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After seventeen years of operation, the first phase of measurements at the Pierre Auger Observatory
finished and the process of upgrading it began. In this work, we present distributions of the depth
of air-shower maximum, 𝑋max, using profiles measured with the fluorescence detector of the Pierre
Auger Observatory. The analysis is based on the Phase I data collected from 01 December 2004
to 31 December 2021.
The 𝑋max measurements take advantage of an improved evaluation of the vertical aerosol optical
depth and reconstruction of the shower profiles. We present the energy dependence of the mean
and standard deviation of the 𝑋max distributions above 1017.8 eV. Both 𝑋max moments are corrected
for detector effects and interpreted in terms of the mean logarithmic mass and variance of the
masses by comparing them to the predictions of post-LHC hadronic interaction models. We
corroborate our earlier findings regarding the change of the elongation rate of the mean 𝑋max at
1018.3 eV with higher significance. We also confirm, with four more years of data compared to
the last results presented in 2019, that around the ankle in the cosmic rays spectrum, the proton
component gradually disappears and that intermediate mass nuclei dominate the composition at
ultra-high energies.
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1. Introduction

The mass composition of Ultra-High Energy Cosmic Rays (UHECRs) is a key feature to identify
their sources and constrain the astrophysical processes of their production (see e.g. Ref. [1]). A
change in the elongation rate around the ankle (∼4 EeV) has been shown. It could be explained
by the transition between the Galactic and extragalactic origin or two extragalactic components.
Meanwhile the composition at the suppression (>30 EeV) is uncertain due to the lack of statistics [2–
5].

Inferring the composition of UHECRs is a complex task. The measurement of the depth of
maximum 𝑋max of the air-shower profile is still the main proxy for the mass composition. The flu-
orescence light emitted by the de-excitation of nitrogen molecules when air-showers pass through
the atmosphere can be observed by the fluorescence detector (FD) of the Pierre Auger Observatory,
consisting of twenty-seven telescopes located on four sites surrounding the 3000 km2 surface de-
tector array (SD). On each site, the shower profile is reconstructed by six fluorescence telescopes
to determine its depth of maximum 𝑋max. Due to shower-to-shower fluctuations, individual deter-
mination of the mass of a particular cosmic ray is impossible but the energy dependency of the
mean and standard deviation of the 𝑋max distributions can be interpreted with different hadronic
models [6–8] to infer the composition of UHECRs.

The Pierre Auger Observatory began taking data in 2004. In 2020, the deployment of the
upgrade of the surface detector started, ending Phase I of the observatory. In 2014, the Pierre Auger
Observatory published the first results of the mass composition [2, 3] and these results has been
updated regularly since [4, 5]. Recently the atmosphere attenuation measurements at the Pierre
Auger Observatory have been improved [9] as well as the reconstruction of the longitudinal shower
profiles [10]. In this proceeding, taking advantage of these improvements, the new 𝑋max moments
are measured and the interpretation with the post-LHC hadronic models are presented for the full
Phase I data, extending from 01 December 2004 to 31 December 2021.

2. Data analysis

At the Pierre Auger Observatory, the fluorescence light is measured by 24 “standard” telescopes
that cover 30◦ in azimuth and between 1.5 and 30◦ in elevation located on four sites surrounding the
3000 km2 surface detector array. Three additional telescopes (HEAT) looking at higher elevation
(30◦ to 58◦) have been operating at the Cohihueco site since 2009, allowing for the detection of
air showers below 1018 eV. This proceeding will only focus on the analysis of the data from the
“standard” telescopes for showers with energy above 1017.8 eV.

2.1 Data selection

The data selection in this proceeding is based on the one used in Ref. [2]. To ensure a selection
of good quality events with an accurate reconstruction of the 𝑋max and the energy of the shower,
the pressure, the humidity and the temperature as well as the presence of clouds are monitored with
multiple instruments. Importantly, vertical aerosol optical depth (VAOD) measurements have been
updated [9]. Good atmospheric conditions are ensured by imposing the VAOD to be lower than 0.1
up to 3 km above ground and that there is no cloud that can affect the reconstruction.
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Figure 1: Left: ⟨𝑋max⟩ versus 𝑋low and 𝑋up for events between 1018.6 and 1018.7 eV with the corresponding
cuts. Right: 𝑋cut

low and 𝑋cut
up cuts versus energy. See text for more information.

Only hybrid events are considered. These are events where the geometry is reconstructed using
both the arrival time of ultra-violet light in the fluorescence telescopes and the timing of the closest
surface detector station to the shower core. The reconstruction of the shower profiles with the FD
has been updated and improved [10]. In addition to fiducial field of view selection criteria, showers
are selected if 𝑋max is inside the geometrical field of view of the telescope, if the 𝑋max reconstruction
uncertainty is below 40 g/cm2 and if the Cherenkov light contamination is smaller than 20%.

