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In the thesis we studied various aspects of holography principle, especially in the con-
text of real time holography and flat/CFT duality. In the first part, we discussed real-
time holography within the embedding space formalism. Based on the previous work
on the scalar fields, we presented matching conditions for on-shell integer spin fields
when going from Euclidean to Lorentzian signature on AdS background. The main
content of the second part is to develop the AdS/CFT correspondence into the flat/CFT
correspondence. More precisely, for scalar fields, we constructed the dictionary be-
tween flat spacetime and the CFT on the boundary which works the same as AdS/CFT
dictionary from the bottom-up point of view. After analysing the behaviour of scalar
field modes on hyperbolic slices of Minkowski and performing the holographic renor-
malisation for the associated onshell action, we obtain a holography dictionary between
the bulk theory and the corresponding dual theory on the celestial sphere. We propose
that a single scalar field in the bulk is dual to two series of operators on the celestial
sphere; the scaling dimension of these operators takes values on the principal series.
Moreover, we will see that the two series of operators can be interpreted as ingoing
and outgoing waves in the bulk. We illustrate our dictionary with the example of a sin-
gle shock wave. The third part is basically the extension of construction of the flat/CFT
dictionary from scalar fields to gravitational theories. Asymptotically flat spacetime is
built up by asymptotically AdS hyperboloid slices in terms of Fefferman Graham co-
ordinates together with soft modes propagating between different slices near the null
boundary. Then we construct the flat holography dictionary based on studying Einstein
equation at zero and first order and it turns out that these correspond to the description
of hard and soft sector for the field theory from the boundary point of view. The ex-
plicit expression for energy-stress tensor is also determined by performing holographic
renormalisation on the Einstein Hilbert action.
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Chapter 1

Introduction

General relativity and quantum mechanics have been brought up for a century and
they are believed to be the most fundamental rules which respectively govern the large
scale structure of the universe and the microscopic interactions between elementary
particles even though they are not compatible with each other. After their great success
in predicting the observation from the lab, physicists spent long time looking for a
unified theory of quantum and gravity, e.g. semiclassical field theory, supergravity,
string theory. The quantum gravity theory that would please everyone has not been
figured out yet while, during the extensive study of various proposed models, another
fundamental principle which relates the dimension of spacetime, quantum and gravity
effects has been found and caused a great attention in recent years, so called holography
principle.

The idea of projecting the physical world to a lower dimension one living on the bound-
ary exists for long while it has not been formally discussed in physics literature until the
work ’t Hooft (1993); Susskind (1995), initiated by the study of the black hole entropy
Christodoulou (1970); Penrose and Floyd (1971); Hawking (1971); Bekenstein (1973);
Hawking (1975), which tells us that the entropy of a black hole is proportional to the
area of its event horizon.

Based on such observation, one can further conclude that the degrees of freedom or
information for a given system is bounded by its boundary area rather than its volume,
which makes it possible to encode all the bulk information into the proposed boundary
system. Such correspondence concerning the assignment of degrees of freedom is then
developed to the duality between the subregion of the bulk and boundary, conjectured
to be characterised by the Ryu-Takayanagi surface Ryu and Takayanagi (2006). Under
proper assumptions, the conjecture was proven in Lewkowycz and Maldacena (2013);
Faulkner et al. (2013) and then, taking the quantum effect into consideration, the con-
cept of RT surface is generalised to the so-called quantum extremal surface Engelhardt
and Wall (2015).
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1.1 AdS/CFT Correspondence

It turns out that the structure of holography is more than the projection of degrees of
freedom after the first concrete realization of the holography principle discovered by
Maldacena (1999), called AdS/CFT correspondence. In that work, Maldacena pointed
out that type IIB string theory on the AdS5× S5 background is dual to theN = 4 super-
Yang-Mills theory in 3+1 spacetime dimensions by studying the decoupling limit of
the stack of D3 branes in string theory and its corresponding low energy supergravity
solution, which implies that, in additional to the reduction of dimension, the theory
of quantum and gravity could also be relevant when comparing the theory in the AdS
bulk with its boundary CFT correspondence. Such relation is similar to the relevance
between space and time in gravity or the relevance between particles and waves in
quantum mechanics.

However in practice, due to the lack of knowledge for the quantum gravity theory and
the difficulty of studying strongly coupled gauge theory at low energy, one can first
choose to investigate the AdS/CFT correspondence at the ’t Hooft large N limit, under
which the gauge theory will be simplified since the contribution from planar diagrams
will become dominant if the number of colors N is large when keeping λ = g2

YMN
constant ’t Hooft (1974). From the bulk side, we see that the string theory will become
classical by comparing the map between parameters gs ∼ g2

YM and α′/L2
Ads ∼ 1/

√︁
gsN.

Moreover, by taking large value of λ, the string scale will become small compared with
the AdS curvature and the classical gravity description is reliable, therefore the Ad-
S/CFT correspondence becomes a weak/strong duality. In such case, the bulk theory
is described by the semiclassical field theory and one can write down the effective ac-
tion, decomposing the field at the boundary, and then map the data from asymptotic
AdS infinity to the boundary CFT named AdS/CFT dictionary.

In the literature, there are mainly two ways to construct the AdS/CFT dictionary Wit-
ten (1998a); Gubser et al. (1998). One starts from the effective field theory on AdS5 ×
S5 background while the other starts from AdS5 thus they are called top-down and
bottom-up approaches to AdS/CFT, respectively. At first sight, the bottom-up ap-
proach looks easier if one just considers the fields on the AdS5 background but the
supersymmetric information is lost due to the omission of the Kaluza-Klein fields on
the S5 sphere, e.g. we would obtain non-zero vacuum energy. Such issue is rescued in
the work Skenderis and Taylor (2006a,b) by Skenderis and Taylor. They developed a
KK reduction map which reduces all the fields in 10d to 5d in a gauge invariant way
therefore concludes that the top-down and bottom-up approaches could be equivalent
provided that proper reduction procedure is applied. For this thesis, we will adopt the
bottom-up approach and ignore the KK fields on the internal space. In this case, the
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duality is clarified by the dictionary proposed by Witten

exp
(︂
− SAdSd+1(Φ)

)︂
Φ∼ϕ

=
⟨︂

exp −
∫︂

Sd
ϕ O

⟩︂
CFT

, (1.1)

in which SAdSd+1
(Φ) is the action of the semi-classical theory in the bulk with scalar

fields characterised by the boundary condition Φ ∼ ρ−d+∆ϕ at large radius ρ of the
Euclidean AdS spacetime. From the right-hand side, we can see that ϕ is dual to the
source in the CFT theory and it is coupled to the operator O. The scale dimension ∆ of
the operator and the mass M of the particle in the bulk preserve the relation ∆(d−∆) =
M2, which is obtained by solving the equation of motion of Φ.

1.2 Extension beyond the large ’t Hooft limit

AdS/CFT correspondence has been brought up over two decades and most of the
checks are carried out in the large ’t Hooft limit. At such limit the bulk theory tends to
stay in the low energy region thus they are described by the well studied model. When
the ’t Hooft constant goes to the small limit the string scale becomes larger than the
AdS scale thus the higher spin excitations and gravitational corrections should not be
ignored while it was proposed that the spectra of string theory could be approximately
described by the higher spin field theory and the boundary theory will be free, leading
to the proposal that Vasiliev’s higher spin Vasiliev (1990, 1999, 2003) theory in the AdS
bulk is dual to the free O(N) vector model on the boundary Sezgin and Sundell (2002);
Klebanov and Polyakov (2002); Sezgin and Sundell (2005).

In the context of Yang-Mills theory, at the leading order in large N and for the purpose
of all-light non-extremal operators, single trace operators are dual to single particle
states on AdS. For the vector model, one needs to consider the current of spin s

Js
µ1···µs

= ϕi∂(µ1
· · · ∂µs)ϕ

i + · · · (1.2)

which are the bilinears in ϕi. These currents are proposed to be dual to the mass-
less higher spin gauge fields in AdS. Such relation could be generalised to the case for
fermionic fields in Leigh and Petkou (2003); Sezgin and Sundell (2005) and it has been
verified by studying the three point correlation functions specifically Giombi and Yin
(2010, 2013) with further extension to the Chern-Simons gauge theory Giombi et al.
(2012); Aharony et al. (2012).

Recently a derivation of the HS/CFT duality is also given by constructing a map be-
tween the boundary fields in the bi-local form Das and Jevicki (2003) and higher spin
fields on the bulk, so called AdS/CFT map de Mello Koch et al. (2019); Aharony et al.
(2021a,b). Such derivation of the AdS/CFT correspondence in the context of higher
spin and vector model duality starts from the study of the bilocal form of the U(N)
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vector models. Given the N complex scalar fields ϕi(x) for the vector model, one first
chooses to recast them into the bilocal function G(x1, x2) written as

G(x1, x2) =
1
N

N

∑
I=1

ϕ∗i (x1)ϕi(x2). (1.3)

Further more, by changing the measure from Dϕi(x) to the bilocal measure DG(x1, x2),
the free partition function for the vector model of source J

Zfree[J] =
∫︂ N

∏
I=1

DϕI(x) exp(−S[G, J]) (1.4)

then can be rewritten into a partition function that depends on the bilocal function
G(x1, x2). Given the bulk higher spin field, one can construct the so called AdS/CFT
map

ΦJ(X, W) =
∫︂

dP1dP2MJ(X, W|P1, P2)η(P1, P2) (1.5)

where X, W, P are coordinates in the embedding space and the specific form of the
propagatorMJ(X, W|P1, P2) is determined in Aharony et al. (2021a,b). η(X1, X1) is the
perturbation of the function G(x1, x2) of the order 1/

√
N.

As we have already known, the action for the bulk higher spin theory is not found yet
while the construction of AdS/CFT map provides us with a powerful tool to investigate
the bulk theory from the study of vector model. Using the AdS/CFT map together with
the bilocal form of the partition function, through the AdS/CFT dictionary, one then
obtains the quadratic term of the bulk action as

S(2)
local[ΦJ ] =

∞

∑
J=0

1
αJ

∫︂ dX
( d−1

2 )J J!
ΦJ(X, KW)(∇2

X −M2
d−J−2.J)(∇2

X −M2
d+J,J)ΦJ(X, W)

(1.6)
in which the value of the mass Md−J−2,J and Md+J,J depends on the pole structure of
MJ . As it is shown in the work Aharony et al. (2021a), the bulk two point functions
⟨ΦJΦJ⟩ are the difference of two propagators of on-shell spin J fields, one with positive
propagator of mass Md+j−2,J while the other with negative propagator of mass Md+j,J .
The degrees of freedom described by the mass Md−J−2,J are associated to the physical
modes while the modes associated to the mass Md+j,J are the ghost modes.

In their work, the AdS/CFT map is constructed between the Euclidean AdS and CFT
while here in the chapter 2 of this thesis we will first obtain the Lorentzian version
of AdS/CFT map based on the study of real time holography then further study its
various implications on the understanding of holography principle.
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1.3 R-T formula and Information Paradox

Based on the study of AdS/CFT correspondence, Ryu and Takayanagi proposed the
relation concering the boundary entropy and bulk geometry as

SA =
Area(γA)

4G(d+2)
N

(1.7)

where SA is the entanglement entropy for the given subregion A on the boundary. γA

is the codimension two surface which minimizes the codimension one surface bounded
by the subregion A on the boundary. In the context of quantum information theory, the
entanglement entropy is given by the formula

S = −n∂n(logZ(n)− nlogZ(1))|n=1 (1.8)

where Z(n) = Trρn. Furthermore, it was then realized by Lewkowycz and Maldacena
that the calculation of the entanglement entropy at the boundary is equivalent to the
calculation of gravitational action in the bulk Sgr with the help of the study of replica
trick Holzhey et al. (1994); Calabrese and Cardy (2004, 2009) and AdS/CFT dictionary.
The replica trick tells us that the treatment of Z(n) is equivalent to the calculation of
CFT partition function on the replica manifold. Therefore finally one can use the bulk
gravitational data to reproduce the boundary entropy with the help of dictionary (1.1).
Of course, to obtain the finite entropy, renormalisation procedure is required and we
have Taylor and Woodhead (2016a,b)

Sren = n∂n(Sgr,ren(n)− nSgr,ren(1))|n=1. (1.9)

Later, by taking the bulk gravitational loop effects into consideration, one can also es-
tablish the relation between the bulk data and the boundary quantum corrected en-
tropy therefore one has

SA =
Area(γA)

4G(d+2)
N

+ Sbulk−ent + · · · (1.10)

where Sbulk−ent is the entanglement entropy calculated in the bulk for the region bounded
by the extremal surface γA and the boundary subregion A. · · · represents the countert-
erm contribution. Such calculation is performed on the static gravity background while
it was then postulated by Engelhardt and Wall that one should take the gravitational
back reaction into consideration thus they obtain

SA = Sgen(χA) (1.11)

where χA is so called quantum extremal surface and it is determined by figuring out
the extremal value of the generalized entropy Sgen.
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The concept of quantum extremal surface plays an important rule in the discussion of
black hole information paradox. Before the Page time, the quantum extremal surface
(QES) lies near the horizon while it turns out the QES could possibly lies inside the
horizon at the late stage of the black hole evaporation Penington (2020); Almheiri et al.
(2020b). Like the RT formula, such proposal could also be proofed using the AdS/CFT
dictionary together the replica trick, provided the wormhole contribution is taken into
consideration Penington et al. (2022); Almheiri et al. (2020a).

1.4 Flat Holography

Actually, there have been attempts to address the problems for developing a flat ver-
sion of holographic principle dated even back to the birth of AdS/CFT in the talk given
by Witten E.Witten (1998). During that talk, he discussed various obstacle to writing
down the Flat/CFT dictionary. Conceptually, if one assumes that both of the quantum
gravity theory and scattering amplitudes are dual to the CFTs on the boundary, then
it will be hard to understand that why the quantum gravity theory should be equiva-
lent to its own scattering amplitudes. From the technical point of view, the complexity
of the geometric structure and the behaviour of fields at the two null boundaries in
Minkowski space make it hard to write down the boundary correlation functions or to
study the distribution of the degrees of freedom. Ultimately, he proposed that if the
flat theory is dual to the boundary structure X, then X should be more complicated
than a conventional CFT. The complicated nature of the structure X can also be seen
from the study of symmetries of the asymptotic flat spacetime. Not like the AdS case,
the isometry group for asymptotically flat space will reduce to the infinite BMS group
Bondi et al. (1962); Sachs (1962b,a) rather than the Poincare group. Globally, the BMS
group is generated by the supertranslations and superrotations in which supertrans-
lations behaves like 1d translation while superrotations are characterised by SL(2, C).
After fifty years of study of BMS group, people realised that the superroations could be
locally generalised to the Virasoro algebra, even with a central extension Barnich and
Troessaert (2010a,b, 2011), which brings hope to construct the duality between the flat
theory and the 2d CFT Belavin et al. (1984).

1.4.1 Celestial Holography

Based on another observation that the supertranslation Ward identity is equivalent to
the Weinberg’s soft graviton theorem on the celestial sphere Strominger (2014); He et al.
(2015) when studying the symmetry of the graviton scattering amplitudes, Strominger
with his collaborators then conjectured the duality between scattering amplitudes and
celestial CFT so called celestial holography.
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The story comes from the conjecture that the symmetry group for scattering process
on the asymptotically flat background should be the subgroup coming from the total
allowed symmetry group living at two null boundaries BMS0 ∈ BMS+ × BMS−. Then
Strominger proposed that one should impose antipodal matching conditions at the null
boundary I± at the spatial infinity I+− = I−+ . Such matching between physical quan-
tities at two boundaries leads to the match between the conserved charges Q− = Q+

therefore it makes sense to consider the conservation law

⟨out|Q+S − SQ−|in⟩ = 0 (1.12)

coming from the dynamical consequence of the commutation relation [Q, H] = 0 be-
tween the conserved charge and the Hamiltonian. Moreover, after decomposing the
total charge into the soft and hard part we have

⟨out|Q+
S S − SQ−S |in⟩ = −⟨out|Q+

HS − SQ−H |in⟩ (1.13)

where Q± = Q±S + Q±H. It turns out that, after the quantization of the soft modes
and rewriting the momentum of the particle in terms of the energy and a point on
the celestial sphere, one can show that the above Ward identity is equivalent to the
Weinberg’s soft graviton theorem, i.e, the hard and soft charge will contribute to the
hard and soft sector of the scattering process , respectively.

After that, the relation between 4d scattering amplitudes and 2d celestial CFT is exten-
sively studied and the celestial dictionary is proposed to be

⟨out˜ |S|iñ⟩ = ⟨O±∆1,J1
(z1, z̄1) . . .O±∆n,Jn

(zn, z̄n)⟩CCFT (1.14)

where O±∆1,J1
are operators on the celestial sphere of scale dimension ∆1 and spin J1.

|iñ⟩ and |out˜ ⟩ represent the transformed in and out going states. For massless particles,
these are Mellin transforms thus one has

⟨O±∆1,J1
(z1, z̄1) . . .O±∆n,Jn

(zn, z̄n)⟩CCFT =
n

∏
i=1

∫︂ ∞

0
dw∆i−1

i ⟨out|S|in⟩. (1.15)

More precisely, given the bulk field of spin s, one can project it onto the in or out going
conformal basis Φs,±

∆,J by considering the inner product on the codimension one surface
Σ, written as

Os,±
∆,J (z, z̄) = i(Φs(X), Φs,±

∆,J (X; z, z̄))Σ, (1.16)

in which the product is given by the Klein-Gordon norm on the codimension-one sur-
face Σ. From the above celestial dictionary, one can deduce that the two point function
take the form

⟨Os,±
∆1,J1

(z1, z̄1)Os,∓
∆2,J2

(z2, z̄2)⟩CCFT ∼ δ(z1 − z2), (1.17)
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which is the main feature of the celestial CFT. This tells us the celestial CFT is not the
same as the CFT studied in the standard field theory literature. One can also see this
from the study of OPE coefficients or by checking the corresponding translation rules
for the correlation functions.

Here, one should note the difference between celestial dictionary and the AdS/CFT
dictionary. For the AdS/CFT, one first proposes the map between asymptotic bulk data
and CFT context then the entire map between two theories is clarified by the bulk action
and boundary partition function. For example, given the source and operator one can
use the bulk action to reproduce all the CFT correlation functions. This is because
all the dynamical information of the CFT is encoded in the partition function, which
is equivalent to the study of bulk action through the AdS/CFT dictionary. For the
celestial dictionary, the duality is classified by the map between all the bulk scattering
amplitudes and celestial correlation functions. Following the idea of bootstrap that
one can use three point function as the building block to recover all the higher point
functions with the help of the OPE coefficients, the study of celestial OPE coefficients
will be crucial in the context of celestial holography.

In addition to the matter field, one also has the background geometry. For asymptoti-
cally flat spacetimes, the boundary stress tensor is defined to be He et al. (2016)

Tzz =
i

2πG

∫︂
d2w

1
z− w

D2
wDw̄N(1)

ww̄ (1.18)

where N(1)
zz is the zero mode of the News tensor. Although such definition will make

the stress tensor non-local in terms of the bulk metric, one can check it will give us local
boundary stress tensor Ward identities by considering the bulk soft graviton scattering
theorem.

As we have mentioned, the Celestial CFT behaves in a different way from the standard
CFT, which can also been seen from the corresponding celestial CFT OPE coefficients
Pate et al. (2021); Guevara et al. (2021); Strominger (2021). The positive helicity gluons
admit the holomorphic collineaer expansion

O+,a
∆1

(z1, z̄1)O+,b
∆2

(z2, z̄2) ∼
i f abc

z12
C(∆1, ∆2)O+,c

∆1+∆2−1(z2, z̄2) + · · · (1.19)

and the expansion form is fixed by the SL(2, C) symmetry and the leading soft theorem
up to the coefficient C(∆1, ∆2) which could further be uniquely determined by consid-
ering the gluons transformation δO±,a

∆ . Given the OPE, one can also study the algebra
of soft operators and it turns out that the algebra obeys the relation

[R̂k,a
n , R̂l,b

n′ ] = i f ab
c R̂k+l−1,c

n+n′ , (1.20)
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in which Rk,a(z, z̄) = limϵ→0 ϵO+,a
k+ϵ( z̄) and R̂k,a

n ∼ Rk,a
n . For gravity, one has the w1+∞

algebra written as
[wp

m, wq
n] = [m(q− 1)− n(p− 1)]wp+q−2

m+n (1.21)

with p, q running over positive, half-integral values p, q = 1, 3
2 , · · · .

From the above discussion, one can see that the OPE coefficients are determined by
imposing constraints from the symmetry and one should also expect there should exist
a relation playing the role of crossing symmetry in the standard CFT that characterises
the dynamical structure of the celestial CFT and make the construction of celestial dic-
tionary complete.

The main theme of the development of the celestial holography could be summa-
rized as a diagram called infrared triangle Strominger (2017); Raclariu (2021); Pasterski
(2021), which reveals the equivalence between soft theorems, asymptotic symmetries
and the memory effect. Till now, we have discussed the relation between the soft the-
orem and the asymptotic symmetries, which contribute to two of the three vertices on
the infrared triangle and both of them can be written into the form of Ward identities
on the celestial sphere. Another topic during the development of the celestial hologra-
phy is the gravitational memory effect Strominger and Zhiboedov (2016). On the one
hand, the memory effect is related to the soft theorem by the Fourier transform and,
on the other hand, the change of the deviation between two nearby detectors induced
by the passing through gravitational waves also measures transitions between BMS-
inequivalent vacuum. Putting these three concepts together, the obtained structure is
so called infrared triangle.

As we have seen, the celestial CFT exhibits a rich structure for people to study the
scattering amplitudes, but there are some other issues which cause a great confusion.
For example, people could not understand the reason why a real time flat theory should
be dual to an Euclidean theory on the sphere and it is still hard to say if the celestial CFT
is unitary or not since the scale dimension living on the principle series are complex.

1.4.2 Carrollian CFT

There are later developments which claim that the 4d scattering amplitudes should be
dual to the 3d Carrollian CFT Donnay et al. (2022); Bagchi et al. (2022) thus the BMS
symmetry is manifested and signatures from both sides will fit. Similar to the celestial
holography, such duality is brought up based on the equivalence between the algebra
Duval et al. (2014); Bagchi (2010)

CCarr3 = bms4 (1.22)
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where the Carrollian algebra CCarr3 is obtained by taking the c→ 0 limit of the Poincare
group. bms4 is the algebra for the BMS group.

Moreover, given the bulk field of spin σ denoted as Φ(u, z, z̄), the flat/Carrollian dic-
tionary is then proposed to be

M̃({ui, zi, z̄i, hi, h̄i, ϵi}) = ∏
i
⟨Φϵi

hi ,h̄i
(u, zi, z̄i)⟩ (1.23)

where h = ∆+σ
2 and h̄ = ∆−σ

2 . ϵ = ±1 represent the in and out going modes. The
transformed scattering amplitude M̃ is defined as Bagchi et al. (2022)

M̃({ui, zi, z̄i, hi, h̄i, ϵi}) =
n

∏
i=n

∫︂ ∞

0
dwiw

∆i−1
i e−iϵiwiui S({ϵiwi, zi, z̄i, σi}). (1.24)

One can see that the main difference between the celestial dictionary and Carrollian
CFT dictionary is the factor eiϵwu in the integral. The celestial CFT operators can be
reproduced by performing the integral over the along the null boundaries Donnay et al.
(2022)

O+
∆,J(z, z̄) = i∆Γ[∆]

∫︂ +∞

−∞
duu Φ+

h,h̄(u, z, z̄), (1.25)

O−∆,J(z, z̄) = i∆Γ[∆]
∫︂ +∞

−∞
dvv Φ−h,h̄(v, z, z̄). (1.26)

From the above discussion, one can see that the definition for the flat/Carroll field
dictionary is basically parallel to the celestial dictionary while the boundary Carrollian
field theory is better studied this time since now we have the action. Here, for 3d case,
we start from the c → 0 limit of the free theory for the scalar ϕ therefore the boundary
action takes the form de Boer et al. (2023)

S =
1
2

∫︂
dtd2x(ϕ̇2 −m2ϕ2) (1.27)

where ϕ̇ is the derivative with respect to the time t. Give such action, one can write
down the mode expansion for the scalar field

ϕ = eimt
∫︂

d2k ak eik·x + c.c (1.28)

and perform the canonical quantization following the standard treatment of the quan-
tum field theory so that one can obtain the spectra of the particles.

Unlike standard QFT, where the momentum k is constrained by the on-shell condition
while here the momentum could take arbitrary value, which leads to the infinite degen-
eracy for each energy level. For zero temperature, one can impose the cut-off for the
degrees of freedom while, in the case for the nonzero temperature, all the degenerate
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states labeled by k at each energy level could be excited due to the thermal fluctuation.
In the onshell case, k lies on a 1d curve while now k could take arbitrary values on the
2d plane. Therefore, it seems likely the standard regularization procedure in QFT will
not work and the partition function for thermal Carrollian field will be ill defined 1.
Such issue will not effect the current definition of the flat/Carrollian dictionary while it
will make the establishment for the flat/CFT dictionary like the AdS/CFT correspon-
dence challenging.

In fact, there are lots of attempts de Haro et al. (2001a); de Boer and Solodukhin (2003);
Mann and Marolf (2006); Costa (2012); Nguyen and Salzer (2021) aiming to construct
the flat/CFT dictionary which will work the same way as the AdS/CFT dictionary. In
the context of celestial holography, there are also recent discussions about the connec-
tion between Witten diagrams and scattering amplitudes Ball et al. (2019); Casali et al.
(2022); Iacobacci et al. (2023); Bagchi et al. (2023a); Iacobacci et al. (2024); Melton et al.
(2023) based on the geometry connection that the AdS spacetime could be treated as the
hyperboloid embedded in the flat spacetime. Here the main goal of the chapter 3 and 4
is to develop a flat/CFT dictionary working the same way as the AdS/CFT dictionary
based on such observation.

1The examiner believes that there should be a proper regularization procedure like the case for QFT to
make the Carroll thermal partition function well-defined. As far as I know, the authors in de Boer et al.
(2023) have attempted to find a regularization procedure which preserves the Carroll symmetry. But the
result is negative.
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Chapter 2

Real Time Holography

2.1 Real-Time Holographic in Embedding Space

In this section, we will discuss real-time holographic within the embedding space for-
malism. Beginning with a brief summary of the approach to real-time holography de-
veloped in Skenderis and van Rees (2009, 2008), which illustrates the discussions with
the case of a free scalar field, we then lift the results to the embedding space and present
the matching condition for higher spin fields.

2.1.1 Real-Time Holography: Review

In holography, when studying the field configuration or constructing the dictionary
between two theories, people often choose to first specify the behaviour of the field at
the boundary of AdS and then use them to write down the bulk-boundary propaga-
tor or the source of the operator which belongs to the boundary CFT Witten (1998b);
Freedman et al. (1999); Costa et al. (2014), for further development one can see the
application of Fefferman-Graham expansion Fefferman and Graham (1985); Graham
(1999); Skenderis (2002).

This is enough for us to deal with Euclidean AdS/CFT since in Euclidean signature,
spatial and time directions are indistinguishable and the data on the boundary will in
principle encode the whole information of the field. As for the Lorentzian signature,
specifying the behaviour of the field at the spatial boundary will no longer enable us to
uniquely determine the bulk field due to the lack of information about the field at the
far past or the far future, i.e., the boundary of the time direction. Moreover it is inter-
esting to note that, if there is a black hole in the bulk, one can show that it is possible to
determine such information on the boundary by specifying the behavior of the modes
at the horizon Son and Starinets (2002); Herzog and Son (2003) .
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In fact such issue has already been addressed by Hartle and Hawking Hartle and
Hawking (1983) when studying the quantum gravity wavefunction of the universe.
In order to specify the initial condition of the Lorentzian evolution they choose to glue
part of Euclidean path integral to the initial codimension one surface of the Lorentzian
spacetime. If we denote the action of the Euclidean and Lorentzian spacetime as SE and
SL, the weight of the quantum gravity path integral can be represented as

e−SE eiSL , (2.1)

in which the term e−SE can be treated as a norm factor resulting from the preparation
of initial state. At quantum level, especially for the quantum field on the curved space
time, this enables us to pick out a preferred vacuum and Hilbert space Wald (1994);
Witten (2021a).

At the same time, on the field theory side, one can also construct various contours
in complex time plane to calculate the corresponding vacuum-vacuum, thermal or out
of time order correlation function Landsman and Van Weert (1987); Maldacena and
Susskind (2013). And the field theory along these contours are continuous, for exam-
ple, one can see the study of analyticity of the Wightman functions Osterwalder and
Schrader (1973, 1975). This implies that on the bulk side the Euclidean action and
Lorentzian action should also match smoothly. Rather than regarding the Euclidean
action as a norm factor, one should instead also treat the Euclidean action as the dy-
namical part, i.e., consider the total action −SE + iSL , filling the contour with the bulk
geometry, and impose the matching condition at the joint surface.

Before presenting the matching conditions, here we first clarify the concept that what
we mean by matching two theories together. Consider two physical systems that live
in two regions labelled by I and II, the dynamics of two systems are governed by the
action SI , SI I , respectively. Moreover, we denote the intersection of these two regions
as Σ. It could be a purely mathematical surface or a physically measurable junction,
like the domain wall and we propose the condition that two theories joint smoothly at
the surface Σ to be

δSI |Σ = δSI I |Σ, (2.2)

in which δS|Σ represents the boundary term of the variation. It is obvious if SI I = SI

then Σ will not exist physically. In our case, the region I and I I now becomes spacetime
with different signatures, the dynamics are governed by the action SL, SE. As for the full
quantum gravity theory, the matching condition following from (2.2) is still unknown
but if we just consider the scalar field, and in the context of saddle point approximation,
we have

ϕE|Σ = ϕL|Σ, (i∂tϕL + ∂τϕE)|Σ = 0, (2.3)
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FIGURE 2.1: Two systems distribute in region I and I I, joint at the surface Σ.

evaluated at the joint surface Σ in which subscripts E, L are used to represent that the
field lie along the imaginary and real part of the contour and we will stick with such
convention throughout the thesis.

Thus this motivates us, taking the vacuum-vacuum contour for example, to write down
the duality relation Skenderis and van Rees (2009, 2008)

⟨0|T exp
(︃
−i
∫︂

ddx
√︁
−gϕ0O

)︃
|0⟩ =

∫︂
ϕ∼ϕ0

DgDϕ exp (−SE + iSL) , (2.4)

in which on the left hand side g represents the bulk metric while on the right hand it
represents the induced conformal structure on the boundary. As for the scalar field lives
in the bulk with boundary value ϕ0, on the boundary CFT theory, it can be regarded as
the source of the operator O while such correspondence are called real time gauge/-
gravity duality. In practice, we evaluate the right hand side at the AdS saddle point and
the formula has been used to calculate the Wightman functions and produced right re-
sults. Finite temperature correlation functions are also studied provided the matching
condition for thermal contour is applied on the bulk side. Moreover, it is interesting
to note that, by identifying pair of sources along the thermal contour van Rees (2009),
one can recover the ingoing waves and retarded correlations functions when there is a
black hole in the bulk.

As for the higher spin field, the matching condition will be quite complicated. Clas-
sically, the equation of motion for higher spin fields will be non-linear Vasiliev (1990,
1999, 2003) while one needs to impose more physical restrictions when dealing with
the matching in the context of quantum theory. One can see the discussion of massless
spin two field in Louko and Sorkin (1997); Kontsevich and Segal (2021); Witten (2021b).
Here, we will only discuss the matching condition at the classic and linear level, i.e., the
equation of motion are linear equations. In this case, we can write down the matching
condition for higher spin fields by the investigation of the higher spin bulk-boundary
propagator in embedding space.
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2.1.2 Holographic Scalar Fields in Embedding Space Formalism

We start from the study of scalar fields in embedding space and one can find a brief in-
troduction of embedding space together with solutions of the KG equation in Appendix
A. For the embedding scalar bulk-boundary propagators, i.e., the Green function for the
particle moving on the AdS background with given asymptotic limit, they are deduced
to be

GE
∆(X1, X2) =

1
(−2X1 · X2 + iϵ)∆

E
+ YE

∆ (X1, X2), (2.5)

GL
∆(X1, X2) =

1
(−2X1 · X2 + iϵ)∆

L
+ YL

∆(X1, X2), (2.6)

in which we use E and L to represent different values in the two signatures while X1,
X2 are two points in embedding space. In our expression, propagators are separated
into two terms, the first is the regularised sources with proper iϵ prescription and the
second is the contribution from normalizable modes denoted as Y∆. By solving the
Klein-Gordon equation on the surface X2 = −1, we obtain 1

YL
∆(X) =

1
(2π)d

∫︂
dK eiKµXµ/X+

θ(−K2) BL(K) (X+)−d/2 J∆(|K|X+) (2.7)

in which K = (w, ki) for 1 ≤ i ≤ d is the momentum space coordinate and J∆ is the
Bessel function written in terms of the scale dimension ∆. J∆ s can be regarded as or-
thogonal basis of the normalizable modes and the coefficients B(K) are determined by
the boundary condition of the propagator. We can check that these two terms behave
like z∆ and zd−∆ respectively when z → 0 and they are two independent solutions of
the asymptotic Klein-Gordon equation.

To obtain the Euclidean version of the normalizable modes YE
∆ , we first do the Wick

rotation on YL
∆ , i.e., taking X0 → −iX0, which will result in blow up modes when

X0 → ±∞. To get rid of this, we use the absolute value of |X0K0| in the exponential
term, which leads to

YE
∆ (X) =

1
(2π)d

∫︂
dK e(−|X

0K0|+iXiKi)/X+
θ(−K2) BE(K) (X+)−d/2 J∆(|K|X+). (2.8)

Given the bulk-boundary propagator, we treat them as a set of complete basis so that
in general we can expand an arbitrary scalar field Φ∆(X) as

Φ∆(X) =
∫︂

dP C∆(P) G∆(X, P), (2.9)

1In fact, it is subtle to lift a function from the AdS spacetime to the embedding space and there are
various ways to do this. In the section 2.1.4, we will use BTZ solution as an example to discuss this in
detail.
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FIGURE 2.2: (a) A toy Wick rotation contour, vertical lines represent the imaginary
time τ while horizontal lines represent the real time t. The red point at (T, 0) is the
matching surface Σ. Operators are inserted at the two corners and therefore 2T repre-
sents the time difference between two operators. The dashed curve means that we can
deform the contour apart from the axes in principle. (b) The global AdS2 is illustrated
by the strip while our embedding coordinate covers the region between two blue lines,
which is a hyperboloid. Moreover, the Poincaré coordinates covers half of the hyper-
boloid showed in the triangle. The red line represents the matching surface Σ at t = T.

in which the integral means that we are summing over the null rays and C∆(P) can
be treated as the coefficients of the basis while ∆ is the scale dimension of the dual
boundary fields, related to the mass of Φ∆(X). Noting that there are two sets of basis
thus we have two possible ways of expansion

ΦE
∆(X) =

∫︂
dP CE

∆(P) GE
∆(X, P), (2.10)

ΦL
∆(X) =

∫︂
dP CL

∆(P) GL
∆(X, P), (2.11)

where one for imaginary time while the other for real time. We should keep in mind
that these two kinds of expansions only work in their own proper region. Taking the
contour in Fig.2.2 for example, which starts from (−T,+∞) and ends at (T,−∞) with
two corners at (±T, 0), we can interpret that two vertical lines are used to prepare the
initial and final quantum state and the horizontal line represents the evolution of time
from −T to T.

To study the behavior of the fields along this contour, we should apply the Euclidean
expansion ΦE on τ axes and the Lorentzian expansion ΦL on t axes. For the contour go-
ing through the plane, like the dashed line around−T, these two kinds of basis will mix
and it will go beyond our discussion. Since the contour with corners are not smooth,
to make the fields ΦE

∆ and ΦL
∆ consistent along the whole contour, matching conditions

should be imposed at the singular surface. Consider the surface at t = T and we denote
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it as Σ , illustrated in Fig.2.2, the matching conditions Skenderis and van Rees (2008,
2009) are

ΦE
∆(X)|Σ = ΦL

∆(X)|Σ, (2.12)

∂τΦE
∆(X)|Σ + i∂tΦL

∆(X)|Σ = 0, (2.13)

and these two conditions enable us to solve CL
∆, CE

∆ and BL, BE. Since the basis of
the source and the normalizable modes are independent, we will deal with B and C
separately. First for the source terms, with the help of (A.8) and (A.7), we choose to
push forward the derivative of the time to the embedding space

∂τ
1

(−2X · P)∆
E
=

2∆
(−2X · P)∆+1

E
(−X0P+ + X+P0), (2.14)

∂t
1

(−2X · P)∆
L
=

2∆
(−2X · P)∆+1

L
(X0P+ − X+P0). (2.15)

Moreover, in order to use the equation (2.12) and (2.13) to solve the coefficients, we
need to figure out the form of a function when it is restricted on the surface Σ from the
Euclidean and Lorentzian point of view. For Lorentizian signature, since the contour
lies exactly along the real t axes, the restricted function on Σ means that we take t = T.
For the Euclidean signature, since the contour shifts away from the pure imaginary
axes τ and in order to reflect such shift in the theory, we need to make the variable
in the function shift as X0 → X0 + iT and then set τ = 0. Moreover, after taking the
coordinate rotation PE

0 = iPL
0 into consideration and substituting (2.14), (2.15) into the

matching condition equations, we find the solution should be

CE
∆ = CL

∆. (2.16)

As for the normalizable term, by directly comparing the integrands, from (2.12) we
have

BL(K) + B−L (K) = BE(K) + B−E (K), (2.17)

while from (2.13) we obtain2

BL(K)− B−L (K) = BE(K) + B−E (K), (2.18)

in which we define B−(w, ki) = B(−w, ki) and these two equations will lead to

BE = BL = 0, (2.19)

2In fact here we take T = 0 otherwise there will be a phase factor e±iwT in front of the coefficients. Since
B should only depend on the boundary conditions rather than the choice of contour, it will not change the
result.
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which tells us normalizable modes do not contribute to the bulk-boundary propagator.

