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We discuss an extension of the recent proposed noncommutative action dorD = 11 Supermembranes [1]. The new action depends only on
the class of admissible symplectic connections introduced in Ref. 1 following Fedosov approach. The extended action is invariant under a
new gauge symmetry relating symplectic connections on the Weyl algebra bundle.

Keywords: Noncommutative geometry; supermembranes; Weyl algebra.

Discutimos una extensión de la accíon no conmutativa para la Supermembrana en D=11 recientemente propuesta en la Ref. 1. La nueva
accíon depende solamente de la clase admisible de conexiones simplécticas introducidas en la Ref. 1 siguiendo el procedimiento de Fedsov.
La accíon extendida es invariante respecto a una invariancia de calibre que relaciona conexiones simplécticas en el fibrado algebraico de
Weyl.
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1. Introduction

The formulation of superstrings in10 dimensions , superme-
mbranes and super5 branes in11 dimensions in terms of non-
commutative geometry has been recently analized from dif-
ferent points of view, for a recent review see Ref. 2. Most
of the work has been performed in the context of the interac-
tion of open strings with constant antisymmetric background
fields which are assumed to be much larger that the back-
ground metric. The precise limits in which the noncommuta-
tive geometry arises were discussed in Ref. 3.

The approach we followed in Ref. 1 was to emphasize the
residual gauge symmetry of theD = 11 supermembrane in
the light cone gauge, the area preserving diffeomorphisms.
In two dimensions they are the same as the symplectomor-
phisms on the world volume . The idea was then to for-
mulate a new action for the supermembrane in terms of a
noncommutative symplectic geometry. The symplectic two-
form arises naturally from the existence of a non trivial cen-
tral charge on the supersymmetric algebra. In order to for-
mulate the action in terms of a noncommutative geometry
the fields describing the supermembrane action were lifted
to Yang-Mills connections and associated gauge fields over
the Weyl algebra bundle, where a general framework for the
symplectic formulation of noncommutative geometry was in-
troduced by Fedosov in Ref. 4. One of the results in Ref. 1
was the construction of a geometrical action over the Weyl
bundle which reduces to the well known action of theD = 11
supermembrane in the light cone gauge when the geometrical
objects are projected down from the Weyl algebra bundle to
fields over the world volume and a formal parameter in the
expansion of the elements of the Weyl algebra tends to zero.

In this paper we first briefly review Fedosov’s general
framework and the introduction of Yang Mills connections

over the Weyl Bundle. We then propose an extension of the
action in Ref. 1 which becomes independent of the symplec-
tic connections introduced by Fedosov.

To do so we introduce a map similar to the one used by
Seiberg and Witten in Ref. 3 but on the Weyl algebra bun-
dle. This new map has the advantage that it is globally de-
fined over the world volume, it is not a local map as the
Seiberg-Witten one. This is an important advantage to the
construction we followed in Ref. 1 with the usual formula-
tions. The current approach considers constant symplectic
structure, constructed from the constant background antisym-
metric field, and it is then valid only over a Darboux chart.
The price paid in order to have a global cobnstruction is the
introduction of a symplectic connection over the world vol-
ume that, in general, is not unique. There is a class of ad-
missible symplectic connections which may be introduced.
One would like then to have an action which depends only
on the class of symplectic connections. This is the problem
we address in this paper.

2. Yang Mills connections over the Weyl bundle

In Ref. 4 a formal Weyl algebraWx corresponding to a sym-
plectic spaceTxΣ, whereΣ is a symplectic manifold(Σ, ω)
of dimension2n andTxΣ is its tangent space at x, is an alge-
bra whose elements are given by a formal series

a(y, h) =
∑

k,p≥0

hkak,µ1...µpyµ1 . . . yµp , (1)

where h is a formal parameter,µ0 = 0 andµp runs from1 to
2n whenp 6= 0. To order terms in the summation, we give
the following degrees to variables: degyµ = 1, degh = 2
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and we order by increasing degrees2k+p. The Weyl product
of elementsa, b ∈ Wx is defined as

a ◦ b =
∞∑

k=0

(− ih

2
)k 1

k!
ωµ1ν1 . . . ωµkνk

× ∂ka

∂yµ1 . . . ∂yµk

∂kb

∂yν1 . . . ∂yνk
. (2)

