =
1

2
(∂µη)(∂µη)− µ2η2 − 1

4
Fµν(B)Fµν(B)

+
1

2
g2v2BµB

µ +
1

2
g2BµB

µη(2v + η)

− λvη3 − 1

4
λη4. (3.48)

We see that the field ξ(x) has disappeared from the Lagrangian. We say that
its degree of freedom has been eaten by the massive field Bµ. This phenomenon
is called the Higgs mechanism.

3.4.2 The GWS Theory of Weak Interactions

A unified description of the weak and electromagnetic interactions is given by
the GWS (Glashow-Weinberg-Salam) theory. This model has four spin-1 gauge
fields, which are Aiµ (i = 1, 2, 3) transforming under SU(2)L and Bµ transform-
ing under U(1)Y . Based on the discussion of Yang-Mills theory, we expect these
vector particles to be massless. Somehow they should become massive, since
the only massless gauge boson in nature is the photon. If explicit mass terms
like

1

2
m2AµA

µ (3.49)

are added to the Lagrangian, we destroy the gauge invariance eq. (3.7). As we
will see it is the Higgs mechanism that gives the vector particles their masses.
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The SU(2)L×U(1)Y symmetry is spontaneously broken to U(1)Q by adding
the complex doublet of scalar fields

φ =

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
. (3.50)

Under a gauge transformation this doublet transforms as

φ→ eiα
aτaeiβY φ, (3.51)

with ~τ = ~σ/2. Suppose the neutral part of the doublet acquires a nonzero
vacuum expectation value v. By gauge transforming it can always be pointed
in the real direction, so that the ground state simply becomes

〈φ〉 =
1√
2

(
0

v

)
. (3.52)

The original symmetry should not be completely broken, because we know that
one of the gauge bosons should remain massless. Obviously a gauge transfor-
mation with α1 = α2 = 0 and α3 = β leaves the ground state invariant, which
means that we can construct the generator Q = T 3 + TY = T 3 + 1

2Y and have
invariance under U(1)Q.

The Lagrangian for the Higgs field and the gauge fields is

L = −1

4
F iµνF

iµν − 1

4
GµνG

µν + (Dµφ)†Dµφ− V (φ†φ), (3.53)

where
F iµν = ∂µA

i
ν − ∂νAiµ + gεijkAjµA

k
ν , i = 1, 2, 3 (3.54)

and
Gµν = ∂µBν − ∂νBµ. (3.55)

The potential given by

V (φ†φ) = −µ2φ†φ+ λ(φ†φ)2 (3.56)

is of the most general form that is renormalizable and invariant under Lorentz
and parity transformations. It has the shape of a Mexican hat, with a local
maximum at zero and minima at |φ0| = v =

√
µ2/λ. The scale v sets the

electroweak scale, experimentally it is known that v ' 246 GeV.
The covariant derivative of φ is

Dµφ =

(
∂µ − ig~τ · ~Aµ −

i

2
g′Bµ

)
φ, (3.57)

where ~Aµ and Bµ are the gauge fields with their coupling constants g and g’.
Writing out the kinetic term explicitly we obtain

(Dµφ)†Dµφ =
1

2
(0 v)

(
gAaµτ

a +
1

2
g′Bµ

)(
gAbµτ b +

1

2
g′Bµ

)(
0

v

)
=

1

2

v2

4

[
g2(A1

µ)2 + g2(A2
µ)2 + (−gA3

µ + g′Bµ)2
]

(3.58)
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Note that we have broken the original symmetry to a U(1)em symmetry that
is generated by Q = T 3 + TY . The field that couples to this generator is the
electromagnetic field, which can be obtained by making the change of basis from
{A3, B} to {Z,A}:

Z0
µ = A3

µ cos θW −Bµ sin θW (3.59)

and
Aµ = Bµ cos θW +A3

µ sin θW , (3.60)

where the weak mixing angle is fixed by

tan θW =
g′

g
. (3.61)

Then the Z boson is the combination

Z0
µ =

1√
g2 + g′2

(gA3
µ − g′Bµ) (3.62)

which has mass
MZ =

v

2
(g2 + g′2). (3.63)

The electromagnetic field, corresponding to the orthogonal combination, re-
mains massless

Aµ =
1√

g2 + g′2
(g′A3

µ + gBµ). (3.64)

The electromagnetic gauge coupling is

e =
gg′√
g2 + g′2

. (3.65)

Writing out the kinetic terms of the gauge fields, we see that the combinations

W±µ =
1√
2

(A1
µ ∓ iA2

µ), (3.66)

couple to the electromagnetic field Aµ. These fields are the W bosons with
electric charge Q = ±1 and mass

MW = g
v

2
. (3.67)

3.5 The Faddeev-Popov Procedure

What is the path integral for a theory with gauge fields Aaµ and scalar fields φ?
Naively one could write it as

Z =

∫
DADφ eiS(A,φ), (3.68)

with
DA =

∏
x

∏
a,µ

dAaµ. (3.69)

There is, however, a problem with this integral. Because the Lagrangian is
invariant under gauge transformations, an infinite number of configurations are
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equivalent to each other. So the integral over DA runs over an infinite subset
of configurations for every single physical state.

What we want is to integrate over all equivalent configurations only once.
This can be done by constraining the gauge field at each point x by a gauge
fixing condition G(A) = 0. Note that A stands for Aaµ. The Faddeev-Popov
determinant ∆(A) for the gauge fixing condition G(A) is defined by the equation

1 = ∆(A)

∫
Dgδ(G(Ag)). (3.70)

In this equation Ag means the gauge field transformed by the group element
g(x). Furthermore Dg′g = Dg. To see that the ∆(A) is gauge invariant, write
it as

∆(A)−1 =

∫
Dg′δ(G(Ag′)), (3.71)

then

∆(Ag)
−1 =

∫
Dg′δ(G(Agg′))

=

∫
Dgg′δ(G(Agg′))

=

∫
Dg′′δ(G(Ag′′))

=∆(A)−1. (3.72)

After inserting eq. (3.70) into eq. (3.68) we have

Z =

∫
DADφ eiS(A,φ)

=

∫
DADφ eiS(A,φ)∆(A)

∫
Dgδ(G(Ag))

=

∫
Dg
∫
DADφ eiS(A,φ)∆(A)δ(G(Ag)). (3.73)

Now we change the integration variables from A to Ag−1 . This is just a simple
shift so DAg−1 = DA. Moreover the action S(A) and the FP determinant ∆(A)
remain the same as they are gauge invariant. We finally arrive at

Z =

(∫
Dg
)∫

DADφ eiS(A,φ)∆(A)δ(G(A)). (3.74)

So we managed to factor out the group integration
(∫
Dg
)
, which although

infinite for gauge theories is just an irrelevant overall constant. The Faddeev-
Popov determinant can be written as

∆(A) =
δG(Aα)

δα
=

1

g
∂µDµ, (3.75)

and the path integral becomes

Z = C ·
∫
DADφ ei

∫
d4xL(A,φ)−Lgf det

(
δG(Aα)

δα

)
. (3.76)

30



The next problem will be how to deal with the Faddeev-Popov determinant. If
we introduce a new set of anti-commuting fields ca and c̄a, the determinant can
be written as

det

(
δG(Aα)

δα

)
=

∫
DcDc̄ exp

[
i

∫
d4x c̄(−∂µDµ)c

]
. (3.77)

The fields ca and c̄a violate the spin-statistics theorem, so they can’t be real
physical particles. For this reason such fields are known as ghost fields.

3.6 The Rξ Gauges

3.6.1 Abelian Case

In this section we introduce the Rξ gauge for the Abelian case, which suffices to
show the most interesting features. The non-Abelian case is a bit more technical
and is postponed to chapter 6.

Consider the Lagrangian eq. (3.38). Using the expression eq. (3.40) and ex-
panding the potential up to second order in φ1 (the first order terms vanish
since we are in a minimum and there is no term proportional to φ2

2 due to the
U(1) symmetry), the Lagrangian to quadratic order in fields is

L =− µ4

4λ
− 1

4
FµνF

µν +
1

2

[
∂µφ1∂

µφ1 − 2µ2φ2
1

]
+

1

2
∂µφ2∂

µφ2

− gvAµ∂µφ2 +
g2v2

2
AµA

µ (3.78)

By a right choice of the gauge-fixing function G the effective Lagrangian can
become considerably simpler. We choose as the gauge fixing function

G =
1√
ξ

(∂µA
µ − ξgvφ2). (3.79)

and add

Lgf = −1

2
G2, (3.80)

to the total Lagrangian. Up to quadratic order in fields the Lagrangian becomes

L =− 1

2
Aµ

(
−gµν∂2 + (1− 1

ξ
)∂µ∂ν − (gv)2gµν

)
Aν

+
1

2

[
∂µφ1∂

µφ1 − 2µ2φ2
1

]
+

1

2
∂µφ2∂

µφ2 −
ξ

2
(gv)2φ2

2. (3.81)

We also have to add the Lagrangian of the ghosts. The gauge variation of
G is

δG

δα
=

1√
ξ

(
− 1

g
∂2 − ξgv(v + φ2)

)
(3.82)

So

LFP = η̄g
δG

δα
η (3.83)

Limiting ourselves to quadratic terms, we are left with

LFP = η̄
[
−∂2δ − ξg2v2(1 + φ1/v)

]
η + . . . (3.84)

Adding this to eq. (3.81) gives the Lagrangian in the Rξ gauge. In chapter 6.4.2,
the gauge fixed Lagrangian of the Standard Model will be obtained.
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3.6.2 Unitary Gauge vs. Rξ Gauge

From the gauge fixed Lagrangian, it can easily be seen that the propagators for
the gauge bosons are

−i
k2 −m2

[
gµν − kµkν

k2 − ξm2
(1− ξ)

]
, (3.85)

where m is mW or mZ for the massive gauge bosons and zero for the photon.
The Goldstone boson propagators are given by

i

k2 − ξm2
(3.86)

with m the same as the mass of gauge boson by which they have been eaten.
The Higgs field h has not been eaten by a gauge boson - it is a physical field
with no ξ dependence in the propagator.

