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Abstract Dai and Pennington have performed a compre-
hensive analysis of essentially all pion and kaon pair produc-
tion data from two-photon collisions below 1.5 GeV, includ-
ing all high statistics results from Belle, as well as the older
data from Mark II at SLAC, CELLO at DESY, and Crys-
tal Ball at SLAC. Imposing the basic constraints required
by analyticity, unitarity, and crossing symmetry and mak-
ing use of Low’s low-energy theorem for QED, they were
able to extract the final-state, strong-interaction scattering
amplitudes for the intermediate ππ → ππ and ππ → KK
reactions in a model-independent fashion. In addition, they
provided good fits to the respective γ γ → ππ cross-sections
that are known in the low-energy sector in the restricted
angular range, | cos θ | < 0.6 − 0.8. Using the parame-
ters obtained in this fashion, these authors constructed the
γ γ → ππ cross-sections integrated over the full angular
range. In the present work, we use a version of chiral per-
turbation theory developed by Oller and Oset to evaluate the
final-state, strong-interaction amplitudes theoretically, and
we compare our low-energy QCD-based results with the
amplitudes extracted by Dai and Pennington. We also cal-
culate the γ γ → ππ cross-sections (integrated over the full
angular range) and compare them with those obtained by
Dai and Pennington. These calculations give a more detailed
insight into the fit of chiral perturbation theory, not just to
the measured γ γ → ππ cross-sections, as is usually pre-
sented, but rather to a higher level of detail through the
available analysis of the experimental data for the underly-
ing final-state, strong-interaction, meson–meson scattering
amplitudes ππ → ππ and ππ → KK themselves. The fits
appear to be sensible over the energy range considered. The
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detailed calculations of strong-interaction transition matri-
ces, as presented in this paper, also pave the way to address
the possible presence of the postulated kaonium atom K+K−
in the cross-section.

1 Introduction

Photon–photon to meson–meson cross-sections have been
measured by several experimental groups over the last
decades [1–14]. The high statistics experimental data obtained
by the Belle Collaboration at KEKB for γ γ → π+π− [1],
γ γ → π0π0 [2], and γ γ → π0η [3] cross-sections, plus
the similar high-quality data for γ γ → K+K− and γ γ →
K 0K

0
for γ γ center-of-mass collision energies up to ∼ 1

GeV [10–14] have given new impetus to the field and can pro-
vide important new information with which to probe the pos-
sible quark structure of the light isoscalar f0(500), f0(980),
and isovector a0(980) scalar mesons [15–24]. Dai and Pen-
nington have performed a comprehensive amplitude analy-
sis of the processes γ γ → π+π−, π0π0, and KK below
1.5 GeV [25]. Using all available experimental data, they
have extracted the associated final-state, strong-interaction
transition matrices, ππ → π+π−, π0π0, KK in a model-
independent fashion, using only properties of analyticity, uni-
tarity, and crossing symmetry and Low’s low energy theorem
for QED. Their fits pertain to the experimental data that are
measured over a restricted angular range, | cos θ | < 0.6−0.8.
Having determined all parameters, they are able to construct
the cross-sections for γ γ → π+π−, π0π0 that would be
expected after integrating over the full angular range.

Such developments open up several intriguing possibil-
ities from a theoretical point of view. (a) First, the pre-
cise knowledge of the final-state, strong-interaction transi-
tion matrices can be used to test the predictions of low-
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energy QCD, or at least differentiate between various models
thereof. (b) In the energy range studied, it opens up the possi-
bility of examining the viability of detailed combined struc-
tures that potentially can form. Various strong-interaction
models with different structural properties have already been
explored in some detail for the light isoscalar and isovec-
tor mesons. These include, for example, descriptions with
simple qq̄ pairs [26–31], more complex q2q̄2 states [32],
or a KK molecular structure [33–42] for the f0(980) and
a0(980) in particular. Now, in addition to the strong interac-
tion, which is known through the analysis of [25], electro-
magnetic effects can be incorporated, and, for example, the
resonance formed in the production and subsequent decay of
the K+K− hadronic atom kaonium [43–46] can be studied
theoretically. This, in turn, may become accessible experi-
mentally. As a reminder, note that attractive Coulomb interac-
tions are crucial for the formation of kaonium, which, in turn,
implies isospin breaking. However, because of the disparate
length scales over which the strong and Coulomb interac-
tions operate, isospin breaking is confined to the region out-
side the strong interaction range. By assuming this physical
assumption and using meson–meson interaction amplitudes,
the authors of [46] have been able to investigate strong inter-
action effects on the binding (and decay) of kaonium, and
have found lifetimes of (2.2 ± 0.9) × 10−18 s for its ground
state. More recently, the existence of the 2p state of kaonium
has been proposed in [47], by analyzing the data obtained by
the CMD-3 experiment on the e+e− → K+K− process.

The present paper aims to examine (a) above and to
determine how well leading-order chiral perturbation theory
(ChPT) [48–50], taken together with QED to calculate the
final-state, strong-interaction and electromagnetic transition
matrices, serves to give a good description of the final-state,
strong-interaction transition matrices as compared with the
model-independent curves extracted by Dai and Penning-
ton from experiment [25]. Our calculated final-state, strong-
interaction transition matrices turn out both qualitatively and
quantitatively to be in reasonable agreement for both the
individual real and imaginary parts. We also calculate the
full cross-sections for the γ γ → π+π− and π0π0 reac-
tions, incorporating the electromagnetic contributions, and
again find a reasonable, but not perfect, agreement with the
extracted curves of Dai and Pennington. The question of new
structures (b), such as the presence of kaonium appearing
in the cross-section, which requires a solid knowledge of
the strong-interaction transition matrices, as presented here,
is left as a subject for our future paper. In a nutshell, we
will search for the kaonium as a sharp resonance possibly
accompanying the f0(980) in the processes γ γ → π0π0 and
γ γ → π0η. This will require the modifications of the cross-
sections of these processes, which are presented in the cur-
rent paper, to include the formation of kaonium, that essen-
tially boils down to the inclusion of isospin breaking in the

transition amplitudes. In the corresponding calculated cross-
sections, one would expect the same behavior as that of, for
example, γ γ → π0η, except in the close vicinity of kaonium
resonances, where the isospin breaking is significant.

For our aims in the present paper, both for evaluating the
full transition matrices and for calculating the photon–photon
to meson pair cross-sections, we require a detailed anal-
ysis of the underlying electromagnetic interaction as well
as the strong-interaction component through meson–meson
scattering processes. Such studies are not uncommon: The
first calculation of two-pion production in photon–photon
collisions via ChPT presented against data was performed
by Bijnens and Cornet [51] when the first data from the
Crystal Ball experiment were made available. Thereafter, in
a particularly clear fashion, Oller and Oset [52] extracted
meson–meson interactions within the pseudoscalar meson
SU (3) flavor octet from the Lagrangian given by leading
order ChPT [48–50] as the appropriate theoretical realiza-
tion of low energy QCD. They then used these interactions
as input for the Lippmann–Schwinger equation to provide
a non-perturbative calculation of the pseudoscalar meson–
meson scattering and reaction amplitudes.

It is, however, important to bear in mind that the validity of
the leading order ChPT results is restricted to center-of-mass
collision energies up to ∼ O(1 GeV). A glance at the two-
photon collision data [1–3] shows that, while the f0(500),
f0(980), and a0(980) again appear quite naturally in the
ChPT calculations as dynamically generated resonances [53–
55] below 1 GeV center-of-mass total energy, with energies
and widths compatible with the experiment in the total cross-
section of the relevant reaction channels, the dominance of
the wide f2(1270) and a2(1320) resonances eventually over-
shadow the ChPT contribution at higher energies. Whilst not
important for studying the γ γ → kaonium production pro-
cess, we remark that when the ChPT transition amplitudes
are supplemented by contributions from the above two reso-
nances in the parametrized form [56], both being interpreted
as d-wave, helicity λ = 2 states, plus the exchange of vector
and axial vector octet resonances in the u and t channels
[57], there is good agreement with the available photon–
photon collision data over the entire energy range from the
two-meson threshold to ∼ 1.4 MeV in the center-of-mass
system.

A decade after the first ChPT comparison with data [51],
Oller and Oset recalculated the scattering cross-sections in
ChPT, including the f2 and a2 mesons, and compared these
with the then available data [53]. In our comparison with the
precision data available, we follow their approach.

This article is arranged as follows. Section 2 addresses the
calculation of the T -matrices for the photon–photon interac-
tions. In Sects. 2.1, 2.2, and 2.3, we build up the Born contri-
butions, the contributions containing meson–meson scatter-
ing through ChPT, and the resonant and axial contributions
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that cannot be described by ChPT, respectively. These are
collated in Sect. 2.4. In Sect. 3, we compare our calculated
amplitudes and cross-sections with the extracted fits of [25]
and experimental results. We summarize and conclude in
Sect. 4.

