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Abstract
In this paper, we present a generalisation of the Phase Kick-Back technique, which is
central to some of the classical algorithms in quantum computing. We will begin by
recalling the Phase Kick-Back technique to then introduce the new generalised version
for f : {0, 1}n → {0, 1}m functions using the eigenvalues of the oracle function U f .
After that, we will present a new generalised version of the Deutsch–Jozsa problem
and how it can be solved using the previously defined technique. We will also deal
with a generalised version of the Bernstein–Vazirani problem and solve it using the
generalised Phase Kick-Back. Finally, we show how we can use this technique to
obtain an algorithm for Simon’s problem that improves the classical one.

Keywords Quantum algorithms · Phase Kick-Back · Deutsch–Jozsa ·
Bernstein–Vazirani · Boolean functions
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1 Introduction: Phase Kick-Back and notation

The term Phase Kick-Back is taken from [1]. This technique is central to some classi-
cal quantum algorithms, such as the Deutsch–Jozsa algorithm, the Bernstein–Vazirani
algorithm, Simon’s algorithm or Grover’s algorithm, and first appeared in [2] for solv-
ing the Deutsch–Jozsa problem. Here, we will generalise the Deutsch–Jozsa problem
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and the Bernstein–Vazirani problem and give a new algorithm for Simon’s problem
that improves the classical one.

Some of these problems have already been generalised in different directions. In
[3], multidimensional versions for theDeutsch–Jozsa problem andBernstein–Vazirani
were first considered and solved. This was further expanded in [4] by considering the
problems of evenly distributed and evenly balanced functions.

Regarding other directions, in [5] the Deutsch–Jozsa problem is generalised by
considering functions that are balanced in abelian subgroups of {0, 1}n . In [6, 7], the
problemoffiltering and distinguishing quantumstates is studied,while in [8] a problem
where Boolean functions that are balanced in certain subsets of {0, 1}n is proposed.
Furthermore,Deutsch’s problem is generalised in [9] by determining arbitraryBoolean
functions f : {0, 1}2 → {0, 1}.

The Bernstein–Vazirani problem was also generalised in [10, 11] by considering
and solving the 2-dimensional hidden linear function problem using shallow quantum
circuits.

The Deutsch–Jozsa algorithm—and thus the Phase Kick–Back technique—has
been implemented using different quantum models, such as by the application of
NMR in [12], or via Rydberg blockade interaction in [13].

Let us introduce the notation we will use, which will be that of [1, 14]. These two
books, along with [15, 16], can be consulted for more context on the topic of quantum
computing.

Remark 1 First of all, we will call the elements x ∈ {0, 1}n binary strings and note
them in bold, underlining their structure as vectors in the space Fn

2.
Let y, z ∈ {0, 1}n be two strings, written

y = yn−1 . . . y1y0, z = zn−1 . . . z1z0,

and let ⊕ denote the exclusive or addition (which is addition modulo 2). We define
the exclusive or operation for strings as the exclusive or bitwise, that is,

y ⊕ z = (yn−1 ⊕ zn−1) . . . (y1 ⊕ z1) (y0 ⊕ z0) ,

and we will denote the pairing in {0, 1}n (not a scalar product, though) by

y · z = (y0 · z0) ⊕ . . . ⊕ (yn−1 · zn−1) .

Note that, as the xor operation is performed bitwise, we have

x · (y ⊕ z) = (x · y) ⊕ (x · z).

We will also write 0 to refer to the zero n-string 0 = 00 · · · 0.
To represent quantum states, we will use the Bra-Ket or Dirac notation, where given

a binary string x ∈ {0, 1}n of length n we represent the n-dimensional qubit state of the
computational basis corresponding to x by |x〉n . For one-dimensional qubit systems,
we will often simply write the ket |x〉 without the subindex. If we have more than
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one qubit system, we will write the number of qubits of each register separated by
commas. For example, in |x〉n,m,r we would have three registers of n, m and r qubits,
respectively. We will often note N = 2n .

Let R be an m × n Boolean matrix—i.e., a matrix whose components are either 0 s
or 1 s—and let ri be the binary string determined by the i-th file of R, we will define
the result of the operation R · x as the string whose i-th component is ri · x (that is,
the usual matrix–vector operation).

We will say that a Boolean function is a function f : {0, 1}n → {0, 1}m . It is well
known—consult [15] for more information—that given a Boolean function one can
construct the quantum gate U f whose effect is the following:

U f

(
|x〉n ⊗ |y〉m

)
= |x〉n ⊗ |y ⊕ f (x)〉m .

Before proceeding, we must recall the Hadamard basis:

|+〉 = |0〉 + |1〉√
2

, |−〉 = |0〉 − |1〉√
2

.

The result in which the Phase Kick-Back technique is based is the following:

Lemma 1 Let f : {0, 1}n → {0, 1} be a Boolean function, and let U f be the quantum
gate that computes it. Then, in the n + 1 qubit system, vectors of the form |x〉n ⊗ |−〉
are eigenvectors with eigenvalue (−1) f (x) for every x ∈ {0, 1}n .