This product is associative and independent of the basis
in TxΣ.The union ofWx defines the Weyl algebra bundle
W . We will considerq-forms onΣ with values inW . A
torsion free symplectic connection preserving the symplectic
structure is introduced on the tangent bundle ofΣ. This con-
nection is then lifted to the Weyl bundleW by considering
its action directly on the coefficients of the expansion 1, we
denote itDS as

DSa = dxρ ∧Dρa, (3)

whereDρ denotes the symplectic connection onΣ. General
covariant derivativesD on the bundle may be considered with
one-form connectionsγ globally defined onΣ and with val-
ues inW ,

Da = DSa +
i

h
[γ, a] (4)

The two-form

Ω = R +DSγ +
i

2h
[γ, γ] (5)

is the Weyl curvature of the connectionD. R is the curva-
ture of the connectionDS . The Weyl curvature satisfies the
Bianchi identity

DΩ = DSΩ +
i

h
[γ, Ω] = 0; (6)

moreover, for any sectiona ∈ W ⊗ Λ,

D2a =
i

h
[Ω, a]. (7)

In general, transitions on the bundleTΣ will induce tran-
sitions on the algebraW .The infinitesimal gauge transforma-
tions on elements of the algebra are expressed as automor-
phisms given by

a → a + [a, λ] (8)

with ‘infinitesimal’ λ ∈ W . The corresponding gauge trans-
formations for the connectionsD are

D → D +Dλ, (9)

implying

Da → Da + [Da, λ]. (10)

Abelian connectionsDA are connectionsD with Weyl
curvatureΩ being a central form of the algebra. Let us de-
note itΩA. It then satisfies

[ΩA, a] = 0 (11)

for any sectiona ∈ W . Associated withDA there is a subal-
gebra ofW , denotedWA, defined by

WA =
{

a ∈ W : DAa = 0
}

. (12)

There is a one to one correspondence between theC∞ func-
tions a0(x) over Σ and the elements ofWA. In fact, given
a ∈ WA , the projection is defined as

σa := a(x, y = 0, h) = a0(x), (13)

and givena0(x) there is a unique elementa ∈ WA with such
projection. Ifa andb ∈ WA, its Weyl product is projected to
the globally defined?-product

σ(a ◦ b) = a0 ? b0. (14)

In the particular case whenωµν is constant and the symplectic
connection is zero, the formula agrees with the Moyal prod-
uct. In [4] we constructed the Yang Mills connection over the
Weyl algebra bundle. LetΣ be a symplectic manifold with
a symplectic two-formωµνdxµ ∧ dxν . In this section, we
assumeω to be an arbitrary non-degenerate closed two-form
overΣ. A set of multi-beins is defined by

ωµν = εi
µεj

νεij , (15)

whereεij is the canonical symplectic tensor. Because of Dar-
boux theorem, locally we always have

εi
µ = ∂µgi. (16)

We may consider an atlas where on each chart we have
(16) . The transitions ongi between different charts preserve
the symplectic structure (15). The multi-beinεi

µ will then
have transitions overΣ, otherwise, one would have a set of
2n non-singular vector fields globally defined overΣ, but this
is not true in general.

Let us discuss the transitions on intersection of charts in
more detail. Consider two open setsU andÛ , U

⋂
Û = ∅ in

which

εi
µ = ∂µgi, and ε̂i

µ = ∂µĝi, (17)

respectively. InU ∩ Û we then have

ωµν = εi
µεj

νεij = ε̂i
µε̂j

νεij , (18)

from which we obtain

ε̂i
µ = Si

jε
j
µ where Si

j = εikε̂µ
kεl

µεlj ; (19)

we define the inverse ofε by εijεjk = δi
k. One may verify

that S preserves the canonical symplectic tensor and hence
S ∈ Sp(2n). Consequently in order to have a global con-
struction overΣ, one must begin by introducing a symplectic
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Sp(2n) connection on the tangent bundle. We first consider
the following symplectic connection overΣ:

Θλ
µν ≡ ζµνρω

ρλ +
1
3

∂ωνρ

∂xµ
ωρλ +

1
3

∂ωµρ

∂xν
ωρλ, (20)

whereζµνρ is a totally symmetric tensor. This is the most
general expression for a connection satisfying

(
∂

∂xµ
+ Θµ)ωρλ = 0. (21)

HereΘλ
µν is expressed in terms ofωµν and its derivatives.

