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Abstract Dai and Pennington have performed a compre-
hensive analysis of essentially all pion and kaon pair produc-
tion data from two-photon collisions below 1.5 GeV, includ-
ing all high statistics results from Belle, as well as the older
data from Mark II at SLAC, CELLO at DESY, and Crys-
tal Ball at SLAC. Imposing the basic constraints required
by analyticity, unitarity, and crossing symmetry and mak-
ing use of Low’s low-energy theorem for QED, they were
able to extract the final-state, strong-interaction scattering
amplitudes for the intermediate 77 — 7w and rw — KK
reactions in a model-independent fashion. In addition, they
provided good fits to the respective y y — w7 cross-sections
that are known in the low-energy sector in the restricted
angular range, |cosf| < 0.6 — 0.8. Using the parame-
ters obtained in this fashion, these authors constructed the
yy — mm cross-sections integrated over the full angular
range. In the present work, we use a version of chiral per-
turbation theory developed by Oller and Oset to evaluate the
final-state, strong-interaction amplitudes theoretically, and
we compare our low-energy QCD-based results with the
amplitudes extracted by Dai and Pennington. We also cal-
culate the yy — mm cross-sections (integrated over the full
angular range) and compare them with those obtained by
Dai and Pennington. These calculations give a more detailed
insight into the fit of chiral perturbation theory, not just to
the measured yy — s cross-sections, as is usually pre-
sented, but rather to a higher level of detail through the
available analysis of the experimental data for the underly-
ing final-state, strong-interaction, meson—meson scattering
amplitudes 77 — 7 and 77 — K K themselves. The fits
appear to be sensible over the energy range considered. The
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detailed calculations of strong-interaction transition matri-
ces, as presented in this paper, also pave the way to address
the possible presence of the postulated kaonium atom K+ K ~
in the cross-section.

1 Introduction

Photon—photon to meson—meson cross-sections have been
measured by several experimental groups over the last
decades [1-14]. The high statistics experimental data obtained
by the Belle Collaboration at KEKB for yy — ntz~ [1],
yy — 70 [2], and yy — 7% [3] cross-sections, plus
the similar high-quality data for yy — K+tK~ and yy —

KK for yy center-of-mass collision energies up to ~ 1

GeV [10-14] have given new impetus to the field and can pro-

vide important new information with which to probe the pos-
sible quark structure of the light isoscalar f,(500), fo(980),

and isovector ag(980) scalar mesons [15-24]. Dai and Pen-
nington have performed a comprehensive amplitude analy-

sis of the processes yy — mw¥m~, 7979, and KK below
1.5 GeV [25]. Using all available experimental data, they
have extracted the associated final-state, strong-interaction
transition matrices, 77 — wtx~, 797, KK in a model-

independent fashion, using only properties of analyticity, uni-

tarity, and crossing symmetry and Low’s low energy theorem

for QED. Their fits pertain to the experimental data that are
measured over arestricted angular range, | cos 6] < 0.6—0.8.

Having determined all parameters, they are able to construct
the cross-sections for yy — ntw~, 7% that would be
expected after integrating over the full angular range.

Such developments open up several intriguing possibil-
ities from a theoretical point of view. (a) First, the pre-
cise knowledge of the final-state, strong-interaction transi-
tion matrices can be used to test the predictions of low-
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energy QCD, or at least differentiate between various models
thereof. (b) In the energy range studied, it opens up the possi-
bility of examining the viability of detailed combined struc-
tures that potentially can form. Various strong-interaction
models with different structural properties have already been
explored in some detail for the light isoscalar and isovec-
tor mesons. These include, for example, descriptions with
simple g pairs [26-31], more complex ¢2g> states [32],
or a KK molecular structure [33—42] for the f0(980) and
ap(980) in particular. Now, in addition to the strong interac-
tion, which is known through the analysis of [25], electro-
magnetic effects can be incorporated, and, for example, the
resonance formed in the production and subsequent decay of
the K K~ hadronic atom kaonium [43—46] can be studied
theoretically. This, in turn, may become accessible experi-
mentally. As areminder, note that attractive Coulomb interac-
tions are crucial for the formation of kaonium, which, in turn,
implies isospin breaking. However, because of the disparate
length scales over which the strong and Coulomb interac-
tions operate, isospin breaking is confined to the region out-
side the strong interaction range. By assuming this physical
assumption and using meson—meson interaction amplitudes,
the authors of [46] have been able to investigate strong inter-
action effects on the binding (and decay) of kaonium, and
have found lifetimes of (2.2 +0.9) x 10~!3 s for its ground
state. More recently, the existence of the 2p state of kaonium
has been proposed in [47], by analyzing the data obtained by
the CMD-3 experiment on the eTe™ — K+ K~ process.
The present paper aims to examine (a) above and to
determine how well leading-order chiral perturbation theory
(ChPT) [48-50], taken together with QED to calculate the
final-state, strong-interaction and electromagnetic transition
matrices, serves to give a good description of the final-state,
strong-interaction transition matrices as compared with the
model-independent curves extracted by Dai and Penning-
ton from experiment [25]. Our calculated final-state, strong-
interaction transition matrices turn out both qualitatively and
quantitatively to be in reasonable agreement for both the
individual real and imaginary parts. We also calculate the
full cross-sections for the yy — nt7~ and 7°7° reac-
tions, incorporating the electromagnetic contributions, and
again find a reasonable, but not perfect, agreement with the
extracted curves of Dai and Pennington. The question of new
structures (b), such as the presence of kaonium appearing
in the cross-section, which requires a solid knowledge of
the strong-interaction transition matrices, as presented here,
is left as a subject for our future paper. In a nutshell, we
will search for the kaonium as a sharp resonance possibly
accompanying the fy(980) in the processes yy — 7%z and
yy — m%. This will require the modifications of the cross-
sections of these processes, which are presented in the cur-
rent paper, to include the formation of kaonium, that essen-
tially boils down to the inclusion of isospin breaking in the
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transition amplitudes. In the corresponding calculated cross-
sections, one would expect the same behavior as that of, for
example, yy — 7%, except in the close vicinity of kaonium
resonances, where the isospin breaking is significant.

For our aims in the present paper, both for evaluating the
full transition matrices and for calculating the photon—photon
to meson pair cross-sections, we require a detailed anal-
ysis of the underlying electromagnetic interaction as well
as the strong-interaction component through meson—-meson
scattering processes. Such studies are not uncommon: The
first calculation of two-pion production in photon—photon
collisions via ChPT presented against data was performed
by Bijnens and Cornet [51] when the first data from the
Crystal Ball experiment were made available. Thereafter, in
a particularly clear fashion, Oller and Oset [52] extracted
meson—meson interactions within the pseudoscalar meson
SU(3) flavor octet from the Lagrangian given by leading
order ChPT [48-50] as the appropriate theoretical realiza-
tion of low energy QCD. They then used these interactions
as input for the Lippmann—Schwinger equation to provide
a non-perturbative calculation of the pseudoscalar meson—
meson scattering and reaction amplitudes.

Itis, however, important to bear in mind that the validity of
the leading order ChPT results is restricted to center-of-mass
collision energies up to ~ O(1 GeV). A glance at the two-
photon collision data [1-3] shows that, while the f(500),
f0(980), and a((980) again appear quite naturally in the
ChPT calculations as dynamically generated resonances [53—
55] below 1 GeV center-of-mass total energy, with energies
and widths compatible with the experiment in the total cross-
section of the relevant reaction channels, the dominance of
the wide f>(1270) and a;(1320) resonances eventually over-
shadow the ChPT contribution at higher energies. Whilst not
important for studying the yy — kaonium production pro-
cess, we remark that when the ChPT transition amplitudes
are supplemented by contributions from the above two reso-
nances in the parametrized form [56], both being interpreted
as d-wave, helicity A = 2 states, plus the exchange of vector
and axial vector octet resonances in the u# and ¢ channels
[57], there is good agreement with the available photon—
photon collision data over the entire energy range from the
two-meson threshold to ~ 1.4 MeV in the center-of-mass
system.