The Phase Kick-Back technique is almost always used to mark the amplitudes of
the states of the computational basis whose image through f is 1. In that sense, we
would have

(
Hn|0〉n

)
⊗ |−〉 =

⎛
⎝ 1√

2n

∑
x∈{0,1}n

|x〉n

⎞
⎠ ⊗ |−〉,

where Hn is the Hadamard matrix of dimension n, which can be defined as:

Hn = H⊗n, where H = 1√
2

(
1 1
1 −1

)
,

andwhose effect on an element of the computational basis x ∈ {0, 1}n is the following:

Hn|x〉n = 1√
2n

∑
z∈{0,1}n

(−1)x·z|z〉n .

This can be easily proven by induction. In particular, when x = 0, we would have:

Hn|0〉n = 1√
2n

∑
z∈{0,1}n

|z〉n .
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Summarising, we would have a summation over all the states of the computational
basis, all of them with the same amplitude in the first n-qubit register. The idea of the
Phase Kick-Back is to apply U f to this state and mark the aforementioned elements
with a negative amplitude.

U f

⎛
⎝ 1√

2n

∑
x∈{0,1}n

|x〉n ⊗ |−〉
⎞
⎠ =

⎛
⎝ 1√

2n

∑
x∈{0,1}n

(−1) f (x)|x〉n

⎞
⎠ ⊗ |−〉.

2 Generalised Phase Kick-Back

Let us now present a generalisation of the Phase Kick-Back idea. This approach
was already suggested in [3]. This generalisation will consist on the expansion of
the technique to general Boolean functions f : {0, 1}n → {0, 1}m , where the target
qubit—the one in the second register of the Deutsch–Jozsa algorithm—becomes a
register of m qubits.

During this generalisation, we will take U f as presented before and we will notate
the states given by Hn|y〉n as |γy〉n , where |y〉n are the elements of the computational
basis.

Let us begin by presenting an analogous version to that of Lemma 1, which will
constitute the core idea of this technique.

Lemma 2 Let |γy〉m = Hm |y〉m with y ∈ {0, 1}m. Then, for each x ∈ {0, 1}n, the
vector |x〉n ⊗ |γy〉m is an eigenvector of U f with eigenvalue (−1)y· f (x).

Proof We know that

|γy〉m = 1√
2m

∑
z∈{0,1}m

(−1)y·z|z〉m .

If we now apply U f to |x〉n ⊗ |γy〉m , we get the following:

U f

(
|x〉n ⊗ |γy〉m

)
= |x〉n ⊗

⎛
⎝ 1√

2m

∑
z∈{0,1}m

(−1)y·z|z ⊕ f (x)〉m

⎞
⎠ .

= (−1)y· f (x)|x〉n ⊗
⎛
⎝ 1√

2m

∑
z∈{0,1}m

(−1)y·z⊕y· f (x)|z ⊕ f (x)〉m

⎞
⎠

= (−1)y· f (x)|x〉n ⊗
⎛
⎝ 1√

2m

∑
z∈{0,1}m

(−1)y·(z⊕ f (x))|z ⊕ f (x)〉m

⎞
⎠

= (−1)y· f (x)|x〉 ⊗ |γy〉m,

as for a fixed f (x), |z ⊕ f (x)〉m runs through all of {0, 1}m just as z does. �	
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As we can see, it is a completely analogous idea to the previous one, with the
difference that we can now choose a marker, y ∈ {0, 1}n , which will work as a fixed
reference and multiply each f (x).

3 A first approach to the GPK

We will consider the Boolean function f : {0, 1}3 → {0, 1}2 which will eliminate
the last bit, that is, f (xyz) = xy where x, y, z ∈ {0, 1} and xyz stands for the
concatenation of bits.

To use our new tool, we will need a 5-qubit system divided into a 3-qubit register
and a 2-qubit register, both of them starting on |0〉:

|ϕ0〉5 = |0〉3 ⊗ |0〉2.

We will begin by choosing a marker, i.e., the y ∈ {0, 1}2 that will encode the
information we want to look for in f . In this case, we will take y = 01, that is, we
will mark those values whose image through f is 01 or 11. To do so, we will begin
by preparing the second register to y, which is easily achieved by applying the Pauli
X gate on the last qubit.

|ϕ1〉5 =
(
I⊗4 ⊗ X

)
|ϕ0〉5 = |0〉3 ⊗ |01〉2.

Once we have prepared our basic state, we will apply Hadamard gates to all qubits
to obtain a superposition state.

|ϕ2〉5 = H5|ϕ1〉5 =
⎛
⎝ 1√

8

∑

x∈{0,1}3
|x〉3

⎞
⎠ ⊗ |γ01〉2 = 1√

8

∑

x∈{0,1}3

(
|x〉3 ⊗ |γ01〉2

)
.

