

Landmark role of $Z = 101/100$ nuclides in the transuranic region

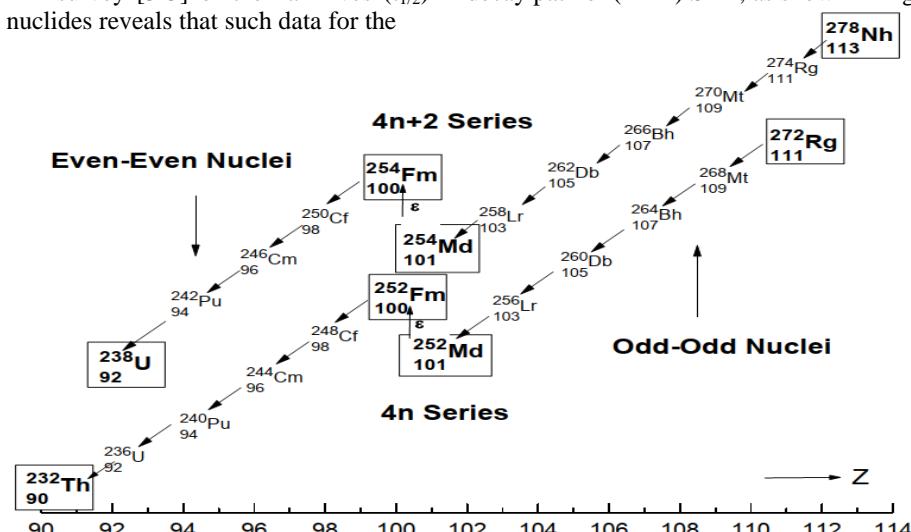
K. Vijay Sai*, R. Gowrishankar and P. C. Sood

¹Department of Physics, Sri Satya Sai Institute of Higher Learning, Prasanthi Nilayam, A.P. – 515 134, INDIA

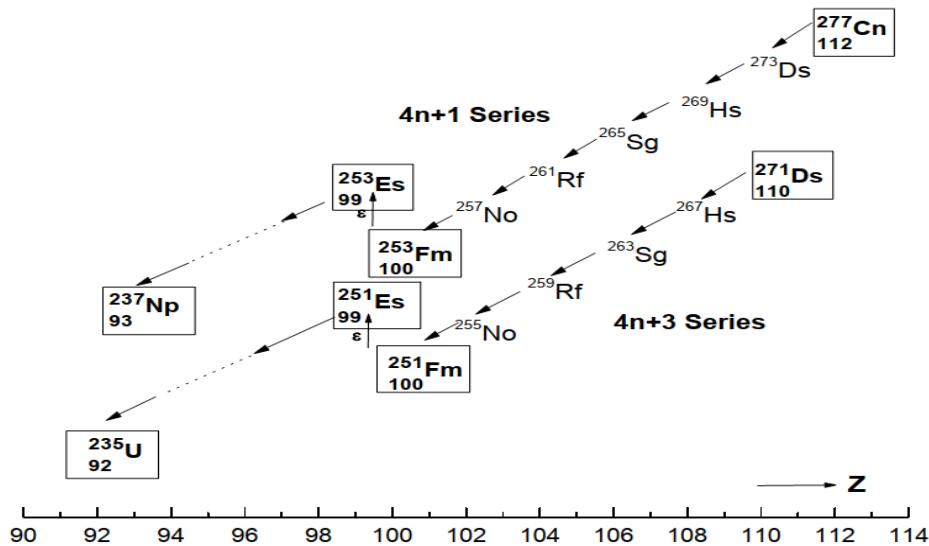
* email: kvijaysai@sssihl.edu.in

None of the transuranic ($Z > 92$) species occur in nature; they are all produced in the laboratory through nuclear reactions. However, while the $93 \leq Z \leq 101$ nuclides can be reached in α (or lighter) particle induced reactions, exploration of the still higher Z domain is a highly challenging, albeit competitive, task.

Considering this fact, International Union of Pure and Applied Chemistry (IUPAC) and that of Physics (IUPAP) had constituted [1] a joint Transfermium Working Group (TWG) for authentication of discovery of $Z > 100$ elements. A factual summary of experiments on the first identification, and the ones confirming the same, for each nuclide in the $Z > 100$ isotopic sequences has since been presented by Thoenissen [2]. Exhaustive information across all nuclear regions is available in various nuclear data bases [3-5]. Spurred by findings in some of our recent reports [6,7], herein we examine the occurrence of a LANDMARK around $Z = 100/101$ in the vast nuclear landscape. To start this exercise, we first look at some basic properties and processes.