A decade after the first ChPT comparison with data [51],
Oller and Oset recalculated the scattering cross-sections in
ChPT, including the f> and a, mesons, and compared these
with the then available data [53]. In our comparison with the
precision data available, we follow their approach.

This article is arranged as follows. Section 2 addresses the
calculation of the T-matrices for the photon—photon interac-
tions. In Sects. 2.1, 2.2, and 2.3, we build up the Born contri-
butions, the contributions containing meson—meson scatter-
ing through ChPT, and the resonant and axial contributions
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that cannot be described by ChPT, respectively. These are
collated in Sect. 2.4. In Sect. 3, we compare our calculated
amplitudes and cross-sections with the extracted fits of [25]
and experimental results. We summarize and conclude in
Sect. 4.

2 Production amplitudes for the processes
yy » ata, n%% n%,and KTK~

The theoretical basis for evaluating the yy — mm; pro-
cesses has been studied in different contexts or models
before, see for example [25,53] and references cited therein,
and involves both the electromagnetic coupling of the pho-
tons to (charged) mesons that is determined through QED, as
well as QCD for the final-state strong interactions between
the mesons themselves. As the latter cannot be extracted
directly from QCD itself, we use ChPT as an appropriate
realization of the strong interactions in the low-energy sector.
These processes are represented graphically in Fig. 1 by the
Feynman diagrams for the y y — mm> transition amplitude
for incoming photon four-momenta and helicities (g1, A1)
and (g2, X») leading to outgoing mesons with four-momenta
(p1, p2)- The filled circle diagram in panel (a) of Fig. 1
denotes the full transition amplitude tensor i T)f‘ ; —mymy- This
itself is resolved into two parts: a direct coupling of the elec-
tromagnetic interaction to the mesons plus a term in which
both the electromagnetic and strong interactions play a role.
The first is the Born term i Tl’; Yy —mima® , denoted in the figure
as an open circle, and is only present when photons couple
to charged meson pairs m_m_ in the final state. The second
diagram, denoted as i T, ; +—mym,» includes the contribution
from the strong meson—-meson interactions in the final state.
The direct coupling of the electromagnetic interaction to the
mesons via the Born term is again broken down into three
individual terms, also shown in this figure, see panel (b), and
which contain one-meson exchange.

Fig. 1 Scattering amplitudes
for y(q1) +v(q2) —

mi(p1) + ma(p2) collisions
producing meson pairs of
masses (m1, my) with incoming
and outgoing momenta (g1, g2)
and (p1, p2), respectively. a The
full amplitude (filled circle).
This amplitude includes strong
interactions in the final state as
given by the 4-point,
meson—meson scattering

T -matrix (filled box diagram). b
The Born term (open circle) only
involves the electromagnetic
coupling vertices of photons to
charged mesons and is only
present for 7t~ or K™K~ in
the final state

As it stands, low-energy ChPT does not account suffi-
ciently for the f>(1270) and a»(1320) resonances, which
have large widths that extend well into the region below
1 GeV. These are accommodated in our formalism via
parametrization. We thus proceed as follows: in Sect. 2.1, we
start with the Born term to set our notation. We then evaluate
contributions from the final-state strong interactions using
ChPT in Sect. 2.2. In Sect. 2.3, we give the parametrization
for resonant, non-ChPT terms. Then, in Sect. 2.4, we build
up the full 7T-matrix, that consists of the amplitudes
T, ;l)%numz = Tll;l;/y%mlmz + T, S yy%mnnz

v
+TR(A) yy—>mimy’ (1)

with n,v = 0,...,3, and specify the cross-sections.
Throughout this work, we use natural units, where i = ¢ = 1
and the charge 2 /47 = a.

2.1 Electromagnetic contributions to yy — m™m™ in the
helicity basis

The process yy — w7~ due to electromagnetic interac-
tions (Born approximation) has been well-studied in the lit-
erature, see for example [57]. In this subsection, we provide
important results, giving sufficient detail to make this paper
self-contained, allowing the reader to follow the calculations.
These are directly applicable to the process yy — KTK~
In general, the transition amplitude in the Born approxima-
tion corresponding to the second diagram in panel (a) of
Fig. 1, or all diagrams in panel (b) of Fig. 1 leads to the
expression

v 2p1 —q)*2p2 —qz)“
e ] P Cp1r—q1
Biyy—mtm ¢ [ § (p1 —q? —mi
2p1 —q2)"2p2 — q)*
, (2)
(p1 — )2 —mi }
Yy — Tt
Tt (KT)
T (K7)

=
KX

@ Springer



49 Page4of 17

where m 4 are the (common) masses of the final-state mesons.
This expression has to be contracted with polarization vec-
tors €, and €,. For an explicit evaluation, without loss of
generality, we use a standard choice [58] ¢p = 0 and the 3-
vectors of helicity A1, A, ey, (1), e;,(2), both oriented along
right-handed orthogonal axes xy perpendlcular to the photon
momentum vector in the z direction, e;, (1) = i, e, (2) =],
and ey, (1) - e, (2) = 6, 1, to fulfill the Lorentz condition.
This leads to the expression

€0 i Tge i (€32(2) ) = =267 [exl (1) €,(2)

n (p1 - e, (1) (p2 - e, (2)) n (p2 - ey, (D) (p1 -exz(2))]
P1-q1 P12 '

3

where the indices i, j can take on the values 1, 2, 3.

In the center-of-mass system, the incoming photon and
outgoing meson lines in panel (b) of Fig. 1 have four-
momenta g1 = (Po/2,q), ¢2 = (Po/2,—q), p1 =
(Py/2,p), and pr = (Py/2, —p), where /s = Py is the
total collision energy. Using this, the contracted Born ampli-
tude becomes

(Toyy—mtm=)s,, = (€, Byy%m‘*'m—(e)vl(l))j

(v-e5,(2)(v- exl(l))}

1 —v2cos?6

= —2¢% [eﬁz(z) ey, (1) =2
“4)

where e, (1) is associated with particle 1 with incoming
momentum ¢ and e;,(2), with particle 2 with incoming
momentum —q. Also, the center-of-mass velocity is v =

2p/Py = /1 — 4m2i/s, and cosf = p - q/pg gives the

polar angle of the scattering direction of the outgoing meson
p relative to the incoming photon q. We choose to evaluate
(4) for the Born amplitudes in the chiral helicity basis that
is defined by eg 1 (I) = F(e1(l) +iex(1))/v/2, 1 = 1,2.
Note that in the center-of-mass system, the total helicity of
the colliding photon pair can only take on the values . = 0
or 2, and this label is sufficient to characterize the contracted
T-matrices, which we denote as T, Then the individual
contracted amplitudes are easily found to be [53],

( (A=0) ) _ (T(A:O) )*
Biyy—m*m= ) piyr(1) Bryy=mm™) L@
1—?
= —2ie* —————, 5
1 —v2cos?6 ©)
( (=2) ) _ (T(A=—2) )*
Biyy—mtm=)poyray — " Bivy=mtnT Jroypa)

2ie? v sin? He2i® ©)
=z —F—.
1 —v2cos?é
An expansion of the Tl(:) +_ in spherical harmonics
Wyoomrme .
Y70, ¢) for each total helicity A yields the partial con-
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tracted amplitudes Tlgj A 4 _, which can be used to iden-
yy—mTm

tify the leading s- and d-wave contributions to (5) and (6).
To this end, we write (5) as

©0) _ (J.0)
TB;yy—)m*m* - Z TB;yy—)m*m*' )
J=0,2,4,-

The (J, 1) partial-wave amplitude for helicity zero is identi-
fied as

Tyl e = —2i€(1 = v /v
x VAr 2T + 12 Q,(1/0)Y10(6, ¢),

®)

where 1/v > 1 and Q;(1/v) is a Legendre function of the
second kind [59]. We have also dropped the chiral indices,
which are no longer necessary. For the s-wave contribution,
we set J = 0and use Qo(1/v) = (1/2) In[(1 +v)/(1 —v)],
to find

T(0,0) = _2162(1 _

B;yy—mtm

v2)/v
v) VY000, ¢). ©)

(1 +v
XIn| ——
1—

The d-wave contribution can be obtained by setting J = 2
and Q> (1/v) = —=3/2v+ (3 —v?)/4v* In[(1 + v) /(1 — V)].