Let us remark now that each state of the aforementioned superposition satisfies the
conditions of Lemma 2.1, and thus, if we apply the U f gate, we will mark the states
of the superposition depending on their image.

|ϕ3〉5 = U f |ϕ2〉5 = 1√
8

∑

x∈{0,1}3
(−1) f (x)·01(|x〉3 ⊗ |γ01〉2

)
.

Remark 2 Another way of looking at this Generalised Phase Kick-Back idea is to write
the state |γy〉 as a tensor product of |+〉 and |−〉 states. As an example, in the instance
we are dealing with we have:

|γ01〉2 = |+〉 ⊗ |−〉.
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In general, for a given y ∈ {0, 1}m we would have a |+〉 in the i-th position if the
i-th bit of y is 0 and |−〉 if it is 1. In that sense, we could look at this Generalised Phase
Kick-Back as a cascade of Phase Kick-Backs in those positions of y in which there is
a 1.

Let us now focus our attention on the first 3-qubit register and use that f (x) · 01 =
x · 010:

|ϕ4〉3 = 1√
8

∑

x∈{0,1}3
(−1) f (x)·01|x〉3 = 1√

8

∑

x∈{0,1}3
(−1)x·010|x〉3.

And finally, if we apply Hadamard gates to this 3-qubit system, we will get the state
|010〉3.

|ϕ5〉3 = H3|ϕ4〉3 = |010〉3.

It is not clear now how this idea is helpful, as the final result is directly determined
by the initial y we chose, and if we had fixed y = 10, then the final result would have
been 100. However, suppose now that we do not know which of the bits f eliminates,
and we want to determine which one it is. We only have three possibilities, and we
could easily check with one classical call to f which of the bits is eliminated—simply
compute f (010)—but it is interesting to do it by using our new tool.

Lemma 3 Let f : {0, 1}n → {0, 1}n−1 be a Boolean function that eliminates one bit;
then, we can use the algorithm above to determine which bit is eliminated.

Proof Todo so,we just apply the generalised version of the algorithmmentioned above
n − 1 times, using each time one of the vectors of the canonical basis of {0, 1}n−1 as
an F2 vector space. If we denote by ei the string of bits whose only 1 is in the i-th
position (starting by 0)—i.e., the i-th element of the canonical basis—then each of the
n − 1 iterations of the algorithm would go as follows:

|ϕ0〉n,n−1 = |0〉n ⊗ |0〉n−1.

First, we obtain ei in the second register by applying theX gate wherever we need:

|ϕ1〉n,n−1 = |0〉n ⊗ |ei 〉n−1.

Second, we apply Hadamard gates:

|ϕ2〉n,n−1 = (H2n−1) |ϕ1〉2n−1.

Then, we use the GPK (Generalised Phase Kick-Back):

|ϕ3〉n,n−1 = U f |ϕ2〉2n−1.
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And finally, we apply Hadamard gates to the first register and measure:

|ϕ4〉n,n−1 = (Hn ⊗ I⊗(n−1))|ϕ3〉n,n−1.

After we have done so with all n − 1 possible ei , we will have obtained n − 1 of
the n vectors of the canonical basis of Fn

2, and the one left indicates which of the bits
is eliminated. �	

This, of course, does not give us an improvement of any sort over the classical
case—it is actually the opposite, as we could have just computed the image of x =
101010 . . . and checked for repeated characters—but it illustrates the inner workings
of the technique.

Some other examples such as this could be constructed. Another one is the problem
of, given an f that switches one unknown bit, finding out which one. However, we
will now focus on a problem in which this idea allows for an improvement over the
classical situation.

4 The generalised Deutsch–Jozsa problem

An easy follow-up to the previous section would be to solve a generalised version
of the Deutsch–Jozsa problem using this technique. As we have seen, many such
generalisations have been considered, but the one we propose generalises the evenly
balanced one proposed both in [3] and in [4].

Definition 1 (Generalised Deutsch–Jozsa problem.)We say that a Boolean function is
balanced if half of the input values output one string and the other half output another.

Given then a Boolean function f : {0, 1}n → {0, 1}m that can either be constant or
balanced, we will denote by Generalised Deutsch–Jozsa problem the one of finding
out in which of the cases are we.

The Deutsch–Jozsa problem is clearly one instance of this general problem where
m = 1, and thus, we will show how we can solve this problem by using an algorithm
inspired by that of Deutsch and Jozsa.

Remark 3 It is clear that if we want to solve this problem using classical deterministic
methods, we will need something of the order of O(2n−1) applications of f . We will
see how we can improve this with a quantum algorithm to an order of O(m) calls to
f . Note also that this includes the already known case where m = 1.

Let us limit ourselves to the instance where constant means that f (x) = 0 for every
x ∈ {0, 1}n and balanced means that half of the values are 0 and the other half a fixed
string different from 0.