2 Production amplitudes for the processes
γ γ → π+π−, π0π0, π0η, and K+K−

The theoretical basis for evaluating the γ γ → m1m2 pro-
cesses has been studied in different contexts or models
before, see for example [25,53] and references cited therein,
and involves both the electromagnetic coupling of the pho-
tons to (charged) mesons that is determined through QED, as
well as QCD for the final-state strong interactions between
the mesons themselves. As the latter cannot be extracted
directly from QCD itself, we use ChPT as an appropriate
realization of the strong interactions in the low-energy sector.
These processes are represented graphically in Fig. 1 by the
Feynman diagrams for the γ γ → m1m2 transition amplitude
for incoming photon four-momenta and helicities (q1, λ1)

and (q2, λ2) leading to outgoing mesons with four-momenta
(p1, p2). The filled circle diagram in panel (a) of Fig. 1
denotes the full transition amplitude tensor iTμν

γ γ→m1m2 . This
itself is resolved into two parts: a direct coupling of the elec-
tromagnetic interaction to the mesons plus a term in which
both the electromagnetic and strong interactions play a role.
The first is the Born term iTμν

B;γ γ→m1m2
, denoted in the figure

as an open circle, and is only present when photons couple
to charged meson pairs m+m− in the final state. The second
diagram, denoted as iTμν

S;γ γ→m1m2
, includes the contribution

from the strong meson–meson interactions in the final state.
The direct coupling of the electromagnetic interaction to the
mesons via the Born term is again broken down into three
individual terms, also shown in this figure, see panel (b), and
which contain one-meson exchange.

As it stands, low-energy ChPT does not account suffi-
ciently for the f2(1270) and a2(1320) resonances, which
have large widths that extend well into the region below
1 GeV. These are accommodated in our formalism via
parametrization. We thus proceed as follows: in Sect. 2.1, we
start with the Born term to set our notation. We then evaluate
contributions from the final-state strong interactions using
ChPT in Sect. 2.2. In Sect. 2.3, we give the parametrization
for resonant, non-ChPT terms. Then, in Sect. 2.4, we build
up the full T -matrix, that consists of the amplitudes

Tμν
γ γ→m1m2

= Tμν

B;γ γ→m1m2
+ Tμν

S;γ γ→m1m2

+ Tμν

R(A);γ γ→m1m2
, (1)

with μ, ν = 0, . . . , 3, and specify the cross-sections.
Throughout this work, we use natural units, where h̄ = c = 1
and the charge e2/4π = α.

2.1 Electromagnetic contributions to γ γ → m+m− in the
helicity basis

The process γ γ → π+π− due to electromagnetic interac-
tions (Born approximation) has been well-studied in the lit-
erature, see for example [57]. In this subsection, we provide
important results, giving sufficient detail to make this paper
self-contained, allowing the reader to follow the calculations.
These are directly applicable to the process γ γ → K+K−.
In general, the transition amplitude in the Born approxima-
tion corresponding to the second diagram in panel (a) of
Fig. 1, or all diagrams in panel (b) of Fig. 1 leads to the
expression

Tμν

B;γ γ→m+m− = e2

[
2gμν + (2p1 − q1)

μ(2p2 − q2)
ν

(p1 − q1)2 − m2±

+ (2p1 − q2)
ν(2p2 − q1)

μ

(p1 − q2)2 − m2±

]
, (2)

Fig. 1 Scattering amplitudes
for γ (q1) + γ (q2) →
m1(p1) + m2(p2) collisions
producing meson pairs of
masses (m1,m2) with incoming
and outgoing momenta (q1, q2)

and (p1, p2), respectively. a The
full amplitude (filled circle).
This amplitude includes strong
interactions in the final state as
given by the 4-point,
meson–meson scattering
T -matrix (filled box diagram). b
The Born term (open circle) only
involves the electromagnetic
coupling vertices of photons to
charged mesons and is only
present for π+π− or K+K− in
the final state
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wherem± are the (common) masses of the final-state mesons.
This expression has to be contracted with polarization vec-
tors εμ and εν . For an explicit evaluation, without loss of
generality, we use a standard choice [58] ε0 = 0 and the 3-
vectors of helicity λ1, λ2, eλ1(1), eλ2(2), both oriented along
right-handed orthogonal axes xy perpendicular to the photon
momentum vector in the z direction, eλ1(1) = î, eλ2(2) = ĵ,
and eλ1(1) · eλ2(2) = δλ1,λ2 to fulfill the Lorentz condition.
This leads to the expression

(eλ1(1))i T
i j
B;γ γ→m+m−(eλ2 (2)) j = −2e2

[
eλ1(1) · eλ2 (2)

+ (p1 · eλ1(1))(p2 · eλ2 (2))

p1 · q1
+ (p2 · eλ1(1))(p1 · eλ2 (2))

p1 · q2

]
,

(3)

where the indices i , j can take on the values 1, 2, 3.
In the center-of-mass system, the incoming photon and

outgoing meson lines in panel (b) of Fig. 1 have four-
momenta q1 = (P0/2,q), q2 = (P0/2,−q), p1 =
(P0/2,p), and p2 = (P0/2,−p), where

√
s = P0 is the

total collision energy. Using this, the contracted Born ampli-
tude becomes

(
TB;γ γ→m+m−

)
λ2λ1

= (e∗
λ2

(2))i T
i j
B;γ γ→m+m−(eλ1(1)) j

= −2e2
[
e∗
λ2

(2) · eλ1(1) − 2
(v · e∗

λ2
(2))(v · eλ1(1))

1 − v2 cos2 θ

]
,

(4)

where eλ1(1) is associated with particle 1 with incoming
momentum q and eλ2(2), with particle 2 with incoming
momentum −q. Also, the center-of-mass velocity is v =
2p/P0 =

√
1 − 4m2±/s, and cos θ = p · q/pq gives the

polar angle of the scattering direction of the outgoing meson
p relative to the incoming photon q. We choose to evaluate
(4) for the Born amplitudes in the chiral helicity basis that
is defined by eR,L(l) = ∓(e1(l) ± ie2(l))/

√
2, l = 1, 2.

Note that in the center-of-mass system, the total helicity of
the colliding photon pair can only take on the values λ = 0
or 2, and this label is sufficient to characterize the contracted
T -matrices, which we denote as T (λ). Then the individual
contracted amplitudes are easily found to be [53],(
T (λ=0)

B;γ γ→m+m−
)
R(2)R(1)

=
(
T (λ=0)

B;γ γ→m+m−
)∗
L(2)L(1)

= −2ie2 1 − v2

1 − v2 cos2 θ
, (5)(

T (λ=2)

B;γ γ→m+m−
)
L(2)R(1)

=
(
T (λ=−2)

B;γ γ→m+m−
)∗
R(2)L(1)

= 2ie2 v2 sin2 θe2iφ

1 − v2 cos2 θ
. (6)

An expansion of the T (λ)

B;γ γ→m+m− in spherical harmonics
YJ,λ(θ, φ) for each total helicity λ yields the partial con-

tracted amplitudes T (J,λ)

B;γ γ→m+m− , which can be used to iden-
tify the leading s- and d-wave contributions to (5) and (6).
To this end, we write (5) as

T (0)

B;γ γ→m+m− =
∑

J=0,2,4,···
T (J,0)

B;γ γ→m+m− . (7)

The (J, λ) partial-wave amplitude for helicity zero is identi-
fied as

T (J,0)

B;γ γ→m+m− = −2ie2(1 − v2)/v

× √
4π(2J + 1)1/2QJ (1/v)YJ,0(θ, φ),

(8)

where 1/v > 1 and QJ (1/v) is a Legendre function of the
second kind [59]. We have also dropped the chiral indices,
which are no longer necessary. For the s-wave contribution,
we set J = 0 and use Q0(1/v) = (1/2) ln[(1 + v)/(1 − v)],
to find

T (0,0)

B;γ γ→m+m− = −2ie2(1 − v2)/v

× ln

(
1 + v

1 − v

)√
πY0,0(θ, φ). (9)

The d-wave contribution can be obtained by setting J = 2
and Q2(1/v) = −3/2v + (3 − v2)/4v2 ln[(1 + v)/(1 − v)].

