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We discuss an extension of the recent proposed noncommutative actidhlarl Supermembranes [1]. The new action depends only on
the class of admissible symplectic connections introduced in Ref. 1 following Fedosov approach. The extended action is invariant und
new gauge symmetry relating symplectic connections on the Weyl algebra bundle.
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Discutimos una extensn de la acén no conmutativa para la Supermembrana en D=11 recientemente propuesta en la Ref. 1. La nue
accbn depende solamente de la clase admisible de conexione&siiogs introducidas en la Ref. 1 siguiendo el procedimiento de Fedsov.
La accbn extendida es invariante respecto a una invariancia de calibre que relaciona conexioregisaam@n el fibrado algebraico de
Weyl.

Descriptores: Geometra no commutativa; supermembranas; algebra de Weyl.
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1. Introduction over the Weyl Bundle. We then propose an extension of the
action in Ref. 1 which becomes independent of the symplec-

The formulation of superstrings itd dimensions , superme- tjc connections introduced by Fedosov.

mbranes and super5 braned indimensions in terms of non- To do so we introduce a map similar to the one used by

commutative geometry has been recently analized from difSeiberg and Witten in Ref. 3 but on the Weyl algebra bun-

ferent points of view, for a recer_1t review see Ref. 2: Mostgie. This new map has the advantage that it is globally de-
of the work has been performed in the context of the interacsinaq over the world volume. it is not a local map as the

tion of open strings with constant antisymmetric baCkgroun%eiberg-Witten one. This is an important advantage to the

fields which are assumed to be much larger that the backsynsiryction we followed in Ref. 1 with the usual formula-
ground metric. The precise limits in which the noncommuta-jons  The current approach considers constant symplectic
tive geometry arises were discussed in Ref. 3. _ structure, constructed from the constant background antisym-
The approach we followed in Ref. 1 was to emphasize thenetric field, and it is then valid only over a Darboux chart.
residual gauge symmetry of thie = 11 supermembrane in e price paid in order to have a global cobnstruction is the
the light cone gauge, the area preserving diffeomorphismsyoquction of a symplectic connection over the world vol-
In two dimensions they are the same as the symplectomofme that, in general, is not unique. There is a class of ad-

phisms on the world volume . The idea was then to for-pissiple symplectic connections which may be introduced.

mulate a new action for the supermembrane in terms of gne would like then to have an action which depends only
noncommutative symplectic geometry. The symplectic two-, the class of symplectic connections. This is the problem
form arises naturally from the existence of a non trivial cen-,e address in this paper.
tral charge on the supersymmetric algebra. In order to for-

mulate the action in terms of a noncommutative geometry

the fields describing the supermembrane action were lifteg Yang Mills connections over the Weyl bundle
to Yang-Mills connections and associated gauge fields over

the Weyl algebra bundle, where a general framework for th@n Ref. 4 a formal Wey| a|gebrWI Corresponding to a sym-
symplectic formulation of noncommutative geometry was in-plectic spacd’, X, whereX. is a symplectic manifolds, w)

troduced by Fedosov in Ref. 4. One of the results in Ref. ]Of dimensior2n andTmE is its tangent space at x, is an a|ge-
was the construction of a geometrical action over the Weybra whose elements are given by a formal series
bundle which reduces to the well known action of the= 11
supermembrane in the light cone gauge when the geometrical a(y,h) = Z hkawl...u, gLyt (1)
objects are projected down from the Weyl algebra bundle to kg0 :
fields over the world volume and a formal parameter in the
expansion of the elements of the Weyl algebra tends to zerowhere h is a formal parameter, = 0 andy, runs froml to

In this paper we first briefly review Fedosov’s general2n whenp # 0. To order terms in the summation, we give
framework and the introduction of Yang Mills connections the following degrees to variables: dgg = 1, degh = 2
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and we order by increasing degre@ést p. The Weyl product Abelian connection® 4 are connection® with Weyl
of elements:, b € W, is defined as curvaturef) being a central form of the algebra. Let us de-
note itQ24. It then satisfies
= iho, 1, ,
aob=3 (=g ) et ara] =0 (1)
k=0

for any sectioru € W. Associated withD 4 there is a subal-

k k
0a o (2) gebraofiV, denotedV 4, defined by

% Oykr ... Oyre Oyvr ... Qyve’

This product is associative and independent of the basis Wa = {a €W:Daa= 0}' (12)

in T, 3.The union of W, defines the Weyl algebra bundle There is a one to one correspondence betweet'thdunc-