For the case of helicity two, since sin?9e?¢ = /327 /15Y22
(0, ¢), we can write (6) as

2 _ 32n 12
TB;w_mﬁm =2i¢? Uy —— G Z Var 2l + 1)V

1=0,2,4,-

XQz(l/v)Yz,o(Q,¢)Y2,2(9,¢)- (10)

We now make use of the expression for the product of the
two spherical harmonics Y;,0(0, ¢)Y22(6, ¢) at a common
angle [60] to find

2
1 e =200 ¥ s

J=2,4,6,-

x Z (21+1)<0 ; _J2>

I=J-2,J,J+2

x(é . g)gla/v) Y120, ).
(11)

where the round brackets are Wigner 3-j symbols. The
restriction on the sum over / is due to the second Wigner 3-
symbol that vanishes unless [ 4-2 4 J is even [60]. Inserting
their specific values given in [60], we can perform the [-
sum in the square brackets to identify the (J, A) partial-wave
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amplitude for helicity two as

TUD ity /m ] + )2

B;yy—mtm

x [(J = DI 4+ D(J + 2]/

o [ Qjo/v) Q;(/v)
QJ—DQRJI+1)  “@2J-1D@J+3)
Q+2(1/v)
+(2J Y 3)} Y5200, 9). (12)

For J = 2, using Q4(1/v) = (—105 + 55v2) /2403 +(35 —
3002 + 3v*)/16v* In[(1 + v) /(1 — v)], we obtain

2 232
02 o[ 3450 -
Ty yysmem- = 2i€ |: 32 T
I14+v
x In p— 157/2Y22(0,¢).  (13)
—

While the T-matrices will be of direct interest to us,
for completeness we note that the individual helicity cross-
sections can also be evaluated. The partial differential cross-
section, for example, for the process yy — m 7~ reads

Jo _
d61(3 )(yy—>n+7r ) v I 2 "
dQ2 T 12872 | Biyy—mtaT| (14)
and thus
o Py > ntrT) = —
B 128725
2
xf aelrh | as)
For the case of (0, 0), we have
0,0 _
do¥(yy > ntn) v 0,0 > 16
dQ T 128725 | Biyy—mtat] (16)

so that

(00)()/J/—>7T )=

v 460|700 ‘2
128725 Jux Biyy—mtn-

2 ) 2
:nﬂ[l v 1n<'+”>}, (17)
2s v 1—v

is given in (9). Similarly for (2, 2), we

0,0
where TB Yyt
obtain

022’2)()/)/ — 7T+JT_)

_ v 2.2) ‘2
_ 1287r2v./ dQ‘TBW%ﬁ,_

34502 (1 —v?)?
157 + Sv ( v)1
45 302 203

()]

(18)

2,2 .
where Tlg y;_)nJrﬂ 1s. given in (13). N
The total cross-sections for each helicity can be computed

similarly. For helicities zero and two, they read

© ) = de“éo)
op'(yy > nnT)= i 70
/ )T(x 0) }
= 128725 Biyy—mta~

2
) 1—?
= — dQ | ————
25 Jax 1 —v2cos2@

2 242
11— 1
=n—v 1—v2+( ) In tv s
s 2v 1—v

(19)
and
da(z)
2) +_ - — ase B
op (yy > n"n7) An )
a?v v2 sin? 6 2
25 Jary 1 —vZcos?6
2 4
3—2v% — 1
= nﬂ 32— v v In tv ,
K 2v 1—v
(20)

where (5) and (6) are being used.
The full differential Born cross-section can then be calcu-
lated as

dop(yy > ntn™) a®v 1 -2
dQ 2 1 —v2cos?6
n v2 sin? 6 2 21
1 —v2cos20 ’

and integrating over the full angular range yields

2

2 4

1—
UB(VV—>H+7I):2ﬂ2|:2—U2— v
s 2v

xln(1+v)], 22)
1—v

which is in agreement with the result of [57].

The following remark is in order. In principle, explicit
expressions for Tl(;J 0)3_)m+m and Tlgjy2)3—>m+m for all
allowed J > A and their corresponding partial cross-sections
can be computed like those explained in this subsection.
However, the leading-order partial-wave amplitudes given
in (9) and (13), i.e., the (0,0) and (2, 2) partial waves,
together account for ~ 90% of the calculated Born cross-
section for s < 1 GeV? [53,61] and thus build a con-
venient working assumption. In this regard, 1t 1s instruc-
tive to compare op(yy — nwtm™) with UB Vyy —
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ntaT) + 01(32’2)()/)/ — wtn~) as v — 0. To this end,
we have

2
oplyy - ntn7 )~ 2712[1 — 4v2/3 +4v4/5
s

+00w®], v—o0, (23)

oéo’o)(yy —atn7) —i—algz’z)(yy —atn7)
v 2 4 6
~ 271—[1 —4v°/3 4+ 3207 /45 4+ O(v )], v— 0,
K

(24)

where (24) slightly underestimates the full Born cross-
section in (23).

2.2 Non-perturbative, strong-interaction contributions to
the meson—meson reaction amplitudes

To obtain the full transition matrix shown in panel (a) of
Fig. 1, the effects of the strong interaction in the final state
must now be taken into account. In particular, we first need
to evaluate the T -matrices that are associated with the square
diagram in Fig. 1 and which account for meson—meson scat-
tering. Here, we follow the approach offered by ChPT, fol-
lowing [52], and summarize the essential points. For recent
reviews of this topic, see [62,63].

The meson pairs (KK, (zm)!, and (non)l of good
isospin 7, interact in the final state via 4-point vertices given
by [52] (note that since we define the vertex diagrams by i V;,
the sign of this V;; is the negative of those listed in [52]),

Vot mpemams = (L.mima | Lol 1, mymy)
=v! (25)

m3mg4;mypmy’

at tree level, after coupling both the initial and final two-
meson states to good isospin /. The symmetry in the inter-
action under the interchange of labels is due to time-reversal
invariance. The interaction chiral Lagrangian is assumed to
be Lo = 1/12f%tr [(3, PP — 93, P)> + Md*], which is
the leading order ChPT interaction Lagrangian density [48—
50]; f is the (bare) pion decay constant, tr denotes the trace
in SU (3) flavor space of the matrices constructed from

70/ 24n/V6 7t Kt
o= o -7/V24n/v6 KO, (26)
K~ &’ —2n/v/6
and M is the diagonal matrix of (bare) meson masses,
mi 0 0
M=\|0 m2 0 ) 27)
0 0 2m%—m2

@ Springer

Notationally, we abbreviate the 4-point vertices in (25)
and the meson—meson transition amplitudes 75, my—mymy 0
a compact fashion as has been previously introduced in [52].
The indices (i, j) = (1,2) are used to identify the specific
meson pair involved: 1 indicates K K in both isospin states
I = 0and I = 1, while 2 indicates wzr for I = 0 (or
I = 2), and non for I = 1. Note that this follows the
convention of [52], but is opposite to the channel-labeling
convention of [25]. The following set of basis states of good
isospin 7, |(M; M)y, are defined in terms of the meson—
meson particle-basis sets as