For the case of helicity two, since sin2 θe2iφ = √
32π/15Y2,2

(θ, φ), we can write (6) as

T (2)

B;γ γ→m+m− = 2ie2v

√
32π

15

∑
l=0,2,4,···

√
4π(2l + 1)1/2

×Ql(1/v)Yl,0(θ, φ)Y2,2(θ, φ). (10)

We now make use of the expression for the product of the
two spherical harmonics Yl,0(θ, φ)Y2,2(θ, φ) at a common
angle [60] to find

T (2)

B;γ γ→m+m− = 2ie2v

√
32π

3

∑
J=2,4,6,···

(2J + 1)1/2

×
⎡
⎣ ∑
l=J−2,J,J+2

(2l + 1)

(
l 2 J
0 2 −2

)

×
(
l 2 J
0 0 0

)
Ql(1/v)

⎤
⎦ YJ,2(θ, φ),

(11)

where the round brackets are Wigner 3- j symbols. The
restriction on the sum over l is due to the second Wigner 3- j
symbol that vanishes unless l + 2 + J is even [60]. Inserting
their specific values given in [60], we can perform the l-
sum in the square brackets to identify the (J, λ) partial-wave
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amplitude for helicity two as

T (J,2)

B;γ γ→m+m− = 4ie2v
√

π(2J + 1)1/2

× [(J − 1)J (J + 1)(J + 2)]1/2

×
[

QJ−2(1/v)

(2J − 1)(2J + 1)
− 2

QJ (1/v)

(2J − 1)(2J + 3)

+ QJ+2(1/v)

(2J + 1)(2J + 3)

]
YJ,2(θ, φ). (12)

For J = 2, using Q4(1/v) = (−105 + 55v2)/24v3 +(35 −
30v2 + 3v4)/16v4 ln[(1 + v)/(1 − v)], we obtain

T (2,2)

B;γ γ→m+m− = 2ie2
[−3 + 5v2

3v2 + (1 − v2)2

2v3

× ln

(
1 + v

1 − v

)]√
15π/2Y2,2(θ, φ). (13)

While the T -matrices will be of direct interest to us,
for completeness we note that the individual helicity cross-
sections can also be evaluated. The partial differential cross-
section, for example, for the process γ γ → π+π− reads

dσ
(J,λ)
B (γ γ → π+π−)

d

= v

128π2s

∣∣∣T (J,λ)

B;γ γ→π+π−
∣∣∣2 , (14)

and thus

σ
(J,λ)
B (γ γ → π+π−) = v

128π2s

×
∫

4π

d


∣∣∣T (J,λ)

B;γ γ→π+π−
∣∣∣2 . (15)

For the case of (0, 0), we have

dσ
(0,0)
B (γ γ → π+π−)

d

= v

128π2s

∣∣∣T (0,0)

B;γ γ→π+π−
∣∣∣2 , (16)

so that

σ
(0,0)
B (γ γ → π+π−) = v

128π2s

∫
4π

d


∣∣∣T (0,0)

B;γ γ→π+π−
∣∣∣2

= π
α2v

2s

[
1 − v2

v
ln

(
1 + v

1 − v

)]2
, (17)

where T (0,0)

B;γ γ→π+π− is given in (9). Similarly for (2, 2), we
obtain

σ
(2,2)
B (γ γ → π+π−)

= v

128π2s

∫
4π

d


∣∣∣T (2,2)

B;γ γ→π+π−
∣∣∣2

= 15π
α2v

4s

[−3 + 5v2

3v2 + (1 − v2)2

2v3 ln

(
1 + v

1 − v

)]2

,

(18)

where T (2,2)

B;γ γ→π+π− is given in (13).
The total cross-sections for each helicity can be computed

similarly. For helicities zero and two, they read

σ
(0)
B (γ γ → π+π−) =

∫
4π

d

dσ

(0)
B

d


= v

128π2s

∫
4π

d


∣∣∣T (λ=0)

B;γ γ→π+π−
∣∣∣2

= α2v

2s

∫
4π

d


(
1 − v2

1 − v2 cos2 θ

)2

= π
α2v

s

[
1 − v2 + (1 − v2)2

2v
ln

(
1 + v

1 − v

)]
,

(19)

and

σ
(2)
B (γ γ → π+π−) =

∫
4π

d

dσ

(2)
B

d


= α2v

2s

∫
4π

d


(
v2 sin2 θ

1 − v2 cos2 θ

)2

= π
α2v

s

[
3 − v2 − 3 − 2v2 − v4

2v
ln

(
1 + v

1 − v

)]
,

(20)

where (5) and (6) are being used.
The full differential Born cross-section can then be calcu-

lated as

dσB(γ γ → π+π−)

d

= α2v

2s

[(
1 − v2

1 − v2 cos2 θ

)2

+
(

v2 sin2 θ

1 − v2 cos2 θ

)2
]

, (21)

and integrating over the full angular range yields

σB(γ γ → π+π−) = 2π
α2v

s

[
2 − v2 − 1 − v4

2v

× ln

(
1 + v

1 − v

)]
, (22)

which is in agreement with the result of [57].
The following remark is in order. In principle, explicit

expressions for T (J,0)

B;γ γ→m+m− and T (J,2)

B;γ γ→m+m− for all
allowed J ≥ λ and their corresponding partial cross-sections
can be computed like those explained in this subsection.
However, the leading-order partial-wave amplitudes given
in (9) and (13), i.e., the (0, 0) and (2, 2) partial waves,
together account for ∼ 90% of the calculated Born cross-
section for s � 1 GeV2 [53,61] and thus build a con-
venient working assumption. In this regard, it is instruc-
tive to compare σB(γ γ → π+π−) with σ

(0,0)
B (γ γ →
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π+π−) + σ
(2,2)
B (γ γ → π+π−) as v → 0. To this end,

we have

σB(γ γ → π+π−) ≈ 2π
α2v

s

[
1 − 4v2/3 + 4v4/5

+ O(v6)
]
, v → 0, (23)

σ
(0,0)
B (γ γ → π+π−) + σ

(2,2)
B (γ γ → π+π−)

≈ 2π
α2v

s

[
1 − 4v2/3 + 32v4/45 + O(v6)

]
, v → 0,

(24)

where (24) slightly underestimates the full Born cross-
section in (23).

2.2 Non-perturbative, strong-interaction contributions to
the meson–meson reaction amplitudes

To obtain the full transition matrix shown in panel (a) of
Fig. 1, the effects of the strong interaction in the final state
must now be taken into account. In particular, we first need
to evaluate the T -matrices that are associated with the square
diagram in Fig. 1 and which account for meson–meson scat-
tering. Here, we follow the approach offered by ChPT, fol-
lowing [52], and summarize the essential points. For recent
reviews of this topic, see [62,63].

The meson pairs (KK )I , (ππ)I , and (π0η)I of good
isospin I , interact in the final state via 4-point vertices given
by [52] (note that since we define the vertex diagrams by iVi j ,
the sign of this Vi j is the negative of those listed in [52]),

V I
m1m2;m3m4

= 〈I,m1m2 |L2| I,m3m4〉
= V I

m3m4;m1m2
, (25)

at tree level, after coupling both the initial and final two-
meson states to good isospin I . The symmetry in the inter-
action under the interchange of labels is due to time-reversal
invariance. The interaction chiral Lagrangian is assumed to
be L2 = 1/12 f 2tr

[
(∂μ�� − �∂μ�)2 + M�4

]
, which is

the leading order ChPT interaction Lagrangian density [48–
50]; f is the (bare) pion decay constant, tr denotes the trace
in SU (3) flavor space of the matrices constructed from

� =
(

π0/
√

2+η/
√

6 π+ K+
π− −π0/

√
2+η/

√
6 K 0

K− K
0 −2η/

√
6

)
, (26)

and M is the diagonal matrix of (bare) meson masses,

M =
⎛
⎝m2

π 0 0
0 m2

π 0
0 0 2m2

K − m2
π

⎞
⎠ . (27)

Notationally, we abbreviate the 4-point vertices in (25)
and the meson–meson transition amplitudes Tm1m2→m3m4 in
a compact fashion as has been previously introduced in [52].
The indices (i, j) = (1, 2) are used to identify the specific
meson pair involved: 1 indicates KK in both isospin states
I = 0 and I = 1, while 2 indicates ππ for I = 0 (or
I = 2), and π0η for I = 1. Note that this follows the
convention of [52], but is opposite to the channel-labeling
convention of [25]. The following set of basis states of good
isospin I , |(M1M2)

I 〉, are defined in terms of the meson–
meson particle-basis sets as

∣∣∣(KK
)0
〉
= − 1√

2

(
K+K− + K 0K

0
)

,

∣∣∣(KK
)1
〉
= − 1√

2

(
K+K− − K 0K

0
)

,

∣∣∣(ππ)0
〉
= − 1√

3

(
π+π− + π−π+ + π0π0

)
,

∣∣∣(ππ)2
〉
= − 1√

6

(
π+π− + π−π+ − 2π0π0

)
,∣∣∣∣(π0η

)1
〉

= π0η. (28)