W. We will considerg-forms onX with values inW. A tionsq,(z) over ¥ and the elements d4. In fact, given
torsion free symplectic connection preserving the symplecti¢, ¢ 117, | the projection is defined as

structure is introduced on the tangent bundl&ofT his con-
nection is then lifted to the Weyl bundié” by considering oa:=a(x,y=0,h) = ao(z), (13)

its action directly on the coefficients of the expansion 1, we . . . .
denote itDs as and giveruy () there is a unique elemeate W4 with such

projection. Ifa andb € W4, its Weyl product is projected to
Dsa = da* A D,a, 3) the globally defined-product
b) = ag * by. 14
whereD,, denotes the symplectic connection Bn General o(aeb) =aoxbo (14)
covariant derivative® on the bundle may be considered with In the particular case whey),,, is constant and the symplectic
one-form connections globally defined or®: and with val-  connection is zero, the formula agrees with the Moyal prod-

ues iniv, uct. In [4] we constructed the Yang Mills connection over the
. Weyl algebra bundle. Let be a symplectic manifold with
Da = Dsa + 3[% al (4)  asymplectic two-formw,,, dz* A dz¥. In this section, we
h assumev to be an arbitrary non-degenerate closed two-form
The two-form overX. A set of multi-beins is defined by
. — ot
R ® o = s (15)

wheree;; is the canonical symplectic tensor. Because of Dar-
is the Weyl curvature of the connectidh R is the curva-  boux theorem, locally we always have
ture of the connectio®g. The Weyl curvature satisfies the

Bianchi identity & = Oug". (16)
i We may consider an atlas where on each chart we have

DQ=DsQ+ 5[y, =0 (6)  (16). The transitions on’ between different charts preserve

the symplectic structure (15). The multi-besi;j will then
moreover, for any sectiome W ® A, have transitions ovex, otherwise, one would have a set of

. 2n non-singular vector fields globally defined ov¥&rbut this

D2g — }1[97 al. (7)  isnottrue in general.
1

Let us discuss the transitions on intersection of charts in
In general, transitions on the bundl& will induce tran- ~ more detail. Consider two open séfsandU, U (U = 0 in

sitions on the algebré’. The infinitesimal gauge transforma- Which

tions on elements of the algebra are expressed as automor- G i and & — 9 4 (17)

phisms given by n= nd 1 g

respectively. I/ N U we then have

a— a+ [a, A (8) o o
Wy = EL&:‘Z,Q]’ = éitéz/ﬁijv (18)
with ‘infinitesimal’ A € W. The corresponding gauge trans- . )
formations for the connectior® are from which we obtain
A Qij i dkap 1.

DD 1D, ) g, = S;e], where S; = €€ ¢, €15 (19)
o we define the inverse afby ee;;, = 6. One may verify
implying that S preserves the canonical symplectic tensor and hence

S € Sp(2n). Consequently in order to have a global con-

Da — Da + [Da, Al. (10)  struction over, one must begin by introducing a symplectic
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Sp(2n) connection on the tangent bundle. We first considemhereG; obeys the following equations:

the following symplectic connection over. ,
DAGZ‘ = 0, O'Gi = Gijgj (37)7 (30)
1wy, pA la‘uup WP

v = Cuop™ + 3 3 oon 3 o (20) whereg’ (z) is defined in (16) and; also obeys
where(,,, is a t.otally symmetrig tenso_r. 'I_'his is the most Day; = 0. (31)
general expression for a connection satisfying

9 The curvature of the connectidnis then given by
(w -+ @#)wp,\ = O (21) . i

Here ©)  is expressed in terms of,,, and its derivatives.

%

It is invariant under theSp(2n) transition of the multi-bein. it satisfies the Bianchi identity:
We now consider the following torsion free connection on the

tangent space: DO =0. (33)
, Ol N this property follows from the Jacobi identity for the bracket.
I, = ei (G — Owe SVE (22)  The first term in (32) reduces in the flat limit to
it transforms as &p(2n) connection undefp(2n) transfor- i[G G = _lei ANeley = —w (34)

mations on the tangent space. In fact,
The projection of2 has in general the expression

J J -1 kasi
Fp,i = (S ) ;tlS (S )z @ (23) h?
)= —w+F— 96 (Rjkli(DijcD[Am))
This connection is symplectic on the tangent space. We may
construct from it the most general symplectic connection on 1 pq G kk 1l i A m
, : — [ 2R "D A, ) €7
the tangent space in the following way. Let us denote 4RJ’”P€ Am | et ne
o 2
DM = BH + FH (24) _ 9(? 8Rjkl’LR]klm6]] kk llez Aem
a symplectic connection must satisfy +om%)..., (35)
(Dy + ATy)eij = 0. (25)  \where the curvature is constructed from e 2n) symplec-

tic connection (27), the remaining terms are higher order in
h and depend also on the derivatives of the curvature. The
curvaturef is the Yang Mills field strength

This equation has the general solution

1
6“8 (D fkl)

. 1 .
Aan = f(Dueil) b + 3
1 . ) 1
+€ﬁc~(ilk)€lj§ (26) F= 562 A e’ (DZ-A]- —D;jA; + E{Ai, Aj}star) (36)

3

Al“fm is a covariant vector on the world volume and a tensorconstructed now with theSp(2n) covariant symplectic
underSp(2n) transformations. Since the connection (24) isderivative introduced in (27) , notice that tkeéar bracket
symplectic the first two terms of the right hand side mem-in (36) is the global generalization of the Moyal bracket over
ber in (26) are zero. We may finally construct our symplecticthe whole symplectic manifold obtained in Ref. 5. We notice
connectionD , when acting on mixed indices vectov§ it  that, because of (16) and (19), the first covariant symplectic
yields derivative ofg’ is a simple derivative. We will assume the
oV same transformation law und@p(2n) for A.