Given ei = 0(m−1)−i 1 0i , where i = 0, . . . , m − 1, we will repeat the following
algorithm for each ei , but it could actually be done for any binary string y ∈ {0, 1}m .

STEP1
|ϕ0〉n,m = |0〉n ⊗ |0〉m .
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We begin with two registers of n and m qubits, both at the state |0〉.
STEP 2
|ϕ1〉n,m = (

I⊗n ⊗ I⊗(m−1−i) ⊗ X ⊗ I⊗i
) |ϕ0〉n,m .

We apply the X gate to achieve the desired |ei 〉 state in the second register. If we
want any other binary string y to act as a marker, we should apply the corresponding
X gates in the necessary positions.

STEP 3
|ϕ2〉n,m = Hn+m |ϕ1〉n,m .

We apply Hadamard gates to obtain the desired superposition in the first register
and |γei 〉 in the second.

STEP 4
|ϕ3〉n,m = U f |ϕ2〉n,m .

We apply U f to use the GPK technique.

STEP 5
|ϕ4〉n,m = (

H⊗n ⊗ I⊗m
) |ϕ3〉n,m .

At this point, the second register might be discarded and we apply Hadamard gates
to the first one.

STEP 6
We measure the first register and name the result δi .
If after repeating these steps for each i we obtain only δi = 0 strings, then the

function is constant; otherwise it is balanced.

Definition 2 (Generalised Phase Kick-Back algorithm.) The only variable in the algo-
rithm is the choice of the marker y used for the Phase Kick-Back. We will refer to this
algorithm as GPK algorithm for y or GPK(y). From now on, the notation regarding
this algorithm will be the same as before.

Theorem 1 (Correctness of the algorithm) The aforementioned algorithm correctly
determines whether a function is constant or balanced in the case where the image set
of f includes 0.

Proof Given i = 0, . . . , m − 1, let us keep track of the states step by step:
As we are applying the X gate on the i-th qubit of the second register (counting

from 0), then

|ϕ1〉n,m = |0〉n ⊗ |ei 〉m,

Next,

|ϕ2〉n,m = 1√
N

∑
x∈{0,1}n

|x〉n ⊗ |γei 〉m,
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just by the definition of |γei 〉 and the known effect of Hadamard gates on the |0〉 state.
Finally, we obtain

|ϕ3〉n,m =
⎛
⎝ 1√

N

∑
x∈{0,1}n

(−1) f (x)·ei |x〉n

⎞
⎠ ⊗ |γei 〉m,

by applying Lemma 2.
If we focus now only on the first register, we will have the following state:

1√
N

∑
x∈{0,1}n

(−1) f (x)·ei |x〉n .

Then, after applying the Hadamard gates, we will have:

Hn
1√
N

∑
x∈{0,1}n

(−1) f (x)·ei |x〉n = 1√
N

∑
x∈{0,1}n

(−1) f (x)·eiHn|x〉n

= 1√
N

∑
x∈{0,1}n

(−1) f (x)·ei

⎛
⎝ 1√

N

∑
z∈{0,1}n

(−1)x·z|z〉n

⎞
⎠

= 1

N

∑
z∈{0,1}n

⎡
⎣ ∑
x∈{0,1}n

(−1) f (x)·ei ⊕x·z
⎤
⎦ |z〉n .

It is easy to check that if the function is constant and equal to 0, then regardless of
the value of i the amplitude of |0〉n in the previous superposition is the following:

1

N

∑
x∈{0,1}n

(−1) f (x)·ei = 1

N

∑
x∈{0,1}n

(−1)0 = 1.

Thus, we will always obtain δi = 0 no matter which marker we use.
If f is not constant, then when f (x) 
= 0 there must be an i ∈ {0, . . . , m − 1} for

which f (x) · ei = 1. If we take such a ei , then the amplitude for |0〉n is:

1

N

∑
x∈{0,1}n

(−1)( f (x)·ei )⊕(x·0) = 1

N

∑
x∈{0,1}n

(−1) f (x)·ei = 0,

because f (x) is balanced, and thus, half the elements of the sum will be 1 and the
other half −1. This implies that we would get a result different from 0 for that i . �	

Note that the choice of the canonical basis is not compulsory and that we could
have chosen any other basis of Fm

2 as our markers.
The same idea works for the general case of the Generalised Deutsch–Jozsa

problem.
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Theorem 2 (General correctness) The previous algorithm correctly determines
whether a function is constant or balanced.

Proof The only thing left to analyse is the final amplitudes in the general case. To do
so, we need to recall that the final state is:

1

N

∑
z∈{0,1}n

⎡
⎣ ∑
x∈{0,1}n

(−1)( f (x)·ei )⊕(x·z)
⎤
⎦ |z〉n .

If we analyse now the amplitude of |z〉n = |0〉n , we would be left with:

1

N

∑
x∈{0,1}n

(−1)( f (x)·ei )⊕(x·0) = 1

N

∑
x∈{0,1}n

(−1) f (x)·ei .