Using the V I
i j , which can be obtained from (25) by tak-

ing (28) into account, one can construct the coupled equa-
tions for the scattering amplitudes T I

i j of good isospin for
these meson pairs. In general, these are integral equations
that involve meson–meson interactions V I

i j in intermediate
states, where at least one of the states i or j is off-shell. How-
ever, in the case of s-wave scattering, Oller and Oset have
shown explicitly [52,53] that one can replace the V I

i j by their
on-shell values in intermediate states too since their off-shell
parts are additive and can be reabsorbed as a renormaliza-
tion factor that replaces the bare coupling constant, 1/ f , and
meson masses by their physical values, fπ ≈ 93 MeV and
(mπ ,mK ,mη) ≈ (140, 496, 547) MeV. The on-shell values
for the V I

i j
1 can then be found from the information given in

[52,53] to be

V 0
11 = 3s

4 f 2 , V 0
21 =

√
3

2

s

2 f 2 , V 0
22 = 2s − m2

π

f 2 , (29)

V 1
11 = s

4 f 2 , V 1
21 = −

√
2

3

9s − m2
π − 3m2

η − 8m2
K

12 f 2 ,

V 1
22 = m2

π

3 f 2 , (30)

V 2
22 = − s − 2m2

π

f 2 , (31)

1 Some authors, e.g., [37,38,52,53], include an additional normaliza-
tion of 1/

√
2 in the definitions of |(ππ)0〉 and |(ππ)2〉. Hence the matrix

elements V 0,2
i j given in Eqs. (29) and (31) are larger by a factor

√
2 than

those listed by Oller and Oset for each pion label 2 appearing on the
interaction matrix element for I = 0 and I = 2.
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where
√
s is the total collisional energy in the center-of-mass

system.
Equations (29)–(31) only depend on the external vari-

able s = P2
0 , the total center-of-mass energy squared of

the meson pair. This in turn means that the integration over
the four-momenta of meson pairs in intermediate states can
be factored [52], and the coupled integral equations for the
T I
i j (s) become coupled algebraic equations that can be solved

exactly. The results are

T I
11(s) =

[(
1 − V I

22�
I
22

)
V I

11 + V I
12�

I
22V

I
21

]
/DI (s), (32)

T I
12(s) = V I

12/D
I (s), (33)

for (KK )I → (KK )I in both isospin channels, I = 0, 1,
and (KK )0 → (ππ)0 or (KK )1 → (π0η)1, respectively.
The common denominator of T I

11(s) and T I
12(s), D

I (s), reads

DI (s) = (
1 − V I

11�
I
11

)(
1 − V I

22�
I
22

) − V I
12�

I
22V

I
21�

I
11,

(34)

for I = 0 and 1. In the above equations �I
i i denotes the

meson loop diagrams and is given by

i�I
i i (s) = ε

∫
d4l

(2π)4

1

l2 − m2
a

1

(l + P0)2 − m2
b

, (35)

for two mesons of mass (ma,mb) as identified by the labels I
and i , and the symmetry factor ε = 1/2 and 1 for identical and
non-identical mesons propagating in the loop, respectively
[64]. Thus �I

11 = �KK for KK in both isospin channels,
while �I

22 = �ππ or �π0η for I = 0 (or I = 2) and I = 1,
respectively. Note that T I

12(s) = T I
21(s) is also time-reversal

invariant.
Since pions coupled to good isospin behave like identical

bosons [64], (ππ)I → (ππ)I s-wave scattering can only
occur for I = 0 (or I = 2). The relevant T -matrices are

T 0
22(s) =

[
T 0

11(s)
]

1↔2
, (36)

T 2
22(s) = V 2

22/
(

1 − V 2
22�

2
22

)
, (37)

for (ππ)0 → (ππ)0 and (ππ)2 → (ππ)2, since in the
latter channel only the diagonal interaction vertex V 2

22 is non-
zero, see (31). The related S-matrix element reads S2

22(s) =
1+i/16π

√
1 − 4m2

π/sT 2
22(s) = exp(2iδ2

2), where δ2
2 is a real

phase shift, δ2
2 = 1/2 tan−1[Im(S2

22)/Re(S2
22)]. Note that the

S-matrix is unitary as there are no reaction channels.
The integral in (35) diverges at large four-momenta and

requires regularization. The expression for the O(4) regular-
ized integral �I

i i (s) in (35) depends on where s lies relative
to the branch cut that starts at the branch point (ma + mb)

2

[46]. In the following we elaborate on the evaluation of
�I

i i (s) = �(s) = −iε Iab(s).

First, we simplify Iab(s) as

Iab(s) = Iab(0) − i/(4π)2

×
∫ 1

0
dα ln

[
1 + (m2

a − m2
b)/m

2
bα − sα(1 − α)/m2

b

1 + (m2
a − m2

b)/m
2
bα

]

= Iab(0) − i

(4π)2 Lab(s). (38)

In this expression, Iab(0) is divergent and under O(4) regu-
larization, we find

Iab(0) = i

(4π)2

[
m2

a

m2
a − m2

b

ln
(

1 + �2/m2
a

)

− m2
b

m2
a − m2

b

ln
(

1 + �2/m2
b

)]
, (39)

where � is a regulatory cutoff.
To evaluate Lab(s) in (38), first we consider the case of

s < 0, for which we obtain

Lab(s) = −1 − 1

2

(
δ

X
+ m2

a + m2
b

m2
a − m2

b

)
ln

(
m2

a/m
2
b

)
+ Jab(s), (40)

where δ = (ma−mb)/M with M = ma +mb, X = −s/M2,
and Jab(s) is defined as

Jab(s) = √
c

[
coth−1

( √
c

1 + δ/X

)
+ coth−1

( √
c

1 − δ/X

)]
,

(41)

with c = (1 + δ2/X)(1 + 1/X).
To calculate Lab(s) for s > 0, we need to analytically

continue it into the complex plane. Making the substitution
s → zM2, where z is a complex variable, we have

Jab(z) = √
fab(z)

[
coth−1

(√
fab(z)

1 − δ/z

)

+ coth−1
(√

fab(z)

1 + δ/z

)]
, (42)

where fab(z) = (1 − δ2/z)(1 − 1/z).
To study the analytic structure of

√
fab(z), first we define

z = |z|eiφ − π < φ < π,

z − δ2 = |z − δ2|eiψ − π < ψ < π, (43)

z − 1 = |z − 1|eiθ − π < θ < π,

where z = u + iv, and |z| = √
u2 + v2, |z − δ2| =√

(u − δ2)2 + v2, |z− 1| = √
(u − 1)2 + v2, and the angles
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are defined through: tan φ = v/u, tan ψ = v/(u − δ2), and
tan θ = v/(u − 1); see also Fig. 2.

Thus, the individual square roots in
√

fab(z) can be written
as

(−z)1/2 = |z|1/2 ei(φ−π)/2,(
δ2 − z

)1/2 =
∣∣∣δ2 − z

∣∣∣1/2
ei(ψ−π)/2,

(1 − z)1/2 = |1 − z|1/2 ei(θ−π)/2, (44)

with the branch cuts taken along the real z-axis, u, from
−∞ → 0, −∞ → δ2, and −∞ → 1, respectively. Using
(44),

√
fab(z) takes the form:

f 1/2
ab (z) =

∣∣∣1 − δ2/z
∣∣∣1/2 |1 − 1/z|1/2 ei[(θ+ψ)/2−φ]. (45)

Just above the positive u-axis, we find the following forms
for f 1/2

ab :

(i) 0 < u < δ2 : (φ → 0, ψ → π, θ → π)

f 1/2
ab = −

(
δ2/u − 1

)1/2
(1/u − 1)1/2 ,

(i i) δ2 < u < 1 : (φ → 0, ψ → 0, θ → π)

f 1/2
ab = i

(
1 − δ2/u

)1/2
(1/u − 1)1/2 , (46)

(i i i) δ2 < 1 < u : (φ → 0, ψ → 0, θ → 0)

f 1/2
ab =

(
1 − δ2/u

)1/2
(1 − 1/u)1/2 ,

and just below the positive u-axis, we have

(i) 0 < u < δ2 : (φ → 0, ψ → −π, θ → −π)

f 1/2
ab = −

(
δ2/u − 1

)1/2
(1/u − 1)1/2 ,

(i i) δ2 < u < 1 : (φ → 0, ψ → 0, θ → −π)

f 1/2
ab = −i

(
1 − δ2/u

)1/2
(1/u − 1)1/2 , (47)

(i i i) δ2 < 1 < u : (φ → 0, ψ → 0, θ → 0)

f 1/2
ab =

(
1 − δ2/u

)1/2
(1 − 1/u)1/2 .