(k)°) = —% (KK~ +K°K"),
(KE)')= _Lz (kK= - KE").
(r)’) = —% (rtn~ + 77t 4+ 2070),
(rm)?) = —i6 (wtn + 7wt —22070),
(non)]> _ 2. (28)

Using the Vli, which can be obtained from (25) by tak-
ing (28) into account, one can construct the coupled equa-
tions for the scattering amplitudes Tlg of good isospin for
these meson pairs. In general, these are integral equations
that involve meson—-meson interactions Vil. in intermediate
states, where at least one of the states i or j is off-shell. How-
ever, in the case of s-wave scattering, Oller and Oset have
shown explicitly [52,53] that one can replace the Vl§ by their
on-shell values in intermediate states too since their off-shell
parts are additive and can be reabsorbed as a renormaliza-
tion factor that replaces the bare coupling constant, 1/f, and
meson masses by their physical values, f; ~ 93 MeV and
(my, mg, my) ~ (140, 496, 547) MeV. The on-shell values
for the Vil.l can then be found from the information given in
[52,53] to be

3s 3 s 25 — m?
Vi = Py V) Z\/;Z_fz V) = 7 =, (29

| s ! 29s—m%—3m%—8m%¢
Vii=17m Va=-— 3 ’

452 1212
2
m
v, ﬁ (30)
—2m?2
vh = -1 (31)

! Some authors, e.g., [37,38,52,53], include an additional normaliza-
tion of l/ﬁ in the definitions of | ()?) and | (7r 7)2). Hence the matrix
elements Vi(;‘z given in Egs. (29) and (31) are larger by a factor +/2 than
those listed by Oller and Oset for each pion label 2 appearing on the
interaction matrix element for / = 0 and / = 2.
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where /s is the total collisional energy in the center-of-mass
system.

Equations (29)—(31) only depend on the external vari-
able s = POZ, the total center-of-mass energy squared of
the meson pair. This in turn means that the integration over
the four-momenta of meson pairs in intermediate states can
be factored [52], and the coupled integral equations for the
le (s) become coupled algebraic equations that can be solved
exactly. The results are

T{\(s) = [(1 - Vzlzl_[éz) Vi + V112H£2V2[1] /D' (s), (32)
T/, (s) = V{o/D'(s), (33)

for (KK)! — (KK)'! in both isospin channels, I = 0, 1,
and (KK)? — () or (KK)' — (%), respectively.
The common denominator of TII1 (s)and Tll2 (), D! (s), reads

D'(s) = (1= v/in{)) (1 — v}, — vh,ng, v i,
(34)

for I = 0 and 1. In the above equations l'Il.Il. denotes the
meson loop diagrams and is given by

1l (s) 6/ d*l 1 1 (35)
1 .. (85) = ,
g Q@m)* 12— mZ (I + Po)2 — m}

for two mesons of mass (m,, mp) as identified by the labels 7
and i, and the symmetry factore = 1/2 and 1 foridentical and
non-identical mesons propagating in the loop, respectively
[64]. Thus l'[{ | = g for K K in both isospin channels,
while T2, = Mz or 0, for I =0 (or / =2)and I =1,
respectively. Note that Tll2 (s) = T2’l (s) is also time-reversal
invariant.

Since pions coupled to good isospin behave like identical
bosons [64], (mn) — (rm)! s-wave scattering can only
occur for I = 0 (or I = 2). The relevant T-matrices are

) = [1he)] . (36)

1<

T3(s) = V3y/ (1 - szzngz) ; (37)

for (mn)? = (z7)? and (77)? — (77)?, since in the
latter channel only the diagonal interaction vertex V222 is non-
zero, see (31). The related S-matrix element reads S%z (s) =
1+i/167/1 — 4m?2 /sT222(s) = exp(2i8§),where 8% isareal
phase shift, §3 = 1/2 tan"![Im(S3,)/Re(S3,)]. Note that the
S-matrix is unitary as there are no reaction channels.

The integral in (35) diverges at large four-momenta and
requires regularization. The expression for the O (4) regular-
ized integral I1 ll ;(5) in (35) depends on where s lies relative
to the branch cut that starts at the branch point (m, + m »)?
[46]. In the following we elaborate on the evaluation of
/. (s) = T(s) = —ielup(s).

First, we simplify I, (s) as

Iap(s) = Igp(0) — i/ (41)?

1 1 +(m3—m%)/m}27a—sa(1 —a)/mg
xf daln 5 5 3
0 L+ (mg —my)/myoe

= 1ap(0) — Lap(s). (38)

i
(4m)?
In this expression, 1,5 (0) is divergent and under O (4) regu-
larization, we find

. 2

! my 2, 2

———| ——=1n (1 + A /m )

(4n)2[mg —m? /M
2

o 2, 2
7 (1+a /mb>], (39)

Iab(o) =

where A is a regulatory cutoff.
To evaluate L, (s) in (38), first we consider the case of
s < 0, for which we obtain

1/6 m2+4+m?
Lap(s) = —1 — -(— + “—b) In <m2/m§)
2\X " m2 —mj ‘

+ Jan (s), (40)

where § = (mq —myp)/M with M = mg+myp, X = —s/M?,
and J,p(s) is defined as

A VN
Jap(s) = \/E|:coth (1 ~|—8/X) + coth (1 — S/X):|,
(41)

with ¢ = (1 +682/X)(1 +1/X).

To calculate L,,(s) for s > 0, we need to analytically
continue it into the complex plane. Making the substitution
s — zM?, where zis a complex variable, we have

1-46/z
v fah(z)>]

+coth_1 <—
1+46/z

Jab (@) = v/ fap(2) [coth—l (—f”@>

(42)

where fu(2) = (1 = 82/2)(1 = 1/2).
To study the analytic structure of \/ f,(2), first we define

z=|z|ei¢ - <¢<m,
=8 =z=-8" —nm<y<m, (43)
z—1=1|z—1]¢"* -7 <0 <m,

where z = u + iv, and |z] = Vu? +02, |z — 8% =

V=822 +v2 |z —1| =+/(u — 1)% 4 v2, and the angles
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are defined through: tan ¢ = v/u, tany = v/(u — §2), and v
tan0 = v/(u — 1); see also Fig. 2.
Thus, the individual square rootsin / f;5(z) can be written
as
(_Z)I/Z _ |Z|1/2 (@12, > -1
<82_Z)1/2= ‘82_Z‘1/2ei(1/f—ﬂ)/2’ w Z _ 52 0
o ® u
(1 _ Z)]/Z — |1 _ Z|1/2 el(@ ]T)/Z’ (44)
52 1
with the branch cuts taken along the real z-axis, u, from

—00 — 0, —00 — 82, and —co0 — 1, respectively. Using

(44), o/ fap(z) takes the form:
12
fifr@ =1 =8|

Just above the positive u-axis, we find the following forms
for f al b/ 2.

= 1/Z|]/2 O+ /2—¢] (45)

(i) O<u<8>: (p—0, vy —>m 0—>m)

== (=) -y
(i) <u<l: (p—0, v —>0, 6—>mx)

fay =i (1 - 52/u)1/2 (/u—1"2, (46)
(iii) > <l<u: (p—0, ¥y >0, 6§ >0
fay = (1~ Bz/u)l/2 (a—1/w'"?,

and just below the positive u-axis, we have

(i) O<u<8>: (>0, ¥ > -7, 60— —x)

== (=) -y,
(i) *<u<1l: (p—>0, ¥ —>0, 6> —m)

fa? =i (1~ 62/“)1/2 (1/u—=1'"2, (47)
(iii) 8 <l<u: (p—0, y >0, 6 —0)

= (1=8) S a1,

Equations (46) and (47) demonstrate that the function f, al l{ 2
has a discontinuit%/ along 8> — 1, which identifies as the
1/ .

branch cut of f,;~. The Riemann surface of / fu5(z) for a
specific § is illustrated in Fig. 3.