Clearly, if we take the limit ξ → ∞ the propagators for the unphysical
Goldstone fields (with masses proportional to

√
ξ ) vanish. This gauge is called

the unitary gauge. The problem with this gauge is that the gauge boson goes as
kµkν/k2 and one has a hard time proving renormalizability. In the Rξ gauges,
with a finite value of ξ, all the propagators fall off as 1/k2 and renormalizability
can easily be proved.
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Chapter 4

Inflation Models

4.1 Slow-Roll Inflation

Inflation is an era of accelerated expansion, that is ä > 0 during inflation. By
looking what happens to the comoving Hubble length one finds that

d

dt

1

aH
< 0, (4.1)

so during inflation the characteristic length scale of the universe decreases. The
Raychaudhuri equation (

ä

a

)2

= − 1

6M2
Pl

(ρ+ 3p), (4.2)

shows that inflation is equivalent to a period with ρ+3p < 0. If we assume that
the energy density can only be positive, the pressure needs to be negative during
inflation, which corresponds to repulsive gravity. By combining the Friedmann
equation

H =

(
ȧ

a

)2

=
ρ

3M2
Pl

− k

a2 (4.3)

and the continuity equation

dρ

ρ
= −3(1 + w)

da

a
, (4.4)

it can be seen that when the equation of state parameter w = −1 the universe
expands exponentially as

a ∝ eHt. (4.5)

The total energy density ρ includes the energy density of the vacuum ρΛ, for
which the equation of state parameter is wΛ = −1. A universe with ρΛ dominat-
ing will grow almost exponentially. However, there is no way out since matter
and radiation in it can only dilute. Eventually it will turn into a universe con-
sisting completely of vacuum energy, also called a de Sitter universe. So vacuum
energy could not have been the source of the inflationary epoch right after the
Big Bang.
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What is needed for inflation is some dynamical vacuum-like state. This can
be obtained if we assume that the universe was once dominated by one or more
scalar fields. Suppose the universe is dominated by the scalar field φ, then the
energy density of the universe is ρ ≈ ρφ. By comparing the stress-energy tensor
of the scalar field with that of a perfect fluid (2.9), the energy density and
pressure are found to be

ρφ =
1

2
φ̇2 + V (φ), (4.6)

pφ =
1

2
φ̇2 − V (φ). (4.7)

In general there is no unique relation between ρ and p, but assuming the po-
tential dominates the kinetic term gives pφ ' −ρφ and the universe expands
exponentially. With the continuity equation (2.12) the equation of motion for
the field φ is

φ̈+ 3Hφ̇+ V ′(φ) = 0, (4.8)

where the prime denotes a derivative with respect to the field φ. In the slow-roll
approximation it is also assumed that

|φ̈| � 3H|φ̇|, (4.9)

which guarantees that exponential inflation holds for a prolonged period of time.
By differentiating eq. (4.3) and then using eq. (4.8),

2HḢ =
1

3M2
Pl

(
φ̇φ̈+ φ̇V ′(φ)

)
=

1

3M2
Pl

φ̇(−3Hφ̇), (4.10)

which gives the following relation for Ḣ:

Ḣ =
−1

2M2
Pl

φ̇2. (4.11)

If the Hubble parameter is nearly constant during inflation, i.e. |Ḣ|/H2 � 1,
the universe expands almost exponentially as a ∼ eHt.

The slow-roll parameters ε and η are given by

ε =
M2

Pl

2

(
V ′(φ)

V (φ)

)2

(4.12)

and

η = M2
Pl

V ′′(φ)

V (φ)
. (4.13)

Necessary (but not sufficient) conditions for slow-roll inflation are ε � 1 and
|η| � 1. The first condition guarantees that the potential is sufficiently flat
during inflation, making slow-roll inflation possible. The second condition is
required to have a flat potential for a big enough range of φ, so that the slow-
roll inflation holds long enough. Similarly, a third slow-roll parameter useful for
analyzing the curvature perturbation is given by

ζ2 = M4
Pl

(dV (φ)/dφ)d3V (φ)/dφ3

V (φ)2
. (4.14)

34



The number of e-folds between some point in time t when the universe is inflating
and the time at the end of inflation tend is defined as

N ≡ ln
a(tend)

a(t)
=

∫ tend

t

H dt =

∫ φend

φ

H

φ̇
dφ. (4.15)

Assuming slow-roll inflation, so H is constant during inflation, this becomes

N ' 1

M2
Pl

∫ φ

φend

V

V ′
dφ. (4.16)

The amplitude of the density perturbations is often parametrized as

Ps(k) = ∆2
R

(
k

k0

)ns(k0)−1

. (4.17)

Here ∆2
R is the amplitude at some pivot scale k0, which by using the slow-roll

approximation becomes

∆2
R '

1

24π2M4
Pl

V

ε

∣∣∣∣
k0

. (4.18)

The scale dependence is determined by the spectral index n(k) given by

ns(k)− 1 = −6ε+ 2η. (4.19)

A scale invariant spectrum is obtained when ns = 1. Experimentally it is
known that ∆2

R = (2.44± 0.01)× 10−9 and ns = 0.96± 0.01 at the pivot scale
k0 = 0.002 Mpc−1 [23].

Deviations from the parametrization Ps ∝ kns(k0)−1 are described by the
running of the spectral index:

α ≡ dns/d(ln k) = −16εη + 24ε2 + 2ζ2. (4.20)

Besides the density perturbations, fluctuations of the metric result in tensor
perturbations. The tensor modes correspond to gravitational waves and just
like the scalar modes they freeze-in when leaving the horizon. Inflation predicts
for the tensor-to-scalar ratio

r ≡ Ph
Ps

= 16ε. (4.21)

A combination of WMAP-7 data, baryon acoustic oscillations and supernovae
observations show that α = −0.022 ± 0.020 and r < 0.24 (at 95 % confidence
level) [1].

4.2 Modified Gravity

The corresponding action for the Einstein equation in vacuum (i.e. Tµν = 0) is
the Einstein-Hilbert action

SEH =

∫
d4x
√
−g
[

1

2
M2

PlR
]
. (4.22)
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In this formula MPl ≡ 1/
√

8πGN = 2.44× 1018 GeV is the reduced Planck mass
and R is the Ricci scalar. The factor

√
−g with g defined as the determinant of

gµν is included to make the action invariant under general coordinate transfor-
mations. The simplest extension to this model would be the addition of some
scalar matter fields to the vacuum:

S =

∫
d4x
√
−g
[

1

2
M2

PlR+ Lmat

]
. (4.23)

The Einstein field equations are obtained by the principle of least action,

Tµν = −2
∂Lmat

∂gµν
+ gµνLmat. (4.24)

In the action given by eq. (4.23) it is assumed that there is no coupling between
the Ricci scalar and the fields in Lmat. In the quantum theory the Lagrangian
can contain any term not forbidden by some symmetry. This could be an indi-
cation that a non-minimal coupling exists. Moreover, a non-minimal coupling is
required for renormalization purposes in theories of interacting scalar fields in
curved spacetime [24]. Consider the case where Lmat contains the field φ that
couples to R. The potential of this field is supposed to be of the form

V (φ) =
λ

4

(
φ2 − v2

)2
, (4.25)

with v = 〈φ〉 the vacuum expectation value of the field φ. If we choose to
separate φ from Lmat, the action can be written as

S =

∫
d4x
√
−g
[
f(φ)R− 1

2
gµν∂µφ∂νφ− V (φ) + Lmat

]
, (4.26)

with

f(φ) =
1

2

(
M2 + ξφ2

)
and M2

Pl = M2 + ξv2. (4.27)

Inflation models based on non-minimally coupled scalar fields were first studied
by D.S. Salopek, J.R. Bond and J.M. Bardeen in 1989 [25].

Let’s see what happens for different values of ξ:

Minimal coupling: In this case the parameter ξ is set to zero and the system
is said to be minimally coupled. Can this give rise to inflation? First assume
that the field φ is large with respect to it’s vacuum expectation value, so that
the potential eq. (4.25) becomes

V (φ) =
λ

4
φ4. (4.28)

With eq. (4.12) we see that slow roll ends when

ε =
M2

Pl

2

(
4φ−1

)2 ' 1, (4.29)

thus φend =
√

8MPl. According to eq. (4.16), the number of e-folds between φ0

and φend is

N ' 1

M2
Pl

φ0∫
φend

V (φ)

V ′(φ)
dφ =

1

M2
Pl

φ0∫
√

8MPl

1

4
φ dφ. (4.30)
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Thus the value of the field φ at N e-folds before the end of inflation is

φN =
√

8(N + 1)MPl. (4.31)

Now we have seen at which energy scales inflation takes place, we will analyze the
cosmological implications of this model. According to the WMAP normalization
V/ε = (0.027MPl)

4 at 62 e-folds before the end of inflation. Evaluating V (φ)
and V ′(φ) at φ62 we get

V (φ62) =
λ

4

(√
8(62 + 1)MPl

)4

= λ · 63504 ·M4
Pl (4.32)

and

V ′(φ62) = λ
(√

8(62 + 1)MPl

)3

= λ · 5043/2 ·M3
Pl (4.33)

Thus we obtain

ε =
M2

Pl

2

(
V ′(φ62)

V (φ62)

)2

≈ 0.016 (4.34)

and
V

ε
= 2

(λ · 63504)
3(

λ · 5043/2
)2M4

Pl = (0.027MPl)
4. (4.35)

The last equation gives λ ≈ 1.33×10−13. Such an extremely fine-tuned coupling
constant seems very unphysical. The tensor-to-scalar ratio is r = 16ε ≈ 0.26,
which is also in conflict with the observed value of r.