Equations (46) and (47) demonstrate that the function f 1/2
ab

has a discontinuity along δ2 → 1, which identifies as the
branch cut of f 1/2

ab . The Riemann surface of
√

fab(z) for a
specific δ is illustrated in Fig. 3.

Now, we examine Jab(z) in (42), in the three regions (i),
(i i), and (i i i). In both (i) and (i i) regions, it has the same
form as

Jab = √| fab|
[

cot−1
( √| fab|

1 − δ/u

)
+ cot−1

( √| fab|
1 + δ/u

)]
,

(48)

Fig. 2 Illustration of complex vectors defined in (43)

Fig. 3 The Riemann surface of the complex function
√

fab(z) for δ =
1/2. The Riemann sheets are connected along the branch cut, shown as
a dashed, black curve, from 1/4 → 1

where
√| fab| = (1 − δ2/u)1/2(1/u − 1)1/2, when u < 1.

For the region (i i i), we have

Jab = √| fab|
[

coth−1
( √| fab|

1 − δ/u

)
+ coth−1

( √| fab|
1 + δ/u

)]
,

(49)

where
√| fab| = (1 − δ2/u)1/2(1 − 1/u)1/2, when u > 1.

Since the arguments of both inverse hyperbolic cotangents
in (49) are smaller than one, therefore both lie on the upper
lip—in our case, m2 → m2 − iη : z → (s + iη)/M2—of
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the branch cut of the inverse hyperbolic cotangent function.
Then (49) can be written as

Jab = √| fab|
[

tanh−1
( √| fab|

1 − δ/u

)
+ tanh−1

( √| fab|
1 + δ/u

)
− iπ

]
. (50)

Thus in the region (i i i), where s > M2 = (ma +mb)
2 when

the two-particle decay channel opens up, on the upper lip of
the branch cut along the real axis, Jab develops an imaginary
part.

Now with Jab(z) at our disposal, the analytic continuation
of Lab(s) reads

Lab(z) = −1 − 1

2

(
−δ

z
+ m2

a + m2
b

m2
a − m2

b

)
ln

(
m2

a/m
2
b

)
+ Jab(z). (51)

Putting (38), (39), (50), and (51) together, the regularized
integral of �(s) in (35), for s > (ma + mb)

2, becomes

�(s) = ε

(4π)2

[
m2

a

m2
a − m2

b

ln
(

1 + �2/m2
a

)

− m2
b

m2
a − m2

b

ln
(

1 + �2/m2
b

)
− Lab(s)

]
, (52)

with Lab(s) is given by

Lab(s) = −1 − 1

2

(
m2

a + m2
b

m2
a − m2

b

− m2
a − m2

b

s

)
ln

(
m2

a/m
2
b

)

+ √
fab

{
tanh−1

[ √
fab

1 − (
m2

a − m2
b

)
/s

]

+ tanh−1
[ √

fab
1 + (

m2
a − m2

b

)
/s

]}
− iπ

√
fab, (53)

where

√
fab =

(
1 − (ma − mb)

2 /s
)1/2

×
(

1 − (ma + mb)
2 /s

)1/2 = 2pab/
√
s. (54)

In (54), pab is the magnitude of the three-momentum of either
meson in the center-of-mass system. Note that (52), (53),
and (54) are symmetric under the interchange ma → mb.
For ma = mπ and mb = mη, (52) gives the closed form of
�π0η(s) for s > (mπ + mη)

2. For a different approach to
calculate the meson loop diagrams, we refer to Section 3 of
[62].

For equal masses, ma = mb = m, �(s) reduces to

�(s) = ε

(4π)2

[
1 + ln

(
1 + �2/m2

)

+ m2/(m2 + �2) − 2J (s)
]
, (55)

with

J (s) = √− f cot−1
√− f θ

(
4m2 − s

)
+ √

f
(

tanh−1
√

f − iπ/2
)

θ
(
s − 4m2

)
, (56)

where
√

f = (1 − 4m2/s)1/2 and θ is the Heaviside step
function. In (56), the analytic continuation of J (s) into the
region 0 < s < 4m2 along the real s-axis is also given.
Setting m = mπ or mK with ε = 1/2 or 1, respectively, then
leads to closed forms for �ππ(s) and �KK (s). Having �(s)
at our disposal, the T I

i j (s) can all be obtained in closed form.

The complex poles in P0 = √
s of the transition ampli-

tudes T I
11(P0) and T I

12(P0) in (32) and (33) can be found
for I = 0 and 1 from the roots of their common denomina-
tor DI (P I

0 ) = 0 in (34). These roots, which determine the
meson mass MI and half-width � I /2 for each isospin, lie on
the appropriate second Riemann sheet in the lower half of the
cut complex P0-plane [52], i.e., P I

0 = MI −i� I /2. Note that
this relation assumes a non-relativistic Breit–Wigner shape
for the transition amplitude in the vicinity of its peak value
at P0 = MI .

One finds two roots for I = 0 and a single root for I = 1,
that correspond to the two scalar-isoscalar mesons f0(500)

(or σ ), f0(980), and a single scalar-isovector a0(980) meson,
respectively [52]. In the cases of σ and f0, we find particu-
larly simple relations for their corresponding roots (in MeV)
as functions of the cutoff �:

M0
σ (�) ≈ 436 + 67(�/1000) − 30(�/1000)2,

�0
σ /2 (�) ≈ 394 − 230(�/1000) + 50(�/1000)2, (57)

and

M0
f0 (�) ≈ 996 + 37(�/1000) − 36(�/1000)2,

�0
f0/2 (�) ≈ −64 + 93(�/1000) − 21(�/1000)2, (58)

where � is measured in MeV and the coefficients of �0, �,
and�2 have dimensions of MeV, 1, and MeV−1, respectively.
We use the O(4) cutoff of � = 1351+160

−185 MeV that fixes
the real part of one I = 0 root, with error bars, at M0

f0
=

(980 ± 10) MeV [46]. This replicates the f0(980) mass
values quoted in the PDG data table [65–67]. The predictions
for the masses and half-widths for all three scalar mesons are
listed in Table 1.

For other approaches to determine the pole positions of
f0(980) and a0(980) resonances, such as using the Roy-
like GKPY equations and Flatté parametrization, Madrid-
Krakow dispersive parametrization, and unitarization tech-
niques based on N/D method, we refer to [15,68–74].
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Table 1 Summary of calculated masses and half-widths, MI − i� I /2
(in MeV, rounded to the nearest integer), for f0(500) or σ , f0(980), and
a0(980) as a function of the range of O(4) cutoffs: � = 1351+160

−185 MeV.

The other input parameters are taken from experiment: fπ = 93 MeV
and (mπ ,mK ,mη) = (140, 496, 547) MeV

� MeV M0
σ − i

2 �0
σ M0

f0
− i

2 �0
f0

M1
a0

− i
2 �1

a0

1166 473 − 194i 990 − 16i 987 − 52i

1351 472 − 175i 980 − 23i 964 − 53i

1511 469 − 161i 970 − 29i 946 − 52i

PDG (2010) [65] (400 − 1200) − (300 − 500)i (980 ± 10) − (20 − 50)i (980 ± 20) − (25 − 50)i

PDG (2012) [66] (400 − 550) − (200 − 350)i (990 ± 20) − (20 − 50)i (980 ± 20) − (25 − 50)i

PDG (2022) [67] (400 − 550) − (200 − 350)i (980 − 1010) − (20 − 35)i (960 − 1030) − (20 − 70)i

We are now able to construct the contribution in which the
strong interaction influences the final state. According to the
third diagram in panel (a) of Fig. 1, we identify Tμν

S;γ γ→m1m2
for a propagating charged meson pair m+m− in the loop as

Tμν
S;γ γ→m1m2

=
∫

d4l

(2π)4

〈
q1, q2

∣∣Tμν
B

∣∣ q1 + l, q2 − l
〉

× 〈
q1 + l, q2 − l

∣∣Tm1m2;m+m−
∣∣ p1, p2

〉
≈ Tm1m2;m+m−(s)

∫
d4l

(2π)4

〈
q1, q2

∣∣Tμν
B

∣∣ q1 + l, q2 − l
〉
,

(59)

with m± being the charged meson mass mπ or mK , as appro-
priate. The second line in (59) follows after factoring out the
meson–meson scattering box diagram from the integral. This
approximation, like that for T I

i j (s), places the intermediate
incoming charged meson pair m+m− of Tm1m2;m+m− on-
shell to render this amplitude a function of s only [46,52,53].
Note, however, that the charged mesons in the final state of
Tμν
B under the integral sign are, by contrast, both still off-

shell.
Equation (59) can be further calculated as

Tμν

S;γ γ→m1m2
= − e2

2π2

[
gμν (q1 · q2) − qμ

2 q
ν
1

]
× Jm±(s)

2s
Tm1m2;m+m−(s), (60)

where the function Jm±(s) is given by

Jm±(s) = 1 + 2m2±/s

×
∫ 1

0

dα

α
ln

[
1 − s

m2±
α (1 − α)

]
. (61)

The meson–meson scattering contribution, i.e.,Tm1m2;m+m−(s),
can be constructed from (32) to (37) for the appropriate
meson pairs. The expression in (60) is fully gauge invariant
as the factor gμν(q1 ·q2)−qμ

2 q
ν
1 guarantees this: q1μ[gμν(q1 ·

q2) − qμ
2 q

ν
1 ] = 0 and q2ν[gμν(q1 · q2) − qμ

2 q
ν
1 ] = 0.