Now, we examine J,5(z) in (42), in the three regions (i),
(ii), and (iii). In both (i) and (ii) regions, it has the same
form as

o () o (T
(48)

@ Springer
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Fig. 3 The Riemann surface of the complex function +/ f,5(z) for § =
1/2. The Riemann sheets are connected along the branch cut, shown as
a dashed, black curve, from 1/4 — 1

where /[ fap] = (1 — 8%/u)'/>(1/u — 1)'/2, when u < 1.
For the region (iii), we have

s = Tl con™ (S50 ) weon (4550)

1—6/u 146/u
(49)

where /[ fap] = (1 — 8%/u)/?>(1 — 1/u)'/?, when u > 1.
Since the arguments of both inverse hyperbolic cotangents
in (49) are smaller than one, therefore both lie on the upper
lip—in our case, m> — m*> —in: z — (s +in)/M>*—of
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the branch cut of the inverse hyperbolic cotangent function.
Then (49) can be written as

Jap = m[tanh_l < ab] ) + tanh ™! < \/W) - in] . (50)
1 —68/u 1+68/u

Thus in the region (iii), where s > M? = (mg +mp)? when
the two-particle decay channel opens up, on the upper lip of
the branch cut along the real axis, J,;; develops an imaginary
part.

Now with J,5(z) at our disposal, the analytic continuation
of Lgp(s) reads

1/ 8§ m2+m?
Lab(z)=—l——(——+g—}2’)ln(m§/mi>

2 z mi—my

+ Jap (2). (51)

Putting (38), (39), (50), and (51) together, the regularized
integral of I1(s) in (35), for s > (m, + mp)%, becomes

2
L O 2,2
N =Gy |:m(% —m2 In (1 A /’"a>
2

m
A 21n(1+A2/ml%)—La,,(s) . (52)
m2 —m;j

with L, (s) is given by

1 (m2+m? m?2—m?
Lab(S)Z—l——<m; 127— as b ln(mi/mi>

2 i —mj
—1 fab
N P
—1 fab i

+ tanh [1 g /S” in/Far,  (53)

where
12

V fab = (1 = (mg —myp)* /S)

172
x (1= ma+mp)?/s) " =2pa/5. (54

In (54), pap is the magnitude of the three-momentum of either
meson in the center-of-mass system. Note that (52), (53),
and (54) are symmetric under the interchange m, — my.
For mq = my and m, = m,), (52) gives the closed form of
Hﬂon(s) fors > (m; + mn)z. For a different approach to
calculate the meson loop diagrams, we refer to Section 3 of
[62].
For equal masses, m, = m; = m, I1(s) reduces to

€

e =72

[1 +1In (1 n Az/mz)

+m2/(m? + A% — 2](s)], (55)
with

J(s) = \/?cot_1 \/?9 (4m2 — s)
+Jf (tanh’l N in/2> 0 (s - 4m2> . (56)

where /f = (1 — 4m?/s)"/? and 6 is the Heaviside step
function. In (56), the analytic continuation of J(s) into the
region 0 < s < 4m? along the real s-axis is also given.
Setting m = my or mg with e = 1/2 or 1, respectively, then
leads to closed forms for [T (s) and IT ;% (s). Having IT(s)
at our disposal, the Tlf (s) can all be obtained in closed form.

The complex poles in Py = /s of the transition ampli-
tudes T}, (Po) and T} (Pp) in (32) and (33) can be found
for I = 0 and 1 from the roots of their common denomina-
tor D' (POI ) = 0 in (34). These roots, which determine the
meson mass M and half-width '/ /2 for each isospin, lie on
the appropriate second Riemann sheet in the lower half of the
cut complex Py-plane [52],i.e., P/ = M"—iI'! /2. Note that
this relation assumes a non-relativistic Breit—Wigner shape
for the transition amplitude in the vicinity of its peak value
at Pp = M.

One finds two roots for I = 0 and a single root for I = 1,
that correspond to the two scalar-isoscalar mesons f;(500)
(oro), f0(980), and a single scalar-isovector ag(980) meson,
respectively [52]. In the cases of o and fj, we find particu-
larly simple relations for their corresponding roots (in MeV)
as functions of the cutoff A:

MO (A) ~ 436 + 67(A/1000) — 30(A /1000)2,
1Y/2 (A) ~ 394 — 230(A/1000) + 50(A/1000)%,  (57)

and

MY (A) ~ 996 + 37(A/1000) — 36(A/1000)?,
% /2 (A) ~ —64 + 93(A/1000) — 21(A/1000)*,  (58)

where A is measured in MeV and the coefficients of A, A,
and A2 have dimensions of MeV, 1,and MeV !, respectively.
We use the O(4) cutoff of A = 13511’}22 MeV that fixes
the real part of one I = 0 root, with error bars, at M?» =
(980 £ 10) MeV [46]. This replicates the fn(980) mass
values quoted in the PDG data table [65—67]. The predictions
for the masses and half-widths for all three scalar mesons are
listed in Table 1.

For other approaches to determine the pole positions of
f0(980) and ap(980) resonances, such as using the Roy-
like GKPY equations and Flatté parametrization, Madrid-
Krakow dispersive parametrization, and unitarization tech-
niques based on N /D method, we refer to [15,68-74].
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Table 1 Summary of calculated masses and half-widths, M’ —iT'/ /2
(in MeV, rounded to the nearest integer), for f5(500) or o, f,(980), and
ap(980) as afunction of the range of O (4) cutoffs: A = 1351 f{gg MeV.

The other input parameters are taken from experiment: f; = 93 MeV
and (my, mg, my) = (140, 496, 547) MeV

0 i 0 0 i 0 1 i 1
A MeV My — 5T M — IZFﬁ) Mg — 5T,
1166 473 — 194i 990 — 161 987 — 52i
1351 472 — 175i 980 — 23i 964 — 53i
1511 469 — 161i 970 — 29i 946 — 52i

PDG (2010) [65]
PDG (2012) [66]
PDG (2022) [67]

(400 — 1200) — (300 — 500)i
(400 — 550) — (200 — 350)i
(400 — 550) — (200 — 350)i

(980 % 10) — (20 — 50)i
(990 % 20) — (20 — 50)i
(980 — 1010) — (20 — 35)i

(980 % 20) — (25 — 50)i
(980 % 20) — (25 — 50)i
(960 — 1030) — (20 — 70)i

We are now able to construct the contribution in which the
strong interaction influences the final state. According to the
third diagram in panel (a) of Fig. 1, we identify T’

) i P Siyy—mimy
for a propagating charged meson pair mm_ in the loop as

jos _
Siyy—mimy T

d*l v
/W@IJIZITB MI +l,q2—l)

X <QI +1,q2—1 |Tm1m2;m+m,|plv pZ)

d*l v
~ Tmlmz;ernL(S)/ (27t)4 <Qqu2 |TB |<J1 +1,q — l),
(59)

with m being the charged meson mass m or mg, as appro-
priate. The second line in (59) follows after factoring out the
meson—meson scattering box diagram from the integral. This
approximation, like that for Tlg (s), places the intermediate
incoming charged meson pair mm_ of Ty my:m m_ OD-
shell to render this amplitude a function of s only [46,52,53].
Note, however, that the charged mesons in the final state of
74" under the integral sign are, by contrast, both still off-
shell.
Equation (59) can be further calculated as

2
Aél;;}"’”llmz a2 [glw (q1-92) — ngi)]
T (8)
x = Tmlmz;erm, (s), (60)
2s
where the function J,, (s) is given by
Jme (s) =14 2m2 /s
U da s
x/ —hfl-—Fal-a)]. (61)
0o @ m3

The meson—-meson scattering contribution, i.€., Ty ny;mm_ (5),
can be constructed from (32) to (37) for the appropriate
meson pairs. The expression in (60) is fully gauge invariant
as the factor g"” (q1-q2) —q5 q guarantees this: g1,.[g"" (g1 -
q2) —q5'q}1=0and g2,[8""(q1 - 42) — g5'q]1=0.

