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Abstract

We show in general that the Dirac-Clifford ring formed by the

Dirac matrices and all their products, for all even and odd spacetime

dimensions D, span the commutation algebras su(2D'2) for even D

and *w(2tD-1'/2) © sup^-W) for odd D. We discuss some physical

consequences of these results.

Key-words: Dirac equation; Clifford algebra.
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1 Introduction

In recent years, we have shown that there is a close relationship for space-

túne dimensions D = 2, 3 and 4 between the ring of Dirac-Clifford matrices

and unitary algebras (respectively, s«(2), su(2) © su{2) and su(4)) [1,2].

We conjectured at the time on the existence of a general framework

for the ring formed by anticommuting Dirac-Clifford generators and their

products and that it is precisely related to definite unitary groups. We are

now able to prove this in the present article.

The original evidence on this connection was the treatment by Becher

and Joos [3] for the Dirac-Kãhler equation, and its extension to the lattice.

Becher and Joos used differential forms endowed with a Clifford product,

introduced previously by Kãhier [4], which allowed Graf [5] to prove the

isomorphism, for all dimensions, of the differential forms with this product

and Dirac gamma matrices.

Our proof is purely based on the algebra of commutators built from the

generators of the Clifford algebra and including all products of the gener-

ators that produce the set known as the Dirac ring (in D — 4), a concept

valid for all dimensions. This is far from trivial for an odd number of di-
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mensions, where the usual representations for the Dirac matrices obtained

from a finite group characterization [6] for the relevant Clifford algebra

introduce an artificial restriction on the ring.

Because of the Graf isomorphism, our proofs apply equally to the dif-

ferential forms with Clifford product. In fact, as it will be evident from the

treatment of the subject, it is valid for any object having a finite number

of indices and properties for exchange as any Clifford algebra.

Some interesting physical questions will be referred to in the text below,

which is organized as follows. In the next section, we introduce the main

concepts and notations, as known in the literature, which wil] be used in

the following.

Seetion 3 is the beginning of the core of the article, where the proof is

given for even dimensions cf the relation between the Dirac ring formed

with hennitian matrices (or, in general, objects with definite properties

under transposition and conjugation) and the Lie algebra su(2D^2). The

proof is based on the existence of a subset forming a Cartan subalgebra

under commutation.

Section 4 deals with the case of odd-dimensional spacetimes, for which

we need the previous result and new ones regarding properties under com-
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mutation of the objects with the complementary number of indices with

respect to the Clifford generators. We show there that the relevant Lie

algebra is su(2lD-M) © su(?P>-M).

Finally, we discuss our results, compare them, for odd-dimensional

spacetimes, with the representation commonly used, and consider physi-

cal applications in the framework of calculations with particles with spin

1/2.

2 Fundamentals

Let us consider a flat D-dimensional spacetime manifold in which a quadratic

bilinear diagonal form (metric tensor), g, is defined. Clifford algebras are

formed out of a set of D objects, F*, k = 1 , . . . , D, which we call generators,

related to the set of spacctime indices (one for each generator) that, given

a product of two generators, satisfy

r*1 = 2gkik2.

Particularly interesting objects with this property are the Dirac matrices,

appearing in the description of rclativistic spin-1/2 particles, 7*1; closely re-

lated are differential forms, if one purposedly introduces a Clifford product
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bctwccn two 1-forms in the following way:

dxh V dxh =gklkl + dx* A c/x*», (2)

where V is the symbol for Clifford product, and the wedge A denotes the

usual Grasstnann exterior product. This set was introduced by Kãhler

[4] precisely to treat relativistic sjpin-1/2 particles with differential forms.

In fact, the set of Dirac matrices and the one of differential forms are

isomorphic [5]. See also [1,3].

The product involved in eq. (1) should be associative,

(r*«. Tkt) - r*> = r*1 • (r** • rfc») = r*1 • rh • rk». (3)

It is a simple exercise to show that the usual matrix product for the Dirac

matrices and the Clifford product defined in (3) for differential forms satisfy

this condition.

In terms of matrices, we take the generators to be hermitian:

(I*)* = T\ for all k, (4)

or, equivalently,
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This last condition is the convenient one for differential forms (with complex

coefficients) [4,5].