The function Jm±(s) can be further evaluated to

Jm± (s) =
⎡
⎢⎣1 − 4m2±

s

⎛
⎝sin−1

√
s

4m2±

⎞
⎠

2
⎤
⎥⎦ θ

(
4m2± − s

)

+
⎡
⎣1 + 4m2±

s

(
cosh−1

√
s

4m2±
− iπ/2

)2
⎤
⎦ θ

(
s − 4m2±

)
.

(62)

In this expression, the second term for s ≥ 4m2± arises by
analytically continuing the first as a function of s onto the
upper lip of the branch cut 4m2± < s < ∞ along the real axis
of the complex s-plane.

Allowing for different combinations of intermediate meson
pairs to be formed, the contribution from the final-state strong
interactions to the full contracted T -matrix thus reads

TS;γ γ→m1m2 = ε2μT
μν

S;γ γ→m1m2
ε1ν

= − e2

8π2 ε2 · ε1

∑
m±

Jm±(s)Tm1m2;m+m−(s),

(63)

and when contracted with respect to polarization vectors of
total helicity λ, we have

εiλ′(2)T i j
S;γ γ→m1m2

ε jλ(1) = e2

8π2 eλ
′ (2) · eλ(1)

×
∑
m±

Jm±(s)Tm1m2;m+m−(s). (64)

This scattering amplitude is independent of the scattering
angle and is thus pure s-wave. Hence

T (0,0)
S;γ γ→m1m2

= e2

8π2

∑
m±

Jm±(s)Tm1m2;m+m−(s)

× 2i
√

πY0,0. (65)

Note that there is no λ = 2 contribution in this case.
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2.3 Non-chiral perturbation theory contributions

As already commented upon in the Introduction, additional
s channel background contributions from the f2(1270) and
a2(1320) resonances, with quantum numbers I G(J PC ) =
0+(2++) and 1−(2++), to the scattering amplitude can be
expected to be important at center-of-mass energies below
1 GeV. We denote these as T (2,2)

R;γ γ→m1m2
. Such contributions

lie beyond the scope of the ChPT calculations outlined above
and are thus parametrized. In addition, the t-channel axial
exchange amplitude arising from the 1−(1++) a1(1260) res-
onance, denoted as TA;γ γ→π0η, also not only plays a role
above ∼ O(1 GeV) [53,57], but also influences the ampli-
tudes and cross-sections below 1 GeV.

The f2 and a2 resonances have been interpreted as pure d-
wave, helicity 2 states (J, λ) = (2, 2) [56]. We parametrize
these by a relativistic Breit–Wigner resonance amplitude [75]
for γ γ → MR → m1m2 as

T (2,2)
R;γ γ→m1m2

= −16π i
√

20π/vA2,2(s)Y2,2(θ, φ), (66)

where

A2,2(s) =
[
�(2)

γ γ

]1/2
BW(s)

=
[
�(2)

γ γ

]1/2
√
s

s − M2
R + iMR�(

√
s)

× [
Br(m1m2)�(

√
s)
]1/2

, (67)

with R = f2, a2, for a resonance of mass and total width MR

and �(
√
s), respectively, and with partial widths �

(2)
γ γ and

Br(m1m2)�(
√
s) for the decay into two photons of oppo-

site helicity, or two mesons, respectively; Br(m1m2) is the
branching ratio for the latter decay. For simplicity, we con-
sider the widths appearing in the relativistic Breit–Wigner
formula to be independent of s, i.e., �(

√
s) = �.

To obtain the corresponding cross-section, first note that

dσ
(2,2)
R (γ γ → m1m2)

d

= v

128π2s

∣∣∣T (2,2)
R;γ γ→m1m2

∣∣∣2 , (68)

thus, we have

dσ
(2,2)
R (γ γ → m1m2)

d

= 40π

s

∣∣A2,2(s)
∣∣2 ∣∣Y2,2(θ, φ)

∣∣2
= 40π�(2)

γ γ

1

(s − M2
R)2 + (MR�)2

Br(m1m2)�

× ∣∣Y2,2(θ, φ)
∣∣2 . (69)

By integrating over the full angular range, we obtain

σ
(2,2)
R (γ γ → m1m2) = 40π�(2)

γ γ Br(m1m2)�

× 1

(s − M2
R)2 + (MR�)2

, (70)

which peaks at s = M2
R with the maximum value of

40π�
(2)
γ γ Br(m1m2)/M2

R�.
Due to their large total widths (∼ 100 to 200 MeV), the f2

anda2 resonances can contribute to production cross-sections
already at energies ∼ 1 GeV, well below their peak positions.
We illustrate this in the next section for the γ γ → π0π0

channel where the total cross-section, (74), is just the sum
of the partial cross-sections determined by ChPT and the f2
resonance amplitudes separately, without any interference
term.

For the axial vector resonance exchange contribution, we
follow the approach of [53], where for γ (q1)γ (q2) → p1 p2,
the corresponding transition amplitude reads

Tμν
A = 4πα

f 2
A

f 2
π

[
gμν (q1 · q2) − qμ

2 q
ν
1

]

×
(

1 + p1(q1 − p1)/m2
A

(q1 − p1)2 − m2
A

+ 1 + p1(q2 − p1)/m2
A

(q2 − p1)2 − m2
A

)
,

(71)

where f A depends on the combination L9 + L10.

2.4 Total γ γ → meson–meson transition amplitudes and
cross-sections

The total contracted transition amplitudes Tγ γ→m1m2 can
now be calculated from (1). For each specific exit channel,
this can be written to leading order as a sum of s- and d-wave
components:

Tγ γ→m1m2 = T (0,0)
γ γ→m1m2

+ T (2,2)
γ γ→m1m2

, (72)

where

T (J,λ)
γ γ→m1m2

= T (J,λ)
B;γ γ→m1m2

+ T (J,λ)
S;γ γ→m1m2

+ T (J,λ)
R(A);γ γ→m1m2

, (73)

and the relevant components are selected for the Born and
strong interaction terms from ChPT, while resonant, non-
ChPT terms are parametrized.

The total γ γ → meson–meson cross-section can then be
expressed as the sum of the moduli squared of the T (J,λ), due
to the orthogonality of the spherical harmonics they contain.
Thus, we have

σ(γ γ → m1m2) = v

128π2s
ε

∫
d


∣∣Tγ γ→m1m2

∣∣2
= v

128π2s
ε

∫
d


(∣∣∣T (0,0)
γ γ→m1m2

∣∣∣2 +
∣∣∣T (2,2)

γ γ→m1m2

∣∣∣2)

= σ (0,0)(γ γ → m1m2) + σ (2,2)(γ γ → m1m2),

(74)

after integrating over the full solid angle and averaging over
the two helicities of the incoming photon pair; ε takes 1/2 or
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1, depending on whether the final state has identical particles
or not, respectively. For example, for the process γ γ →
π+π−, we obtain the total cross-section as

σ(γ γ → π+π−) = σ
(0,0)
B+S (γ γ → π+π−)

+ σ
(2,2)
B+ f2

(γ γ → π+π−), (75)

where the subscripts B+ S and B+ f2 refer to the Born plus
strong-interaction and Born plus resonant f2(1270) contri-
butions, respectively.

The individual Tγ γ→m1m2 matrices, T (0,0)
γ γ→m1m2 and

T (2,2)
γ γ→m1m2 , that determine these partial cross-sections are

given explicitly in Table 2 for the three exit channels:
m1m2 = π0π0, π+π−, and π0η.

3 Numerical results for scattering amplitudes and
cross-sections

3.1 m1m2 → m3m4 scattering amplitudes

One of the main contributions to the total scattering ampli-
tude in (1) arises from final-state strong interactions through
meson–meson scattering. The latter amplitudes themselves
are an important input to the photon–photon cross-sections
and are calculated separately in Sect. 2.2 within the frame-
work of ChPT. The authors of [25] have extracted these
amplitudes from the data in a model-independent fashion.
Here, we compare our calculated results for the real and imag-
inary parts of the transition matrices with the results of their
fits, see Fig. 4, for the processes ππ → ππ , ππ → KK ,
and KK → KK .