2.1.3 Matching Conditions for Higher Spin Fields

Now, we are going to discuss the matching condition of higher spin fields and lift them
to the embedding space. The AdSd+1 spacetime is regarded as a hyperboloid X2 = −1
in the embedding space, as we have introduced before. Here we use the embedding co-
ordinates in the light cone gauge XA = (X+, X−, Xµ) and the AdS Poincaré coordinates
ya = (yµ, z). Moreover, the Jacobian matrix between these two coordinates is given by

∂X
∂yµ

=
1
z
( 0, 2yµ, δν

µ ) and
∂X
∂z

= (− 1
z2 , 1, 0, . . . , 0), (2.20)

which tell us the rule to push back a vector HA in embedding space to a vector Ha in
AdS space as a submanifold thus we have

Ha(X) =
∂XA

∂ya HA(X), (2.21)

where the variable X in the expression Ha(X) is used to remind us that the tensor is
written in terms of embedding coordinates. Noting that the dimension of AdS is lower
than the embedding space, there is redundancy when we transform form HA to Ha. To
construct a one-to-one correspondence between symmetric tensors in these two spaces,
we should impose the transverse condition XAHA(X) = 0 to eliminate the extra degree
of freedom, while we can understand it as restricting the vector HA tangent to the AdS
submanifold.

Before writing down the matching conditions in embedding space, based on the study
of scalar field matching, we first propose the two conditions in the AdS space

HE
a (X)|Σ = HL

a (X)|Σ, (2.22)

∂τ HE
a (X)|Σ + i∂tHL

a (X)|Σ = 0. (2.23)

These two equations specify conditions at the joint surface Σ up to the first order.
Since perturbatively physical equations with spin, like the curved background Maxwell
equation, are often second order differential equations, the above conditions at the
boundary enable us to determine the tensor field in a unique way. As for the first
matching condition, using the Jacobian matrix, we can write it in terms of the embed-
ding coordinate as (︃

∂XA

∂ya

)︃E

HE
A(X) =

(︃
∂XA

∂ya

)︃L

HL
A(X), (2.24)
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in which we omit the joint surface restriction and again we use E, L to distinguish Ja-
cobian matrices in Euclidean and Lorentzian signature, respectively. As for the second
matching condition, since the derivative with respect to time ∂t = ∂τ = ∂0 is involved,
we need to study the matching conditions in different spacetime directions separately.
Taking the Euclidean signature for example, for a ̸= 0, we have

∂τ

(︃
∂XA

∂ya HA(X)

)︃
=

∂XA

∂ya ∂τ HA(X), (2.25)

while for a = 0

∂τ

(︃
∂XA

∂y0 HA(X)

)︃
=

∂XA

∂y0 ∂τ HA(X) + 2X+H+, (2.26)

which tells us that ∂τ will commute with the Jacobian matrix except for the y0 = τ

direction in which we get the extra 2X+H− contribution. This leads us to define an
operator valued matrixM as

M :=
∂X
∂y

∂τ +

⎛⎜⎝ 2X+ 0

0 0

⎞⎟⎠ =
∂X
∂y

∂τ + T , (2.27)

in which the second term T is a (d + 1)× (d + 2) matrix which has (0, . . . , d− 1, z) as
rows and (−,+, 0, . . . , d− 1) as columns while (0,−) is the only nonzero element. With
the help of matrixM, we can write (2.25) and (2.26) in a compact form as

∂τ

(︃
∂XA

∂ya HA(X)

)︃
=MA

a HA, (2.28)

and the second matching condition can be written as

ME · HE(X) + iML · HL(X) = 0, (2.29)

in which ME is the matrix we have already discussed in (2.27) acting on the column
vector HA and ML is

ML =

(︃
∂X
∂y

)︃L

∂t −

⎛⎜⎝ 2X+ 0

0 0

⎞⎟⎠ . (2.30)

Equation (2.24) together with (2.29) give us matching conditions for the vector fields
while it is straight forward to generalise them to the high spin fields. Before doing that,
we first hide the spin index into the polynomial via the operator KA Costa et al. (2014)

HA1...AJ (X) =
1

J!( d−1
2 )J

KA1 . . . KAJ H(X, W), (2.31)
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in which H(X, W) = WA1 . . . WAJ HA1...AJ (X) is a polynomial in terms of W. The oper-
ator KA is defined as

KA =

(︃
d− 1

2
+ W · ∂

∂W

)︃
∂

∂WA . (2.32)

Moreover, we should note that KA only involves the variable W provided HA1...Aj is a
symmetric traceless tensor. Thus KA acts on the polynomial H(X, W) independently
and we can write higher spin field matching conditions in terms of the embedding
polynomials as

(︃
∂XA1

∂ya1
KA1

)︃E

. . .
(︃

∂XAJ

∂yaJ
KAJ

)︃E

HE(X, W) (2.33)

=

(︃
∂XA1

∂ya1
KA1

)︃L

. . .
(︃

∂XAJ

∂yaJ
KAJ

)︃L

HL(X, W)

and

J

∑
i=1

(︃
∂XA1

∂ya1
KA1

)︃E

. . .
(︂

TAi
ai

KAi

)︂E
. . .
(︃

∂XAJ

∂yaJ
KAJ

)︃E

HE(X, W) (2.34)

+i
J

∑
i=1

(︃
∂XA1

∂ya1
KA1

)︃L

. . .
(︂

TAi
ai

KAi

)︂L
. . .
(︃

∂XAJ

∂yaJ
KAJ

)︃L

HL(X, W) = 0,

in which we take TAJ
aJ = MAJ

aJ for short. At first sight, the matching conditions in em-
bedding space are more complicated than those in AdS space since more operators and
transform matrices are involved but we should note that the tensor field Ha1 ...aJ will be
simplified a lot once we write it into the form of polynomial H(X, W).

Examples

Here we will see how the matching conditions work based on the investigation of the
fields with spin J = 1 and J = 2. Given the equation of motion

∇2Hµ1µ2 ...µJ = M2Hµ1µ2 ...µJ , (2.35)

together with the constraints ∇µHµ...µJ = 0 and Hµ
µ...µJ = 0, where ∇ is the covariant

derivative on the AdS spacetime and Hµ1µ2 ...µJ are the associated higher spin fields with
mass M. We can obtain spin J bulk-to-boundary propagator of dimension ∆ written as
Costa et al. (2011, 2014)

G∆,J(X, P; W, Z) =
((−2P · X)(W · Z) + 2(W · P)(Z · X))J

(−2P · X)∆+J , (2.36)

in which X, P are points live on the bulk and boundary associated with the polynomial
variables W, Z and the dictionary M2 = ∆(∆− d)− J for the higher spin fields is also
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preserved. The above expression is determined by imposing the boundary condition
on bulk Green function

lim
z2→0

z−∆
2 G∆,J(X1, X2; Z1, Z2) = G∆,J(X1, X∞

2 ; Z1, Z2). (2.37)

Here we are abusing the notion G∆,J . On the left it represents the bulk Green func-
tion, while the right hand side of (2.37) represents a bulk-boundary operator. The limit
z → 0 means that we are sending a bulk point X = 1

z (1, z2 + y2, yµ) to the boundary
X∞ = (1, y2, yµ) thus the explicit physical meaning of G∆,J depends on the position of
its second point. Moreover, after taking the limit in (2.37), we can see the formula in
(2.36) only encodes the information about the sources while the information about the
normalizable modes proportional to zd−∆ is absent.

In the following two examples, we will try to deal with the field of spin J = 1 and
J = 2 separately and the above operators will be used extensively together with the
higher spin field expansion

H(X, W) =
∫︂ dP

J!( d
2 − 1)J

C∆,J(P, DZ)G∆,J(X, P; W, Z), (2.38)

in which the higher spin fields and the bulk-to-boundary propagator are both written
in terms of polynomials. The operator DZ is defined as

DA
Z =

(︃
d
2
− 1 + Z · ∂

∂Z

)︃
∂

∂ZA
− 1

2
ZA ∂2

∂Z · ∂Z
. (2.39)

As for the C∆,J(P, DZ), we can treat it as an operator polynomial CA1···AJ
∆,J DZ

A1···AJ
thus

determining the matching condition for HA1···AJ is equivalent to determining the con-
dition for CA1···AJ

∆,J .

i) Spin J = 1 Match

For the spin 1 case, we first write down the expansion of fields in terms of the poly-
nomial

H(X, W) =
1

d
2 − 1

∫︂
dP CA(P) DZ

A G∆,J=1(X, P; W, Z), (2.40)

in which CA = CA
∆,J=1 are coefficients carrying the tensor indexes. After substituting

G∆,J , DZ
A into the integrand and applying KW

A on the polynomial, we obtain the tensor
in embedding space

HA(X) =
∫︂

dP
−2(P · X)CA + 2(C · X)PA

(−2P · X)∆+1 (2.41)
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in which we can check that the transverse condition X ·H = 0 is automatically satisfied
for arbitrary CA(P). Moreover, one can also directly see from the above expression that
there is a redundancy of the coefficients

CA(P) −→ CA(P) + λPA, (2.42)

which tells us a shift of the coefficient by λPA will give us the same higher spin field.
We call this the pure gauge of coefficients since it works the same way as the pure gauge
for CFT spin fields and later we will see that the consistence of matching conditions re-
quires us to fix the pure gauge.

Now, if we just consider the integrand, the matching condition (2.24) tells us that

−(P · X)E CE
a + (CE · X)E Pa = −(P · X)L CL

a + (CL · X)L Pa, (2.43)

in which CE
A, CL

A are the tensor coefficients in Euclidean and Lorentzian signature and
they have already been pulled back to the AdS space thus labelled by CE

a , CL
a . Here

we should note that the above equation is restricted on the surface Σ which we did
not write down explicitly for short. Since Pa serve as variables in the integrand, to
solve the above matching condition for arbitrary P, we should make each term on both
sides fit. Furthermore, noting that (P · X)E = (P · X)L is guaranteed by the rotation of
embedding coordinates, therefore the non trivial conditions are determined as

CE
a |Σ = CL

a |Σ, (CE · X)E|Σ = (CL · X)L|Σ. (2.44)

The first equation is just the statement that the coefficients are continuous at the joint
surface Σ in AdS spacetime and the second one can be simplified to iCE

0 = CL
0 , which is

the feature of Wick rotation on coefficient tensor fields associated with the rotation of
embedding space coordinates.3

Here, we should stop to check that if the two conditions in (2.44) could be compati-
ble. Actually, if we consider the coordinate transformation of time direction under the
condition τ = iT, t = T and CE

0 = iCL
0 , the relation we get in AdS spacetime should be

CE
a=0 = iCL

a=0 at the joint surface rather than the first one in (2.44) (CE
a=0 = CL

a=0), which
implies in fact the matching condition we should impose on the tensor field is that

HE
a (X)|Σ = HL

a (X)|Σ, for a ̸= 0 (2.45)

HE
0 (X)|Σ = iHL

0 (X)|Σ. (2.46)

3Here CA=0 represents the tensor in embedding space while later we will meet the zero component in
AdS space and we denote it as Ca=0.
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And the modification of the matching condition in time direction results from the con-
vention when we are doing the calculation while we can treat it as the feature of the
rotation of vector fields, which we do not need to consider in scalar field matching.

Physically, suppose that we have the higher spin action in the hand and try to match
actions of different signatures together, the special matching condition (2.46) for time
component will make the invariant term like

ηabHL
a HL

b = δabHE
a HE

b (2.47)

joint smoothly at the surface Σ. Thus now we can see that the condition (2.46) becomes
obvious from physics point of view even though it was derived by checking the con-
sistence of the propagator matching. Next, we come to study the second matching
equation. Inspired by the above discussion, we propose the modified matching condi-
tions as

∂τ HE
a (X)|Σ + i∂tHL

a (X)|Σ = 0, for a ̸= 0 (2.48)

∂τ HE
0 (X)|Σ − ∂tHL

0 (X)|Σ = 0, (2.49)

in which we have taken the rotation of H0 into consideration. As for the derivative with
respect to time, we need to substitute (A.8) and (A.7) into (2.41) and then obtain

∂τ HA(X) =
∫︂

dP
−2(−2X0P− + X+P0)CA + 2(−2X0C− + X+C0) PA

(−2P · X)∆+1
E

+
2(∆ + 1)(−2X0P− + X+P0)(−2(X · P)ECA + 2(C · X)EPA)

(−2X · P)∆+2
E

(2.50)

for Euclidean signature and

∂tHA(X) =
∫︂

dP
−2(2X0P− + X+P0) CA + 2(−2X0C− + X+C0) PA

(−2P · X)∆+1
L

+
2(∆ + 1)(2X0P− + X+P0)(−2(X · P)L CA + 2(C · X)L PA)

(−2X · P)∆+2
L

(2.51)

for Lorentzian signature. It will be convenient to note the differences between them
mainly come from the inner product (·)L/E and the sign in front of±X0P−. Then, using
the matching condition (2.29), we have

∆(−X · P)E (−2X0P− + X+P0)Ca + ((−X · P)E (−2X0C− + X+C0)

+(∆ + 1)(C · X)E (−2X0P− + X+P0))Pa + i(· · · )L = 0, (2.52)
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in which a ̸= 0 and (· · · )L represents the Lorentzian version of the formula we wrote
down explicitly and one can check that the above equation is trivial provided the con-
ditions in (3.120) are satisfied. The new restriction comes from the study of the zero
component for a = 0, taking the extra contribution 2X+H− into consideration, we have

∆(−X · P)E (−2X0P− + X+P0)Ca=0 + (P · X)2
E C−X+ − (P · X)E(C · X)EP−X+

+((−X · P)E (−2X0C− + X+C0) + (∆ + 1)(C · X)E (−2X0P− + X+P0))P0

−(· · · )L = 0. (2.53)

To solve it, one should impose the condition

CE
−|Σ = CL

−|Σ, (2.54)

which gives us the proper gauge of the embedding coordinates on the joint surface Σ.
To understand such an extra condition, first we consider the degrees of freedom of the
matching conditions in terms of the coefficients CA. Since we are dealing with d + 1
dimensional AdS spacetime, there are d + 1 equations for us to solve in (2.44), together
with the gauge condition (2.54), we have d + 2 matching conditions, which uniquely
fix the d + 2 coefficients CA in embedding space. We can also understand this in a way
that is similar to the direct match of HA. As we have mentioned before, after imposing
the transverse condition, there will be a one to one correspondence between the fields
in the embedding space and the fields on the AdS surface. But the transverse condi-
tions will not introduce any restriction on the coefficients therefore we have the pure
gauge redundancy. Now we see that the pure gauge should be fixed when doing the
matching.

ii) Spin J = 2 Match

For the spin 2 field, we just consider the symmetric and traceless tensor field HAB for
simplicity. In this case, the polynomial can be written as

H(X, W) =
2

(d + 1)(d− 1)

∫︂
dP CAB(P) DZ

ADZ
B G∆,J=2(X, P; W, Z), (2.55)

where CAB = CAB
∆J=2 and it corresponds to the tensor

HAB(X, W) =
∫︂

dP
4

(−2X · P)∆+2 ((X · P)2CAB (2.56)

+PAPBXCXDCCD − (X · P)PAXCCCB − (X · P)PBXCCCA).
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After imposing the matching condition, we have

(X · P)2
E CE

ab + PaPbXcXdCE
cd − (X · P)E Pa XcCE

cb − (X · P)E Pb XcCE
ca

= (X · P)2
L CL

ab + PaPbXcXdCL
cd − (X · P)L Pa XcCL

cb − (X · P)L Pb XcCL
ca, (2.57)

in which the tensor CAB, PA, XA together with the inner product have been pulled back
to the AdS Poincaré coordinates. Similar to the study of spin J = 1 case, we deduce the
solution to be

CE
ab|Σ = CL

ab|Σ for a ̸= 0, CE
0b|Σ = iCL

0b|Σ for a = 0, (2.58)

CE
ab Xa|Σ = CL

ab Xa|Σ, (2.59)

in which the first implies the continuation of the tensor field, the second corresponds to
the Wick rotation on the time direction and the third implies the match of inner prod-
uct, and we note that they are compatible by imposing CE

0B = iCL
0B.

Now, we come to study the second matching condition and check if the restrictions
proposed in (2.59) are enough. Substituting (A.8) into (2.56), we see that the derivative
with respect to the Euclidean time is given by

∂τ HAB(X, W) = 4
∫︂

dP
2

(−X · P)∆+2
E

((−2X0P− + X+P0)((X · P)E CAB (2.60)

−P(AXCCCB)) + PAPBXD(−2X0C−D + X+C0D)− (X · P)EP(A(−2X0C−B) + X+C0B)))

+
2(∆ + 2)(−2X0P− + X+P0)

(−2X · P)∆+3
E

((X · P)E CAB + PAPBXCXDCCD − 2(X · P)E P(AXCCCB)).

in which we use the convention for symmetrising the free tensor index C(AB) =
1
2 (CAB +

CBA). And, as for the Lorentzian time derivative, all we need to do is to change the sign
in front of X0P− and the notion of inner product while we will not show that explicitly
here. Consider the integrand, we will obtain

PaPb((∆ + 2)(−2X0P− + X+P0)XcXdCcd + (−2P · X)EXd(−2X0C−d + X+C0d))

−P(a(X · P)E(∆(−2X0P− + X+P0)XcCcb) + (−2P · X)E (−2X0C−b) + X+C0b)))

+∆(−2X0P− + X+P0)(X · P)2
E Cab + i(· · · )L = 0 (2.61)
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for a, b ̸= 0 from the second the matching condition, which will be trivial provided the
restrictions we imposed in (2.59) are satisfied. After all, to make the matching condition
fits at the a = 0 and b ̸= 0 direction, one should also impose the gauge constraint

CE
−b|Σ = CL

−b|Σ, (2.62)

which results from the matching condition

∂τ HE
0b − ∂tHL

0b = 0. (2.63)

2.1.4 Embedding the BTZ

As we have mentioned, there is not a unique way to lift a AdS solution to the embed-
ding space. In this section, we will use BTZ solutions as an example to illustrate more
detail on this. First, we will introduce BTZ black hole Banados et al. (1993, 1992) in
embedding space via identifying points along the trajectory generated by the chosen
Killing vector in AdS3. We start from the embedding of Lorentzian AdS3 given by

− (X−1)2 − (X0)2 + (X1)2 + (X2)2 = −R2, (2.64)

in which the SO(2, 2) symmetry is manifested and R is related to the cosmological
constant by −Λ = R−2. The AdS3 in embedding space has the metric

ds2 = −(dX−1)2 − (dX0)2 + (dX1)2 + (dX2)2, (2.65)

and in order to get the black hole geometry, we introduce the Killing vector

ξ =
r+
R

(︃
X−1 ∂

∂X2 + X2 ∂

∂X−1

)︃
, (2.66)

where r+ is a constant characterising the size of horizon. Given the initial point P, the
Killing vector will generate a curve c(t) = etξ P in which ξ serves as the tangent vector
along c(t). Here, we are going to identify the points on the curve such that t ∈ 2πZ and
those points which are invariant under the transformation e2πZξ will become singular-
ities of the quotient space AdS3\ ∼. Although the quotient space satisfies the Einstein
equation at the regular points, we still need to get rid of the closed timelike curves,
resulting from the identification procedure, to obtain a reasonable causal structure. Ac-
cording to the property of the Killing field, ξ · ξ is preserved along the curve c(t), thus
the necessary condition for the absent of closed timelike curve is ξ2 > 0 everywhere in
the manifold and in terms of the embedding coordinates, we have

(X−1)2 − (X2)2 = X+X− > 0, (2.67)
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which gives us the black hole geometry with a proper causal structure. To see the effect
of identification, we will introduce the (t, r, ϕ) coordinate defined as

X−1 =
Rr
r+

cosh(
r+
R

ϕ), (2.68)

X2 =
Rr
r+

sinh(
r+
R

ϕ), (2.69)

X0 =
R
r+

√︂
r2 − r2

+ sinh(
r+t
R2 ), (2.70)

X1 =
R
r+

√︂
r2 − r2

+ cosh(
r+t
R2 ), (2.71)

in which −∞ < t, ϕ < ∞, r ≥ r+, and for 0 ≤ r ≤ r+ the expressions for X−1, X2 are
the same while we have

X0 =
−R
r+

√︂
r2
+ − r2 cosh(

r+t
R2 ), (2.72)

X1 =
−R
r+

√︂
r2
+ − r2 sinh(

r+t
R2 ), (2.73)

for X0, X1. These two patches together will cover the AdS3 and the Killing vector
becomes

ξ =
∂

∂ϕ
(2.74)

once we have pushed it back to the hyperboloid described by (t, r, ϕ). Therefore, in
the new coordinates, the identification of points under e2πZξ is equivalent to imposing
ϕ ∼= ϕ + 2π and then we obtain the black hole metric

ds2 = − r2 − r2
+

R2 dt2 +
R2

r2 − r2
+

dr2 +
r2

R2 dϕ2, (2.75)

from which we can see that the horizon lies at r = r+, thus in embedding coordinates,
the horizon is

X+X− = R2. (2.76)

For simplicity, we usually choose to perform the coordinates transformation

t −→ r+
R2 t, r −→ r

r+
, ϕ −→ r+

R
ϕ (2.77)

and get

ds2 = −(r2 − 1)dt2 +
dr2

r2 − 1
+ r2dϕ2, (2.78)
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with the periodic condition ϕ = ϕ + 2πr+
R . Moreover, to make the coordinates smooth

at the horizon, we then introduce Kruskal coordinates (U, V) defined as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
U =

√︃
r− 1
r + 1

et V =

√︃
r− 1
r + 1

e−t 1 ≤ r

U =

√︃
1− r
r + 1

et V =

√︃
1− r
r + 1

e−t 0 < r < 1,

Moreover, the metric becomes

ds2 = Ω2(r) dUdV + r2dϕ2, (2.79)

in which Ω(r) = r + 1 is the conformal factor and the horizon lies at U = 0 or V = 0.

Now, we come to introduce the solution of the Kelin-Gordon equation for the scalar
field Φ on the BTZ black hole background (2.75), written as

□GΦ∆ −m2Φ∆ = 0, (2.80)

in which □G represents the Laplacian operator on the curved spacetime G. The detail
of the solution is shown in the Appendix B and here we just discuss the results. As for
the solution near the horizon r = r+, there are two independent modes

ψ± = e
ir+
R2 (±ωt−kRϕ) f∆(±ω, k,

r
r+

), (2.81)

from which we can see that the behaviour of the modes near the horizon depends on
the frequency ω which characterizes the propagation of the modes along the circle,
called left or right moving modes. If we consider the solution at infinity r → ∞, the
modes now become

ψ± = e
ir+
R2 (ωt−kRϕ) f∆±(ω, k,

r
r+

), (2.82)

which will be scale dimension dependent. We can see that these two modes will behave
like r−∆ and r∆−2 asymptotically, corresponding to the source and normalizable modes,
which have been studied in the vacuum AdS3 case.

It is worthwhile to note that, although we obtain four different kinds of modes in total,
this does not mean that the scalar field Φ should be the linear combination of these four
modes. The reason that we obtain four modes here is that we are expanding the same
function around different singular points thus the basis changes. Near horizon, the ba-
sis carries the information of the direction of the propagation while, at the infinity, the
basis carries the information of asymptotic behavior of the field according to the radius
r.
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Embedding the Solution

In the above section, we have studied the embedding structure of the BTZ black hole
and obtained the solution of Kelin-Gordon equation on AdS background while in this
section we are going to lift the solution from the AdS hyperboloid to the embedding
space.

There are various ways of extending a function on a hyperboloid to the embedding
space. Since we can foliate the embedding space with AdS surfaces of different radii R,
a natural embedding way is just treating the radii R as a variable and extending the so-
lution obtained from some standard surface R = R0 to the surfaces with different radii
R. This is easy to do mathematically while we should note that the extended function
will not be the solution of Kelin-Gordon equation on other AdS surfaces except for the
surface R0. Vice versa, to fully retain the physical meaning of the extended function,
one can solve the KG equation (2.80) on each surface while it is hard to smoothly glue
them together.

Here, instead of considering the extension of the solution directly. We consider the
extension of the KG equation. Using the generator of the SO(2, 2) group

JAB = XA
∂

∂XB − XB
∂

∂XA , (2.83)

we can construct the quadratic Casimir directly in embedding space Penedones (2016)

1
2

JAB JBAΦ∆(X) = R2∇AdSΦ∆(X), (2.84)

in which∇AdS = □G since BTZ black geometry is locally isometric to AdS3. The above
expression can be treated as the decomposition of an embedding operator along the
AdS surfaces. Given the quadratic Casimir, the equation of motion in embedding now
is proposed to be

1
2

JAB JBAΦ∆(X) = m2R2Φ∆(X), (2.85)

from which we see that the mass term m2R2 now depends on the radii of the surfaces,
and it will be reduced to the KG equation at radii R = 1. Since [JAB, X2 + R2] = 0, we
can solve the Equation (2.85) on each surface, following the same method of solving
KG equation, provided we make

m2R2 = ∆R(∆R − 2). (2.86)
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Now, if we write solution in terms of the (r, t, ϕ, R) coordinates i.e, Φ(X) = Φ(t, r, ϕ, R),
the modes will become

ψ± = e
ir+
R2 (±ωt−kRϕ) f∆R(±ω, k,

r
r+

) (2.87)

at the horizon while, at the infinity, the two modes are

ψ± = e
ir+
R2 (ωt−kRϕ) f∆±R

(ω, k,
r

r+
), (2.88)

in which we not only make the phase part R dependent but also the scale dimension R
dependent. These solutions are smooth in embedding space and they are also solutions
of the scalar KG equation on each AdS surface with mass mR, i.e, now the equation
becomes

□GΦ∆R −m2R2Φ∆R = 0, (2.89)

which can be understood that we are considering excitation spectra or fluctuation of
particle with mass of order R on each AdS surfaces.

BTZ Propagator

In this part, based on the study of the geometry of BTZ black holes, we will try to
generalise the vacuum AdS propagators to the black hole case and discuss the ther-
mal feature of the boundary theories. As we have already known, BTZ geometry is
obtained from AdS3 by the identification of the points ϕ ∼= ϕ + 2π. In the embedding
coordinates, using (2.68) and (2.69), one can deduce that this is equivalent to

X± ∼= e±2πr+X±. (2.90)

Here, to study the identified points more carefully, we introduce the notion

˜︁Xn := (e+2nπr+X+, e−2nπr+X− X0, X1), (2.91)

in which we use the superscript n to represent the winding number of the coordinates.
Moreover, we should note that the points ˜︁Xn are distinguishable in the AdS3 geometry
while they form a cover of a single point X of BTZ black hole

X = ˜︁X0 ∼= ˜︁X1 · · · ˜︁Xn ∼= ˜︁Xn+1 · · · . (2.92)

Following such convention, one can directly write down the BTZ boundary-bulk prop-
agator

GBTZ
∆,J (X, P; W, Z) =

∞

∑
n=−∞

((−2P · ˜︁Xn)(W · Z) + 2(W · P)(Z · ˜︁Xn))J

(−2P · ˜︁Xn)∆+J
(2.93)
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with the help of the method of images introduced in Keski-Vakkuri (1999); Kraus et al.
(2003). Basically, the infinite sum over the winding number on the right hand side is
used to construct a function that is invariant at the points ˜︁Xn so that the relation (2.92)
is manifested in the context of the BTZ geometry.

To see how this works in a more specific way, we choose to go back to the (t, r, ϕ)

coordinates. The bulk points X are well defined in the previous section and here for the
boundary points P, we write them as

P = (P+, P−, P0, P1) = (er+ϕ′ , e−r+ϕ′ , sinh(r+t′), cosh(r+t′)), (2.94)

in which the light ray condition P2 = 0 is satisfied and the (t′, ϕ′) are in fact coordi-
nates of a cylinder. With these coordinates, for the scalar case, one can write the bulk
boundary operator as

G+
∆,1(X, P) =

∞

∑
n=−∞

1(︃
−
√

r2−r2
+

r+ cosh(r+δt) + r
r+ cosh(r+(δϕ + 2πn))

)︃∆ (2.95)

for r > r+ and δϕ = ϕ− ϕ′, δt = t− t′. This is the bulk-boundary propagator when the
bulk point is outside the horizon. For the inside horizon propagator, we should use the
coordinate 2.72, 2.73 and then obtain

G−∆,1(X, P) =
∞

∑
n=−∞

1(︃
−
√

r2
+−r2

r+ sinh(r+δt) + r
r+ cosh(r+(δϕ + 2πn))

)︃∆ . (2.96)

For the boundary correlation functions, the polynomial of higher spin two point func-
tion

⟨OJ(P1)OJ(P2)⟩(Z1, Z2) =
∞

∑
n=−∞

((−2˜︁Pn
1 · P2)(Z1 · Z2) + 2(˜︁Pn

1 · Z2)(P2 · Z1))
J

(−2˜︁Pn
1 · P2)∆+J

(2.97)

is obtained by the projection of the bulk-boundary propagator to the r∆ term, in which˜︁Pn are defined as ˜︁Pn := (e+2nπr+P+, e−2nπr+P−, P0, P1) (2.98)

thus the temperature T = r+/2π can be deduced after going to the Euclidean signature
t = −iτ.
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2.2 A Lorentzian AdS/CFT Map

In this section we will do the Wick rotation of CFT completeness relation by matching
the scale dimension and spin in different signature properly then present a Lorentzian
AdS/CFT map based the derivation of Euclidean AdS/CFT map in Aharony et al.
(2021a,b). Given the Lorentzian AdS/CFT map, we will present the matching con-
ditions for the quadratic action then propose the matching conditions for higher order
action.

2.2.1 Scale Dimension and Spin

First we will discuss the behavior of scale dimension ∆ and spin J in different signatures
from both the conformal field theory and gravity theory point of view, which plays the
central role in the context of Wick rotation and AdS/CFT matching.

Symmetry Group Principal
Series

Parameter

Euclidean SO(d + 1, 1) ∼ SO(1, 1) + SO(d) E∆, J ∆ = d
2 + iR, J ∈ Z

SO(d, 2) ∼ SO(1, 1)+ ∆ = d
2 + iR

Lorentzian P∆, J, λ

SO(1, 1) + SO(d− 2) J = d−2
2 + iR, λ ∈ Z

TABLE 2.1: Harmonic analysis of the conformal symmetry for d spacetime dimen-
sional Euclidean and Lorentzian conformal field theory. The principal series for Eu-

clidean and Lorentzian signature are labelled by E and P , respectively.

We start from the study of representation theory of the conformal symmetry group. As
for the scale dimension induced by the dilaton operator D, it generates a noncompact
direction, i.e noncompact subgroup SO(1, 1), in both signatures and takes the value
∆ = d

2 + iR on the same principal series provided the representation is unitary while
the story for the spin is different.

For the spin in Euclidean signature, it represents the compact group SO(d) thus takes
the integer value J ∈ Z and in Lorentzian signature it represents the noncompact time
direction generated by the operator M01 therefore becomes continuous on the princi-
pal series J = d−2

2 + iR. The decomposition of the symmetry group and the range of
parameters are summarized in Table.2.1. We should note that in Lorentzian signature
we usually take the representation of compact group SO(d− 2) to be trivial therefore
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∆ = d
2 + is

∆0

∆

∆ = d
2 + is

∆0

∆

FIGURE 2.3: The analytic continuation of the scale dimension is shown on the left hand
in which principal series lies on the red line and physical scale dimension distributes
along the blue line on the real axes, with the lower bound ∆0. In the right figure, the
motion of the poles according to the changing of the lower bound ∆0 is illustrated.
In order to eliminate such effects caused by the motion of poles, an extra part of the
contour winding around the singularity should be added into the original contour γ.

The new one is denoted as γJ and illustrated by the red curves.

make λ = 1. In the end, to get the physical operators, we need to analytically continue
the ∆, J from principal series to real axes while the rotation of the scale dimension is
shown in LHS of Fig.2.3.

Practically, in order to get an analytic function, the contour along the principal series is
not enough and we need to deform the contour especially when we meet poles in the
complex plane. For example, in the completeness relation (2.102) or (2.112), ∆0 = d

2 is
defined on the principal series. But physically, as the lower bound of the scale dimen-
sion, ∆0 itself depends on the theory thus it varies along the real axes according to the
interaction picture we have. Note that ∆0 serves as a parameter in the constant factor
thus the position of the pole of N∆,J will move when we change the value of ∆0. Taking
these effects into consideration, if one wants to extend the equation apart from ∆ = d

2

analytically, extra contours going around the poles should be added properly, illus-
trated in RHS of Fig.2.3, and the Euclidean case is discussed in Aharony et al. (2021a).
To distinguish the deformed contours from the original one γ, we denote them as γE

and γL corresponding to the Euclidean and Lorentzian CFT 4.

The above discussion comes from the study of the symmetry group on field theory
side, which must have implications in the bulk theory with gravity due to the corre-
spondence. The connections come in when we try to construct a map between the bulk
fields and the boundary fields via the decomposition (2.10) and (2.11). In (2.10) and
(2.11), we just state without explanation that ∆ should lie on the principal series even
though harmonic analysis does not apply to the gravity theory. Here we point out that
if one wants to complete the map between the bulk and boundary field, one should

4In fact we should impose that γE = γL to make fields satisfy the match condition and we label them
together as γJ , which means that the deformation of the principal series depends on the spin J.
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choose the contour γE in (2.10) and the contour γL in (2.11) and such choice of contour
in the bulk theory can be interpreted as selecting proper modes of the bulk-boundary
propagator, i.e, we have the correspondence

Poles of NJ(∆) , N∆,J ←→ Bulk Modes, (2.99)

This is similar to the case we have met in the study of quasinormal modes Birmingham
(2001); Birmingham et al. (2002, 2003) of BTZ black holes in which the pole of frequency
in the BTZ solutions is related to the pole of boundary CFT correlation functions.

Moreover, in the study of four-point functions of the SYK model, Maldacena and Stan-
ford (2016), the same pole structures arise from the calculation of eigenfunctions of the
casimir operator. When expanding the four-point function as casimir eigenfunctions,
the coefficients are written in terms of the eigenvalues N∆,J ∼ kc(h)

1−kc(h)
of the kernel. It

has a pole at kc(h) = 1 when h = 2 in which h plays the role of scale dimension. The
behavior of the infinite term around the pole h = 2 is given by δkc(h = 2) ∼ 1

βJ ,
which results from the broken of conformal structure. From the bulk point of view, in-
stead of considering the exact AdS2 geometry, one should study the near AdS2 (NAdS2)
geometry Maldacena et al. (2016); Maldacena and Stanford (2016) and such broken of
symmetry is described by the Goldstone boson mode so called dilaton.

Having discussed the role of scale dimension, we now come to the study of spin J
while it will become more complicated even though we just stay on the CFT side. The
subtlety firstly comes in when we try to analytically extend the spin J in Lorentzian
signature apart from the principal series since the physical spin are discrete integer
numbers Mack (1977) on real axes rather than a continuous interval and there is no
mechanism telling us how the basis collapse or whether the physical basis is still com-
plete.

We will also meet similar difficulty when doing rotation between two signatures. For
example, in the study of partial wave decomposition of conformal four point func-
tions Dobrev et al. (1977); Simmons-Duffin et al. (2018); Kravchuk and Simmons-Duffin
(2018), we need to sum over all possible spin J for every representations. This is rep-
resented as a sum over non-negative integers in Euclidean signature. In Lorentzian
signature, in order to make such completeness still valid, we need to sum over the
principal series, which now becomes a continuous integral. We see that such a gap be-
tween integer and continuous number arises again while this time it can be resolved by
applying the complex analysis techniques.

The key idea comes from the study of Sommerfeld-Waston transform Eden et al. (2002);
Gribov (2003); Cornalba (2008), which tells us that it is possible to rewrite the sum of
discrete numbers into an integral along the proper contour in the complex J plane.
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J = d−2
2 + is

J

Γ

J = d−2
2 + is

J

Γ

FIGURE 2.4: The contour in the complex J plane we meet during the Wick rotation
is illustrated. The blue contour denoted as Γ is the one we used to take the place of
the sum over non-negative spin while the red line is the spin principal series. Wick
rotation can be understood as the deformation of Γ to the principal series. The figure
on the left shows the configuration when the spacetime dimension d is odd so that the
principal series will not pass through any integer point on the real axes. The figure
on the right shows the even dimension case in which we need to deform the principal
series around ( d−2

2 , 0) in order to make contours not meet with each other so that the
Wick rotation is continuous.