A survey [3-5] of the half-lives ($t_{1/2}$) of $Z > 92$ nuclides reveals that such data for the

Longest-Lived Isotope (LLI) in each sequence fall in 3 zones: for $Z < 100$ species, LLI is in years, for $Z = 100/101$, it is 100/51 days and for $Z > 101$, it progressively appears in h/s/ms. This observation clearly indicates a landmark at $Z = 100/101$ along this trajectory.


Another evidence for such an occurrence is provided by consideration of their production procedures. It is seen that while the $Z \leq 101$ species are produced in ‘stepping’ process wherein $n/d/\alpha$ incident on a newly synthesized high Z material produces the next high Z species, the $Z > 101$ species need Heavy-Ion accelerators for their production.

Next we turn our attention to the higher end of the periodic table. In our 2011 report [6], we had traced the trajectory starting from each of the 4 Naturally Occurring Radioactive Series (NORS) across the $Z = 100/101$ domain right upto $Z = 113$ isotopes synthesized in Cold Fusion (CF).

Our recent (2017) study of ^{254}Md level structures [7] provides evidence for a landmark role of $Z = 101/100$ [$^{254}\text{Md} (\varepsilon) ^{254}\text{Fm}$] locale in the decay path of (4n+2) SHE, as shown in Fig. 1.

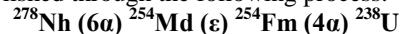
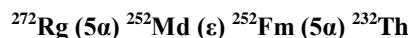


Fig. 1: Sequential α -decays from SHE to NORS Head with marked discontinuities at Md (ε) Fm for (4n) & (4n+2) series.

Fig. 2: Sequential α -decays from SHE to NORS Head with marked discontinuities at $\text{Md} (\epsilon) \text{ Fm}$ for $4n+1$ and $4n+3$ series


In the analysis therein [7], we expressly took note of the fact that decay of each CF-produced SHE proceeds via a genetically correlated sequential α -chain. This process is depicted in the ^{278}Nh (6α) ^{254}Md segment in our plot of Fig. 1. This plot, further on, shows an α -discontinuity at the $^{254}\text{Md} (\epsilon) ^{254}\text{Fm}$ transition point, and then proceeds via ^{254}Fm (4α) ^{238}U to the sequential $^{238}\text{U} \rightarrow ^{208}\text{Pb}$ ($4n+2$) NORS. The Landmark feature at $Z=101/100$ across the transuranic region is thus unmistakably established through the following process:

Another new feature, highlighting the Landmark at $Z=100/101$, brought out in our earlier study [7] was that all the $Z \geq 101$ nuclides in this chain are odd-odd whereas all the $Z < 101$ nuclides are even-even.

The third distinctive feature from SHE decay is that α and SF are dominant decay modes for all $Z > 101$ nuclei, whereas SF is usually minor/insignificant decay channel for $Z \leq 101$ members thereof. It is of interest to add that, a collateral decay path of another $4n+2$ SHE can be traced as ^{266}Mt (4α) $^{250}\text{Md} (\epsilon) ^{250}\text{Fm}$, again with a discontinuity at $Z=101/100$.

Results from similar analysis for each of the $4n$, $4n+1$ and $4n+3$ SHE decay chain, are plotted in Fig.s 1 & 2. The decay chain for $4n$ SHE, as shown in Fig. 1 corresponding to

replicates all the above discussed three features of $4n+2$ chain, and thus confirms the Landmark role for the $Z=101/100$ in the $4n$ series as well.

The odd- A ($4n+1$) and ($4n+3$) SHE, namely ^{277}Cn and ^{271}Ds respectively, decay chains shown in Fig. 2 again clearly depict the discontinuity at $Z=100$. This feature results from the fact that CF produces only n -deficient SHE and the odd- A nuclides are predominantly even Z / odd N assemblies, and hence the sequential $6/5$ α -decays terminate at an ϵ -decaying $Z=100$ isotope.

In summary, our analysis identifies five observed factors namely $t_{1/2}$, production process, SHE α -chains terminations, odd-odd/ even-even transitions, and % SF branching. These factors, individually and collectively, establish the Landmark role for the respective $Z=101/100$ isotope in the transuranic domain.

References

- [1] Pure & Appl. Chem. **63** (1991) 879; **65** (1993) 1757
- [2] M. Thoennessen, ADNDT, **99** (2013) 312
- [3] KPL Chart of Nuclides, 17th ed. (2009)
- [4] ENSDF and XUNDL, August 2018 Version
- [5] G. Audi *et al.*, Chin. Phys. C **41** (2017) 030001
- [6] K. Vijay Sai *et al.*, Proc. DAE Symp. Nucl. Phys. **56** (2011) 186
- [7] P. C. Sood and R. Gowrishankar, Phys. Rev. C **95** (2017) 024317