As can be seen in this figure, there is an overall good qual-
itative agreement between the transition matrices calculated
from ChPT and those extracted from experiment. However,
quantitatively there are differences, notably for the transi-
tion ππ → ππ , in which the real part underestimates the
extracted values at energies below 1 GeV, while the imag-
inary part overestimates the extracted values in the lower
energy range, peaking at a lower value of P0.

To conclude this subsection, we note that the amplitudes
calculated here can also give us the effective coupling con-
stants responsible for the decay modes of f0. To see this, first
note that the f0 propagator, −i D(s), required to construct
the T -matrices for I = 0 scattering of KK via s channel f0
exchange in the vicinity of the f0 resonance, is dressed by
proper polarization loops, −i�(s), in the ladder sum as

−i D(s) = i

s − M2 + i

s − M2

1

i
�(s)

i

s − M2 + · · ·

= i

s − M2 − �(s)
, (76)

Fig. 4 The T -matrix elements for the meson–meson scattering ampli-
tudes of ππ → ππ , ππ → KK , and KK → KK . The solid curves
are our calculations and the dotted curves are the values extracted from
the data by Dai and Pennington [25]. The real parts are given by the
black curves and the imaginary values by the red ones

where M is the bare mass of f0. Now, using the Lagrangian
fragment, δL, we can define the effective coupling constants
via

δL = g f0KK f0(x)KK + g f0ππ f0(x)ππ. (77)

This Lagrangian leads to 3-point vertices given by iV f0K+K− =
iV

f0K 0K
0 = ig f0KK . Since the kaon–antikaon state of

isospin I = 0 is |(KK )0〉 = −1/
√

2(K+K− +K 0K
0
), thus

the KK coupling vertex with the isoscalar f0 is iV 0
f0KK

=
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Table 2 Combinations of partial T -matrices of good angular momen-
tum and helicity, (J, λ), that determine |Tγ γ→m1m2 |2 in Eq. (74) for
the production cross-section of a meson pair, γ γ → m1m2. The con-
tributions to the T -matrices incorporating the additional resonant and

t-channel axial exchange contributions, not generated by the ChPT
Lagrangian, are labeled explicitly by the resonance or axial term that
characterizes them

m1m2 ε v = p/q
∣∣Tγ γ→m1m2

∣∣2 =
∣∣∣T (0,0)

γ γ→m1m2

∣∣∣2 +
∣∣∣T (2,2)

γ γ→m1m2

∣∣∣2

π0π0 1/2
(

1 − 4m2
π

s

)1/2 ∣∣∣T (0,0)

S;γ γ→π0π0

∣∣∣2 +
∣∣∣T (2,2)

f2;γ γ→π0π0

∣∣∣2
π+π− 1

(
1 − 4m2

π

s

)1/2 ∣∣∣T (0,0)

B;γ γ→π+π− + T (0,0)

S;γ γ→π+π−
∣∣∣2 +

∣∣∣T (2,2)

B;γ γ→π+π− + T (2,2)

f2;γ γ→π+π−
∣∣∣2

π0η 1
[
1 − (mπ −mη)2

s

]1/2 [
1 − (mπ +mη)2

s

]1/2 ∣∣∣T (0,0)

S;γ γ→π0η
+ T (0,0)

A;γ γ→π0η

∣∣∣2 +
∣∣∣T (2,2)

a2;γ γ→π0η

∣∣∣2

−√
2ig f0KK . Similarly, we can obtain iV f0π+π− = iV f0π−π+ =

iV f0π0π0 = 2ig f0ππ and the associated coupling vertex of

the two-pion state of I = 0 reads iV 0
f0ππ = 2

√
3ig f0ππ .

If we construct −i�(s), using the second term in (77),
together with iV 0

f0ππ for the coupling constant in the I = 0
channel, then we can write �(s) = Re �(s) + iIm �(s),
with

−Im �(s) = 3g2
f0ππ

8π

(
1 − 4m2

π

s

)1/2

θ
(
s − 4m2

π

)
= √

s�(s), (78)

where we have used (35), (55), and (56). Equation (78) can
also be obtained using Cutkosky rules for cutting a loop inte-
gral, see [42,76]. Note that the imaginary part of �(s) is
independent of the mode regularization. We now absorb the
real part of �(s) in the bare mass to give the physical mass
of f0, i.e., M2 + Re � → M2

0 , and evaluate Im �(s) at this
physical mass, s = M2

0 , to define the decay width �0 into
two pions via −Im �(M2

0 ) = M0�0 as

M0�0 = 3g2
f0ππ

8π

(
1 − 4m2

π

M2
0

)1/2

θ
(
M2

0 − 4m2
π

)
. (79)

Now using the 3-point vertices expressed in terms of the
coupling constants, the T -matrices of KK → KK and
KK → ππ can be written as

TKK→KK =
(√

2ig f0KK

)2 1

s − M2
0 + iM0�0

≈ 1

2M0

(√
2ig f0KK

)2 1

P0 − M0 + i�0/2
,

(80)

and

TKK→ππ
=

(√
2ig f0KK

)
(2

√
3ig f0ππ )

× 1

s − M2
0 + iM0�0

Fig. 5 The solid curves depict the ChPT-generated |T 0
11(s)|2 (black)

and |T 0
21(s)|2 (blue). Their Breit–Wigner fits are represented as dashed

curves, accordingly. The horizontal bars (purple) indicate the full widths
at half-maximum for the |T 0

i j (s)|2; the vertical line (brown) indicates
the (almost) common value of their resonance energy at ≈ 974 MeV

≈ 1

2M0

(√
2ig f0KK

) (
2
√

3ig f0ππ

)

× 1

P0 − M0 + i�0/2
. (81)

Since the f0 mass corresponds to the peak position of the
|T 0

11(s)|2, see also Sect. 2.2, we can obtain the coupling con-
stants by fitting a Breit–Wigner to T 0

11(s) → TKK→KK and
to T 0

21(s) → TKK→ππ . To this end, we insist that |T 0
11|2 and

|TKK→KK |2 peak at the same value of P0 = MR = M11,
and have also the same widths; see Fig. 5.

This indicates that |T 0
11| to be replaced by |T 0

11(MR)| =
(
√

2g f0KK )2/MR�R , which gives the effective coupling
constant value as g f0KK = 2.808 GeV, for � = 1.351 GeV,
MR = M11 = 974 MeV, and �R = 43.19 MeV. The same
procedure for T 0

21(s) → TKK→ππ gives

g f0ππg f0KK = − 1

2
√

6
M21�21

∣∣∣T 0
21(M21)

∣∣∣
= −1.849 GeV2, (82)
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Fig. 6 Comparison of the exact (ChPT) Im T 0
21(s) (solid curve) with

its Breit–Wigner approximation (dashed curve). The figure illustrates
that the coupling constant product g f0ππ g f0KK has to be negative

which gives g f0ππ = −0.659 GeV. The negative effec-
tive coupling constant manifests itself in the second panel
of Fig. 4, where the imaginary part of T becomes negative.
In Fig. 6, we have compared the exact (ChPT), calculated
imaginary part of T 0

21(s) (solid, red curve) with its Breit–
Wigner approximation (dashed, red curve).

3.2 γ γ → m1m2 cross-sections

3.2.1 γ γ → π0π0, π0η cross-sections

The cross-section γ γ → π0π0 is often considered to be
particularly instructive, as it lacks a Born term. Thus, the
contributions from the f2 and a2 (as well as the possibili-
ties that could arise from new physics) can be investigated
more closely. As is explained in Sect. 2.3, due to the large
total widths of these two resonances, they can be expected
to contribute to production cross-sections well below their
peak positions. In the γ γ → π0π0 channel the total cross-
section given in (74) is just the sum of the partial cross-
sections determined by ChPT and f2 resonance amplitudes
separately, without any interference term, as can be seen in
Table 2. The results are shown in Fig. 7, where the calculated
total cross-section, including the pure (J, λ) = (0, 0) chiral
contribution as well, are compared with the Belle [2] as well
as the older Crystal Ball and JADE Collaborations data [5,6].