Let us now consider the product of generators. From the definition, we

know that at most D of them can be multiplied; they all form a set

r\...j*,r1-ra,fI-rV--,rI>-1.rD,rI.ra.r\...f

rD-2,TD-l.TDt ,mmtTD+lt (5)

where all are taken with convenient complex numerical coefficients in order

to become hermitian. For this, we need to take into account the commu-

tation relations of the generators with products of generators. The main

properties are:

1. For a given generator and a product of p generators, all different from

the one given, we have

r*> • (r'1. r'1 •..-. • r'-) = (-l^r*1 • r'» •... • r'«o • r%

2. For a given generator, the commutation with a product of p generators

including it obeys

r'r • ir'1 • r'2 • • r'r~' • r'r • r'r+i •... • r ' o

• r'2 •... • r'---1 • r'r • r'r+i ... - r'") • r'p.
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These properties arc proven just by taking into account the change of sign

for commutation between different generators and comparing the results

for both sides in the second case. As a corollary of these properties, we

have for the square of a given product of p generators the result

3.

where

In this expression, we have the combinatorial number which is valid

for p > 3. With this result, we are able to write factors such that

the square is always +1. Notice the independence from the number

of generators, D.

Examples of hermitian generators are

Yk, tT*r ' , t T * - r | . P V . . (Jb,/,m = l , . . .,D).

In the case of physical interest for D = 4, in a spacetime with metric

7°, IT*, TV , hki\ H*W* TVT*.
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From the algebraic point of view, these objects, together with a purely

scalar and constant object, the unit under* the multiplication used in cq. (1),

constitute a ring, which for D = 4 and Dirac matrices is called the Dirac

ring. We adopt the notation for all dimensions.

The important point is that all these objects are .alien to be different,

or, more precisely, the Dirac ring is an irreducible set.

Another important property we recall for the members of the ring is

what, for matrices, is the null trace. For differential forms, the equivalent

operation was introduced in an article by the present authors and M.A.Rego

Monteiro [7], and was called the scalar value of differential forms, and

represented by the symbol $. It is defined with the help of the contraction

operation of a vector with differential forms, eMJ. Applied on a zero-form,

the result of $ is D, by convention. Then, it follows that

%(dx") = $(</*" V 1) = c"J 1 = 0

{dx- Vdx") = e"Jdxv%{ 1) = Dg"".

It follows from its definition that the scalar value of an odd-degree form is

always zero. The scalar value of a Clifford product of an even number of

differentials is a combination of metric tensors.
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This completes the characterization of the Dirac ring: for any value

for the spacctime dimension is the set of all objects formed by the genera-

tors of the Clifford algebra and their products, all being hermitian (in the

generalized sense referred to above), and having null trace or scalar value.

3 Clifford algebras in even dimensions and

unitary algebras

In this section, we prove the following

Theorem 1 Given a Clifford algebra with complex coefficients and with an

even number D of generators, the algebra of commutators for the members

of the Dirac ring is isomorphic to the Lie algebra of the special unitary

group of order 2D'2 , denoted by $u(2D'2).

Comment. In the preceding section, we have shown that the Dirac ring

is formed by the unit element, the hermitian generators of the Clifford

algebra and all their (hermitian) products. The heart of the proof, given

the dimension of -he ring, being 2°, and the fact that the members of the

ring are all hermitian and tracelcss (with the exception of the unit), is to
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find liow many objects commute among them. It is enough to prove that

there are 2D^2 — 1 commuting objects, since the algebra is determined by

the number of hermitian, traceless elements (2D — 1) and the dimension of

the Cartan subalgebra [8]. The resulting algebra is, then, su(2D/2).

Proof. The proof is based on the results 1. to 3. of the preceding sec-

tion. We must show that there exists one set- of commuting objects, by

construction.

Select two generators, for instance, F':i and Tk°. One of them is a

"spectator" for the commuting subalgebra to be built. The other one will

be a member .of the commuting set. Let Tkl> be chosen as the spectator.

Consider now the remaining generators, F* 2 , . . . , F***-1. Take them by

pairs in an ordered way, that is, define

By property 1. in the preceding section, they commute among themselves

and are (D — 2)/2 in number. Now, take all their products; they are

commuting and form a set with a number of members which is the same

as in a "Dirac ring" (excluding the unit) of dimension (D — 2)/2, that is,

card{£*}.= number of commuting £fe and their products: 2D/2~i - 1.
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By property 1., Tkl • T1 • Fm also commute among themselves and with

F*1. That is, we have another set with the same cardinality as the set {().