More precisely, we have
∞

∑
J=0
−→ i

2

∫︂
Γ

dJ
sin(π J)

, (2.100)

in which the contour Γ is shown in Fig.2.4. At this stage, we are still in Euclidean
signature and the next thing we need to do is to deform the contour from Γ to the
Lorentzian principal series. During the deformation, various physical phenomenon
will show up and it usually depends on the pole structure of the integrand. Specifically,
we can write the integrand into the product of the coefficients NJ(∆) and the basis IE

∆,J

while the pole structure is hidden in the analytic extension of NJ(∆), labeled by N(∆, J).
After figuring out the Lorentzian version of the basis IL

∆,J , one may write down the
formula in Lorentzian signature. We summarise the Wick rotation procedure into the
formula

∞

∑
J=0

∫︂
γ

d∆
2πi

NJ(∆) IE
∆,J −→

i
2

∫︂
γJ

dJ
sin(π J)

∫︂
γ

d∆
2πi

N(∆, J) IL
∆,J , (2.101)

which is the combination of following four steps

i) Write the discrete sum ∑ in terms of the integral along Γ.

ii) Do the space time rotation on the basis IE
∆,J in order to get the Lorentzian expres-

sion IL
∆,J .

iii) Analytically extend the coefficients NJ(∆) to the complex plane to get N(∆, J).
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iv) Rotate the contour Γ to Lorentzian principal series γJ while the pole structure should
be taken into consideration.

The above method have already been used to study the CFT partial wave decompo-
sition Hartman et al. (2016); Simmons-Duffin et al. (2018); Kravchuk and Simmons-
Duffin (2018) and the poles are called Regge poles Gribov (2003); Cornalba (2008) in the
context of scattering amplitude, which are connected to the CFT correlation functions
in the Regge region, and we will use them to deal with the conformal completeness
relation in the next section.

2.2.2 CFT Completeness Relation

In conformal field theory, three-point correlation functions are elementary building
blocks of the higher point functions and it is believed that, after imposing proper con-
straints, they will encode the whole information of a CFT, which is the idea of conformal
bootstrap. Moreover, according to the harmonic analysis of the conformal symmetry
group SO(d + 1, 1) for a d dimensional Euclidean CFT Dobrev et al. (1977); Karateev
et al. (2019); Aharony et al. (2021a), we can regard three-point functions as the basis of
the fields and the orthogonality of the basis is given by the completeness relation

δ(x1, x3)δ(x2, x4) =
1
2

∞

∑
J=0

∫︂
γ

d∆
2πi

∫︂
ddx5 NJ(∆) (2.102)

× ⟨O∆0(x1)O∆0(x2)O
µ1···µJ
∆,J (x5)⟩⟨O˜︁∆0

(x3)O˜︁∆0
(x4)O

˜︁∆,J
µ1···µJ (x5)⟩,

in which xµ
i for 0 ≤ µ ≤ d− 1 are spacetime coordinates and ∆ is the scale dimension.

Due to the harmonic analysis, the representation of SO(d + 1, 1) will be unitary pro-
vided ∆ lies on the principal series γ = d

2 + is and we denote the shadow transform of
the operator O∆(xi) as O˜︁∆(xi), in which ˜︁∆ = d− ∆. For simplicity, we will label them
as Oi and ˜︁Oi in the later discussion. Moreover, given a CFT, we should note that the
scale dimension usually has a lower bound named ∆0 and for free theory it takes the
value d−2

2 .

The completeness relation (2.102) can be used to expand local or bi-local fields in Eu-
clidean signature while we need to do the Wick rotation on it to study the field theory
in Lorentzian signature. In order to apply the Wick rotation skill, we first choose to in-
tegrate over x1, x4 on the two delta functions, making them a constant, and then focus
on the integrand term on the RHS which is labelled as 5

I∆,J :=
∫︂

ddx1ddx4ddx5 ⟨O1O2O5⟩⟨ ˜︁O3 ˜︁O4 ˜︁O5⟩. (2.103)

5More precisely, we should use IE
∆,J .
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The main task of the rest of this section is to find the expression of I∆,J in Lorentzian
signature.

There are five spacetime points in the product of two three-points functions and we use
the conformal symmetry to fix three of them, i.e, we set x2 = (0, . . . , 0), x3 = (1, 0, . . . , 0)
and x5 = (Λ, 0, . . . , 0)6 and then obtain

I∆,J =
∫︂

ddx1ddx4 ⟨O1O2O5⟩⟨ ˜︁O3 ˜︁O4 ˜︁O5⟩ (2.104)

in which there are only two variables x1 and x4 left and they are explicitly shown in the
integral. We should note that there will be an overall constant term arising from the
volume of integral over x5 when we choose the gauge but we do not need to consider
that since it will go away once we ungauge the fixed points back to the integral in the
end. To perform the Wick rotation, we introduce the normal Feynman continuation in
which we take x0 = (i + ϵ)t, u = x1 − t and v = x1 + t. Therefore we obtain

I∆,J = −
1
4

∫︂
dv1du1dv4du4dd−2x1dd−2x4 ⟨O1O2O5⟩⟨ ˜︁O3 ˜︁O4 ˜︁O5⟩, (2.105)

and the singularities at the coincident points x1 ∼ x2, x5, x4 ∼ x3, x5 are given by

u12v12 + iϵ = 0 u15v15 + iϵ = 0, (2.106)

u43v43 + iϵ = 0 u45v45 + iϵ = 0. (2.107)

As for the integral, we can think about fixing u1 and u4 and then investigating the be-
havior of I∆,J on the v1 and v4 complex plane. Due to the introduction of the iϵ expres-
sion, singularities will shift apart from the real axes and their positions are determined
by the equation (F.109) and (2.107). More explicitly, singularities of v will shift to the
upper half plane if u is negative and vice versa.

Since we are interested in the nontrivial I∆,J , the singularities x1 ∼ x2 and x1 ∼ x5

can not lie in the same half plane otherwise we can deform the integral contour along
the real axes to the infinity and make I∆,J vanish. The same argument holds for the
x4 ∼ x3 and x4 ∼ x5 singularities, which means that the sign of u12, u15 and u43, u45

should be different, i.e, it requires that

u2 < u1 < u5, u3 < u4 < u5. (2.108)

The next step is to determine the deformation of the integral contours of v1 and v4 and
we illustrate one way of the deformation in Fig.2.5, in which we let the v1 integral go
around 1 ∼ 2 and the v4 integral go around 4 ∼ 5. This means that we restrict the

6Usually we take Λ −→ ∞ but here we make Λ a finite number.
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v1

1 ∼ 2

1 ∼ 5 1 ∼ 4

v4

4 ∼ 3

4 ∼ 5

4 ∼ 1

FIGURE 2.5: One possible choice of integral contour and branch cuts are shown in the
v1 and v4 plane, in which blue points are coincident points in the correlation functions
and wavy lines are branch cuts in the complex plane. In the v1 plane the contour
winding around 1 ∼ 2 will generate the commutator [O1, O2] while the contour around

4 ∼ 5 in the v4 plane will generate the commutator [ ˜︁O5, ˜︁O4].

integral in the region v1 ≤ 0, v4 ≥ Λ and, at the same time, it induces the term

⟨[O1, O2] O5⟩⟨ ˜︁O3 [ ˜︁O5, ˜︁O4]⟩, (2.109)

in which the winding of the contour around the branch cuts will produce a commutator
[, ] and the order of the operator in the commutator is determined by the direction of
the contour. After taking all kinds of deformation into consideration, we obtain

(⟨[O1, O2] O5⟩+ ⟨O2 [O5, O1]⟩)× (⟨ ˜︁O3 [ ˜︁O5, ˜︁O4]⟩+ ⟨[ ˜︁O4, ˜︁O3] ˜︁O5⟩), (2.110)

in which each term corresponds to a region in the (v1, v4) plane and they together con-
tribute to I∆,J . After all, we should sum over all possible ∆ and J in I∆,J to get the
completeness relation. Now we should note that such problem has already been ex-
tensively discussed and resolved in (2.101) and here we just write down the result in
embedding space

δ(P1, P3)δ(P2, P4) =
∫︂

γJ

idJ
2sin(π J)

∫︂ dP
J!( d

2 − 1)J

∫︂
γ

d∆
2πi

N(∆, J) (2.111)

× (⟨[O∆0(P1), O∆0(P2)] O∆,J(P, DZ)⟩+ ⟨O∆0(P2) [O∆,J(P, DZ), O∆0(P1)]⟩)

× ⟨O˜︁∆0
(P3) [O˜︁∆,J(P, Z), O˜︁∆0

(X4)]⟩+ ⟨[O˜︁∆0
(P4), O˜︁∆0

(P3)] O˜︁∆,J(P, Z)⟩) + · · · .

in which P, Z are points in the embedding space corresponding to the boundary CFT,
the overall constant N(∆, J) will now become analytic function that depends on ∆, J
and · · · represents the contribution from its poles. DZ is the operator used to contract
the spin indexes associated with the factor 1

J!( d
2−1)J

.
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Physical Basis

We have discussed that it is still unclear how to get physical spin from the principal
series in Lorentzian signature while we found the connection between the Euclidean
physical spin and the Lorentzian spin principal series via the Wick Rotation of the CFT
completeness relation. Here we are going to directly rotate the physical Euclidean CFT
to the physical Lorentzian CFT since spins are integers on both sides and we summarise
all of these ideas in the following figure.

Euclidean CFT on E∆,J

A.C.5

↓↓

←←

Wick Rotation
Completeness Relation

4
→→ Lorentzian CFT on P∆,J,λ

A.C.6

↓↓

Physical Euclidean CFT
∆ ≥ ∆0, J ∈ Z

←←

7

Bi-local Field Matching
→→

↑↑

AdS/CFT1

↓↓

Physical Lorentzian CFT
∆ ≥ ∆0, J ∈ Z

↑↑

AdS/CFT2

↓↓

Euclidean AdS ←←
Higher Spin Field Matching

3
→→ Lorentzian AdS

The work about the analytic continuation of Euclidean CFT labelled by 1 and Eu-
clidean AdS/CFT map labelled by 5 has already been discussed in Aharony et al.
(2021a) while we have studied Wick Rotation of the completeness relation 4 and high
spin field matching 3 in previous sections. In order to verify the AdS/CFT map in
Lorentzian signature, denoted as 2 , we need to find results in the physical Lorentzian
CFT. Although the detail of analytic continuation of Lorentzian CFT is unclear, we find
that it is possible to consider the direct correspondence between physical CFTs, labeled
by 7 .

7 can be regarded as the combination of 4 , 5 and 6 and its net effect is just
that we do the Wick rotation of space time while keep the spin physical. Now, we con-
sider the behavior of spin in 4 and 6 , in 4 we extend physical Euclidean spin to
Lorentzian principal series while in 6 we need to extend spin on Lorentzian series
to physical Lorentzian spin and in both cases the contour will move across poles on
complex plane determined by N(∆, J) but from opposite directions. Therefore we can
see that the net contribution from the poles will be zero and then we obtain the physical
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CFT completeness relation written as

δ(P1, P3)δ(P2, P4) =
∞

∑
J=0

∫︂ dP
J!( d

2 − 1)J

∫︂
γ

d∆
2πi

N(∆, J) (2.112)

× (⟨[O∆0(P1), O∆0(P2)] O∆,J(P, DZ)⟩+ ⟨O∆0(P2) [O∆,J(P, DZ), O∆0(P1)]⟩)

× (⟨O˜︁∆0
(P3) [O˜︁∆,J(P, Z), O˜︁∆0

(P4)]⟩+ ⟨[O˜︁∆0
(P4), O˜︁∆0

(P3)] O˜︁∆,J(P, Z)⟩).

2.2.3 AdS/CFT Map

In this part, we will use the CFT completeness relation to expand bi-local fields Φ(P1, P2)

on the boundary, together with expansion of higher spin fields on the bulk, then con-
struct a map between them in Lorentzian signature so called Lorentzian AdS/CFT map
.

Bi-local Fields Matching

Before going into the derivation of Lorentzian AdS/CFT map, we first discuss the
match of bi-local fields during the Wick rotation, as the building block of our construc-
tion. First, following the convention from the previous section, we denote the bi-local
fields in Euclidean and Lorentzian signature as ΨE(P1, P2) and ΨL(P1, P2), respectively.
From the holography point of view, the match of bi-local fields is conceptually different
from the match of bulk fields. But if we just consider the match of two theories with
actions, the matching rule (2.2) is universal. Therefore, consider the continuity of the
field at the matching surface Σ, we immediately obtain the first matching condition,
written as

ΨE(P1, P2)|Σ = ΨL(P1, P2)|Σ. (2.113)

We should note that such matching condition is universal and it does not depend on
how we construct the bi-local fields while, for the second matching condition, one
needs to consider the detail structure of the theory. First, we consider the O(N) vector
model in which the bi-local field is defined as

Ψ(P1, P2) :=
1
N

N

∑
I=1

ϕI(P1)ϕI(P2), (2.114)

where ϕI are real scalar fields. Since for each scalar ϕI one should impose the condition
(2.13), we then obtain the second matching condition, written as

∂τa Ψ(P1, P2) + i∂ta ΨL(P1, P2) = 0 for a = 1, 2. (2.115)
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Then we consider the U(N) vector model in which the bi-local field is given by

Ψ(P1, P2) :=
1
N

N

∑
I=1

ϕ∗I (P1)ϕI(P2), (2.116)

where ϕI become complex with the conjugate ϕ∗I while the matching condition of the
complex conjugate field ϕ∗I is the complex conjugate of (2.13). Therefore, for the U(N)

vector model, the second matching condition now becomes 7

∂τ1 Ψ(P1, P2)− i∂t1 ΨL(P1, P2) = 0 (2.117)

∂τ2 Ψ(P1, P2) + i∂t2 ΨL(P1, P2) = 0, (2.118)

in which one can check that the matching conditions are hermitian in the sense that we
treat 1,2 as the matrix indices. From the above discussion we can see that the explicit
form of the second matching condition depends on the theory itself and there also exist
physical models which do not require the second matching condition. For example, in
SYK model the bi-local field is defined as

Ψ(P1, P2) :=
1
N

N

∑
I=1
⟨χI(P1)χI(P2)⟩, (2.119)

in which χI are Majorana fermions. In this case, the requirement of the first match-
ing condition is still necessary while there is no second matching condition since the
on shell equation for χI is the first order differential equation. Moreover, one should
impose proper reality and hermiticity condition on the spinor and action, respectively
Nicolai (1978); Van Nieuwenhuizen and Waldron (1996).

Derivation

To make the Lorentzian results compatible with the Euclidean case, also for simplicity,
we first define the Lorentzian three-point function basis as

⟨O1O2O3⟩L := ⟨[O1, O2] O3⟩+ ⟨O2 [O3, O1]⟩, (2.120)

⟨ ˜︁O1 ˜︁O2 ˜︁O3⟩L := ⟨ ˜︁O1 [ ˜︁O3, ˜︁O2]⟩+ ⟨[ ˜︁O2, ˜︁O1], ˜︁O3]⟩, (2.121)

in which we can see that Lorentzian three-point function basis are in fact combinations
of three-point functions and its shadow counterpart is not just the shadow transform
of each operator while we should also take the effect of commutator into consideration.
But ⟨O1O2O3⟩L and ⟨ ˜︁O1 ˜︁O2 ˜︁O3⟩L are still orthogonal in the sense of (2.112). Therefore,

7We should note that in the bi-local form ϕ and ϕ∗ are not independent if one requires the bi-local
field is hermitian, i.e., Φ∗(P2, P1) = Φ(P1, P2). If we treat ϕ and ϕ∗ independently, there will be no sign
difference in the matching condition as derived in the Appendix C.
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from the bi-local field expansion

Ψ(P1, P2)E/L =
∞

∑
J=0

∫︂
γL

d∆
2πi

∫︂ dP
J!( d

2 − 1)J
C̄E/L

∆,J (P, DZ)⟨O∆0(P1), O∆0(P2)O∆,J(P, Z)⟩E/L,

we can determine the coefficients C̄ to be

C̄E/L
∆,J (P, Z) =

N∆,J

2

∫︂
dP1dP2 Ψ(P1, P2)⟨O˜︁∆0

(P1), O˜︁∆0
(P2)O˜︁∆,J(P, Z)⟩E/L.

(2.122)

As for the higher spin fields, we will focus on the study of transverse tensor fields and
the transverse bulk completeness relation is given by

δTT(X1, X2)(W12)
J =

∫︂
γ

d∆
2πi

∫︂ dP
J!( d

2 − 1)J

N∆,J

αJ
G∆,J(X1, P; W1, DZ)G˜︁∆,J(X2, P; W2, Z),

which comes from the zero spin term of the full completeness relation and αJ are con-
stants that depend on the spin. Therefore, given the off-shell tensor field expansion

H(X, W) =
∫︂

γ

d∆
2πi

∫︂ dP
J!( d

2 − 1)J
C∆,J(P, DZ)G∆,J(X, P; W, Z), (2.123)

we can use the bulk completeness relation to deduce the coefficient polynomial, which
is given by

C∆,J(P, Z) =
N∆,J

αJ

1
( d−1

2 )J J!

∫︂
dX H(X, KW) G˜︁∆,J(X, P; W, Z). (2.124)

Now, we can construct a map between the bulk coefficients C∆,J and the CFT coeffi-
cients C̄∆,J , given by

CE
∆,J(P, Z) = f E

∆,J C̄E
∆,J(P, Z), CL

∆,J(P, Z) = f L
∆,J C̄L

∆,J(P, Z), (2.125)

in which f E
∆,J and f L

∆,J are functions on the scale dimension and spin. Although one can
propose the AdS/CFT map in Euclidean and Lorentzian signature separately, we will
see that in fact f E

∆,J and f L
∆,J are not independent. According to the matching of bi-local

field and the Wick rotation of the completeness relation, we know C̄E
∆,J = C̄L

∆,J while we
have CE

− = CL
− from the study of higher spin field matching on the bulk. Taking these

into consideration, we can conclude

f∆,J := f E
∆,J = f L

∆,J , (2.126)

which tells us that the AdS/CFT map should be invariant during the Wick rotation.
Moreover, we can transfer the map between coefficients into the map between fields
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directly with the help of (2.122) and (2.124). We can deduce the CFT to AdS map to be

H(X, W) =
1
2

∫︂
γ

d∆
2πi

f∆,J N∆,J

∫︂ dP
J!( d

2 − 1)J

∫︂
dP1dP2 GL

∆,J(X, P; W, DZ)

× ⟨O˜︁∆0
(P1), O˜︁∆0

(P2)O˜︁∆,J(P, Z)⟩L Ψ(P1, P2), (2.127)

and the AdS to CFT map to be

Ψ(P1, P2) =
∞

∑
J=0

∫︂
γ

d∆
2πi

N∆,J

αJ f∆,J

∫︂ dP
( d−1

2 )J(
d
2 − 1)J J!2

(2.128)

×
∫︂

dX⟨O∆0(P1), O∆0(P2)O∆,J(P, Z)⟩LGL˜︁∆,J(X, P; KW , Z)H(X, W)

therefore completes our derivation.

Here, we should note that the AdS/CFT map provides us with a machinery to build
connections between bi-local fields and higher spin fields and the fields could be off-
shell and both take values in embedding space. In order to imply that the higher spin
fields live on the bulk AdS and the bi-local fields live on the boundary CFT, we need
to specify their physical regions. That is to say, the physical region for H is the AdS
surface X2 = −1 and the physical region for Ψ is often taken to be light rays on the
cone X2 = 0. Moreover, for the on-shell AdS/CFT map, i.e, after solving equation of
motion on the physical region, we will see that the on-shell AdS/CFT map is invertible
in the large N limit.

2.3 Match Conditions for the Quadratic Action

As it was discussed in Aharony et al. (2021a), the AdS/CFT map mainly works for the
off-shell field while the matching condition introduced in section 2.1 is applied to the
on-shell field. In fact, on-shell fields belong to the subset of the off-shell fields. The
expression (2.123) of the off-shell fields is basically the expansion of an arbitrary func-
tion by the given basis G∆,J thus all the information of a physical systems is encoded
in the coefficients C∆,J . Suppose that the mass of the spin J field is given by the scale
dimension ∆J , although it is hard to solve C∆,J directly, we can deduce the coefficient
will take the form

C∆,J(P)→ δ(∆− ∆J)C∆J (P), (2.129)

in which C∆J (P) is the source of the spin J field. Therefore, we can see that the mass
spectra of the theory is determined by the pole structure of these coefficients C∆,J , which
will give us the AdS/CFT dictionary, together with the CFT coefficients C̄∆,J . So in
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order to complete the construction of Lorentzian AdS/CFT map, one needs to specify
the matching conditions for the off-shell field.

2.3.1 The Quadratic Action

The match condition for a generic off-shell field is hard to study without specifying the
equation of motion or the action for a given theory. In this thesis we will focus on the
study of a special class of off-shell fields which govern the higher spin field theory dual
to the vector model on the boundary and they are described by the quadratic action
shown in de Mello Koch et al. (2019); Aharony et al. (2021a). For simplicity, we just
consider the scalar action SE

SE =
1
2

∫︂
ME

√
G(∂µ∂νΦ ∂µ∂νΦ + M2

1 ∂µΦ ∂µΦ + M2
2 ∂νΦ ∂νΦ + M2

1 M2
2 Φ2) (2.130)

in which Φ is the off-shell scalar field propagating in the manifold ME with AdS back-
ground described by the metric G while M1 and M2 are mass of the particles. Here we
should note that they are spin dependent parameters coming from the pole structure of
C∆,J and fixed in our context since we are dealing with scalar fields setting J = 0. Those
off-shell scalar fields are not totally free while they should obey the equation of motion
given by the action SE, the variation is given by

δSE =
∫︂

ME

√
G(∂µ∂νΦ ∂µ∂νδΦ + M2

1 ∂µΦ ∂µδΦ + M2
2 ∂νΦ ∂νδΦ + M2

1 M2
2 Φ δΦ)

=
∫︂

∂ME

√
G
(︂(︂

2∂t ∂i∂iΦ + M2
1 ∂tΦ + M2

2 ∂tΦ
)︂

δΦ + ∂t∂tΦ δ∂tΦ
)︂

(2.131)

+
∫︂

ME

(︂
∂ν∂µ
√

G ∂ν∂µΦ−M2
1∂µ

√
G ∂µΦ−M2

2∂ν
√

G ∂νΦ +
√

G M2
1 M2

2Φ
)︂

δΦ

in which the first term results from the boundary ∂ME and the second term gives rise
to the equation of motion written as

1√
G
(∂µ∂ν

√
G ∂ν∂µΦ−M2

1∂µ

√
G ∂µΦ−M2

2∂ν
√

G ∂νΦ) + M2
1 M2

2Φ = 0.(2.132)

Given that the AdS/CFT map is also valid in Lorentzian signature, the Lorentzian ver-
sion of the action SL should exist and can be deduced to take the form of

SL = −1
2

∫︂
ML

√
−G(∂µ∂νΦ ∂µ∂νΦ + M2

1 ∂µΦ ∂µΦ + M2
2 ∂νΦ ∂νΦ + M2

1 M2
2 Φ2).(2.133)
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The matching condition of the total action iSL − SE at the joint surface Σ = ∂ME =

−∂ML is then deduced to be

i
(︂

2∂t ∂i∂iΦL + M2
1 ∂tΦL + M2

2 ∂tΦL

)︂
δΦL +

(︂
2∂τ ∂i∂iΦE + M2

1 ∂τΦE + M2
2 ∂τΦE

)︂
δΦE = 0,

i∂2
t ΦL δ∂tΦL − ∂2

τΦE δ∂τΦE = 0,

in which we have used the contraction relation ∂2
t = −∂t∂t and ∂2

τ = ∂τ∂τ. Moreover, if
we impose the condition that the charge ∂i∂iΦ is conserved at the joint surface

i∂t∂
i∂iΦL + ∂τ∂i∂iΦE = 0. (2.134)

Then the matching conditions can be simplified to

ΦE −ΦL = 0, (2.135)

i∂tΦL + ∂τΦE = 0, (2.136)

∂2
t ΦL + ∂2

τΦE = 0, (2.137)

so called offshell matching conditions even though ΦE, ΦL now satisfy the quadratic
equation (2.132). Moreover, after rewriting the equation into the form of

(∇2
AdS −M2

1)(∇2
AdS −M2

2)Φ(X) = 0 (2.138)

with the ∇AdS on AdS background. Then one can obtain the solution in terms of the
bulk boundary propagator written as

Φ(X) =
∫︂

dP
1

(X · P)∆1
C∆1(P) +

∫︂
dP

1
(X · P)∆2

C∆2(P), (2.139)

in which ∆1 and ∆2 are given by the relation

M2
1 = ∆1(∆1 − d), M2

2 = ∆2(∆2 − d). (2.140)

C∆1(P) and C∆2(P) can be treated as coefficients or sources associated to the mode of
scale dimension ∆1, ∆2. Therefore one can check the offshell match conditions (2.135)
and (2.136) are solved by the matching of coefficients

CE
∆1

= CL
∆1

, CE
∆2

= CL
∆2

(2.141)

and the condition (2.137) is then automatically preserved, which is shown in the ap-
pendix D. In fact, since we have seen that the offshell solution is the linear combination
of two onshell fields, the offshell matching condition (2.134) can be rewritten in term of
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∂3
t , ∂3

t after using the onshell equation of motion for each propagator with mass M1, M2.

Now we come back to the duality between the higher spin theory and the vector model.
As it is known that the higher spin theory in the bulk is described by the Vasiliev equa-
tions and the corresponding action is still absent. Thus, with the help of AdS/CFT
map, it is possible for us to reconstruct the bulk action from the action of boundary free
vector model de Mello Koch et al. (2019); Aharony et al. (2021a). This is done by first
decomposing the boundary action into the coefficients C̄∆,J then mapping it to bulk
coefficients C∆,J via the AdS/CFT map (2.125) therefore rewriting the action in terms
of the bulk fields. The spectra is determined by the pole structure of C∆,J as shown in
(2.129). It turns out that the bulk action is quadratic consisting of higher spin fields and
the scalar part is described by (2.130) while the mass M1 and M2 are given by

∆1 = d, ∆2 = d− 2. (2.142)

From the above procedure, we can see that one of the mode described by C∆1 is physi-
cal and the mode described by C∆2 with negative mass M2

2 < 0 is unphysical based on
the observation that it will contribute to the offshell field Φ in a negative way C∆2 < 0.
Such unphysical modes are identified as ghost modes coming from the gauge fixing of
the higher spin fields. Moreover, from the match condition (2.141), one can see that the
physical and unphysical modes will behave independently during the Wick rotation.

Furthermore, as pointed out in the work Skenderis et al. (2009b,a) during the study
of three-dimensional Einstein gravity, the higher-derivative terms in the action will in-
troduce extra propagating degrees of freedom and they are identified as ghost modes.
Those ghost modes make the theory unstable and violate the unitary condition. Such
problem is rescued by considering the topologically massive gravity at the chiral point
so that the left-moving sector will be gauge fixed and the extra degrees of freedom are
then eliminated. Here for the higher spin fields, to make the theory physical, one can
also choose to set the negative modes to zero in Euclidean signature by fixing the gauge
of the higher spin fields , i.e CE

∆2
= 0. This naturally tells us that the ghost modes will

not contribute to the external legs of the Feynman diagrams since the source is turned
off in real time by checking the match condition (2.141). However, the ghost modes will
contribute to the Feynman diagram at the loop level while the detail goes beyond the
study of classical match condition in this thesis 8.

8The matching condition developed in this thesis is the match for the classical field configuration and
it tells us the vacuum is the Hartle-Hawking state. For the full description of the Hilbert space, one needs
to study the match condition at quantum level.
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o t

τ

ΦC(t, τ)ΦE(−τ)

ΦL(t)

FIGURE 2.6: The complexification of the field ΦE and ΦL into a function ΦC with
complex variables is depicted.

2.3.2 Analyticity

At first sight, it looks confusing since, starting from different actions, we eventually
arrive at the same matching condition (2.141) . As we will see, this becomes nature if
one considers the behavior of the field and propagator over the whole complex time
plane. The analytic property of the propagator G∆(X, P) implies that the condition
(2.141) could be universal for arbitrary higher order matching.

The complex time plane is described by the variable z = t + iτ, z̄ = t − iτ and the
function on the complex plane is denoted as

ΦC(z, z̄) = ΦC(t, τ). (2.143)

Although the complex time t + iτ will not make sense physically and we are just in-
terested in the Euclidean field ΦE(τ) and the Lorentzian field ΦL(t), we can still treat
these two fields as living on the boundary of the complex field ΦC(t, τ). More precisely,
as illustrated in Fig.2.6 we can impose the condition

ΦC(t, 0) = ΦL(t), ΦC(0, τ) = ΦE(−τ), (2.144)

which specify the boundary value of ΦC while the value in the interior is still unknown.
But after taking the first order matching condition (2.136) into consideration

∂tΦL(t)− i∂τΦE(τ) = ∂z̄ΦC(t, τ), (2.145)

we find that a sufficient condition for the complex field is the analyticity ,i.e, an analytic
complex function will naturally induced a pair of field ΦL and ΦE which satisfy the first
order matching. We can also see that the second order matching condition (2.137) can
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be written as ∂z∂z̄ΦC = 0 thus now becomes trivial. Furthermore, using the relation

∂t =
∂z + ∂z̄

2
, ∂t = i

∂z − ∂z̄

2
, (2.146)

one can write the ∂t, ∂τ into the derivative ∂z and ∂z̄ and check that the third order
matching condition (2.134) becomes trivial provided ∂z̄ΦC = 0.

We obtain the necessary match conditions (2.135), (2.136) and (2.137) for the field by
considering the action up to the quadratic order while higher order terms will show up
if we sit down to study the complete bulk action. Therefore, we can propose that the
higher order matching condition are generated by the derivatives ∂z, ∂z̄ acting on the
complex function and the matching condition for arbitrary higher order action is

∂z̄ΦC(z, z̄) = 0. (2.147)

This assumption is reasonable since as for the boundary quantum field theory, we have
the analytic Wightman functions so we should expect to get analytic fields on the bulk
via the help of holography principle. Although the Wightman functions are charac-
terised by a series of axioms Osterwalder and Schrader (1973, 1975) and here we start
from the study of variation of the action δS. In this thesis, we are considering the match
condition purely from the mathematical point of view i.e, match conditions in the bulk
is dual to analytic properties of the Wightman function. A set of reconstruction axioms,
for example the understanding of causality, is not established in the bulk. In some
cases, higher derivative terms are related to the causality for a given theory while the
detail relation is still not clear. It is interesting to explore the match conditions from
the algebraic point of view, for example, establishing the Haag’s theorem on the AdS
background, and we leave this to further work.
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Chapter 3

Flat Holography for Scalar Fields

The main goal of this chapter is to develop the AdS/CFT correspondence into the
Flat/CFT correspondence thus bringing the holography principle and especially all the
work on AdS/CFT to the measurable level. More precisely, we will finally construct
the dictionary between flat spacetime and the CFT on the boundary, which works the
same as (1.1).

Before going into the Flat/CFT dictionary, we first introduce another principle used
many times in this thesis, which is the completeness relation of mode expansion for a
generic physical field written as

A Generic Solution = ∑ Coefficient×Modes. (3.1)

The mode expansion tells us that a generic field configuration can be decomposed into
given modes for the linear physical system, and the information about the field is en-
coded in coefficients. These coefficients are determined by the boundary and initial
data. The symbol ∑ means that we should sum over some proper set of modes, which
is labeled by discrete or continuous numbers. Physically, for example, in quantum me-
chanics and quantum field theory, one always assumes that all the physical solutions
are well behaved at the boundary; therefore, an inner product could be properly de-
fined. Given the well-defined inner product structure and the existence of a self-adjoint
operator, all modes form a complete set of basis for the physical solution space while
the rigorous mathematical structure has been studied in the so-called Sturm-Liouville
theory, but here we should note that the boundary conditions are often hard to specify
or to check in the physical situation.

In physics, the mode expansion (3.1) is also called superposition principle and has been
used widely, dating back to the birth of quantum mechanics. Here we will reconsider
the mode expansion and find it is not as obvious as people thought it would be al-
though it has been taken for granted for a long time. Taking the story of quantum field
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theory for example, the traditional mode is the plane wave mode ΦK = eiK·X and all
on-shell modes satisfying−K2 = M2 form a complete basis for the field describing par-
ticles of mass M. After the quantisation, coefficients for the plane wave are promoted to
be creation and annihilation operators. Recently, except for plane waves, people have
constructed a new kind of basis so called conformal basis Φ∆ Pasterski et al. (2017);
Pasterski and Shao (2017) to highlight the symmetry of Lorentz group SO(1, 3) and the
unitarity of the representation of Lorentz group requires that ∆ should lie on the princi-
pal series thus one assumes that all states on the principal series form a complete basis.
In addition to the conformal basis, for this thesis, we are going to introduce another
kind of mode based on the foliation of the Minkowski space as

− (X0)2 + (X1)2 + (X2)2 + (X3)2 = −τ2, (3.2)

in which one can treat it as the embedding of the AdS hyperboloid with radius τ ≥ 0.
Given such foliation, one can further choose τ together with the coordinate on AdS
surface as Minkowski space coordinates therefore recast the equation of motion for
Minkowski into the AdS hyperboloid. Then, according to the superposition principle,
one can claim that a generic field can be decomposed into modes Φk with effective mass
k on the AdS surface. Since here the equation on AdS is not physical, k could take all
the value in the complex plane and till now it is not clear how to determine which of
them will form the necessary complete basis. We will use Klein-Gordon equation as an
example to illustrate how the mode expansion (3.1) works in the context of AdS slicing
(3.2) and discuss various possible choices of k in the section 3.1.

After a careful study of the mode analysis, one will be able to decompose the bulk ac-
tion S for Minkowski space into k-mode components S(k). To construct the Flat/CFT
dictionary like (1.1), a technical issue ahead is that the one-shell action Sonshell is infi-
nite due to the integral over the infinite spacetime volume and one needs to perform
the renormalisation on Sonshell in order to make the action finite, denoted as Sren or
equivalently Sren(k). Such problem was addressed in the work Witten (1998a) then has
been fully discussed by following work Henningson and Skenderis (1998); Balasubra-
manian and Kraus (1999); de Haro et al. (2001b). The developed systematic procedure
is so called holography renormalisation. The basis idea of holography renormalisa-
tion is that one should treat the infinite part of the action in the bulk as IR divergences
and introduce local counterterms Sct to cancel the divergence, i.e. Sren = Sonshell + Sct.
Such IR divergences in the bulk are dual to the UV divergences of the boundary QFT
through the UV/IR connection Susskind and Witten (1998). The UV divergence in the
bulk is dual to the IR divergence of the boundary QFT while it should be absent when
working in the full context of the holography principle since the bulk quantum gravity
theory is UV finite. As for the low energy effective description of the bulk theory, the
UV divergence will appear and contribute to anomalous dimensions of CFT operators
from boundary point of view. We will not discuss them in this thesis and one can see
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the straightforward treatment of UV divergences from the bulk side in the recent work
Bañados et al. (2022). In the section 3.2, we will first decompose the field into AdS
modes then apply the holography renormalisaton procedure on each single AdS sur-
face thus complete the holography renormalisation for flat spacetime.

Given the flat holography renormalisation, one then obtains the dictionary between the
effective theory on Minkowski and the CFT living on the boundary sphere. The CFT
context can be read off from the renormalised action Sren. It turns out a single bulk
scalar field is dual to two series of CFT operators on the sphere with scale dimension
living on the principal series. Later in section 3.3, we will see that we can decompose a
massless field into in and out going shock waves and each of the shock wave is dual to
one series of operators on the celestial sphere. One-point and two-point functions on
the celestial sphere dual to the shock wave are also derived. Furthermore, we find that
the full information of Minkowski could be stored in a pair of AdS hyperboloid, which
forms a new kind of Cauchy surface.

3.1 Mode Analysis on Minkowski

In this section we consider solutions of the scalar field equation on Minkowski space
and discuss how these can be used to construct a basis for scalar fields satisfying the
given boundary conditions. We will begin our discussions with the familiar analysis
within Minkowski coordinates before moving to Anti-de Sitter and de Sitter slicings.

We start from the study of solutions of KG equation written as(︃
∂

∂Xµ

∂

∂Xµ
−M2

)︃
ΦM(X) = 0, (3.3)

in which M is the mass of the particle represented by a scalar field ΦM and Xµ are coor-
dinates of the Minkowski space R1,3 with signature (−,+,+,+). Given the equation,
one can directly write down a set of solutions

ϕK(X) = eiK·X (3.4)

in which K2 + M2 = 0 and Kµ are understood as the momentum of the particle. Thus
the solution ϕK represents a single particle of mass M propagating freely in Minkowski
space with momentum k. A generic solution ΦM can be written as the superposition of
all the single particle states

ΦM(X) = ∑
K

akϕK(X) (3.5)

in which ak are coefficients that depend on k provided the on-shell condition is satisfied.
Mathematically, ϕk are regarded as the basis that form the complete expansion of the
solution space. Although the physical picture is maximally realized using the solution
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ϕk, the symmetry of the spacetime given by the Lorentz group SO(1, 3) ∼= SL(2, C) is
not encoded here. To study the symmetry of the Lorentz group, one can use another
set of basis so-called conformal basis ϕ∆ defined by the translation relation

ϕ∆(Λ · X; gw, gw̄) −→ |cw + d|2∆ϕ∆(X; w, w̄), (3.6)

in which g ∈ SL(2, C) is defined by

g =

(︄
a b
c d

)︄
, ad− bc = 0, (3.7)

and w, w̄ are coordinates of the spheres that lie along the null boundary of Minkowski
space so-called Celestial sphere. In order to form the unitary representation, ∆ is re-
stricted on the principal series 1 + iR and it can be further proved that all the functions
ϕ∆ lie on the principal basis are complete and orthonormal.