@ Springer

The function J,,_ (s) can be further evaluated to
2
4’"3& 1 s 2
sin~ —_— 04 —
S ( ) .
4 2 2
+ [1 + ﬂ(cosh*1 LA i7r/2) } 6 (s —4m).
N

2
4me

Imy (s) =

(62)

In this expression, the second term for s > 4mi arises by
analytically continuing the first as a function of s onto the
upper lip of the branch cut 4mi < § < oo along the real axis
of the complex s-plane.

Allowing for different combinations of intermediate meson
pairs to be formed, the contribution from the final-state strong
interactions to the full contracted 7-matrix thus reads

_ v
Ts.py—mimy = 62NTS;yy—>m1m2€1”

&2

= g

Z Jmi (S)Tmlmz;m+m_ (s),

m4

(63)

and when contracted with respect to polarization vectors of
total helicity A, we have

2
’ .
DT,y (D) = 55, (2) - ()

X Z Jmi (S)Tmlmz;m+in,(s)~

m4

(64)

This scattering amplitude is independent of the scattering
angle and is thus pure s-wave. Hence

(0,0)
S;yy—>mimy

2
e
= W Z Jmi (S)Tmlmz;m+m,(s)
i
X ZiﬁYO,O, (65)

Note that there is no A = 2 contribution in this case.
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2.3 Non-chiral perturbation theory contributions

As already commented upon in the Introduction, additional
s channel background contributions from the f,(1270) and
a>(1320) resonances, with quantum numbers / Grey =
0T (2%+) and 17 (27), to the scattering amplitude can be
expected to be important at center-of mass energies below
1 GeV. We denote these as T( —>m1m . Such contributions
lie beyond the scope of the ChPT calculations outlined above
and are thus parametrized. In addition, the #-channel axial
exchange amplitude arising from the 1~ (1) a; (1260) res-
onance, denoted as Ty.,,,,_, 0, also not only plays a role
above ~ O(1 GeV) [53,57], but also influences the ampli-
tudes and cross-sections below 1 GeV.

The f> and a; resonances have been interpreted as pure d-
wave, helicity 2 states (J, 1) = (2, 2) [56]. We parametrize
these by arelativistic Breit—Wigner resonance amplitude [75]
foryy — Mgr — mimj as

Tlgzyz;z%mlmz - _16”i\/mA2,2(S)Y2,2(9, @), (66)
where
Aza(s) = [r@)] BW(s)

-[r8]"

s — M2% +iMRT (/s)
x [Br(mimy)T (V)] (67)

with R = f3, ap, for aresonance of mass and total width M g
and I'(4/s), respectively, and with partial widths 1")(,2)3 and
Br(mm3)I"(y/s) for the decay into two photons of oppo-
site helicity, or two mesons, respectively; Br(mm>) is the
branching ratio for the latter decay. For simplicity, we con-
sider the widths appearing in the relativistic Breit—Wigner
formula to be independent of s, i.e., ['({/s) =T.

To obtain the corresponding cross-section, first note that

2
. (68)

2,2
da](e "yy = mimy) v ’ 2.2)
dQ 12872 | Riyy—mim:

thus, we have

(2,2)
dog” (yy — mima) _ 40_” 1422 Y2206, )|

ds
=407 @ ! Br(mm>)I"
"V (s — M%)? 4+ (MRT)?
2
x |Y22(0,¢)|" . (69)

By integrating over the full angular range, we obtain

= 40T ) Br(m ma)T
1
X b
(s = MR)? + (MgT)?

2,2
o,(e (yy — mimy)

(70)

which peaks at s = M% with the maximum value of
40T 3)Br(mymy)/MAT

Due to their large total widths (~ 100 to 200 MeV), the f>
and a; resonances can contribute to production cross-sections
already atenergies ~ 1 GeV, well below their peak positions.
We illustrate this in the next section for the yy — 797
channel where the total cross-section, (74), is just the sum
of the partial cross-sections determined by ChPT and the f>
resonance amplitudes separately, without any interference
term.

For the axial vector resonance exchange contribution, we
follow the approach of [53], where for y (q1)v (q2) — p1p2,
the corresponding transition amplitude reads

f2
TXU —47raf/3 [ M (g '6]2)—6];4})]

T
<1 + pi(q1 — p1)/m?
X 2

(q1 — p1)> —m3y

1+ pi(q2 — p1)/m?
(g2 — p1)? —m?}
(71)

where f4 depends on the combination Lg + Lig.

2.4 Total yy — meson—meson transition amplitudes and
cross-sections

The total contracted transition amplitudes 7}y m m, can
now be calculated from (1). For each specific exit channel,
this can be written to leading order as a sum of s- and d-wave
components:

0,0 2,2
TVV””""U - T}’(Vﬁ)mlmz + T)/(V%)mlmz’ (72)
where
(J,1) (J.2) (J A)
T yy—mimy — B;yy—>mimy +T S;yy—>mimy
+ 100 (73)

R(A);yy—>mimy’

and the relevant components are selected for the Born and
strong interaction terms from ChPT, while resonant, non-
ChPT terms are parametrized.

The total y — meson—meson cross-section can then be
expressed as the sum of the moduli squared of the 7/**), due
to the orthogonality of the spherical harmonics they contain.
Thus, we have

v 2
=——>¢€ | dQ|T,
2875 / [Ty y—mym; |

R 0.0
a 128n2s€/dQ<T vy

)
=004y = mmy) + 02 (yy — mymy),
(74)

o(yy — mima)

(2,2)
‘Tyy—>m 1mn

after integrating over the full solid angle and averaging over
the two helicities of the incoming photon pair; € takes 1/2 or
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1, depending on whether the final state has identical particles
or not, respectively. For example, for the process yy —
717, we obtain the total cross-section as

_ 0,0 _
o(yy - ntn) = O'é_i_;()/)/ —xT77)

2,2 —
+ UI(H;.Z()/)/ —xtr7), (75)

where the subscripts B + S and B + f; refer to the Born plus
strong-interaction and Born plus resonant f>(1270) contri-
butions, respectively.

The individual 7, m, matrices,
Ty()z,’ﬁmlmz, that determine these partial cross-sections are
given explicitly in Table 2 for the three exit channels:

mimy = 797°, 7tx—, and 7.

(0,0)
Tyy—>mlm2 and

3 Numerical results for scattering amplitudes and
cross-sections

3.1 mymy — m3my scattering amplitudes

One of the main contributions to the total scattering ampli-
tude in (1) arises from final-state strong interactions through
meson—meson scattering. The latter amplitudes themselves
are an important input to the photon—photon cross-sections
and are calculated separately in Sect. 2.2 within the frame-
work of ChPT. The authors of [25] have extracted these
amplitudes from the data in a model-independent fashion.
Here, we compare our calculated results for the real and imag-
inary parts of the transition matrices with the results of their
fits, see Fig. 4, for the processes nm — 7w, nmw — KK,
and KK — KK.

As can be seen in this figure, there is an overall good qual-
itative agreement between the transition matrices calculated
from ChPT and those extracted from experiment. However,
quantitatively there are differences, notably for the transi-
tion 7w — m, in which the real part underestimates the
extracted values at energies below 1 GeV, while the imag-
inary part overestimates the extracted values in the lower
energy range, peaking at a lower value of Py.