Then, we have

D / 2 1 D '2 - 2

commuting objects; adding Tk%, which commutes with the other sets, we

have

_ 2 + 1 = 2D'7 - I

objects, as it was to be proved.

Another way of looking at the problem is to consider the generators of

the commuting ring, being (D - 2)/2 from {', and F*1. As a whole, we have

JD/2 and the resulting commuting ring is of dimension 2D^2 — 1.

Other sets of commuting objects are made out of r o + 1 = ctF*1 • • • Th°

(where a is chosen so that the product is hermitian) and all the ordered

pairs É1 = T*> • r * V . . , £ D / 2 = r*"-> • TkD. Obviously, the dimension of

any of these sets is, again, 2Dt2 — 1. The sets are different because of the

pairings. There are 2Dt7 — 1 ways of having a diagonal matrix with an equal

number of -4-1 and -1 eigenvalues.

Examples, (with Minkowski metric diag(H ))
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• D = 2: the commuting algebra is trivial and corresponds to choosing

as <r3 either 70, -t '71 or — ry2.

• D — 4: Dirac-Pauli representations:

T3 : spectator y2 : spectator

7°,*7V,*7°7V 7°, «7V, *737V

-*V, 7°72, - Í7V7 2 «71» 7°73. «

•VI 7°71» *7°7V «7s, 7173. «

Kramers-Weyl representations:

75 = 7°717273

T V , ^ 7 2

7 V , *7273

7°72» -»7V-

• D = 6: Dirac-Pauli representations:

spectator: 7s; generator: 70

7°

»V78» «TV

*7V72> *707374

71727374
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Kraaicrs-Weyl representations:

77 = - 7 V 7 V 7 V

7°7I»»7V»»V7*

Í7V7V, «VWSV. 7*7*7 V

Notice the irrelevant sign for 77, in order to suit the relation [9]

4 Clifford algebras in odd dimensions

The theorem for odd dimensions is stated as follows:

Theorem 2 Given a Clifford algebra with complex coefficients, with an odd

number of generators, D, the algebra of commutators for the members of

the Dirac ring is isomorphic to the Lie algebra of the direct product of two

special unitary groups of order (D - l ) /2, i.e., sufòD~lV2) ©

Comment. The proof is almost the same as that for even dimensions, but

the argument needs also the result for even dimensions. The procedure

is to show that two complementary commutator algebras, with generators

X and Y, say (without entering on much detail upon indices for the time
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being), are available. The one for X is closed, but the commutator of two

Y generators is always of the X type. The last point is crucial for the proof,

the rest is standard manipulation to convert to generators W± that close,

each set, an su(2^D~1^2) algebra.

Proof. Again, one should center on which are the members of a commuting

set of the Dirac ring. Again, for obvious reasons, the unit element is not

considered to establish the algebra of commutators.

For odd dimensions, the product of all generators commute with all the

members of the Dirac ring. This has deep consequences, as we shall show.

Let us take all members of the Dirac ring which do not include a given

operator; to be specific, let TD be this generator. The set is then equivalent

to the Dirac ring in dimension D — 1 (even). The algebra of commutators,

corresponding to the set, is, as shown in the preceding section, su{2^D

For the sake of precision, let us call, in general, a member of this set as

The remaining set of the Dirac ring is made out of the complementary

members, in the sense that, given one Xk, there is always one this set, %,

such that

1 * 1 (6)
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where TD+i is a hcrmitian object.

The crucial point now is that any two members of the set of objects Yk

(again, 2 o ' 2 " 1 — 1 in number) satisfy a commutator algebra, with

[Yk,Y,] = cklmXm. (7)

In fact, one can easily show that, for any pair (Yi,.,YJ), the corresponding

Cjtim and Xm are those for the objects without the index D.

Besides, one sees that

\Xk,Y,] = cklmYn, (8)

as a corollary of the way the objects are made.

By the usual procedtires, one can build from Xk and Yk two sets of

cardinality 2(2<£'-1>/2 - 1), that is,

Xk±Yk, (9)

which generate two separate su(2^D~1^2) algebras:

W?,Wi*J = cunWi (10)

\wt,wr] = o.
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Example. For D = 3, the explicit example for Dirac matrices has been

built previously [2]. Let us take now the case of Minkowski spacctime with

D = 5 and g00 = 1, g* = - 1 , Jb = 1,...,4.