We have introduced two sets of basis one with maximally physical meaning while the
other with significant geometry realization. Now we introduce another set of basis
which will be convenient for us to bring the story into the context of AdS/CFT. The idea
comes from the fact that one can treat the Euclidean AdS surface H3 as the codimension
one surface embedding in the whole space R1,3 and the equation of motion on the
surface is reduced to

(∆H3 − k2) ϕk(X) = 0, (3.8)

in which k is the effective mass on the AdS surface with the induced Laplacian ∆H3 . As
we have discussed before, one can treat ϕk(X) as the basis and use them to construct
the generic solution ΦM. Those basis are summarized below.

∑k akϕk

ΦM

↑↑

↙↙ ↘↘

∑K aKϕK ∑∆ a∆ϕ∆

(3.9)

3.1.1 Milne Slicing

Following this review, we now consider solution of the scalar field equation using Anti-
de Sitter and de Sitter slicing of Minkowski space. We illustrate these slicings in Fig-
ure 3.1. Region A± are foliated by Euclidean Anti-de Sitter (hyperbolic) surfaces while
region D is foliated by de Sitter surfaces. To describe the region A, which is sliced by
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i0

i+

i−

A−

A+

D

FIGURE 3.1: The Milne wedgeA± are sliced by AdS surfaces while the Rindler wedge
D is foliated by dS surfaces.

hyperboloids, we use Milne coordinates written as

ds2 = GµνdXµdXν = −dτ2 + τ2
(︃

dρ2

1 + ρ2 + 2ρ2γzz̄dzdz̄
)︃

, (3.10)

in which ρ, τ ∈ R. Here z, z̄, γzz̄ are complex coordinates and the metric is the standard
metric on the sphere. τ is the radius of the AdS hyperboloid introduced in (3.2) and
one only needs to take the positive part τ ≥ 0 to cover the single region A+. The near
light cone region is given by τ → 0 while the null infinity is the region where τ → ∞.
In such coordinates, the scalar equation can be separated into two equations(︃

ρ(ρ2 + 1)∂2
ρ + (3ρ2 + 2)∂ρ − k2ρ− l(l + 1)

ρ

)︃
ϕl(ρ, k) = 0, (3.11)(︃

−3
∂τ

τ
− ∂2

τ +
ω2

τ2 −M2
)︃

ψ(τ, ω) = 0, (3.12)

where the first equation represents a particle of effective mass k on the hyperboloid
and the second equation depends only on the time τ. Here l labels the usual discrete
eigenvalue of scalar spherical harmonics Yl

m(z, z̄). Accordingly the scalar basis can be
expressed as

fω,k,l,m(τ, ρ, z, z̄) = ψ(τ, ω)ϕl(ρ, k)Yl
m(z, z̄) (3.13)

where the onshell condition requires ω = k. As above, we will be interested in using
this basis to represent fields with the same boundary conditions which are not necessar-
ily onshell, hence we do not impose ω = k a priori. Any scalar satisfying the boundary
conditions can be expressed as

Φ(τ, ρ, z, z̄) = ∑
l,m

∫︂
dωdk fω,k,l,m(τ, ρ, z, z̄)Φ̃(ω, k, l, m), (3.14)
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where Φ̃ can be treated as coefficients and one can deduce them by applying the or-
thogonality relation of the basis∫︂

dτdρdzdz̄ w(τ, ρ, z, z̄) fω,k,l,m(τ, ρ, z, z̄) fω′,k′,l′,m′(τ, ρ, z, z̄) = δll′δmm′δ(ω−ω′)δ(k− k′)
(3.15)

with proper weight function w deduced form the equation of motion. In relation (3.14)
we express the integrals abstractly; we will discuss how the domain of (ω, k) relates to
boundary and regularity conditions below.

We can also define a basis on spatial slices

Fk,l,m(ρ, z, z̄) = ϕl(ρ, k)Yl
m(z, z̄) (3.16)

Any scalar satisfying the equation of motion can be expressed as

Φ(τ, ρ, z, z̄) = ∑
l,m

∫︂
dk Fk,l,m(ρ, z, z̄)Φ̄(τ, k, l, m), (3.17)

where we have imposed the on-shell condition ω = k and reorganize the product of
Φ̃(k, k, l, m)ψ(τ, k) into Φ̄(τ, k, l, m).

Analogously we can transform only in the time direction i.e.

Φ(τ, ρ, z, z̄) =
∫︂

dω ψ(τ, ω)Φ̂(ω, ρ, z, z̄), (3.18)

where again we rewrite the data and make ∑lm Φ̃(ω, ω, l, m)Fk,l,m(ρ, z, z̄) into Φ̂(ω, ρ, z, z̄)
. We will see later that those two are the most natural ways to read off the holographic
data.

3.1.2 Explicit Modes

Massless Fields

Now let us turn to the explicit solution of the differential equations above. These have
been discussed in the literature de Boer and Solodukhin (2003); Marolf (2007); Cheung
et al. (2017b); Liu and Lowe (2021); Raclariu (2021), but here we will consider in further
detail the role of regularity and boundary conditions. Let us consider the differential
equation in time. It is useful to consider first the case of a massless field, so that the
equation reduces to (︃

−3
∂τ

τ
− ∂2

τ +
ω2

τ2

)︃
ψ(τ, ω) = 0. (3.19)

The generic solution takes the form

ψ(τ, ω) = ψ(α+)τ
−1+α+ + ψ(α−)τ

−1+α− (3.20)
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where α± are the two roots of
α2 = 1 + ω2 (3.21)

Solutions are bounded |ψ| < ∞ at the null infinity τ → ∞ if either |Re(α+)| ≤ 1 or
|Re(α−)| ≤ 1. More precisely, states that are localised in the center and vanish at the
boundary take the value |Re(α)| < 1, called bound states. States which could propagate
to the infinity and have non-zero contribution at null boundary are called scattering
states. We will study them in a separate way.

Scattering States

For scattering states, we should have either Re(α+) = 1 or Re(α−) = 1. Thus all
solutions that are finite at the infinity have the form

α = 1 + ip (3.22)

with p real. We can write a general scattering state as

ψ(τ, p) = ψ(p)eip ln τ (3.23)

where p is real, α2 = (1− p2) + 2ip and ω2 = 2ip− p2. Clearly each such mode is not
real. If α+ = 1 + ip, then the corresponding second root of (3.21) is α− = −(1 + ip); the
latter mode is bounded as τ → ∞ but is not bounded as τ → 0. Thus for a given real
value of p the general solution takes the form

ψ(τ, p) = ψ+(p)τip + ψ−(p)τ−ip−2 ≡ ψ+(p) f+(τ, p) + ψ−(p) f−(τ, p) (3.24)

To understand the orthogonality relation it is useful to first recall the standard relations
for exponentials i.e.

∫︂ ∞

−∞
d(ln τ)ei(p−q) ln τ =

∫︂ ∞

0

dτ

τ
ei(p−q) ln τ = 2πδ(p− q) (3.25)

The latter is equivalent to∫︂ ∞

0
dτw(τ) f+(τ, p) f−(τ, q) = δ(p− q) (3.26)

where the weight function w(τ) = τ is derived by expressing (3.19) in standard Sturm-
Liouville form i.e.

∂τ (P(τ)∂τψ) + Q(τ)ψ = −λw(τ)ψ (3.27)

where λ is the eigenvalue i.e. ω2 and the coefficient functions (P(τ), Q(τ)) follow from
(3.19).

Bound States on Principal Series
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For bound states |ψ| → 0 when τ → ∞, as we have mentioned, α should satisfy
|Re(α±)| < 1. Here we are just interested in the special case such that α± are cho-
sen to be

α± = ± ip (3.28)

for p ∈ R, then τ modes f± will become

f+(τ, p) = τ−1+α+ =
eip ln τ

τ
, f−(τ, p) = τ−1+α− =

e−ip ln τ

τ
. (3.29)

Now we impose further restriction on p so that make p ≥ 0. This could always be done
since f+(τ, p) = f−(τ,−p) and one can treat such restriction as the reduction of the
redundancy of the basis or the decomposition of the mode into positive and negative
frequency components. For a generic function ψ(τ, p), we have the decomposition

ψ(τ, p) = ψ(p) f+(τ, p) + ψ∗(p) f−(τ, p), (3.30)

in which ψ(p) are complex coefficients and ψ(τ, p) is now real. Given the weight func-
tion w(τ) = τ, one can check that∫︂ ∞

0
dτw(τ) f+(τ, p) f−(τ, q) = 2π δ(p− q) (3.31)

and the relation∫︂ ∞

0
dτw(τ) f+(τ, p) f+(τ, q) =

∫︂ ∞

0
dτw(τ) f−(τ, p) f−(τ, q) = 2π δ(p + q) = 0. (3.32)

Later, we will see that those states are dual to operators on the celestial sphere with
scale dimension ∆ satisfying

∆ = 1 + α+ = 1 + ip, (3.33)

which is half of the principal series that forms the unitary representation of SO(1, 3)
Dobrev et al. (1977). It is also worthwhile to note that the mode expansion (3.18) will
become inverse Mellin transform if the τ modes take the form in (3.30).

Massive Fields

For non-zero mass the generic solution takes the form

ψ(τ, ω) = ψ(α+)
Jα+(Mτ)

τ
+ ψ(α−)

Jα−(Mτ)

τ
(3.34)

where α± are again the roots of (3.21). Here we assume that α± are generic complex
numbers, in which case the two Bessel functions expressed in this form are manifestly
linearly independent. For integer α the second solution will be expressed in the form
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of the second Bessel function Yα. Solutions that are bounded as τ → 0 have

Re(α) ≥ 1, (3.35)

since Jα(Mτ) ∼ τα as τ → 0. Using this limit of Jα(x) as x → 0, the mode functions
clearly reduce to those above as M → 0. The behaviour of Bessel functions at large τ

are complicated and we will leave this to further investigation.

As we have seen, the value of α(k) or equivalently ∆ are often related to the behaviour
of the solution near the light cone or null boundary. For example in section 3 of de Boer
and Solodukhin (2003), they argued that the action should be regular around the light
cone thus, for the modes behaves as τ−1+α, one requires Re(α) ≥ 0 which is a weaker
condition than the boundedness condition (3.35).

In section 2 of Marolf (2007), the regularity of the solution is studied from the normal-
ization point of view. The behaviour of the field at null boundary and light cone are
both studied and it is argued that the solution should be oscillatory in order to make
the mode normalizable. In our context, the oscillatory condition means that α should
be complex, i.e. Im(α) ̸= 0. Furthermore, Marolf also argued that the oscillatory fields
should be separated into two parts. One is dynamical and it is normalizable according
to the Klein-Gordon norm while the other part is not normalizable and is used to spec-
ify the boundary condition of the system. In additonal to the Klein-Gordon norm, the
other kind of paring between the oscillatory modes is also introduced in order to study
the inner product structure between all the modes.

More rigorous study of the asymptotic behaviour of the solution for Klein-Gordon
equation in math literature are shown in Vasy (2013); Baskin et al. (2015, 2018). The
boundedness of the solution for Schwarzschild case is shown in the gravity literature,
so called Kay–Wald boundedness theorem Kay and Wald (1987) and one can see the
review in Dafermos and Rodnianski (2013). For Minkowski case, stability for the Ein-
stein equation is first shown in Christodoulou and Klainerman (1993). Then for scalar-
Einstein case when the matter field propagating on the asymptotically Minkowski back-
ground, the stability is also proofed provided the decay of the fields is under well
controlled at the boundary Lindblad and Rodnianski (2010), which leads to the con-
straints on the real part of the scale dimension i.e. Re(α). This is similar to the study of
Breitenlohner-Freedman bound for AdS spacetime Breitenlohner and Freedman (1982a,b).
For the stability of Minkowski, a sharp bound for α is not found yet while, according
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to the above discussion, we summarise the possible range of as 1

0 ≤ Re(α) ≤ 1, Im(α) ̸= 0. (3.36)

However, given the fact that α has two solutions satisfying α+ + α− = 0, we will have
Re(α±) = 0 if one requires both of the modes f±(τ, p) live in the bound (3.36). For
other choices of α, one of the two modes will be stable while the other will not.

3.1.3 Radial Equation

Now let us turn to the radial equation (3.11). It is important to distinguish between
solutions to the equation for all radial values, and the asymptotic expansions from
which the holographic dictionaries are constructed. The general solution to the radial
equation can be written as

ϕl(ρ, k) = ϕ(k)cschη Pβ
l (cothη) + φ(k)cschη Qβ

l (cothη), (3.37)

in which ρ = sinh η and (P, Q) are associated Legendre functions. Note that the range
of η is the same as that for ρ i.e. 0 ≤ η < ∞. The order of the function is given by

β2 = 1 + k2 (3.38)

where here we do not assume that β is real. In fact, since coth(η) ≥ 1 over the domain
of interest, it is more useful to write the general solution in terms of the hypergeometry
functions as shown in the appendix F thus here it is convenient to choose the basis as

ϕl(ρ, k) = ϕ+
l (k)cschη Pβ+

l (cothη) + ϕ−l (k)cschη Pβ−
l (cothη), (3.39)

where β± are the two (complex) roots of (3.38), with (β+ + β−) = 0.

To understand the regularity and boundedness conditions it is useful to consider the
first the l = 0 solutions which can be written in terms of elementary functions as

ϕ0(ρ, k) = ϕ+(k)
1
ρ
(ρ +

√︂
ρ2 + 1)β+ + ϕ−(k)

1
ρ
(ρ +

√︂
ρ2 + 1)β− (3.40)

where (β+ + β−) = 0. A mode is bounded as ρ → ∞ provided that Re(β) ≤ 1.
However, no single mode is bounded as ρ → 0. One can combine modes to obtain

1We should note that the upper bound comes from the boundedness of the modes |ψ| ≤ ∞ at the
null infinity while for the stability of Minkowski space the condition will usually be stronger than the
boundedness. For example, in the work Lindblad and Rodnianski (2010), the decay behaviour of the field
is required to be |ψ| < τ−1 thus the real part of α could only be zero after taking the lower bound into
consideration. Here we choose to present the wider range for α although it not clear to us whether the
value 0 < |Re(α)| ≤ 1 are physical and stable or not.
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fields that are bounded as ρ→ 0:

1
ρ

sinh
(︃

β+ ln(ρ +
√︂

ρ2 + 1)
)︃

. (3.41)

The orthogonality condition for l = 0 is obtained as above from writing the radial
equation in Sturm-Liouville form (3.27), so that the coefficient and weight functions are
given by

P(ρ) = ρ2(ρ2 + 1)
1
2 w(ρ) =

ρ3

(ρ2 + 1)
3
2

. (3.42)

Therefore we have∫︂ ∞

0
dρw(ρ)F (ρ, β+)F (ρ, β−) = 1 β+ + β− = 0 (3.43)

where
F (ρ, β±) =

1
ρ
(ρ +

√︂
ρ2 + 1)β± . (3.44)

By using the orthogonal relation (3.43), one can define the inner products between the
regular physical spatial modes for l = 0. A full treatment for the construction of regular
solutions in the cases for l > 0 is shown in the Appendix F and the study for the inner
product is shown in the work Laddha et al. (2022). Till now, we have discussed the
modes with various choices of the value of α or β and their corresponding physical
interpretation while we should note that it is not clear which of them will form the
necessary complete basis for the bulk fields and a generic principle to find out such a
basis is still absent. Later we will see that different k-modes contribute to the correlation
function living on the boundary celestial sphere in a different way according to the
detail of the interaction. Here, we assume that given the detail of the theory a proper
subset P of k always exists that enable us to perform the mode decomposition thus the
modes form a complete basis and the superposition principle will work. In the rest of
this thesis, we will focus on the study of onshell fields therefore the condition α = β is
automatically imposed.

3.2 Holography

The purpose of this section is to develop a detailed holographic dictionary between
the bulk theory in asymptotically Minkowski spacetimes and the putative dual theory,
associated with null infinity. We will develop the dictionary using the example of a test
scalar field in the fixed Minkowski background. Our approach will be based on the
principles of AdS/CFT (1.1), i.e, writing a defining holographic relation of the form

exp
(︁
iSren(Φ)

)︁
=
⟨︂

exp −
∫︂

∂M
J O

⟩︂
QFT

. (3.45)
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Here S(Φ) is the action of the bulk theory with scalar field Φ. Taking into account IR
divergences, we will need to renormalise this action and Sren(Φ) is the renormalised
version of S(Φ); an important part of this section will be establishing the principles
underlying the renomalisation procedure. On the right hand side of (3.45) we denote
J andO as the source and operator in the quantum field theory at the boundary. Again
this should be viewed as a renormalised expression. The detail of the mapping between
the asymptotic bulk boundary condition and CFT sources together with operators are
summarized in section 3.2.4

Following the story of the construction of the dictionary for AdS/CFT Witten (1998a);
Freedman et al. (1999); Klebanov and Witten (1999), here we are also going to specify
the source and operator by decomposing the data of the bulk field Φ into coefficients
when doing the expansion at the boundary. It turns out that we need two series of op-
erators {J ,O} and {J̃ , Õ} on the celestial sphere in order to reconstruct the bulk field
by checking the renormalised action specifically and the way that they are coupled is
determined by the causal and dynamical structure of the bulk theory. The new feature
for the Flat/CFT dictionary is that we are reducing two spacetime dimensions at once
and the dictionary is built between the bulk theory with the notion of time and the
boundary Euclidean theory on the sphere thus the factor i plays an important role here
when considering the emergence of time and the unitarity of the CFT.

3.2.1 Holographic Dictionary

We begin by reviewing the usual holographic dictionary for scalar fields on Euclidean
AdS3. Using the same coordinates for Euclidean AdS3 as above i.e.

ds2
AdS3

= gijdxidxj =

(︃
dρ2

1 + ρ2 + 2ρ2γzz̄dzdz̄
)︃

, (3.46)

the boundary is at ρ → ∞ and the boundary metric is manifestly spherical. Now con-
sider a massive scalar field with action

SAdS3 =
1
2

∫︂
d3x
√

g
(︁
(∂φ)2 + m2φ2)︁ , (3.47)

where g is the determinant of the Euclidean AdS3 metric above. The onshell action is
thus

Sonshell
AdS3

=
1
2

∫︂
∂AdS3

dΣi φ∂i φ. (3.48)

The asymptotic expansion of an onshell field takes the form

φ(ρ, z) = ρ∆−2 (φ(z) + · · · ) + ρ−∆ (φ̃(z) + · · · ) (3.49)



3.2. Holography 63

where φ(z) is the source for the dual operator Oφ(z) of dimension ∆, where m2 =

∆(∆ − 2). When ∆ is integral the asymptotic expansions contain logarithmic terms,
which are related to the contact terms in two point functions discussed below.

One uses the asymptotic expansion of the onshell field to compute the explicit value of
the regulated onshell action, from which one can construct covariant counterterms and
the renormalised action

Sren
AdS3

= Lρ→∞

(︂
Sonshell

AdS3
+ Sct

AdS3

)︂
(3.50)

The covariant counterterms are of the form

Sct
AdS3

= −1
2
(∆− 2)

∫︂
∂AdS3

d2x
√

hφ2 + · · · (3.51)

where h is the determinant of the induced metric at the boundary.

In terms of the complex AdS coordinate (3.46), the AdS3/CFT2 dictionary the can be
written as

exp
(︂
− SAdS3(Φ)

)︂
=
⟨︂

exp −
∫︂

S2
dz2φ(z) O(z)

⟩︂
, (3.52)

in which we have reorganised the factor 1
2 resulting from the transformation between

the complex and real (Poincaré) coordinates (E.69) into the rescaling of the source φ(z).
The expectation value of the dual operator is then defined as the variation of the renor-
malised action with respect to the source, expressed in terms of φ̃ as

⟨O(z)⟩φ = 2(1− ∆)Ω2(z)φ̃(z) + C(φ). (3.53)

Here the function C(φ) denotes contributions to the one point correlation function that
are expressed in terms of the source; such contributions arise whenever ∆ is integral
and its exact form depends on the regularization scheme. Again, the weight Ω2(z)
comes from the transformation between (E.69) and (3.46). As usual the two point func-
tion can be obtained by functionally differentiating with respect to the source φ(z) i.e.

⟨O(z)O(z′)⟩φ = −2(1− ∆)Ω2(z)
δφ̃(z)
δφ(z′)

+ · · · (3.54)

where the ellipses contribute only to contact terms in the correlation function and the
renormalisation factor 2(∆− 1) can be deduced by the study of bulk-boundary propa-
gator which is briefly reviewed in the Appendix E.

Given the bulk-boundary propagator K(ρ, z; z′), a generic regular field in the bulk with
boundary behaviour φ(ρ, z) ∼ φ(z) can be expressed as

φ(ρ, z) =
∫︂

S2

1
2

dz′dz̄′ K(ρ, z; z′)φ(z′), (3.55)
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in which we have taken coordinate transformation factor 1
2 into consideration and as-

sume ρ → ∞. With the help of the AdS/CFT propagator, one can deduce the CFT
two-point function in a quick way. For example, the AdS3 onshell action can be written
as

Sonshell
AdS3

=
1
2

∫︂
S2

dΩ2 R2
√︁

1 + R2 (φ(ρ, z)∂ρ φ(ρ, z))ρ=R (3.56)

= − ∆
2π

∫︂
S2

∫︂
S2

d2zd2z′
φ(z)φ(z′)
|z− z′|2∆ , (3.57)

in which in the second line we have used the expression (3.55) and the contraction re-
lation (E.79) for the propagators. Following the similar procedure, one can also deduce
Sct

AdS3
and we have

Sct
AdS3

= −1
2
(∆− 2)

∫︂
S2

dΩ2 R2 (φ(ρ, z)φ(ρ, z))ρ=R (3.58)

= −∆− 2
2π

∫︂
S2

∫︂
S2

d2zd2z′
φ(z)φ(z′)
|z− z′|2∆ , (3.59)

therefore, according to the dictionary (3.52), the renormalised two-point function now
becomes

⟨O(z)O(z′)⟩ = −
δ2Sren

AdS3

δφ(z)δφ(z′)
=

c∆

|z− z′|2∆ , (3.60)

where c∆ takes the value

c∆ =
2(∆− 1)

π
. (3.61)

3.2.2 Holography Dictionary for Milne

In this section we turn to scalar fields in the Milne coordinates then proceed to perform
the holography renormalisation for Minkowski spacetime. The action for the massive
scalar field is

S =
1
2

∫︂ ∞

0
dτ
∫︂ ∞

0
dρ
∫︂

dzdz̄
√
−G

(︁
(∂Φ)2 + M2Φ2)︁ , (3.62)

in which G is given by (3.10) together with scalar fields Φ and we have restricted the
integration region to A+. As usual we can express the onshell action as the exact term

Sonshell =
1
2

∫︂ ∞

0
dτ
∫︂ ∞

0
dρ
∫︂

dzdz̄
√
−GDµ(Φ∂µΦ), (3.63)

which can be expressed as boundary terms thus we have Dµ = 1√
−G

∂ν

√
−GGνµ. The

philosophy of the celestial holography approach is to foliate the spacetime with space-
like surfaces, and throughout this section we will work in this approach, analysing
divergences at the spatial boundaries of each slice.
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Accordingly, let us focus on the radial boundary as ρ → ∞. Using the Milne form of
the metric the onshell boundary terms are

Sonshell =
1
2

∫︂ ∞

0
dττ

∫︂
∂AdS3

dΣiΦ(τ, xi)∂iΦ(τ, xi) (3.64)

where the second integral is expressed in terms of the boundary of the Euclidean AdS3

metric (3.46). Here we should note that, strictly speaking, the value of onshell action
shown in (3.63) and (3.64) are not the same since we have ignored the integral over
spatial direction at the fixed hyperboloids τ = 0 and τ = +∞. After taking the other
Milne wedge A− into consideration, the difference is then determined by the integral
over Φ(τ = ±∞, ρ, z, z̄)∂τΦ(τ = ±∞, ρ, z, z̄) in which Φ(τ = ±∞, ρ, z, z̄) are the initial
and final data imposed for a given physical system since τ = ±∞ are null boundaries of
Minkowski space. If one proposes that the initial and final states for the physical system
are vacuum, then we have Φ(τ = ±∞, ρ, z, z̄) = 0 thus there will be no difference
between (3.63) and (3.64). For scattering processes, the initial and final states are the in
and out going states while one can assume the difference will contribute to the action in
a small and finite way therefore leads to a proper iϵ perscription of the quantum theory
Weinberg (1995). Here we will only study the onshell action in the form of (3.64) and
the explicit expression for this is

Sonshell =
1
2

∫︂ ∞

0
dττ

∫︂
∂AdS3

dΩ2R2(1 + R2)
1
2
(︁
Φ(τ, ρ, z, z̄)∂ρΦ(τ, ρ, z, z̄)

)︁
ρ=R (3.65)

where the boundary is regulated at ρ = R and dΩ2 is the integration measure over the
unit two sphere.

Given the onshell action, we can further decompose it into the k mode components by
introducing the k mode function f (τ, ρ, z, z̄; k) given by

Φ(τ, ρ, z, z̄) =
∫︂
P

dk f (τ, ρ, z, z̄; k) (3.66)

and then we can use such decomposition of fields to transform the onshell action into k
mode space after rewriting all the fields in the action in terms of f . More precisely, we
can define the (k, k′) mode of the action

Sonshell(k, k′) :=
1
2

∫︂ ∞

0
τdτ

∫︂
∂AdS3

dΩ2 R3( f (τ, ρ, z, z̄; k)∂ρ f (τ, ρ, z, z̄; k′))ρ=R (3.67)

and one can check at large R we have

Sonshell =
∫︂
P

dk
∫︂
P ′

dk′ Sonshell(k, k′), (3.68)

where the double integral over the set P come from the fact that the onshell action for
free particles are quadratic in terms of Φ. Moreover, we can treat the (k, k′) mode of the
action Sonshell(k, k′) as the onshell action which describes the interaction between a pair
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of modes (k, k′). Later we will see that Sonshell(k, k′) is proportional to the delta function
if the domain of the integral over k takes the value such that β+(k) = iR+ thus we have

Sonshell(k, k′) = δ(k− k′)Sonshell(k, k) (3.69)

and for simplicity we denote Sonshell(k, k) as Sonshell(k). In such convention, the onshell
action then can be expressed as

Sonshell =
∫︂
P

dk Sonshell(k), (3.70)

which will be used as the standard form of the k mode decomposition of the action for
free particles.

Before performing the renormalisation on Sonshell(k), let us consider asymptotic solu-
tions of the equation (3.11) as ρ→ ∞. The generic form for the asymptotic solution

ϕl(ρ; k) = ϕl(ρ; β+(k)) + ϕl(ρ; β−(k)) (3.71)

≡ ρβ+−1
(︃

ϕ+
l (k) +O

(︃
1
ρ2

)︃)︃
+ ρβ−−1

(︃
ϕ−l (k) +O

(︃
1
ρ2

)︃)︃
where (β+ + β−) = 0 and without loss of generality we will assume that Re(β+) ≥
Re(β−). Physical constraints and the inner product structure of these modes have al-
ready been studied in Section 3.1.3 and Appendix F. Here, instead of using l modes on
the sphere we can express a general solution for the spatial part of the scalar for fixed k
as

ϕ(ρ, z, z̄; k) = ϕ(ρ, z, z̄; β+) + ϕ(ρ, z, z̄; β−) (3.72)

by summing over the harmonic indices (l, m) thus the asymptotics of each solution are
of the form

ϕ(ρ, z, z̄; β±) = ρβ±−1
(︃

ϕ±(z, z̄; k) +O
(︃

1
ρ2

)︃)︃
. (3.73)

Combining modes of a fixed value of k we obtain

f (τ, ρ, z, z̄; k) = f+(τ, k)ϕ(ρ, z, z̄; k) + f−(τ, k)ϕ̃(ρ, z, z̄; k) (3.74)

= τβ+−1ϕ(ρ, z, z̄; β+) + τβ−−1ϕ̃(ρ, z, z̄; β+) (3.75)

+τβ+−1ϕ(ρ, z, z̄; β−) + τβ−−1ϕ̃(ρ, z, z̄; β−)

where the fields ϕ̃(ρ, z, z̄; β±) have the properties (3.72) and (3.73) and well see the ex-
plicit expression for them in the next section.
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Now let us return to the four-dimensional k mode action. The regulated action for
modes of fixed k contains the terms

Sonshell(k) =
1
2

∫︂ ∞

0
dττ

∫︂
∂AdS3

dΩ2

(︂
(β+ − 1)R2β+Φs(τ, z, z̄; k)2

+ (β− − 1)R2β−Φv(τ, z, z̄; k)2 − 2Φs(τ, z, z̄; k)Φv(τ, z, z̄; k) + · · ·
)︂

, (3.76)

where the boundary of the AdS slice is regulated as ρ = R and the ellipses denote
terms that are suppressed by at least 1/R2. We introduce a shorthand notation for the
combinations of terms in the asymptotic radial expansions:

Φs(τ, z, z̄; k) = τβ+−1ϕ+(z, z̄; k) + τβ−−1ϕ̃
+
(z, z̄; k) (3.77)

Φv(τ, z, z̄; k) = τβ+−1ϕ−(z, z̄; k) + τβ−−1ϕ̃
−
(z, z̄; k)

Let us suppose that Re(β+) > 0, in which case Re(β−) < 0. In this case the first term
in (3.76) will be divergent as R → ∞, but the second term will vanish; all power law
divergences will be of the form R2β+−2n with n an integer.

As above, we can remove divergences with counterterms. These counterterms should
be expressed in terms of quantities that are intrinsic to the regulated boundary, and
they should be covariant with respect to the bulk diffeomorphism at ρ = 0 thus make
Φ(τ, R, z, z̄) transform as a scalar field. Here in fact, the background metric already
uses a preferred slicing of the four-dimensional metric, i.e. a specific coordinate choice
for time, and therefore we would not expect the counterterms to preserve full three-
dimensional covariance of the boundary. In practice this means that the counterterms
are expressed in the form

Sct =
∫︂ ∞

0
dτ
∫︂

∂AdS3

d2z
√
−γ̄

(︁
a1Φ(τ, R, z, z̄)2 + a2(∂z∂τΦ(τ, R, z, z̄))2 + · · ·

)︁
=

∫︂ ∞

0
dττ

∫︂
∂AdS3

dΩ2
(︁
a1Φ(τ, R, z, z̄)2 + a2(∂z∂τΦ(τ, R, z, z̄))2 + · · ·

)︁
(3.78)

where γ̄ττ = −1, γ̄zz̄ = τ2γzz̄ is the induced metric on the boundary of Milne wedge
at ρ = R (with the curvature radius being independent of τ) and the derivative ∂z only
acts on the celestial sphere. As we can see, the covariant of the bulk diffeomorphism at
the surface ρ = R shown in the first line is broken by fixing the gauge of coordinates
in the second line. By construction these counterterms will remove the divergences
because the analytic structure on the celestial sphere is precisely as described above for
AdS3/CFT2. Indeed, matching with the dictionary above one obtains

∆k = 1 + β+ (3.79)
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and the finite terms in the renormalized action include

Sren(k) = β+

∫︂ ∞

0
dττ

∫︂
∂AdS3

dΩ2Φs(τ, z, z̄; k)Φv(τ, z, z̄; k) (3.80)

= β+

∫︂ ∞

0
dττ

∫︂
∂AdS3

dΩ2(τ
β+−1ϕ+(z, z̄; k) + τβ−−1ϕ̃

+
(z, z̄; k))

×(τβ+−1ϕ−(z, z̄; k) + τβ−−1ϕ̃
−
(z, z̄; k)). (3.81)

As above, there would be additional finite terms in the action if β+ were to be real and
integer valued, but this is not the case of interest here. According to the dictionary given
in (3.45), one can see that β+ should be a pure imaginary number β+ ∈ iR in order to
make sure that CFT correlation functions given by the right hand side of (3.45) are real.
Moreover, given the relation (3.79), we know that the scale dimension of the operator
on the celestial sphere should take the value on the principal series ∆k = 1 + iR2.

Using the orthogonality relations for the τ eigenfunctions (3.31), (3.32) we can explicitly
compute the τ integrals as

Sren(k) = β+

∫︂
∂AdS3

dΩ2(ϕ
+(z, z̄; k)ϕ̃−(z, z̄; k) + ϕ̃

+
(z, z̄; k)ϕ−(z, z̄; k)) + · · · (3.82)

and one can also see that the δ(k− k′) will come out if one choose to use Sonshell(k, k′)
rather than Sonshell(k). From this expression we can read off that there are two operators
of dimension ∆k with corresponding expectation values and sources:

⟨O(z, z̄; k)⟩ = 2iβ+Ω2(z)ϕ−(z, z̄; k) J (z, z̄; k) = ϕ̃
+
(z, z̄; k) (3.83)

⟨Õ(‡, ‡̄; ∥)⟩ = 2iβ+Ω2(z)ϕ̃
−
(z, z̄; k) J̃ (z, z̄; k) = ϕ+(z, z̄; k)

These two operators have the same two dimensional CFT scaling dimension, but are
associated with different evolution in the τ direction.

A generic massless field Φ will be expressed as an integral over k, with the correspond-
ing renormalized action being

Sren =
∫︂
P

dkSren(k) (3.84)

=
∫︂
P

dk β+(k)
∫︂

∂AdS3

dΩ2(ϕ
+(z, z̄; k)ϕ̃−(z, z̄; k) + ϕ̃

+
(z, z̄; k)ϕ−(z, z̄; k))

The field Φ is thus dual to two continuous series of operators, labelled by k, whose
sources and expectation values are given above in (3.83).

2In fact ∆k = 1 + iR+ if β+ takes the value in iR+ and we assume that such k modes will form the
necessary complete basis when one performs the mode decomposition following the discussion in section
3.1. There are also shadow operators given by the shadow transformation ∆k → 2− ∆k so that the value
of scale dimension will cover the whole principal series.
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O +

-

⟨OO⟩ ⟨ÕÕ⟩

J

J̃

Õ

FIGURE 3.2: Propagators between two copies of operators are illustrated in the figure.
Each disk represents one copy of AdS3 hyperboloid with S2 boundry drawn as a circle.
+ and - represent that the operators are obtained from the decomposition of the τβ+−1

or τβ−−1 modes.

3.2.3 Correlation Functions

In this section we are going to study correlation functions in the context of Flat/CFT
in a more precise way. Propagators for free fields ⟨OO⟩, ⟨ÕÕ⟩ are deduced and also
represented in the language of diagrams. For higher point correlation functions in an
interacting theory, the interactions are described by internal vertices of the diagrams.
We use the Φ3(X) interaction as an example to see how the operators of different scale
dimensions are coupled with each other.