If f (x) is constant, then f (x) · ei is either always 0 or always 1, as x varies.
Whichever the case, the final amplitude will be either 1 or −1, and thus, we will
always get 0 at the end of the algorithm.

On the other hand, if f (x) is balanced with possible values f1, f2 ∈ {0, 1}m such
that f1 
= f2, then there is a i ∈ {0, . . . , m − 1} such that f1 · ei 
= f2 · ei , and for that i
the amplitude of z = 0 would be:

1

N

∑
x∈{0,1}n

(−1) f (x)·ei .

As the function is balanced between f1 and f2, that amplitude is 0 and thus wewould
get a result different from 0. �	

This algorithm not only allows us to distinguish constant and balanced functions,
but it also allows us to determine the values of the function. In the balanced situation,
it would not be possible to do that efficiently in a deterministic way.

Corollary 1 It is possible to determine the possible values of f by applying the
aforementioned algorithm and making a classical call to the function.

Proof Let us begin by the case in which the possible images are 0 and f1. In this
situation, the values of i for which we obtain a result different from δi = 0 mark
the bits of f1 that are different from 0, thus determining exactly the value of f1, so
f1 = λ = λm−1 . . . λ1λ0, where we define λi as:

λi =
{
0 if δi = 0
1 otherwise.

In the general case, if we note the two possible images by f1 and f2, the λ =
λm−1 . . . λ1λ0 string tells us that the Boolean bitwise difference between f1 and f2—
i.e., f1⊕ f2. Thus, we would know that f1 = f2⊕λ. If we now classically calculate one

123



A generalisation of the... Page 11 of 20   143 

of the possible images—for instance f (0)—we would be able to retrieve both values.
�	

Remark 4 We also have to point out that we have solved the problem by applying the
quantumgateU f m times, which is an exponential improvement over the deterministic
classical situation when m is of linear order with respect to n.

Remark 5 There is a pattern thatwill reappear in the following section,which is that the
GPK algorithm is unable to detect translations. That is, given two Boolean functions
f1, f2 : {0, 1}n → {0, 1}m forwhich there is an s ∈ {0, 1}n such that f1(x) = f2(x)⊕s
for every x ∈ {0, 1}n , if we analyse the first register of |ϕ4〉n+m for function f2 using
y ∈ {0, 1}m as a marker, we get:

1

N

∑
z∈{0,1}n

⎡
⎣ ∑
x∈{0,1}n

(−1) f2(x)·y⊕x·z
⎤
⎦ |z〉n .

And if we now use that f2(x) = f1(x) ⊕ s, we get:

1

N

∑
z∈{0,1}n

⎡
⎣ ∑
x∈{0,1}n

(−1)( f1(x)⊕s)·y⊕x·z
⎤
⎦ |z〉n

= (−1)s·y 1

N

∑
z∈{0,1}n

⎡
⎣ ∑
x∈{0,1}n

(−1) f1(x)·y⊕x·z
⎤
⎦ |z〉n .

And, as we can observe, we end up getting a quantum state equivalent to the one
we would get by applying the GPK algorithm for the function f1, which does not
affect the probabilities of the final result. This is the reason behind the fact that what
we get in the general case of the balanced situation in the Generalised Deutsch–Jozsa
algorithm is the sum of the two possible values λ, and why we must make an extra
step to find both values.

Remark 6 In order to solve the generalised Deutsch–Jozsa problemwe have computed
m applications of the GPK algorithm with the elements of the computational basis as
markers. What we want to show now is that this choice of markers is not compulsory
and that any basis of {0, 1}m would suffice.

Let y1, . . . , ym ∈ {0, 1}m be any such basis; we will compute now the GPK algo-
rithm for each of these markers. It becomes clear that if f (x) · yi is constant for all
x ∈ {0, 1}n , then the result of the i-th iteration of the algorithm will be 0, while if
f (x) · yi = 0 for half of the values and 1 for the other half, then the result will be any
other binary string.

Let λ = f1 ⊕ f2 be the sum of the two possible values of the function as before—if
the function is constant we would have λ = 0—then what we end up with is a system
of equations:

{yi · λ = δi | i = 1, . . . , m},
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where λ is the string of unknowns. This system is always made up of m linearly
independent equations, as the yi are a basis of {0, 1}m , so the sole solution will be the
desired λ.

5 A Bernstein–Vazirani inspired algorithm

Once again we will put our focus on generalising an already known problem which
was first studied in [17]. The problem we propose was already solved in [3], but we
will further expand the idea and use it to better understand the technique. Let us begin
by recalling the Bernstein–Vazirani problem in the one-dimensional situation.

Definition 3 (Bernstein–Vazirani problem.) Let f : {0, 1}n → {0, 1} be a function
such that there is an r ∈ {0, 1}n for which f (x) = r · x, we want to find the binary
string r.