Induced gravity: This is the other extreme of the minimally coupled system.
Here the parameter M is set to zero and it is assumed that the Planck scale is
generated by the field φ, analogous to the Higgs field generating the electroweak
scale in the Standard Model [26]. So we have

f =
1

2
ξφ2 and M2

Pl = ξv2. (4.36)

The Planck mass is completely generated by the vacuum expectation value of
the field φ. It starts to run at energies above the v.

First of all assume ξ � 1. As we will see in the next section, the action can
be rewritten in terms of an ordinary Einstein-Hilbert term and a canonically
normalized kinetic field χ which has the modified potential V (χ). Then for χ &
MPl, the region where inflation takes place, the potential can be approximated
by

V (χ) ' λM4
Pl

4ξ2

(
1− exp

(
− 2χ√

6MPl

))2

(4.37)

The reheating takes place around the well of the potential. Assuming this
happened at a reheat temperature Treh ∼ 1015 GeV, this gives(λM4

Pl

4ξ2

)1/4

∼ 1015 GeV. (4.38)

Then the field φ can be identified with a GUT Higgs field, with v ∼ 1016 GeV.
This gives the physically reasonable values λ ∼ 10−2 and ξ ∼ 104.
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Variable Planck mass: In a variable Planck mass theory, the Planck scale
is more or less set by choosing M , but a small part of it is still ‘induced’ by the
field φ. This corresponds to

f =
1

2
(M + ξφ2), M2

Pl = M2 + ξv2. (4.39)

For 1�
√
ξ≪MPl/v the potential

V (φ) =
λ

4

(
φ2 − v2

)2
(4.40)

can still be approximated by eq. (4.37) in the frame with canonically normalized
gravity. However, while ξ is fixed by the relation M2

Pl = ξv2 in the case of
induced gravity, with a variable Planck mass we no longer have this constraint.
As we will see in chapter 5, this makes it possible to identify the field φ with
the Standard Model Higgs field .

4.3 The Conformal Transformation

In case of a non-minimal coupling ξ, gravity looks quite different for high val-
ues of the field φ. Ordinary gravity can be obtained by making a conformal
transformation form the original (Jordan) frame to the Einstein frame. It is
a transformation that changes the curvature of spacetime, which mixes up the
scalar and tensor degrees of freedom. This implies that phenomena have dif-
ferent origins depending on which frame is used.1 The Einstein frame is the
frame where the scalar and tensor degrees of freedom don’t mix, which makes
it often a more convenient frame to use. It is important to note that a con-
formal transformation is really different from a coordinate transformation. A
coordinate transformation xµ → x′µ is just a relabeling of the coordinates on a
manifold, while under a conformal transformation the manifold itself is stretched
or shrunk.

If in some coordinates the metric can be written in the form gµν = Ω2(x)ηµν
the spacetime is called conformally flat. Then this transformation reduces the
action to that of a field in the flat Minkowski spacetime. Thus a field in a
conformally flat spacetime is completely decoupled from gravity.

4.3.1 Transforming to the Einstein Frame

A conformal transformation corresponds to a change of the metric

g̃µν = Ω2(x)gµν , (4.41)

with Ω2(x) a continuous, non-vanishing, finite real function. Then clearly g̃µν =
Ω−2(x)gµν . The determinant of the metric is defined as

g ≡ |det gµν | (4.42)

In D-dimensional spacetime, the metric is diag(−1,+1,+1,+1, . . .) and it is
easy to see that √

−g̃ = ΩD
√
−g (4.43)

1Whether or not the two frames are physically equivalent is considered as an open question,
see for example [27].
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Also the Ricci scalar changes with a conformal transformation, because the Ricci
scalar in the transformed frame R̃ is calculated using the new metric g̃µν . The
result is [24]

R̃ =
1

Ω2

[
R− 2(D − 1)

Ω
�Ω− (D − 1)(D − 4)

Ω2
gµν∇µΩ∇νΩ

]
, (4.44)

where the box operator is defined as

�Ω =
1√
−g

∂µ
(√
−ggµν∂νΩ

)
. (4.45)

For D = 4 the transformed Ricci scalar simply becomes

R̃ =
1

Ω2

[
R− 6

Ω
�Ω

]
. (4.46)

In what follows we show how a non-minimally coupled scalar field in D-
dimensional spacetime can be written in the Einstein form. In this derivation
we closely follow [28]. Start with the original Lagrangian written in the Jordan
frame:

SJ =

∫
dDx
√
−g
[
f(φ)R− 1

2
gµν∂µφ∂νφ− V (φ)

]
, (4.47)

with

f(φ) =
1

2

(
MD−2

0 + ξφ2
)
, (4.48)

and an arbitrary potential V (φ). Furthermore,

MD−2
(D) = MD−2

0 + ξφ2, (4.49)

with

MD−2
(D) ≡

1

8πGD
. (4.50)

So in four-dimensional spacetime, MPl ≡ M(4) = 1/
√

8πG4 = 2.44× 1018 GeV,
where G4 is Newton’s constant.

The first term in eq. (4.47) becomes with eqs. (4.43) and (4.46)∫
dDx
√
−gf(φ)R =

∫
dDx

√
−g̃

ΩD
f(φ)

[
Ω2R̃+

2(D − 1)

Ω
�Ω

+
(D − 1)(D − 4)

Ω2
∇µΩ∇νΩ

]
(4.51)

In D-dimensional spacetime, to have ordinary gravity in the Einstein frame

ΩD−2 =
2

MD−2
(D)

f(φ). (4.52)

Using this relation we can write the second term under the integral in eq. (4.51)
as ∫

dDx
√
−g̃f(φ)

2(D − 1)

ΩD+1
�Ω =

∫
dDx

√
−g̃MD−2

(D)

(D − 1)

Ω2
�Ω (4.53)
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Note that the box operator eq. (4.45) is given in terms of the original metric
gµν = Ω2(x)g̃µν , using partial integration this becomes

∫
dDx

√
−g̃MD−2

(D) (D − 1)Ω−3

[
ΩD

1√
−g̃

∂µ

(
Ω−DΩ2

√
−g̃g̃µν∂νΩ

)]
=

∫
dDx

√
−g̃MD−2

(D) (D − 1)ΩD−3g̃µν∂µ
(
Ω2−D∂νΩ

)
= −

∫
dDx

√
−g̃MD−2

(D) (D − 1)(D − 3)ΩD−4g̃µν∂µΩg̃µνΩ2−D∂νΩ

= −
∫
dDx

√
−g̃MD−2

(D) (D − 1)(D − 3)Ω−2g̃µν∂µΩ∂νΩ (4.54)

Now we have finished writing the first term in the Lagrangian eq. (4.47) in
the Einstein frame. The modifications to the kinetic term and the potential are
much simpler. Using eq. (4.43) and g̃µν = Ω−2(x)gµν it can easily be seen that
the kinetic part becomes

Ω2−D
(
−1

2
g̃µν∂µφ∂νφ

)
. (4.55)

The potential becomes with eq. (4.43)

Ṽ (φ) =
V (φ)

ΩD
. (4.56)

For D = 4 the complete Lagrangian in the Einstein frame is∫
d4x
√
−gE

[
M2

Pl

2
RE −

3M2
Pl

Ω2
gµνE ∂µΩ∂νΩ− Ω−2

(
−1

2
gµνE ∂µφ∂νφ

)
− VE(φ)

]
.

(4.57)
This can be rewritten using eq. (4.52) in terms of f(φ)∫

d4x
√
−gE

[
M2

Pl

2
RE −

3M2
Pl

4f(φ)2
gµνE ∂µf(φ)∂νf(φ)− M2

Pl

4f(φ)
gµνE ∂µφ∂νφ− VE(φ)

]
.

(4.58)
We can now try to make the kinetic term canonical by introducing a new field
χ defined by

− 1

2
gµνE ∂µχ∂νχ = − 3M2

Pl

4f(φ)2
gµνE ∂µf(φ)∂νf(φ)− M2

Pl

4f(φ)
gµνE ∂µφ∂νφ. (4.59)

Then finally the action in the Einstein frame takes the form

SE =

∫
d4x
√
−gE

[
1

2
M2

PlRE −
1

2
(∂Eχ)2 − VE(χ(φ))

]
. (4.60)

Unfortunately the field redefinition in eq. (4.59) is only possible for a single
scalar field. In that case we have a one-to-one mapping between the field φ and
the new field χ given by(

dχ

dφ

)
= MPl

√
f(φ) + 3f(φ)′2

2f(φ)2
. (4.61)
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4.3.2 Conformal Invariance

Consider the following action for a scalar field with mass m in D dimensions
non-minimally coupled to the Ricci scalar,

S =

∫
dDx
√
−g

[
MD−2

(D) + ξφ2

2
R− 1

2
gµν∂µφ∂νφ−

1

2
m2φ2

]
. (4.62)

Varying the action with respect to φ gives the equation of motion

(�−m2 + ξR)φ = 0. (4.63)

For m = 0 there is a special value of ξ for which the system gets an extra
symmetry. This is the conformal symmetry and when a system has this sym-
metry it is said to be conformally coupled. The value of ξ for which a system
in D-dimensional spactime is conformally coupled is [29]

ξconf =
D − 2

4(D − 1)
. (4.64)

So in (1+1)-dimensional spacetime the system is conformally invariant if ξ = 0,
while for D = 4 the system in conformally coupled if ξ = 1/6.