2.2 Fiducial field of view cuts

The selection of good quality showers may introduce an 𝑋max selection bias (i.e. showers
with 𝑋max values within certain range are more likely to be of good quality), which will bias the
reconstructed 𝑋max distribution. In order to avoid this bias, we apply a fiducial field of view cut.
For each energy bin, an upper and a lower bound for a slant depth range is computed (𝑋cut

up , 𝑋cut
low).

The key to sample an unbiased 𝑋max distribution is to have the boundaries 𝑋cut
up , 𝑋cut

low encompassing
the true 𝑋max distribution for the corresponding energy bin.

In order to determine the 𝑋cut
up , 𝑋cut

low for each energy bin, the mean of the 𝑋max distribution
⟨𝑋max⟩ is computed for binned 𝑋low and 𝑋up (respectively blue and red points in Fig. 1–left). The
values 𝑋low and 𝑋up define the slant depth range where the corresponding event could have its 𝑋max
reconstructed reliably. If we allow 𝑋low values that are too high or allow 𝑋up values too low, then
the mean ⟨𝑋max⟩ will deviate from its true value (i.e. the 𝑋max distribution would be truncated).
The obtained truncated-means can be fitted together (black dashed line in Fig. 1-left). Finally, the
limits on 𝑋up and 𝑋low (𝑋cut

low, 𝑋cut
up ) are obtained by determining the depth at which ⟨𝑋max⟩ deviates

from the asymptotic value by more than Δ = 5 g/cm2 (blue and red vertical lines in Fig. 1–left).
Errors on the cuts are computed by propagating the error on the fitting of the truncated ⟨𝑋max⟩. The
results of the cuts for all energy bins are displayed in Fig. 1–right (respectively blue for 𝑋cut

low and
red for 𝑋cut

up ). 𝑋cut
low and 𝑋cut

up are fitted versus the logarithm of the energy separately with the same
function as in Ref. [2] (blue and red dotted dashed lines). The 𝑋up cut remains the same but the 𝑋cut

low
cuts has increased by ∼20 g/cm2 due to the improvement of the shower profile reconstruction [10].
Events are selected if they have 𝑋low ⩽ 𝑋cut

low and 𝑋up ⩾ 𝑋cut
up . This change in 𝑋cut

low allows for an
increase of the number of events selected from ∼27% events passing the cut in Ref. [5] to ∼29%.
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Figure 2: Top: Energy dependency of acceptance parameters 𝑋1, 𝑋2, 𝜆1 and 𝜆2. Bottom: from left to right,
energy dependency of 𝑋max bias and resolution. See text for more information.

2.3 Detector effects

Once good quality events are selected and the fiducial field of view cuts are applied, the detector
response has to be taken into account to correct small residual biases in the 𝑋max distributions. This
correction includes the combined efficiencies for event trigger, event reconstruction and event
selection (referred to as “acceptance”) as a function of 𝑋max. Furthermore, the reconstruction
biases in energy and 𝑋max and the average 𝑋max resolution for each energy bin are calculated using
detector simulations. To compute the 𝑋max acceptance, we generated air showers with CONEX [11]
using the Sybill2.3d [8] hadronic model for protons and iron nuclei with a flat 𝑋max distribution
injection. The simulation of the atmosphere and the detector response and reconstruction are made
with the Auger Offline software [12] to take into account the real-time state for the SD and FD [13].

After applying the same selection as applied to real data, the efficiency 𝜀 (i.e. 𝑋max acceptance)
in each energy bin can be modeled by four parameters 𝑋1, 𝑋2, 𝜆1 and 𝜆2 defined by

𝜀 =


e(𝑋max−𝑋1 )/𝜆1 if 𝑋max < 𝑋1

e−(𝑋max−𝑋2 )/𝜆2 if 𝑋max > 𝑋2

const. otherwise

(1)

The energy dependency of these parameters is presented in the top panels of Fig. 2. They show the
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results from simulations (points) and the parametrization used for correction. Results are equivalent
as the one previously published [4].