The transition amplitudes for these calculations come
from (65) and (66) for T (0,0)

S;γ γ→π0π0 and T (2,2)

f2;γ γ→π0π0 , evalu-
ated at the cutoff � = 1.351 GeV in the first case, and using
a mass, total width, and branching ratio of (M f2 , � f2) =
(1275, 185) MeV and �

(2)
γ γ Br(π0π0)� f2 = 0.16 MeV2 for

the second resonance amplitude, as extracted from the PDG
tables [65–67]. Note that if the experimental observations are
restricted to θc < θ < π − θc, the total cross-sections for a
given angular momentum J are modified by a factor FJ (z),
which reads FJ (z) = ∫ 2π

0 dφ
∫ π−θc
θc

dθ sin θ |YJ,J (θ, φ)|2.

Fig. 7 Cross-section for γ γ → π0π0 integrated over the restricted
angular range | cos θ | < 0.6 (solid, black curve) compared to the data
of the Belle, Crystal Ball, and JADE Collaborations [2,5,6] (red dots)

Fig. 8 Cross-section for γ γ → π0π0 integrated over the full angular
range (solid, black curve) compared to the extracted curve, denoted in
their paper as Solution I, of Dai and Pennington [25] (red dots)

One notes that the ChPT cross-section is lifted sufficiently
in the vicinity of ∼ 1 GeV by the low energy tail of the f2
resonance contribution to lead to an acceptable overall fit
with the experiment. This result, in turn, confirms that the
chiral (0, 0) cross-section is valid for center-of-mass energies
below ∼ 1 GeV.

The cross-section for γ γ → π0π0 integrated over the
full angular range is shown in Fig. 8. Here one sees again
that the resonance f2 underestimates the results of Dai and
Pennington [25] in its strength, and some discrepancy is also
observed at lower energies.

In a similar fashion to the γ γ → π0π0, the cross-section
for the process γ γ → π0η can be calculated; the result is
shown in Fig. 9. Our theoretical calculation (black curve) can
capture the essential structure of the Belle Collaboration data
[3] quite well, although not perfect.
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Fig. 9 Cross-section for γ γ → π0η integrated over the angular range
| cos θ | < 0.8 (black curve) compared to the data of the Belle Collabo-
ration [3] (red dots)

Fig. 10 Cross-section for γ γ → π+π− integrated over the full angu-
lar range (solid, black curve) compared to the extracted curve, denoted
in their paper as Solution I, of Dai and Pennington [25] (red dots). The
blue, dashed curve is a calculation not including the effects of the strong
interaction

3.2.2 γ γ → π+π− cross-section

In Fig. 10, we have shown the results for the process γ γ →
π+π−.

In this figure, the dotted curve represents the extracted
data of Dai and Pennington [25], integrated over the full
angular range. The blue, dashed curve is our calculation,
without including the effects of the final-state strong inter-
actions, while the black, solid curve indicates our final full
calculation, including the final-state strong interactions. As
expected, the Born contribution to this process plays a dom-
inant role at low energies. After 0.9 GeV, this calculation is
in very good agreement with the extracted data.

4 Discussion and outlook

Calculations of the photon–photon to meson–meson cross-
sections via various theoretical approaches at different lev-
els have been addressed by many authors in the past. Just to
mention a few examples: the authors of [22] construct a com-
plete set of Roy–Steiner equations for the γ γ → ππ reac-
tion. Using the proposed formalism and approximating the
f2(1270) resonance by a Breit–Wigner ansatz, they calculate
the cross-section of pion pair production for both charged and
neutral pions. A chiral Lagrangian model, with dynamical
light vector mesons, is presented in [77] to study the produc-
tion of ππ , πη, and KK in photon–photon collisions and to
evaluate the associated cross-sections. The proposed model
of [77] does not incorporate the f2(1270) and a2(1320)

resonances. Using Muskhelishvili–Omnès (MO) dispersive
representations of photon–photon scattering to two pions,
the authors of [78] evaluate the cross-section for pion pair
production, including the contribution of tensor resonances.
Their study, however, does not provide an analysis of the pro-
duction of other meson pairs such as the πη. The γ γ → πη

reaction is investigated in [79], using the S-matrix theory.
Although the authors consider the effect of the a2(1320) res-
onance through a Breit–Wigner approximation, their calcu-
lation does not include the axial vector resonance exchange
contribution. Within the realm of chiral perturbation theory
(ChPT), the cross-section for γ γ → ππ is evaluated at
one-loop order in [51], where both charged pion and neutral
pion pair production are studied. A similar approach for the
π0π0 production is presented in [80]. The reported results of
[51,80] for γ γ → π0π0 show disagreement with the Crys-
tal Ball data. Two-loop order calculation within ChPT for the
π0π0 production, as given in [81,82], improves agreement
with the experiment. For the case of the π+π− production,
the corresponding calculation at two-loop order is given in
[83,84]. Note that at this order, most of the coupling con-
stants of the chiral Lagrangian are still undetermined [78].
Also, the studies of [51,80,82–84] do not take into account
the f2(1270) resonance, and its effects have been ignored.
All the papers mentioned above concern themselves mainly
with reproducing experimental data for cross-sections; how-
ever, they lack a detailed amplitude analysis. In this paper,
we have recalculated these cross-sections, using a version of
ChPT, with two aims in mind: firstly, we wish to make a com-
parison at the level of the transition amplitudes and not only
directly for the cross-sections. Secondly, we have in mind
to investigate in the future the possibility of the formation
and decay of kaonic atoms. Should these exist, they would
be expected to have an extremely short lifetime, but a large
cross-section. For this, we need to have a reasonable agree-
ment for the cross-sections over a range somewhat above 1
GeV and the use of ChPT is essential. We have thus calculated
the amplitudes and cross-sections for photon–photon colli-
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sions giving rise to π+π−, π0π0, π0η, and KK in the final
state. Our theoretical framework combines the Born scatter-
ing transition amplitudes required through QED with those
that can be calculated via ChPT to describe the low-energy
regime and includes parametrizations of the resonant mesons
such as f2(1270) and a2(1320), which cannot be accounted
for within ChPT, but which are essential for the evaluation of
the cross-sections. We have compared our results with those
from [25], which are extracted from the high statistics data
from Belle, as well as the older data from Mark II at SLAC,
CELLO at DESY, and Crystal Ball at SLAC, and fitted using
basic constraints of analyticity, unitarity, and crossing sym-
metry, as well as Low’s low-energy theorem for QED. It is
noteworthy that the authors of [25] are not only able to fit the
cross-sections but also able to obtain the strong-interaction
transition matrices, to which we have been able to compare
our theoretical model. The results of the comparison are rea-
sonable, showing all expected structures, but they are not
perfect. It is an open question as to whether the low-energy
behavior can be improved substantially if the experimentally
inferred inputs for ChPT, such as the combination L9 + L10

are better known, or if some new effects, for example, due
to mesonic substructure are evident. We also note that in
the extracted amplitudes in [25], denoted as Solution I, the
f0(1370) appears at the very edge of where the analysis of
[25] with just ππ and KK channels can be trusted. Thus, we
have not incorporated this state into our approach.

For our intentions, the cross-sections calculated in this
fashion are sufficient to provide a basis for addressing further
intriguing questions, such as whether other new structures
like the postulated existence of the kaonium atom K+K−
actually exist and can be observed. This can be addressed
within the context of the current paper, for which these cross-
sections are required. In a nutshell, we will look for the kao-
nium as a sharp resonance possibly accompanying the f0 in
the process γ γ → π0π0, or in the γ γ → π0η. For example,
the cross-section for γ γ → π0π0, including the formation
of kaonium, can be written as

σ(γ γ → π0π0)

= 1

256πs

√
1 − 4m2

π

s

(α

π

)2

× |Jπ (s)Tπ+π−;π0π0(s) + JK (s)TK+K−;π0π0(s)|2,
(83)

where Jπ (s) and JK (s) can be calculated from (62). The
charge exchange T -matrix for s-wave pions is found to be
Tπ+π−;π0π0(s) = 〈π0π0|T |π+π−〉 = (T 0

22(s) − T 2
22(s))/3,

and the annihilation amplitude 〈π0π0|T |K+K−〉 into two
neutral pions reads TK+K−;π0π0(s) = 〈π0π0|T |K+K−〉 =
1/

√
6T 0

21(s).

However, the subtle point is that due to the K+K−
Coulomb interaction, which is required for kaonium forma-
tion, there is an isospin breaking which should be imported in
TK+K−;π0π0(s) (Tπ+π−;π0π0(s) is not affected by the isospin
breaking in the K+K− channel). In short, we will import the
effects of isospin breaking into the transition amplitudes via
the value of the modified strong inverse scattering length of
K+K− in the presence of attractive Coulomb fields. Consid-
ering this effect, the cross-section for γ γ → π0π0 and also
for γ γ → π0η, including the formation of kaonium, can
be evaluated. One would expect the kaonium resonance to
manifest itself as a sharp peak around 980 MeV. The detailed
discussion and calculation of these will be reported in our
future paper.
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