Let us note that the condition stated in the Bernstein–Vazirani problem just asks for
f to be linear. This is relevant because in the generalisation of this problem we will
consider a linear f : {0, 1}n → {0, 1}m and ask to exactly determine it.

Regarding the complexity of this problem, we should note that a linear function
f : {0, 1}n → {0, 1} can be determined in n calls to f , as we only have to calculate
the image through f of the elements of one basis of {0, 1}n . In particular, we can
calculate f (ei ) for each element in the canonical basis and the i-th element of r would
be ri = f (ei ). The exact same can be done in the general case.

We will show how we can solve this problem with a quantum algorithm making a
single call to U f . The algorithm we will describe is exactly the same as we used to
solve the Deutsch–Jozsa problem.

First, we will have two registers of n and 1 qubits, respectively:

|ϕ0〉n,1 = |0〉n ⊗ |1〉

We can obtain the |1〉 in the second register by applying theX gate to the last qubit.
Secondly, we will apply Hadamard gates to all the qubits in order to obtain the state:

|ϕ1〉n,1 = Hn|ϕ0〉n,1 =
⎛
⎝ 1√

N

∑
x∈{0,1}n

|x〉n

⎞
⎠ ⊗ |−〉,

where N = 2n . This state is now ready to use the Phase Kick-Back technique by
applying U f :

|ϕ2〉n,1 = U f |ϕ1〉n,1 =
⎛
⎝ 1√

N

∑
x∈{0,1}n

(−1) f (x)|x〉n

⎞
⎠ ⊗ |−〉.
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Using now that f (x) = r · x, we arrive at:

|ϕ2〉n,1 =
⎛
⎝ 1√

N

∑
x∈{0,1}n

(−1)r·x|x〉n

⎞
⎠ ⊗ |−〉.

Recalling the effect ofHn on the computational basis, we can easily check that the
first register of this state is exactly Hn|r〉, so after applying Hn to the first register we
obtain:

|ϕ3〉n,1 = (Hn ⊗ I) |ϕ2〉n,1 = |r〉n ⊗ |−〉.

Then, after measuring the first register we will obtain r.
Let us consider now a slight modification to the Bernstein–Vazirani problem.

Definition 4 (Modified Bernstein–Vazirani problem.) Let f : {0, 1}n → {0, 1} be a
Boolean affine function—i.e., a Boolean function such that there are r ∈ {0, 1}n and
r0 ∈ {0, 1} for which f (x) = r0 ⊕ r · x for all x—then we want to exactly determine
said function.

This problem can be solved by the previous algorithm with just a final step to
determine r0.

Proposition 1 The Bernstein–Vazirani algorithm solves the modified Bernstein–
Vazirani problem with certainty with a final classical deterministic call to f to
determine r0.

Proof Following the previous exposition of the Bernstein–Vazirani algorithm, the only
difference in this situation is that we would end up with the state:

|ϕ2〉n,1 =
⎛
⎝ 1√

N

∑
x∈{0,1}n

(−1)r0⊕r·x|x〉n

⎞
⎠ ⊗ |−〉

= (−1)r0

⎛
⎝ 1√

N

∑
x∈{0,1}n

(−1)r·x|x〉n

⎞
⎠ ⊗ |−〉.

This is equivalent to the state we had in the previous situation, and thus, we would
end up getting r after measuring |ϕ3〉n,1.

To get r0, we must only classically calculate f (0) = r0. �	

Again, we arrive at the same pattern, where theGPK cannot distinguish a translation
in f , but only the linear structure it has.

This idea can be used to generalise the Bernstein–Vazirani problem to arbitrary
dimensions.
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Definition 5 (Generalised Bernstein–Vazirani problem.) Let f : {0, 1}n → {0, 1}m

be an affine function, i.e., one such that there is an m ×n matrix R and an r0 ∈ {0, 1}m

for which f (x) = r0 ⊕ R · x. The Generalised Bernstein–Vazirani problem is that of
exactly determining f .

Remark 7 Let us analyse the classical deterministic complexity of this problem. It is
easy to prove that we can exactly determine R by calculating f (ei ) for each element
of the computational basis, as the binary string determined by the i-th file of R, ri ,
will be exactly f (ei )⊕ r0. We can finally calculate r0 by computing f (0), so the total
calls to f will be n + 1.

It can be seen that with the GPK we can do this with m + 1 calls to the function,
so in a way we will switch the roles of {0, 1}n and {0, 1}m .

We will now prove that we can solve the Generalised Bernstein–Vazirani problem
by computing m iterations of the GPK algorithm by each of the elements of the
computational basis of {0, 1}m and a final classical computation of f (0).

Theorem 3 (Correctness of the algorithm) It is possible to exactly determine the matrix
R by computing GPK(ei ) for each of the elements ei of the computational basis of
{0, 1}m.

Proof We will only prove that the result of the algorithm GPK(ei ) is the binary string
that determines the i-th row of R, which is an ri such that f (x)i = (r0)i ⊕ ri · x.