Regarding the reconstruction biases in energy and 𝑋max and the 𝑋max resolution. We simulated
𝑋max distributions similar to the observed ones (i.e. mixed composition) and passed through the
detector simulation, event reconstruction and event selection procedures, in the same way as with
real data. This way the end-to-end residual biases and 𝑋max resolution are calculated. For example,
the 𝑋max bias is defined as 𝑋bias

max = 𝑋 rec
max − 𝑋

gen
max. The bottom panels in Fig. 2 show the 𝑋max bias

(on the left) and the 𝑋max resolution (on the right). They correspond to the mean and the standard
deviation of 𝑋bias

max respectively as function of the energy. The bias decreases as the energy increases
but remains between −3 and −1 g/cm2 while the standard deviation is also decreasing with energy
from 22 to 12 g/cm2 (dashed line). The total 𝑋max resolution is represented on Fig. 2 (bottom, right)
by the plain line. It includes uncorrelated uncertainties from the atmosphere (precision of aerosols,
molecular atmosphere) and alignment of the telescopes, see [2]. The systematic uncertainties of
the 𝑋max scale and resolution remain unchanged from Ref. [2] apart from the VAOD uncertainties
which have been updated [9].

3. Results

The raw 𝑋max distributions after quality and fiducial field of view cuts are shown in Fig. 6. A
total of 75 210 events passed all the selections. Compared to Ref. [5] it is an increase of 60%. This
significant augmentation has three reasons: four more years of data, the improvement of the fiducial
field of view cut (see Sec. 2.2) and the adding of the events observed by the Cohihueco site, that
were previously merged in the HEAT / Cohihueco dataset [4] (for energies below 1018.1 eV). The
last point contributes to increase the number of events at low energy. Above 1019 eV, the number of
events has increases by 26%. These distributions are used to fit the composition fraction of protons,
helium, nitrogen and iron (see Ref. [14]). In this proceeding we will only focus on the moments of
𝑋max and ln 𝐴. For this purpose, the 𝑋max and energy bias, estimated in the previous section are
corrected for each event. Then, 𝑋max moments are estimated from the distributions (Fig. 6), where
the 𝑋max acceptance is taken into account using the Λ𝜂 method described in Ref. [2]. Finally, the
𝑋max resolution is subtracted in quadrature from the computed 𝜎(𝑋max) values.

The moments obtained are represented in Fig. 3. With the new aerosol measurements in-
creasing the aerosol attenuation [9], the ⟨𝑋max⟩ has increased by 1 to 4 g/cm2 compared to
Ref. [2]. Despite this small change, the results previously observed by the Pierre Auger Ob-
servatory [2, 4, 5] are confirmed: a break in the composition evolution at 1018.39±0.02 eV illus-
trated in Fig. 4 by a linear fit with one break (green dashed line). The ⟨𝑋max⟩ elongation rate
fitted before the break is (80.9 ± 2.3(stat.)+3.0

−2.4(syst.)) g/cm2 / decade while after the break it is
(27.9 ± 1.6(stat.)+5.4

−1.4(syst.)) (g/cm2) / decade. This change in the elongation rate argues for a com-
position becoming lighter from 1017.8 to 1018.3 eV before becoming heavier as the energy increases.
At the same time, the change of slope of the 𝜎(𝑋max) evolution indicates a mixed composition
below 1018.3 eV and a purer composition at higher energy.

The 𝑋max moments can be converted [2] to a mean and variance of the logarithm of the mass
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Figure 3: Mean ⟨𝑋max⟩ and 𝜎(𝑋max) of the 𝑋max distributions versus energy from this proceeding compared
with the one obtained in Ref. [2].
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Figure 4: Mean ⟨𝑋max⟩ and 𝜎(𝑋max) of the 𝑋max distributions versus energy with elongation rate fitting. As
comparison predictions from hadronic models [6–8] are also displayed.

number ln 𝐴 by using

⟨𝑋max⟩ = ⟨𝑋max⟩p + 𝑓𝐸 ⟨ln 𝐴⟩ (2)
𝜎2(𝑋max) = ⟨𝜎2

sh⟩ + 𝑓 2
𝐸 𝜎2(ln 𝐴) (3)

where ⟨𝑋max⟩p is the mean 𝑋max for protons, 𝜎2
sh is the average shower-to-shower fluctuations and

𝑓𝐸 is an energy-dependent parameter. All three are parametrized for different hadronic models. The
results for three different hadronic models, QGSJetII-04 [6], EPOS-LHC [7] and Sybill2.3d [8], are
shown in Fig. 5. As can be seen, the interpretation with QGSJetII-04 results into negative values
for 𝜎2(ln 𝐴) which is nonphysical. For the other two models, we corroborate our previous findings
of a 𝜎2(ln 𝐴) close to zero, i.e. a less mixed cosmic-ray composition arrives at Earth above 1019 eV.
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Figure 6: 𝑋max distributions for energy bins from 1017.8 to 1020 eV.
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