If we transform the metric

gµν(x)→ g̃µν(x) = Ω2(x)gµν(x), (4.65)

and we rescale the field φ̃ = Ω(2−D)/2φ, the action and the equations of motion
stay the same. Thus S[φ, g] = S[φ̃, g̃] and the equations of motion are

(�+ ξR)φ = 0 (4.66)

and
(�+ ξR̃)φ̃ = 0. (4.67)

For D = 2 the field φ̃ = φ, and then also S[φ, g] = S[φ, g̃]. Note that the action
is invariant for any ξ if Ω is constant.
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Chapter 5

Higgs Inflation

5.1 Introduction

Although the underlying physics are still unknown, inflation is an essential ingre-
dient in the understanding of the very early universe. A large class of inflation
models fall into the category of slow-roll inflation. In chapter 4 it was shown
that a scalar field slowly rolling down a potential can lead to inflation. The
disadvantage of most inflation models is that they are based on the existence of
additional scalar fields. Another approach is to see if degrees of freedom already
contained in the Standard Model can lead to inflation. An obvious candidate
would be the Higgs field, because this is the only scalar field in the Standard
Model. However, as seen in chapter 4, a scalar field with quartic self-coupling
requires an extremely small coupling constant λ = O(10−13) to give the right
size of the density perturbations.

In 2008, F.L. Bezrukov and M. Shaposhnikov showed that the Higgs boson
could act as the inflaton [30]. They found that a non-minimal coupling between
the Higgs field and gravity can lead to inflation with cosmological implications
in agreement with WMAP-7 data [1]. The non-minimal coupling corresponds
to adding a term of the form ξH†HR to the usual Einstein-Hilbert action. Such
a term with nonzero ξ is required for renormalization purposes in theories of
interacting scalar fields in curved spacetime [24]. A potential problem is that a
large ξ is unlikely from a particle physics point of view.

The action that plays a central role in this chapter is 1

SJ =

∫
d4x
√
−g
[

1

2
M2R+ ξH†HR+ LSM

]
. (5.1)

The mass parameter M is nearly equal to the Plank mass. In this chapter the
unitary gauge H = h/

√
2 will be used, with h the real neutral component of the

Higgs doublet being the only degree of freedom left after the Higgs mechanism.
This model is very elegant in the sense that only a very simple extension is
needed. Moreover, the new operator has mass dimension ≤ 4 at the classical

1Limiting to mass dimension 4 operators, the action would be of the form S =∫
d4x
√
−g
[
1
2
M2R+ ξH†HRR2 +RµνRµν +RµνλρRµνλρ + �R

]
. The last three opera-

tors require new degrees of freedom, since they lead to higher derivatives in the equations of
motion.
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level. However, as we will see in the next chapter, the new operator results in
a tower of higher dimensional operators when the quantum nature of gravity
becomes important.

Another drawback of the Higgs inflation model is that it requires that the
Standard Model is valid up to at least a few orders of magnitude below the
Planck scale. Unfortunately, the Standard Model has only been tested up to
one TeV. Moreover, new physics are supposed to happen around the GUT-scale
∼ 1015 GeV.

In this chapter we will see that a non-minimal coupling of the Higgs field
will naturally lead to inflation, because the potential becomes flat for large
field values h � MPl/

√
ξ. This is the regime where there is a running of the

effective Planck mass in the Jordan frame. The parameter that determines the
size of the CMB fluctuations is not the scalar self coupling, but the combination
λ/ξ2. By setting ξ ∼ 104, the predicted values of the spectral index and the
tensor-to-scalar ratio are in agreement with WMAP-7 data.

5.2 Cosmological Implications

As seen in chapter 4, gravity looks quite different for high field values in case of a
nonzero coupling ξ. However, with a conformal transformation the action can be
rewritten in Einstein form. If we suppose that LSM in eq. (5.1) is the Standard
Model Lagrangian in the Jordan frame, then the transformed Lagrangian L̃SM

in the Einstein frame will in principle be quite different. At low energies they
coincide of course.

It is assumed that the only degree of freedom during inflation is the Higgs
field, so in what follows all remaining Standard Model terms are dropped. The
action written in the Jordan frame is

SJ =

∫
d4x
√
−g
[
f(h)R− 1

2
∂µh∂

µh− V (h)

]
, (5.2)

with the potential V (h) = λ
4

(
h2 − v2

)2
and the function in front of the Ricci

scalar given by

f(h) =
1

2
(M2 + ξh2). (5.3)

The inflationary dynamics are studied in the Einstein frame. This frame can be
obtained by the conformal transformation

gEµν = Ω2gµν , (5.4)

with

Ω2 =
2

M2
Pl

f(h) ' 1 +
ξh2

M2
Pl

. (5.5)

Then the Einstein frame action becomes

SE =

∫
d4x
√
−gE

[
M2

Pl

2
RE −

3M2
Pl

4f(h)2
gµνE ∂µf(h)∂νf(h) (5.6)

− M2
Pl

4f(h)
gµνE ∂µh∂νh− VE(h)

]
. (5.7)
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Figure 5.1: The potential of the Higgs field in the Einstein frame. [31]

The potential in the Einstein frame is

VE(h) =
V (h)

Ω4
=
λ

4

(h2 − v2)
2

(1 + ξh2/M2
Pl)

2 , (5.8)

where in the last equality it is assumed that h� v. It can easily be seen that the
potential becomes flat for h�MPl

√
ξ, this makes slow-roll inflation possible.

To make the kinetic term canonical, we introduce the new field χ defined by

− 1

2
gµνE ∂µχ∂νχ = − 3M2

Pl

4f(h)2
gµνE ∂µf(h)∂νf(h)− M2

Pl

4f(h)
gµνE ∂µh∂νh (5.9)

or equivalently (eq. (4.61))(
dχ

dh

)
= MPl

√
f(h) + 3f(h)′2

2f(h)2
. (5.10)

Then the action in the Einstein frame takes the form

SE =

∫
d4x
√
−gE

[
1

2
M2

PlRE −
1

2
(∂Eχ)2 − VE(χ)

]
, (5.11)

which is the form that enables us to analyze cosmological implications. The
Einstein frame potential as a function of the field χ is shown in figure 5.1. In
the inflationary region, there is a simple analytic relation between the fields h
and χ,

1 +
ξh2

M2
Pl

' exp
2χ√
6MPl

. (5.12)

Substituting this into the potential eq. (5.8), we see that for large χ it is well
approximated by

VE(χ) ' λM4
Pl

4ξ2

(
1− exp

(
− 2χ√

6MPl

))2

. (5.13)
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During the inflationary epoch h�MPl/
√
ξ and the slow-roll parameters are

approximately given by

ε =
M2

Pl

2

(
dV/dχ

V

)2

' 4M4
Pl

3ξ2h4
, (5.14a)

η = M2
Pl

d2V/dχ2

V
' −4M2

Pl

3ξh2
, (5.14b)

ζ2 = M4
Pl

(d3V/dχ3)dV/dχ

V 2
' 16M4

Pl

9ξ2h4
. (5.14c)

Slow roll inflation ends when ε ' 1, which enables us to determine the value of
the Higgs field at the time inflation ends,

hend ' (4/3)1/4MPl/
√
ξ. (5.15)

According to eq. (4.16), the number of e-folds is given by

N =
1

M2
Pl

∫ χ0

χend

V

dV/dχ
dχ =

1

M2
Pl

∫ h0

hend

V

dV/dh

(
dχ

dh

)2

dh ' 6

8

h2
0 − h2

end

M2
Pl/ξ

.

(5.16)
This gives us the value of the Higgs field NWMAP ' 62 e-folds before the

end of inflation

h62 ' 9.4MPl/
√
ξ. (5.17)

The WMAP normalization constraints V/ε = (0.027MPl)
4 at 62 e-folds before

the end of inflation. Now the value of the coupling ξ can be determined

ξ ' 49000
√
λ ' 18000. (5.18)

Furthermore the spectral index and the tensor-to-scalar ratio are

n = 1− 6ε+ 2η ' 0.97, (5.19)

r = 16ε ' 0.0033. (5.20)

As seen in figure 5.2, these predicted values agree well with WMAP-5 observa-
tions.

5.3 Unitarity of Higgs Inflation

In the previous section we found that a non-minimal coupling causes a running of
the effective Planck mass at energies h ∼MPl/

√
ξ. In the in the Einstein frame,

where the curvature coupling with the Higgs field is removed, the potential is
given by

VE(h) =
λ

4

(h2 − v2)
2

(1 + ξh2/M2
Pl)

2 . (5.21)

This potential has a plateau for h�MPl/
√
ξ.
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Figure 5.2: WMAP-5 constraints and predicted values of ns and r. [31]

Up to now, the analysis has been purely classical. In this section we will see
what influence quantum corrections have on the flatness of the potential needed
for slow-roll inflation. First of all we shall assume that the theory is valid up
to some threshold below the Planck scale. The Higgs expectation value at N
e-foldings before the end of inflation is 〈h〉 ∼

√
NMPl/

√
ξ. This means that we

can safely assume that for N ∼ 102 all the Planck suppressed operators will be
negligible, because ξ is very large. However, we will see that in non-minimally
coupled models operators suppressed by lower energy scales arise.