To conclude this subsection, we note that the amplitudes
calculated here can also give us the effective coupling con-
stants responsible for the decay modes of fj. To see this, first
note that the fy propagator, —i D(s), required to construct
the T-matrices for I = 0 scattering of K K via s channel f
exchange in the vicinity of the fy resonance, is dressed by
proper polarization loops, —iI1(s), in the ladder sum as

i n I 1
s—M?2  s—M?i
i

RO} 7

—iD(s)

i
(S)S_M2+
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Fig. 4 The T-matrix elements for the meson—meson scattering ampli-
tudes of mm — 7w, 7w — KK, and KK — KK. The solid curves
are our calculations and the dotted curves are the values extracted from
the data by Dai and Pennington [25]. The real parts are given by the
black curves and the imaginary values by the red ones

where M is the bare mass of fy. Now, using the Lagrangian
fragment, § £, we can define the effective coupling constants
via

8L = g 1 kg Jo)KK + &y fo(¥) . (77)

This Lagrangian leads to 3-point vertices givenby iV g+ x- =

iV o KOR ig k- Since the kaon-antikaon state of

isospin I = 0is [(KK)?) = —1/v/2(KtK~+ K'K"), thus

the K K coupling vertex with the isoscalar fy is i V}) KT =
0
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Table 2 Combinations of partial 7'-matrices of good angular momen-
tum and helicity, (J, 1), that determine |7}y — mm, |2 in Eq. (74) for
the production cross-section of a meson pair, yy — mmj. The con-
tributions to the 7 -matrices incorporating the additional resonant and

t-channel axial exchange contributions, not generated by the ChPT
Lagrangian, are labeled explicitly by the resonance or axial term that
characterizes them

0,0 2.2
myma € v=rp/q |T1/V%mlm2| ‘ }EVH)'"lmz‘ + ‘ )Eyﬁ)mwu
1/2 2
0.0 4m? (0,0) 722
v 172 (1 B ) ‘TS'W%ﬂOﬂO + ‘ f2 W%ﬂoﬂo
12 2
N _ dmy (0,0) 0,0) 22) 2.2
T 1 (1 K ) ‘ Biyy—>ntn— + S;yy—omtn— ‘TB yy—>nta— + sz yy—>nta—
172 2172 2 2
0 _ (mg—my)? _ (mgtmy) (0,0) (0,0) 2.2)
70 1 [1 - | - Lot TOY o AT TR

—«/EingKf. Similarly, we canobtaini Vi z+,—- = iVgz-r+
V42070 = 2ig fxx and the associated coupling vertex of
the two-pion state of I = 0 reads iV})Om = 2\/§igf0m.

If we construct —iT1(s), using the second term in (77),
together with iV})On , for the coupling constant in the / =0
channel, then we can write I1(s) = Re I1(s) 4+ iIm TII(s),
with

2 12
8 o (1 — 4m727> 0 (s — 4m,2,)
8 K

_ J5T(s), (78)

—Im I(s) =

where we have used (35), (55), and (56). Equation (78) can
also be obtained using Cutkosky rules for cutting a loop inte-
gral, see [42,76]. Note that the imaginary part of T1(s) is
independent of the mode regularization. We now absorb the
real part of I1(s) in the bare mass to give the physical mass
of fo,i.e., M?+Rell — Mg, and evaluate Im TT(s) at this
physical mass, s = Mg, to define the decay width Iy into
two pions via —Im TT(M3) = Mol as

12
3g2 4m?2

Mol = % (1 - ]:4"; 6 (Mg - 4m§) . (79
0

Now using the 3-point vertices expressed in terms of the
coupling constants, the 7-matrices of KK — KK and
K K — s can be written as

1

2
Tkkkx = (ﬁ’gfo@) — M§ +iMoTy

1
2M0 (f’ngKK) Po— Mo +ilg/2’
(80)

and

TkRsnn = (ﬁigfoKf) (zﬁigfoﬂﬂ)
1
x 2
s — My +iMoTo

1000 1100 1200

Py(MeV)

800 900

Fig. 5 The solid curves depict the ChPT-generated |T101 (s)l2 (black)
and |T20l (5)|? (blue). Their Breit—Wigner fits are represented as dashed
curves, accordingly. The horizontal bars (purple) indicate the full widths
at half-maximum for the |T0 (s)l2 the vertical line (brown) indicates
the (almost) common value of their resonance energy at ~ 974 MeV

~ 53ty (V22 x) (2t

1

X Po—Mo+iTy/2" @D

Since the f mass corresponds to the peak position of the
|T101 (s)]2, see also Sect. 2.2, we can obtain the coupling con-
stants by fitting a Breit—Wigner to T1 1) = Tyxg_ k% and
to T201 (s) = Txx_ 1 To this end, we insist that |7} l|2 and
|TKF—>KE|2 peak at the same value of Py = Mp = Myy,
and have also the same widths; see Fig. 5.

This indicates that |T 1| to be replaced by |T101 (Mp)| =
(+/2g oK K) /MgrT R, which gives the effective coupling
constant value as 8K = 2.808 GeV, for A = 1.351 GeV,
Mp = M1 =974 MeV, and I'gp = 43.19 MeV. The same

procedure for T201 () = Tyg_rp lVes

1
81 e = 5 e MaTar [T (M)

= —1.849 GeV?, (82)
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Fig. 6 Comparison of the exact (ChPT) Im TZO1 (s) (solid curve) with
its Breit—~Wigner approximation (dashed curve). The figure illustrates
that the coupling constant product g 7,77 & KK has to be negative

which gives g7z = —0.659 GeV. The negative effec-
tive coupling constant manifests itself in the second panel
of Fig. 4, where the imaginary part of 7 becomes negative.
In Fig. 6, we have compared the exact (ChPT), calculated
imaginary part of T2O1 (s) (solid, red curve) with its Breit—
Wigner approximation (dashed, red curve).

3.2 yy — m1my cross-sections

3.2.1 yy — 770, 7% cross-sections

The cross-section yy — %70 is often considered to be
particularly instructive, as it lacks a Born term. Thus, the
contributions from the f, and a; (as well as the possibili-
ties that could arise from new physics) can be investigated
more closely. As is explained in Sect. 2.3, due to the large
total widths of these two resonances, they can be expected
to contribute to production cross-sections well below their
peak positions. In the yy — 7°7° channel the total cross-
section given in (74) is just the sum of the partial cross-
sections determined by ChPT and f> resonance amplitudes
separately, without any interference term, as can be seen in
Table 2. The results are shown in Fig. 7, where the calculated
total cross-section, including the pure (J, A) = (0, 0) chiral
contribution as well, are compared with the Belle [2] as well
as the older Crystal Ball and JADE Collaborations data [5,6].
The transition amplitudes for these calculations come
from (65) and (66) for TS(?)’/(;)_)HOHO ;22;’3))/_)710”0, evalu-
ated at the cutoff A = 1.351 GeV in the first case, and using
a mass, total width, and branching ratio of (Mp,,T'f,) =
(1275, 185) MeV and I'\3)Br(z°7%)I "4, = 0.16 MeV? for
the second resonance amplitude, as extracted from the PDG
tables [65-67]. Note that if the experimental observations are
restricted to 6, < 6 < 7 — 6, the total cross-sections for a
given angular momentum J are modified by a factor Fj(z),
which reads F;(z) = 02” de fe’:‘ ©dfsin@|Yy 16, ¢)|*

@ Springer

150} ' ' ' ' ' ..
% 100}
&
b
8
& S0t
0 | ) ............. ) ) )
04 0.6 0.8 1.0 1.2 14
Py(GeV)

Fig. 7 Cross-section for yy — 7%7° integrated over the restricted
angular range | cos 0| < 0.6 (solid, black curve) compared to the data

of the Belle, Crystal Ball, and JADE Collaborations [2,5,6] (red dots)

04 06 08 10 12 14
P()(GCV)

Fig. 8 Cross-section for yy — 7970 integrated over the full angular

range (solid, black curve) compared to the extracted curve, denoted in
their paper as Solution I, of Dai and Pennington [25] (red dots)

One notes that the ChPT cross-section is lifted sufficiently
in the vicinity of ~ 1 GeV by the low energy tail of the f>
resonance contribution to lead to an acceptable overall fit
with the experiment. This result, in turn, confirms that the
chiral (0, 0) cross-section is valid for center-of-mass energies
below ~ 1 GeV.