Let us calculate the amplitude of ri in the final state of the GPK algorithm using ei

as marker.

|ϕ4〉n = 1

N

∑
z∈{0,1}n

⎡
⎣ ∑
x∈{0,1}n

(−1) f (x)·ei ⊕x·z
⎤
⎦ |z〉n .

Therefore, the amplitude of ri is:

1

N

∑
x∈{0,1}n

(−1) f (x)·ei ⊕x·ri = 1

N

∑
x∈{0,1}n

(−1)(r0⊕ri ·x)⊕x·ri .

As f (x) · ei = (r0)i ⊕ ri · x. If we expand now the expression, we get:

1

N

∑
x∈{0,1}n

(−1)(r0⊕ri ·x)⊕x·ri = (−1)r0
1

N

∑
x∈{0,1}n

(−1)x·(ri ⊕ri ) = (−1)r0 ,

and we are assured to get ri .
Once again, GPK only allows us to determine R, but tells us nothing about the

translation r0, which we have to classically determine by computing f (0). �	
Remark 8 The choice of computing the GPK algorithm with the elements of the com-
putational basis is actually arbitrary. If we chose to do so with any other basis, we
would end up getting the matrix of the linear application in said basis.

Again, we see that the GPK is more effective when applied to functions with a
certain linear structure.
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6 A new algorithm to solve Simon’s problem

The last problem we will try to solve by means of the GPK algorithm will be
Simon’s problem. This problem was introduced by Daniel Simon in [18]. Further
generalisations of this problem can be found in [1].

Definition 6 (Simon’s problem.) Let f : {0, 1}n → {0, 1}n be a Boolean function
which satisfies that there is a secret s ∈ {0, 1}n such that if f (z) = f (y) then z = y⊕s
or y = z. This kind of function is called a Simon function, and Simon’s problem is to
determine such s.

Simon’s problem is solved bymeans of Simon’s algorithm, whichworks as follows.

STEP 1
|ψ0〉n,n = |0〉n ⊗ |0〉n .

We begin with the 0 state.

STEP 2

|ψ1〉n,n = (Hn ⊗ Im) |ψ0〉n,n =
⎛
⎝ 1√

N

∑
x∈{0,1}n

|x〉n

⎞
⎠ ⊗ |0〉m .

We get a superposition of all the states in the computational basis with the same
amplitude in the first register.

STEP 3

|ψ2〉n,n = U f |ψ1〉n,n = 1√
N

∑
x∈{0,1}n

|x〉n ⊗ | f (x)〉n .

We apply the U f gate, so now we can measure the second register.

STEP 4
We measure the second register, getting a specific value f (x) and collapsing the

first register to:

|ψ3〉n = 1√
2

(|x〉n + |x ⊕ s〉n) , for some x ∈ {0, 1}n , getting a superposition of

two related states.

STEP 5

|ψ4〉n = Hn|ψ3〉n = 1√
2N

∑
z∈{0,1}n

(
(−1)z·x + (−1)z·(x⊕s)

)
|z〉n .

If we further analyse this final state, we get:

|ψ4〉n = 1√
2N

∑
z∈{0,1}n

(−1)z·x
(
1 + (−1)z·s

)|z〉n .

And the amplitude of z is 0 if z · s = 1 and (−1)z·x
√
2/N if z · s = 0.

We thus get a uniform probability distribution over all the states z such that z ·s = 0
where the probability of each such z is p(z) = 2/N . The idea is now to iterate this
algorithm to get enough independent states of that kind and solve the corresponding
linear system.
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We will now present an alternative to this algorithm using the GPK. The main idea
is that we will arrive at a superposition of the same basic states, but with different
amplitudes.

Proposition 2 Let f : {0, 1}n → {0, 1}n be a Simon function and y ∈ {0, 1}n. If we
apply GPK(y) to f we obtain a superposition of the same basic states as in Simon’s
algorithm.

Proof Wewill follow the notation in Definition 2. The final state of the algorithm after
discarding the second register in Step 4 will be:

|ϕ4〉n = 1

N

∑
z∈{0,1}n

⎡
⎣ ∑
x∈{0,1}n

(−1) f (x)·y⊕x·z
⎤
⎦ |z〉n .

If we study the amplitude of each z in this superposition, we get two distinct cases.
If z · s = 1, then z · x 
= z · (x⊕ s), which together with the fact that f (x) = f (x⊕ s)
implies that the amplitude is 0. In the other case, we cannot easily determine the
amplitude of z.

Thus, we end up with a sum of states of the computational basis, which fulfil the
same property as those in Simon’s algorithm but with different probabilities. �	

At this point in Simon’s algorithm, we would iterate the algorithm until we get
enough linearly independent states to solve the system and find s. Our algorithm
improves this.

Theorem 4 (Random marker selection algorithm) Let f : {0, 1}n → {0, 1}m be a
Simon function with s ∈ {0, 1}n as its secret string. If we apply the GPK algorithm
with random marker selection among {0, 1}n, then the probability of obtaining a given
z ∈ {0, 1}n as a result is:

p(z) =
{
2/N if z · s = 0

0 otherwise.