Following the previous approach in the context of AdS/CFT, we again choose to de-
compose the bulk fields into the bulk-boundary propagator

Φ(τ, ρ, z, z̄) =
1

2
√

2

∫︂
P

dk
∫︂

S2
dz′dz̄′

(︁
τβ+−1K(ρ, z; z′, β+)ϕ

+(z, z̄; k)

+τβ−−1K(ρ, z; z′, β+)ϕ̃
+
(z, z̄; k)

)︁
, (3.85)

in which ∂AdS3 = S2 and ϕ+(z, z̄; k), ϕ̃
+
(z, z̄; k) can be treated as a pair of sources on

the boundary as introduced in 3.83. Given such expression, from the onshell action

Sonshell(Φ) = −1
2

∫︂ ∞

0
dτ
∫︂

S2
dΩ2 R2

√︁
1 + R2 (Φ(τ, ρ, z, z̄)∂ρΦ(τ, ρ, z, z̄))ρ=R (3.86)

we have the k-mode component

Sonshell(k) =
∆k

2π

∫︂
S2

∫︂
S2

d2zd2z′
ϕ+(z, z̄; k)ϕ̃+

(z, z̄; k)
|z− z′|2∆k

, (3.87)

in which we have integrated out the τ variable and the orthorgonal relations for the τ-
modes are also applied. After performing the holographic renormalisation introduced
in the previous section, the counterterm is then deduced to be

Sct(Φ) = −1
2
(∆k − 2)

∫︂ ∞

0
dτ
∫︂

S2
dΩ2 R2

√︁
1 + R2 (Φ(τ, ρ, z, z̄)Φ(τ, ρ, z, z̄))ρ=R + · · ·

(3.88)
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with k-mode

Sct(k) = − 1
2π

(∆k − 2)
∫︂

S2

∫︂
S2

d2zd2z′
ϕ+(z, z̄; k)ϕ̃+

(z, z̄; k)
|z− z′|2∆k

. (3.89)

Given the Flat/CFT dictionary, in order to obtain the two-point function of the operator
O, we need to do the variation with respect to the corresponding source J = ϕ̃

+ twice
therefore get

⟨O(z, z̄; k)O(z′, z̄′; k)⟩ = iδ2Sren

δϕ̃
+
(z)ϕ̃+

(z′)
=
∫︂

d2z′′
δϕ+(z′′, z̄′′; k)

δϕ̃
+
(z, z̄; k)

ck

|z′′ − z′|2∆k
, (3.90)

in which ck = 2i(1− ∆k)/π. The variation between two functions are not well defined
while at least we should note that such value could not be zero since ϕ+ and ϕ̃

+ are not
independent. Expanding them in terms of spherical harmonics, one will see that the
variation of the two sources with respect to the basis can be written as

δϕ+(z, z̄; k) = ∑
l ̸=0,m

a+lm(k)δYl
m(z, z̄) δϕ̃

+
(z, z̄; k) = ∑

l ̸=0,m
a−lm(k)δYl

m(z, z̄) (3.91)

in which the coefficients a±lm(k) come from the decomposition of the bulk fields Φ and
they are determined by assigning data on the Cauchy hypersurface chosen as the initial
time 3. More discussion of the coefficients can be found in Appendix G or Section 3.3.
Physically, we can treat the deviation of the basis δYl

m from the spherical harmonics as
the deformation of the background geometry away from the flat case. Therefore one
can define the variation between two sources as

δϕ+(z, z̄; k)
δϕ̃

+
(z′, z̄′; k)

:=
1

Nk
∑

l ̸=0,m

a+lm(k)
a−lm(k)

δ(z− z′), (3.92)

in which the factor Nk = ∑l ̸=0,m 1 is introduced for normalization and one can interpret
it as the measure of the discrete parameter space (l, m). Following such convention,
then we obtain the two-point function

⟨O(z, z̄; k)O(z′, z̄′; k)⟩ = 1
Nk

∑
l ̸=0,m

a+lm(k)
a−lm(k)

ck

|z− z′|2∆ , (3.93)

and

⟨Õ(z, z̄; k)Õ(z′, z̄′; k)⟩ = 1
Nk

∑
l ̸=0,m

a−lm(k)
a+lm(k)

ck

|z− z′|2∆ . (3.94)

These two kinds of propagators carry the dynamical information of the physical sys-
tem in the bulk. From the boundary point of view, they describe the coupling of the
two series of operators and we represent such relation in Fig.3.2. For the higher point

3Actually, one should further impose Lorentz invariance, causality condition and the cluster decompo-
sition principle on these coefficients when using quantum field theory to calculate scattering amplitudes
of particles.
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∆1 ∆2

∆3

∆1

∆2 ∆3

FIGURE 3.3: For λΦ3(X) interaction, two kinds of k-mode contribution for the three
point function ⟨OOO⟩are shown in the figure. The diagram on the left represents
mode contribution like ϕ1ϕ2ϕ̃3 while the mode contribution like ϕ1ϕ̃2ϕ̃3 are shown on

the right.

correlation functions, one needs to take the interaction of particles into consideration.
Suppose that we have turned on the Φ3 interaction of coupling constant λ, then we can
write the action as

λ
∫︂

d4X Φ3(X) = λ
∫︂

AdS3

d3x
√

g
∫︂
P

dk1dk2dk3

∫︂ ∞

0
dτ

1
τ
(τβ1

++β2
+−β3

+−1ϕ(z, z̄, ρ; k1)

(3.95)

×ϕ(z, z̄, ρ; k2)ϕ̃(z, z̄, ρ; k3) + τβ1
+−β2

+−β3
+−1ϕ(z, z̄, ρ; k1)ϕ̃(z, z̄ρ; k2)ϕ̃(z, z̄ρ; k3) + · · · ),

in which we have decomposed the fields into the integral over k-modes and collected
all the τ-modes. To discuss the integral over τ modes in a more precise way, we write
the value of β+ as a complex number into the real and imaginary part√︂

1 + k2
i ≡ βi

+ = γi + ipi, (3.96)

therefore the integral, taking the first one ϕ1ϕ2ϕ̃3 for example, becomes

∫︂ ∞

0
dτ

1
τ

τγ1+γ2−γ3−1ei(p1+p2−p3) ln τ ∼ δ(p1 + p2 − p3) (3.97)

after imposing the condition for the real part

γ1 + γ2 − γ3 = 1. (3.98)

In such the case, the interacting part in the action then can be reduced to

δ(p1 + p2 − p3) λ
∫︂

AdS3

d3x
√

g ϕ(z, z̄, ρ; k1)ϕ(z, z̄, ρ; k2)ϕ̃(z, z̄, ρ; k3) (3.99)

and its contribution to the three-point function is shown in the left hand side Figure
3.3. For the ϕ1ϕ̃2ϕ̃3 contribution in (3.95), if one imposes the condition

γ1 − γ2 − γ3 = 1 (3.100)
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∆1 ∆2

∆3

∆1

∆2 ∆3

FIGURE 3.4: For λΦ3(X) interaction, two kinds of k-mode contribution for the three
point function ⟨ÕÕÕ⟩ are shown in the figure. The diagram on the left represents
mode contribution like ϕϕϕ̃ while the mode contribution like ϕϕ̃ϕ̃ are shown on the

right.

therefore the interaction takes the form

δ(p1 − p2 − p3) λ
∫︂

AdS3

d3x
√

gϕ(z, z̄, ρ; k1)ϕ̃(z, z̄, ρ; k2)ϕ̃(z, z̄, ρ; k3) (3.101)

and the diagram is shown in the right hand side of Figure 3.3. In the figure, we have
seen that the internal vertex is inserted in the − disk since we are calculating the three
point function ⟨OOO⟩ generated by the source ϕ̃

+ living on the - disk. For the three
point function ⟨ÕÕÕ⟩ we can also show the ϕϕϕ̃ and ϕϕ̃ϕ̃ interaction in terms of dia-
grams but now the internal vertex is inserted on the + disk shown in Figure 3.4.

It is interesting to note that the diagrams introduced here can be treated as the inter-
mediate between Feynman and Witten diagrams. If one collapses the two disks in the
diagram, i.e ignoring the dynamical or the causal structure of the system, then we will
obtain the Witten diagram which is often illustrated as a single disk. From the other
hand, if one tries to sum over all the diagrams of different k modes, then one will re-
cover the Feynman diagrams which enable us to study the scattering amplitudes for
particles.

3.2.4 Holographic Dictionary for Onshell Scalar Fields

In this section we collate the results above and summarise the process for reading off
the holographic data corresponding to an onshell scalar field Φ(τ, ρ, z, z̄). In general
the Flat/CFT dictionary is given by

exp
(︁
iSren(Φ)

)︁
=
⟨︂

exp −
∫︂

S2

∫︂
P

(︁
J∆ O∆ + J̃ ∆Õ∆

)︁ ⟩︂
CFT

. (3.102)

To map the data between two sides, we first express the scalar field as a linear super-
position of frequency modes, i.e.

Φ(τ, ρ, z, z̄) =
∫︂
P

dkτβ+−1ϕ(ρ, z, z̄; k) +
∫︂
P

dkτβ−−1ϕ̃(ρ, z, z̄; k) (3.103)
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where following (3.75) the two classes of modes can be expressed as

ϕ(ρ, z, z̄; k) = ϕ(ρ, z, z̄; β+) + ϕ(ρ, z, z̄; β−); (3.104)

ϕ̃(ρ, z, z̄; k) = ϕ̃(ρ, z, z̄; β+) + ϕ̃(ρ, z, z̄; β−).

These fields have asymptotic expansions

ϕ(ρ, z, z̄; k) = ρβ+−1ϕ+(z, z̄; k) + ρβ−−1ϕ−(z, z̄; k) + · · · (3.105)

ϕ̃(ρ, z, z̄; k) = ρβ+−1ϕ̃
+
(z, z̄; k) + ρβ−−1ϕ̃

−
(z, z̄; k) + · · ·

from which one can read off expectation values and sources according to:

⟨O(z, z̄; k)⟩ = −2iβ+Ω2(z)ϕ−(z, z̄; k) J (z, z̄; β) = ϕ̃
+
(z, z̄; k) (3.106)

⟨Õ(‡, ‡̄; ∥)⟩ = −2iβ+Ω2(z)ϕ̃
−
(z, z̄; k) J̃ (z, z̄; k) = ϕ+(z, z̄; k)

The decomposition of the field (3.103) follows from the orthogonality relations:

ϕ(ρ, z, z̄; k) =
1

2π

∫︂ ∞

0
dτ τβ−Φ(τ, ρ, z, z̄) (3.107)

ϕ̃(ρ, z, z̄; k) =
1

2π

∫︂ ∞

0
dτ τβ+Φ(τ, ρ, z, z̄).

To calculate the two-point function and reduce the data to single AdS surface, we need
to check the expression of ϕ(ρ, z, z̄; β±) and ϕ̃(τ, ρ, z, z̄; β±) explicitly. Given the AdS
modes as the basis, ϕ, ϕ̃ are characterised by the coefficient a+lm(k) a−lm(k) written as

ϕ±(ρ, z, z̄; k) = ∑
lm

a+lm(k) ϕl(ρ; β±)Yl
m(z, z̄) (3.108)

ϕ̃
±
(ρ, z, z̄; k) = ∑

lm
a−lm(k) ϕl(ρ; β±)Yl

m(z, z̄), (3.109)

where we have chosen the normalisation for the spatial function as ϕl(ρ; β+) = ρβ+−1 +

· · · . In such case, one can then write the sources in terms of spherical harmonic func-
tions as

ϕ+(z, z̄; k) = ∑
l,m

a+lm(k)Y
l
m(z, z̄) (3.110)

ϕ̃
+
(z, z̄; k) = ∑

l,m
a−lm(k)Y

l
m(z, z̄). (3.111)

and the two copies of propagators are given by

⟨O(z, z̄; k)O(z′, z̄′; k)⟩ =
1

Nk
∑

l ̸=0,m

a+lm(k)
a−lm(k)

ck

|z− z′|2∆ (3.112)

⟨Õ(z, z̄; k)Õ(z′, z̄′; k)⟩ =
1

Nk
∑

l ̸=0,m

a−lm(k)
a+lm(k)

ck

|z− z′|2∆ . (3.113)
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Such results work for Minkowski spacetime. For asymptotically Minkowski spacetime,
one needs to do the harmonics analysis and the results are shown in Appendix G as
(G.133) and (G.134).

Moreover, for higher point functions and theories with interaction. It is convenient to
represent the correlation functions using two copies of disks labeled by + and -. For
the correlators constructed out of the operator O, the interactions are described by the
internal vertices inserted on the - disk while for the Õ correlators, the points will be
inserted on the + disk, i.e, all the internal vertices of each diagram can only exist in
one of the disk. For the external legs, the one connects two points on a single disk is
described by the standard AdS/CFT propagator. While for the ones that connect two
disks, we need to take the extra factors constructed out of the coefficients a±lm(k) into
consideration. If we assume that the legs between two disks have directions and they
always flow into the internal points, the leg that starts from the ith external vertex on
the + disk then ends at the internal point the on - disk will contribute to a factor

i(+) −→ •(−) 1
Nk

∑
l ̸=0,m

a+lm(ki)

a−lm(ki)
(3.114)

and the one starts from the ith external vertex on the - disk then ends at the internal
point the on + disk will contribute to a factor

i(−) −→ •(+)
1

Nk
∑

l ̸=0,m

a−lm(ki)

a+lm(ki)
. (3.115)

3.3 Shock Waves and Their Holographic Interpretation

i+

o

A+

v

u

FIGURE 3.5: In and out going shock waves propagating in regionA+ are shown in the
figure.



3.3. Shock Waves and Their Holographic Interpretation 75

In this section we consider the holographic interpretation of a shock wave. Here in our
context, the shock waves are scalar shocks that could either distribute on a spherical
shell or localise along the null geodesic of a massless particle. For the spherical shock
wave, it describes the wave caused by a point like source then propagates in spacetime
following a homogeneous way. For the second kind of shock wave, it could be treated
as the approximation for the signals traveling at the speed of light like the laser beam
4. In fact, to make photons trapped in the beam, one should take gravity effects into
consideration and it turns out such shock wave will induce backreactions on the metric
studied in Aichelburg and Sexl (1971); Dray and ’t Hooft (1985). Then the massive case
is also studied in a perturbative way. However, in our situation, the shape of shock
waves will be less important while the ingoing and outgoing behaviour of the wave
will be crucial. To construct the shock wave solutions, we start from the Minkowski
metric written as

ds2 = −dt2 + dr2 + r2 dΩ2
2

= −dudv + r2 dΩ2
2, (3.116)

where t, r are the time and radial directions and dΩ2
2 is the standard 2 sphere metric. In

the second line, the retarded and advanced coordinates u, v are defined as

u = t− r, v = t + r. (3.117)

A massless particle which is described by the field Φ satisfies

− 4∂u∂vΦ +
1
r2□S2 Φ = 0. (3.118)

Let us consider a spherically symmetric solution so that the equation reduces to

∂u∂vΦ = 0, (3.119)

and general solutions are given by

Φ(u, v) = ϕ(u) + ϕ̃(v) (3.120)

where ϕ and ϕ̃ are arbitrary functions of u, v.

An interesting physical solution is the spherical shock wave. A shock wave emitted
from the boundary and propagating along the null ray as illustrated in Figure 3.5 is
described by Φin

s

Φin
s (v) = ϕ0 δ(v− v0), v0 > 0. (3.121)

4We assume such method can be generalised to gauge fields or we are dealing with a high energy beam
of bosonic particles with small mass. Maybe for massive particles, one should consider the ingoing and
outgoing wavepackets.



76 Chapter 3. Flat Holography for Scalar Fields

We can view the shock wave solution as a specific linear combination of plane wave
solutions. Furthermore, to make the wave really localise along the null ray, one could
consider the gravitational shock wave Φin

g = ϕ0δ(v− v0)δ(z− z0) while it is not a so-
lution for KG equation in flat spacetime and it only exists when the gravitational effect
is taken into consideration. Here, to study the flat/CFT dictionary in a simple way, we
choose to use the spherical shock wave as an example to perform the calculation and
the results for Φin

s is obtained by inserting the factor δ(z− z0) behind 5.

To express the shock wave in terms of modes adapted to the hyperbolic slicing, we
need to transform the coordinates (3.116) into Milne coordinates using

t2 − r2 = τ2, ρτ = r, (3.122)

in which we should note that the Milne coordinates will only cover the region A+ if
both (τ, ρ) are required to be positive ρ, τ ≥ 0. The near light cone region is described
by τ → 0 and the asymptotic region is given by τ → ∞. In Milne coordinates, the shock
wave can be expressed as

Φin
s = ϕ0 δ(ρτ + τ

√︂
1 + ρ2 − v0) = ϕ0δ(τeη − v0). (3.123)

We can now decompose this solution into modes as described in the previous section,
resulting in

Φin(ρ, z, z̄; β+) =
ϕ0

2π
vβ−

0 e−(1+β−)η , (3.124)

Φin(ρ, z, z̄; β−) =
ϕ0

2π
vβ+

0 e−(1+β+)η .

The fields are independent of the sphere coordinates. One can immediately read off the
coefficients of the asymptotic expansion using the relation ρ = sinh η as

ϕ+(z, z̄; k) =
ϕ0

2π
2β+−1vβ−

0 ϕ−(z, z̄; k) = 0; (3.125)

ϕ̃
+
(z, z̄; k) = 0 ϕ̃

−
(z, z̄; k) =

ϕ0

2π
2−∆vβ+

0 .

This means that the operators O(z, z̄; k) has no source or expectation value, but the
operators Õ(z, z̄; k) have both: the sources are ϕ+(z, z̄; k) while

⟨Õ(z, z̄; k)⟩ = −iβ+
ϕ0

π
2−∆vβ+

0 . (3.126)

5Here we assume that the localised shock waves propagate on the background where the holography
principle still works.
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It is straightforward to repeat the same exercise for a shock wave propagating along an
orthogonal null ray i.e.

Φout
s (u) = ϕ0 δ(u− u0), u0 > 0. (3.127)

This can be expressed in terms of the Milne coordinates as

Φout
s = ϕ0 δ(τ

√︂
1 + ρ2 − τρ− u0) = ϕ0δ(τe−η − u0). (3.128)

Decomposing into modes one finds

Φout(ρ, z, z̄; β+) =
ϕ0

2π
uβ−

0 e(1+β−)η , (3.129)

Φout(ρ, z, z̄; β−) =
ϕ0

2π
uβ+

0 e(1+β+)η .

One can then read off the coefficients of the asymptotic expansion using the relation
ρ = sinh η as

ϕ+(z, z̄; k) = 0 ϕ−(z, z̄; k) =
ϕ0

2π
2∆uβ+

0 ; (3.130)

ϕ̃
+
(z, z̄; k) =

ϕ0

2π
21−β+uβ−

0 ϕ̃
−
(z, z̄; k) = 0.

This means that the operators Õ(‡, ‡̄; ∥) has no source or expectation value, but the
operators O(z, z̄; k) have both: the sources are ϕ̃

+
(z, z̄; k) while

⟨O(z, z̄; k)⟩ = −iβ+
ϕ0

π
2∆uβ+

0 . (3.131)

Thus we can understand the two sets of dual operators as describing modes propagat-
ing in (u, v) directions respectively:

Φ(u)→ {O(z, z̄; k), ϕ̃
+
(z, z̄; k)}; (3.132)

Φ(v)→ {Õ(‡, ‡̄; ∥),≺+(‡, ‡̄; ∥)}.

As for the two point functions, the structure will become complicated and one needs
to take the gravitational effect into consideration. For the spherical shock wave, it is
the solution for KG equation in Minkowski but the two-point function will become
trivial since the solution takes constant value on the sphere and the method we have
introduced in the section 3.2 will not work. It does not mean that the dual theory
on the boundary will become trivial while we need to take the gravity backreaction
into consideration in order to investigate the correlation function at higher order if one
treats the constant ϕ0 as a small parameter. After backreaction from the matter, the
metric then becomes

G′µν = Gµν + δGµν, (3.133)
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which G is the metric for Minkowski and the deformation caused by the matter is de-
noted as δG. They are governed by Einstein equation

Rµν −
1
2

R G′µν = Tµν, (3.134)

in which Rµν is the Ricci curvature for G′ and Tµν is the stress tensor determined by
the scalar profile and in our case it is the shock wave Φs thus we can see that the stress
tensor is of the order ϕ2

0. One can treat it as the Newtonian constant ϕ2
0 ∼ GN which is

not explicitly shown in the equation. From the above equation, one can also see that the
deformation δG also goes as the order of ϕ2

0
6. Given the deformed background then

the scalar fluctuation δΦ on the shock wave profile is determined by the KG equation

□G′Φ′ = 0, (3.135)

where Φ′ = Φs + δΦ. Here we should note that, although Φs is constant on the celestial
sphere while the fluctuation δΦ is not necessary constant and it depends on the further
specification of the data at the initial time. Therefore both of the vacuum expectation
value and source will receive correction of order ϕ2

0 coming from δΦ and the two-point
function now becomes

⟨O(z; k)O(z′; k)⟩s = ⟨O(z; k)O(z′; k)⟩+ ϕ2
0 F(z, z′; k), (3.136)

where ⟨· · · ⟩s represents that the operators are now inserted on the shock wave back-
ground rather than the Minkowski vacuum ⟨· · · ⟩ and the higher order correction is of
the order ϕ2

0, i.e. GN . Its specific form is given by the function F(z, z′; k) determined
by the variation δΦ. From above discussion, we know that all the spherical solutions
without considering gravity effect in Minkowski are degenerate from boundary point
of view and one needs to consider the variation of the scalar field in order to distin-
guish all the spherical solutions. The broken of the spherical symmetry caused by the
gravity effect will enable us to calculate two-point functions at leading order and then
introduce subleading terms characterised by the function F(z, z′; k). For the localised
shock wave, one needs to figure out the background and then check if the holography
principle still works on such background, which depends on the definition of asymp-
totic flat as well as the ability of holography principle and such work goes beyond the
scope of this thesis.

6In fact we have ⟨TCFT
µν ⟩ ∼ δG in which TCFT

µν is the stress tensor of the dual CFT theory on the celestial
sphere. The specific expression relies on the holographic renormalisation of Einstein-Hilbert action which
has been done in Graham-Fefferman coordinates for AdS case de Haro et al. (2001b).
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3.3.1 Coefficients

After the study of the dual correlation functions on the boundary. Here we will
use the shock wave model as an example to study the bulk field in a direct way follow-
ing the mode analysis introduced in section 3.1 and try to determine the coefficients of
those modes. It is easier for the spherical shock waves since they are constant on the
sphere and only the zero mode will contribute when performing the mode expansion.
The analysis for localised shock wave will be harder since the analysis for the l ≥ 1
mode will be difficult and we will leave the mode analysis for Φg for further investiga-
tion.

Massless Fields

From the discussion in section 3.1.3 and appendix F, we have seen that the zero mode
l = 0 on the AdS hyperboloid has two independent solutions at large radius ρ =

sinh η → ∞

ϕ0(η; β+) =
eβ+η

sinh η
, ϕ0(η; β−) =

eβ−η

sinh η
. (3.137)

The regular solution at ρ = 0, denoted as ϕr(η; k), is the linear combination of them
with ratio C−0 (k)/C+

0 (k) = −1 7 thus it can be written as

ϕr(η; k) =
1√
π

sinh β+η

sinh η
. (3.138)

One can check that ϕr is regular for arbitrary β− since ϕr ∼ β+ at η = 0. Here we are
interested in the principal series case β+ = ik for k ≥ 0 and we assume that the result
for other value can be obtained by the analytic continuation of β+.

For the ingoing waves, one has the expansion

Φin(v) =
∫︂
P

dk (a+in(k) τ−1+β+ + a−in(k) τ−1+β−) ϕr(η, k), (3.139)

in which a±in(k) is the pair of coefficients that we are going to determine. To calculate
these coefficients, one should first note the orthogonal relation

∫︂ +∞

−∞
sinh2 η ϕ∗r (η; k)ϕr(η; k) = δ(k− k′), (3.140)

in which ϕ∗r is the complex conjugate of ϕr. Given the above relation, one can project
out the η dependent part by performing the integral

ϕ0

∫︂ +∞

−∞
dη δ(τeη − v0) sinh2 η ϕ∗r (η; k) (3.141)

7One can obtain this by the direct observation of the liner combination of ϕ0(η; β±) or by checking the
formula of C±0 (k) for odd β in the Appendix F.
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therefore coefficients a±(k) are then deduced to be

a+in(k) =
ϕ0v−β+

0

4
√

π
, a−in(k) = −

ϕ0vβ+

0

4
√

π
, (3.142)

in which we have omitted the correction term of order τ2. The fact that we get extra
terms in additional to the modes τ−1+β± implies that the basis we have chosen is not
complete. Here we assume that the mode expansion is done near the Milne horizon
thus τ → 0 and the higher order term will be subleading. For the outgoing shock
wave, following similar procedure, one has the expansion

Φout(u) =
∫︂
P

dk (a+out(k) τ−1+β+ + a−out(k) τ−1+β−) ϕr(η, k), (3.143)

in which the corresponding coefficients a±out(k) are determined to be

a+out(k) =
ϕ0uβ+

0

4
√

π
, a−out(k) = −

ϕ0u−β+

0

4
√

π
. (3.144)

Massive Fields

Now we turn to the study of massive particles. First we try to make the particle slightly
massive and then investigate the perturbative behaviour of the solution around the
spherical shock wave. Similar to the study of massive KG equation, we choose to write
the equation of motion for massive particle as

(∂u∂v + λM2)ΦM(X) = 0, (3.145)

in which M is a constant and λ is a small parameter that represents the mass of the
particles is small. Then we can write down a particular set of solutions for the particles
with high momentum to the first order of λ as

ΦM(X) = ϕ0δ(v− v0) + λ f (u, v), (3.146)

in which f (u, v) is a function of u, v. To determine f (u, v), one should substitute the
solution into the equation, solve it order by order in λ, and then obtain

ΦM(X) = ϕ0δ(v− v0)− u λ ϕ0M2 θ(v− v0), (3.147)

in which θ(v− v0) is the step function supported in the region v > v0. The step function
correction term tells us that, by adding a small amount of mass, the shock wave will be
no longer localised along some spherical shell and propagate along the null direction
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while it will have a tail spreading over the whole region v > v0
8. If we define the

coefficients of massive field expanded by the modes on AdS surfaces as a±M(k), i.e.

ΦM(u, v) =
∫︂
P

dk (a+M(k) τ−1+β+ + a−M(k) τ−1+β−) ϕr(η, k). (3.148)

Then one can write a±M(k) by the order λ as

a±M(k) = a±0 (k) + λ a±1 (k) + λ2a±2 (k) + · · · , (3.149)

in which a±0 (k) are the coefficients for massless case we have discussed before

a±0 (k) = a±in(k) (3.150)

and a±i (k) are higher order terms. Taking the solution in (3.147) for example, to calcu-
late a±1 (k) one should evaluate the integral

∫︂ +∞

−∞
dη sinh2 η e−ητ ϕ∗r (η; k)θ(τeη − v0), (3.151)

in which we still use the massless solution as the basis when performing the pertur-
bative expansion. The above integral will vanish when τ goes to zero thus one can
conclude that

a±1 (k) = 0, (3.152)

which tells us coefficients are stable at the massless case. It shows that, for the modes
we are interested in, the mass of particle will not play a crucial role and make significant
contribution thus the shock wave model is still a good approximation for particles with
small mass.

3.3.2 Cauchy Problem and Scattering

In section 3.2, we start from the holographic renormalisation for the onshell action in
region A+ then conclude that the theory in flat spacetime A+ is dual to the CFT on the
celestial sphere S+

2 located at the future null boundary. To study the whole Minkowski
space, in principle, one should consider the action in the region A+ ∪ D ∪A− while it
was conjectured in the work de Boer and Solodukhin (2003) that all the information of
Minkowski could be classified by specifying the data on the two copies of AdS hyper-
boloid in A+ and A− therefore it is enough to fully reconstruct the bulk theory using
the holographic CFT data on the celestial sphere S+

2 and S−2 . In particular, the scatter-
ing amplitudes in Minkowski can also be constructed by studying the states on these

8However, comparing with the non-stable behaviour of the wavepacket, we expect solution (3.147)
will only work as an approximation for the evolution of high momentum particles at the early stage, and
there should also be spatial dependence part in the function δ(v− v0) to reflect the fact that the massive
particles with high momentum tend to move along a timelike trajectory near the light cone.
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FIGURE 3.6: A single AdS surface together with part of null boundary form a Cauchy
surface for the whole Minkowski spacetime shown the left hand side. For example,
to determine the field configuration at the red point, one needs to specify the data on
both of the AdS hyperboloid and null boundary. The shock wave will transform the
data from the null boundary to the other AdS surface in region A+ so that two copies
of AdS surfaces are equivalent to a Cauchy surface, which is illustrated in the right

figure.

two AdS hyperboloid although we know the fact that they are not the standard Cauchy
surface. Here based on the study of AdS and dS modes, we will reconsider the distri-
bution of information in Minkowski and a physical proof of the above conjecture will
also be illustrated by doing a thought experiment on the shock wave model.

Following the principle of the mode expansion, to study the local behaviour of the
solution ΦM(X) in region A denoted as ΦA

M(X), one can expand the solution in terms
of modes propagating on the AdS slicing. As we have studied in the section 3.1, the
solution ΦA

M can be represented by the linear combination of modes with effective mass
k provided that there is a set P of k in which all the modes together form a complete
basis of the solution space, written as

ΦA
M(X) = ∑

l

∫︂
PA

dk al(k) ψA(τ; k)FA
kl (ρ, z, z̄), (3.153)

in which al(k) are coefficients and the label l is used to represent the other internal
variables. FA

kl (ρ, z, z̄) = ϕl(ρ; k)Yl
m(z, z̄) are the spatial modes introduced before while

(ρ, z, z̄) is the coordinate of AdS hyperboloid. For the same reason, we can choose to de-
compose the solution in regionD, denoted as ΦD

M(X), into dS modes ψD(ρ; k)FD
kl (τ, z, z̄)

thus it can be written as

ΦD
M(X) = ∑

l

∫︂
PD

dk bl(k) ψD(ρ; k)FD
kl (τ, z, z̄), (3.154)

in which we should note that the position of variable τ and ρ are switched since we are
using them to label the timelike and spacelike direction.
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Before imposing the initial condition of the solution ΦM(X), we first consider the an-
alytic continuation of the field ΦM(X) from the region A− into the region D via the
null surface N shown in Figure 3.6. Given the field configuration ΦA

M(X), one can per-
form the analytic continuation by making k→ ik across the null surface N then obtain
ΦD

M(X). In terms of the coefficients, that is to say

{al(k)} = {bl(k)} (3.155)

in which we use the notion {} to represent the information contained in the modes and
the equal sign means that one can determine all the bl(k) s given the set of al(k) or vice
versa.

To study the initial condition, or to determine the coefficients, first we need to choose a
proper codimension one surface to set up the initial data. For the field ΦA

M(X), one can
choose the AdS slicing X2 = −τ2

0 , denoted by Στ0 as the Cauchy surface for region A−

therefore the field in region A− is uniquely determined given the initial data fi, gi

ΦM(τ0, ρ, z, z̄) = fi(ρ, z, z̄), ni∂iΦM = gi(ρ, z, z̄) (3.156)

where ni denotes the further unit normal of Στ0 . For the field in region D, the data on
the surface Στ0 is not enough for us to uniquely fix the field configuration ΦD

M(X). One
also needs to specify the data along the null boundary so that they form the Cauchy
surface of the whole Minkowski together with the surface Στ0 , which means one needs
more data to determine ΦD

M comparing to ΦA
M(X). Since we have already known that

fields in the region A, D are fully determined by {al(k)} and {bl(k)}, we conclude that

{al(k)} ⊂ {bl(k)}, (3.157)

where the symbol ⊂ means that one can determine all the coefficients al(k) given the
set of bl(k) while the other direction is not true anymore, which implies that there are
modes not governed by the analytic continuation thus one has PA ⊂ PD.

Furthermore, based on the calculation in the previous section, we see that, for the mass-
less particle, one can construct the shock wave as the solution of the Klein-Gordon
equation. The shock waves propagate along the null direction and they are localised
around the trajectory of the massless particles. Moreover, these shock waves that start
from the null infinity then go through the AdS slicing surfaces in region A+ enable the
exchange of information between the observer living in some particular AdS surface
in region A+ and the observer on the null boundary. For example, the observer at the
boundary can send the information of the initial position and momentum of the par-
ticle to the observer in region A+ via the shock wave and the observer in region A+

can read out these information by determining the coefficients a±(k). Thus two copies
of AdS surface in region A− and A+, respectively, form a structure that is equivalent
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to the Cauchy surface since we know that one AdS Surface in region A− together with
half of the null boundary v > 0 carry a complete set of data for one to determine the
field configuration in the whole space time.
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Chapter 4

Flat Holography for Gravity

In this chapter, we will develop the flat/CFT dictionary between the d + 2 dimensional
Einstein gravity and the d dimensional CFT on the celestial sphere. To study the grav-
itational theory on asymptotically flat background in a formal way, the first step is to
specify the definition of asymptotic flatness. The general guideline for defining asymp-
totic flatness is that it must make the spacetime close enough to flat case while the
deformations should at the same time contain enough non trivial physical contents for
us to investigate. For example, the well studied Bondi gauge Bondi et al. (1962); Sachs
(1962b,a) in gravity literature. To establish the flat/CFT dictionary, one also needs to
construct a mapping of data between the bulk and boundary but there is no clue on
how to decompose the bulk data in Bondi gauge. Noting that Minkowski spacetime
is foliated by AdS hyperboloids and the specific map of data for AdS/CFT is clearly
studied in terms of Fefferman Graham coordinates Fefferman and Graham (1985); Gra-
ham (2000); Fefferman and Graham (2011); Henningson and Skenderis (1998); de Haro
et al. (2001b); Balasubramanian and Kraus (1999), therefore in this thesis we choose to
define the asymptotically flat spacetime in terms of Fefferman Graham like coordinates
written as

ds2 = −dτ2 + τ2
(︃

d2ρ

4ρ2 + ρgij(ρ, x)dxidxj
)︃

+
τ

ρ2 m(ρ, x)d2ρ + τρ σij(ρ, x)dxidxj + τAi(ρ, x)dρdxi + · · · , (4.1)

where the first line is the leading contribution to the spacetime coming from the asymp-
totic AdS slices and the second line is the subleading contribution for large τ. We will
see that most of the non trivial physical results in addition to the AdS/CFT duality
would come from the existence of such subleading sector. In section E, we will explore
such gauge in a careful way by determining the asymptotic symmetries and solving
Einstein equation at different order of τ and ρ. The strategy here is that we choose to ex-
pand the parameters gij(ρ, x), m(ρ, x), σij(ρ, x), Ai(ρ, x) in terms of 1/ρ and determine
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the constraints between the coefficients g(2k)
ij (x), m(2k)(x), σ

(2k)
ij (x), A(2k)

i (x) by solving
the Einstein equations Rµν = 0 at the zero and first order of 1/τ.

After the study of asymptotically flat spacetime, for d = 2, we propose the flat/CFT
dictionary as

exp
(︁
iSgr,ren[G]

)︁
=
⟨︂

exp
1
2

∫︂
S2

d2x
√

Ḡ Ḡij Tij

⟩︂
(4.2)

where G and Ḡ are the bulk metric and the background metric for the CFT, respectively.
Tij is the energy-stress tensor of the boundary CFT. To make such dictionary well de-
fined and work the same way as the AdS/CFT dictionary, one further needs to perform
proper renormalisation procedure on the bulk gravitational action Sgr[G] making it fi-
nite and to specify the exact map of data between two sides. Here the exact map means
that given the bulk metric we should be able determine boundary data Ḡ and Tij or
vice versa. These are two main obstacles during the development of flat holography
dictionary and we will discuss them in section 4.2.

In the context of AdS/CFT, one needs to perform holographic renormalisation in order
to obtain the finite renormalised action Sgr,ren[G]. The infinity coming from the integral
over the whole spacetime is treated as the IR divergence and is regulated by choosing
the AdS spatial radius ρ as the IR cut off. Here for flat spacetime, we have one more
timelike non-compact direction labeled by τ and we simply choose to impose a bound
L on it, i.e τ ∈ [0, L]. After performing the holographic renormalisation in the given
interval [0, L], we obtain the renormalised gravitational action and then further propose
the map of data between bulk and boundary as

Ḡij = g(0)ij +
1
L

σ
(0)
ij + · · · , (4.3)

where Ḡij = g(0)ij is originally the AdS/CFT map and now we are taking the soft sec-
tor into consideration treating L as the energy cut-off of the boundary CFT. Using the
flat/CFT dictionary, we obtain a specific expression for the energy stress tensor ⟨Tij⟩,
given by

⟨Tij⟩ =
iL2

16πGN
(g(2)ij − g(0)ij Trg(2))−

iL
8πGN

(︂
(Tr σ(2) − σ

(0)
kl gkl

(2)) g(0)ij (4.4)

+Trg(2)σ(0)
ij − σ

(2)
ij + 2m(0)(g(2)ij − g(0)ij Trg(2))

)︂
+ · · · .

Moreover, by considering the anomalies of the energy-stress tensor ⟨Ti
i ⟩, the central

charge is then determined to be

c =
i3L2

4GN
+

iML3(α− 2)
2GN

(4.5)

where M = m(0) and α are constants characterising the behaviour of asymptotically flat
spacetime. The behaviour of the leading term is already argued in the work Cheung
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et al. (2017a); Pasterski and Verlinde (2022); Ogawa et al. (2023) and here we determine
its value in a precise way. With the help of flat/CFT dictionary, we can in principle
determine all the subleading contributions and in this thesis we just present the first
order term.

The Einstein equations will impose constraints on the parameters in the metric and
those constrains on the boundary will correspond to the Ward identity of the stress
tensor. The story for AdS/CFT or for the hard sector is that the bulk equation of motion
implies that the conservation of energy-stress tensor ∇j⟨Tij⟩ = 0. By checking the
Einstein equations at the first order, we find that it will not give us the conservation of
the soft energy-stress tensor while we have

∇̄j⟨Tij⟩ =
iL

16πGN
(8∇im(2) + 4M∇iTrg(2) − σmk

(0)∇mg(2)ki ), (4.6)

where ∇̄i,∇i are the covariant derivative with respect to Ḡij, g(0)ij , respectively. Thus one
can interpret the soft modes as the radiation modes which generate flow of energy at
the null boundary leading to a non conserved energy-stress tensor from the boundary
point of view.

4.1 Fefferman Graham Gauge

In this section, we will start from the coordinate for asymptotically flat spacetime then
recast it to the asymptotically AdS form. For the spacetime of dimension d + 2, we first
introduce the standard coordinate Xµ for µ = 0, 1, · · · , d + 1 in which the flat metric
takes the form η00 = −1, η11 = · · · ηd+1,d+1 = 1. The Euclidean AdS of dimension d + 1
can be regarded as the hyperboloid embedded in the d + 2 flat spacetime given by the
relation 1

− (X0)2 + (X1)2 + · · ·+ (Xd+1)2 = −τ2, (4.7)

in which τ ≥ 0 is the radius of the AdS surface.