The cross-section for yy — 797 integrated over the
full angular range is shown in Fig. 8. Here one sees again
that the resonance f> underestimates the results of Dai and
Pennington [25] in its strength, and some discrepancy is also
observed at lower energies.

In a similar fashion to the yy — 7979, the cross-section
for the process yy — 7% can be calculated; the result is
shown in Fig. 9. Our theoretical calculation (black curve) can
capture the essential structure of the Belle Collaboration data
[3] quite well, although not perfect.

0
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sol ' ' ' ' ' ' ' 4 Discussion and outlook
~ 40b Calculations of the photon—photon to meson—meson cross-
= sections via various theoretical approaches at different lev-
? 30t els have been addressed by many authors in the past. Just to
=~ mention a few examples: the authors of [22] construct a com-
2 20¢ plete set of Roy—Steiner equations for the yy — mm reac-
S 0 tion. Using the proposed formalism and approximating the

900 1000 1100 1200 1300 1400 1500
Py (MeV)
Fig. 9 Cross-section for yy — 777 integrated over the angular range

| cos 8] < 0.8 (black curve) compared to the data of the Belle Collabo-
ration [3] (red dots)
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Fig. 10 Cross-section for yy — w7~ integrated over the full angu-
lar range (solid, black curve) compared to the extracted curve, denoted
in their paper as Solution I, of Dai and Pennington [25] (red dots). The
blue, dashed curve is a calculation not including the effects of the strong
interaction

T~ cross-section

322 yy > 1
In Fig. 10, we have shown the results for the process yy —
ntn.

In this figure, the dotted curve represents the extracted
data of Dai and Pennington [25], integrated over the full
angular range. The blue, dashed curve is our calculation,
without including the effects of the final-state strong inter-
actions, while the black, solid curve indicates our final full
calculation, including the final-state strong interactions. As
expected, the Born contribution to this process plays a dom-
inant role at low energies. After 0.9 GeV, this calculation is
in very good agreement with the extracted data.

f>(1270) resonance by a Breit—Wigner ansatz, they calculate
the cross-section of pion pair production for both charged and
neutral pions. A chiral Lagrangian model, with dynamical
light vector mesons, is presented in [77] to study the produc-
tion of 7777, 71, and K K in photon—photon collisions and to
evaluate the associated cross-sections. The proposed model
of [77] does not incorporate the f>(1270) and a»(1320)
resonances. Using Muskhelishvili-Omnes (MO) dispersive
representations of photon—photon scattering to two pions,
the authors of [78] evaluate the cross-section for pion pair
production, including the contribution of tensor resonances.
Their study, however, does not provide an analysis of the pro-
duction of other meson pairs such as the &7. The yy — nn
reaction is investigated in [79], using the S-matrix theory.
Although the authors consider the effect of the a,(1320) res-
onance through a Breit—Wigner approximation, their calcu-
lation does not include the axial vector resonance exchange
contribution. Within the realm of chiral perturbation theory
(ChPT), the cross-section for yy — mm is evaluated at
one-loop order in [51], where both charged pion and neutral
pion pair production are studied. A similar approach for the
7979 production is presented in [80]. The reported results of
[51,80] for yy — 7970 show disagreement with the Crys-
tal Ball data. Two-loop order calculation within ChPT for the
7979 production, as given in [81,82], improves agreement
with the experiment. For the case of the 7+~ production,
the corresponding calculation at two-loop order is given in
[83,84]. Note that at this order, most of the coupling con-
stants of the chiral Lagrangian are still undetermined [78].
Also, the studies of [51,80,82-84] do not take into account
the f>(1270) resonance, and its effects have been ignored.
All the papers mentioned above concern themselves mainly
with reproducing experimental data for cross-sections; how-
ever, they lack a detailed amplitude analysis. In this paper,
we have recalculated these cross-sections, using a version of
ChPT, with two aims in mind: firstly, we wish to make a com-
parison at the level of the transition amplitudes and not only
directly for the cross-sections. Secondly, we have in mind
to investigate in the future the possibility of the formation
and decay of kaonic atoms. Should these exist, they would
be expected to have an extremely short lifetime, but a large
cross-section. For this, we need to have a reasonable agree-
ment for the cross-sections over a range somewhat above 1
GeV and the use of ChPT is essential. We have thus calculated
the amplitudes and cross-sections for photon—photon colli-
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sions giving rise to 7t ~, 7970, 7%y, and KK in the final
state. Our theoretical framework combines the Born scatter-
ing transition amplitudes required through QED with those
that can be calculated via ChPT to describe the low-energy
regime and includes parametrizations of the resonant mesons
such as f,(1270) and a»(1320), which cannot be accounted
for within ChPT, but which are essential for the evaluation of
the cross-sections. We have compared our results with those
from [25], which are extracted from the high statistics data
from Belle, as well as the older data from Mark II at SLAC,
CELLO at DESY, and Crystal Ball at SLAC, and fitted using
basic constraints of analyticity, unitarity, and crossing sym-
metry, as well as Low’s low-energy theorem for QED. It is
noteworthy that the authors of [25] are not only able to fit the
cross-sections but also able to obtain the strong-interaction
transition matrices, to which we have been able to compare
our theoretical model. The results of the comparison are rea-
sonable, showing all expected structures, but they are not
perfect. It is an open question as to whether the low-energy
behavior can be improved substantially if the experimentally
inferred inputs for ChPT, such as the combination L9 + Lg
are better known, or if some new effects, for example, due
to mesonic substructure are evident. We also note that in
the extracted amplitudes in [25], denoted as Solution I, the
fo(1370) appears at the very edge of where the analysis of
[25] with just 7w and K K channels can be trusted. Thus, we
have not incorporated this state into our approach.

For our intentions, the cross-sections calculated in this
fashion are sufficient to provide a basis for addressing further
intriguing questions, such as whether other new structures
like the postulated existence of the kaonium atom K+K~
actually exist and can be observed. This can be addressed
within the context of the current paper, for which these cross-
sections are required. In a nutshell, we will look for the kao-
nium as a sharp resonance possibly accompanying the fj in
the process yy — 7%7°, orinthe yy — 7%. For example,
the cross-section for yy — %79, including the formation
of kaonium, can be written as

olyy — nono)
_ 1 | — 4m121 (g)Z
2567 s K T

X e () Tt 2020 (8) + Tk () Tt 7070 ()12,
(83)

where J;(s) and Jg (s) can be calculated from (62). The
charge exchange T-matrix for s-wave pions is found to be
Tt gi070(8) = (2070 Tt =) = (T (s) — TH(5))/3,
and the annihilation amplitude (7% T|KTK~) into two
neutral pions reads Tg+ g ., 0,0(s) = 77\ TIKTK™) =

1//6T%, ().

@ Springer

However, the subtle point is that due to the KTK~
Coulomb interaction, which is required for kaonium forma-
tion, there is an isospin breaking which should be imported in
Tg+g—:7070(8) (T + - z0,0(s) is not affected by the isospin
breaking in the K™ K ~ channel). In short, we will import the
effects of isospin breaking into the transition amplitudes via
the value of the modified strong inverse scattering length of
KT K~ in the presence of attractive Coulomb fields. Consid-
ering this effect, the cross-section for yy — 797 and also
for yy — 77, including the formation of kaonium, can
be evaluated. One would expect the kaonium resonance to
manifest itself as a sharp peak around 980 MeV. The detailed
discussion and calculation of these will be reported in our
future paper.
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