Proof Wewill simply prove that choosing themarker at random among all the possible
elements of {0, 1}n we get a uniform distribution as in the Simon’s algorithm.

The probability of choosing a given y ∈ {0, 1}n is 1/N , so the final probability of
getting a certain z ∈ {0, 1}n at the end of the algorithm would be:

p(z) = 1

N

∑
y∈{0,1}n

αy(z)2,

where αy(z) is the amplitude of z in the final state of the GPK. As we have seen, this
amplitude is:

αy(z) = 1

N

∑
x∈{0,1}n

(−1) f (x)·y⊕x·z.
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Therefore,

p(z) = 1

N 3

∑
y∈{0,1}n

⎡
⎣ ∑
x∈{0,1}n

(−1) f (x)·y⊕x·z
⎤
⎦
2

= 1

N 3

∑
y∈{0,1}n

∑
x∈{0,1}n

⎡
⎣(−1) f (x)·y⊕x·z

⎛
⎝ ∑

x′∈{0,1}n

(−1) f (x′)·y⊕x′·z
⎞
⎠

⎤
⎦

= 1

N 3

∑
y∈{0,1}n

∑
x,x′∈{0,1}n

(−1)( f (x)⊕ f (x′))·y⊕(x⊕x′)·z

= 1

N 3

∑
x,x′∈{0,1}n

⎡
⎣ ∑
y∈{0,1}n

(−1)( f (x)⊕ f (x′))·y⊕(x⊕x′)·z
⎤
⎦ .

If we now analyse this final expression, in particular the sum on y for each particular
pair x, x′, we get:

∑
y∈{0,1}n

(−1)( f (x)⊕ f (x′))·y⊕(x⊕x′)·z.

It is easy to see that if f (x) 
= f (x′), then this sum is 0, as x, x′ and z are fixed and(
f (x) ⊕ f (x′)

) · y would take value 1 for half of the values of y and 0 for the other
half.

Considering this, in the situation of Simon’s problem we would get:

p(z) = 1

N 3

∑
x∈{0,1}n

∑
y∈{0,1}n

(
(−1)(x⊕x)·z + (−1)(x⊕x⊕s)·z)

= 1

N 3

∑
x∈{0,1}n

∑
y∈{0,1}n

(
1 + (−1)s·z

)
,

which is 0 if s · z is 1 and 2/N if z · s = 0. �	
In each iteration of Simon’s algorithm, we have the same probability of obtaining

each string such that x · s = 0, including the string 0, which does not give us any
information. Let us prove that we are reducing the probability of obtaining 0 without
hurting the balance among the rest of the strings.

Corollary 2 The GPK with random marker selection among {0, 1}n \ {0} improves
Simon’s algorithm.

Proof If we chose now 0 as marker, we would get 0 with complete certainty, so if we
eliminate the possibility of choosing 0 as a marker we will reduce the probability of
getting 0 as a result to:

2

N
− 1

N
= 1

N
,
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while the probability of every other state z such that z · s = 0 would increase to:

2
N − 1

N (N − 2)
.

�	
Remark 9 (Example 2.) In order to show an example of this algorithm, we will take
f : {0, 1}4 → {0, 1}4 as follows:

f (0000) = f (0101) = 1111 f (0001) = f (0100) = 0001

f (0010) = f (0111) = 0010 f (0011) = f (0110) = 0011

f (1000) = f (1101) = 0100 f (1001) = f (1100) = 0101

f (1010) = f (1111) = 0110 f (1011) = f (1110) = 0111,

In this case, the secret is s = 0101. Our first step will be to randomly choose a
marker different from 0, so each possible marker will have 1/15 probability. Let us
suppose that we chose y = 0111. After applying GPK(0111) to f , we would get the
state:

1

16

( − 4|0000〉4 − 4|0010〉4 − 4|0101〉4
−4|0111〉4 − 4|1000〉4 − 4|1010〉4 − 4|1101〉4 + 12|1111〉4

)
,

which is composed only by states of the computational basis |x〉4 with x · s = 0, but
not all with the same amplitude. If we measured we would get one of them, which
will probably be 1111. This binary string will translate into an equation:

s0 ⊕ s1 ⊕ s2 ⊕ s3 = 0.

where s = s0s1s2s3. If we repeated the algorithm again, we would choose a new
marker y = 0011 and apply GPK(0101) to f , which would in turn give us:

|1101〉4.

After measuring, we would get 1101 with complete certainty, which will translate
into the equation:

s0 ⊕ s1 ⊕ s3 = 0.

Wewould repeat the algorithm until we get three independent linear equations. The
main improvement over Simon’s algorithm is that we have globally diminished the
probability of getting 0 after each iteration of the algorithm, as we are not choosing 0
as a marker.
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