5.3.1 Single Field

Assume that the only degree of freedom is h, the other degrees of freedom
being absorbed by the gauge fields. Consider then the 1

2ξh
2R term in the

Jordan frame. By making an expansion around flat space, the metric can be
decomposed as

gµν = ηµν +
γµν
MPl

. (5.22)

Here ηµν is the Minkowski tensor and γµν is a perturbation representing a
graviton. The Ricci scalar, which is a function of the metric, becomes

R ∼ �γµν
MPl

+ . . . (5.23)

The leading order term is the mass dimension 5 operator

1

2

ξ

MPl
h2ηµν�γµν . (5.24)

At first sight it seems that this operator substantially contributes for E ∼
MPl/ξ, so it is tempting to say it has a cutoff at Λ = MPl/ξ. However, this
is incorrect as can be seen from the scattering process 2h → 2h. At high
energies the mass of h can be neglected and the tree-level process corresponds
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to the exchange of a single graviton (see figure 5.3). This gives the scattering
amplitude

Mc(2h→ 2h) ∼ ξ2E2

M2
Pl

, (5.25)

where a sum over the s, t and u channels is assumed. Again it appears that the
cut-off is Λ = MPl/ξ. However, it turns out that the three diagrams cancel each
other exactly. The first nonzero contribution to the corresponding scattering
amplitude is

Mtot(2h→ 2h) ∼ E2

M2
Pl

. (5.26)

So the true cut-off for this process is at the Planck scale.
A similar result can be obtained in the Einstein frame. The kinetic sector

in this frame is

− 1

2

1

1 + ξh2/M2
Pl

(∂h)2 − 3ξ2

M2
Pl

h2

(1 + ξh2/M2
Pl)

2 (∂h)2. (5.27)

Expanding for small h gives

− 1

2
(∂h)2 − 3ξ2h2

M2
Pl

(∂h)2 + . . . (5.28)

The second term looks like an operator with cut-off Λ = mPl/ξ. Indeed if we
compute the contribution of the 4-point vertex to the tree-level process, we find
(see figure 5.3)

M∼ ξ2E2

M2
Pl

. (5.29)

However, when the external particles are on-shell the scattering amplitude van-
ishes. The reason for this is that for a non-minimally coupled system, we can
make a field redefinition resulting in a minimally coupled system with a canon-
ical kinetic term and modified potential:

SE =

∫
d4x
√
−gE

[
1

2
M2

PlRE −
1

2
(∂Eχ)2 − VE(χ)

]
. (5.30)

In this theory quantum corrections coming from the kinetic part are suppressed
by the Planck scale, resulting in the the cut-off Λ = MPl.

Of course, since we have shifted to the Einstein frame, we have to deal with
a modified potential. For small field values the Higgs field h can be expressed
in terms of the redefined field χ by

h = χ
[
1− (ξχ/MPl)

2
]

+ . . . . (5.31)

Plugging this in the potential we find the dimension 6 operator

− λξ2

M2
Pl

χ6 (5.32)

and we have to conclude that the theory already breaks down at Λ ∼MPl/ξ.

47



Figure 5.3: Tree level diagrams of the scattering process 2h → 2h. The upper panel
shows graviton exchange through t, u, and s-channels in the Jordan frame. In the
Einstein frame this is equivalent to a single 4-point vertex, as seen in the lower panel.
[32]

5.3.2 Multiple Fields

The propagators for the gauge bosons are

−i
k2 −m2

[
gµν − kµkν

k2 − ξm2
(1− ξ)

]
, (5.33)

withm the masses of theW± and Z0 bosons. The unitary gauge can be obtained
by taking ξ → ∞. In the unitary gauge the Goldstone bosons completely
disappear from our theory. However far above the EW scale the propagator
goes as kµkν/k2 and the non-renormalizability of this gauge comes into play.
This means that if we want to study inflationary dynamics we have to describe
the Higgs field as a complex doublet and not only the Higgs boson, but also the
Goldstone bosons will be non-minimally coupled the Ricci scalar.

So we have to express the Higgs field as four scalars forming the doublet.

H =
1√
2

(
φ1 + iφ2

φ3 + iφ4

)
. (5.34)

For multiple fields, however, the situation is quite different from the one sketched
in the previous paragraph. Consider the scattering process φ1 +φ2 → φ1 +φ2 at
tree-level. Again this happens by a single graviton exchange. Now however we
don’t have to sum in eq. (5.25) over all the three channels, because this process
only occurs through the s-channel. In this case there is no cancellation and the
cut-off is at Λ = mPl/ξ.

The same cut-off is obtained in the Einstein frame. For a single field it was
always possible to make a redefinition that brings the kinetic terms in canonical
form. However this is not true in general for multiple fields. So the second term
in eq. (5.28) will result in for example φ1 + φ2 → φ1 + φ2 scattering via the
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4-point vertex with amplitude

M∼ ξ2E2

m2
Pl

. (5.35)

So also in the Einstein frame the cut-off is at Λ = mPl/ξ.
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Chapter 6

Goldstone Bosons in Higgs
Inflation

In this chapter we analyze the role Goldstone bosons play during inflation. It
turns out they become massive and hence contribute to the Coleman-Weinberg
potential. The analysis was done for a U(1) symmetric toy model by S. Mooij
and M. Postma in their article [34]. Here their results are generalized to sym-
metry group of the Standard Model. The notation introduced in section 6.1.1
is based on Peskin and Schroeder (p. 739-740 ) [19].

6.1 Higgs Mechanism and the Real Representa-
tion

As seen in section 3.4, the original SU(2)L × U(1)Y symmetry of the Standard
Model to is spontaneously broken to U(1)Q by the Higgs field. The potential of
this field is given by

V (Φ†Φ) = −µ2Φ†Φ + λ(Φ†Φ)2, (6.1)

where

Φ =

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
. (6.2)

Under a gauge transformation this doublet transforms as

Φ→ eiα
aτaeiβY Φ, (6.3)

with ~τ = ~σ/2. Spontaneous symmetry breaking happens when λ > 0, in this
case potential has a minimum at

Φ†Φ =
1

2
v2, with v =

√
µ2/λ. (6.4)

Denote the ground state as

Φ0 =
1√
2

(
0

v

)
. (6.5)
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A gauge transformation with α1 = α2 = 0 and α3 = β leaves Φ0 invariant,
which implies that we can construct the generator Q = T 3 + TY = T 3 + 1

2Y
and have invariance under U(1)Q.

The Lagrangian for the Higgs field and the gauge fields is

L = −1

4
F iµνF

iµν − 1

4
GµνG

µν + (DµΦ)†DµΦ− V (Φ†Φ), (6.6)

where
F iµν = ∂µA

i
ν − ∂νAiµ + gεijkAjµA

k
ν , i = 1, 2, 3 (6.7)

and
Gµν = ∂µBν − ∂νBµ. (6.8)

The covariant derivative of Φ is given by

DµΦ =

(
∂µ − ig~τ · ~Aµ −

i

2
g′Bµ

)
Φ. (6.9)

6.1.1 The Real Representation

For the following discussion it will be more convenient to write the complex
doublet as a multiplet of real-valued fields Φ = (φ1, φ2, φ3, φ4). Under an in-
finitesimal gauge transformation the scalars φi transform as

φi → (1 + iαata)ijφj , (6.10)

so the generators ta are antisymmetric and strictly imaginary. Instead of the
generators taij , we shall use the representation matrices T aij = −itaij , which are
real and antisymmetric. Then the scalar fields transform as

δφi = iαataijφj = −αaT aijφj , (6.11)

while the gauge fields transform as

δAaµ =
1

g
∂µα

a − fabcαbAcµ. (6.12)

In these equations the index a = 1, 2, 3, Y and AYµ = Bµ. Since the gauge
group is not simple, the coupling constant for a = Y should be read as g′. The
Lagrangian invariant under these gauge transformations is

L = −1

4
(F aµν)2 +

1

2
(DµΦ)2 − V (Φ), (6.13)

with the covariant derivative

Dµφi = ∂µφi + gAaµT
a
ijφj . (6.14)

Explicitly, the representation matrices are

T 1Φ =
1

2


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0




φ1

φ2

φ3

φ4

 =
1

2


φ4

−φ3

φ2

−φ1

 , (6.15a)
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T 2Φ =
1

2


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0




φ1

φ2

φ3

φ4

 =
1

2


−φ3

−φ4

φ1

φ2

 , (6.15b)

T 3Φ =
1

2


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0




φ1

φ2

φ3

φ4

 =
1

2


φ2

−φ1

−φ4

φ3

 , (6.15c)

TY Φ =
1

2


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0




φ1

φ2

φ3

φ4

 =
1

2


φ2

−φ1

φ4

−φ3

 . (6.15d)

Note that we have the desired commutation relations [T a, T b] = εabcT c and
[T a, TY ] = 0.

Introduce the matrix
F ai ≡ T aij〈φj〉, (6.16)

with the indices a = 1, 2, 3, Y denoting the rows and i = 1, 2, 3, 4 the columns.
There is a sum over j, but in our case only 〈φ3〉 = v is nonzero. Filling in all
the components we get

gF ai =
v

2


0 −g 0 0
−g 0 0 0
0 0 0 g
0 0 0 −g′

 . (6.17)

Again, the g on the left-hand side should be read as g′ for a = Y .
For more convenience we use the parametrization

Φ =

(
φ+

φ0

)
=

1√
2

(
−i(φ1 − iφ2)

φ3 + iφ4

)
, (6.18)

with the ground state still

Φ0 =
1√
2

(
0

v

)
. (6.19)

With this parametrization the real and antisymmetric representation matrices
are

T 1Φ =
1

2


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0




φ1

φ2

φ3

φ4

 =
1

2


φ3

−φ4

−φ1

φ2

 , (6.20a)

T 2Φ =
1

2


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0




φ1

φ2

φ3

φ4

 =
1

2


φ4

φ3

−φ2

−φ1

 , (6.20b)
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T 3Φ =
1

2


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0




φ1

φ2

φ3

φ4

 =
1

2


−φ2

φ1

−φ4

φ3

 , (6.20c)

TY Φ =
1

2


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0




φ1

φ2

φ3

φ4

 =
1

2


−φ2

φ1

φ4

−φ3

 . (6.20d)

Finally, after filling in all the components, we get the matrix

gF ai =
v

2


g 0 0 0
0 g 0 0
0 0 0 g
0 0 0 −g′

 . (6.21)

Note that we can drop the third column; the elements of this column all equal
zero, because the vectors T aΦ0 = T aφ3 are orthogonal to φ3 for all a.