Generators of the Clifford algebra: 70, 71 , . • •»74-

Dirac ring:

7o, »7fc (Jb = l , . . . , 4 )

7*7*» «7*7* (fc < /, fc, / = 1 , . . . , 4)

rV» 7S'*7m (fc < / < m, &, /, m = 1 , . . . , 4)

m , 71727374 (& < / < m, k,l,m = 1,...,4)

Lie algebra generators: take the subset of the Dirac ring not having the

index 4:

' v 0 v ' 1 \ ^ • 3 v 0 1 TT 03

-^l = gT» -̂ 2 = 2 1 7 ' ' ' ' > X A ~ 2ty ' 5 = 2 7 7 ' ' " ' 7 = 2 7 ^ '

1 1 1 1

1 2 3 v * 0 1 2 3
" 7 7 7 > ̂ M5 n*7 1 1 1 '
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Consider now the "complementary" subset:

n = - T W . r7 = \iVy\ Y, = *Í707V, n = 5Í7

r1 0 = - ^

It is easy to check that both sets, {JTfc},{V/}, Ar,/ = 1,...,15, satisfy the

following commutator algebra:

The way one recovers an uncoupled set of quantities is by defining

Simple algebra shows that

.Wf] = 0, for all Jk,/.
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Notice that the algebras are su(4), as the commutation relations are those

of the Dirac ring with 15 generators, and there is a set of three generators

commuting among themselves.

5 Discussion and conclusions

The main results of this work are apparent in the statement of the vheorems.

The procedures are algebraic and direct.

The meaning of the unitary groups involved needs further clarification

from the physical point of view. They embody the symmetry under Lorentz

transformations and rotations of the Dirac equation (and the changes in

the so-called "representation" of the Dirac matrices, which we prefer to

call "picture", which we prefer to call "picture").

The algebraic structure allows for a clear definition of the picture of the

matrices representing the Clifford algebra: a picture is associated with a

choice for the matrices forming the Cartan subalgebra.

By the construction, it is natural that the algebras for the (D — 1)

odd-dimensional Dirac ring follows from the even D-dimensional case, by

freezing one generator of the Clifford algebra for the latter.
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The case of even dimensions is not a surprise, it is only clarified the

origin of the need for 2D^ spinors.. One could go further and relate the

spinors with the minimal left ideals of the Lie algebra involved; in fact, the

members of the Cartan subalgebra are used to build the idempotcnts that

project on a given minimal left ideal. We shall leave for a later publication

the discussion of this aspect.

The odd-dimensional case is far more controversial. Most physicists in

the community of high-energy physics and field theory take for granted the

representation provided by a finite-group reasoning [6], in which the gener-

ators for the Clifford algebra are the D—1 generators of the even next lower

dimension and its hermitian product (in order to guarantee the property of

anticommutation for D generator). For those physicists, our development

would represent a curious but rather unnecessary complication. The points

we wish to make are the following:

1. In dealing with the Dirac equation, the symmetry operations (Lorentz

invariancc, rotation invariance, etc.) are always implemented by auto-

morphisms which come from the exponentiation of the relevant mem-

bers of the Dirac ring. The automorphisms generated by the finite
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group we think are completely unusual for this.

2. The usual representations coming from the finite-group considerations

are not irreducible under inversion of any given coordinate axis. In

the present algebraic form, this inversion exchanges the blocks with

eigenvalue ±1 of the product TD+l = cF1 • T7 •... • TD.

i

3. The consequences of the last point translate into different physics

coming from both representations. This has, consequently, possible

experimental confirmation.

4. Last, but meaningful from the mathematical point of view, only for

D — 3 is the representation coming from the finite group faithful. For

higher odd dimensions this is not so [10,11].