Motivated by such foliation, we now choose to write the asymptotically flat spacetime
given by the metric G(X) into the form

ds2 = Gµν(X)dXµdXν = −dτ2 + τ2Ĝab(τ, y)dyadyb,

where a, b = 1, · · · , d + 1 and we have fixed the gauge in order to make the dτdya term
vanish. One can always manage to find such gauge by performing local diffeomor-
phism transformation. For flat spacetime, the metric Ĝab will be independent of τ and
reduced to the metric for AdSd+1 described by y while it will become asymptotically

1Such patch is called Milne wedge for Minkowski while one can study Rindler wedge by the analytic
continuation of the radius τ → iτ. The Rindler wedge is sliced by dS hypersurfaces.
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AdS when the spacetime is near flat. At the null boundary, we can expand the metric
Ĝab(τ, y) around 1/τ = 0 written as

Ĝab(τ, y) = Ĝ
0
ab(y) + Ĝ

1
ab(y)

1
τ
+ · · · = Ĝ

0
ab + hab(τ, y), (4.8)

in which Ĝ
0
ab(y) is the metric for d + 1 dimensional asymptotically AdS while Ĝ

n
ab(y)

are higher order corrections and they together form a complete description of asymp-
totically flat spacetime. We put all the higher order corrections into the term hab. In this
thesis, to study asymptotically AdS spacetime G0

ab, we choose to use Fefferman and
Graham coordinates written as

Ĝ
0
abdyadyb =

1
r2 (dr2 + gij(r, x)dxidxj) (4.9)

=
dρ2

4ρ2 + ρ gij(x, ρ)dxidxj, (4.10)

in which y = (r, xi) for i = 1, · · · d are coordinates on the AdS hyperboloid and ρ =

1/r2. The d dimensional metric gij(x, ρ) has been extensively studied in the AdS/CFT
literature and the main method is that one can organise the data by doing expansion
of the order ρ for ρ → ∞. The leading term will contribute to the AdS spacetime while
lower order terms are asymptotically AdS corrections.

4.1.1 Asymptotic Symmetries

To illustrate the spacetime structure introduced above in a more precise way, for sim-
plicity, we take d = 2 as an example therefore the spacetime becomes asymptotically
Minkowski. In this case, the metric is then given by

ds2 = −dτ2 + τ2
(︃

d2ρ

4ρ2 + ρ dzdz̄ + · · ·
)︃

+
τ

ρ2 m(ρ, z, z̄)d2ρ + τρ σzz̄(ρ, z, z̄)dzdz̄ + 2τAz(ρ, z, z̄)dρdz + τρ σzz(ρ, z, z̄)dzdz

+ c.c + · · · , (4.11)

in which the Minkowski space is written in terms of Milne coordinates (τ, ρ, z, z̄) at the
first line while the first order deviations with respect to τ are described by the functions
m(ρ, z, z̄), Az(ρ, z, z̄), σzz̄(ρ, z, z̄), σzz(ρ, z, z̄) together with the corresponding complex
conjugates. The dots in the first line represent the asymptotically AdS deformation
while the dots in the third line represent higher order contributions according to 1/τ.
Written in the form of Gµν, the metric is

Gρρ =
τ2

4ρ2 +
τ

ρ2 m +O(τ0) (4.12)
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for ρρ component and for zz̄ component we have

Gzz̄ =
τ2ρ

2
+ τρ σzz̄ +O(τ0). (4.13)

At leading order, Gρz Gzz will vanish while for asymptotic flat spacetime there could be
subleading contribution like

Gρz = τAz +O(τ0) Gρz̄ = τAz̄ +O(τ0) (4.14)

and
Gzz = τρ σzz +O(τ0) Gz̄z̄ = τρ σz̄z̄ +O(τ0). (4.15)

Now, we will study asymptotic symmetry which is the diffeomorphism that preserves
the metric of the form shown in (4.11). Given the Killing vector ξ(τ, ρ, z, z̄), the variation
of the metric δGτρ is then deduced to be

δGτρ = −∂ρξτ +
τ2

4ρ2 ∂τξρ

+
τ

ρ2 m∂τξρ + τAz∂τξz + τAz̄∂τξ z̄ +O(τ0) (4.16)

and for δGτz we have

δGτz = −∂zξτ +
τ2ρ

2
∂τξ z̄

+τAz∂τξρ + τρ σzz∂τξz + τρ σzz̄∂τξ z̄ +O(τ0), (4.17)

in which we have shown the variation up to O( 1
τ ) and higher order terms are omitted.

For other terms we have

δGzz̄ =
τ2

2
ξρ +

τ2ρ

2
(∂zξz + ∂z̄ξ z̄) +O(τ), (4.18)

δGzz = τ2ρ ∂zξ z̄ +O(τ), (4.19)

δGρz =
τ2

4ρ2 ∂zξρ +
τ2ρ

2
∂ρξ z̄ +O(τ), (4.20)

δGρρ =
τ2

2ρ3 (ρ∂ρξρ − ξρ) +O(τ). (4.21)

To find out the asymptotic symmetries, one need to determine the Killing vector ξ

which can be expanded as

ξµ(τ, ρ, z, z̄) = ξ
µ
0 (ρ, z, z̄) +

1
τ

ξ
µ
1 (ρ, z, z̄) + · · · (4.22)

where ξ
µ
k for k ∈ N are coefficients associated to the term 1/τk. For δGτρ and δGτz they

have to vanish since we are working in the gauge Gτρ = Gτz = 0. From the expression
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(4.16) and (4.17), at the order of O(1) we obtain

∂zξτ
0 +

ρ

2
ξ z̄

1 = 0 ∂ρξτ
0 +

1
4ρ2 ξ

ρ
1 = 0. (4.23)

Moreover, we have
Azξ

ρ
1 + ρ σzzξz

1 + ρ σz̄z̄ξ z̄
1 = 0 (4.24)

and
m ξ

ρ
1 + ρ2Azξz

1 + ρ2Az̄ξ z̄
1 = 0 (4.25)

when considering the δGτρ = δGτz = 0 of the order τ2. For δGzz and δGz̄z̄, the contri-
bution at the order 1/τ should vanish in order to preserve the condition of asymptotic
flatness therefore we have

∂zξ z̄
0 = ∂z̄ξz

0 = 0. (4.26)

For the same reason we have
ρ∂ρξ

ρ
0 − ξ

ρ
0 = 0 (4.27)

when considering the component Gρρ in the (4.21). Then the killing vector can be writ-
ten as

ξτ = χ(z, z̄), (4.28)

ξρ = 0, (4.29)

ξz = Yz(z, z̄), (4.30)

ξ z̄ = Yz̄(z, z̄), (4.31)

where χ is an arbitrary function on z, z̄ and we have ∂zYz̄ = ∂z̄Yz = 0 therefore the BMS
group Bondi et al. (1962); Sachs (1962b,a) is recovered at leading order. The transfor-
mation of the spacetime metric under such symmetry group is then given by

δgzz̄ = gzz̄(∂zYz + ∂z̄Yz̄) + Yz∂zgzz̄ + Yz̄∂z̄gzz̄ (4.32)

δgzz = 2gzz ∂zYz + Yz∂zgzz + Yz̄∂z̄gzz (4.33)

δAz = Yz∂z Az + Yz̄∂z̄ Az + Az∂zYz (4.34)

δσzz = Yz∂zσzz + Yz̄∂z̄σzz + 2σzz∂zYz + 2χgzz (4.35)

δσzz̄ = Yz∂zσzz̄ + Yz̄∂z̄σzz̄ + (∂zYz + ∂z̄Yz̄)σzz̄ + 2χgzz̄ (4.36)

where we have used the complex metric gzz̄ for the hard sector. From above translation
rules, one can see that the superrotation part described by Yz, Yz̄ will act on the leading
and subleading part of the metric while the supertranslation part described by χ will
only act on the subleading part.
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4.1.2 Equation of Motion

Now we turn to study the dynamics of the gravitational system. The general d + 2
dimensional asymptotic flat spacetime is described by the coordinate 2

ds2 = −dτ2 + τ2
(︃

d2ρ

4ρ2 + ρgij(ρ, x)dxidxj
)︃

+
τ

ρ2 m(ρ, x)d2ρ + τρ σij(ρ, x)dxidxj + τAi(ρ, x)dρdxi + · · · (4.37)

in terms of the real coordinates (τ, ρ, xi) for i = 1, . . . , d. In the first line, the metric is
mainly built up from asymptotically AdS hyperboloids. It describes the hard sector of
the gravitational theory and manifests the superrotation symmetry. The second line is
the subleading contribution to the asymptotically flat spacetime according to 1/τ. It
describes the soft modes coming from the radiation and manifests the superrotation
and supertranslation symmetry.

In this section, we are going to determine the constraints on the metric gij and the soft
parameters by checking the Einstein equations Rµν = 0 at different orders. Starting
with the connections, they are given by

Γτ
ab = τĜab +

1
2

τ2∂τĜab (4.38)

and

Γa
bτ =

δa
b

τ
+

1
2

Ĝ
ac

∂τĜcb (4.39)

while we have Γτ
ττ = Γτ

τa = Γa
ττ=0 and Γa

bc = Γ̂a
bc[Ĝ]. In our definition the Ricci tensor is

now given by
Rab[G] = Rd+1

ab [Ĝ]− Γτ
abΓc

cτ + 2Γc
aτΓτ

bc − ∂τΓτ
ab, (4.40)

which can be further decomposed into

Rab[G] = Rd+1
ab [Ĝ]− dĜab (4.41)

−d + 1
2

τ∂τĜab −
1
2

τ2∂2
τĜab −

τ

2
ĜabĜ

cd
∂τĜcd (4.42)

+
1
2

τ2∂τĜcb∂τĜdaĜ
cd

. (4.43)

2The goal of this chapter is to fully reconstruct the bulk gravitational theory together with the static
background therefore the solution is not separated into in and out going modes like what we did for the
scalar fields. In principle, we can introduce in and out going gravitational waves when dealing with the
theory in a perturbative way therefore making the results compatible with the previous chapter.
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For ττ component we have

Rττ[G] =
1
τ

Ĝ
ab

∂τĜab +
1
2

∂τ(Ĝ
ab

∂τĜab) +
1
4

Ĝ
ac

Ĝ
bd

∂τĜab∂τĜcd (4.44)

while for τa one can deduce that

Raτ[G] =
1
2
∇̂a(Ĝ

bc
∂τĜbc)−

1
2
∇̂b(Ĝ

bc
∂τĜca), (4.45)

where the covariant derivative is with respect to the metric Ĝab. In practice, to study
the equation of motion at different orders, we choose to write the Ricci curvature per-
turbatively according to the expansion (4.8), which means we have

Rµν[G0 + h] = R0
µν[G

0] +
1
τ

R1
µν + · · · (4.46)

where the zero order mainly comes from the hard sector of the metric described by G0

and the soft modes will go into the first or higher order terms.

4.1.2.1 Zero Order

For convenience, we will denote Ĝ
0
ab(y) as Ĝab(y) in this subsection and consider the

equation of motion at leading order of 1/τ. In such case, connections involving τ com-
ponent are given by Γτ

ab = τĜab, Γa
bτ = 1

τ δa
b and Γτ

ττ = Γτ
τa = Γa

ττ = 0. For the con-
nections not involving τ component denoted as Γa

bc, they are given by the direct d + 1
dimensional calculation using the AdS metric τ2Ĝab(y). Now, to solve the vacuum Ein-
stein equation with zero cosmology constant

Rµν[G] = 0, (4.47)

we should deduce the Ricci curvature R written as R[G] = Ra
a[G] + Rτ

τ[G]. One can
easily verify that Rτµ = 0, while for Rab one has

Rab[G] = R(d+1)
ab [Ĝ]− dĜab, (4.48)

in which we have introduced the notion R(d+1)[Ĝ] to denote that the Ricci curvature
induced on the d + 1 dimensional AdS hyperboloid. Therefore, the Ricci curvature for
near flat spacetime is then deduced to be

R[G] = R(d+1)[Ĝ]− d(d + 1) (4.49)

and the Einstein equation in (4.47) is equivalent to

R(d+1)
ab [Ĝ]− 1

2
R(d+1)[Ĝ] Ĝab = ΛĜab (4.50)
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for
Λ = −d(d− 1)

2
. (4.51)

We can treat Λ as the effective cosmology constant and τ as the effective AdS radius
since we are recasting the curvature R[G] for d + 2 dimensional near flat metric Ĝµν

into the induced curvature R(d+1)[Ĝ] for d + 1 dimensional asymptotically AdS metric
Ĝab(y).

In terms of Fefferman Graham gauge, the study of equation of motion at zero order is
equivalent to the study of the differential equation for gij(x, ρ). The function gij(x, ρ)

are determined by Graham (2000); Fefferman and Graham (2011); Henningson and Sk-
enderis (1998); de Haro et al. (2001b)

ρ2(2ρg′′ij + 4g′ij − 2ρglmg′mjg
′
li + ρglmg′lm g′ij) + Rij[g] + (d− 2)ρ2g′ij + ρ2glmg′lm gij = 0

∇i( glmg′lm)−∇jg′ij = 0 (4.52)

gij(ρg′′ij + 2g′ij)−
1
2

ρgikgjmg′ijg
′
km = 0

according to the equation (4.47) or (4.50) and the covariant derivative is with respect to
the metric gij. A brief study of such equation is shown in appendix I and here we have
g′ij = ∂ρgij. Moreover, for even d, one has the expansion

gij(x, ρ) = g(0)ij + ρ−1g(2)ij + · · ·+ ρ−d/2g(d)ij + cijρ
−d/2logρ + · · · (4.53)

when ρ goes to infinity. Here, following the convention from previous literature, the
superscript 2k in the coefficients g(2k)

ij are used to keep track of the order of r. Or equiv-

alently, k is used to keep track of the order of ρ. Coefficients g(2k)
ij are uniquely de-

termined by the lower order terms via checking the equation (4.52) at the order of ρk

while such procedure will fail until 2k = d. In such case, the equation of motion will
only allow us to determine Trg(d) and it also leaves us freedom to introduce the traceless
algorithm term parameterised by cij. Fox example, by checking the first two equations
at leading order, one can obtain the relation

Rij[g(0)] = (d− 2)g(2)ij + g(0)ij Trg(2) (4.54)

together with
∇i(Trg(2))−∇jg(2)ji = 0 (4.55)

where the covariant derivative∇i and the trace Tr now are with respective to the metric
g(0)ij while we will keep such convention in the following part of this thesis. One can

see that g(2)ij is fully determined as the function of g(0)ij for d ̸= 2 while only the trace
part is fixed when d = 2.
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4.1.2.2 First Order

We have studied R0
µν in the previous section while here we are going to deal with R1

µν

therefore determine equation of motion at first order. It is easier to calculate the Rττ

and Rτa components by checking the formula (4.44) and (4.45). The Rττ = 0 will be
trivial at first order while for R1

τa, we have

R1
τa =

1
2
∇̂a(Ĝ

bc
0 Ĝ

1
bc)−

1
2
∇̂b

Ĝ
1
ab (4.56)

where the covariant derivative ∇̂a is with respect to the metric Ĝ
0
ab. For the Rab compo-

nents, we have

R1
ab = Rd+1,1

ab − d + 1
2

Ĝ
1
ab +

1
2

Ĝ
1
abGcd

0 G1
cd (4.57)

from which one can see that the first order contribution Rd+1,1
ab of Rd+1

ab will also con-
tribute to the first order R1

ab therefore it will make the results more complicated. The
strategy here is to determine the first order term in Rd+1

ab then add the other terms in
(4.57) which also contribute at the first order.

Such soft sector is described by the first order term hµν. More precisely, it is determined
by the parameter m, σij and Ai once the gauge is fixed. To simplify the calculation
further, now we consider the expansion of parameter m, σij and Ai by the order 1/ρ.
Taking the parameter m(ρ, x) for example, we have

m(ρ, x) = m(0)(x) +
1
ρ

m(2)(x) + · · · , (4.58)

in which m(0)(x) is the leading term while m(2)(x) is the subleading contribution. m(0),
m(2) describe the zero order and first order contribution to the soft sector according to
the spatial radius of AdS hyperboloid ρ. For the parameter σij, Ai we adopt similar
convention and the corresponding coefficients are denoted as A(2k)

i and σ
(2k)
ij .

Therefore following the equation of motion given by the Einstein equation explicitly
showed in the appendix J, we obtain the constraints

Tr σ(0) = 4dm(0) (4.59)

by considering Rρρ = Rρτ = 0. Moreover we have

A(0)
i = 0 (4.60)

by checking the equation of motion Riτ = 0 at the zero order of 1/ρ. For the equation
Rij = 0, again at leading order, we obtain

d− 1
2

σ
(0)
ij +

1
2

g(0)ij Tr σ(0) − 2(2d− 1)m(0)g(0)ij = 0, (4.61)
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which is compatible with the constraint (4.59) after taking the trace on both sides. One
can also obtain the relation

∇jσ
(0)
ji = 4∇im(0) (4.62)

after acting the covariant derivative ∇j on both sides.

Now we consider the Einstein equations at first order of 1/ρ in order to determine m(2),
A(2)

i and σ
(2)
ij . By checking the equation of motion Riτ = 0 at the first order, we have

2∇im(0) = A(2)
i (4.63)

while for Rρi = 0 we obtain the relation

3d− 1
2

A(2)
i − d∇im(0) +

1
4
∇jσ

(0)
ij −

1
4
∇iTrσ(0) = 0. (4.64)

Given the above equation, we can deduce that A(2)
i = 0 after using the relation (4.59),(4.62)

and (4.63). This tells us that the parameter m(0) should be a constant and the zero order
coefficient σ

(0)
ij is conserved with respect to the metric g(0)ij , written as

Trσ(0) = 4dM ∇jσ
(0)
ij = 0 (4.65)

where we have denoted the parameter m(0) as constant M. For the equation of motion
Rρτ = 0 and Rρρ = 0, they will give us the relations

dm(2) +
1
4

Tr σ(2) − Trg(2)m
(0) = 0 (4.66)

and
d
2

m(2) +
1
8

Tr σ(2) − 1
8

gij
(2)σ

(0)
ij = 0. (4.67)

From these two equations one can see that, in order to make m(2) and σ
(2)
ij solvable, one

should further impose constraint on gij
(2)σ

(0)
ij thus we have

gij
(2)σ

(0)
ij = 4Trg(2)m(0). (4.68)

To obtain σ
(2)
ij , one needs to check Rij = 0 explicitly. The equation is more involved and

here we just present the result

3− d
2

σ
(2)
ij + (6− 4d)m(2)g(0)ij − 6g(2)ij m(0) − 1

2
(Trσ(2) − glk

(2)σ
(0)
lk )g(0)ij (4.69)

+4Trg(2)m(0)g(0)ij − Trg(2)σ(0)
ij +

1
2

Trσ(0)g(2)ij + δRij = 0,
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where Rij[g + 1
τ σ] = Rij[g] + δRij

3 and we can see that, given the value of m(2), σ
(2)
ij is

determined by solving the equation. After taking the trace on both sides, we have

3− 2d
2

Trσ(2) + (6− 4d)dm(2) − 6Trg(2) m(0) +
d
2

glm
(2)σ

(0)
lm + 2dm(0)Trg(2) = 0, (4.70)

from which we will obtain the same relation as (4.68) after the substitution of (4.66) or
(4.67).

From above calculation, we see that the value of m(2k) are related to the trace of soft
metric coefficients Trσ(2k). More precisely, by considering the constraint (4.59), (4.66)
and (4.68), one can find that they obey the more compact relation

Tr(2k)(σ− 4mg) = 0 (4.71)

where Tr(2k) is defined as the trace over the metric g(2k)
ij and we denote Tr(0) = Tr. The

relation between (4.71) and the Einstein equations is not clear but we expect this is true
when going to the higher order.

Further more, by checking the equation of motion Riτ = 0 at the order of 1/ρ2, we
obtain the relations involving ∇jσ

(2)
ij written as

(2− d)A(4)
i + 2∇im(2) +

1
2
∇i(Trσ(2) − gkl

(2)σ
(0)
kl )

−1
2
∇jσ

(2)
ij +

1
4
∇kgmk

(2)σ
(0)
mi +

1
4
∇igmn

(2)σ
(0)
mn = 0 (4.72)

where we have used the relation (4.55) and the last two terms come from the variation
of the connection δΓi

jk. It turns out that, although a little bit tedious, equation (4.72) will
be useful for us to study Ward identities of the boundary conformal field theory with
the help of flat/CFT dictionary. Moreover, by studying the equation of motion Riρ = 0
at second order of 1/ρ2 one should be able to determine A(4)

i once m(2) or equivalently
Tr σ(2) is fixed.

4.2 The flat/CFT Dictionary

The Einstein-Hilbert action for the gravitational theory on a four dimensional asymp-
totically flat manifold M with boundary ∂M is given by Gibbons and Hawking (1977)

Sgr[G] =
1

16πGN

(︃∫︂
M

d4X
√
−G R[G] +

∫︂
∂M

d3X
√
−γ 2K

)︃
, (4.73)

in which K is the trace of the second fundamental form and γ is the induced metric
on the boundary. To evaluate the action, we first choose to use the equation of motion

3More precisely, we have δRij =
1
2 (∇m∇mσij +∇i∇jσ

m
m −∇k∇iσ

k
j −∇k∇jσ

k
i ).
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(4.47) and set the boundary as the surface with constant AdS spatial radius ρ = 1/ϵ.
Then the regulated action is given by

Sgr,reg =
1

16πGN

∫︂ ∞

0
dτ
∫︂

S2
d2x
√
−γ 2K

⃓⃓⃓
ρ=1/ϵ

(4.74)

where we have γττ = −1, γij = τ2Ĝij.4

Moreover, to calculate the integral over K, one should notice the relation Kij = ∇̂inj

thus we obtain 5

∫︂ ∞

0
dτ
∫︂

d2x
√
−γ 2K

⃓⃓⃓
ρ=1/ϵ

=
∫︂ ∞

0
τdτ

∫︂
S2

d2x
√︁

Ĝ
Ĝ

ρµ√︁
Ĝ

ρρ
(2Ĝ

ij
∂iĜjµ − Ĝ

ij
∂µĜij)

⃓⃓⃓
ρ=1/ϵ

(4.75)
in which nµ is the outward unit normal for the boundary ∂M. In our case, for the
boundary ρ = 1/ϵ, the only non-zero component is nρ =

√
Gρρ. To see the divergent

part of the regulated action in a more precise way, for even d, one can use the expansion
for g shown in (4.53) and extract the infinite part written as

Sgr,reg =
1

16πGN

∫︂ ∞

0
dττ

∫︂
S2

d2x
√︁

g(0)
(︂

ϵ−1a1(τ, x) + a0(τ, x) + logϵ b(τ, x) +O(ϵ0)
)︂

,

(4.76)
where ai and b are the corresponding coefficients. To get the renormalised action Sgr,ren,
one should introduce the local and covariant counterterm Sgr,ct to eliminate the diver-
gence, which takes the form

Sgr,ct =
∫︂ ∞

0
dτ
∫︂

S2
d2x f (τ, z)

√
−γ +

∫︂ ∞

0
dτ
∫︂

S2
d2x g(τ, z)

√
−γ R [γ] + · · · (4.77)

where f , g are scalar functions of τ, x and they are determined by the coefficients ai,
b in (4.76). Given the renormalised action Sgr,ren = Sgr,reg + Sgr,ct together with the
dictionary

exp
(︁
iSgr,ren[G]

)︁
=
⟨︂

exp
1
2

∫︂
S2

d2x
√

Ḡ Ḡij Tij

⟩︂
(4.78)

the CFT stress tensor Tij is then deduced to be

⟨Tij⟩ = lim
ϵ→0

2i√
Ḡ

δSgr,ren

δḠij , (4.79)

where Ḡij is the background metric of the boundary CFT. Before going into the detail
of holographic renormalisation, here we briefly discuss the structure of renormalised

4In fact, there are three components that belong to the boundary ∂M. One is at ρ = 1/ϵ while the other
two are at τ = 0 and τ = ∞. In thesis we focus on the renormalisation of the divergence at ρ = 1/ϵ. For
the integral along the surface of constant τ, we treat them as the assignment of initial and final data. The
treatment of the integral at the constant time surface is equivalent to the procedure that we fix the initial
modes by hand or inserting proper iε description in the path integral. More rigorously, like the treatment
for real time holography Skenderis and van Rees (2009, 2008); Hao (2024a), one can choose to glue an
Euclidean cap at τ = 0 surface and make divergence cancelled.

5We are abusing the notion here and ∇̂means the covariant derivative with respect to the metric Ĝij.
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gravity effective action. Through the renormalisation procedure, the IR divergence is
regulated by choosing the AdS spatial radius ρ = 1/ϵ as the low energy cutoff. How-
ever, for the flat spacetime, we also have timelike direction labelled by τ and here we
treat it as the UV cutoff from boundary point of view by specifying the range of integral
0 ≤ τ ≤ L. Therefore, organized by the powers of L, the action takes the form

Sgr,reg = S0
gr,reg + S1

gr,reg + · · · . (4.80)

where S0
gr,ren is the leading contribution while S0

gt,ren is subleading. After performing
the integral of τ during the holographic renormalisation, we have

Sgr,ren = L2S0
gr,ren + LS1

gr,ren +O(log L), (4.81)

in which S0
gr,ren is the contribution to the renormalised action of the order L2 and S1

gr,ren

is the lower order term. We identify S0
gr,ren as the hard sector since it comes from the

AdS hyperboloid while the soft sector is identified as S1
gr,ren coming from soft modes in

the metric.

Given the dictionary (4.78), to perform the calculation and make it work the same as the
AdS/CFT dictionary, we need the specific map between the boundary and bulk data
and here we propose the relation to be

Ḡij = g(0)ij +
1
L

σ
(0)
ij + · · · (4.82)

where the boundary background metric is expanded by the order of energy cut off L
given by the bulk data g(0)ij and σ

(0)
ij .

4.2.1 Hard Sector

In this section, we choose to perform the holographic renormalisation for the hard sec-
tor ignoring the soft contribution from hij. It turns out the treatment of the hard sector
is equivalent to the linear summation over all the AdS hyperboloid contribution and
one can regard this part as the review of AdS/CFT holographic renormalisation. At
zero order, the onshell action takes the form

Sgr,reg =
−1

16πGN

∫︂ L

0
dττ

∫︂
S2

d2x
√

g 2ρ2
(︃

2
ρ
+ gij∂ρgij

)︃ ⃓⃓⃓
ρ=1/ϵ

(4.83)

and the counterterm is given by

Sgr,ct = −
d− 1
8πGN

∫︂ L

0
dτ
∫︂

S2
d2x

1
τ

√
−γ. (4.84)
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Now, following the above discussion, we will show the result for d = 2. In such case,
g(0)ij is the metric on the sphere and the regulated stress tensor Treg

ij on the celestial
sphere is therefore given by

Treg
ij =

iL2

16πGN
(Kij − γijK) =

iL2

16πGN
ρ
(︂
(d− 1)gij + ρgijglk∂ρglk − ρ∂ρgij

)︂ ⃓⃓⃓
ρ=1/ϵ

,

(4.85)
in which L is the upper bound of the integral over τ and we have set ρ = 1/ϵ. After
the subtraction of the counterterm

Tct
ij = − iL2

16πGN

(d− 1)gij

ϵ
+ · · · , (4.86)

one then obtains the stress tensor

⟨Tij⟩ =
iL2

16πGN
(g(2)ij − g(0)ij Trg(2)) (4.87)

by taking the limit ϵ→ 0. Moreover, with the help of the relation

g(2)ij =
1
2
(Rg(0)ij + tij), Tr t = −R, (4.88)

where R = R [g(0)] and tij is a conserved symmetric tensor ∇itij = 0, we have

⟨Tij⟩ =
iL2

32πGN
tij. (4.89)

Therefore, after taking the trace, the Weyl anomaly is then deduced to be

⟨Ti
i ⟩ = −

c
24π

R, (4.90)

in which c is the central charge on the celestial sphere

c =
i3L2

4GN
. (4.91)

One can see the central charge will approach i∞ as argued in Cheung et al. (2017a);
Pasterski and Verlinde (2022); Ogawa et al. (2023) if one treats L as the scale of energy.
The complex central charge and stress tensor make the boundary CFT different from
the conventional CFT and the physical interpretation is yet not clear to us. However,
taking the previous work for scalar case into consideration, the framework for the CFT
with complex scale dimensions, stress tensor and central charge should be consistent.
Moreover, these complex values will not ruin the local properties of the QFT, which
can be seen by the study of the anomaly and Ward identities of the dual complex CFT
theory.
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The infinite behaviour of the central charge can be easily understood given the detail
of the flat/CFT dictionary, which has been extensively studied in the case for scalar
fields studied in chapter 3. The onshell scalar field is studied by the separation of
variables which splits the τ direction and other coordinates on the AdS hypersurfaces
and it turns out that one could decompose a single scalar field into infinite number
of modes labelled by the complex number k making the scale dimension of the dual
operator live on the principal series. Here we have the metric Gµν while it is hard to
apply the variable separation method to split the nonlinear Einstein equation into the τ

dependent part and the other part which describes the equation of motion on the AdS
hyperboloid therefore decompose the metric into the form of

Gµν(τ, ρ, x) −→ Gµν(ρ, x; k) (4.92)

labelled by the parameter k. But here it is still reasonable to assume that the bulk met-
ric is dual to infinite number of operators on the boundary described by stress-tensor
modes denoted as Tij(x; k) and the energy-stress tensor calculated here are in fact the
summation of all these modes. Each mode will contribute to the central charge in a
finite way while the total effect will become infinite after summing over all the modes
labelled by k treated as the frequency space dual to the τ direction.

4.2.2 Soft Sector

Now, based on our study of hard sector, we move on to the study of soft sector. In order
to obtain the next leading order correction S1

gr,ren, one needs to consider the higher order
terms in 1/τ of the onshell action (4.75).

S0
gr,reg + S1

gr,reg =
−1

16πGN

∫︂ L

0
dττ

∫︂
S2

d2x
√︁

Ĝ
4ρ√︁
Ĝ

ρρ

(︁
(d + ρgij∂ρgij) (4.93)

− 1
τ
(2∇i Ai − gijρ∂ρσij + σijρ∂ρgij)

)︁
,

therefore regulated action at the first order now becomes

S1
gr,reg =

L
8πGN

∫︂
S2

d2z
√︁

g(0) ρ
(︂

2∇i Ai − ρgij∂ρσij + σijρ∂ρgij (4.94)

−(2m + 2dM)(d + ρgij∂ρgij)
)︂⃓⃓⃓

ρ=1/ϵ

where the integral over τ has already been performed and the contribution in the sec-
ond line comes from the determinant

√
Ĝ and the norm vector factor

√︁
Gρρ. Together

with the expression of the extrinsic curvature

Kij = −ρ(ρ∂ρgij + gij) +
ρ

τ

(︂
∇i Aj +∇j Aj − ρ∂ρσij − σij + 2m(ρ∂ρgij + gij)

)︂
, (4.95)
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one can obtain the soft stress tensor T1,reg
ij

T1,reg
ij =

iL
8πGN

ρ
(︂
(∇i Aj +∇j Ai − ρ∂ρσij − σij) + (ρglk∂ρglk + d)σij (4.96)

−(2∇i Ai − ρglk∂ρσlk + ρσlk∂ρglk)gij + 2m(ρ∂ρgij + gij)− 2m(ρglk∂ρglk + d)gij

)︂
by checking the first order of Kij−γijK then performing the integral over τ like we have
done for the hard sector. From the above expression one can see the stress tensor will
go to infinity at large ρ. One of the divergent term comes from ∇i Aj while the other
term comes from the first order metric on the sphere σij. However, taking the constraint
A(0)

i = A(2)
i = 0 and the counterterm

Sgr,ct = −
d− 1
8πGN

∫︂ L

0
dτ
∫︂

S2
d2x τ

√︁
Ĝ
(︁
4ρ2Ĝρρ

)︁− 1
2 (4.97)

into consideration, we have

Tct
ij =

iL2

16πGN
(1− d)ρ

(︁
gij +

2
L
(σij − 2mgij)

)︁
+ · · · (4.98)

therefore the corresponding finite renormalised stress tensor at first order becomes

⟨T1
ij⟩ = −

iL
8πGN

(︂
(Tr σ(2) − σ

(0)
kl gkl

(2)) g(0)ij + Trg(2)σ(0)
ij

−σ
(2)
ij + 2m(0)(g(2)ij − g(0)ij Trg(2))

)︂
. (4.99)

4.2.3 Ward Identities

Given the flat/CFT dictionary and the specific expression of the energy-stress tensor,
now we turn to study Ward identities concerning ⟨Tij⟩ with the help of constraints on
the gravity metric studied before. For Weyl anomaly, we will perform the calculation
from the boundary point of view which means that the indices now are raised and
lowered by the metric Ḡij. After taking the trace, for the soft stress tensor, we have6

⟨Ti
i ⟩1 = − iL

16πGN

(︂
2(d− 1)

(︁
Trσ(2) − σ

(0)
ij gij

(2) − 2m(0)Trg(2)
)︁

+Trg(2)Trσ(0) − σ
(0)
ij gij

(2)

)︂
, (4.100)

which is equivalent to

⟨Ti
i ⟩1 =

iL
πGN

m(2) (4.101)

6Here ⟨Ti
i ⟩

1 represents the first order of Ḡij⟨Tij⟩, i.e ⟨Ti
i ⟩

1 = ⟨T1
ij⟩g

ij
(2) − ⟨T

0
ij⟩σ

ij
(0).
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after using the relation (4.66), (4.68) and setting d = 2. As we have studied, m(2) could
be an arbitrary scalar function therefore it will contribute to the anomaly at the sub-
leading order in an arbitrary way. At the same time, one should note that the form
of the anomaly is highly constrained in two dimensional conformal field theory Deser
and Schwimmer (1993); Bonora et al. (1986), the anomaly should be proportional to the
Euler density, which means one should consider a special class of asymptotically flat
spacetime in order to make the boundary field theory conformal. Here, we choose to
consider a set of solutions of m(2) written as

Trσ(2) = αMTrg(2) dm(2) = (1− α

4
)MTrg(2) (4.102)

satisfying the constraint (4.66) and (4.67) for a real parameter α. Such choice could be
treated as the fix of gauge for soft sector like the gauge of asymptotic AdS hyperboloids
are fixed in terms of Fefferman Graham coordinates where G0

ρρ = 1/4ρ2. Therefore, we
will have

⟨Ti
i ⟩1 = − iL

16πGN
(2α− 8)Trg(2)m(0). (4.103)

In such case, we can treat the contribution from m(2) as part of the central charge at
subleading order. To determine the central charge at the order of 1/L, we can use the
relation

⟨Ti
i ⟩ = −

c
24π

R [Ḡ]. (4.104)

where R[Ḡ] = R[g0] +
1
L (gij

(0)δRij − σ
ij
(0)Rij[g(0)]). By checking the formula (4.103) and

(4.104) specifically, we have

c =
i3L2

4GN
+

iML3(α− 2)
2GN

(4.105)

from which we can see the central charge will have first order correction that depends
on the geometry of spacetime characterised by the parameter M and α while we leave
higher order correction for further investigation.

Before going to study the conservation laws of energy-stress tensor, we first recall some
lessons learnt from the AdS/CFT correspondence. For the asymptotically AdS case, the
spacetime behaves like a box and no particle could finally reach the infinity while this
fits the calculation that the dual CFT energy-stress tensor is conserved. Following our
definition of asymptotic flatness, the hard sector is built up by the AdS hyperboloid
therefore the dual energy-stress tensor on the celestial sphere is expected to be con-
served at leading order, written as

∇̄j⟨Tij⟩0 = 0, (4.106)

which can be deduced using (4.68) and (4.87). Comparing with the AdS spacetime, one
of the main feature for asymptotically flat spacetime is that there could be gravitational
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radiation at the boundary and thus the system is not strictly closed i.e, energy could be
carried in or away by particles passing through the null boundary. Now, for the stress
tensor at subleading order, we have

∇̄j⟨Tij⟩1 = − iL
16πGN

(︁
2∇i(Trσ(2) − σ

(0)
kl gkl

(2))− 2∇jσ
(2)
ji

+σmk
(0)∇mg(2)ki +∇jTrg(2)σ

(0)
ij

)︁
(4.107)

where we have used the the relation (4.55) and the covariant derivative ∇̄i is with
respect to the background metric Ḡij of the boundary CFT. Moreover, taking the con-
straint (4.72) into consideration, we have

∇̄j⟨Tij⟩ =
iL

16πGN
(8∇im(2) + 4M∇iTrg(2) − σmk

(0)∇mg(2)ki ), (4.108)

from which we can see that the stress tensor is not conserved at the subleading order
due to the existence of soft modes therefore we can interpret such soft modes as the
radiation modes which generate the flow of energy through the null boundary.
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Chapter 5

Conclusions

In this thesis, we have used the AdS/CFT dictionary to develop a holographic dictio-
nary between flat space and celestial CFT. The key steps in our approach are transform-
ing bulk fields from time to frequency representation, and using the usual AdS/CFT
dictionary on spatial hyperbolic slices of the fields in mixed representation of frequen-
cy/hyperbolic spatial coordinates. We have shown that a single scalar field propagat-
ing in Minkowski is dual to two series of operators on the celestial sphere with scale
dimensions on the principal series. One can physically interpret the two sets of opera-
tors as ingoing and outgoing modes.