6.1.2 The Global SO(4) Symmetry

The generators in the previous section belong to the SO(4) group. We wrote
the spinor representation of SU(2) in terms of SO(4) generators, which was
possible because SU(2) is a subgroup of SO(4).

The six generators of SO(4) can be written as:

L12 =


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 , L13 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 ,

L14 =


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0

 , L23 =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 ,

L24 =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 , L34 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 . (6.22)

Consider the Lagrangian

L = (∂µΦ)T∂µΦ− V (ΦTΦ), (6.23)

with the Higgs field written as a 4-vector

Φ =


φ1

φ2

φ3

φ4

 . (6.24)
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It can easily be seen that this Lagrangian is SO(4) invariant. Suppose the Higgs
field has a nonzero vacuum expectation value v3 in the φ3 direction. Looking
at the generators eq. (6.22), we see that three of the six generators don’t leave
the vacuum expectation value invariant. So we know that this model has three
massless Goldstone bosons. The other three generators form an SO(3) subgroup
under which the expectation value is invariant.

Mathematically this is also easy to show. In eq. (6.35) we will see that

∂2V

∂φi∂φk
T aijφj +

∂V

∂φi
T aik = 0. (6.25)

If we evaluate this equation at some value φi = vi for which V is a minimum,
this equation becomes

∂2V

∂φi∂φk

∣∣∣∣∣
φi=vi

Lijvj = 0. (6.26)

The factor Lijvj is only nonzero for j = 3 and i = 1, 2, 4. Then we get

∂2V

∂φ1∂φk

∣∣∣∣∣
φ1=0

× v3 = 0,

∂2V

∂φ2∂φk

∣∣∣∣∣
φ2=0

× v3 = 0,

∂2V

∂φ4∂φk

∣∣∣∣∣
φ4=0

× (−v3) = 0. (6.27)

(6.28)

We see that we have three massless Goldstone bosons. The remaining field φ3

is massive, its mass simply given by the second derivative of the potential.
The generators in eq. (6.15) and eq. (6.20) are linear combinations of the

generators of the SO(4) group given in eq. (6.22). Because they are linearly
independent we know that they are four out of the six generators of SO(4).
What about the remaining two? As noted before, the ground state is invariant
under SO(3), so there are three generators that leave the ground state invariant.
We already know one, namely Q = TY +T 3. Noting the similar structure of T 3

and TY in eq. (6.15), we construct two other matrices with the same structure
as T 1 and T 2:

TA =
1

2


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 (6.29)

and

TB =
1

2


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 . (6.30)

The combinations A = T 1 + TA and B = T 2 + TB leave the ground state
invariant, so they form together with Q the SO(3) subgroup. The matrices
{T 1, T 2, T 3, A, B, Q} can be used as a set of generators for SO(4).
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The Lagrangian of the Standard Model is not SO(4) invariant, since the
Yukawa coupling between the Higgs field and the fermions breaks the symmetry
down to SU(2).

6.2 Massive Goldstone Bosons

During the inflationary epoch the energy density is many orders of magnitude
higher than the electroweak scale v ' 246 GeV, which means that we can no
longer assume that the Higgs field will be in its vacuum state. This has two
important implications for the following analysis. First of all the Higgs field
will not be in a minimum, so the first derivative of the potential won’t vanish.
Secondly, because the background field is not constant, we have to deal with a
time-dependent expectation value instead of the constant vacuum expectation
value v.

The ground state eq. (6.19) simply becomes

Φ0(t) =
1√
2

(
0

φ3(t)

)
. (6.31)

In analogy with eq. (6.16) we define the new matrix

Ha
iΦ0 ≡ T aij〈φj〉 =

φ3

2


1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 −1

 . (6.32)

To make the following discussion more clear, the third column corresponding to
i = 3 is still included.

Given that the potential is invariant under arbitrary gauge transformations,
we have

0 = δV =
∂V

∂φi
δφi = −αa ∂V

∂φi
T aijφj , (6.33)

where we sum over a and all i, j. Clearly,

∂V

∂φi
T aijφj = 0, (6.34)

for each a independently, as can be seen by taking only one infinitesimal pa-
rameter nonzero. Differentiating with respect to φk gives

∂2V

∂φi∂φk
T aijφj +

∂V

∂φi
T aik = 0. (6.35)

If we evaluate this equation at the ground state, we get (see eq. (6.32))

∂2V

∂φi∂φk
Ha
i φ3 +

∂V

∂φi
T aik = 0. (6.36)

The second derivative of the potential can be identified with a mass term, be-
cause

V (φi) = V
(
〈φi〉

)
+

1

2

∂2V

∂φi∂φk

∣∣∣∣∣
φi=〈φi〉

(
φi − 〈φi〉

)(
φk − 〈φk〉

)
+ . . . , (6.37)
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so that the mass matrix is

(M2)ik =
∂2V

∂φi∂φk

∣∣∣∣∣
φi=〈φi〉

. (6.38)

If the potential is a minimum at the classical background, then the second term
in eq. (6.36) vanishes and the Goldstone bosons are massless. However, with the
Higgs field displaced from its minimum, the masses will be nonzero.

As an example we calculate the mass term for φ1. Take a = k = 1, then the
first term is only nonzero for i = 1 and the second only for i = 3. Thus we get

∂2V

∂φ1∂φ1

1

2
φ3 +

∂V

∂φ3
(−1

2
)

∣∣∣∣∣
cl

= 0, (6.39)

which we can rewrite as

∂2V

∂φ1∂φ1

∣∣∣∣∣
cl

=
1

φ3

∂V

∂φ3

∣∣∣∣∣
cl

= − φ̈3

φ3

∣∣∣∣∣
cl

. (6.40)

In the last equality we used the background equation of motion, φ̈3 +∂φ3V = 0.
Mass terms for the fields φ2 and φ4 are obtained in the same way. To get the
mass term for φ4 we can either set a = 3 or a = 4. Since Ha

3 = 0 we don’t get
a non-trivial equation involving Vφ3φ3

, so we can’t make any statements about
the mass of the field φ3. Furthermore, we obtain some trivial equations stating
that mixed derivatives and first derivatives with respect to φ1, φ2 and φ4 are
zero.

One can show in another way that Goldstone bosons rolling in a potential
become massive [35]. This already becomes clear in the simple U(1) symmetric
model

L = (∂µφ)†∂µφ−m2φ†φ. (6.41)

We are of course free to parametrize the field φ any way we like. First we
use Cartesian coordinates, and parametrize the field as φ = 1√

2
(Φ + φ1 + iφ2).

Consider an arbitrary point Φ in field space, such a point can always be aligned
with the real direction. Then the Lagrangian becomes

L =
1

2
∂µφ1∂

µφ1 +
1

2
∂µφ2∂

µφ2 −
1

2
m2
(
(Φ + φ1)2 + φ2

2

)
. (6.42)

We see that both the fields φ1 and φ2 have a mass m. If we use polar coordinates
and write φ = 1√

2
(Φ + φ1)eiθ, the Lagrangian becomes

L =
1

2
∂µρ∂

µρ+
1

2
(Φ + ρ)2∂µθ∂

µθ − 1

2
m2(Φ + ρ)2. (6.43)

Now we have a non-canonical kinetic term for the field θ. There are no terms
proportional to θ2, which was to be expected since it doesn’t cost energy to
rotate along θ. One might conclude that θ is a massless field.

Another possibility is to define the mass by the Laplacian, which is the sum
of all second derivatives in Cartesian coordinates. Then the trace of the mass
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matrix eq. (6.38) is equal to the Laplacian. The Laplacian for a system written
in polar coordinates is

∇2V =
1

ρ

∂V

∂ρ
+
∂2V

∂ρ2
+

1

ρ2

∂2V

∂θ2
. (6.44)

For the field ρ the mass term is of course

m2
ρ =

∂2V

∂ρ2
. (6.45)

Then the nonzero remaining part of the Laplacian is assigned to the field θ, so

m2
θ =

1

ρ

∂V

∂ρ
= − ρ̈

ρ
, (6.46)

where in the last equality the classical equation of motion is used.

6.3 Rolling Goldstone Bosons in U(1) Theory

In this section, the idea of rolling Goldstone bosons is applied to a U(1) sym-
metric toy model. Consider the following Lagrangian

L = −1

4
FµνFµν + (DµΦ)†DµΦ− V (Φ†Φ), (6.47)

where
DµΦ = (∂ + igAµ)Φ. (6.48)

This Lagrangian is invariant under the gauge transformation

Φ → eiαΦ, (6.49)

Aµ → Aµ −
1

g
∂µα. (6.50)

The Higgs field has a time-dependent expectation value Φcl = (φR(t)+iφI(t))/
√

2.
By gauge transforming we can always rotate the system and set φI = 0. Since
the potential is invariant under U(1), we have for an infinitesimal transformation
Φ→ eiαΦ

0 = δV =
∂V

∂φi
δφi, (6.51)

where i = {R, I}. Written out in terms of real fields we have δφR = −αφI and
δφI = αφR.