It is invariant under theSp(2n) transition of the multi-bein.
We now consider the following torsion free connection on the
tangent space:

Γj
µi = εν

i (
∂εj

ν

∂xµ
−Θλ

µνεj
λ); (22)

it transforms as aSp(2n) connection underSp(2n) transfor-
mations on the tangent space. In fact,

Γ̂j
µi = (S−1)l

iΓ
k
µlS

j
k − (S−1)k

i

∂Sj
k

∂xµ
. (23)

This connection is symplectic on the tangent space. We may
construct from it the most general symplectic connection on
the tangent space in the following way. Let us denote

D̆µ ≡ ∂µ + Γµ (24)

a symplectic connection must satisfy

(D̆µ + ∆Γµ)εij = 0. (25)

This equation has the general solution

∆Γj
µi =

1
3
(D̆µεil)εlj +

1
3
εk

µεν
i (D̆νεkl)εlj

+εk
µζ̃(ilk)ε

lj ; (26)

∆Γj
µi is a covariant vector on the world volume and a tensor

underSp(2n) transformations. Since the connection (24) is
symplectic the first two terms of the right hand side mem-
ber in (26) are zero. We may finally construct our symplectic
connectionD , when acting on mixed indices vectorsV i

ν it
yields

DµV i
ν =

∂V i
ν

∂xµ
+ (Γµ + ∆Γµ)i

lV
l
ν −Θλ

µνV i
λ, (27)

it satisfies

Dµωρλ = 0, Dµεij = 0, (28)

and it has the right transformation law on the world volume
and in the tangent space.

The final form of the Yang Mills connection is

D =
i

h
[Gie

i, •] +
i

h
[γ, •], (29)

whereGi obeys the following equations:

DAGi = 0, σGi = εijg
j(x), (30)

wheregj(x) is defined in (16) andγi also obeys

DAγi = 0. (31)

The curvature of the connectionD is then given by

Ω =
i

2h
[G,G] +

i

h
[G, γ] +

i

2h
[γ, γ], (32)

it satisfies the Bianchi identity:

DΩ = 0. (33)

this property follows from the Jacobi identity for the bracket.
The first term in (32) reduces in the flat limit to

i

2h
[G,G] = −1

2
ei ∧ ejεij = −ω (34)

The projection ofΩ has in general the expression

σΩ = −ω + F − h2

96

(
Rjkli(DĵDk̂Dl̂Am)

)

−
(

1
4
Rĵk̂l̂pε

pqDqAm

)
εjĵεkk̂εll̂ei ∧ em

− h2

96 · 8RjkliRĵk̂l̂mεjĵεkk̂εll̂ei ∧ em

+ O(h3) . . . , (35)

where the curvature is constructed from theSp(2n) symplec-
tic connection (27), the remaining terms are higher order in
h and depend also on the derivatives of the curvature. The
curvatureF is the Yang Mills field strength

F =
1
2
ei ∧ ej

(
DiAj −DjAi +

i

h
{Ai,Aj}star

)
(36)

constructed now with theSp(2n) covariant symplectic
derivative introduced in (27) , notice that thestar bracket
in (36) is the global generalization of the Moyal bracket over
the whole symplectic manifold obtained in Ref. 5. We notice
that, because of (16) and (19), the first covariant symplectic
derivative ofgi is a simple derivative. We will assume the
same transformation law underSp(2n) for A.

3. Supermembrane action and Seiberg-Witten
map

The starting point in the construction of the noncommutative
action for the supermembrane in Ref. 1 was to consider a
nontrivial central charge of the supersymmetric algebra. This
condition defines in a natural way a nondegenerate closed
two-form ω over the spatial world volume, which may be
taken to be a Riemann surface. This closed two-form is in-
variant under the area preserving diffeomorphisms which is
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the residual gauge symmetry of the supermembrane in the
light cone gauge. We may then write the following Hamil-
tonian density on the Weyl algebra, (see Ref. 4 for more de-
tails):

H =
1
2
(ṔM ◦ ∗ṔM ) +

1
2
(Π́ ◦ ∗Π́)

− 1
2h2

([Gie
i + γ,XM ] ◦ ∗ ◦ ∗[Gie

i + γ,XM ])

− 1
4h2

([XM , XN ] ◦ ∗[XM , XN ])

+
1
2
(Ω ◦ ∗Ω), (37)

where the Hodge∗ is constructed using an induced Rieman-
nian metric.