There is also a sensible difference between the physics resulting from

the representations coming from finite groups and those from our algebraic

considerations. As we have shown, for the case of electrodynamics in D =

3, for instance, there is no induced Chern-Simons term in the vacuum

polarization at the lowest (one-loop) order of perturbation theory [2]. This

comes about since, in the algebraic procedure, the trace of an odd number

of Dirac matrices is always zero.
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We have to make also a reference to duality for differential forms. In the

case of odd dimensions, the generators {A*} and {Yj} introduced above are

Hodge dual to each other (12], when dealing with differential forms endowed

with a Clifford product. Notice that in their analysis with Dirac matrices,

Brauer and Weyl [13] introduced an operation that closely resembles the

Hodge duality for differential forms. In terms of these, the combinations

W* turn out to be selfdual or anti-self dual.

This is something which is related with the representations induced by

the considerations from finite groups. To be specific, let us refer to the

D = 3 Minkowski space with metric diag(H ). It is currently used for

it, from finite groups, the representation

7° = *3, 71 = *ffu I7 = i^2, (12)

in terms of Pauli matrices. Notice that

W .= H2. (13)

Through the isomorphism between matrices and forms [5], this would mean,

in the latter formalism,

dx° V di1 = dx° A dx1 - idx\ (14)
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making equivalent the component of an antisymmetric tensor with the one

of a vector. In this sense, one notes that this forces Hodge duality in an

unsuitable way.

A last comment refers to the concept of chirality. It is commonly stated

that it is interesting only for spacetimes of even dimension. From the Graf

isomorphism, chirality in odd dimensions refers to the eigenvalue of the

/ 0
diagonal matrix TD+1, which is always of block form, a , with /

the identity matrix in 2^D~1^7 dimensions. One goes from one block to the

other by inverting a single matrix or a coordinate) in the product. By the

way, this handedness (or chirality) for a reference system translates into

a sense of gyration in space. This is precisely what is referred to, when

chirality is defined, for instance, for masslcss fermions in D •— 4. One talks

about "left-handed" or "right-handed" neutrinos, and the sense of rotation

is the one in the space of dimension two orthogonal to the momentum.

Acknowledgments

The authors warmly acknowledge Prof. A. 0 . Caride for his interest and

care in explaining them the relevant aspects of the theory of representation



CBPF-MF-037/92 »
-22-

for finite groups. One of them (J.A.M.) acknowledges discussions with

Prof. E. Remiddi, from Bologna, and the hospitality of the theoretical group

at Turin and CERN, where part of this work was realized.

References

[1] C. A. Linhares and J. A. Mignaco, Phys. Lett. 153B (1985) 85; "New

symmetries for the Dirac equation", in J. J. Giambiagi Festschrift,

H. Falomir, R. E. Gamboa-Saravi, P. Leal Ferreira and F. A. Schapos-

nik, eds., World Scientific, Singapore, 1990.

[2] C. A. Linhares and J. A. Mignaco, "Algebraic properties of the Dirac

equation in three dimensions", CBPF preprint NF-027/92.

[3] P. Becher and H. Joos, Zeits. für Phys. C 15 (19S2) 343.

[4] E. Kãhler, Abh. Dt. Akad. W:ss. Berlin, Kl. für Math., Phys. u. Tech.,

Jahrg. 1960 4 (1960); Jahrg. 1961 1 (1961); Rendiconti di Matemática

(Roma), Ser. V, 21 (1962) 425.

[5] W. Graf, Ann. Inst. Henri Poincaré A29 (1978) 85.



CBPF-NF-037/92
- 2 3 -

[6] P. van Nieuwenhuizen, "Six lectures on supergravity", in Supergravity

'81, S. Ferrara and J. G. Taylor, eds., Cambridge Univ. Press, 1982,

p. 155.

[7] C. Á. Linhares, J. A. Mignaco and M. A. Rego Monteiro, Lett. Math.

Phys. 10 (1985) 79.

[8j M. Gourdin, Basics of Lie Groups, Ed. Frontières, Gif-sur-Yvette,

1982.

[9] B. Zumino, Wu Yong-Shi and A. Zee, Nucl. Phys. B239 (1984) 477.

[10] R. Coquereaux, "Spinors, reflections and Clifford algebras: a review",

in Spinors in Physics and Geometry, A. Trautman and G. Furlan, eds.,

World Scientific, Singapore, 1988, p. 135.

[11] A. O. Caride, private communication.

[12] T. Eguchi, P. B. Gilkey and A. J. Hanson, Phys. Rep. 66 (1980) 213.

[13] R. Brauer and H. Weyl, Am. J. Math. 57 (1935) 425