Differentiating eq. (6.51) with respect to φR gives

∂

∂φR

(
∂V

∂φI
φR −

∂V

∂φR
φI

) ∣∣∣∣∣
cl

= 0. (6.52)

The second term between brackets vanishes at at the classical background and
the equation becomes trivial. Differentiation with respect to φI gives

∂2V

∂φI∂φI
φR −

∂V

∂φR

∣∣∣∣∣
cl

= 0. (6.53)
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If the potential V is a minimum at the classical background, then the second
term in eq. (6.53) vanishes. So we conclude that we get a massless Goldstone
boson. However during inflation the Higgs field is displaced from its minimum
and the second term won’t vanish, therefore the Goldstone boson gets the mass

m2
I ≡

∂2V

∂φ2
I

∣∣∣∣∣
cl

=
1

φR

∂V

∂φR

∣∣∣∣∣
cl

= − φ̈R
φR

∣∣∣∣∣
cl

. (6.54)

Since we used the equation of motion for the background field φ̈R + ∂φRV = 0,
the last equality is only valid on-shell.

Let’s see what happens if we promote the global symmetry to a local sym-
metry. This means that we have to introduce the gauge field Aµ(x, t). One
might expect that the Higgs mechanism now fails, because the Goldstone boson
is massive and hence its degree of freedom cannot be obtained by the gauge
boson.

Consider perturbations around the classical background Higgs field

Φ(x, t) =
1√
2

(ΦR(x, t) + iΦI(x, t)) =
1√
2

[φR(t) + h(x, t) + iθ(x, t)]. (6.55)

In terms of the perturbations h and θ the potential expanded around the back-
ground is

V = V
∣∣∣
cl

+
∂V

∂φR

∣∣∣
cl
h+

1

2

∂2V

∂φR∂φR

∣∣∣
cl
h2 +

1

2

∂2V

∂φI∂φI

∣∣∣
cl
θ2 + . . . (6.56)

The dots represent terms of cubic or higher order in the perturbations. From
eq. (6.51) it can easily be seen that all the mixed terms are zero. The first
derivative with respect to the field φI is zero at the classical background, due
to the U(1) symmetric shape of the potential.

The kinetic part of the Lagrangian is

Lkin = −1

4
FµνFµν +DµΦ(DµΦ)†

= −1

4
FµνFµν + (∂µ + igAµ)(φR + h+ iθ)(∂µ − igAµ)(φR + h− iθ).

(6.57)

Writing out gives

Lkin =− 1

4
FµνFµν +

1

2
(∂µh∂

µh+ ∂µθ∂
µθ + g2φ2

RAµA
µ) + gφRAµ∂

µθ

− gφ̇RθA0 + ḣφ̇R +
1

2
φ̇2
R

− gAµθ∂µh+
1

2
g2AµA

µθ2 + gAµh∂µθ + g2AµA
µφRh+

1

2
g2AµA

µh2.

(6.58)

The terms in the second an third line are absent when the Higgs is in a static
minimum. Let’s try to remove the Goldstone boson from our theory. Transform
to the unitary gauge by redefining the gauge field

Aµ = Bµ −
1

g
∂µ(θ/φR) = Bµ −

1

gφR
∂µθ +

θ

gφ2
R

∂µφR. (6.59)
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When we write the kinetic part in terms of the field Bµ we get

Lkin = −1

4
BµνBµν+

1

2
(∂µh∂

µh+g2φ2
RBµB

µ)− θ
2φ̇2
R

2φ2
R

+
θθ̇φ̇R
φR

+ ḣφ̇R+
1

2
φ̇2
R+ . . .

(6.60)
We see that for φ̇R 6= 0 the Goldstone boson is still present in both the potential
and the kinetic part. However, it turns out that they are canceled by each other.
Indeed,

−
θ2φ̇2

R

2φ2
R

+
θθ̇φ̇R
φR

+ ḣφ̇R +
1

2
φ̇2
R = − φ̈R

2

(
θ2

φR
+ 2h+ φR

)
=

1

2

∂2V

∂φI∂φI

∣∣∣∣∣
cl

(θ2 + 2φRh+ φ2
R), (6.61)

where the last equality is only valid on-shell. The first term in the last equality
cancels the quadratic term in θ in the potential, while the second term cancels
the tadpole in h,

1

2

∂2V

∂φI∂φI

∣∣∣∣∣
cl

2φRh =
1

φR

∂V

∂φR

∣∣∣∣∣
cl

φRh =
∂V

∂φR
h. (6.62)

The Goldstone boson has disappeared from the Lagrangian. Its degree of free-
dom is still absorbed by the field Bµ to become a massive vector field.

6.4 Lagrangian in the Rξ Gauge

In section 6.4.1, the idea of the last section is applied to the SM. Next, we
gauge fix the obtained Lagrangian in section 6.4.2, taking into account the
time-dependent background Higgs field. Lastly, the mass terms needed for the
Coleman-Weinberg potential are derived in section 6.4.3.

6.4.1 Non-Abelian Analysis

Write the parametrization eq. (6.18) as

Φ(x, t) =
1√
2

(
−i(θ1 − iθ2)

φ+ (h+ iθ3)

)
. (6.63)

The notation makes clear that we have perturbations around the time-dependent
ground state Φ0(t) =

(
0
φ

)
/
√

2 described with the physical Higgs boson h and

the Goldstone bosons θi (i = 1, 2, 3). As we have seen in section 6.2, the masses
for the Goldstone bosons are given by the diagonal entries of the mass matrix

(M2)ij =
∂2V

∂θi∂θj

∣∣∣∣∣
cl

= − φ̈
φ
δij . (6.64)

Now work out the kinetic term,

(DµΦ)2 =
1

2
(∂µh∂

µh+ ∂µθi∂
µθi + g2φ2Ha

i H
b
iA

a
µA

bµ) + g∂µθiA
a
µφH

a
i

+ g∂µφA
aµT a0iθi + ḣφ̇+

1

2
φ̇2 + . . . , (6.65)
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where the dots stand for terms cubic and quartic in h, θi and Aµ. Since the
representation matrices T aij are antisymmetric, we have

gT a0iθi = −gT ai0θi = −Ha
i θi, (6.66)

and the first term on the second line in eq. (6.65) can be written as−g∂µφAaµHa
i θi.

Assuming the background field is only time-dependent, this is, explicitly,

− g∂µφAaµHa
i θi = −1

2
gAk0θk∂tφ+

1

2
g′AY0 θ3∂tφ, (6.67)

with k = 1, 2, 3.
We expand the potential up to second order in perturbations

V2(Φ) = V

∣∣∣∣∣
cl

+
∂V

∂φ

∣∣∣∣∣
cl

h+
1

2

∂2V

∂φ∂φ

∣∣∣∣∣
cl

h2 +
1

2

∂2V

∂θi∂θi

∣∣∣∣∣
cl

θ2
i , (6.68)

where again i = 1, 2, 3. With our parametrization the θi’s are identical with
the Goldstone bosons up to first order, so there are no linear terms in θi. In
the unitary gauge the θi’s are precisely the Goldstone bosons, so there also the
higher order derivatives in θ are zero.

Finally, we can write the quadratic part of the Lagrangian as (note that this
implies that drop the self-interactions of the non-Abelian gauge fields)

L2 =− 1

2
Aaµ(−gµν∂2 + ∂µ∂ν)Aaν +

1

2
(∂µθi)

2 +
1

2
(∂µh)2

+ g∂µθiA
a
µφH

a
i +

1

2
(m2

A)abAaµA
µb − 1

2
(M2)ijθiθj

− g∂µφAaµHa
i θi + ḣφ̇+

1

2
φ̇2 − V2(φ). (6.69)

Here the mass matrices for the gauge bosons and Goldstone bosons are respec-
tively

(m2
A)ab = g2Ha

iH
b
iφ

2 (6.70)

and

(M2)ij = − φ̈
φ
δij . (6.71)

6.4.2 Gauge Fixing the Lagrangian

In section 3.6 we calculated the Lagrangian in the Rξ gauge for the U(1) sym-
metric case. Here we extend the analysis to the non-Abelian case. Moreover,
the background Higgs field is now time-varying and not in a minimum.

The gauge fixing function for the Rξ gauge is

Ga =
1√
ξ

(∂µA
aµ − ξgφHa

i θi). (6.72)

This means that we have to add

Lgf = −1

2
G2 (6.73)
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to the Lagrangian. The terms up to second order are

Lgf =
1

2
Aaµ(

1

ξ
∂µ∂ν)Aaν + g∂µA

aµφHa
i θi −

1

2
ξg2(φHa

i θi)
2. (6.74)

The second term can be rewritten as

g∂µA
aµφHa

i θi = g∂µ(AaµφHa
i θi)− g∂µθiAaµφHa

i − g∂µφAaµHa
i θi. (6.75)

The first term is a total derivative so it can be neglected. The second term
cancels g∂µθiA

a
µH

a
iφ in L2. The third term vanishes in case of a time inde-

pendent (constant) expectation value. Note that we already had such a term
in eq. (6.69). So even after gauge fixing there remains a coupling between the
Goldstone bosons and the gauge fields.