We may inmediately project out the center components of
this Hamiltonian yielding

σH =
1
2
(ṔM )2ω +

1
2
(Π́ ∧ ∗Π́)− (DAXM ∧ ∗DAXM )

− 1
4h2

{XM , XN}2starω +
1
2
(F − ω)(∗F − ∗ω)

+ more terms , (38)

whereDA = DSXM + {A, XM}star corresponds to the first
terms in a projection of the gauge covariant derivative,

σDiX
M =

i

h
{Gi, X

M}star+
i

h
{Ai, X

M}star (39)

= DS iX
M +

i

h
{Ai, X

M}star

+ curvature terms. . . (40)

If we consider the terms ofσH independent on the formal
parameterh we obtain exactly theD = 11 supermembrane
Hamiltonian in the light cone gauge. Let us know consider
a generalization of the Seiberg-Witten map to the Weyl bun-
dle, we will then use this map in order to write an action
for the supermembrane depending only on the class of sym-
plectic connections introduced on the previous section. the
construction will be based on the Hamiltonian (37).

The Seiberg-Witten map [2] is a map between gauge
equivalent classes of noncommutative gauge fields and com-
mutative ones. That is,

A(x)
S−Wmap⇔ A(x), (41)

such that

∆gA = dλ + {A, λ} ⇔ ∆gA(x) = dλ̃, (42)

whereλ andλ̃ are infinitesimal gauge parameters. This map
was explicitly constructed for a constant background anti-
symmetric field. It may be generalized to the Weyl algebra
bundle for arbitrary symplectic structures in the following
way. We may associate, in a unique way, to each Yang Mills
connection over the Weyl algebra bundle an abelian connec-
tionDA whose curvature is of the form

ΩA = F + hΩ1 + h2Ω2 + . . . , (43)

where FΩ1, Ω2, . . . are closed two-forms which are gauge
invariant. Moreover, this map associates to each non-
commutative gauge equivalent class, corresponding toD, the
gauge equivalent class ofDA:

Dλ = ∂λ + [γ, λ] → d(λ + s),

wheres = s(γ, λ). If we define the projection

σγ = A(x, h), (44)

then

A(x, h) = A(x) + hA1 + h2A2 + . . . (45)

It turns out that

F = F (A) (46)

Ω1 = Ω1(A,A1) (47)

Ω2 = Ω2(A,A1, A2). (48)

and so on. If we impose now the conditions

Ωi = 0, i = 1, . . . ,∞ (49)

we exactly recover the Seiberg-Witten map over any Darboux
chart. The procedure provides then a global extension of the
Seiberg=Witten map.

There is also a geometrical construction based on a Pois-
son bracket, instead of the Weyl bracket which is relevant in
our discussion. We consider the vector bundle constructed
with the same geometrical objects defined in Sec. 2 but in-
stead of constructing a Weyl bracket from the Weyl product,
we introduce a Poisson bracket.

All the analysis of Sec. 2 in terms of connection may be
developed in the same way. Moreover the Seiberg Witten
map may also be considered for a Yang-Mills connections
over this vector bundle (with a Poisson structure) which we
will denote P. It is then possible to map the gauge equivalent
classes of Yang-Mills connections over the Weyl algebra bun-
dle to the gauge equivalent classes of Yang-Mills connections
over P.

It was shown in Ref. 3 and Ref. 4 that the geometrical
hamiltonian (35) constructed over P is exactly the hamilto-
nian of the D=11 Supermembrane over a compactified target
space. It depends only on the class of simplectic connections
which differ by a totally symmetric symbol. It is then possi-
ble to rewrite this hamiltonian using the Seiberg-Witten map
in terms of non-commutative Yang-Mills connection and as-
sociated gauge fields over the Weyl algebra bundle. Since the
original hamiltonian depends only on the class of symplec-
tic connection, the same is true for the non-commutative one.
The expression (35) corresponds to the first relevant terms of
the extension.

We thus conclude that it is possible to extend (35) in a
way which depends only on the class of symplectic connec-
tions differing by a totally symmetric symbol.
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