Asymptotically (locally) flat spacetimes have as asymptotic symmetries the (extended)
BMS groups at the null boundaries. Therefore, the total symmetry for given observable
quantities should be BMS+ × BMS− since we have the null boundaries at far past and
far future and we proposed that such symmetry is manifested by these two series of
operators. Moreover in the work Strominger (2014), it was proposed that the symmetry
which a quantum gravity scattering matrix should preserve is the subgroup BMS0 ⊂
BMS+ × BMS− by matching two null boundaries at the spatial infinity i0. This fits with
our observation that the two series of operators are dual to the ingoing and outgoing
shock waves in the bulk and they are related by physical processes that occur in the
center. From the boundary point of view, we can see that these two series of operators
are coupled with each other.

There has recently been considerable discussion of the role of Carollian symmetry in
flat space holography Hartong (2016); Ravera (2019); Bagchi et al. (2019); Bergshoeff
et al. (2020); Hansen et al. (2022); Donnay et al. (2022); Bagchi et al. (2022); de Boer et al.
(2023); Bagchi et al. (2023b,a); Nguyen and West (2023); Saha (2023a,b). It would be
interesting to explore how the structure of the holographic dictionary for the metric
can be interpreted in term of Carollian structure. In the context of Carollian CFTs, one
can introduce the notion of Carrollian time tc as the dual of effective mass tc ∼ k and
thus the series of correlation functions on the celestial sphere can be viewed as dual to
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a 3d correlation function, i.e.

⟨O(z, z̄; k)O(z′, z̄′; k)⟩ ←→ ⟨O(z, z̄, tc)O(z′, z̄′, tc)⟩, (5.1)

and these are related by the integral transform

O(tc, z, z̄) =
∫︂
P

dk G(tc, k) O(z, z̄; k), (5.2)

in which the Green function G(tc, k) would be determined by the definition of Carollian
time tc together with the dynamical structure of the system. As we can see, it is easier
to study the distribution of the scale dimensions and construct the dictionary using the
operators in k space while it may be more convenient to study the symmetries and the
evolution of the system in the proposed 3d spacetime. We will not go into detail of the
integral transform and leave the explicit form of G(tc, k) for further investigation.

The key feature for the proposed flat/celestial CFT dictionary is that it reduces two di-
mensions from the bulk to boundary celestial sphere. The duality relates the bulk the-
ory to a Euclidean CFT on the sphere, with the time dependence captured by the map
of a single bulk 4d field to an infinite tower of CFT operators. Many subtle questions
remain about the recovery of unitarity from the dual perspective. The scale dimensions
of the CFT operators are complex therefore the Euclidean CFT is not unitary, yet many
of the standard results used extensively in two dimensional CFTs, such as Cardy’s for-
mula, rely on unitarity. Recovery of unitarity from the dual perspective would rely on
understanding how the boundary data in k space can be reinterpreted in the tc domain.
In particular, this would be necessary to explore how black hole information is recov-
ered at the quantum level.

In our construction of the flat/CFT dictionary, one can see that the boundary corre-
lation functions are determined by the coefficients a±lm(k) which carry the information
about the bulk solution. These coefficients are determined by specifying the data on the
Cauchy surface of initial time and they govern the dynamical evolution of the system.
To construct a proper defined quantum field theory, one should understand how con-
straints such as causality, Lorentz invariance and the cluster decomposition principle
are related to this data. We will leave deeper exploration of such relations to further
work.

We noted that one may use the data on two copies of the Euclidean AdS hyperboloid
together with the equation of motion to reconstruct the linearised field in the whole
Minkowski spacetime. However, one should note that these two AdS surfaces are
not Cauchy surfaces according to the standard definitions given by Hawking and Ellis
(2023); Wald (1984). A deeper understanding of the underlying structure will be help-
ful to study scattering amplitudes and the causal properties of spacetime.
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Regarding the gravity part, we have developed the holographic renormalisation proce-
dure for the gravitational action on the asymptotically flat background then obtain the
flat/CFT dictionary between the d + 2 dimensional theory in the bulk and the d dimen-
sional CFT on the celestial sphere. Based on the construction of flat/CFT dictionary,
we then obtain a precise map between the asymptotic bulk data and the conformal en-
ergy stress tensor. By considering the conformal anomalies, we deduce the value of
the central charge up to the first subleading order, which comes from the soft sector of
the energy stress tensor. It turns out that the central charge takes complex value ap-
proaching infinity. Such behaviour has already been argued for long while here, given
the flat/CFT duality relation, we may ask if the complex central charge implies that the
boundary CFT is not unitary.

From the literature, the definition of unitarity has two interpretations. One is that the
transformations generated by the Hermitian conserved charges are unitary and it is
equivalent to the reflection positivity of the correlation functions once the theory is
Wick rotated to the Euclidean signature. The other definition for unitary is that the
conformal blocks form the unitary representation of the conformal group based on the
study of harmonic analysis of the Lorentz group. In the context of Celestial hologra-
phy, the standard answer for the unitary problem is that the 2d correlators with scale
dimensions on the principal series form the unitary representation of the Lorentz group
SO(1, 3).

This is fine if one wants to construct the boundary celestial CFT by matching the sym-
metries between the bulk scattering amplitudes and the boundary field theory. But fol-
lowing the construction in this thesis, by extending the AdS/CFT dictionary to the flat
case, we claim that the boundary theory is the CFT with complex scale dimension and
central charge. This forces us to investigate the unitary problem following the first kind
of definition which is the conventional unitary problem for a field theory. At first sight,
the 2d CFT with complex scale dimension will violate the reflection positivity condi-
tion therefore will not be unitary but we are not assuming that the 2d Euclidean CFT
obtained by the dictionary comes from the Lorentzian 1+1 CFT. As we have explained,
one needs to sum over all the 2d operators as showed in (5.2) in order to reconstruct
a 1+2 dimensional real time theory. The problem one should ask is that if such 1+2
dimensional theory is unitary or not. The answer is not clear to us while we think the
answer is probably yes since these operators in 3d will form a unitary representation
of Lorentz group (After performing the summation, we should consider the symmetry
group bms4.) therefore the theory defined by these operators should be unitary.

In the gravity part, we have obtained a complex central charge but this time it should
not be a surprise since we have already known we are dealing with a CFT consisting
of complex scale dimension operators. Discussing the unitary problem for a complex
charge in our familiar real scale dimension CFT will not make too much sense. Given
the complex central charge and stress tensor, one immediate question is whether the
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results are compatible with the CFT of complex scale dimension. Then what might be
the physical interpretation in the bulk. As we have mentioned, the unitary problem
should be studied when the real time 3d theory is well established and we leave such
problem to the further discussion. Moreover, we can see the value of central charge
is expressed as power expansion according to the energy cut off L and the physical
implication of such expansion is also not clear from either bulk or boundary point of
view.

The introduction of the cut-off L can be treated as an additional input when perform-
ing the renormalisation for the gravitational action. For scalar case in chapter 3, we
also have the integral over τ from zero to infinity, while there is no need to introduce
the cut off to make the action finite. That is because the integral over τ together with
the weight function and τ modes will produce orthogonal relations telling us the cou-
pling between different modes labelled by k. We have seen such orthogonal relation by
solving Klein-Gordon equation explicitly while here the treatment for Einstein equa-
tion will be much harder as we have briefly discussed in section 4.2. In this thesis, we
have not studied each graviton mode in a microscopic way while we choose to study
those infinite number of modes macroscopically by introducing the cut-off L.

As we have seen, for the flat/CFT duality, most of the nontrivial results come from the
contribution of the soft sector. It will lead to a non-conserved stress-energy tensor from
the boundary point of view. Such stress tensor makes the behaviour of boundary CFT
more complicated while it enables us to investigate the gravitational bulk radiation
using the boundary data. Therefore the interpretation of non-conserved part of the
energy-stress tensor is more like the introduction of heat bath or matter fields studied
in the AdS/CFT correspondence.

The definition of asymptotic flatness is clarified in the whole thesis as (4.37) while one
may ask if we could consider the asymptotically flat spacetime in a more general sense.
It is interesting to explore how the renormalisation works if Fefferman Graham gauge is
broken. For example, one can consider the case that G0

ρρ takes arbitrary form or G0
ρi ̸= 0.

For the spacetime in (4.37), the choice of spatial radius ρ on the AdS hyperboloid as the
IR regulator is straight forward since it will not break the asymptotic symmetry while
the development of holographic renormalisation will become more complicated if one
wants to deal with more general metric.

For the soft sector, we also meet the similar problem like the gauge fixing of the AdS hy-
perboloid and this comes from the freedom of the choice of Trσ(2) or equivalently m(2).
As we have seen, the trace part Trσ(2) tends to contribute to the subleading part of the
anomalies of the stress tensor ⟨Ti

i ⟩ in a arbitrary way while the form of Weyl anomaly is
highly constrained from the CFT point of view. After the holographic renormalisation,
to make the field theory coming from the bulk gravitational theory conformal, we have
to further fix the gauge of Trσ(2) as shown in (4.102). Here we have the freedom to do
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so but this leads to the problem that if all the asymptotically flat gravitational theory is
dual to the CFT on the boundary. In fact, the definition of asymptotically flat spacetime
is a vague concept in gravity as we have discussed in the introduction. In addition to
the Ricci flat condition Rµν = 0, one should also make the spacetime approach to flat at
infinity so that recover enough flat space results and properties. On the other hand, the
CFT is well studied thus such mismatching makes the construction of flat/CFT duality
challenging.

Although there are various unresolved technical and conceptual challenges in con-
structing the flat/CFT dictionary, one can see that the main structure of the flat/CFT
dictionary is already established. On the one hand, we can see that the dictionary
works the same as the AdS/CFT dictionary, on the other hand, the results strongly
suggest that the boundary theory behaves like a series of CFTs except for some com-
plex features therefore we adopt the name flat/CFT for the new duality relation during
the whole thesis and we hope the flat/CFT will play an important role just like its par-
ent AdS/CFT but this time it will lead us to the real physical world.
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A Embedding space

Bulk embedding space

In this section we review the embedding of hyperbolic space and AdS space into flat
space in one dimension higher, focussing in particular on the differences between Eu-
clidean AdS (hyperbolic space) and Lorentzian AdS.

We view Hd+1 as a spacelike surface in Rd+1,1. The coordinates of Rd+1,1 are denoted as
X = (X+, X−, Xµ) with µ = 0, · · · (d− 1), with the metric being:

ds2 = −dX−dX+ + δµνdXµdXν (A.3)

Then Hd+1 can be embedded as the spacelike surface X2 = −1, which can be parame-
terized in Poincaré coordinates as

X =
1
z
(︁
1, z2 + y2, yµ

)︁
. (A.4)

Note that as z→ 0 the embedding approaches 1
z P where P is null.

Lorentzian AdSd+1 is embedded into Rd,2 as follows. The coordinates of Rd,2 are de-
noted as X = (X+, X−, Xµ) with µ = 0, · · · (d− 1), with the metric being:

ds2 = −dX−dX+ + ηµνdXµdXν (A.5)

AdSd+1 can be embedded as the surface X2 = −1 with signature (d,1), which can again
be parameterized in Poincaré coordinates as (E.69) but with the induced metric now
being

ds2 =
1
z2

(︁
dz2 + ηµνdyµdyν

)︁
. (A.6)

To distinguish different time directions it is convenient to use t and τ to label the
Lorentzian and Euclidean time directions; they share the same coordinate expression
t, τ = y0 = X0/X+. We will find it convenient to treat X0 as a complex number with t
and τ the real and imaginary part, respectively. In the embedding space the derivatives
with respect to t and τ can be expressed as

∂

∂t
=

∂Xµ

∂t
∂

∂Xµ
= −2t

z
∂

∂X−
+

1
z

1
∂X0 = −2X0 ∂

∂X−
+ X+ ∂

∂X0 , (A.7)

∂

∂τ
=

∂Xµ

∂τ

∂

∂Xµ
=

2τ

z
∂

∂X−
+

1
z

1
∂X0 = 2X0 ∂

∂X−
+ X+ ∂

∂X0 . (A.8)
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Conformal light cone

In this section we summarise the embedding of flat space into the conformal light
cone of a flat space in two dimensions higher, focussing on the differences between
Euclidean and Lorentzian flat space.

We denote the coordinates of the embedding space as P = (P+, P−, Pµ) with µ =

0, · · · (d − 1). In the case of Euclidean d-dimensional flat space the metric on the em-
bedding space Rd+1,1 is

ds2 = −dP+dP− + δµνdPµdPν (A.9)

The relation between the embedding coordinates and the flat space coordinates xµ is
determined by the conformal light cone conditions:

P2 = 0 P = λP (A.10)

which are solved by P = (1, x2, xµ) with x2 = xµxµ.

For Lorentzian d-dimensional flat space the metric on the embedding space Rd,2 is

ds2 = −dP+dP− + ηµνdPµdPν (A.11)

The relation between the embedding coordinates and the flat space coordinates xµ is
still determined by the conformal light cone conditions (A.10).

Solutions

Here we briefly present the solutions that are used in section 2.1.2 and one can see
more detail in Skenderis and van Rees (2009). Given the real time action on AdSd+1

background

S = −1
2

∫︂
dd+1x

√
−G(∂µΦ∂µΦ + m2Φ2) (A.12)

with the metric G in E.57, we have the equation of motion

zd+1∂z(z−d+1∂zΦ) + z2□0Φ−m2Φ = 0 (A.13)

with the solution in momentum space q = (ω, k⃗)

e−iωt+k⃗·x⃗zd/2Kl(qz), e−iωt+k⃗·x⃗zd/2 Il(qz), (A.14)

in which Kl , Il are two types of Bessel functions. ∆ = d
2 + l is defined as m2 = ∆(∆−

d). For spacelike momenta q2 > 0 these modes are well behaved, while for timelike
momenta, one need to specify how the contour of ω winds around the branch cuts of
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q =
√︁

q2. Usually we use the iϵ prescription

qϵ =

√︂
−ω2 + k⃗

2 − iϵ (A.15)

to specify that we are applying the Feynman contours C over the complex ω plane.
Moreover, the solutions behave like

z
d
2 Kl ∼

zd/2−l

ql , z
d
2 Il ∼

z
d
2+l

q−l (A.16)

for z −→ 0 and

z
d
2 Kl ∼

√︄
zd−1

q
e−qz, z

d
2 Il ∼

√︄
zd−1

q
eqz (A.17)

when z −→ ∞. According to their asymptotics behavior, Kl are called source modes
and contributes to the bulk-boundary propagator XL as

XL(t, x⃗, z) =
1

(2π)d

∫︂
C

dω
∫︂

dk⃗e−iωt+ik⃗·x⃗ 2l+1ql
ϵ

Γ(l)
z

d
2 Kl(qϵz), (A.18)

which leads to the familiar space time expression

XL = iΓ(l)Γ(l +
d
2
)π−

d
2

zl+ d
2

(−t2 + x⃗2 + z2 + iϵ)l+ d
2

. (A.19)

As for Il , they are called normalizable modes and we should note they will become
infinite at z = ∞ when q is space like. Therefore, we only consider the time like contri-
bution

YL(t, x⃗, z) =
1

(2π)d

∫︂
C

dω
∫︂

dk⃗e−iωt+ik⃗·x⃗ θ(−q2)b(ω, k⃗) z
d
2 Jl(|q|z), (A.20)

in which b(ω, k⃗) are undetermined coefficients and Jl is defined as Il(−i|q|z) = e−iπl/2

× Jl(|q|z). One can obtain the Euclidean version by doing the Wick rotation t = −iτ.
For source contribution we have

XE = iΓ(l)Γ(l +
d
2
)π−

d
2

zl+ d
2

(τ2 + x⃗2 + z2 + iϵ)l+ d
2

(A.21)

and the normalizable term is

YE(t, x⃗, z) =
1

(2π)d

∫︂
C

dω
∫︂

dk⃗e−|ωτ|+ik⃗·x⃗ θ(−q2)b(ω, k⃗) z
d
2 Jl(|q|z), (A.22)

in which we have chosen the positive frequency when τ > 0. After lifting these to the
embedding space, one should be able to recover the expressions shown at the beginning
of section 2.1.2 by making

G∆ = X + Y. (A.23)
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B Solving BTZ

We start from the Klein-Gordon equation for the scalar field Φ, written as

□GΦ−m2Φ = 0, (B.24)

in which the Laplacian operator □G has the form of

□GΦ =
1√
−G

∂µ(
√
−GGµν∂νΦ). (B.25)

After using the BTZ black hole metric (2.78), we obtain the equation of motion in terms
of the (r, t, ϕ) coordinates

− 1
r2 − 1

∂2
t Φ +

1
r2 ∂2

ϕΦ + (r2 − 1)∂2
r Φ +

3r2 − 1
r

∂rΦ− ∆(∆− 2) = 0, (B.26)

in which we make m2 = ∆(∆− 2). The modes of the above equation are given by

ψ = eiωt−ikϕ f∆(ω, k, r), (B.27)

in which ω, k tell us how the modes propagate along the circle and f∆(ω, k, r) is given
by

f∆(ω, k, r) = Cωk∆

(︃
1− 1

r2

)︃− iω
2

r−∆H(
1
r2 ) (B.28)

where Cωk∆ are normalization constants while the function H( 1
r2 ) is determined by

Euler’s hypergeometric differential equation

z(1− z)H′′ + (∆− (∆ + 1− iω)z)H′ − 1
4
(∆− i(ω− k))(∆− i(ω + k))H = 0, (B.29)

where we have z = 1
r2 and the solutions are built from hypergeometric functions

F(a, b; c; z). Therefore in this case we have

a =
∆
2
− i

2
(ω + k), b =

∆
2
− i

2
(ω− k), c = ∆ = l + 1. (B.30)

Note that hypergeometric functions are locally expressed as power series and it con-
verges when |z| < 1 while the function over the whole complex z plane can be obtained
by the analytic continuation. Moreover, for physical systems, ω and k are usually non-
integral thus the form of the solutions are mainly determined by the value of ∆. Now,
we discuss the solutions in two cases.

i) None of the numbers c, c− a− b; a− b is equal to an integer.
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In this case, solutions can be expanded as combination of two independent power se-
ries at each singular point z = 0, 1, ∞. Here we will only consider the behavior of the
solution around the horizon z = 1 and the infinity z = 0. At z = 1, solutions depend
on the frequency ω and two independent solutions are given by

H−ω(z) = F(
∆
2
− i

2
(ω + k),

∆
2
− i

2
(ω− k); 1− iω; 1− z) (B.31)

and

Hω(z) = (1− z)iωF(
∆
2
+

i
2
(ω− k),

∆
2
+

i
2
(ω + k); 1 + iω; 1− z). (B.32)

Taking these two into consideration at the same time, we can write the modes as

ψ± = e±iωt−ikϕ f∆(±ω, k, r), (B.33)

in which

f∆(±ω, k, r) = Cωk∆

(︃
1− 1

r2

)︃− iω
2

r−∆H±ω(
1
r2 ) (B.34)

At z = 0, we also have two independent solutions while they now depend on the scale
dimension ∆ and we write them as

H∆+(z) = F(
∆
2
− i

2
(ω + k),

∆
2
− i

2
(ω− k); ∆; z) (B.35)

and

H∆−(z) = z1−∆F( 1− ∆
2
− i

2
(ω + k), 1− ∆

2
− i

2
(ω− k); 2− ∆; z). (B.36)

Similar to the z = 1 case, we can write the modes as

ψ± = eiωt−ikϕ f∆±(ω, k, r), (B.37)

in which

f∆±(ω, k, r) = Cωk∆

(︃
1− 1

r2

)︃− iω
2

r−∆H∆±(
1
r2 ). (B.38)

ii) c = ∆ = l + 1 is an integer for l = 1, 2, 3, . . .

In this case, we will try to get the solutions of the equation from two ways. From
one hand, we can apply the formula in Abramowitz et al. (1988) for integer l directly
and then obtain the fundamental system of the solution, given by

H1(0)(z) = F(a, b; l + 1, z), (B.39)
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and

H2(0)(z) = F(a, b; l + 1; z) lnz +
m

∑
n=1

(a)n(b)n

(1 + l)nn!
zn(ψ(a + n)− ψ(a) + ψ(b + n)(B.40)

−ψ(b)− ψ(l + 1 + n) + ψ(l + 1)− ψ(n + 1) + ψ(1))−
∞

∑
n=1

(n− 1)!(−m)n

(1− a)n(1− b)n
z−n.

These are two independent solutions at z = 0 and one can obtain the solution at
z = 1, ∞ through the analytic continuation.

From the other hand, we can treat the integer case ∆ = l + 1 as the limit of the gen-
eral case ∆ = l + 1 + δ after taking δ → 0. This allows us to use the solutions for
non-integer ∆ thus their physical meanings are retained. To take the δ → 0 limit, we
need to take care of the coefficients of the power series since they may have poles at
integer ∆. Taking the solution H−ω for example. If we expand H−ω around z = 0 as
power series, the term Γ(k− l) will show up in the denominator of the coefficients of zk

which leads to the poles when k− l = 1. In fact, we can resolve those poles by choosing
the hypergeometric function transformation z→ 1− z for integer ∆ then get

H−ω(z) =
Γ(l)Γ(a + b− l)

Γ(a)Γ(b)
z−l

l−1

∑
n=0

(a− l)n(b− l)n

n!(1−m)n
zn − (−1)lΓ(a + b− l)

Γ(a− l)Γ(b− l)
(B.41)

×
∞

∑
n=0

(a)n(b)n

n!(m + n)!
z−n (lnz− ψ(n + 1)− ψ(n + l + 1) + ψ(a + n) + ψ(b + n)) ,(B.42)

from which we can see that the infinite term in the coefficients are transformed to the
function lnz. Given the above solution, we choose the normalization constants to be

C±ωkl =
Γ( 1

2 (l + 1) + i
2 (±ω− k))Γ( 1

2 (l + 1) + i
2 (±ω + k))

Γ(l)Γ(1± iω)
(B.43)

so that the coefficient of the leading term rl−1 in ψ± turns to be 1. Therefore, the solution
can be written as

ψ = e±iωt−ikϕ(rl−1 + · · ·+ α(±ω, k, l)r−l−1[ln(r2) + β(±ω, k, l)] + · · · ), (B.44)

in which we just show the rl−1 and r−l−1 term and the coefficients α, β are given by

α(±ω, k, l) = (−1)l (
i
2 (±ω + k) + 1

2 (1 + l))l(
i
2 (±ω− k) + 1

2 (1 + l))l

l!(l − 1)!
, (B.45)

β(±ω, k, l) = −ψ(
i
2
(±ω+ k)+

1
2
(1+ l))−ψ(

i
2
(±ω− k)+

1
2
(1+ l))+ψ(1)+ψ(l + 1).

(B.46)
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C Complex Scalar Matching

In this section, we will derive the matching conditions for the complex scalar fields. We
start from writing down the action for the complex scalar ϕ. In Lorentzian signature
we have

SL =
1
2

∫︂
ML

√
−G(−∂µϕ∗L ∂µϕL −m2ϕ∗LϕL) (C.47)

while for Euclidean signature the action is

SE =
1
2

∫︂
ME

√
G(∂µϕ∗E ∂µϕE + m2ϕ∗EϕE), (C.48)

in which we denote the Lorentzian spacetime and Euclidean spacetime as ML and ME

joint at the codimension one surface Σ. As we have discussed, the continuation of the
state implies the first matching condition ϕE = ϕL. Moreover, the stationarity of the
total on-shell action with respect to ϕ and ϕ∗ tells us

δ

δϕ
( iSL − SE) =

∫︂
Σ

√
K(−i∂tϕ

∗
L − ∂tϕ

∗
E) = 0, (C.49)

δ

δϕ∗
( iSL − SE) =

∫︂
Σ

√
K(−i∂tϕL − ∂tϕE) = 0, (C.50)

in which K is the intrinsic curvature induced on Σ. Therefore, we obtain the second
matching condition written as

i∂tϕL + ∂tϕE = 0 and i∂tϕ
∗
L + ∂tϕ

∗
E = 0. (C.51)

D Quadratic Matching

Here we present the detail of the verification of (2.137). The Euclidean and Lorentzian
propagator are given by

GE
∆(X, P) =

1
(−2X · P)∆

E
GL

∆(X, P) =
1

(−2X · P)∆
L

. (D.52)

Acting ∂2
t and ∂2

τ on them, we obtain

∂2
τ

1
(−2X · P)∆

E
=

4∆(∆ + 1)
(−2X · P)∆+2

E
(−X0P− + X+P0)2 − 2∆

(−2X · P)∆+1
E

X+P− (D.53)

and

∂2
t

1
(−2X · P)∆

L
=

4∆(∆ + 1)
(−2X · P)∆+2

L
(X0P− − X+P0)2 +

2∆
(−2X · P)∆+1

L
X+P−. (D.54)
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Acting ∂3
t and ∂3

τ on the propagator we have

∂3
τ

1
(−2X · P)∆

E
=

8∆(∆ + 1)(∆ + 2)
(−2X · P)∆+2

E
(−X0P− + X+P0)3

−X+P−
8∆(∆ + 1)

(−2X · P)∆+1
E

(−X0P− + X+P0) (D.55)

and

∂3
t

1
(−2X · P)∆

L
=

8∆(∆ + 1)(∆ + 2)
(−2X · P)∆+2

L
(X0P− − X−P0)3

+X+P−
8∆(∆ + 1)

(−2X · P)∆+1
L

(X0P− − X+P0). (D.56)

One can directly check that (2.137) is true at the joint and surface t = T, τ = iT, after
taking the rotation of coordinates PE

0 = iPL
0 into consideration.

E Coordinates

In this section, we will introduce various kinds of coordinates for Minkowski space that
are convenient for us to reduce the data to the AdS hyperboloid, which are used many
times in this thesis. The flat space time is described by the metric ηµν for µ, ν = 0, 1, 2, 3,
with diagonal elements η00 = −1 η11 = η22 = η33 = 1, written us

ds2 = ηµνdXµdXν = −(dX0)2 + (dX1)2 + (dX2)2 + (dX3)2, (E.57)

in which (X0, X1, X2, X3) are the chosen coordinates. Here we just focus on the four
dimensional spacetime and the codimension one AdS3 hypersurface characterised by
the radius τ can be treated as the embedding

− (X0)2 + (X1)2 + (X2)2 + (X3)2 = −τ2, (E.58)

where we should note that here the flat Minkowski space is the physical space and the
AdS3 surfaces are introduced for the decomposition of data. The timelike wedge in
Minkowski which can be foliated by the AdS surfaces are so called Milne wedge.

Moreover, given such foliation, one can introduce global coordinates (τ, η, θ, ϕ) to cover
the Milne wedge. The transformation is given by

X0 = τ cosh η, (E.59)

X1 = τ sin θ sin ϕ sinh η, (E.60)

X2 = τ sin θ cos ϕ sinh η, (E.61)

X3 = τ cos θ sinh η, (E.62)
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in which one can see the relation (E.58) is automatically satisfied. (θ, ϕ) are coordinates
on the sphere and τ is the radius of the AdS surface. The spatial distance from the
origin on the hyperboloid is described by sinh η. In the global coordinate, the metric
now becomes

ds2 = −dτ2 + τ2
(︂

dη2 + sinh2 η dΩ2
2

)︂
, (E.63)

in which the metric on the standard sphere S2 is given by

dΩ2
2 = dθ2 + sin2 θdϕ2 (E.64)

=
4

(1 + zz̄)2 dzdz̄ = 2γzz̄ dzdz̄. (E.65)

The complex coordinates (z, z̄) on the plane are obtained by the stereographic projec-
tion from the sphere

z = eiϕ tan
θ

2
z̄ = e−iϕ tan

θ

2
. (E.66)

As we have mentioned, the value sinh η makes more sense as a physical quantity thus
one can define ρ = sinh η then the metric now becomes

ds2 = −dτ2 + τ2
(︃

dρ2

1 + ρ2 + 2ρ2γzz̄dzdz̄
)︃

, (E.67)

which is the standard form of Milne coordinates in the literature.

To study a single AdS surface, sometimes it is more convenient to introduce Poincare
coordinates (t, x, y) defined as

t =
1

X0 + X3 , x =
X1

X0 + X3 , y =
X2

X0 + X3 , (E.68)

and after setting τ = 1, one can pull back the metric to the AdS surface then obtain

ds2
AdS3

=
dt2 + dx2 + dy2

t2 =
dt2 + dωdω̄

t2 , (E.69)

in which ω = x + iy. In terms of global coordinates, the Poincare coordinates can be
written as

t =
1

cosh η + cos θ sinh η
, (E.70)

x =
sin ϕ sin θ sinh η

cosh η + cos θ sinh η
, (E.71)

y =
cos ϕ sin θ sinh η

cosh η + cos θ sinh η
, (E.72)

and (ω, ω̄) takes the form of

ω =
eiϕ sin θ sinh η

cosh η + cos θ sinh η
, ω̄ =

e−iϕ sin θ sinh η

cosh η + cos θ sinh η
. (E.73)
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One should note that, in the large η limit, (ω, ω̄) will tend to (z, z̄) thus it becomes
complex coordinates of celestial sphere on the boundary.

In terms of Poincare coordinates, the boundary-bulk propagator K∆(t, x, y; x′, y′) for
massless fields is given by

K(t, x, y; x′, y′) =
1
π

(︃
t

t2 + (x− x′)2 + (y− y′)2

)︃∆

=
1
π

(︃
t

t2 + (ω− z′)(ω̄− z̄′)

)︃∆

,

(E.74)
in which (x′, y′) are the points on the boundary and z′ = x′ + iy′. Following the dictio-
nary for the massless particles of dimension two, we have ∆ = 2. The propagator could
also be written in terms of global coordinates and at large ρ, one can check it takes the
form

Kρ=∞(ρ, z; z′) =
(1 + zz̄)∆

πρ∆
1

|z− z′|2∆ =
2

πΩ2(z) ρ∆
1

|z− z′|2∆ , (E.75)

in which Ω2(z)dzdz̄ = dΩ2 is the volume form of the standard sphere in terms of com-
plex coordinates. If we treat K(ρ, z, z) as a distribution i.e., just consider the behaviour
under the integral over z, z̄, the boundary-bulk propagators are in fact equivalent to the
delta function between boundary points Witten (1998a), i.e, we have

(1 + zz̄)∆

πρ∆
1

|z− z′|2∆ + · · · = K(ρ, z, z′)
ρ=∞−−→ δ(z− z′), (E.76)

in which we have done the expansion of K(ρ, z; z′) at large radius ρ. Therefore, a generic
field in the bulk with boundary behaviour φ(ρ, z) ∼ φ(z) can be expressed as

φ(ρ, z) =
∫︂

S2

1
2

dz′dz̄′ K(ρ, z; z′)φ(z′), (E.77)

in which we used the relation dzdz̄ = 2dxdy and for the value of the field at large ρ we
just need to consider the first term in (E.76) thus make K = Kρ=∞. Here we should note
that, by considering the property of the Green function∫︂

d2z′δ(z− z′)δ(z′ − z′′) = δ(z− z′′) (E.78)

we have the contracting relation for the propagator

∫︂
S2

Ω2(z′)dz′dz̄′
(︃

2
πΩ2(z′)ρ

)︃∆ 1
|z− z′|2∆

1
|z′ − z′′|2∆ =

4
π

1
|z− z′′|2∆ , (E.79)

which turns out to be useful in simplifying the calculation.
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F Flat Solutions

In this section, we will present the solution of equation on the AdS hyperboloid (3.11)
written as (︂

−∂2
η − 2(cothη)∂η + l(l + 1)csch2η + k2

)︂
ϕl(η; k) = 0, (F.80)

for ρ = sinh η. Solutions can be found at the boundary and origin respectively and
written as the expansion of proper basis. We should note that the basis at the origin
and boundary are dependent and they are related via transformation, which we will
see in the end of this section. Mode solutions for Lorentzian AdS have been studied in
Balasubramanian et al. (1999) while solutions for dS modes haven been studied in Liu
and Lowe (2021); Laddha et al. (2022).

Behaviour at the boundary

For the solution at the boundary, we first choose to write them in terms of hypergeo-
metric functions and then transform them into the associated Legendre functions. In
order to transform the equation into the standard form for hypergeometric functions,
we write the solution into the form of

ϕlk(η) =
fβl(

1
sinh2 η

)

sinhβ+1 η
, (F.81)

in which β2 = 1 + k2 and f depends on η for η ≥ 0. Now the equation (F.80) becomes

4x(x + 1) f ′′βl(x) + 2(2(1 + β) + (3 + 2β)x) f ′βl(x)− (l(l + 1)− β(β + 1)) fβl(x) = 0,
(F.82)

in which x is defined as
x =

1
sinh2 η

. (F.83)

Here we should note that the above equation is still not in the form of hypergeometric
equation because of the x(x + 1) term in front of f ′′βl(η). Thus we further do the trans-
formation x → x− 1 then obtain the equation

x(1− x)p′′βl(x)− 1
2
((3 + 2β)x− 1)p′βl(x) +

1
4
(l(l + 1)− β(1 + β))pβl(x) = 0, (F.84)

in which pβl(x) is defined as
pβl(x) = fβl(x− 1). (F.85)

Given the equation (F.84), one can write down the solution at x = 1 as

pβl(x) = 2F1(
1
2
+

l
2
+

β

2
,− l

2
+

β

2
; 1 + β ; 1− x) (F.86)
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therefore the fβl(η) is then deduced to be

fβl

(︄
1

sinh2 η

)︄
= 2F1

(︄
1
2
+

l
2
+

β

2
,− l

2
+

β

2
; 1 + β ; − 1

sinh2(η)

)︄
. (F.87)

Furthermore, after applying the transformation for hypergeomtric functions

2F1(
a + c− 1

2
,

c− a
2

; c ; 4z(1− z)) = (1− z)1−c
2F1(1− a, a ; c ; z) (F.88)

for
c = 1 + β, a = l + 1, z =

1
2
(1− coth η) (F.89)

to the solution (F.87), we get

ϕlβ(η) = 2β e−βη

sinh(η) 2F1(−l, l + 1 ; 1 + β ;
1
2
(1− coth η)). (F.90)

Noting that β could take both of the value β± = ±
√

1 + k2, one finally concludes the
two independent solutions are

ϕl(η; β+) =
Γ(1− β+)

(−2)β+

P
√

1+k2

l (coth η)

sinh η
, ϕl(η; β−) =

Γ(1− β−)

(−2)β−

P−
√

1+k2

l (coth η)

sinh η
,

(F.91)
in which we have taken the factor Γ(1± β) into consideration.