We also have to add the Lagrangian of the ghosts. The gauge variation of
Ga is

δGa

δαb
=

1√
ξ

(1

g
(∂µD

µ)ab + ξg(T aφ) · T b(φ+ θ)
)
, (6.76)

thus

LFP = η̄ag
δGa

δαb
ηb = η̄a

[
−(∂µD

µ)ab − ξg2(T aφ) · T b(φ+ θ)
]
ηb. (6.77)

Limiting ourselves to quadratic terms, we are left with

LFP = η̄a
[
−∂2δab − ξg2φ2Ha

iH
b
i

]
ηb + . . . (6.78)

6.4.3 Mass Terms in the Rξ Gauge

For practical purposes, decompose the Lagrangian we found so far as

Ltot = L+ LGF + LFP = Lcl(φ) + Lfree + Lint(t). (6.79)

The classical Lagrangian contains the kinetic and potential terms of the field
φ. The free Lagrangian contains the time-independent terms quadratic in the
fluctuations fields. From this expression it is easy to read of the free propaga-
tors. The interaction Lagrangian contains all other terms, which are treated as
perturbations. Explicitly,

Lcl =
1

2
∂µφ∂

µφ− V (φ) (6.80)

Lfree =− 1

2
Aaµ
[(
− gµν∂2 + (1− 1

ξ
)∂µ∂ν

)
δab − g2φ2

0H
a
iH

b
ig
µν
]
Abν

+ η̄a
[
−∂2δab − ξg2φ2

0H
a
iH

b
i

]
ηb − 1

2
h
[
∂2 + Vhh(0)

]
h

− 1

2
θi
[(
∂2 + Vθθ(0)

)
δij + ξg2φ2

0H
a
iH

a
j

]
θj (6.81)

Lint =− h
[
∂2φ+ Vφ

]
+
g2

2
(φ2 − φ2

0)
[
Aaµg

µνHa
iH

b
iA

b
ν − ξHa

iH
a
jθiθj − 2ξη̄aH

a
iH

b
iηb
]

− 2g∂µφA
aµHa

i θi −
1

2
(Vhh(t)− Vhh(0))h2 − 1

2
(Vθiθi(t)− Vθiθi(0))θ2

i + . . .

(6.82)

61



Here the dots stand for all higher order terms. Define a mass matrix by

m2
αβ = − ∂2L

∂θα∂θβ
, with χα = {Aaµ, ηa, h, θi}. (6.83)

Then the nonzero elements of the mass matrix are (diagonal entries are repre-
sented with a single subscript)

m2
AaµAbν = −g2Ha

iH
b
iφ

2gµν

mη̄aηb = ξg2Ha
iH

b
iφ

2

mh = Vhh

m2
θiθj = Vθθ + ξg2Ha

iH
a
jφ

2

m2
θiAaµ = 2gHa

i φ̇δ
µ
0 (6.84)

The mass of the Goldstone bosons and the mass of the ghosts depend on the
gauge parameter ξ. This is just an indication that they are not real physi-
cal particles. Such fields are called fictious fields and they can only exist as
intermediate states.

Diagonalizing gives

m2
W± =

1

4
g2φ2

m2
Z0 =

1

4
(g2 + g′2)φ2

m2
ηW±

=
1

4
ξg2φ2

m2
ηZ0

=
1

4
ξ(g2 + g′2)φ2

m2
h = Vhh

m2
θ1 = Vθθ +

1

4
ξg2φ2

m2
θ2 = Vθθ +

1

4
ξg2φ2

m2
θ3 = Vθθ +

1

4
ξ(g2 + g′2)φ2 (6.85)

From now on, we drop the superscripts of W± and Z0. Work out the term
−2g∂µφA

aµHa
i θi in eq. (6.82):

−2g∂µφA
aµHa

i θi = −2gφ̇Aa0H
a
i θi

= −gφ̇A1
0θ1 − gφ̇A2

0θ2 − gφ̇A3
0θ3 + g′φ̇B0θ3

= −gφ̇A1
0θ1 − gφ̇A2

0θ2 −
√
g2 + g′2φ̇Z0θ3, (6.86)

where we used

Zµ =
1√

g2 + g′2
(gA3

µ − g′B0
µ). (6.87)

Now it is easy to read of the remaining (off-diagonal) elements of the mass
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matrix:

m2
θ1A1

0
= gφ̇

m2
θ2A2

0
= gφ̇

m2
θ3Z0

=
√
g2 + g′2φ̇ (6.88)

6.5 Corrections to the Coleman-Weinberg Po-
tential

In this section we calculate the one-loop corrected equations of motion for the
classical fields. The one-loop correction to the effective action is Γ1−loop =
−
∫

d4xVCW , with the Coleman-Weinberg potential [36]

VCW =
1

32π2

∑
i

(−1)2Ji(2Ji + 1)m2
i (Λ

2 −m2
i ln Λ).

Here there is a sum over all the fields in the theory, with Ji and mi standing for
the spin and the mass of the field. So we see that also the massive Goldstone
bosons should add to the Coleman-Weinberg potential.

Using the Schwinger-Keldysh formalism the one-loop corrected equation of
motion is [34]

0 = �φ+ Vφ +
1

2
(∂φm

2
αβ)G++

αβ (0). (6.89)

We first calculate the propagator for the field h,

1

2
(∂φm

2
h)G++

h (0) =
∂φm

2
h

16π2

(
Λ2 − 1

2
m2
h ln

(
Λ2

m2
h

))
. (6.90)

The propagators for the other fields that don’t couple in the equations of motion
are obtained in the same way. However, the fields (θ1, A

1
0), (θ2, A

2
0) and (θ3, Z0)

do couple in the equations of motion due to the nonzero off-diaganol matrix
elements eq. (6.88). In [34] also these propagators have been calculated, here we
explicitly give the propagator for (θ1, A

1
0),

∂φm
2
θ1A1

0

4π2
m2
θ1A1

0
ln

(
Λ2

m2
θ1A1

0

)
. (6.91)

Calculating the propagators for the remaining fields and adding them all up,
the one-loop equation of motion becomes

0 = �φ+ Vφ +
∂φm

2
θ1A1

0

4π2
m2
θ1A1

0
ln

(
Λ2

m2
θ1A1

0

)

+
∂φm

2
θ2A2

0

4π2
m2
θ2A2

0
ln

(
Λ2

m2
θ2A2

0

)

+
∂φm

2
θ3Z0

4π2
m2
θ3Z0

ln

(
Λ2

m2
θ3Z0

)

+
∑

{h,ηW ,ηZ ,W±,Z,θi}

Si
16π2

∂φm
2
i

(
Λ2 − 1

2
m2
i ln

(
Λ2

m2
i

))
. (6.92)
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Here the degrees of freedom are Si = {1,−4,−2, 8, 4, 3} for i = {h, ηW± , ηZ ,W±, Z0, θi}.
The minus sign for the ghost fields is due to their anti-commuting nature.

Finally, the effective action up to a field-independent constant is obtained
by integrating the equations of motion,

Γ1−loop =
−1

16π2

∫
d4x

[
Λ2
(
m2
h − 4m2

ηW − 2m2
ηZ + 4(2m2

W +m2
Z) +m2

θ1 +m2
θ2 +m2

θ3

)
− ln Λ2

4

(
m4
h − 4m4

ηW − 2m4
ηZ + 4(2m4

W +m4
Z) +m4

θ1 +m4
θ2 +m4

θ3

− 2(m4
θ1A1

0
+m4

θ2A2
0

+m4
θ3Z0

)
)]

+ finite

=
−1

16π2

∫
d4x

[
Λ2
(
Vhh + 3Vθθ + 6m2

W + 3m2
Z

)
− ln Λ2

4

(
V 2
hh + 3V 2

θθ + 6m4
W + 3m4

Z − 12Vθθm
2
W − 6Vθθm

2
Z

)]
.

(6.93)

The second step follows almost immediately after using eq. (6.85). The only
problems are the off-diagonal terms given by eq. (6.88), which using the back-
ground equation of motion can be rewritten as∫

dt
[
− 2
(
m4
θ1A1

0
+m4

θ2A2
0

+m4
θ3Z0

)]
= −2

∫
dt
[(
gφ̇
)2

+
(
gφ̇
)2

+
(√

g2 + g′2φ̇
)2]

= 2

∫
dt
[
g2φφ̈+ g2φφ̈+

(
g2 + g′2

)
φφ̈
]

= −2

∫
dt
[
2g2φVφ +

(
g2 + g′2

)
φVφ

]
= −2

∫
dt
[
2g2φ2Vθθ +

(
g2 + g′2

)
φ2Vθθ

]
=

∫
dt
[
− 16Vθθm

2
W − 8Vθθm

2
Z

]
(6.94)

Note that the gauge parameter ξ is no longer present in the last equality of
eq. (6.93).
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Chapter 7

Conclusions

The inflationary epoch right after the Big Bang solves the horizon and flatness
problems. It also explains the scale invariance of the density perturbations
found in the Cosmic Microwave Background. We have seen that a minimally
coupled Higgs field could not have caused inflation, since this doesn’t give the
right amplitude of density perturbations.

When a large coupling between the Higgs field and the Ricci scalar is intro-
duced, the right size of the density perturbations can be obtained. This model
has been proposed by Bezrukov and Shaposhnikov in 2008 [30]. Also the pre-
dicted values for the spectral index and the tensor-to-scalar ratio fall well within
the limits of WMAP-7. This model has the advantage that no additional fields
are needed. A potential problem is that a large coupling seems unlikely from
a particle physics point of view. Another problem is that this model requires
that the Standard Model is valid up to the inflationary scale ∼ 1015 GeV, while
it has only been tested up to energies of about one TeV.

In the quantum theory the model seems to have the lower cut-off MPl/ξ,
which is below the scale where inflation takes place. For a single field, this is
due to a mass dimension 6 operator coming from the potential in the Einstein
frame. However for multiple fields, as will be the case for the Standard Model
where the Higgs field is represented as a complex doublet, also the gravity sector
in the Jordan frame and the kinetic sector in the Einstein frame seem to imply
a lower cut-off at MPl/ξ.

Finally, we have seen that Goldstone bosons become massive during inflation.
For this reason they contribute to the Coleman-Weinberg potential. In [34] the
one-loop effective action was calculated for a U(1) symmetric toy model. In
this thesis we have extended the analysis to the SU(2)×U(1) symmetry of the
Standard Model.
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