Dquj = 87; + (Fu + AFM)fVZf - ®2VV;7 (27)

3. Supermembrane action and Seiberg-Witten

it satisfies map

Dywpr =0, Dyeij =0, (28) The starting point in the construction of the noncommutative
action for the supermembrane in Ref. 1 was to consider a
nontrivial central charge of the supersymmetric algebra. This
condition defines in a natural way a nondegenerate closed
two-form w over the spatial world volume, which may be
taken to be a Riemann surface. This closed two-form is in-
[G e’ o] + [% ] (29) . o ; -
h variant under the area preserving diffeomorphisms which is

and it has the right transformation law on the world volume
and in the tangent space.
The final form of the Yang Mills connection is

> \
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the residual gauge symmetry of the supermembrane in thehere FQ,,€),, ... are closed two-forms which are gauge
light cone gauge. We may then write the following Hamil- invariant.  Moreover, this map associates to each non-
tonian density on the Weyl algebra, (see Ref. 4 for more deeommutative gauge equivalent class, correspondirig, the

tails): gauge equivalent class 6f 4:
H:;pMo*pMH%(ﬁo*m DA =0A+[7,A] = d(A+ 5),
_ T;([Giei n %XM} 0% 0 x[Giel + %XMD wheres = s(y, A). If we define the projection
_ #([XM, XN o #[XM, X)) 7= AwD: “
) then
+5 (o), (37) Alw,h) = A(z) + hAy + W2 Ay +...  (45)

where the Hodge is constructed using an induced Rieman-
nian metric. It turns out that

We may inmediately project out the center components of

this Hamiltonian yielding F=F(4) (46)
1, . 1 . , =
oH = S (PY)%w + S (AT — (DAXM AxDAXM) th=h{4,4) (47)
1 L Oy = Qa(A, Ay, As). (48)
o X]W XN 2 - ]_' _ ]: _
4h? (X X o + 2< w)(x ") and so on. If we impose now the conditions
-+ more terms, (38) Q=0i=1,.. . . 00 (49)
whereD 4 = Dg XM + {A, XM} 4qrcorresponds to the first
terms in a projection of the gauge covariant derivative, we exactly recover the Seiberg-Witten map over any Darboux

v i o i o chart. The procedure provides then a global extension of the
oD; X" = E{Gh X star + E{A’La X Ystar (39) Seiberg=Witten map.
There is also a geometrical construction based on a Pois-

=Dg; XM 4 E{Ai,XM}sta, son bracket, instead of the Weyl bracket which is relevant in
h our discussion. We consider the vector bundle constructed
+curvature terms..  (40)  with the same geometrical objects defined in Sec. 2 but in-

If we consider the terms of  independent on the formal stead of constructing a Weyl bracket from the Weyl product,

parameter, we obtain exactly thed = 11 supermembrane W€ mltlrohduce 5} PQISSfOH bracket. f . )
Hamiltonian in the light cone gauge. Let us know consider A\l the analysis of Sec. 2 in terms of connection may be

a generalization of the Seiberg-Witten map to the Weyl bun9€veloped in the same way. Moreover the Seiberg Witten

dle, we will then use this map in order to write an action map may also be considered for a Yang-Mills connections

for the supermembrane depending only on the class of SerQver this vector bundle (with a Poisson structure) which we

plectic connections introduced on the previous section. th&/ill denote P. Itis then possible to map the gauge equivalent
construction will be based on the Hamiltonian (37). classes of Yang-Mills connections over the Weyl algebra bun-

The Seiberg-Witten map [2] is a map between gaugéji/eetropthe gauge equivalent classes of Yang-Mills connections

equivalent classes of noncommutative gauge fields and con®? ) )
mutative ones. That is, It_ was shown in Ref. 3 and Ref. 4 that the geometr_|cal
S—Wmap hgmlltonlan (35) constructed over P is exactly the_ 'hamllto-
Alz) " & Az), (41)  nian of the D=11 Supermembrane over a compactified target
such that space. It depends only on the class of simplectic connections
- which differ by a totally symmetric symbol. It is then possi-
AgA =dA+{A A} & AgA(z) = dA, (42)  ple to rewrite this hamiltonian using the Seiberg-Witten map

where) and .\ are infinitesimal gauge parameters. This mapin t€rms of non-commutative Yang-Mills connection and as-
was explicitly constructed for a constant background antiSociated gauge fields over the Weyl algebra bundle. Since the
symmetric field. It may be generalized to the Weyl algebraPriginal hamiltonian depends only on the class of symplec-
bundle for arbitrary symplectic structures in the following tiC connection, the same is true for the non-commutative one.
way. We may associate, in a unique way, to each Yang Mills he expression (35) corresponds to the first relevant terms of

connection over the Weyl algebra bundle an abelian connedhe extension. o . .
tion D4, whose curvature is of the form We thus conclude that it is possible to extend (35) in a

way which depends only on the class of symplectic connec-

Qu=F+hh+h* % +..., (43)  tions differing by a totally symmetric symbol.
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