Behaviour at the origin

To study the behaviour of the solution at the origin, denoted as χl(η; k), we choose to
write the function into the form of

χl(η; k) = sinha η fβl(sinh2 η) (F.92)

in which a should satisfy the relation

a(a + 1) = l(l + 1) (F.93)

so that the equation can be recast into the hypergeometric form

x(1− x)q′′βl(x)− 1
2
(−1 + 2(2 + a)x)q′βl(x) +

1
4
(β2 − a2 − 2a)qβl(x) = 0, (F.94)

in which again β2 takes the value 1 + k2 and the function qlβ(x) is defined as

qβl(x) = fβl(x− 1). (F.95)
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Given the hypergeometic equation, solutions are then deduced to be

fβl(sinh2 η) = 2F1(
1
2
+

a
2
+

β

2
,

1
2
+

a
2
− β

2
;

1
2

; cosh2 η), (F.96)

in which we have set β =
√

1 + k2. More precisely, for a = l we have

χ1
l (η; k) = sinhl(η) 2F1(

1
2
+

l
2
+

β

2
,

1
2
+

l
2
− β

2
;

1
2

; cosh2 η) (F.97)

while for a = −1− l the solution becomes

χ2
l (η; k) = sinh−l−1(η) 2F1(−

l
2
− β

2
,− l

2
+

β

2
;

1
2

; cosh2 η). (F.98)

Here, we are just interested in the solution χl
l(η; k) since it is the regular solution around

the origin for l ≥ 0 and one can verify that, by using the transformation rule for hyper-
geometric function

2F1(a, b; c; z) =
(1− z)−aΓ(c)Γ(b− a)

Γ(b)Γ(b− a) 2F1
(︃

a, c− b; a− b + 1;
1

1− z

)︃
(F.99)

+ (1− z)−b Γ(c)Γ(a− b)
Γ(a)Γ(c− b) 2F1

(︃
b, c− a; b− a + 1;

1
1− z

)︃
, (F.100)

it can be written in terms of the solution at the boundary as

χ1
l (η; k) = C+

l (k)ϕl(η; β+) + C−l (k)ϕl(η; β−), (F.101)

in which C±l (k) are the coefficients given by

C+
l (k) = (−i)1+l+β Γ( 1

2 )Γ(−β)

Γ( 1
2 +

l
2 −

β
2 )Γ(−

l
2 −

β
2 )

(F.102)

and

C−l (k) = (−i)1+l−β Γ( 1
2 )Γ(β)

Γ( 1
2 +

l
2 +

β
2 )Γ(−

l
2 +

β
2 )

. (F.103)

Ratio

In order to obtain the CFT two-point function on the celestial sphere, one should cal-
culate the functional derivative of the one-point function with respective to the source.
Moreover, with the help of AdS/CFT dictionary, the functional derivative is given by
the ratio of coefficients, written as

C−l (k)
C+

l (k)
= (−1)β Γ(β)Γ( 1

2 +
l
2 −

β
2 )Γ(−

l
2 −

β
2 )

Γ(−β)Γ( 1
2 +

l
2 +

β
2 )Γ(−

l
2 +

β
2 )

. (F.104)
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To simplify above expression, we first use the recurrence formula for Gamma function
given by

Γ(− l
2
− β

2
)(− l

2
− β

2
)(− l

2
+ 1− β

2
) · · · ( l

2
− 1− β

2
) = Γ(

l
2
− β

2
) (F.105)

and

Γ(− l
2
+

β

2
)(− l

2
+

β

2
)(− l

2
+ 1 +

β

2
) · · · ( l

2
− 1 +

β

2
) = Γ(

l
2
+

β

2
) (F.106)

to transform Γ(− l
2 ±

β
2 ) into Γ( l

2 ±
β
2 ). Therefore, one can write the ratio (F.104) into

the form of

(−1)β Γ(β)Γ( 1
2 +

l
2 −

β
2 )Γ(

l
2 −

β
2 )

Γ(−β)Γ( 1
2 +

l
2 +

β
2 )Γ(

l
2 +

β
2 )
×

(− l
2 +

β
2 )(−

l
2 + 1 + β

2 ) · · · (
l
2 − 1 + β

2 )

(− l
2 −

β
2 )(−

l
2 + 1− β

2 ) · · · (
l
2 − 1− β

2 )
. (F.107)

After applying the Legendre duplication formula

Γ(z)Γ(z +
1
2
) = 21−2z√πΓ(2z) (F.108)

for z = l
2 ±

β
2 , we have

Γ(
1
2
+

l
2
± β

2
)Γ(

l
2
± β

2
) =
√

π21−(l±β)Γ(l ± β). (F.109)

For the part on right of (F.107), one should notice that

(− l
2 +

β
2 )(−

l
2 + 1 + β

2 ) · · · (
l
2 − 1 + β

2 )

(− l
2 −

β
2 )(−

l
2 + 1− β

2 ) · · · (
l
2 − 1− β

2 )

= (−1)l (−
l
2 + 1− β

2 )(−
l
2 + 2− β

2 ) · · · (
l
2 −

β
2 )

(− l
2 −

β
2 )(−

l
2 + 1− β

2 ) · · · (
β
2 − 1− β

2 )
= (−1)l β− l

β + l
.(F.110)

After substituting (F.109) and (F.110) into (F.107), one has

C−l (k)
C+

l (k)
= (−1)l+β 22β Γ(β)Γ(l − β)(β− l)

Γ(−β)Γ(l + β)(β + l)
(F.111)

= (−1)l+β+1 4β Γ(β)Γ(l − β + 1)
Γ(−β)Γ(l + β + 1)

(F.112)

= (−1)l+β+1 4β B(β, l − β + 1)
B(−β, l + β + 1)

, (F.113)

where we have written the result in terms of Beta function B(x, y) = Γ(x)Γ(y)
Γ(x+y) in the third

line.
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G Harmonic Modes

Like the Fourier transform between the spacetime and momentum, the transformation
between the discrete mode variables (l, m) and complex coordinates (z, z̄) on the sphere

(l, m)←→ (z, z̄) (G.114)

are related by the spherical harmonics Yl
m(z, z̄). More precisely, as shown in (3.16), the

transformation is realised via the expansion

Fk(ρ, z, z̄) := ∑
lm

Fk,l,m(ρ, z, z̄) = ∑
l,m

ϕl(ρ; k)Yl
m(z, z̄) (G.115)

in which Fk(ρ, z, z̄) is the spatial k mode that depends on (ρ, z, z̄) and ϕl(ρ; k) is the
associated expression in the mode variables (ρ, l, m). The m dependence is suppressed
since the equation of motion on the AdS hyperboloid does not depend on m 1. Given
the solution ϕl(ρ; β±) and their asymptotic expansion at infinity

ϕl(ρ; β±) = ρβ±−1(ϕ±l (k) +O(
1
ρ2 )), (G.116)

one can immediately obtain the dictionary for AdS/CFT in the form of mode variables
(m, l), written as

Ĵ lm(k) = ϕ+
l (k) ⟨Ôlm(k)⟩ = −2iβ+ ϕ−l (k) for − l ≤ m ≤ l, (G.117)

in which Ĵ lm(k) and ⟨Ôlm(k)⟩ are the corresponding source and one-point function
that lives on the boundary celestial sphere. Here they are not required to be physical
operators and sources thus we can treat them as virtual particles by construction. In
terms of (z, z̄) coordinates, they should have the form of

Ĵ (z, z̄; k) = ∑
l,m

ϕ+
l (k)Y

l
m(z, z̄), ⟨Ô(z, z̄; k)⟩ = −∑

lm
2iβ+ ϕ−l (k)Y

l
m(z, z̄). (G.118)

Here we should note that ϕl(ρ; β±) are two independent solutions at the boundary and
they are singular at the origin. The regular solution can be obtained by directly solving
the equation at the origin so called χ1(η; k). They are solutions of the same equation at
different singular points so ϕl(ρ; β±), χ1(η; k) are not independent. The transformation
between them are given by

χ1
l (η; k) = C+

l (k)ϕl(η; β+) + C−l (k)ϕl(η; β−), (G.119)

1In fact, it is more appropriate to use the notion ϕlm(ρ; k) here even though the solution dose not depend
on m explicitly.
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in which we have chosen solutions at the boundary as the basis and C±l (k) are coeffi-
cients determined in (F.101) and (F.102). Given the above relation, one can get the func-
tional derivative between the source and one-point function thus higher point functions
can be determined. For the two-point function, we have

⟨Ôlm(k) Ôl′,m′(k)⟩ = −
δ⟨Ôlm(k)⟩J
δĴ l′m′(k)

⃓⃓⃓⃓
J=0

= −δl
l′δ

m
−m′ 2iβ+

C−l (k)
C+

l (k)
, (G.120)

in which the two-point function is written in terms of mode variables (l, m). Here,
we should note the value of ⟨O⟩J is scheme dependent and we assume that proper
regularization procedure in the mode space (l, m) exists so that (G.120) is true for two-
point function, like what has been done in momentum space Freedman et al. (1992);
Skenderis (2002). To go back to the complex coordinates on the celestial sphere, one
can do the sum over spherical harmonics Yl

m(z, z̄) then obtain

⟨Ô(z, z̄; k) Ô(z′, z̄′; k)⟩ = −2iβ+ ∑
lm

C−l (k)
C+

l (k)
Yl

m(z, z̄)Yl
−m(z

′, z̄′). (G.121)

Here we should note that the two-point function on the sphere is obtained by summing
over two discrete variables (l, m) while one can also just do the sum over variable m
and obtain the l-mode source, one-point function

Ĵ l(z, z̄; k) = ∑
m

ϕ+
l (k)Y

l
m(z, z̄) ⟨Ôl(z, z̄; k)⟩ = −2iβ+ ∑

m
ϕ−l (k)Y

l
m(z, z̄), (G.122)

and the corresponding two-point function is given by

⟨Ôl(z, z̄; k) Ôl(z′, z̄′; k)⟩ = −2iβ+ ∑
m

C−l (k)
C+

l (k)
Yl

m(z, z̄)Yl
−m(z

′, z̄′). (G.123)

Two-point Funciton

To study the dictionary for flat space in a more precies way, we consider a generic k
mode f (τ, ρ, z, z̄; k) for on-shell field Φ(τ, ρ, z, z̄) defined in (3.66), or equivalently

f (τ, ρ, z, z̄; k) = ∑
lm

∫︂
dω fw,k,l,m(τ, ρ, z, z̄)Φ̃(w, k, l, m). (G.124)
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Following the notion in (3.17), we choose to decompose the k mode into the spatial
modes therefore f (τ, ρ, z, z̄; k) now takes the form

f (τ, ρ, z, z̄; k) = ∑
lm

Φ̄(τ, k, l, m)ϕl(ρ; k)Yl
m(z, z̄) (G.125)

= ∑
lm
(a+lm(k) f+(τ, k) + a−lm(k) f−(τ, k)) (ϕl(ρ; β+) + ϕl(ρ; β−))Yl

m(z, z̄)

= f+(τ, k)ϕ(ρ, z, z̄; β+) + f−(τ, k)ϕ̃(ρ, z, z̄; β+) (G.126)

f−(τ, k)ϕ(ρ, z, z̄; β−) + f−(τ, k)ϕ̃(ρ, z, z̄; β−),

in which Φ̄(τ, k, l, m) and ϕl(ρ, k) are modes that depend on τ and ρ. In the first line,
we have summed over the two discrete variables l, m and also made the τ-mode l, m
dependent by introducing the coefficients a±lm(k)

2. They are determined by the initial
data. In the third line, we rearrange them into the τ mode functions and highlight
their asymptotic behaviour according to β±. The function ϕ(ρ, z, z̄, β±), ϕ̃(ρ, z, z̄, β±)

are given by

ϕ(ρ, z, z̄; β±) = ∑
lm

a+lm(k) ϕl(ρ; β±)Yl
m(z, z̄) (G.127)

ϕ̃(ρ, z, z̄; β±) = ∑
lm

a−lm(k) ϕl(ρ; β±)Yl
m(z, z̄). (G.128)

Moreover, using the asymptotic expansion (G.116) for ϕl(ρ; β±) we obtain the leading
contribution for ϕ(ρ, z, z̄; β±) and ϕ̃(ρ, z, z̄; β±) written as

ϕ±(z, z̄; k) = ∑
lm

a+lm(k) ϕ±l (k)Y
l
m(z, z̄) (G.129)

ϕ̃
±
(z, z̄; k) = ∑

lm
a−lm(k) ϕ±l (k)Y

l
m(z, z̄). (G.130)

Now, given the above asymptotic expansion, we rewrite the Flat/CFT dictionary (3.83)
into

J (z, z̄; k) = ∑
lm

a−lm(k)Jlm(k)Ym
l (z, z̄) ⟨O(z, z̄; k)⟩ = ∑

lm
a+lm(k)⟨Olm(k)⟩Yl

m(z, z̄),

(G.131)
J̃ (z, z̄; k) = ∑

lm
a+lm(k)Ĵ lm(k)Ym

l (z, z̄) ⟨Õ(z, z̄; k)⟩ = ∑
lm

a−lm(k)⟨Ôlm(k)⟩Yl
m(z, z̄),

(G.132)
from which we can see there is a pair of source and one-point function {J ,O}, {J̃ , Õ}
and they are combination of the source and one-point functions introduced in the
AdS/CFT dictionary. Here we should note that the source and one-point functions
{J ,O}, {J̃ , Õ} now become physical and their existence does not rely on the Ad-
S/CFT dictionary i.e., one could study them without writing them in terms of AdS

2Here, we should note that coefficients a±lm(k) play the same role as ψ±(p) in (3.24) or ψ(p) in (3.30) for
fixed l, m.
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modes {Ĵ lm, Ôlm}. Given the above dictionary, one can deduce the two-point function

⟨Õ(z, z̄; k)Õ(z′, z̄′; k)⟩ = 1
Nk

∑
lm

a−lm(k)
a+lm(k)

⟨Ôlm(k)Ôl,−m(k)⟩Yl
m(z, z̄)Yl

−m(z
′, z̄′), (G.133)

⟨O(z, z̄; k)O(z′, z̄′; k)⟩ = 1
Nk

∑
lm

a+lm(k)
a−lm(k)

⟨Ôlm(k)Ôl,−m(k)⟩Yl
m(z, z̄)Yl

−m(z
′, z̄′), (G.134)

in which the (l.m) mode two-point functions are given in(G.120). Here we should note
that a−lm/a+lm = a+lm/a−lm = 0 if a−lm = 0 or a+lm = 0 and the coefficients satisfy a±lm =

a±l,−m if one assumes that the fields are invariant under the parity transformation on the
sphere ϕ = −ϕ.

During the calculation, we assume the coefficients alm(k) determined by the initial data
are (l, m) dependent. In fact, we can simplify the coefficients if there is a rotating sym-
metry for the solution on the sphere thus the coefficients will be m independent and we
label them as al(k). In this case, the k mode will be written as

f (τ, ρ, z, z̄; k) = ∑
lm
(a+l (k) f+(τ, k) + a−l (k) f−(τ, k)) (ϕl(ρ; β+) + ϕl(ρ; β−))Yl

m(z, z̄).

(G.135)

The Flat/CFT dictionary remains the same while the source and one-point function will
be written in terms of the shorter form

J (z, z̄; k) = ∑
l

a−l (k)Ĵ l(z, z̄; k) ⟨O(z, z̄; k)⟩ = ∑
l

a+l (k)⟨Ôl(z, z̄; k)⟩, (G.136)

J̃ (z, z̄; k) = ∑
l

a+l (k)Ĵ l(z, z̄; k) ⟨Õ(z, z̄; k)⟩ = ∑
l

a−l (k)⟨Ôl(z, z̄; k)⟩, (G.137)

in which {Jl ,Ol} are the l mode source and one-point function defined in (G.122). As
for the two-point function, following the standard functional derivative procedure, we
have

⟨Õ(z, z̄; k)Õ(z′, z̄′; k)⟩ = δ⟨Õ(z, z̄; k)⟩J
δJ̃ k(z′, z̄′; k)

⃓⃓⃓⃓
J=0

=
1

Nk
∑

l

a−l (k)
a+l (k)

⟨Ôl(z, z̄; k)Ôl(z′, z̄′; k)⟩,

(G.138)

⟨O(z, z̄; k)O(z′, z̄′; k)⟩ = δ⟨O(z, z̄; k)⟩J
δJ (z′, z̄′; k)

⃓⃓⃓⃓
J=0

=
1

Nk
∑

l

a+l (k)
a−l (k)

⟨Ôl(z, z̄; k)Ôl(z′, z̄′; k)⟩,

(G.139)
in which the l-mode two-point function on the right hand side are given by (G.123).
From the above discussion, one can see that it is not possible to simplify the coefficients
al(k) further and make them l independent otherwise the pair of source and one-point
function will become linearly dependent and be reduced to one copy.
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Boundary-Bulk Propagator

Following the study of the mode expansion of the fields, we know that the source of
the fields can be expanded by the spherical harmonics on the sphere with coefficients
a±lm(k), written as

J (z, z̄; k) = ϕ̃
+
(z, z̄; k) = ∑

lm
a−lm(k)Y

l
m(z, z̄), (G.140)

J̃ (z, z̄; k) = ϕ+(z, z̄; k) = ∑
lm

a+lm(k)Y
l
m(z, z̄). (G.141)

Therefore, with the help of the bulk-boundary propagator K(ρ, z; z′), one can then write
the spatial mode ϕ(ρ, z, z̄; k) and ϕ(ρ, z, z̄; k) into the form of

ϕ(ρ, z, z̄; k) =
1
2

∫︂
dz′dz̄′K(ρ, z; z′)ϕ+(z′, z̄′; k) =

1
2 ∑

lm
a+lm(k)

∫︂
dz′dz̄′K(ρ, z; z′)Yl

m(z
′, z̄′),

ϕ̃(ρ, z, z̄; k) =
1
2

∫︂
dz′dz̄′K(ρ, z; z′)ϕ̃+

(z′, z̄′; k) =
1
2 ∑

lm
a−lm(k)

∫︂
dz′dz̄′K(ρ, z; z′)Yl

m(z
′, z̄′).

Given such expression, together with the Flat/CFT dictionary, the one-point functions
are now deduced to be

O(z, z̄; k) = −2iβ+Ω2(z)ϕ−(z, z̄; k) = −2iβ+

π ∑
lm

a+lm(k)
∫︂

dz′dz̄′
1

|z− z′|2∆ Yl
m(z

′, z̄′),

(G.142)

Õ(z, z̄; k) = −2iβ+Ω2(z)ϕ̃
−
(z, z̄; k) = −2iβ+

π ∑
lm

a−lm(k)
∫︂

dz′dz̄′
1

|z− z′|2∆ Yl
m(z

′, z̄′).

(G.143)

Moreover, by doing the functional variation with respect to the source J (z, z̄; k) and
J̃ (z, z̄; k), one should be able to obtain the two point functions. The functional varia-
tion between the one-point function and the source can be transformed into variation
between spherical harmonics since both of the operator O and the source J are now
written in terms of harmonic function Yl

m. At first, as a kind of approximation, we
assume that the boundary-bulk propagator is a function that do not depend on the
spherical harmonics, then the two-point functions become

⟨O(z, z̄; k)O(z′, z̄′; k)⟩ = 2iβ+
a+0 (k)
a−0 (k)

+
1

Nk
∑

l ̸=0,m

a+lm(k)
a−lm(k)

ck

|z− z′|2∆ ,

⟨Õ(z, z̄; k)Õ(z′, z̄′; k)⟩ = 2iβ+
a−0 (k)
a+0 (k)

+
1

Nk
∑

l ̸=0,m

a−lm(k)
a+lm(k)

ck

|z− z′|2∆ , (G.144)

in which ck = 2iβ+/π is the renormalised factor. Here we should note the l = 0 term is
a constant since Y0

0 is a constant function and the functional variation is then reduced
to the ratio of coefficients. One can always set such term to zero by shifting the fields
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with a constant and make a+00(k) or a−00(k) zero. We choose to keep them here since in
the discussion of shock waves, the fields take constant value on the sphere and the only
contribution will be the l = 0 term. Form the expression (G.144), one can see that the
two-point function is of scale dimension ∆ and the coefficients of the bulk fields a±lm(k)
are encoded in the boundary operator as the ratios of the linear combination.

Now, we will determine the functional variation in a more precise way by decomposing
the bulk-boudary into the harmonics modes

Ω2(z)K(ρ, z; z′) = ∑
lm

Klm(ρ)Yl
m(z, z̄)Yl

−m(z
′, z̄′) (G.145)

in which the function K(ρ) can be treated as the coefficients and the weight Ω2(z) is in-
troduced here for later convenience. Given such decomposition, the one-point function
can be written into the form

O(z, z̄; k) = −2iβ+ ∑
lm

a+lm(k)
∫︂

dz′dz̄′KlmYl
m(z, z̄)

(︂
Yl
−m(z

′, z̄′)
)︂2

, (G.146)

Õ(z, z̄; k) = −2iβ+ ∑
lm

a−lm(k)
∫︂

dz′dz̄′KlmYl
m(z, z̄)

(︂
Yl
−m(z

′, z̄′)
)︂2

, (G.147)

in which Klm = ρ∆Klm(ρ). Therefore, by calculating the functional variation with re-
spect to the spherical harmonics Yl

m, one then obtain the two point function

⟨O(z, z̄; k)O(z′, z̄′; k)⟩ = 4iβ+

Nk
∑
lm

a+lm(k)
a−lm(k)

KlmYl
m(z, z̄)Yl

−m(z
′, z̄′) (G.148)

⟨Õ(z, z̄; k)Õ(z′, z̄′; k)⟩ = 4iβ+

Nk
∑
lm

a−lm(k)
a+lm(k)

KlmYl
m(z, z̄)Yl

−m(z
′, z̄′). (G.149)

One can check such expression is equivalent to the result obtained from the mode anal-
ysis calculation by making

4iβ+Klm ≡ δl
l′δ

m
−m′⟨Ôlm(k)Ôl′m′(k)⟩, (G.150)

or equivalently we have

2Klm = −
C−l (k)
C+

l (k)
. (G.151)
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H Asymptotic symmetries

Given the Killing vector ξ, we can then further write down the variation of the metric
as

Lξ Gµν = ξσ∂σGµν + Gµσ ∂νξσ + Gνσ ∂µξσ, (H.152)

in which the expression is true for generic metric. In this thesis we will work in the
Feffermam Graham gauge which means we have Gττ = −1 and Gτa = 0. In such
gauge, for ττ component, we have

Lξ Gττ = ξσ∂σGττ + 2Gτσ ∂τξσ = −2∂τξτ (H.153)

while for the τρ and τz component we have

Lξ Gτρ = Gτσ ∂ρξσ + Gρσ ∂τξσ (H.154)

= −∂ρξτ + Gρρ∂τξρ + Gρz∂τξz + Gρz̄∂τξ z̄ (H.155)

and

Lξ Gτz = Gτσ ∂zξσ + Gzσ ∂τξσ (H.156)

= −∂zξτ + Gρz∂τξρ + Gzz∂τξz + Gzz̄∂τξ z̄. (H.157)

For the spatial ρzz̄ part, we have

Lξ Gzz̄ = ξσ∂σGzz̄ + Gzσ∂z̄ξσ + Gz̄σ∂zξσ (H.158)

Lξ Gzz = ξσ∂σGzz + 2Gzσ∂zξσ (H.159)

Lξ Gρρ = ξσ∂σGρρ + 2Gρσ∂ρξσ (H.160)

Lξ Gρz = ξσ∂σGρz + Gρσ∂zξσ + Gzσ∂ρξσ. (H.161)
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I Feffermam and Graham Coordinates

In terms of Fefferman and Graham coordinates (r, xi). The metric for asymptotic AdS
spacetime takes the form

Ĝrr =
1
r2 , Ĝij =

gij

r2 , Ĝri = 0, (I.162)

in which the asymptotic behaviour is described by the function gij(r, xi). In such coor-
dinates, the connection is then given by

Γr
rr = −

1
r

, Γr
ri = Γi

rr = 0. (I.163)

For the other components that involve r component, in terms of the function gij, the
connections can be written as

Γr
ij = −

r2

2
∂rĜij =

gij

r
− 1

2
∂rgij (I.164)

and

Γi
rj =

1
2

Ĝ
ik

∂rĜkj = −
δi

j

r
+

1
2

gik∂rgkj (I.165)

For the connections that do not involve the r component, they are determined by the
function gij and one can treat them as the connection of gij, i.e, Γi

jk = Γ̂i
jk[g].

Given the connections, we can use them to calculate the Ricci tensor following the def-
inition (J.171), the rr component is given by

Rd+1
rr [Ĝ] = ∂rΓk

rk + Γl
rkΓk

rl − Γr
rrΓk

kr

=
1
2

gij ∂2
r gij −

1
2r

gij∂rgij −
1
4

gij glm ∂rgil ∂rgjm +
d
r2 (I.166)

and the ir components is determined to be

Rd+1
ir [Ĝ] = ∂iΓk

rk − ∂kΓk
ri + Γk

rlΓ
l
ik − Γm

ri Γ
k
km (I.167)

=
1
2

∂i( glm ∂rglm)−
1
2

∂k( gkl ∂rgil) +
1
2

gkm Γl
ik ∂rglm −

1
2

gmk Γl
lm ∂rgik.

Moreover, in terms of covariant derivative ∇i with respective to the metric gij, Rir can
be simplified to

Rd+1
ir [Ĝ] =

1
2
∇i(glm ∂rglm)−

1
2
∇j∂rgji. (I.168)
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The ij component is given by

Rd+1
ij [Ĝ] = Rij[g]− ∂rΓr

ij + Γk
irΓr

jk + Γr
ilΓ

l
jr − Γr

ijΓ
l
lr − Γr

ijΓ
r
rr (I.169)

= Rij[g] +
1
2

∂2
r gij +

d
r2 gij +

1− d
2r

∂rgij −
1
2

gkm∂rgki∂rgmj

+
1
4

∂rgijglm∂rglm −
1
2r

gijglm∂rglm,

in which the induced Ricci tensor of gij is denoted as Rij[g].
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J Equation of Motion

To calculate the Ricci tensor, we will use the convention

R σ
µνρ = ∂µΓσ

νρ − ∂νΓσ
µρ + Γσ

µλΓλ
νρ − Γσ

νλΓλ
µρ (J.170)

so that the tensor is given by

Rµν = R ρ
µρν = ∂µΓρ

νρ − ∂ρΓρ
µν + Γρ

µλΓλ
νρ − Γρ

ρλΓλ
µν. (J.171)

For d dimensional spacetime, in terms of the Milne coordinates, the Einstein equation
at linear level could be written as

Rττ[G] =
4ρ2

τ
∂τhρρ + 2ρ2∂2

τhρρ +
1
2

gij∂2
τhij +

1
τ

gij∂τhij (J.172)

Rτi[G] = 2ρ2∇i∂τhρρ +
1

2ρ
∇i( gjm∂τhjm)−

1
2ρ

∂τ∇khki − 2ρ2∂ρ∂τhiρ

−4ρ∂τhiρ − 2ρ2∂τhρiΓa
aρ (J.173)

in which we have
Γa

aρ =
d− 2

2
1
ρ
+

1
2

glm∂ρglm (J.174)

and Rτρ is deduced to be

Rτρ[G] = − 1
2ρ2 gij∂τhij +

1
2ρ

∂ρ(gij∂τhij)− 2ρ∂τhρρ −
1

2ρ
∂τ∇ihiρ

−2ρ2∂τhρρΓa
aρ +

1
2ρ

gij∂τhjkΓk
iρ. (J.175)

For other components, with the help of the expansion of the Ricci curvature,

Rd+1
ab [Ĝ

(0)
+ h] = Rd+1

ab [Ĝ
(0)
] +

1
2
(∇̂2

hab + ∇̂a∇̂bh− ∇̂c∇̂ahc
b − ∇̂c∇̂bhc

a) +O(h2)

(J.176)
where ∇̂a is the covariant derivative with respect to the metric Ĝ

(0)
ab . Then one can

obtain

Rρρ[G] = −dhρρ −
d + 2

2
τ∂τhρρ −

1
2

τ2∂2
τhρρ −

τ

8ρ3 gij∂τhij + (4ρ2Γi
ρjΓ

j
iρ −

gij

ρ2 Γρ
ij

+
gij

ρ
Γk

iρΓρ
jk − 4(d + ρgij∂ρgij))hρρ − (2ρ(d + ρgij∂ρgij) +

gij

2ρ
Γρ

ij)∂ρhρρ

+
1

2ρ
∇i∇ihρρ −

1
ρ
∇i∂ρhi

ρ −
2
ρ

Γk
iρ∇ihkρ −

1
ρ2∇ihi

ρ +
1

2ρ
∂2

ρhi
i −

1
2ρ2 ∂ρhi

i

+
1
ρ

Γi
ρj∂ρhj

i +
1

2ρ3 hi
i +

1
ρ

gijΓk
iρΓl

jρhkl −
1
ρ2 Γi

ρjh
j
i −

1
ρ

Γi
ρjΓ

k
ρih

j
k (J.177)
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where we have hi
j = gikhkj and hi

ρ = gikhkρ. The connections used here are given by

Γρ
ρρ = − 1

ρ , Γi
jρ =

δi
j

2ρ +
1
2 gik∂ρgkj and Γρ

ij = −2ρ2gij− 2ρ3∂ρgij. For the components of Riρ,
Rij we have

Riρ[G] = −d + 1
2

τ∂τhiρ −
1
2

τ2∂2
τhiρ − dhiρ − 2ρ∇ihρρ − 2ρ2∇k(Γk

iρhρρ)−
1

2ρ
∇m(Γρ

mihρρ)

−2ρ2Γa
aρ∇ihρρ +

1
2ρ

(∇m∇mhiρ −∇k∇ihk
ρ) + 2ρ2∂ρ(Γ

j
ρihρj)−

1
2ρ

∂ρ(Γ
ρ
ijh

j
ρ)

+
3
2

Γρ
miΓ

k
nρgmnhkρ +

gmn

2ρ
Γρ

mnΓj
ρihjρ +

1
2ρ

gmnΓk
mρΓρ

nkhiρ +
1

2ρ
Γj

kρΓρ
ijh

k
ρ

− 1
2ρ2 gmnΓρ

mnhiρ + 2ρ2Γj
kρΓk

jρhρi + Γa
aρ(−2ρhρi + 2ρ2Γj

ρihρj + 2ρ2Γk
iρhρk −

1
2ρ

Γρ
ijh

j
ρ)

+8ρΓj
iρhρj − 2hiρ +

1
ρ

Γρ
ij∂ρhj

ρ − 2ρ∂ρhiρ − 2ρ2Γa
aρ∂ρhρi +

1
ρ
∇k(Γl

iρhk
l )

− 1
2ρ

Γk
mρ∇mhik +

1
2ρ

Γk
jρ∇ih

j
k −

1
2ρ
∇j(Γk

jρhik)−
1

2ρ
∇j(Γ

j
ρkhk

i ) +
1

2ρ
Γj

kρ∇jhk
i

+
1

2ρ2∇khk
i −

1
2ρ2∇ih−

1
2ρ

Γk
iρ∇kh +

1
2ρ
∇i∂ρh− 1

2ρ
∇j∂ρhj

i (J.178)

and

Rij[G] = −dhij −
d + 1

2
τ∂τhij −

1
2

τ2∂2
τhij −

τ

2
gij(gmn∂τhmn + 4ρ3∂τhρρ)

+∂ρ(4ρ2Γρ
ijhρρ)− 2ρ2(Γk

ρiΓ
ρ
kjhρρ + Γk

ρjΓ
ρ
kihρρ) +

1
ρ

Γρ
niΓ

ρ
njg

mnhρρ + 2ρ2∇i∇jhρρ

+4ρ2Γa
aρΓρ

ijhρρ − Γρ
ij∂ρ(2ρ2hρρ)− 2∂ρ(ρ

2∇ihρj)− 2∂ρ(ρ
2∇jhρi)

−2ρ2∇k(Γk
iρhjρ)− 2ρ2∇k(Γk

jρhiρ) +
1

2ρ
Γρ

kj∇ihk
ρ +

1
2ρ

Γρ
ki∇jhk

ρ +
1
ρ
∇k(Γ

ρ
ijh

k
ρ)

−2ρ2Γa
aρ(∇ihjρ +∇jhiρ)− 2ρ2Γk

ρihρj − 2ρ2Γk
ρjhρi − 2ρ2Γk

ρj∇ihkρ − 2ρ2Γk
ρi∇jhkρ

− 1
2ρ
∇n(Γρ

nihρj)−
1

2ρ
∇n(Γρ

njhiρ)−
1

2ρ
Γρ

mi∇
mhρj −

1
2ρ

Γρ
mj∇

mhρi

− 1
2ρ

(∇k∇ihk
j +∇k∇jhk

i ) +
1

2ρ
∇i∇jh +

1
2ρ
∇m∇mhij + 2ρ2∂2

ρhij + 2ρ∂ρhij

−2ρ2(︁∂ρ(Γk
ρihkj) + ∂ρ(Γk

ρjhki) + Γk
ρi∂ρhkj + Γk

ρj∂ρhki
)︁
+

1
2ρ2 Γρ

ijh−
1

2ρ
Γρ

ij∂ρh

+
1
2

Γρ
ki∂ρ(

1
ρ

hk
j ) +

1
2

Γρ
kj∂ρ(

1
ρ

hk
i )−

1
2

∂ρ(
1
ρ

Γρ
kih

k
j )−

1
2

∂ρ(
1
ρ

Γρ
kjh

k
i )

+2ρ2(Γk
ρiΓ

m
ρkhmj + Γk

ρjΓ
m
ρkhmi + 2Γk

ρiΓ
m
ρjhmk)−

1
2ρ

(Γρ
kiΓ

m
ρj + Γρ

kjΓ
m
ρi)h

k
m

+
1

2ρ
(Γρ

kiΓ
k
ρmhm

j + Γρ
kjΓ

k
ρmhm

i + Γk
ρiΓ

ρ
kmhm

j + Γk
ρjΓ

ρ
kmhm

i )− 2ρΓk
ρihkj − 2ρΓk

ρjhki

− 1
2ρ

Γa
aρ(Γ

ρ
imhm

j + Γρ
jmhm

i ) +
gmn

2ρ

(︂
Γρ

mn(Γk
iρhkj + Γk

ρjhki) + Γk
nρ(Γ

ρ
mjhki

+Γρ
mihkj)− Γρ

mn∂ρhij

)︂
. (J.179)
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Given the Einstein tensor, then one should be able to deduce hab exactly by solving the
Einstein equation Rµν = 0. For simplicity, we consider the equation at the leading order
which means for hab we have

hρρ =
1

ρ2τ
m(ρ, z, z̄), hij =

ρ

τ
σij(ρ, z, z̄), hρi =

1
τ

Ai(ρ, z, z̄) (J.180)

where higher order terms of 1/τ are omitted. Substituting these into the Einstein equa-
tion, we have the equation for m, σij and Ai written as

Rρτ = 0

1
2
∇i Ai −

1
4

gijσij −
ρ

2
∂ρ(gijσij) + m(d + ρgij∂ρgij)−

ρ

4
σmn∂ρgmn = 0, (J.181)

Riτ = 0

2∇im +
1
2
∇i(σ

m
m )− 1

2
∇kσki − 2ρ2∂ρ Ai − ρAi(d + 2 + ρglm∂ρglm) = 0, (J.182)

Rρρ = 0

1
8

σm
m −

d
2

m + (4ρ2Γi
jρΓj

iρ −
1
ρ2 gijΓρ

ij +
gij

ρ
Γk

iρΓρ
jk − 4(d + ρgij∂ρgij))m

−(2(d + ρgij∂ρgij) +
gij

2ρ2 Γρ
ij)(−2m + ρ∂ρm) +

1
2ρ
∇i∇im− ρ∇i∂ρ Ai − 2ρΓk

iρ∇i Ak

−∇i Ai +
ρ

2
(∂ρσm

m + ρ∂2
ρσm

m ) + ρ2 Γi
ρj∂ρσ

j
i + ρ2gijΓk

iρΓl
jρσkl − ρ2Γi

ρjΓ
k
ρiσ

j
k = 0, (J.183)

Rρi = 0

−d + 5
2

Ai + 2ρ2∂ρ(Γl
iρ Al)−

1
2ρ

∂ρ(Γ
ρ
il A

l) +
1

2ρ
Γρ

kiΓ
k
ρj A

j + 2ρ2Γk
ρjΓ

j
kρ Ai

+Γa
aρ(2ρ2Γk

iρ Ak −
1

2ρ
Γρ

ij A
j − 2ρAi + 2ρ2Γk

ρi Ak) +
gmn

2ρ
Γρ

mn(Γ
j
iρ Aj −

1
ρ

Ai)

+
3gmn

2ρ
Γk

mρΓρ
ni Ak +

gmn

2ρ
Γρ

nkΓk
mρ Ai − 2ρ2Γa

aρ∂ρ Ai − 2ρ∂ρ Ai + 8ρΓj
iρ Aj +

1
ρ

Γρ
ij∂ρ Aj

+
1

2ρ
(∇m∇m Ai −∇k∇i Ak)− 2

ρ
∇im−∇k(2Γk

iρm)− 1
2ρ3∇

k(Γρ
kim)− 2Γa

aρ∇im

−1
2

Γk
mρ∇mσik +

1
2

Γk
jρ∇iσ

j
k +∇k(Γl

iρσk
l )−

1
2
∇j(Γk

jρσk
i )−

1
2
∇j(Γ

j
ρkσk

i ) +
1
2

Γj
kρ∇jσ

k
i

−1
2

Γk
iρ∇kσm

m +
1
2
∇i∂ρσm

m −
1
2
∇j∂ρσ

j
i = 0, (J.184)
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Rij = 0

−d + 3
2

σij + 6ρ∂ρσij + 2ρ2∂2
ρσij +

1
2ρ
∇m∇mσij +

1
2ρ
∇i∇jσ

m
m −

1
2ρ

(∇k∇iσ
k
j +∇k∇jσ

k
i )

+
1
2

gij(σ
m
m + 4m)− 2ρ∇k(Γk

iρ Aj)− 2ρ∇k(Γk
ρj Ai) +

1
2ρ2 Γρ

kj∇i Ak +
1

2ρ2 Γρ
ki∇j Ak +

1
ρ2∇k(Γ

ρ
ij A

k)

−4∇i Aj − 4∇j Ai − 2ρ(∇i∂ρ Aj +∇j∂ρ Ai)− 2ρΓa
aρ(∇i Aj +∇j Ai)− 2ρΓk

ρi∇k Aj − 2ρΓk
ρj∇k Ai

−2ρΓk
ρj∇i Ak − 2ρΓk

ρi∇j Ak −
1

2ρ2∇
n(Γρ

ni Aj)−
1

2ρ2∇
n(Γρ

nj Ai)−
1

2ρ2 Γρ
mi∇

m Aj −
1

2ρ2 Γρ
mj∇

m Ai

−
2Γρ

ij

ρ
∂ρm +

4
ρ

∂ρ(Γ
ρ
ijm) + 4Γa

aρΓρ
ij

m
ρ
− 2(Γk

ρjΓ
ρ
ki + Γk

ρiΓ
ρ
kj)

m
ρ
+

1
ρ4 gmnΓρ

mjΓ
ρ
nim + 2∇i∇j

m
ρ

−2ρ(∂ρ(ρΓk
ρiσkj) + ∂ρ(ρΓk

ρjσki) + Γk
ρi∂ρ(ρσkj) + Γk

ρj∂ρ(ρσki)) + 2ρ2(Γk
ρiΓ

m
ρkσmj + Γk

ρjΓ
m
ρkσmi

+2Γk
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les mathématiques d’aujourd’hui - Lyon, 25-29 juin 1984, number S131 in Astérisque.
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